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Abstract

This thesis is concerned with the application of recently developed epidemiological and

statistical tools to inform the optimisation of a national surveillance strategy of consider-

able importance to human health. The results of a series of epidemiological investigations

of surveillance strategies for zoonotic Salmonella are presented. Salmonella are one of

the most common and serious zoonotic foodborne pathogenic bacteria globally. These

studies were motivated by the increasing focus on the cost-effectiveness of surveillance

while maintaining consumer confidence in food supply. Although data from the Danish

Salmonella surveillance and control programme has been used in these investigations, the

techniques may be readily applied to other surveillance data of similar quality.

The first study describes the spatial epidemiological features of Danish Salmonella surveil-

lance and control programme data from 1995 to 2004, using a novel method of spatially

adaptive smoothing. The conditional probability of a farm being a case was consistently

high in the the south-west of Sonderjylland on the Jutland peninsula, identifying this area

for further investigation and targeted surveillance. The identification of clustering of case

farms led into the next study, which closely examines one year of data, 2003, for pat-

terns of spatial dependency. K-function analyses provided evidence for aggregation of

Salmonella case farms over that of all farms at distances of up to six kilometres. Visual

semivariogram analyses of random farm-level effects from a Bayesian logistic regression

model (adjusted for herd size) of Salmonella seropositivity, revealed spatial dependency

between pairs of farms up to a distance of four kilometres apart. The strength of the spa-

tial dependency was positively associated with slaughter pig farm density. We describe

how this might inform the surveillance programme by potentially targeting herds within

a four kilometre radius of those with high levels of Salmonella infection.

In the third study, farm location details, routinely recorded surveillance information, and

industry survey data from 1995 were combined to build a logistic seroprevalence model.
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This identified wet-feeding and specific pathogen free herd health status as protective fac-

tors for Salmonella seropositivity, while purchasing feed was a risk factor. Once adjusting

for these covariates, we identified pockets of unexplained risk for Salmonella seropositiv-

ity and found spatial dependency at distances of up to six km (95% CI: 2–35 km) between

farms. A generalised linear spatial model was fitted to the Jutland data allowing formal

estimation of the range of spatial correlation and a measure of the uncertainty about it.

There was a large within-farm component to the variance, suggesting that gathering more

farm level information would be advantageous if this approach was to be used to target

surveillance strategy.

The fourth study again considers data from the whole study period, 1995 to 2004. A de-

tailed temporal analysis of the data revealed there was no consistent seasonal pattern and

correspondingly no benefit in targeting sampling to particular times of the year. Spatio-

temporal analyses suggested a local epidemic of increased seroprevalence occured in west

Jutland in late 2000. Lorelogram analyses showed a defined period of statistically signifi-

cant temporal dependency, suggesting that there is little value in sampling more frequently

than every 10 weeks on the average farm.

The final study uses findings from the preceding chapters to develop a zero-inflated bi-

nomial model which predicts which farms are most at risk of Salmonella, and then pref-

erentially samples these high-risk farms. This type of modelling allows assessment of

similarities and differences between factors that affect herd infection status (introduction)

and those that affect the seroprevalence in infected herds (persistence and spread). The

model suggested that many of the herds where Salmonella was not detected were in-

fected but at a low prevalence. Using cost and sensitivity, we compared the results with

those under the standard sampling scheme based on herd size, and the recently introduced

risk-based approach. Model based results were less sensitive, but showed significant cost

savings. Further model refinements, sampling schemes, and the methods to evaluate their

performance are important areas for future work, and should continue to occur in direct

consultation with Danish authorities.
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Preface

Family Story

‘Poor little shitter,’ her sister said. A tainted wonton

was what did it, that third night of the power cut.

Lines down everywhere, and us out in the sticks,

The power company put us in a priority queue

and sick of it all we hit town and queued instead

at the noodle-house - fuggy, crowded with pale

parents and fractious children also escaping

their darkened homes and wanting light, light

and warm food. The rain steamed off our backs

An ease came as we waited our turn, and children

played among tables. A kind of company, that’s what

we were, such as Chaucer or Boccaccio made a meal of,

only we made a meal of numbers on the menu,

our children too unsure to pronounce the names -

except Katrina, whose seven-year-old mouth

had eaten many wontons and called them out

now with conviction. On the wall, the Health

Inspection rating was unreadable behind yellowing

cellophane, a detail recalled as, hours later in the cold

bedroom, we stroked Katrina’s clammy forehead

while she writhed. . . . Poor little shitter, asleep now,



xxii

already a family story, her stained sheets churning

away in a washing machine that had at last,

when our hope was gone, our patience spent,

at the very last - then it was, as tiny red standby

lights throughout the house glowed into life,

the blessed machine shook, stirred itself and beeped.

Tim Upperton

from ‘A House on Fire’ Steele Roberts (2009)
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Introduction

1.1 Introduction

Veterinary medicine plays an essential role in protecting and promoting public health,

especially in the prevention and control of zoonotic diseases. Zoonotic disease agents

account for approximately 75% of emerging human pathogens and for over half of known

human pathogens (Taylor et al. 2001). The recent and continuing spread of highly pathogenic

avian influenza H5N1 (HPAI) and the emergence and spread of bovine spongiform en-

cephalopathy (BSE) and severe acute respiratory syndrome (SARS) across many coun-

tries has caused concern internationally for human and animal health authorities.

New Zealand, by virtue of its relative geographical isolation and stringent biosecurity

measures, has so far been spared from many of these disease threats but has, both in cur-

rent times and historically, experienced significant zoonotic disease burdens (Crump et

al. 2001). Past and present New Zealand significant foodborne zoonoses include tubercu-

losis, salmonellosis, and campylobacteriosis (Baker et al. 2007); direct zoonoses include

hydatidosis, brucellosis, leptospirosis (Thornley et al. 2002), and Salmonella branden-

burg and Salmonella enterica var Typhimurium DT 160 (Thornley et al. 2003). A re-

sponse to these concerns in the past has been the application of direct government control

programmes which have successfully led to provisional freedom from hydatidosis and

brucellosis. However, in the present day, advances in control of zoonotic diseases are

more likely to be industry lead, and more associated with risk management than eradi-

cation. The poultry industry risk management strategy for Campylobacter1 and the meat

1http://www.nzfsa.govt.nz/consumers/food-safety-topics/
foodborne-illnesses/campylobacter/\strategy/index.htm

http://www.nzfsa.govt.nz/consumers/food-safety-topics/foodborne-illnesses/campylobacter/\strategy/index.htm
http://www.nzfsa.govt.nz/consumers/food-safety-topics/foodborne-illnesses/campylobacter/\strategy/index.htm
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industry input into work place protection from leptospirosis are cases in point (Keenan

2007).

Control programmes are built upon the back of sound surveillance strategies (Merianos

2007). This thesis uses the example of zoonotic Salmonella in Danish pig herds to inves-

tigate novel surveillance strategies that may be used in control programmes for zoonotic

disease.

Non-typhoid salmonellosis is a serious zoonotic disease that mainly causes febrile gas-

troenteritis (Sanchez et al. 2002, Schlundt et al. 2004). Approximately 5% of those in-

fected suffer severe sequellae such as polyarthritis, endocarditis, and, in rare cases, death.

These sequellae are generally more common in the elderly or the very young (Fisker et al.

2003, Weinberger et al. 2004). In industrialised countries most cases of salmonellosis in

humans are food-borne, and pork has been implicated as an important source (Baggesen

& Wegener 1994, Wegener & Baggesen 1996). Clinically, asymptomatic finisher pigs and

culled, older breeding stock may carry Salmonella that contaminates food product which

is then capable of infecting humans (Borch et al. 1996, Swanenburg et al. 2001a).

In the early 1990s, it was estimated that approximately 15% of reported cases of salmonel-

losis were associated with the consumption of pork in Denmark, the Netherlands, and Ger-

many (Mousing et al. 1997, Berends et al. 1998, Steinbach & Hartung 1999). However,

up until 2007, the number of cases of salmonellosis in humans in Denmark attributable to

pork consumption decreased by a factor of ten: from 1444 in 1993 to 101 in 2006 (Nielsen

et al. 2001, Ministry of Family and Consumer Affairs 2007). In 2006, this represented

6.1% (95% CI: 4.6%–7.8%) of reported cases. The attribution of human salmonellosis

cases to the major animal and food sources in Denmark is through a mathematical model

developed by Hald et al. (2004). This model is based on a comparison of the number of

human cases caused by different Salmonella sero- and phage types with the distribution

of the Salmonella types isolated from the various animal-food sources. The decline in

human cases from 1993 until 2007 has been attributed to the large-scale national control

programme aimed at reducing the occurrence of Salmonella in pigs and focussing on in-

terventions applied at the slaughterhouse. Data taken from ten years of this programme

(1995 to 2004) forms the basis of the analyses presented in this thesis.

In this chapter I introduce the Danish swine Salmonella surveillance and control pro-

gramme (DSSCP) and look at its performance compared with other European programmes.
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This introduction also describes how this thesis came about and how it is structured.

1.2 The Danish Swine Salmonella Surveillance and Con-

trol Programme

The Danish swine Salmonella surveillance and control programme was set up in 1993 in

response to an increase in the incidence of confirmed cases of human salmonellosis due

to pork consumption (Baggesen & Wegener 1994), and a large, common source outbreak

caused by Salmonella infantis, traced back to one slaughter plant and a small number of

supplier pig herds (Wegener & Baggesen 1996). The objective of the DSSCP is to re-

duce the prevalence of Salmonella in pork to an acceptably low level so that domestically

produced pork is no longer an important source of human infection.

The programme has components at all stages of pork production: breeding, multiplying

and finishing herds, as well as controls on feed for pigs and at the slaughterhouse. This

thesis considers data from the finishing herd component of the programme. This is based

on the random testing of post-slaughter meat-juice samples from all finisher pig herds that

have an annual kill of greater than 200 finishers (Mousing et al. 1997, Alban et al. 2002).

The testing of meat-juice rather than blood facilitates both sample collection and carcass

identification (Nielsen et al. 1998). All samples are analysed at the Danish Institute for

Food and Veterinary Research using the Danish mix-ELISA which can detect O-antigens

from at least 93% of all serovars that are known to be present in Danish pigs.

Sample results are used to categorise herds into one of three levels of a ‘serological

Salmonella finisher index’ (Alban et al. 2002). The three levels are ‘level 1’ with an

index of 1-39; ‘level 2’ with an index of 40-69; and ‘level 3’ with an index of 70 or

more. Herds in levels 2 and 3 have requirements placed upon them. For example, pro-

ducers must report their most recent weaner suppliers, pen faecal samples are collected

for culture and typing, and there are penalty ‘Salmonella deductions’ resulting in reduced

payments. Furthermore, pigs from level 3 herds are slaughtered under special hygienic

precautions. At the end of 2006, 2.5% and 0.9% of finisher herds were assigned to level

2 and 3, respectively.

Up until July 2005, the number of animals sampled at slaughter depended on herd size,
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with 60, 75, or 100 pigs sampled per herd per year. Since that time a new level of ‘sero-

logical Salmonella finisher index’, level 0, has been created. Under this scheme herds

that have had no positive samples in the previous three months are reduced to one sample

per month (Ministry of Family and Consumer Affairs 2007). This change reduced the

annual sample size gradually from approximately 570,000 meat-juice samples in 2004

to approximately 250,000 in 2006. This reduction in sampling has resulted in large cost

savings for the Danish Meat Association (DMA) producers who bear the bulk of the cost

of the programme.

The build-up to the introduction of risk-based surveillance was important in the genesis

of this project. In 2002 a cooperative risk-based food safety research group between the

EpiCentre and a number of European scientists was formed (the SaFoodChain group).

This group included Jan Dahl and Lis Alban from Danske Slagterier, and one of the co-

operative projects agreed to by members of this group was a joint study of the Salmonella

surveillance data for Danish pigs, to be conducted by Massey University’s EpiCentre and

Danske Slagterier (now the Danish Meat Association). I was offered this data as the basis

for my PhD, and in early 2004 Jan Dahl visited New Zealand and provided the data set

and explanations about its interpretation. This was coincident with the interest both Dan-

ish authorities and the pig industry had in achieving the greatest reduction in Salmonella

for their investment. They were already considering approaches such as the risk-based

surveillance system that was introduced in 2005.

1.2.1 Results from the control programme

In mid-2008 a report on Salmonella in pigs and pork in the European Union (EU) was

released (European Food Safety Authority 2008). This reported on an EU-wide baseline

survey that was carried out in 2007 to determine the prevalence of pigs infected with

Salmonella at the point of slaughter. Pigs were randomly selected from those slaughter-

houses that together accounted for 80% of pigs slaughtered within each member state.

The findings for Denmark were that the adjusted pre-harvest prevalence, as measured

by culture of ileo-caecal lymph nodes, was 7.7% (95% CI: 5.5%–10.7%). This was

marginally lower than the average EU prevalence of 10.3% (95% CI: 9.2%–11.5%).

These prevalence estimations accounted for clustering and the differences between the
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complex survey design and simple random sampling. Given the short transport distances

and holding times of pigs in Denmark, it would be reasonable to assume that this test

reflects infection on the farm of origin.

The findings for Denmark in terms of post-harvest control, as measured by culture of

carcass swabs, was 3.3% (95% CI: 1.3%–8.5%). This was substantially lower than the

average EU prevalence of 8.3% (95% CI: 6.3%–11.0%). The prevalence of positive car-

cass swabs is a product of the risk of infection within a pig, the risk that the infection

is released to the exterior of the carcass, and the risk of cross-contamination from other

carcasses or the slaughterhouse environment. Since 2001, the movement of the focus of

the Salmonella control programme towards increased slaughter-house interventions (such

as hot water decontamination) is thought to be responsible for these results. It is impor-

tant to remember that on-farm controls, such as penalties for level 2 and 3 herds, have

been maintained and provide a powerful incentive for producers to perform well at the

pre-harvest level.

1.3 The structure of this thesis

The aim of this thesis is to investigate techniques that have potential to be used to develop

alternative surveillance strategies for zoonotic diseases using the example of Salmonella

in the Danish pig population. Data has been sourced from the Danish swine Salmonella

surveillance and control programme from 1995 to 2004. Detailed descriptions of these

techniques comprise five of the eight chapters of this thesis. These five chapters are pre-

sented in the format of manuscripts for peer-reviewed publication. As a consequence of

this style of thesis presentation, there is some repetition between chapters, especially in

each of the introduction sections. Furthermore, the process of writing for publication and

then subsequently responding to reviewers’ and editors’ requests requires a substantial

amount of distilling of material and presentation of only the most pertinent results. This is

evident in these five chapters, as I have maintained the published form of the manuscripts.

The only alterations are some additional graphics and some extra text to provide linkage

between the chapters and throughout the thesis as a whole.

The first of these manuscripts (Chapter 3) is an application of a novel method of spatially

adaptive smoothing to describe the spatial epidemiology of subclinical Salmonella infec-
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tion over the entire study period. The identification of clustering of cases leads into the

second study, Chapter 4, an investigation of spatial dependency in the data from 2003.

Random farm-level effects from a Bayesian seroprevalence model (adjusted for herd size)

are used to explore spatial dependency. I describe how this might inform the surveil-

lance programme by potentially targeting herds within a four kilometre radius of level 2

or 3 herds. In the third study (Chapter 5), data from a 1995 producer questionnaire gave

additional farm-level covariate information (such as feed-type and feed source). This

was used to build another seroprevalence model and investigate risk factors and first- and

second-order spatial properties of the data to provide an informed framework for risk-

based surveillance. Chapter 6 again considers the whole study period, 1995 to 2004, and

investigates how temporal and longitudinal analytical techniques might be used to pin-

point sampling at certain times of the year, and how frequently herds should be sampled.

The final study (Chapter 7) uses results from the previous chapters to develop a zero-

inflated binomial model that predicts which farms are most at risk of Salmonella and uses

this to inform a risk-based sampling approach.

The second chapter of the thesis is a literature review of methods for detecting and re-

sponding to changes within surveillance data for zoonotic disease, focussing primarily on

temporal techniques. Temporal techniques are highly developed in public health surveil-

lance systems but have been little researched within our group. The temporal focus of my

literature review goes some way towards addressing that imbalance. Our group has some

expertise in spatial and spatio-temporal methodologies and there have been a number of

reviews of these techniques (see, for example Stevenson (2004), Lockhart (2008), and

Porphyre (2008)). It is not my intention to provide another review of spatial and spatio-

temporal techniques but to briefly describe these, and give a detailed account of the most

recent developments.

The thesis concludes with a discussion of the study findings, identification of important

lessons learnt, and plans for future work. Finally I present some future perspectives on

surveillance for zoonotic disease.
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Literature review: Methods of detecting and

responding to change within surveillance data

2.1 Introduction

Our lives are increasingly characterised by change and emergence. New products bom-

bard us and our children. We are strongly encouraged to purchase Play Station 3 be-

fore Play Station 2 is out of its wrapper, and to buy the impossibly small iPod Nano.

Mirroring this emergence of unprecedented gross consumption is the recent emergence

or re-emergence of infectious diseases of veterinary public health importance (Vorou et

al. 2007, Sargeant 2008). These include foodborne (Escherichia coli O157, Creutzfeldt-

Jakob Disease) and occupational zoonoses (brucellosis, avian influenza), and those related

to companion animals (monkey pox) and wildlife (rabies, West Nile Virus).

Alongside disease emergence and reemergence, there have been concerns about terror-

ism and bioterrorism since the September 2001 attacks on the World Trade Centre in the

USA and the intentional release of anthrax in New York in October 2001 (Jernigan et al.

2001). The subsequent development of surveillance science associated with bioterrorism

preparedness, and specifically early detection, has been rapid. Early detection is desirable

because disease-causing agents have a prodromal phase that is relatively non-specific.

If the disease is detected while patients are in this phase, they may be helped by spe-

cialised care. Furthermore, for contagious disease, early intervention, such as isolation

or treatment to reduce shedding of infectious material, may slow down or stop disease

progression.
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Alongside the threat of emerging infections and the increased potential for bioterrorist at-

tacks, there are increasingly limited resources for disease surveillance (Stärk et al. 2006).

Coupled with increasing international trade, these are driving forces for improvements

in disease surveillance and moves to optimise the resources used in disease surveillance.

These include diseases of veterinary public health importance such as bovine spongiform

encephalopathy (BSE) (Bohning & Greiner 2006), salmonellosis (Alban & Stärk 2005)

and trichinellosis (Kapel 2005).

This literature review focusses on methods and tools for detecting changes within surveil-

lance data. The focus is on zoonotic disease and techniques in time, space, and space-time.

In situations such as epidemics, vaccination, or climate change, both human and animal

health surveillance data present changes of magnitude and periodicity. For example, in

June 2003, the Dutch National Salmonella Centre reported a significant excess isolation

rate of Salmonella enteritidis from humans when compared with previous years (van Pelt

et al. 2004). This is illustrated in Figure 2.1. The authors suggest that the increase in

importation of contaminated eggs, as a result of the avian influenza outbreak, was the

most probable reason for this excess. Although this example presents a real increase in

cases it is important to be aware that there is much potential for artefactual changes in

disease incidence e.g. through modifications of the case-definition, or the introduction of

screening programmes.

Change does not always manifest in increased numbers of cases. For example, in 2001

there was a significant decrease in reports of human cryptosporidiosis in the north-west

of the United Kingdom (UK), from 1382 cases in 2000 to 428 (Hunter et al. 2003). This

was almost coincident with the introduction of control measures put in place around the

2001 outbreak of foot-and-mouth disease (FMD). During the 2001 outbreak of FMD in

the UK, over six million ruminants were slaughtered, and there were strict and widespread

bans on access to the countryside. The authors report that the decline in cases was most

likely related to the outbreak of FMD. They conclude that these surveillance data sup-

port previous evidence that zoonotic transmission is a major route of infection for human

cryptosporidiosis in this region of the UK.
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Figure 2.1: Observed, expected and tolerance levels for laboratory confirmed cases of Salmonella
enteriditis in the Netherlands 2002 to 2004. Source: van Pelt et al. (2004)

The Belgian dioxin crisis in animal food in 1999 provides another illustration of change

in surveillance data. The dioxin problem started at the end of January 1999, when con-

taminated feed was processed. However, official notification of the crisis did not occur

until four months later at the end of May, when Belgian authorities ordered the withdrawal

from sale of Belgian poultry and eggs. For the month of June 1999, the expected number

of campylobacteriosis cases was 643, while the actual number of cases reported was 375

(Vellinga & Van Loock 2002). This reduction in cases was likely due to the withdrawal of

chicken and its products from the market during the dioxin crisis. At the time of writing

(December 2008), there is another European dioxin animal feed contamination concern,

this time in Ireland (ProMED-mail 2008a).

Large amounts of data are collected by human and animal health surveillance systems.

For example, the National Notifiable Disease Surveillance System (NNDSS) in the USA,

run and maintained by the Centers for Disease Control and Prevention (CDC), has tracked

52 different diseases since January 1999. These are reported weekly at both the state and

national level and include many zoonotic diseases e.g. brucellosis, salmonellosis, and



10 Literature review

rabies. In New Zealand, the Notifiable Disease Surveillance system for humans currently

covers about 50 diseases including leptospirosis, campylobacteriosis, and hydatidosis.

Geo-referenced notifiable disease information is entered in real-time on a web-based ap-

plication, EpiSurv, from laboratories, health providers, and regional medical officers of

health. These data are analysed at the Institute of Environmental Science and Research

(ESR) on behalf of the Ministry of Health.

The UK launched its strategy for enhancing veterinary surveillance in 2003, a major part

of which is the Rapid Analysis and Detection of Animal Related Risk (RADAR) system.

This is designed to bring together key surveillance information collected in other systems

about animal diseases and conditions in a structured and consistent way. Types of data

recorded by the system include agricultural holdings, land and livestock data from UK

government databases, diagnostic data from veterinary laboratories, animal health data

from private veterinarians and animal owners, and meteorological information.

Public health surveillance aims to detect disease outbreaks and clusters, identify changes

or trends in health-related problems, and monitor the effectiveness of prevention and con-

trol programmes. Furthermore, the results of surveillance activities can assist in establish-

ing public health programmes and priorities, understanding the natural history of disease,

and stimulating analytical research.

The OIE (World Organisation for Animal Health) identifies similar aims for animal health

surveillance: determining the occurrence or distribution of disease or infection, while

also detecting exotic or emerging diseases as early as possible, monitoring disease trends,

controlling endemic and exotic diseases, and providing data to support the risk analy-

sis process, for animal health and/or public health purposes. There are two important

additional aims of animal health surveillance that are not shared by human health surveil-

lance: demonstrating the absence of disease or infection, and substantiating the rationale

for sanitary measures.

To meet these aims, a surveillance system should have some key attributes that were first

recorded by Thacker (Thacker et al. 1988). These include sensitivity, timeliness, flexi-

bility, simplicity, and adequate positive predictive value. They continue to be important

benchmarks of effective surveillance systems (German 2000, Zepeda & Salman 2003,

Jajosky & Groseclose 2004, Babin et al. 2007, Buehler 2008).

Data from surveillance systems can be used prospectively or retrospectively, and it is
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important to distinguish between the two. Retrospective and prospective analyses are

used to respond to different types of health surveillance needs.

In a retrospective analysis, the data set is ‘complete’. This type of analysis can fulfil most

of the above aims and will be reviewed here. The retrospective analysis of surveillance

data has been extensively developed throughout this thesis using data from the Danish

swine Salmonella surveillance and control programme. Data that is retrospectively anal-

ysed is, by definition, not continually updated, so this type of analysis does not allow for

real-time detection of outbreaks.

However, there are many situations when a repeated analysis of accumulating data over

time is called for: the prospective case. For example, if we wish to detect an increased

incidence of disease in real time. In this situation timeliness is important as the sooner

the detection is made the sooner interventions can be put in place (Jajosky & Grose-

close 2004). This is particularly important in the current global environment of disease

emergence, climate change, increased trade, and the threat of bioterrorism. Prospective

methods will also be reviewed here.

2.2 Surveillance

Before considering the methodology, it is important to consider different approaches to,

and types of surveillance. The way in which surveillance data are collected has a large

bearing on interpretation. For example, if surveillance data are collected only on a specific

subset of the population we need to consider the representativeness of these data whilst

interpreting them.

2.2.1 Active approaches to surveillance

An active approach to surveillance means that the onus is on the organisation conduct-

ing the surveillance to obtain the surveillance data from the providers, such as physicians,

veterinarians and laboratories (Buehler 2008). This is considered to be the ‘gold standard’

of systems as it has the potential to provide comprehensive, accurate data on disease inci-

dence that can be extrapolated to larger populations. This is providing that the information
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that is supplied is an unbiased sample of the target population. Active surveillance is of-

ten the result of structured surveys with a particular question in mind, e.g. whether or not

New Zealand is free of BSE. This approach is often costly and complex.

The Foodborne Disease Surveillance Network (FoodNET) is an active, laboratory based

surveillance program for foodborne pathogens of humans in the United States of America

(USA) (Scallan & Angulo 2007). Personnel routinely contact laboratories to ascertain

confirmed cases of disease such as campylobacteriosis, cryptosporidiosis, salmonellosis

and haemoltyic ureamic syndrome. Even though laboratories are audited twice yearly to

ensure all cases are ascertained, there is still potential for under-ascertainment prior to and

beyond laboratory confirmation. A study in the United Kingdom estimated that for every

case of infectious intestinal disease detected by national laboratory surveillance, there

were 136 in the community (Wheeler et al. 1999). A Canadian study reported a larger

disparity, with each case of enteric illness reported to the province of Ontario reflecting

an estimated number of cases in the community ranging from 105 to 1389 (Majowicz et

al. 2005). The use of capture-recapture methods to remedy this incomplete counting of

cases is developed by Hook & Regal (2004). Figure 2.2 shows the steps that must be

followed for a case to be ascertained in a surveillance system.

2.2.2 Passive approaches to surveillance

These approaches are initiated by the provider of the data, and so relies on their willing-

ness to report an infectious disease to public or veterinary health authorities (van Beneden

et al. 2007).

In New Zealand, the national notifiable disease surveillance system (EpiSurv) is an ex-

ample of a passive system. Human health professionals and laboratories are required to

report notifiable disease that they suspect or diagnose to their local Medical Officer of

Health (Population and Environmental Health Group 2008). Zoonotic diseases covered

here include those caused by Cryptosporidia and Salmonella spp. Although there is a

legal requirement to notify, this is truly a passive system, in that the onus to notify is on

the data provider and not on the organisation conducting the surveillance.
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Figure 2.2: The cascade of surveillance steps that must occur for laboratory-confirmed cases to
be ascertained through active surveillance. Source Centers for Disease Control and Prevention

.

Passive surveillance is less expensive and easier to operate than active systems, but typi-

cally underestimates the true incidence of many diseases. It is a highly specific form of

surveillance but is neither timely nor sensitive. The issue of timeliness of public health

surveillance systems for infectious diseases is addressed in a review by Jajosky & Grose-

close (2004). Using NNDSS data from 1999 to 2001, it was reported that timeliness of

reporting varied by disease, with salmonellosis, cryptosporidiosis, and E.coli O157:H7

infections having less than 40% of cases reported within the median incubation period for

the disease.

The distinction between active and passive surveillance is not always clear and hybrids

have been developed. For example, in New Zealand, surveillance of Acute Flaccid Paraly-

sis (AFP) is carried out to fulfil the requirements of the World Health Organisation (WHO)

for certification of polio eradication (Population and Environmental Health Group 2008).

Every month specialists in paediatric practice are sent a reply-paid card from the New

Zealand Paediatric Surveillance Unit. They are then prompted to fill in and return the

card detailing if in the previous month they have seen any cases of AFP. Despite the fol-

low up not all specialists respond, and the submission rate of stool sample testing does
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not yet meet WHO’s criteria.

2.2.3 Syndromic surveillance

If the goal is to detect change in surveillance data as early as possible, then the focus must

move towards analysis of data collected before a definitive diagnosis is made. Examples

of these data include supermarket sales of items like tissues, orange juice, or paracetamol,

pharmacy sales, school and work absenteeism, daily GP office visits and laboratory test

requests. These data will provide signals at different times of disease progression, e.g.

in chronological order a person is likely to purchase an over-the-counter remedy before

visiting the doctor (see Figure 2.3).

Developments in information technology have facilitated the capturing of these data and

subsequent automation of surveillance systems (Mandl et al. 2004, Hauenstein et al. 2007,

Lawson & Kleinman 2005). As these types of systems are in action before a diagnosis

is made, the data need to be sorted into groups, or syndromes, before anomaly detection

algorithms are applied. Health-care data sources use groupings like respiratory illness or

gastro-intestinal illness, but other data sources such as work absenteeism records need

different groupings. Lombardo et al. (2003) provides a widely used syndrome category

set. This was developed by the architects of the Electronic Surveillance System for the

Early Notification of Community-based Epidemics (ESSENCE).1

This type of prospective surveillance is both timely and sensitive. Buckeridge (2007) re-

views 35 studies that used automated syndromic surveillance to detect disease outbreaks.

The systems reviewed could detect large seasonally occurring outbreaks with sensitivity

and timeliness that was comparable to, or better than, systems that relied on diagnostic

data alone.

Rolka et al. (2007) report on the analytic issues surrounding syndromic surveillance data

captured from multiple sources. These authors discuss creative analytic approaches that

address issues around the use of secondary data such as over-the-counter (OTC), emer-

gency department (ED), and laboratory test order data. They identify ‘data lag’, ‘time

alignment’, and the ‘unlinked data source’ problem as key issues.

1http://www.geis.ha.osd.mil

http://www.geis.ha.osd.mil
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Figure 2.3: A progression of useful data sources for syndromic surveillance as related to the
underlying infection and associated behaviours. Source Mandl et al. (2004).

Three information systems that capture syndromic animal health data from veterinari-

ans and animal owners to detect emerging diseases have been reported by Vourc’h et al.

(2006). The systems described are the Veterinary Practitioner Aided Disease Surveillance

in New Zealand, the Rapid Syndrome Validation Project Animal in the United States,

and ‘Emergences’ in France. It is envisaged that, if successfully incorporated, these sys-

tems will define the ‘normal’ clinical baseline for syndromes and rare diseases, allowing

statistical confirmation that an atypical syndrome is emerging.

Highly sensitive and timely syndromic surveillance can suffer from lack of specificity

and the occurrence of false alarms. These occur when an outbreak is detected when in

fact there is none. False alarm rate is a key measure of the performance of syndromic

surveillance systems.

Consider a time series of health events. For example the number of thermometers sold

over the counter in Auckland, (X), per day, (t), as in Equation 2.1.
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X = {X(t); t = 1, 2, ...} (2.1)

Our interest is prospective in that we aim to detect a change in the series at an unknown

time point, τ , as quickly and accurately as possible. The time when we inspect the series,

say, daily, will be a predetermined decision point, s. We want to decide if the process

is in-control or out-of-control. We call these D(s) and C(s) respectively. To make this

decision, we use the accumulated observations Xs = {X(t); t ≤ s} to produce alarm

sets A(s), so that if Xs ∈ A(s) then the process is out-of-control, (in state C(s)), and an

alarm is triggered, invoking a response such as further investigation of cases, vaccination,

or dissemination of information. Usually this is done by an alarm function p(Xs), and a

control limit g(s), where the time of the alarm, tA, is as follows:

tA = min{s; p(Xs) > g(s)} (2.2)

For health surveillance, a common usage is D(s) = {τ > s} and C(s) = {τ ≤ s}.

The change to be detected in our scenario could well be a change in the mean level of

X , the average number of thermometers sold in Auckland per day. Most of the literature

on syndromic surveillance considers an abrupt or step form, where a parameter changes

from one constant level to another. This might be caused by a sudden bioterrorist attack.

However changes can also be linear, exponential or gradual. A gradual change is likely

to be seen during a naturally occurring outbreak of infectious disease and these can be

particularly problematic to detect.

Further detailed reports on syndromic surveillance are mentioned throughout this chap-

ter and covered in detail in an extensive report by the Centers for Disease Control and

Prevention (2004).

2.2.4 Sentinel surveillance

In sentinel surveillance, the health status of a population is periodically assessed. A sen-

tinel is defined as a person or thing that watches or stands as if watching. In sentinel

surveillance data is collected from only a subset of a larger population. Therefore, it

is important to ensure the representativeness of those under surveillance. The sentinel
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population may be a group that is at higher risk of developing the disease under surveil-

lance. For example, measuring the prevalence of human immunodeficiency virus (HIV)

infection in New Zealand amongst intravenous drug users (AIDS Epidemiology Group

2007).

Sentinel surveillance systems may also target an at-risk time period rather than an at-risk

population. For example, the human influenza sentinel surveillance system (Population

and Environmental Health Group 2008) operates from May to September each year in

New Zealand. This gathers data on the incidence and distribution of influenza. In 2007,

this was based on a network of 87 general practices that record the number of consulta-

tions for influenza-like illness each week by age group.

Sentinel surveillance systems may also target at-risk individuals due to their location. For

example, to demonstrate freedom from arboviral disease, New Zealand regularly tests

cattle from sentinel herds in areas where the local climate would favour establishment

of Culicoides spp. Seventeen herds in 10 districts are tested annually for antibodies to

bluetongue virus, epizootic haemorrhagic disease virus (serotype 2), Palyam (DAguilar)

virus, Simbu viruses (Akabane and Douglas), and disease vectors in the genus Culicoides.

Most of the herds are in northern coastal areas (see Figure 2.4) where the local climate is

warm and wet, favoured habitat conditions for the Culicoides midges.

2.2.5 Risk-based surveillance

When a population perceived to be at a greater risk of a disease is preferentially sam-

pled, this is called risk-based or targeted surveillance. The use of targeted surveillance is

extensive in both the veterinary and human world as a tool to make best use of limited

resources. A formative discussion paper on risk-based surveillance in veterinary public

health from 2006 sought to develop a framework for practical implementation of risk-

based surveillance (Stärk et al. 2006). This paper was the first to clearly identify the

two key components of a risk-based surveillance system: (1) preferential surveillance

for hazards that have serious consequences to human or animal health and trade; and (2)

preferential sampling in sub-populations that have a higher risk of having a disease. Al-

though it is formative in some of the conceptual issues around risk-based surveillance, it

is somewhat limited in its discussion of the analytical challenges around processing data
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from such systems. Since its publication there have been many examples of the applica-

tion of risk-based surveillance in animal health (Chriel et al. 2005, Martin et al. 2007a,b)

including in the field of food-borne zoonotic disease (Alban et al. 2008).

For example, surveillance for Trichinella spp. in Denmark is risk-based: only sows, boars,

and outdoor-reared pigs are sampled (Alban et al. 2008). Outdoor-reared pigs present

a higher risk of introduction because of the possibility of contact with wildlife. Sows

and boars are at an increased risk as a result of their age which gives them a longer

exposure time when compared with finisher pigs. Another example is in the Belgian

swine Salmonella control programme, where only the 10% of pig herds with the high-

est Salmonella infection burden (denoted high-risk herds) participate. Identification of

Salmonella high-risk pig herds is based on previous serological data (Bollaerts et al.

2008).

The principles of risk-based surveillance are central to the work presented in this thesis.

2.3 Temporal surveillance

Human and animal health surveillance data form a univariate time series when they con-

sist of a single observation recorded at regular time intervals. These observations could

be the number of cases of salmonellosis notified per month, the number of emergency

department (ED) cases involving respiratory symptoms per week, or the number of ther-

mometers sold per day. If observations are taken on two or more time series simultane-

ously then the series is bivariate or multivariate, respectively. For example, this would

occur if in addition to recording the number of ED cases involving respiratory symptoms

per week, we had simultaneously recorded the sex, age and address of each case.

When considering the detection of change in surveillance data, we need to ask the fol-

lowing questions: are there consistent patterns such as trend or seasonality? Is there an

abrupt change in the observed incidence or prevalence of disease? And is our interest

prospective or retrospective?
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Figure 2.4: Map of New Zealand. The dots indicate sites of arbovirus sentinel cattle herds and
Culicoides spp light traps. These herds are mainly in northern and coastal areas. Source: Ministry
of Agriculture and Forestry 2008.

2.3.1 Time series methods

Time series methods have traditionally been used to describe trend, cyclicity, and au-

tocorrelation in equally spaced data. There are many applications of time series analysis

including those in finance, ecology, and increasingly public health monitoring and surveil-

lance. There are two main purposes of time series analysis: to describe, explain or model

the mechanism that gives rise to the data; and to forecast or predict the future values of
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a time series based on its history and other related series or variables. In a univariate

series, the interest is in how observations within a series are related to others in the same

series. In a bivariate analysis, interest lies in identifying the relationship between the two

series at the same time or with one leading by one or more lags (for example, between the

residuals of two series of diseases or between the residuals of a disease and those of an

effector variable such as weather).

Surveillance data often exhibit correlation at varying temporal scales. On a reducing scale,

if we consider the example of the number of ED cases involving respiratory symptoms per

day, this correlation could manifest as a long term trend of increasing incidence, annual

winter peaks, day-of-the-week effect, to sequential autocorrelation. Statistical time series

modelling is especially suited to accommodate these correlations. Correlations in them-

selves may be a nuisance e.g. we may wish to remove a seasonal pattern from the series

to reveal the underlying structure. Conversely, we can exploit the correlation structure in

surveillance data as it makes us reasonably confident of future behaviour.

Graphical exploration

The first approach for all data analysis is exploratory. For a time series analysis a simple

plot of the data as a function of time is a crucial initial step towards understanding the

data. For example, Figure 2.5 shows the monthly returns of deaths from bronchitis, em-

physema, and asthma in the UK from 1974 to 1979 for males and females (adapted from

Diggle (1990)). These types of plots are called time-series or run sequence plots (Cham-

bers et al. 1983). This data set will be used throughout the time series methods part of this

chapter to illustrate some of the methods discussed. It will be referred to subsequently as

the respiratory deaths data.

Time series plots not only reveal the trend and seasonal variation (see Figure 2.5), but also

missing values, outliers and abrupt changes in a series. This was illustrated in an eight

year study of nosocomial infection in a Spanish hospital (Fernandez-Perez et al. 1998),

when four distinct time periods were identified by simply graphing the incidence risk of

infection as a function of time (Figure 2.6). These periods were: (1) a training period; (2)

a period of minor incidence; (3) an abrupt change associated with a medical strike; and

(4) a period of increased incidence.
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Figure 2.5: Monthly deaths from bronchitis, emphysema, and asthma in the UK, 1974-1979,
stratified by sex. Source: Diggle (1990).

Overlying several years of data on the same plot allows a visual comparison to be made

between years. Figure 2.7 illustrates this with weekly episodes of cases of Salmonella

typhimurium infection in humans in Denmark. At the time of writing (December 2008),

Denmark is experiencing the largest Salmonella outbreak since surveillance was initiated

in 1980. The outbreak is caused by Salmonella typhimurium phage type U292 (Ethelberg

et al. 2008a,b). At present, more than 1000 people have been infected since February

2008, and six have died. The source of infection has not been confirmed. The graph

clearly shows the above average numbers for 2008 attributed to the outbreak of strain

U292.



22 Literature review

Figure 2.6: Monthly cumulative incidence of nosocomial infection in Hospital General de
Guadalajara, Spain, between March 1982 and December 1990. Source: Fernandez-Perez et al.
(1998).

Time series graphs also act as an aid for statistical analysis by showing the structure of

the data and suggesting hypotheses for further investigation (Chatfield 2004). An exam-

ple of this is the correlation structure in a time series plot of number of births per week

in Bangladesh (Zeger et al. 2006) which suggests an autoregressive model (see forthcom-

ing section on Box Jenkins methodolgy). Plotting two or more stationary series on the

same axes may prompt an investigation of the association between them, as there was,

for example, reported between weekly campylobacteriosis incidence and average weekly

temperature in England and Wales (Louis et al. 2005).

Although it sounds straight-forward, plotting a time-series is not always so. Care must

be taken with the choice of scales, where to place the intercept, and how the points are

plotted. Furthermore, the data may show a lot of variation resulting in a plot that is

difficult to interpret. This will be addressed in the next section.
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Figure 2.7: Reported Salmonella typhimurium cases per week in Denmark. The large sus-
tained outbreak from week 12 in 2008 is largely due to phage type U292. Source:
http://www.ssi.dk/graphics/html/Germ/germ/stm.htm

.

Temporal trend

Trend may be loosely defined as ‘the long term change in the mean level of the time series’

(Chatfield 2004). More formally it is the long term movement of the series, which is a

systematic component that changes over time, and generally does not repeat itself within

the time range of the available data. What is ‘long term’ is a subjective assessment, so

when considering trend we must take into account the number of observations.

Methods used to detect change in surveillance data which show a trend will depend on

whether the trend is of interest, or if it is of nuisance value only. Generally the further

analysis of time series data requires that the trend be removed, so often the latter is the

case. Trend removal is a major component of making a series stationary. In this context,

stationary means the series has no systematic change in the mean or the variance, and

periodic variations have been removed (Diggle 1990). It is an important prerequisite for

further analysis of the data.
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Temporal trend identification

Even though trend removal is required for further analysis, as epidemiologists our interest

is also in the trends themselves in disease surveillance data.

As most surveillance time series data will contain considerable variation, the first step

in the process of trend identification is likely to be smoothing. Smoothing generally in-

volves local averaging of data so that the random components of individual observations

are removed. Techniques include moving average, exponentially weighted moving aver-

age, and kernel and loess smoothing (Diggle 1990, Chatfield 2004). Figure 2.8 shows the

unstratified respiratory deaths data in its raw state, and loess smoothed using two smooth-

ing spans (0.2 and 0.5). This technique uses a locally-weighted polynomial regression,

where the f value is the proportion of points in the plot which influence the smooth at

each value (Cleveland 1979). Larger values of f provide a greater level of smoothing.

In three studies of human campylobacteriosis, different techniques for temporal trend

identification were used. Baker et al. (2007) plotted the time series and used a chi-squared

test for trend on New Zealand data from 1995 to 2003. As well as identifying an increase

in incidence in the plot, the statistical test gave the probability of rejecting the null hypoth-

esis of no trend, at p < 0.01. Time-series plots and regression analysis were performed to

identify national and regional trends in Scottish cases of campylobacterosis from 1997 to

2001 (Miller et al. 2004). One region (Borders) had a significant trend (p = 0.04) where

there was a reduction in cases over this time period. For the remainder of the regions

and the country overall there was no significant trend. And in a spatio-temporal study, a

simple smoothed trend line was fitted using a moving average filter to visualise Canadian

cases of campylobacterosis from 1996 to 2004 (Green et al. 2006). No temporal trend was

observed in these data. Although all these studies go beyond the identification of trend

in their analysis, in each case they highlight the value of applying the straight-forward

technique of plotting the time series as a preliminary step.

A seven-day moving average smoother was used to remove the effect of day-of-week and

holidays on pharmacy over the counter (OTC) sales data (Centers for Disease Control

and Prevention 2004). Another method used to detect trends in time series is based on

cumulative sums which will be discussed in the forthcoming section on statistical process

control in this chapter.
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Figure 2.8: Loess smoothed monthly deaths from bronchitis, emphysema, and asthma in the UK,
1974-1979. The f value is the proportion of points in the plot which influence the smooth at each
value. Source: Diggle (1990).

It is important to be aware that with any emerging pathogen such as Campylobacter the

trend seen may largely reflect changes in laboratory or clinical practice, rather than real

changes in disease incidence. Artefactual changes may also result from changes in the

extent to which diagnosed disease is reported to public health authorities, and hence to

the national notifiable disease surveillance system.

Temporal trend removal

There are two main approaches to trend removal: by curve/line fitting or by differencing

(Diggle 1990, Chatfield 2004). In the first approach the raw series (shown as the grey

line in Figure 2.8) could have the trend removed by fitting a straight line to the data
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and examining the residuals from the fit. In the second approach, differencing, could be

applied. This is a type of filtering whereby the raw series is converted into another series

(the differenced series). The differenced series will be transformed as: Y = Y − Y (lag).

After differencing, the resulting series will be a vector of length N − lag (where N is the

length of the original series). Both options for trend removal are shown in Figure 2.9.

The different approaches to detrending are important for forecasting; fitting a line or curve

to the series places global assumptions on the data which may poorly estimate the fit

beyond the range of the period of interest (Diggle 1990). Most texts generally advise

the use of differencing if forecasts are to be made (Diggle 1990, Chatfield 2004), and

differencing is an integral part of autoregressive integrated moving average (ARIMA)

modelling of time series (Box et al. 1994). More detailed discussion on the different

approaches are well developed in the economic forecasting literature (Clements & Hendry

2001, Qi & Zhang 2008) but are beyond the scope of this review.

Seasonality

The seasonal distribution of infectious diseases has been well recognised and extensively

studied (Grassly & Fraser 2006, Altizer et al. 2006). It is of interest in itself in providing

clues to the possible aetiology of disease, but also as seasonal behaviour holds promise

of predictability, there is great potential to exploit this for surveillance purposes. If it is

possible to predict the occurrence of disease then the use of preventative measures and

health-care resources can be targeted for those times, and we are provided with a baseline

by which to compare future behaviour of the series.

Seasonal rhythms in human health have been observed to exist since at least 400 BC,

when Hippocrates stated that ‘Whoever wishes to investigate medicine properly should

proceed thus: In the first place to consider the seasons of the year and what effect each of

them produces’, (cited by Hare (1975)).

Veterinary medicine is no exception: recent examples include the spread of bluetongue

through northern Europe associated with a particularly hot summer (Enserink 2006), and

the winter peak of rabies in Korea associated with the ethology of raccoon dogs in out-

break areas (Kim et al. 2006).
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Figure 2.9: Monthly deaths from bronchitis, emphysema, and asthma in the UK, 1974-1979. The
raw series (grey) has been detrended by straight line fitting (green) and by differencing (red).
Source: Diggle (1990).

As well as the climatic reasons for the seasonal pattern of infectious disease, there are

human-imposed annual drivers, sometimes called seasonal forcing. These include those

associated with the management of livestock, such as a late spring peak of clinical mastitis

in a spring calving dairy herd, and school terms, such as the September peak in childhood

pertussis in the USA coinciding with the commencement of the school term (Shah et al.

2006).

Techniques to determine seasonality range from simple plotting of the time series, smooth-

ing, and monthly box plots, to analytical techniques in both the time and frequency do-

mains. Figure 2.10 is a monthly box plot of the respiratory deaths data. This shows a

distinct summer trough and winter peak in respiratory deaths and that there is much less
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variation in death numbers during the summer season.

Moineddin et al. (2003) proposed fitting an autoregressive model and determining the

coefficient of determination, to measure the strength of the seasonal effect for asthma and

atrial fibrillation hospitalisations. The coefficient of determination measures how well the

next value can be predicted using the month as the only predictor. This technique was

applied to influenza and pneumonia hospitalisations from 1988 to 2002 in a Canadian

analysis (Crighton et al. 2004). This technique gave good results when used as part of

a predictive model to forecast hospitalisations for 52 common discharge diagnoses from

Ontario acute care hospitals (Upshur et al. 2005).

A common approach to handling a seasonal time series Yt is to decompose its components

of trend Tt, season St, and remainderRt by a sequence of robust locally distance weighted

regressions, where Yt = Tt + St + Rt (Cleveland et al. 1990). Decomposition using

this technique identified a very similar seasonal pattern for the prevalence of Salmonella

in pork and the incidence of salmonellosis in humans in Denmark (Hald & Andersen

2001). The late summer peak in pork prevalence appeared four weeks before the peak

in human cases in this Danish study of data from 1995 to 2000. Figure 2.11 shows the

decomposition of the lung deaths data clearly showing the components of season, trend,

and residuals.

Further seasonality examples, including the use of generalised additive models will be

demonstrated throughout this chapter.

Approaches to time series analysis

There are two overlapping streams within time series analysis: the time and frequency

streams. Although mathematically these are equivalent and one can be derived from the

other, this is of little practical use to us when applying these approaches to detecting

change in surveillance data. The mathematical equivalence in the approaches does not

equate to statistical equivalence, as the use of the underlying data in each approach high-

lights different aspects (Diggle 1990). In the time domain, the variation in the time series

is described in terms of the way in which observations are related statistically with one

another at different times. These methods focus on how a time series evolves from one

time to the next, e.g. ARIMA models, cross correlation function, and hidden Markov
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models.

In the frequency domain, inference is based on the spectral density function which de-

scribes how the variation in the time series may be accounted for by cyclic components

at different frequencies. These methods measure the waves in a time series and include

spectral analysis, Fourier models, and periodic regression.

Methods in the time domain

In the time domain, the variation in the time series is described in terms of the way in

which observations are related statistically with one another at different times. Techniques

here are centred around correlation. Inference is based on the autocorrelation of the series

and autoregressive and/or moving-average models are fit to the data set after trend removal

or seasonal adjustment (Box et al. 1994).

Autocorrelation refers to the correlation of a time series with its own past and future val-

ues. This is sometimes called ‘serial correlation’, which refers to the correlation between

members of a series of numbers arranged in time. Alternative terms are ‘lagged corre-

lation’ and ‘persistence’. Three tools for assessing the autocorrelation of a time series

are: (1) the time series plot, (2) the lagged scatterplot, and (3) the autocorrelation func-

tion. The lagged scatterplot, is a scatterplot of the time series against itself offset in time

by one to n time periods. Figure 2.12 shows lagged scatterplots (up to 12 lags) of the

log lung deaths data (previously detrended by fitting a straight line). The series is not

stationary and still has a strong seasonal component, which can be seen by the strong

autocorrelation at lags 6 and 12. Fitting month as a factor in the linear model and then

re-running the lagged scatterplots resulted in no pattern at these lags, indicating that the

autocorrelation at 6 and 12 months had been successfully accounted for by controlling for

month.
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Figure 2.10: Box plot of monthly deaths from bronchitis, emphysema, and asthma in the UK,
1974-1979, showing a strong seasonal pattern with a winter peak and summer trough. Source:
Diggle (1990).
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Figure 2.11: Decomposition of monthly deaths from bronchitis, emphysema, and asthma in the
UK, 1974-1979 into seasonal, trend, and irregular component using the method of Cleveland et al.
(1990). Source: Diggle (1990).

If lagged scatterplots reveal autocorrelation the next step is to confirm this by investi-

gating the sample autocorrelation coefficients. These measure the correlation between

observations at different times. The set of autocorrelation coefficients arranged as a func-

tion of separation in time is the sample autocorrelation function (ACF) (Diggle 1990,

Chatfield 2004). Figure 2.13 (a) shows the ACF of the log respiratory deaths data previ-

ously detrended by fitting a straight line. There is a strong sinusoidal pattern in the ACF

with peaks at lags 6 and 12 and no decay, indicative of a strongly seasonal pattern. Lag

0 always shows an autocorrelation of one by definition. The dashed lines are the 95%
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confidence intervals. Figure 2.13 (b) shows the ACF of the log respiratory deaths data

which has been made stationary by fitting month as a factor in the linear model. All of the

autocorrelations fall within the 95% confidence limits and there is no apparent pattern.

This is what is expected if the data are random.

If we identify autocorrelation, then lagged values of the same series can be added as co-

variates into a regression model. This technique is commonly used in the medical surveil-

lance literature for infectious disease, as very often the number of disease cases in any

given time period is strongly correlated to the levels of the preceding period. For exam-

ple, Zhang et al. (2008) used a four-order autocorrelation of the number of salmonellosis

cases in a study of the effect of temperature on salmonellosis in Adelaide, Australia. In a

European study investigating the same association, a first-order autoregressive term was

included in regression models (Kovats et al. 2004). In these examples, the inclusion of

the lagged values of the salmonellosis case time series into the regression model ensures

that the autocorrelation features of the data are adjusted for.
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Figure 2.12: Lagged scatterplots of the detrended log respiratory deaths time series, showing
strong negative correlation at lag 6 and strong positive correlation at lag 12 indicating a seasonal
pattern. Source: Diggle (1990).
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Figure 2.13: Autocorrelation function plot of the: (a) straight line-fitted detrended log respiratory
deaths time series which still shows a seasonal pattern at 6 and 12 lags, and (b) month-fitted
detrended respiratory deaths time series showing a random pattern to the ACF. Source: Diggle
(1990)
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Once an autoregressive term has been identified as being significant, different model fam-

ilies can be used to provide an optimal fit to the data. For example, three models were

compared to determine risk factors for haemorrhagic fever with renal syndrome (HFRS)

in Anhui Province, China, from 1983 to 1995 (Hu et al. 2006). The study of risk factors

in disease surveillance may be used to make predictions in the face of changing envi-

ronmental conditions. HFRS is a zoonosis caused by Hantaan type virus and these are

a group of serious infectious diseases that have been endemic in many countries of the

world. Rodents, mostly mice, are the reservoir of the disease and the source of infection.

The first model was a standard linear regression time series model which assumes the

expected value of Y(t) (the incidence of HFRS) has a linear form:

Ŷ(t) = φY(t−1) + β0 + β1X1 + . . .+ βpXp + ε (2.3)

The constant term is β0, the autoregressive coefficient is φY(t−1), the regression coeffi-

cients are β1...p, and ε is the error term. Explanatory variables used were the density of

mice, crop production and water level difference in the Huai River. In the linear model,

the distribution of Y is Gaussian.

The next model used was a generalised linear model (GLM) which extends Equation 2.3

to allow for the predictor variables to combine linearly to relate to the expected value of

Y(t) (the incidence of HFRS) through a link function. The distribution of Y(t) in a GLM

may be any of the exponential family distributions (e.g. Gaussian, Poisson or binomial)

and the link function may be any monotonic differentiable function (like logarithm or

logit). For time series regression modelling, there is a standardised methodology where

the expected value of Y(t) is Poisson distributed with a mean of µ (Schwartz et al. 1996)

and:

log(µ) = φY(t−1) + β0 + β1X1 + . . .+ βpXp + ε (2.4)

The next extension of Equation 2.4 was to a third model that replaced the linear function

of the covariates with a smoothing function, Equation 2.5. This third model had the

best goodness-of-fit (lowest deviance) and short-term predictive ability (lowest root mean

squared error). This extension will be discussed further in the forthcoming section on

generalised additive models (GAMs).
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A model comparison was also made by Zhang et al. (2008) by performing modelling to

quantify the relationship between climate variations and salmonellosis in Adelaide, Aus-

tralia. Here standard Poisson regression, autoregressive adjusted Poisson regression, mul-

tiple linear regression, and SARIMA (seasonal autoregressive integrated moving average

models) all found that the temperature occurring two weeks prior had the greatest signif-

icant association with the number of weekly salmonellosis cases. The SARIMA model

had both the best forecasting ability and the best goodness-of-fit, suggesting it represents

the most appropriate model for these data. SARIMA models have integrated functions

controlling seasonal variation, autocorrelation, and long-term trend.

Papers which compare different modelling approaches, such as those by Zhang et al.

(2008) and Hu et al. (2006), provide very useful additions to the literature. Benefits in-

clude providing accessible accounts of what can otherwise be complex modelling strate-

gies, researchers using different approaches to verify the assumptions of their models

by comparing outputs, and bringing techniques from other fields, such as finance, into the

analysis of health surveillance data. Emerging complex areas for research such as answer-

ing questions around health and climate change are also driving these model comparisons

(McMichael et al. 2006).

Introduction to Box-Jenkins Methods

Autoregressive moving average (ARMA) models analyse time-series as a function of its

past values (autoregressive part) and past error (moving average part) (Box et al. 1994).

As discussed previously, an autoregressive model is simply a linear regression of the cur-

rent value of the series against one or more prior values of the series. A moving average

model is conceptually more difficult. To put it in the same context as an AR model, a MA

model can be thought of as a linear regression of the current value of the series against

the error of one or more prior values of the series. In other words the autoregressive

model includes lagged terms on the time series itself, and the moving average model in-

cludes lagged terms on the noise or residuals. The order of the ARMA model is included

in parentheses as ARMA (p, q), where p is the autoregressive order and q the moving-

average order. These models are useful as they can approximate a large range of different

behaviour in a time series using only these two parameters.

There are several possible reasons for fitting ARMA models to health surveillance data.
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Modelling can contribute to understanding the physical system by revealing something

about the process that builds persistence into the series. ARMA models can also be used

to remove persistence from a time series so that the residual may be more suitable for

studying the influence of climate and other outside environmental factors. ARMA mod-

els can also be used to predict behaviour of a time series from past values alone. Such

predictions can be used as a baseline to evaluate possible importance of other variables

to the system. The use of these models and their extensions on surveillance data has

primarily been for the latter reason.

Fitting ARMA models is a three step process consisting of identification of the orders p

and q, estimation of the parameters, and diagnostic checking. The ACF is used to identify

the orders of the moving average part and the partial ACF, (PACF), the autoregressive

part. Full description of these methods can be found in texts by Diggle (1990), Chatfield

(2004) and Box et al. (1994).

ARMA models are suitable only for stationary time series. To allow for non-stationarity,

the models can be extended in two main ways. Firstly, to account for the trend in the

series, an integration term is added and the model is termed autoregressive integrated

moving average (ARIMA). The integration term represents the order of differencing of

the series which is identified by examining the ACF and estimating the variance of the

series (Diggle 1990). The ARIMA is classified as an ARIMA (p, d, q) model, where p

and q are as for ARMA models and d is the number of non-seasonal differences.

The second extension of the ARMA is to account for seasonality by seasonal differencing

and the model can be generalised to a seasonal ARIMA (SARIMA) (Box et al. 1994). The

seasonal ARIMA model is classified as an ARIMA (p, d, q)x(P,D,Q) model, where P

is the order of the seasonal autoregressive terms, D is the number of seasonal differences,

and Q is the number of seasonal moving average terms.

Examples of uses of Box Jenkins methods

A review article by Allard (1998) covers the application of ARIMA modelling to the

surveillance of infectious diseases, focussing on their use for forecasting and subsequent

aberration detection. Examples of Campylobacter and measles notifications in Montreal

are provided. An ARIMA model of order (1,0,3) was used to describe and predict hospital

bed occupancy during the 2003 SARS outbreak in Singapore (Earnest et al. 2005). A sea-
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sonal ARIMA of order (1,0,1) (1,1,1) was used to predict epidemics of Ross River virus

(RRV) disease in Brisbane, Australia (Hu et al. 2004). Monthly precipitation was signif-

icantly associated with RRV transmission. However, there was no significant association

between other climate variables (e.g., temperature, relative humidity, and high tides) and

RRV transmission.

Helfenstein (1996) gives accessible coverage of Box Jenkins methodology to time series

analysis of surveillance data. Its particular strength is in the step-by-step approach to

application and the practical examples using data of interest to epidemiologists.

Box-Jenkins methods have also been applied to syndromic surveillance data. Reis &

Mandl (2003) used an ARIMA (1,0,1) model of hospital emergency department visit rates

for respiratory syndromes to forecast hospital utilisation needs.

ARIMA models are often used to predict an incidence rate that takes into account the

serial correlation of the data. Inherent in their use is the underlying assumption that trans-

formation of the data will lead to a stationary time series, for which a single underlying

probability distribution can be assumed. This is not necessarily true, as human and animal

health data may well present abrupt and wide changes of magnitude as well as irregular

periodicity. Epidemics, environmental change, and vaccination are some of the reasons

for these changes.

Notwithstanding the above, Trottier et al. (2006) analysed the stochastic dynamics of

childhood infectious disease time series both before and after mass vaccination using Box

Jenkins methodology. The authors found that time series of pertussis, mumps, measles,

and rubella have about the same stochastic dependence in their consecutive data: gener-

ally the number of new cases in one period is given by the number of cases in the previous

period and by periodically recurrent random shocks. Even though mass vaccination was

expected to have a major impact on disease transmission dynamics (i.e., incidence, aver-

age age at infection, long-term periodicity, seasonal cycles), it did not clearly affect the

stochastic dynamics.

Nevertheless the forecasting ability of ARMA models and their derivatives are heavily

reliant on past values. If patterns of disease change abruptly, disrupting a previous history

of stable trends, then aberrations should be readily detected using this methodology. Typ-

ically, effective fitting of Box-Jenkins models requires at least a moderately long series.
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Chatfield (2004) recommends at least 50 observations. Although others would recom-

mend at least 100 observations, these data are not always available (Hutwagner et al.

2005). The issue of detecting change in surveillance data with limited baseline data will

be introduced in the forthcoming section on statistical process control.

Comparisons between Box Jenkins methods and other methods

Comparisons have been made between Box Jenkins methods and other methods for de-

tecting change in health surveillance data. Tobias et al. (2001) and Zhang et al. (2008)

compared Poisson regression models with ARIMA models for surveillance of daily emer-

gency admissions and salmonellosis cases respectively. Tobias et al. (2001) found advan-

tages and disadvantages with both approaches. On the one hand, the interpretation of the

results from a Poisson regression model being more familiar for the epidemiologist in

terms of relative risk estimates. On the other hand, regression models required estimation

of a larger number of parameters to account for seasonality and trends when compared

with the ARIMA model.

Nobre et al. (2001) used reported cases of malaria and hepatitis A from 1980 to 1995 to

compare the forecasting performance of SARIMA and dynamic linear models (DLM).

They report that no one method dominates over the other. DLM will be discussed in a

later section of this chapter.

A comparison was made between ARIMA modelling of health surveillance data and

integer-valued autoregressive modelling (INAR) (Cardinal et al. 1999). INAR methods

have been used for rare event surveillance data such as meningococcal disease in Canada

(Allard 1998, Le Strat 2005). Rare event surveillance data fit poorly with the standard

approach of real-valued methods for analysing time series data. ARIMA models, which

assume continuous outcomes, will be of limited value when outcome data are in the form

of low-numbered counts. Only when the counts are large is the continuous approximation

likely to be justified. INAR techniques have been applied to analysis and forecasting of

the incidence of meningococcal disease in Quebec (Cardinal et al. 1999) where no more

than six cases per 28-day period were recorded between 1986 and 1993. The INAR model

provided a smaller relative forecast error than the ARIMA model in this example.

ARIMA methods have been used in combination with other tools to detect change in

surveillance data. Williamson & Weatherby Hudson (1999) combined statistical process
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control (SPC) with ARIMA time series modelling to detect aberrations in hepatitis A,

meningococcal disease, typhus fever, and other infectious diseases. This is a two-stage

modelling system that first provides a dynamic forecast of future expected disease reports

from the ARIMA model, then uses SPC methods and control charts for comparison to the

actual observed disease reports.

Goldenberg et al. (2002) combined Box Jenkins methods with wavelet analysis for de-

tecting infectious disease outbreaks associated with bioterrorism. They report a two-stage

prediction method suitable for non-stationary data that can be easily automated and yields

accurate predictions. This method is used because the ARIMA type models alone do not

perform well due to the changes in the behavior of the time series of OTC grocery and

pharmacy data.

Other methods in the time domain

Use of the cross-correlation function

Our interest in the relationship between two time series occurs in two situations. In the

first the series arise ‘on an equal footing’, and we are interested in the correlation be-

tween them. For example, the correlation between electrocorticographic signals that are

recorded on a grid of many differently placed electrodes and used to localise seizure foci

and to map brain functions (Zeger et al. 2006). The second is more attuned to our interest

in surveillance and we ask: are the two series ‘causally related’? Can we consider one se-

ries (e.g. ambient temperature), as an input to a linear system, while the other is an output

(e.g. foodborne disease incidence). In surveillance our interest is in finding the properties

of that linear system (Chatfield 2004). This is considering one time series (often lagged

values of it) as an explanatory variable, and the other as an outcome, as in regression.

The relationship between two time series is called the cross-correlation function (CCF)

(Diggle 1990). Cross-correlation functions are commonly used to explore the relationship

between weather variables and disease outcomes. Three Australian studies illustrate this.

A study of the association of short-term climate variation with Ross River virus (RRV)

transmission was undertaken in Queensland, Australia (Tong & Hu 2002). Rainfall, tem-

perature, relative humidity at a lag of 12 months, and high tide in the current month were

found to be significantly associated with the monthly incidence of RRV. These were added
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as explanatory variables to a Poisson regression model allowing quantification of their ef-

fect. In a model of salmonellosis transmission in Adelaide, Australia, Zhang et al. (2008)

explored the lagged effects of climatic variables by cross-correlation analysis. They report

a positive association between temperatures and salmonellosis, and a negative association

between rainfall and salmonellosis. The lagged effects of climatic variables on Campy-

lobacter infections from 1990 to mid-2005 in Adelaide and Brisbane were explored by

cross-correlation analysis (Bi et al. 2008). The direction of the association was different

in the different cities: negative in Adelaide, the temperate city, but positive in Brisbane,

the sub-tropical city.

Bloom et al. (2007) report that the CCF is frequently used to identify lead/lag relation-

ships in health surveillance time series but advise caution when using the cross-correlation

function in the context of syndromic surveillance. In their example of clinical respiratory

case counts, (lag), and aggregated sales of OTC cold and flu medicine from pharmacies,

(lead), they demonstrate that the data must be treated to accentuate the influence of fea-

tures of interest in a CCF analysis, otherwise the results may be misleading. Choosing a

correct smoothing technique and period of interest is important, for example.

Other authors also warn against spurious correlations that can arise between time series

when examined by the CCF (Diggle 1990, Chatfield 2004, Cryer & Chan 2008). Lagged

correlations between time series can present misleading evidence of lagged relationships

and dependence, especially if the individual time series are autocorrelated. The best pro-

tection against this is ‘prewhitening’ before estimating the CCF. Prewhitening in this con-

text is intended to deal with the complicating effects of autocorrelation on the estimated

CCF and its standard deviations. Detailed handling of this topic can be found in Diggle

(1990) and Chatfield (2004).

Partially for the above reason, some authors choose to investigate the effect of individual

lags of covariates by entering them into a regression model, a priori, rather than using

the CCF to choose the most appropriate lag. For example, Hald & Andersen (2001) used

stepwise selection to enter lagged values of meterological data and prevalence in pork into

a model describing the number of human cases of Salmonella typhimurium in Denmark.

State-space approach to time series

State space models provide a cohesive framework in which any linear time series model
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can be written. A state-space model of a time-series comprises a data generating process

with a state that may change over time. For example, in health surveillance, data that

may either be in an epidemic state or not. This state is often only indirectly observed, for

example we may only observe 10% of individuals that are truly infected with polio, while

90% will be asymptomatic. In this review, two types of state-space models are discussed:

dynamic linear models and hidden Markov models.

Dynamic Linear Models

The dynamic linear model (DLM) is a development of the state-space approach to the

estimation and control of dynamic systems (West & Harrison 1997). Surveillance data can

be modelled by means of a DLM, and forecasts based on prior knowledge and including

former observations can be made. A comparison of the forecasting performance of DLM

and SARIMA models was made using cases of hepatitis A and malaria in the USA from

1980 to 1995 (Nobre et al. 2001). Both gave comparable results but the DLM approach

reportedly had some major advantages: (1) it is more appropriate for count data that may

be from a rare disease or small areas; (2) the Bayesian nature of DLM allows inclusion

of subjective information, such as expert opinion and historical data is not required; (3)

it does not require a new cycle of identification and modelling when new data became

available; (4) the assumption of stationarity is not a prerequisite; and (5) missing data are

handled. Despite these advantages this technique has had little application in the health

surveillance literature. This may be because the DLM forecasting approach requires the

specification of several parameters that are not easily understood and the outputs require

complex analysis.

Hidden Markov Models

A Markov property is exhibited when the state that a system is in, in the current time

period, depends only on the state that the system was in, in the immediately preceding

period. Hidden Markov models are a class of stochastic processes that are capable of

modelling time-series data (Rabiner 1989, Allard 1998). A Markov model moves from

state to state, e.g. epidemic to non-epidemic, according to a probability distribution of

each state, called the transition probabilities. With each state visited a signal is emitted.

Hidden Markov models move from state to state in the same way but emit a symbol, from

a finite alphabet of the model, from each state visited, except silent states, according to the
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probability distribution of the state, called the emission probabilities (Eddy 2004). Hidden

Markov Models (HMMs) were developed in the early 1960s, and were initially used in

the field of speech recognition. They are a convenient statistical tool for explaining serial

dependency in data which assume that the observations form a noisy realisation of an

underlying process that has a simple structure with Markovian dependence.

Le Strat & Carrat (1999) use a two-state hidden Markov model to correspond to either

epidemic or non-epidemic states of two surveillance data sets. The two data sets were

a French monthly series of influenza-like illness cases from 1985 to 1996, and a USA

monthly series of poliomyelitis from 1970 and 1983. In the two-state model, a threshold

can be computed directly from the non-epidemic state (and used as an early warning

system, as in ARIMA models). For the series of French influenza-like illness cases they

assumed the data were generated from a mixture of Gaussian distributions. For the series

of USA poliomyelitis cases they used a mixture of Poisson distributions. In both cases

the series were governed by an underlying Markov chain. In the models adjustment for

trend was made by using a linear term, and adjustment for seasonality was made by using

sine and cosine terms.

Rath et al. (2003) analysed the same French monthly influenza-like illness cases data set

and showed that better detection accuracy can be achieved by modelling the data using a

mixture of exponential and Gaussian distributions. By changing underlying distributions,

the need to explicitly model trend and seasonal effects was removed. This removed these

as potential causes of bias in the detection accuracy.

The use of an HMM to detect change in surveillance data is further extended in a pa-

per that analyses hospital infection data (Cooper & Lipsitch 2004). Three classes of

pathogens are investigated: methicillin-resistant Staphylococcus aureus; vancomycin-

resistant Enterococci; and third generation cephalosporin-resistant Gram-negative rods.

Three models were compared: a simple Poisson model; a standard hidden Markov model

using a Poisson observation model; and a structured hidden Markov model (based on

the susceptible--infectious–susceptible epidemic model (Isham 1993) assuming a mean

intensive care unit stay of eight days). They conclude that structured hidden Markov

models are a promising tool for analysing hospital infection count data for transmissible

pathogens.

Further coverage of the application of hidden Markov models to surveillance data is pro-
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vided by Madigan (2005).

Generalised additive models

A generalised additive model (GAM) is an extension of generalised linear models where

the usual linear function of a covariate is replaced with a smoothing function e.g. natural

cubic splines, locally weighted regression, penalised splines, or smoothing cubic splines

(Hastie & Tibshirani 1990). These models are particularly useful in exploring the non-

parametric relationship between disease incidence and climate variables such as season-

ality, temperature, and humidity. These have had extensive use in health outcomes related

to food safety (Hald & Andersen 2001, Kovats et al. 2004, 2005, Tam et al. 2006), and

air pollution (Wilson et al. 2004, Touloumi et al. 2006). GAMs also have been used ex-

tensively in spatial and spatio-temporal epidemiology and surveillance (Kelsall & Diggle

1998, Vieira et al. 2008, Siqueira et al. 2008).

The example of the time series of HFRS in Anhui Province, China from 1983 to 1995 is

used to illustrate this methodolgy (Hu et al. 2006). Equation 2.4 was extended in a third

model allowing for smoothing non-linear functions of two of the three predictors (mice

density and water level difference) as follows:

log(µ) = φY(t−1) + s0 + s1X1 + . . .+ spXp + ε (2.5)

where s0....sp are natural cubic splines. GAMs provide a flexible, functional way of in-

forming the relationship between exposure and outcome by fitting non-parametric func-

tions. The GAM model had the best goodness-of-fit and short-term predictive ability.

Other climatic effects

The El Niño/Southern Oscillation climatic events are a natural phenomenon that occur

every three to eight years and are reasonably predictable (Chen et al. 2004). The effect

of these events on infectious disease has been reviewed by Kovats et al. (2003). The

four-year super annual cycle in malarial incidence in Thailand has been attributed to El

Niño/Southern Oscillation climatic events (Childs et al. 2006). A study investigating the

relation between climate variability and daily admissions for diarrhoea in Peruvian chil-

dren (Checkley et al. 2000) used GAMs. El Niño had an effect on hospital admissions

greater than that explained by the regular seasonal variability in ambient temperature. Fu-
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ture forecasts were made about potential disease risks for 2006-2007 based on the current

El Niño’s effect on vector abundance (Anyamba et al. 2006). To date, the forecasts made

of Rift Valley fever in Kenya (ProMED-mail 2007) and malaria in India (Jelinek et al.

2007) have been proven correct indicating the benefits of this approach.

An arguably less predictable and non-natural phenomenon is that of global climate change,

and there are a number of review articles on the potential effect of climate change on

human health (McMichael et al. 2006). Global warming was cited as a reason for the

increase in emerging viral diseases many of which are zoonotic (Kallio-Kokko et al.

2005, Ka-Wai Hui 2006). The ability to make long range forecasts of epidemics or epi-

zootics is helpful for planning resource allocation for more intensive surveillance, pro-

phylaxis, treatment, and warning. Climate change presents an emerging challenge for

health surveillance research.

Methods in the frequency domain

As stated previously, in the time domain the variation in the time series is described in

terms of the way in which observations at different times are related statistically to one

another. These methods include ARIMA and hidden Markov models. This part of the lit-

erature review now considers the frequency domain which describes how the variation in

the time series may be accounted for by cyclic components at different frequencies. Meth-

ods include harmonic (when the frequencies are predetermined) and spectral (when the

frequencies are unknown), and in both cases the series must be first detrended. Spectral

analysis is a modification of Fourier analysis which approximates a periodic signal (such

as a consistent seasonal pattern) using a linear combination of sine and cosine waves

(Chatfield 2004). When we consider regression in the frequency domain the inputs are

periodic sine and cosine functions. Time series are represented as sinusoidal waves of

different frequencies, amplitudes and phases.

Although seemingly more complex than the time approach, the value of the frequency ap-

proach is that complex patterns can be described by only three data factors – the frequency,

amplitude, and phase, whereas in the time domain they would take much more informa-

tion to define accurately. In addition, the spectral analysis can identify frequencies that
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are not predictable before the data are examined (Diggle 1990). Frequency domain anal-

ysis has been found to be especially useful in communications, engineering, geophysics,

acoustics, and biomedical science.

Figure 2.14(a) shows the raw periodogram of the respiratory deaths data. This was created

by a mathematical procedure, termed a Fourier analysis. This analysis determines the

collection of sine waves (differing in frequency and amplitude) that is necessary to make

up the pattern under consideration (Chatfield 2004). The dominant peak is at a frequency

of 6/72, giving a period of 72/6 = 12 months, this reveals the strong yearly pattern in

these data. Figure 2.14(b) shows the periodogram Daniell (Daniell 1946) smoothed with

spans of (3,5). This is a weighted moving average transformation used to smooth the

periodogram to more clearly reveal the cyclicity. A more detailed description of Fourier

analysis can be found in Diggle (1990) and Chatfield (2004).

Fourier models were used to describe the seasonal pattern of weekly cases of campylobac-

teriosis between 1997 and 2001 in Scotland (Miller et al. 2004). Strong seasonality was

reported with an annual peak in late June to early July and successful predictions of both

national and regional cases were made for 2002. Superimposed upon this seasonal pattern

were irregular finer peaks and troughs which the authors termed ‘bursts’ of infection su-

perseding the 95% prediction intervals. These bursts were both within and across regions

of Scotland and thought to be due to previously unrecognised outbreaks.

There have been many studies on the effect of short-term temperature on infectious enteric

diseases of humans (see above on CCF and GAMs). The specific question of interest here

is ‘is a change in ambient temperature in a time period associated with a change in disease

reports x time periods later?’ This short-term temporal association between climate and

disease will very likely be confounded by trend and seasonal patterns other than those

associated with temperature. The study design must adjust for these (Schwartz et al.

1996). Ways to make this adjustment include controlling for trend by adding indicator

variables for each year of the series, and controlling for the seasonal patterns by adding

Fourier terms (Kovats et al. 2004, Tam et al. 2006, Hashizume et al. 2008). This allows

the assessment of any short-term effects of temperature on disease.
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Figure 2.14: (a) Raw and (b) smoothed periodograms of respiratory deaths showing a significant
peak at a frequency of 6/72. The vertical bar on the right of the plot is the 95% confidence interval
around the peak. The smaller horizontal bar bisecting the vertical bar is the smoothing bandwidth.
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Kovats et al. (2004) found the greatest effect of temperature to be one week before the on-

set of Salmonella infections in ten European human populations. There were diminishing

but positive effects for up to five weeks and they report a linear association between tem-

perature and the number of cases of salmonellosis above a threshold of 6 ◦C. In the model

of Tam et al. (2006) adjustment was additionally made for the delays in the effect of tem-

perature on the number of reported cases by incorporating a six-week lagged temperature

variable. These authors found a linear association between mean weekly temperature and

the number of cases of human campylobacteriosis in England from 1989 - 1999, with a

1 ◦C rise corresponding to a 5% increase in the number of cases. Hashizume et al. (2008)

found a strong association between hospital visits for rotavirus diarrhoea and tempera-

ture in Bangladesh. This was after adjustment for humidity, river level, public holidays,

and seasonal and annual variations. The fact that ambient temperatures influence the in-

cidence of these enteric diseases can facilitate targeting preventative action, as well as

surveillance and resource allocation.

A study investigating the temporal association between climate and Campylobacter infec-

tion adjusted for confounding from seasonal factors other than temperature by matching

on week (Kovats et al. 2005). This international study used 15 northern and southern

hemisphere populations with most showing a peak of cases in spring, those with milder

winters peaking earlier in the year.

The timing and intensity of seasonal peaks of six infectious enteric diseases was reported

in a Massachusetts study using ten years of data from 1992–2001 (Naumova et al. 2007).

Campylobacter and Salmonella closely followed the summer peak in ambient temperature

(around the 24th of July) with a 2 – 14 day lag, while Giardia, Shigella, and Cryptosporid-

ium infections peaked 40 days after the temperature peak. The difference in the lag phase

between these two groups of diseases is suggestive of different routes of exposure. In this

study it was the use of daily counts of cases (as opposed to aggregated weekly or monthly

counts) that enabled recognition of the difference in the lag phase.

Periodic regression models were fitted to Danish data to investigate seasonality in dif-

ferent age groups with meningococcal disease (Jensen et al. 2003) and in the severity of

non-typhoid Salmonella infections in humans (Gradel et al. 2007). The peak-to-trough

ratios (PTR) were calculated to measure the magnitude of the seasonal variation. For

meningococcal disease, the highest PTR were in the 5–9 year age group (4.9, 95% CI:
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2.1–11.9) and the lowest were for children less than one year of age (1.4, 95% CI: 0.6–

3.2), indicating that seasonality varies with age group. For non-typhoid Salmonella the

seasonal pattern diminishes with increased severity of infection. This suggests that for

severe Salmonella infections, endogenous factors play a more important role than exoge-

nous factors. Also it may mean that patients with more severe non-typhoid Salmonella

infections engage less in activities that increase the risk of acquiring infections in the

warmer months (e.g. barbecuing or going on holiday).

The review paper from Zeger et al. (2006) provides accessible coverage of applications

of both frequency and time-domain methodology to the time series analysis of health

surveillance data.

2.3.2 Statistical process control

The essential difference between modelling data via time series methods (above) and

using statistical process control methods is that time series analysis accounts for the fact

that data points taken over time may have an internal structure (such as autocorrelation,

trend, or seasonal variation) that should be accounted for. Statistical process control can

be thought of as a plotted time series with control limits applied.

In the 1920s, Walter Shewhart developed a number of business production analysis tech-

niques, which were designed to detect changes in the quality of the output from contin-

uous production processes (Shewhart 1931). Statistical process control (SPC), or quality

control, is widely used in many industries to facilitate objective evaluation of business op-

erations and production processes. SPC is used to monitor the level of a production trait,

and to give a notification when the level changes beyond some predefined limit. The basic

control charts are designed to monitor a process that is expected to be constant, although

it allows for some random fluctuation.

The use of SPC has gone beyond industry to monitor any process, and identify when it

changes to being ‘out of control’. As early as 1942, Deming proposed the potential value

of SPC for disease surveillance and rare events monitoring (Deming 1942). An overview

of the use of SPC in health care and surveillance is given by Woodall (2006).

Consider the following as a time series of surveillance dataX = X(t) : t = 1, 2, ... Using

this example, a standard Shewhart control chart would considerX as a continuously vary-
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ing quality (e.g. number of thermometers sold in Auckland per day) with a mean of µX

and a standard deviation of σX . Upper control limits would be set as UCL = µX +KσX ,

the centre line at µX , and the lower control limits at LCL = µX - KσX . Historically,

K = 3 has become an accepted standard in industry.

It is important to remember that although statistical process control charts are among

the most prevalent and valid methods for monitoring time series data, their use usu-

ally requires observations to be random variables when the process is in statistical con-

trol. Health surveillance data are not random variables and present problems that are not

present in the case of industrial process control; health data often exhibit correlation, non-

stationarity (in the mean and/or variance), and seasonality. However, these limitations

may be substantially overcome by using one of two techniques (Stoumbos et al. 2000).

Firstly, past-behaviour of the series can be corrected by inclusion of seasonal or historical

adjustments. In other words, the original data is presented as a standard control chart but

the control limits are adjusted for the autocorrelation in the series. A good example of

this is the Early Aberration Reporting System (EARS).2 This applies aberration detection

algorithms to surveillance data and flags anomalies. Two methods are implemented: (1)

a seasonally adjusted quality control statistic; and (2) a historical limits model that com-

pares the current 4-week total to the mean of nine 4-week periods (using the previous,

comparable and subsequent 4-week periods over the past three years). These methods

can result in three different flags: (1) or (2), above, or (3), when both the models ex-

ceed the established thresholds. EARS uses Shewhart variants that use a moving sample

average and sample standard deviation to standardise each observation.

The EARS system can be applied to daily, weekly and monthly data and allows for strat-

ification of the data e.g. by geographic region and specified threshold limits. For rare

diseases such as typhoid, the system can be set to flag every occurrence of a case. EARS

is used in the national notifiable disease surveillance system (EpiSurv) in New Zealand.

Figure 2.15 shows the system in use for flagging high numbers of campylobacteriosis

cases. Flags consistently occur over the period December 2006 to February 2007 but not

at Christmas/New Year time. As the historical mean also is reduced at Christmas/New

Year time, this discrepancy is more likely a result of fewer notifications, due to people

taking holidays, rather than fewer actual cases of disease.

2http://www.bt.cdc.gov/surveillance/ears/

http://www.bt.cdc.gov/surveillance/ears/
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Watkins et al. (2008) compared the use of three EARS cusum-based methods and a

negative-binomial cusum for the retrospective detection of outbreaks of Ross River virus

disease in Western Australia between 1991 and 2004. (See Equation 2.6 for an explana-

tion of cusum). They found that the use of a negative binomial distribution accommodated

the over-dispersion evident in disease notification data, and provided a lower rate of false

alarms for a given sensitivity. However, these advantages were associated with decreased

early timeliness performance when using the negative binomial cusum algorithm.

The second option for overcoming the problem of the lack of independence is to plot

the residuals from a time series model on a standard control chart (Stoumbos et al. 2000).

Williamson & Weatherby Hudson (1999) combine statistical process control with ARIMA

time series modelling to detect aberrations in hepatitis A, meningococcal disease, typhus

fever, and other infectious diseases.

One problem with this methodology is the need to have sufficient baseline data to produce

a stable model. Generally to account for seasonality three years of data is considered the

minimum (Diggle 1990). To overcome this problem methods have been developed that

incorporate short seven-day baseline periods for threshold comparisons (Hutwagner et al.

2005). These thresholds were based on a cusum calculation and the baseline was varied

to give different sensitivities. Cusum is a cumulative sum calculation as follows:

St = max(0, St−1 + ((X(t)− (µX +KσX))0/σX)) (2.6)

with a decision value of St > 2, where X(t) is the count or percent e.g. number of

thermometers sold in Auckland per day. The other parameters are described above, but

here K is the detectable shift in the mean and not necessarily 3 as it is for a Shewhart

chart.
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Figure 2.15: Use of EARS for Campylobacteriosis surveillance in New Zealand. Flags consis-
tently occur over the period Dec. 2006 to Feb. 2007 but not at Christmas/New Year. Source:
Institute of Environmental Science and Research Limited.

For example, the method with the least sensitivity used a baseline from the previous seven

days in closest proximity to the current value. This is because if a flag which denotes an

aberrant value is noted on a particular day, t, then the next day, t+1, it is less likely to

produce a flag as the high count from the previous day is immediately incorporated into

the new baseline. The methods were designed for enhanced bioterrorism surveillance to

identify aberrations quickly e.g. within the first day or two of a special event such as the

Olympic games. Since these methods are based only on current information, they would

not be useful for identifying an infectious disease event that occurs gradually e.g. as in

the start of the influenza season.

Generally changes will be of the step form, where a parameter changes from one con-

stant level to another, but changes can also be linear, exponential or gradual; the latter
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can be particularly problematic to detect. Exponentially weighted moving average charts

and cusum are likely to perform better in this situation than traditional Shewhart charts

(Stoumbos et al. 2000). A recent paper by Fricker et al. (2008) found that Shewhart-based

methods, such as EARS, are not well suited for the syndromic surveillance problem in

which outbreaks do not occur instantaneously and are transient.

Further information on the use of SPC methods for spatio-temporal surveillance is pro-

vided by Rogerson (2005).

2.3.3 Neural networks

Neural networks consist of a series of processing element (nodes) interconnected in a net-

work that can capture and represent complex input/output relationships. This is achieved

by training and exposing the network to known data sets. The motivation for the devel-

opment of neural network technology stemmed from the desire to develop an artificial

system that could perform ‘intelligent’ tasks similar to those performed by the human

brain. Artificial neural networks are powerful predictive tools that have multiple practical

applications in imprecise systems (Sawyer 2000).

Neural networks have been used for financial time-series forecasting (Qi & Zhang 2008),

and in the application of industrial process control (Yu & Xi 2009). Artificial neural

networks (ANN) have been successfully applied on various areas of medicine, such as

diagnostic systems, biomedical analysis, image analysis, and drug development (Patel

& Goyal 2007). This technique has been applied to health surveillance data to detect

excess deaths from cholera in Brazil (Penna 2004). In this paper the author compared

the use of a recurrent neural network with a negative binomial regression model as a

predictive technique for the cholera time series. Estimates from both models showed

good agreement, indicating the adequacy of using ANNs for health-related time series.

Although the neural network had good predictive ability, it was less sensitive than negative

binomial regression in the detection of abnormal values. The author reported that the main

advantage was the lower level of statistical knowledge required to implement it. However

this is a novel method and researchers generally have little familiarity with the process,

compared to other statistical methods. Furthermore, a long time series is often required

to train ANNs (De Gooijer & Hyndman 2006).
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2.3.4 The Temporal Scan statistic

Two Canadian studies have used the temporal scan statistic (Kulldorff 1997), imple-

mented in SaTScan3, to retrospectively identify temporal clusters of Salmonella infection

in animals in Ontario (Zhang et al. 2005), and of both animals and humans in Alberta

(Guerin et al. 2005a,b). In the latter paper, the temporal scan statistic was used to test

the null hypothesis that isolates of Salmonella serovars were randomly distributed with

respect to time. They used the Bernoulli model, where cases are contrasted with a con-

trol group. This statistic scans each possible predetermined time window and compares

the proportion of cases and controls within the window with the proportion of cases and

controls outside the window of time.

2.4 Spatio-temporal Surveillance

Even though the detection of change in surveillance data over time is important it should

not be considered in isolation from changes in space. Recent and accelerating technolog-

ical advances mean that we have both increasing availability of data that contains spatial

information, and improved ways of visualising spatial data. This is mainly due to ad-

vances in computing and ready access to commercially available geographical informa-

tion system (GIS) software. Open source GIS software has made this technology more

accessible, no doubt playing some role in the advances that have been made in recent

years. Spatial techniques in epidemiology are advancing rapidly (Martin 2004, Lawson

& Kleinman 2005, Pfeiffer et al. 2008, Bivand et al. 2008, Lawson 2009), allowing us

to describe and explore disease in space and space-time, and increasingly to model and

predict disease risk.

This part of the literature review is purposively less well developed than that on temporal

surveillance as it is not my intention to repeat a review of spatial and spatio-temporal

techniques as outlined in Chapter 1. Here I will review techniques that have been applied

to zoonotic disease surveillance, giving the most detail to those most frequently used and

to the most recent developments to date.

3http://www.satscan.org/

http://www.satscan.org/
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Analogies can be made between aspects of data in one dimension (time) and in two di-

mensions (space). For example, a temporal trend over a number of years may be thought

of as similar to a first-order or broad spatial pattern. The serial autocorrelation between

measures in a time series is similar to second-order effect or spatial correlation. A spatial

analog of regular measurements in time e.g. daily counts of ED visits, may be that of

the spatial correlation between regularly shaped polygons e.g. the division of France into

regular hexagons to investigate BSE (Abrial et al. 2005) or the division of Vietnam into

squares to investigate avian influenza (Lockhart 2008). A spatial analog of irregular mea-

surements in time e.g. the sequential, but not every day, nor regularly spaced, daily counts

of clinic visits, may be that of the spatial correlation between irregular shaped polygons

e.g. disease counts in areas defined by political boundaries (Sanchez et al. 2005). There

is no obvious spatial analogy for the seasonality of a time series.

It is natural to investigate the spatial distribution of cases to gauge whether or not they

occur closely in space as well as in time. The value of this spatial information is two-

fold. Firstly, all cases are localised at some spatial scale — if our surveillance is done at a

broad spatial scale, (e.g. aggregated regional counts of cases), then even large and sharp

increases in relatively small aggregated counts (e.g. neighbourhoods) may be hidden be-

cause they are localised and of insufficient size to be detected. Spatial surveillance of de-

fined regions will increase the probability of detecting these events (Lawson & Kleinman

2005). Secondly, if cases are spatially aggregated, then an appropriate response, (such as

quarantine, vaccination or dissemination of public health messages), can be targeted to

that area. However, it is important to consider that with the distribution of food over large

areas, cases of foodborne disease will not necessarily occur close together in space. This

point was well illustrated by an outbreak of E. coli O157 that was linked to consumption

of fresh, bagged, baby spinach produced in three counties on the central California coast

(Jay et al. 2007). Due to the dissemination of product, illness was widespread throughout

26 states of America and Canada resulting in 205 cases and three deaths. This points to

the need for integration of another rapidly developing tool, that of social network analysis,

into surveillance methodology (Christley et al. 2005, Kao et al. 2007).

However, when cases are confined to one area this may point to a local source of infection.

A current outbreak under investigation illustrates this point. The on-going large outbreak

of Salmonella typhimurium U292 infection in Denmark (Ethelberg et al. 2008a,b) appears



56 Literature review

to be fully confined to Denmark; no cases have been reported from other countries includ-

ing neighbouring Scandinavian countries and Germany. This could point to a local source

of foodborne infection that is not consumed beyond Denmark.

Not only might transportation of food carry pathogens from one location to another, but

the movements of animals and people themselves must be considered when observing

disease surveillance data. For example, movements of people by air travel have been

implicated in the spread of SARS globally (Hufnagel et al. 2004), and influenza and

pneumonia in the USA (Paul et al. 2008).

Just as we have temporal trends we also have spatial trends, often called first-order spatial

effects. This describes the mean value of a process in space. Second-order spatial effects

are analogous to temporal autocorrelation in a time series. Second-order effects result

from the spatial correlation or dependency of a process. They are local effects.

Both first- and second-order effects can lead to clusters of disease even though they are

driven by different underlying mechanisms, the first-order effect being from a variation

in the intensity of events while the second-order effect being due to dependence between

events (Diggle 2003). Identification of these clusters is potentially a powerful tool for

surveillance. We may be able to identify specific areas in which to target sampling or to

study more intensely. Clusters may give clues as to underlying aetiologies such as vector

abundance or locally acting risk factors, or may be an indication of spatial dependency

that might lead us to consider contagion.

One of the earliest examples of disease mapping was the point map produced by John

Snow in 1854 of the addresses of cholera victims related to the location of water supplies

(Snow 1854). This provides a classic example of surveillance of cases, mapping their

location and then using the map to come up with a putative source. Figure 2.16 provides

a re-analysis of this data by Bivand et al. (2008). This map is composed of a number

of layers of spatial data: the roads in Soho around Broad Street; the superimposed heat

colours indicating the distance from the Broad Street pump in the centre of the image;

representation of pump locations; and the bubbles, with size proportional to number of

mortalities, representing the street distances from each mortality dwelling to the nearest

pump, the grey representing Broad Street and the pink other pumps.

Whether the legendary removal of the pump handle actually happened or not (McLeod

2000), it is an important example of an action taken that stemmed from surveillance. An
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example from September 2006, a full 152 years after Broad Street, was the advice of

the USA Food and Drug Administration to avoid eating fresh spinach or fresh spinach-

containing products that had been grown in three California counties (Centers for Disease

Control and Prevention 2006). Although the technology had advanced (involving rapid di-

agnosis of E. coli O157:H7 infection, culture, PFGE analysis, and reporting to the CDC),

the timely intervention based on surveillance data of this geographically spread epidemic

is not dissimilar to that seen 152 years before at Broad Street in London.

2.4.1 Spatial variation in risk

Point maps have limitations, including lack of confidentiality, and if there are multiple

events that happen at the same location they can be difficult to distinguish from each

other. Smoothing of points can be applied to overcome these limitations. The spatial risk

function, estimated by kernel density methods, was developed for case control data for

rare diseases by Bithell (1990). Lawson & Williams (1993) and Kelsall & Diggle (1995)

further improved the estimation.

A smoothed map surface that accounts for the population at risk as well as the cases

themselves will allow us to identify areas of the greatest risk of disease. These can be

targeted as areas in which to do more focussed studies to identify risk factors or as areas

in which to enhance surveillance. A kernel density estimate of the relative risk of canine

faecal contamination in Naples highlighted two areas at greatest risk close to the eastern

and northern border of the city (Biggeri et al. 2006a). This formed part of a larger study

investigating the risk of zoonotic infection from this contamination using a number of

spatial techniques. The study reported that the larger risk areas were identified at the city

border where wild dogs mixed with domestic dogs and human or urban barriers were less

present (Biggeri et al. 2006b). Kernel smoothing techniques have also been used in the

assessment of spatial risk of BSE in the UK epidemic (Stevenson et al. 2000) and in West

Nile virus (WNV) surveillance to identify clusters of dead crows (Johnson et al. 2006).

These clusters of WNV were then used as part of the information to predict human cases.
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Figure 2.16: Point map of Broad Street cholera cases, showing location of pumps, London, 1854.
The bubbles, with size proportional to number of mortalities, represent the street distances from
each mortality dwelling to the nearest pump, the grey representing Broad street and the pink other
pumps. Source: http://www.bias-project.org.uk/ASDARcourse/.

Two key issues in the use of kernel density methods are those of bandwidth selection

and dealing with edge effects. The bandwidth, or smoothing parameter, requires careful

selection: if it is too large, the resultant map is over-smoothed, potentially masking areas

of increased risk, and if the bandwidth is too small, too much detail may be seen, resulting

in over-interpretation of the pattern. Pfeiffer et al. (2008) provides a detailed discussion of

issues related to bandwidth selection. Edge effects arise due to non-existent or incomplete

data that occurs near the edges of a study area. These edges may be natural boundaries

such as the coast or man-made boundaries such as administrative borders. As the kernel

smoothing technique borrows strength from neighbours, distortions can result when these

neighbours are absent. These are called edge effects. More details on edge effects can be
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found in Lawson et al. (1999) and Zheng et al. (2004).

There is much ongoing work in this field: a novel approach to the estimation of spatial

variation of relative risk by the use of local polynomial regression is under development

(Fernando 2008). Planned work includes applying veterinary surveillance data to the

development of appropriate space-time kernels for the estimation of time-varying relative

risk.

2.4.2 Spatial and spatio-temporal clustering

Spatial clustering occurs when cases occur more closely together in space than would be

expected with a random sample from the population at risk (Diggle 2003). The assessment

of disease clustering was largely born out of the need for public health authorities to

respond to public concerns about putative sources of environmental contamination, such

as waste dumps, incinerators, and steel foundries (Lawson & Williams 1994).

Clustering tests are commonly defined as either being focussed or general (Tango 1999).

The following definitions I use are from Tango (1999); others can be found in Besag

& Newell (1991), Diggle (2003), and Wartenberg (2001). A focussed test of clustering

would be used in the steel foundry example, whereby the location of the cluster is identi-

fied a priori and the likelihood of the location truly being a cluster centre is determined.

Compare this with general tests which determine whether or not clustering occurs over

the study region. This latter type of test can be further divided into two groups: those that

examine the tendency to cluster, and those that find the location of the cluster/s.

Clustering of disease can occur for a variety of reasons, such as the aggregation of risk

factors in a specific area or environmental factors that affect vector abundance. A cluster

of cases of disease that are close in both space and time is highly suggestive of an infec-

tious process. Key questions are: whether the cluster is statistically significant, or if it

has occurred by chance, or if it simply reflects the underlying spatial distribution of the

population at risk.

Ward & Carpenter (2000a,b) and Carpenter (2001) provide an accessible introduction to

this topic from the veterinary perspective. More general accounts are provided by Waller

et al. (2006), Pfeiffer et al. (2008), Wakefield et al. (2001), and Lawson (2006).
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The space and space-time K -Function

The spatial K-function of a spatial point pattern is defined as the expected number of

further points within a distance r of an arbitrary point, divided by the overall density of

the points (Ripley 1976). For a clustered pattern, each point or event, e.g. a case of

disease, is likely to be closely surrounded by other cases, so for a given small distance r

the K-function will be relatively large. On the other hand, if cases are randomly spaced

each case is more likely to not be surrounded by other cases, so for a given small distance

r the K-function will be smaller. This is a general, rather than focussed test for clustering

that examines the tendency to cluster.

An important assumption of the K-function is that there are no first-order effects in the

spatial pattern. The inhomogeneous K-function (Baddeley et al. 2000) allows for the

non-uniform intensity of the spatial locations for hypothesis testing for aggregation over

and above that of the population at risk. An approach to this issue that enjoys common

usage is to use the observed-difference K-function. This is a measure of the difference

between the K-function for cases compared with that of controls or of the population at

risk. The null hypothesis tested is that there is no extra aggregation of cases over that of

the population (corresponding to the cases being a random sample from the population).

Fenton et al. (2008) used the observed difference K-function to provide evidence for spa-

tial clustering of Salmonella serovars in UK dairy herds. Serovars Agama and Dublin

showed evidence of spatial clustering at distances up to 30 kilometres. This suggests ei-

ther a contagious process or the presence of spatial localised factors which increase the

risk of infection such as contaminated feed or other animal reservoirs (e.g. birds, rodents,

and badgers).

Broman et al. (2006) used the observed-difference K-function to investigate clustering of

ocular chlamydia in households in a Tanzanian village population. The authors detected

clustering of households with high loading of ocular chlamydia among children, at dis-

tances up to two kilometres. The observed-difference K-function was calculated between

households with a high loading of chlamydia and those with a low load. As the analysis

did not examine direct transmission, it was conceded that possibly households with heavy

loads of ocular chlamydia simply share the same risk factors for infection. These risk fac-

tors that might affect clustering of infected households include annual seasonal variations,

and proximity to water.
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The observed-difference K-function was used to investigate early life residence with re-

gard to subsequent risk of breast cancer in western New York women (Han et al. 2004).

Cases were women, aged from 35 to 79 with incident, primary, pathologically confirmed

breast cancer diagnosed during the period from 1996 to 2001. Controls were frequency

matched to cases on age, race, and county of current residence; controls under 65 years

of age were randomly selected from a New York State Department of Motor Vehicles

list and those 65 years and over were chosen from a Health Care Finance Administration

list. All cases and controls used in the study provided lifetime residential histories. The

authors report that their analysis of breast cancer clustering in space provided evidence of

geographic clustering of pre-menopausal, but not post-menopausal, breast cancer cases

at the time of birth and menarche. They conclude that there is a possible influence of

environmental risk factors on breast cancer at these times in a woman’s life.

One way to improve surveillance is to develop methods of identifying temporal and geo-

graphic clusters of events that may merit additional evaluation, rather than rely on merely

temporal or spatial methods alone. The space-time K-function K(s,t) is an extension of

the spatial K-function that was first proposed by Diggle et al. (1995). It compares the

observed spatio-temporal pattern with that with the same temporal and spatial properties

as the original data, but with no space-time interaction. This test gives a measure of both

the nature and scale of the space–time interaction.

Examples include the use of K(s,t) to support a role for infectious aetiologies for glioma

in the Netherlands (Houben et al. 2005) and for some childhood cancers in Great Britain

(McNally et al. 2006). The space-time K-function was used to describe the risk of infec-

tion with FMD attributable to spatiotemporal interaction in two counties in the UK during

the 2001 epidemic (Wilesmith et al. 2003). This identified the extent of contagiousness

in space and time which could be used to inform policy for pre-emptive culling distances.

French et al. (1999) used K(s,t) in an investigation of sheep scab outbreaks in Great Britain

between 1973 and 1992. They report that a large proportion of the cases within 12 km

and five months of each other can be attributed to space-time clustering, supporting the

highly contagious nature of this infection. Sanchez et al. (2005) used K(s,t) in an in-

vestigation of the 1999 outbreaks of infectious bursal disease (IBD) in Denmark. These

authors found that cases of IBD were more likely to occur during a short period of time

and over relatively short distances, indicating that local factors facilitated the spread of
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the virus.

The spatial and space-time scan statistic

A commonly used test that can find the location of spatial clusters is the spatial scan

statistic (Kulldorff 1997). The first application of this was in finding a circular cluster

in case control data of breast cancer in the north-east USA (Kulldorff et al. 1997). Scan

statistics are used to detect and evaluate clusters in a temporal, spatial, or space-time

setting (see preceding section on the use of the temporal scan statistic). This is done

by gradually scanning a window across time and/or space, while noting the number of

observed and expected observations inside the window at each location. In the SaTScan

software4, the scanning window is either an interval (in time), a circle or an ellipse (in

space) or a cylinder with a circular or elliptic base (in space-time). Multiple different

window sizes are used. The window with the maximum likelihood is the most likely

cluster and a p value is assigned to this cluster.

There have been many developments in the spatial scan statistic including the ability

to find an elliptical cluster in case control data (Kulldorff et al. 2006), an application for

ordinal data (Jung et al. 2006) and for survival data with adjustment for covariates (Huang

et al. 2007), and one which accounts for the movement of people between home and work

with a putative workplace exposure (Duczmal & Buckeridge 2006).

As well as Kulldorf’s own elliptical cluster other workers have developed techniques for

detecting irregularly shaped clusters (Duczmal & Assunçao 2004, Tango & Takahashi

2005, Assunçao et al. 2006).

The spatial scan statistic has been used in many investigations of zoonotic disease, includ-

ing locating clusters of dead crows to predict human cases of WNV in New York State

(Johnson et al. 2006), BSE cases in the UK (Stevenson et al. 2000) and Japan (Kado-

hira et al. 2008), and tuberculosis in cattle in Argentina (Perez et al. 2002). Green et al.

(2006) used the spatial scan statistic to identify statistically significant (p < 0.05) high

and low rate clusters of Campylobacter incidence in Manitoba. This study used a diverse

set of spatial techniques including spatial scan statistic, spatial smoothing, and Poisson

regression with a range of socio-demographic and landscape factors. They found a pro-

nounced geographic variation of Campylobacter incidence associated with agricultural

4http://www.satscan.org/

http://www.satscan.org/
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animal density.

A number of papers have compared different spatial cluster detection techniques as fol-

lows. A full description of other mentioned cluster detection techniques can be found in

Pfeiffer et al. (2008).

1. Wheeler (2007) uses the K-function, Cuzick and Edward’s method, and the kernel

intensity function to test for significant global clustering. This author also uses the

kernel intensity function and Kulldorff’s spatial scan statistic in SaTScan to test for

significant local clusters. He finds consideration of the potential shape of clusters

in the study area to be an important issue.

2. Waller et al. (2006) compared Tango’s index of clustering and the spatial scan statis-

tic using data from 1981 of severe cardiac birth defects in California. They report

the dependence between the statistical power of tests of disease clustering and the

strength, type, and location of suspected disease clusters. Consideration of the

spatial distribution of the population at risk is also required for interpreting power

comparisons between the different methods.

3. Song & Kulldorff (2003) compared eight test statistics for their power to detect

disease clusters. They used simulated clusters based on the 1990 female population

in the northwestern USA and conclude the power varies greatly for different test

statistics. They recommend using the spatial scan statistic locally, and Tango’s

MEET for a general evaluation of clustering, if the the size and scale of the cluster

is not known.

It is recommended that more than one method is applied to the data and results are com-

pared. Also test comparisons such as these reported raise the issue of biological as op-

posed to statistical significance. Wartenberg (2001) questions the stringent application

of statistical tests on decision criteria and instead advises considering the public health

significance.

The spatial scan statistic implemented through SaTScan has enjoyed wide application

and will continue to do so. However, two issues make using the method and interpreting

its results complex. SaTScan does not provide cartographic support to view the iden-

tified clusters, nor a visual interface to explore cluster characteristics. Furthermore, it
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is difficult to determine an optimal setting for SaTScan scaling parameters e.g. the de-

fault maximum-size setting of 50% may not produce usable, informative results, because

the reported primary cluster often occupies a large proportion of the study area scanning

window (Haining 2003). To address these issues, Chen et al. (2008) propose a novel

geovisual analytics approach that combines the strength of advanced visualisation meth-

ods with the analytical capabilities of the spatial scan statistic. Geovisual analytics goes

beyond traditional map output, allowing users to interactively explore visual represen-

tations of geographic information, use their own ability to process patterns and outliers

from a visual scene, link these patterns and outliers to existing knowledge bases, and ar-

rive at an appropriate course of action given the visual input (Keim et al. 2006). Chen

et al. (2008) apply their methods to cervical cancer mortality data for the United States

between 2000 and 2004 and conclude that their proposed geovisual analytics approach

complements traditional statistical methods in cluster identification, enhancing the inter-

pretation of identified clusters.

The space-time scan statistics were developed for retrospective data analysis of brain can-

cer in New Mexico (Kulldorff et al. 1998). This type of geographical disease surveillance

tests if the disease is randomly distributed over space and time for a predefined geograph-

ical region during a predetermined time period. Kulldorff (2001) further developed the

space-time scan statistic for prospective disease surveillance to detect active geographic

clusters of disease. The statistic adjusts for the many possible time lengths and geographic

sizes of the space-time clusters, and for multiple testing.

The space-time scan statistic has been utilised for research and surveillance of many

zoonotic diseases. Use of the statistic to evaluate the potential for using reported clin-

ical equine cases of WNV as an estimate of risk of human infection has been reported

in Saskatchewan using data from a 2003 outbreak (Corrigan et al. 2006). Inopportunely,

most clusters of human cases were not preceded by horse case clusters in the same ar-

eas. Ward (2002) investigated clustering of cases of canine leptospirosis in veterinary

teaching hospitals in the USA using the space-time scan statistic. Results of this study

suggest that cases were diagnosed at a higher rate than expected between 1993 and 1998

at hospitals located in the midwest of the United States. Possible explanations for the

clustering detected include a shift in the serovars causing disease, climatic factors, and

referral, diagnostic, and reporting biases. Recuenco et al. (2007) identified statistically
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significant clusters of raccoon rabies in specific areas of New York from 1997 to 2003.

They recommend that cluster areas identified should be considered for raccoon rabies

control interventions such as use of the oral rabies vaccine. Furthermore these authors

advise that public education on raccoon rabies exposures and the need for increasing pet

vaccination activities should be prioritised in areas where clusters were identified.

The prospective space-time scan statistic was further developed to account for naturally

occurring temporal and spatial trends (Kleinman et al. 2005) and for use when no in-

formation is available on the population at risk (Kulldorff et al. 2005). The prospective

space-time scan was applied to Chicago’s 2002 shigellosis surveillance data to assist in

the detection and tracking of human shigellosis investigations (Jones et al. 2006). The au-

thors suggest that this methodology could help prioritise the assignment and investigation

of cases, particularly when an agency’s resources are stressed by other events, such as out-

breaks. They propose that other reportable endemic diseases, particularly those that, like

shigellosis, are easily transmitted via close personal contact, could be monitored using

this techniques. These diseases include hepatitis A virus infection and influenza.

The prospective space-time scan statistic has recently been incorporated into an online

geographical information system (EpiScanGIS) for the detection of clusters of meningo-

coccal disease in Germany (Reinhardt et al. 2008). An additional layer of information,

the DNA-sequence typing of the bacteria, allows for detailed surveillance important for

the monitoring of clonal spread and for the assessment of vaccine coverage. The combi-

nation of automation and typing allows the system to identify clusters of disease caused

by a single type in close to real time. This results in an up-to-the-minute assessment of

the disease burden that can trigger preventative actions such as public health campaigns.

Takahashi et al. (2008) proposed a flexible shaped space-time scan statistic and applied

it to respiratory syndromic surveillance data in Massachusetts. These authors also tested

the power of the flexible and the cylindrical scan to detect outbreaks. They report that for

large and narrow clusters, as you might see on a peninsula or river bank, the flexible scan

statistic would perform better than the cylindrical one. However they comment, that due to

it being computationally demanding, the flexible scan is slower to run, so it may be more

appropriate to use cylindrical scan for early detection, as timeliness is the key objective in

this situation. However, when monitoring an occurring outbreak, geographical accuracy

becomes the key objective, so once the outbreak has spread to a larger area, using the
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flexible scan statistic is an appropriate next step to monitor spread.

2.4.3 Other spatio-temporal surveillance techniques

Point process methodology for surveillance

Currently in the UK, gastrointestinal disease surveillance is principally pathogen-specific

based on isolations from routine faecal samples submitted by primary care. The Infectious

Intestinal Disease study found that for every 136 cases that occurred in the community,

only one is reported to national surveillance (Wheeler et al. 1999). This loss of epidemi-

ological information limits the ability to detect outbreaks within local communities and

reduces the opportunities for intervention. Therefore, surveillance based on pathogen iso-

lations is highly specific but lacks sensitivity and speed. The aim of the Ascertainment

and Enhancement of Gastrointestinal Infection Surveillance and Statistics project was to

develop a surveillance system with enhanced sensitivity and speed to provide more op-

portunities for intervention and prevention in the local population (Diggle et al. 2004). In

principle, this type of surveillance could also be applied to other types of public health

needs.

The statistical objective of the analysis is to estimate the ‘normal’ pattern of spatial and

temporal variation in the incidence of cases, and to identify quickly any anomalous varia-

tions from this normal pattern. This is addressed by decomposing the space-time intensity

of incident cases into three separate terms (Diggle et al. 2005): firstly, the temporal vari-

ation in the mean number of incident cases per day, which is modelled parametrically

through a combination of day-of-week and time-of-year effects; secondly, the overall

spatial variation, modelled non-parametrically as a smoothly varying surface; and thirdly,

the residual space-time variation, modelled as a spatiotemporal stochastic process.

Bayesian hierarchical modelling for surveillance

Knorr-Held & Richardson (2003) analyse space-time surveillance data on meningococcal

disease using an hierarchical formulation, where latent parameters capture temporal, sea-

sonal, and spatial trends in disease incidence. Spencer et al. (2008) modify this approach

for the surveillance of cases of campylobacteriosis. The aim is to detect spatially localised

point source outbreaks in campylobacteriosis notification data. Spencer et al. (2008) use

‘outbreak indicators’, spatio-temporal parameters that change from zero to one during a
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period of increased incidence, to do this. The posterior distribution of these indicator

variables consists of a probability that an outbreak is occurring at each point in space and

time. This model has been applied to data in the Manawatu region of New Zealand and

will be used in a real-time study of campylobacteriosis in Canterbury in 2009. In the

proposed study, all notified cases will be typed by both pulse-field gel electrophoresis and

multi-locus sequence typing, facilitating source attribution.

Joint disease modelling for surveillance

The issue of under-reporting of surveillance data was raised at the beginning of this chap-

ter. Under-reporting has many components that may vary across space, for example, the

proportion of sick patients for whom faecal samples are analysed, and the reporting be-

haviour of clinicians (Wheeler et al. 1999) and laboratories.5 This can make a detailed

spatial analysis of the variation in disease incidence difficult, as areas where disease inci-

dence appears high may simply have higher rates of reporting.

One method of overcoming this problem is to develop a joint model of more than one dis-

ease under surveillance, that estimates and adjusts for under-reporting (Held et al. 2006).

The incidence of the four zoonotic diseases campylobacteriosis, yersiniosis, and infec-

tions with two serovars of Salmonella, Salmonella enterica serotypes Enteritidis and Ty-

phimurium, were jointly modelled. The model adopted is the so-called shared component

model of Held et al. (2005) that assumes that the underlying risk surface for each disease

can be partitioned into components that may be shared with the other diseases and that the

geographical variation in under-reporting should be similar for the diseases considered.

In this study, the risk pattern resulting for S. typhimurium and yersiniosis, representing

infections hypothesised to be associated with raw or undercooked pork, show a clear re-

gional pattern likely associated with raw food consumption habits. A geographically even

distribution of risk, as was seen for S. enteritidis, could be explained by poor hygiene in

food preparation. Unlike raw food consumption habits, lapses in hygiene are much less

likely to show a clear regional pattern.

5http://www.svepm.org.uk/posters/2008/Spatial%20analysis%20of%
20Salmonella.pdf

http://www.svepm.org.uk/posters/2008/Spatial%20analysis%20of%20Salmonella.pdf
http://www.svepm.org.uk/posters/2008/Spatial%20analysis%20of%20Salmonella.pdf
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2.5 Conclusions

This review has focussed on methods and tools for detecting changes within zoonotic dis-

ease surveillance data. It is appropriate now to return to the key attributes of surveillance

that were first recorded by Thacker et al. (1988). These include sensitivity, timeliness,

flexibility, simplicity, and positive predictive value, and they continue to be important

benchmarks of effective surveillance (Babin et al. 2007, Buehler 2008). Do the meth-

ods and tools presented in this review reach this benchmark? As computing power and

statistics advance, there is a tendency for model complexity to increase. With increasing

complexity comes less flexibility and simplicity. Furthermore, our surveillance data sets

are becoming larger. It would be easy to lose sight of these key attributes as our ability to

become more sophisticated increases. I propose three guidelines:

1. Strive to keep the analyses as simple as possible. Complexity should only be added

if there are good grounds for doing so. Simplicity facilitates ‘buy in’ and trust from

all those using the system, increasing the likelihood that the results of analyses will

be carefully evaluated, and acted on in the event of a detected anomaly.

2. Improve sensitivity by using multiple techniques. No one methodology will suit all

data. If similar results are found when using more than one analytical technique

then this adds support to study findings.

3. Do not forget the human element. While we have many useful surveillance tools,

they do not replace the human element of case investigations. Tracking down an-

imal owners or patients and communicating with them, or with the administrators

of at-risk settings such as day care centres, cannot be done without skilled investi-

gators. Similarly, any tools we use are dependent on the accuracy, timeliness, and

completeness of case report data. It would be too easy to not see the wood for the

trees and forget about the importance of having well trained and remunerated staff

working to ensure quality data is collected.
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3.1 Abstract

We describe the spatial epidemiological features of the 6.8 million meat-juice serological

tests that were conducted between 1995 and 2004 as part of the Danish swine Salmonella

surveillance and control programme. We investigated pig and farm density using edge-

corrected kernel estimations. Pigs were aggregated at the county level to assess county-

level risk, and then we investigated farm-level risk by giving farms a case or non-case label

using a cut-off of 40% of pigs positive. Conditional probability surfaces, correcting for

the underlying population at risk, were produced for each year of the study period using

a novel kernel estimator with a spatially adaptive smoothing bandwidth. This approach

improves on previous methods by allowing focussed estimation of risk in areas of high

population density while maintaining stable estimates in regions where the data are sparse.

Two spatial trends in the conditional probability of a farm being a case were evident: (1)
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over the whole country, with the highest risk in the west compared to the east; and (2)

on the Jutland peninsula, with the highest risk in the north and south. At the farm-level,

a consistent area of risk was the south-west of Jutland. Case farms tended to aggregate

indicating spatial dependency in the data. We found no association between pig or farm

density and Salmonella risk. We generated hypotheses for this spatial pattern of risk

and we conclude that this spatial pattern should be considered in the development of

surveillance strategies and as a basis for further, more detailed analyses of the data.

3.2 Introduction

Exploratory data analysis is the cornerstone of sound epidemiological investigation (Tukey

1977). In exploratory spatial data analysis we aim to describe spatial variation in disease

without any explicit attempt to represent this variation in terms of a probability model.

Suitable tools include point maps, kernel smoothing, and mapping of relative risk and

conditional probability surfaces. These allow us to generate hypotheses that give insight

as to why disease is abundant in some areas but not in others.

Our motivation was to explore data from the Danish Swine Salmonella Surveillance and

Control Programme (DSSCP) established by the Danish Ministry of Food, Agriculture

and Fisheries in 1993 (Mousing et al. 1997). The DSSCP was set up in response to a

general increase in the incidence of confirmed cases of human salmonellosis due to pork

consumption (Baggesen & Wegener 1994) and a large, common source outbreak caused

by Salmonella infantis, traced back to one slaughter plant and a small number of supplier

pig herds (Wegener & Baggesen 1996). The objective of the DSSCP is to reduce the

prevalence of Salmonella to an acceptably low level so that domestically produced pork

is no longer an important source of human salmonellosis. At the time of writing this,

the objective has largely been achieved: the number of cases of salmonellosis in humans

attributable to pork consumption has reduced from 1,444 in 1993 to 142 in 2004 (Nielsen

et al. 2001, Ministry of Family and Consumer Affairs 2005). At present, the focus of the

DSSCP is increasingly on the efficiency of Salmonella surveillance, with both industry

and authorities wanting to achieve the greatest reduction in the prevalence of Salmonella

for their money.

In the light of this focus on efficiency, we used a novel kernel estimator with a spa-
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tially adaptive smoothing bandwidth to produce estimates of the conditional probability

of Salmonella risk across Denmark. Identified areas with a high probability of risk could

be targeted for increased surveillance, while those with a low probability could be less

frequently surveyed. This risk-based approach to surveillance would complement the re-

cent strategy initiated in July 2005, where herds with a negative history of Salmonella are

sampled less frequently (Ministry of Family and Consumer Affairs 2006).

Earlier spatial analyses of data from the DSSCP have described the geographical distribu-

tion of seroprevalence (Mousing et al. 1997), and fitted county of origin as a fixed effect

in regression models that aimed to quantify the effect of factors that influence Salmonella

seroprevalence (Carstensen & Christensen 1998). These studies have only considered data

from 1995 from the DSSCP while the analyses presented here consider data from 1995

to 2004. The identification of spatial patterns in the data will inform further, more de-

tailed analyses as well as highlight areas with abundant Salmonella infection for targeted

surveillance.

3.3 Materials and methods

3.3.1 The Salmonella Surveillance and Control Programme

The DSSCP is based on the random testing of post-slaughter meat-juice samples from all

finisher pig-herds that have an annual kill of greater than 200 finishers. The number of

animals sampled at slaughter depends on herd size, with 60, 75, or 100 pigs sampled per

herd per year (Alban et al. 2002). The testing of meat-juice rather than blood facilitates

both sample collection and carcass identification (Nielsen et al. 1998). All samples are

analysed at the Danish Institute for Food and Veterinary Research using the Danish mix-

ELISA (Nielsen et al. 1995). This test can detect O-antigens from at least 93% of all

serovars that are known to be present in Danish pigs (Mousing et al. 1997).

The sample results are used to categorise swine herds into one of three levels of a serolog-

ical Salmonella finisher index (Alban et al. 2002). The index for each herd was calculated

using a three step process: (1) totalling the monthly number of positive samples (opti-

cal density greater than 20) for the last three months; (2) weighting the months totals by

3:1:1 so the most recent month carries the most weight; and (3) adding the weighted totals
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which are then divided by five. The three levels are level 1 with an index of 1-39; level

2 with an index of 40-69; and level 3 with an index of 70 or more. Herds in levels 2 and

3 have requirements placed upon them, e.g. pen faecal samples must be collected from

the herd, producers must report their most recent weaner suppliers, and there are penalty

Salmonella deductions resulting in reduced payments to these producers. Furthermore,

pigs from level 3 herds are subject to special slaughter conditions. At the end of 2004,

3.5% of finisher herds were assigned to level 2 and 1.1% to level 3.

There have been a number of changes to the DSSCP since its inception. These include

a change in the sampling strategy in August 2001, which was introduced to give more

precise estimates for seroprevalence in smaller herds (Alban et al. 2002).

3.3.2 The data

Two extracts of data were obtained from the central database of the DSSCP from 1st

January 1995 until 31st December 2004 (inclusive). The first data extract provided farm

level information and included a unique identifier, as well as the identification of the

county and commune in which the farm was located. There are 275 communes within

14 larger counties in Denmark. The unique identifier is attached to the physical locality,

and not the owner, thus ensuring correct identification of the farm over the ten-year study

period. Due to the near complete coverage of sampling in the DSSCP (all herds producing

more than 100 finishers per annum prior to 1st August 2001, all producing more than 200

at or after 1st August 2001 to date), our data set was effectively a census comprising 99%

of the population of Danish finisher swine herds.

Details of location of the farm house were provided for all farms that were registered

with the Danish Central Husbandry Registry in March 2004. Amongst the 22,344 farms

sampled between 1st January 1995 and 31st December 2004 which had individual pig and

farm level data, 14,319 had recorded easting and northing coordinates. The remaining

8025 farms had coordinates randomly generated within their respective communes. This

was an appropriate means for dealing with this type of missing data for two reasons. The

size of those communes that produce pigs are small (range 20 to 58 km2) relative to the

entire land area of Denmark (43,000 km2), and inferences drawn from this study were

made at a broad national level rather than at the small commune level. Furthermore, the
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need to randomly generate coordinates was time dependent: in 1995 this was necessary

for 5940 of 16,095 farms (37%); in 1998, 4313 of 15,790 farms (27%); in 2001, 1204 of

11,977 farms (10%) and in 2004, only 173 of 9813 farms (2%).

The second data extract provided information relating to the 6.8 million individual car-

casses that were tested (out of a total kill of approximately 200 million), and included the

date of sampling, the unique farm identifier, and the result of the Danish mix-ELISA. For

this analysis, a result of greater than 20 optical density (OD%) was classified as positive:

this is the cut-off for positivity that has been used by the DSSCP since 1st August 2001

(Alban et al. 2002). The individual test sensitivity and specificity of the Danish mix-

ELISA at this cut-off using meat-juice has been estimated at 60% and 100% respectively

(Enoe et al. 2003).

3.3.3 Statistical analyses

Summary statistics

We provided summary statistics at the county level for the ten year study period to de-

termine a broad pattern of the variation in spatial risk. For each of the 14 counties (see

Figure 3.1) the number of farms and the proportion of samples yielding positive serology

results were determined. The unit of analysis was the individual animal and confidence

intervals for the proportion of positive serology results were calculated, taking into ac-

count the presence of clustering at the farm level (Dargatz & Hill 1996). The proportion

of positive serology results for a county was expressed as the county-level incidence risk

(IR). For each county the OD% values of positive serology results were aggregated and

the lower, middle and upper quartiles calculated.

Spatial analyses

The land area of Denmark is comprised of a large peninsula (Jutland), two main islands

(Fyn and Zealand), and 441 smaller islands (Figure 3.1). Southern Jutland forms a border

with northern Germany. Since the start of the DSSCP over 85% of slaughter pigs have

originated from the Jutland peninsula and Fyn. To visualise the broad scale variability in

farm density we calculated edge-corrected Gaussian kernel estimations (Diggle 1985) of
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the intensity function of the farm locations for each year of the study period. A fixed band-

width was chosen for each year, determined using the Gaussian optimal method (Bowman

& Azzalini 1997).

To visualise broad-scale variability in sampled pig density we produced edge-corrected

Gaussian kernel estimations of the intensity function of the count of sampled pigs, by

weighting the point locations of farms by the count of sampled pigs (Baddeley & Turner

2005). Since we did not have access to details of the number of pigs on each farm, we

used the number of sampled pigs as a proxy for the farm-level pig population.

An important concept when describing spatial variation in risk is to adjust for the under-

lying population structure. The spatial relative risk function, estimated by kernel density

methods, was developed for case control data for rare diseases by Bithell (1990). Lawson

& Williams (1993) and Kelsall & Diggle (1995) further improved the estimation. In our

analysis, we depart from the classic case control design since we have the unusual situ-

ation of what is effectively a census of pig farms. That is, we were not constrained by a

strategy that required sampling of cases and controls. This means we can directly estimate

the intensity of disease and use the following function, p(x), to estimate the conditional

probability of a farm being a case at location x:

p(x) =
λ1(x)

λ0(x) + λ1(x)
(3.1)

Equation 3.1 represents the probability of a farm being a case, conditional on its location.

For each year of the study period farms were defined as cases if the proportion of sampled

pigs that were positive was greater than or equal to 0.40. If otherwise farms were defined

as non-cases. We chose this cut-off since it is the cut-off between levels 1 and 2 of the

serological Salmonella finisher index. The function λ1(x) is the intensity of cases at an

arbitrary point x, and λ0(x) is the intensity of non-cases at an arbitrary point x.

We obtained plug-in estimators of λ1 and λ0 using kernel smoothing:

λ̂0(x;h) =

n0∑
i=1

Kh(x− xi) (3.2)

λ̂1(x;h) =
n∑

i=n0+1

Kh(x− xi) (3.3)
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where x1, ..., xn0 are the locations of the non-case farms, and xn0+1, ..., xn are the loca-

tions of the case farms. Also,Kh(x) = h−2K(h−1x) withK() being a radially symmetric

kernel function, and h a smoothing parameter called the bandwidth. The performance of

the kernel density estimator depends on the choice of h. Fixed bandwidth kernel density

estimators, as in Equations 3.2 and 3.3, have a major limitation when there is large spatial

variation in the density of the population (as there is in the distribution of farms in Den-

mark). This results in an over-smoothing in areas of high density that could mask clusters

of disease, and under-smoothing in areas of low density which could result in artificial

spikes of disease risk.

We addressed this limitation by estimating conditional probability surfaces of a farm being

a case for each year of the study period, using a method for bandwidth selection that

implements spatially adaptive smoothing. Specifically, we used sample point dependent

bandwidths in Equations 3.2 and 3.3, so that for the ith term in summation the bandwidth

becomes hi = h(xi). This bandwidth can be conveniently decomposed as hi = hγi

where γi is a local bandwidth factor (constrained to have a geometric mean of one over

the samples of cases and non-cases) and h a global smoothing multiplier common to both

λ̂0 and λ̂1.

We selected the local bandwidth factors and global multiplier using a novel generalisa-

tion of the methodology of Hazelton (2007), extended from the case of one dimensional

x values to two dimensional geographical locations. Specifically, we computed the local

bandwidth factors by γi = δ0/
√
λ̃0(xi) and γi = δ1/

√
λ̃1(xi) for non-cases and cases

respectively, where λ̃0 and λ̃1 are pilot estimates of the respective intensity functions

(constrained to be equal at coastal boundaries), and δ0 and δ1 are constants chosen to fix

the geometric means of the bandwidth factors as described above. As a consequence, the

local bandwidth factors are selected so as to apply the appropriate degree of smoothing

in a relative sense (i.e. that which minimises mean square error), so that regions with a

high intensity, λ, of farms have smaller bandwidths than regions with low intensity. This

means that data rich areas of fine detail (e.g. Viborg and Nordjylland) receive (far) less

smoothing than geographical regions where the data are sparse (e.g. on Zealand). Mean-

while, the global smoothing multiplier is adjusted to optimise the conditional probability

surface as a whole (in terms of minimising an estimate of mean squared error, integrated

over the geographical region), rather than the individual intensity functions per se.
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Another important consequence of this methodology is that the estimated conditional

probability surfaces are consistent at the boundary without any additional correction for

bias introduced by edge effects. This boundary bias in a kernel comprises contributions

from both the numerator (intensity of case farms at an arbitrary point) and denominator

(intensity of all farms at an arbitrary point) of the conditional probability function. How-

ever, the use of the global smoothing multiplier leads to the cancellation of the leading

bias terms from both numerator and denominator, resulting in a great reduction in the

magnitude of the bias for the conditional probability function itself.

Inspection of maps of slaughter pig farm densities (Figure 3.2) and the conditional prob-

ability surfaces (Figure 3.4) provided a visual guide as to possible association between

farm density and the risk of disease.

3.4 Results

3.4.1 Summary statistics

The results from the descriptive analysis for counties are shown in Table 3.1. There was

a large variation in the ten year county-level IR. The counties at the extreme north (Nord-

jylland) and south (Sonderjylland) of Jutland had the highest IR of 10%, with very little

uncertainty surrounding these estimates. The next three counties with 9% IR were Fyn,

Arhus, and Viborg. The counties with the highest IR also demonstrated higher OD% val-

ues for their lower, middle, and upper quartiles of positive serology results. Counties on

the islands of Zealand and Bornholm had 4% or less IR, with the exception of Vestsjalland

which had 6%.

3.4.2 Spatial analysis

Edge-corrected Gaussian kernel estimations of the intensity functions of the farm loca-

tions and of the count of sampled pigs for each year of the study period were mapped.

Slaughter pig farm density (Figure 3.2) showed large variability across the country (from

zero farms per square kilometer in Copenhagen to 0.6 in western Viborg in 1995). For

presentation purposes, Bornholm is excluded from the figures. Farm density on Bornholm
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was similar to that on Fyn. The solid and dashed contour lines delineate the upper fifth

and twenty-fifth percentiles of farm density respectively. There was a reasonably uniform

decrease in farm density over the ten year study period with the relative densities remain-

ing very similar. For example, even though farm density in western Viborg reduced from

0.6 to 0.4 farms per square kilometre over the ten year period, it remained the region with

the highest farm density. Both farm (Figure 3.2) and sampled pig density (Figure 3.3)

was the highest in northern Nordjylland, western Viborg, central Arhus, eastern Vejle and

south-eastern Sonderjylland (specifically on the island of Als). Throughout the whole

study period, this farm and pig density pattern was reasonably consistent.

Figure 3.4 presents density plots of the conditional probability of a farm being a case for

four years of the study period. The solid contour lines delineate the upper fifth percentile

of Salmonella risk, clearly showing areas where the conditional probability of a farm be-

ing a case is high. The dashed contour lines delineate the upper twenty-fifth percentile of

risk. The variable bandwidths ranged between 4.4 and 62.5 km. The geometric means of

the bandwidths were between 8.6 and 12.6 km. These maps show two spatial trends that

are consistent throughout the whole study period: (1) over the whole country there is in-

creased conditional probability of a farm being a case on Jutland and Fyn when compared

to Zealand and Bornholm; and (2) on the Jutland peninsula high conditional probabilities

are in the south (especially the south-west) and to a lesser extent in the north. In addition

to the consistent spatial trends in the conditional probability of a farm being a case over

the ten years, there is a further trend that becomes apparent from 1998 onwards. This is a

shift south in the northern polarity of risk on Jutland, and by 2004 there were pockets of

central Jutland that had become areas of increased risk.

There was also a temporal pattern, with highest risk of Salmonella at the beginning and

end of the study period. Six percent (905 of 16,095) and 4% (399 of 9813) of farms were

cases in 1995 and 2004 respectively. Three percent of farms in both 1998 (404 of 15,790)

and 2001 (303 of 11,977) were cases. Visual appraisal of the map series suggests no

association between areas of high farm (Figure 3.2) or sampled pig density (Figure 3.3)

and areas with increased risk of Salmonella (Figure 3.4).

In addition to the broad spatial trends, all maps showed evidence of aggregation of case

farms visible as dark spots of varying diameter on the probability surfaces in Figure 3.4.

This was most obvious in 1995 when the number of cases was the highest (n = 909).
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Table 3.1: Salmonella seropositivity in Danish finisher pigs, 1995-2004. Descriptive results
stratified by county. Data originate from the Danish swine Salmonella surveillance and control
programme.

County Name Number of Percent positive Percent positive
Farms tested Results1 Positive results2 (95% CI)3 25th 50th 75th

Copenhagen 8 1719 57 3 (2–5) 24 32 40
Frederiksborg 238 40,254 1501 4 (3–4) 24 32 49
Roskilde 255 68,322 2638 4 (3–5) 24 33 54
Vestjalland 1577 406,690 23,257 6 (5–6) 26 38 69
Storstrom 1176 335,530 12,459 4 (4–4) 24 33 53
Bornholm 468 149,040 4994 3 (3–4) 24 31 46
Fyn 1874 644,171 58,723 9 (8–9) 27 41 75
Sonderjylland 1830 659,878 64,759 10 (9–10) 28 44 80
Ribe 1163 303,373 24,636 8 (8–9) 28 44 79
Vejle 1724 545,750 39,164 7 (7–7) 26 48 69
Ringkobing 2797 946,542 74,245 8 (8–8) 26 38 70
Arhus 2527 754,141 67,774 9 (8–9) 25 36 64
Viborg 3278 919,622 79,121 9 (8–9) 26 38 69
Nordjylland 3429 993,813 103,438 10 (10–11) 26 40 76
Total 22,344 6,768,845 556,766 8 (8–8)

1 Individual pig serology results.
2 An OD% of greater than 20.
3 Adjusted for farm-level clustering.
4 Quartile range of all positive results.
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Figure 3.1: Map of Denmark showing the location of counties. The central island group contain-
ing Vestjalland, Roskilde, Storstrom, Copenhagen, and Fredriksborg is Zealand. The largest land
mass containing Nordjylland, Viborg, Arhus, Ringkobing, Vejle, Ribe, and Sonderjylland is the
Jutland peninsula. Southern Sonderjylland forms a border with northern Germany.
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Figure 3.2: Edge-corrected kernel smoothed maps showing Salmonella meat-juice tested slaugh-
ter herd densities across Denmark in 1995, 1998, 2001, and 2004. Units are farms per square
kilometre. The solid and dashed contour lines delineate the upper fifth and upper twenty-fifth
percentiles of herd densities respectively. A fixed bandwidth of between 15.8 km (1995) and 17.2
km (2004) was used. Data originate from the Danish swine Salmonella surveillance and control
programme.
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Figure 3.3: Edge-corrected kernel smoothed maps showing sampled Salmonella meat-juice tested
slaughter pig densities across Denmark in 1995, 1998, 2001, and 2004. Units are sampled pigs per
square kilometre. The solid and dashed contour lines delineate the upper fifth and upper twenty-
fifth percentiles of herd densities respectively. A fixed bandwidth of between 15.8 km (1995)
and 17.2 km (2004) was used. Data originate from the Danish swine Salmonella surveillance and
control programme.
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Figure 3.4: Salmonella seropositivity in Danish finisher pigs in 1995, 1998, 2001 and 2004. Den-
sity plots show the conditional probability of a farm being a case. The solid contour lines delineate
the upper fifth and twenty-fifth percentiles of Salmonella risk respectively. Data originate from the
Danish swine Salmonella surveillance and control programme.
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3.5 Discussion

This study has used a novel spatially adaptive smoothing technique to identify spatial pat-

terns of slaughter pig Salmonella risk throughout Denmark. We found large variation in

both county- and farm-level risk throughout Denmark, with increased risk in the south

and north of Jutland. The spatio-temporal analysis carries this further with visual confir-

mation of this pattern over the whole ten year study period. It has become apparent from

this study that farms are most at risk in south-west Jutland and that those in central Jutland

experienced increased risk from 1998 onwards.

We found that the geographical area within which a farm is located influences the risk for

Salmonella and although farm location is not something that can be altered, it is useful to

be aware of the high risk areas. More intensive sampling and gathering of epidemiological

data in these areas may provide clues to underlying aetiologies. Qualitative assessment of

the risk surfaces showed that case farms tend to aggregate, especially in 1995 when they

were more numerous. This suggests that the underlying process is naturally clustered

pointing to the need to explicitly model this structure in later work. When we visually

assessed the relationship between farm and pig density and the farm-level risk of being a

Salmonella case, we saw no association between them.

The kernel estimation of spatial relative risk is a useful tool in epidemiology which has

been previously constrained by instability in estimates in areas where data are sparse

(Clark & Lawson 2004). Our application of a method for bandwidth selection which

implements spatially adaptive smoothing overcomes this constraint and has the added

advantage of self-correcting for edge effects. When compared with estimates computed

using a fixed bandwidth, we were able to demonstrate appreciable improvements in per-

formance with correction of over-smoothing in areas of low density, and under-smoothing

in areas of high density. We believe this technique is a valuable addition to the repertoire

available to spatial epidemiologists.

Our findings at the county-level are in agreement with earlier work on data from the

DSSCP (Carstensen & Christensen 1998, Mousing et al. 1997). Counties in the north

and south of Jutland (Nordjylland and Sonderjylland) experienced increased Salmonella

risk. Counties with the highest animal-level IR also demonstrated higher OD% values

for the lower, middle and upper quartiles of their positive serology results. One possible
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explanation for this is that differences in the serological response depend on the serovars

involved and the time since infection (Nielsen et al. 1995). It is also very likely that the

infection pressure within a herd contributes to an individual pig’s level of seropositivity.

The pattern of a low positive summary for counties in Zealand (with the exception of

Vestjalland) and Bornholm (Table 3.1) may be a result of either low herd-level infection

pressure or infection with serovars resulting in low test sensitivity, or both.

Caution must be used when interpreting the results from aggregated data since it may be

subject to ecological bias (Biggeri et al. 1999). If a county has a high IR, this will not

necessarily mean that all farms within that county are so affected; this becomes apparent

when we investigate the farm level data. Notwithstanding our use of different measures

of risk for county (proportion of samples positive) and farm, (case or non-case with cut-

off of 40% of samples positive), we can identify that it is only parts of the most-affected

counties that have an increased conditional probability of being a case. Sonderjylland

experienced a high county-level IR at 10%, but it is only the south-west of the county

which consistently had the highest conditional probability of a farm being a case.

Our findings must be considered in the light of changes that have occurred in both the

DSSCP sampling strategy and the Danish swine population during the study period. A

small part of the reason for the decrease in farm density throughout the study period

was due to a change in the DSSCP that occurred in August 2001 (Alban et al. 2002).

The cut-off for herds to be eligible for sampling was raised from 100 to 200 pigs killed

per year resulting in fewer herds being sampled with those that remained eligible being

larger. This potentially results in selection bias, the direction and magnitude of which

is unknown. However, we are confident it is likely to be of little consequence as over

the study period herd sizes were increasing. In fact Danish pig herds doubled in size:

in 1995 the number of finishers produced per herd was 1757 compared to 3043 in 2004

(Anonymous 2006).

However, the reduction in the total number of suppliers producing pigs for slaughter was

the more important reason for this decrease in farm density over the study period. For

example, the number producing more than 200 pigs annually was approximately 13,200

in 1994 reducing to 7800 in 2004 (Anonymous 2006).

Another major change implemented in the DSSCP in August 2001 resulted in more sam-

ples being taken from smaller herds and less samples from larger herds. Again, this poten-
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tially results in bias of unknown direction and magnitude since the relationship between

herd size and Salmonella risk is not straightforward (we address this more fully later in

the discussion). Overall, both DSSCP changes instigated in August 2001 led to a 13%

reduction in the total number of samples taken (Alban et al. 2002). These changes in the

sampling strategy confound our results for sampled pig density, allowing only empirical

comparisons to be drawn.

The spatial patterns of Salmonella risk reported here allow us to generate a number of hy-

potheses. The pattern was possibly due to risk factors acting on a broad spatial scale such

as a common infected source of pigs, contaminated feed, or regional biosecurity practices.

A Danish study of the latter identified southern Jutland as an area where all surveyed sites

hired commercial transport to the abattoir (Boklund et al. 2004). Transportation can be a

biosecurity risk if, for example, transport personnel are allowed onto the farm (Baum et

al. 1998).

The south of Jutland has been identified as a high risk area for post-weaning multi-

systemic wasting syndrome from 2001 to 2003 (Vigre et al. 2005) and porcine repro-

duction and respiratory syndrome virus. There are published reports of the links between

these diseases and salmonellosis in pigs (Belœil et al. 2004, Ha et al. 2005, Murakami et

al. 2006, Wills et al. 2000). Concurrent infections may act systemically to lower a pig’s

overall resistance to Salmonella, or cause disturbances in the normal gut flora, leading to

increased susceptibility for Salmonella colonisation.

Denmark enjoys relative geographic isolation when compared with other northern Eu-

ropean countries: Fyn, Zealand and Bornholm are true islands, and only the south of

Sonderjylland is connected to the European mainland. The boundary between south Jut-

land and northern Germany may play an as yet undetermined role in the consistent risk of

seropositivity seen in the south-west of Sonderjylland. Although there is no movement of

pigs across the German border into Denmark, there is movement of pig feed, since farm-

ers in the south of Jutland purchase feed across the border when the price is lower. We

speculate that this could be a potential source of Salmonella for herds in south Jutland,

but further studies would need to be done to elucidate this.

Other risk factors acting on this scale could include regional variations in management

practices such as home-mixing of feed in grain-producing areas, with corresponding less

use of pelleted feed. It is generally agreed that the feeding of pelleted feed is a risk for
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salmonellosis on pig farms (Leontides et al. 2003, Mikkelsen et al. 2004).

The two counties with the highest county level IR (Nordjylland and Sonderjylland) have

large pig populations and generally larger farms. The association between herd size and

Salmonella risk is complex: some studies report a positive association (Carstensen &

Christensen 1998, Mousing et al. 1997) others a negative (van der Wolf et al. 2001) or no

association (Lo Fo Wong et al. 2004b, Stege et al. 2001). Larger herds may have facilities

that, in themselves, are sparing on Salmonella risk, e.g. feeding of fermented liquid feed

(Belœil et al. 2004, van der Wolf et al. 2001) and improved biosecurity (Funk et al. 2001,

Lo Fo Wong et al. 2004b).

Since this is a descriptive study, we set out to generate the above hypotheses rather than

specifically address the factors that may explain the patterns observed. By identifying

these spatial patterns, we have highlighted the south-west of Sonderjylland on the Jutland

peninsula as an area for further investigation and targeted surveillance. Furthermore, our

exploration of the data has identified that case farms tend to aggregate. A method for

investigating this issue further would be to model the data, accounting for both the broad

spatial trend and the local spatial correlation structure. We explore the latter in the next

chapter.
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4.1 Abstract

The aim of this paper is to investigate local spatial dependency with regard to Salmonella

seropositivity in data from the Danish swine Salmonella surveillance and control pro-

gramme and its application in informing surveillance strategies. We applied inhomo-

geneous and observed-difference K-function estimation, and geo-statistical modelling to

data from the Danish swine Salmonella surveillance and control programme. Slaughter-

pig farm density showed large variation both at the country-wide and at the local level

in Denmark (median 0.23, range 0.02-0.47 farms per square kilometre). The spatial dis-

tribution of pig farms followed a random inhomogeneous Poisson process but was not

aggregated. We found evidence for aggregation of Salmonella case farms over that of

all farms at distances of up to six kilometres and semivariogram analyses of Salmonella

seropositivity revealed spatial dependency between pairs of farms up to four kilometres

apart. The strength of the spatial dependency was positively associated with slaughter pig

farm density. We propose sampling more intensively those farms within a four kilometre
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radius of farms that have been identified with a high Salmonella status, and reduced sam-

pling of farms that are within this radius of ‘Salmonella-free’ farms. Our approach has

the potential to optimise sampling strategies while maintaining consumer confidence in

food safety, and also to be used in other zoonotic disease surveillance systems.

4.2 Introduction

The value of geo-referenced data in veterinary surveillance of both endemic and exotic

diseases is immense. Recent examples in the literature show that these data have been

used not only to identify areas with excess disease (Haine et al. 2004, Sanchez et al. 2005)

and target areas for further studies (Graham et al. 2005), but also to produce hypotheses

about means of disease introduction (Vigre et al. 2005), identify the likely site of incursion

of an exotic disease (Stevenson et al. 2005) and for predictive modelling of alternative

control strategies (Yoon et al. 2006).

The geo-referenced locations of livestock farms can be considered a spatial point process

(Diggle 2003). An underlying assumption in the analysis of these processes is that of

stationarity or spatial homogeneity, i.e. the intensity of the process does not depend on

the location in space (Diggle 2003, Banerjee et al. 2004). A point pattern representing the

location of livestock farms will typically not meet this assumption - farms will likely be

distant from large urban centres and often will be located near areas that meet their needs

for specific inputs e.g. feed supply and market access. Furthermore, in developed coun-

tries, legislation now dictates the location of intensive production units due to their effects

on the environment, such as emissions of ammonia and phosphorus and requirements to

spread slurry.

Statistically, spatial point patterns can be partitioned into first- and second-order proper-

ties that capture their global and local behaviours respectively (Banerjee et al. 2004). If

the pattern shows a global trend (i.e. is non-stationary or inhomogeneous) then it exhibits

a first-order effect. A second-order effect is due to spatial dependency and results from

the spatial correlation structure in the data; these are small-scale or local effects. Some-

what ambiguously, both first- and second-order effects produce point patterns that exhibit

local concentrations of points and it can be difficult to clearly identify one from the other

(Diggle et al. 2007).
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When looking specifically at slaughter-pig production in intensive farming areas, there

are concentrated areas of pig production within which the distances between farms can be

very small. Denmark, as the world’s largest exporter of pig meat, provides a good example

of intensive pig farming. The first aim of this paper is to capture the spatial distribution of

these farms with regard to first- and second-order effects, using farm location data from

the Danish Central Husbandry Register in 2003. Our second aim is to investigate the

second-order spatial properties by marking the locations with disease status and with a

random farm effect value from a generalised linear mixed model. We then determine the

implications for surveillance. This methodology could be used on suitable data from any

national disease control programme. We used data from the Danish swine Salmonella

surveillance and control programme from 2003. Many other countries that intensively

farm pigs look to the Danish control programme as a model e.g. the Zoonoses Action Plan

in the United Kingdom (Armstrong 2003), Ireland (Casey et al. 2004) and the German

QS system (Blaha 2004). The Danish programme was developed in 1993 in response to

an increase in the incidence of salmonellosis in humans attributable to consumption of

pork (Alban et al. 2002, Mousing et al. 1997) and is based around the random testing

of meat-juice samples from slaughtered pigs. All herds that produce greater than 200

finishers per year are tested and then categorised into one of three levels of a ‘serological

Salmonella index’ for intervention strategies (Alban et al. 2002). An in-depth review of

the programme is given by Christensen (2003).

In Denmark the number of human Salmonellosis cases due to pork consumption has sub-

stantially reduced from 1444 in 1993 to 164 in 2004 (Nielsen et al. 2001). This reduction

in the number of human cases provides some indication that the interventions that have

been applied have been effective but raises questions about where to go to next in terms

of resource allocation within the programme (Alban & Stärk 2005). There have been a

number of recent stochastic models, both Danish (Alban & Stärk 2005) and from else-

where (van der Gaag et al. 2004a, Miller et al. 2005) which have addressed the question,

and results were variable. The North American model found higher cost-benefit ratios

for improvements in the post-slaughter phase (Miller et al. 2005), while both the Danish

(Alban & Stärk 2005) and the Dutch (van der Gaag et al. 2004a) identified both pre- and

post-slaughter interventions as efficient.

In terms of pre-slaughter interventions, little consideration has been given to small-scale
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spatial risk factors. Work on the Danish programme has described a strong first-order

spatial effect with a higher prevalence of farm-level seropositivity in the north and south

of Jutland, and in the west of the country compared with the east (Mousing et al. 1997,

Carstensen & Christensen 1998, Benschop et al. 2008a). Our recent work (Benschop

et al. 2008a) has identified that case farms tend to spatially aggregate, but we are not

aware of any work specifically investigating the second-order properties of the data. Both

increased pig density within a region (Fedorka-Cray et al. 2000) and small distances to

other pig farms (Berends et al. 1996, Langvad et al. 2003) have been identified as risk

factors for Salmonella infections. The bacteria are long-lived in the environment (Win-

field & Groisman 2003) and contaminated faecal matter can act as a reservoir (Gray &

Fedorka-Cray 2001), so processes acting locally, such as sharing contaminated agricul-

tural machinery or poor biosecurity between farms, make the small-scale spatial structure

worthwhile investigating. This has the potential to inform models that may lead to im-

proved resource allocation in the Danish and other similar programmes.

4.3 Materials and methods

4.3.1 The data set

Two extracts of data from 1st January 2003 until 31st December 2003 were obtained

from the Danish swine Salmonella surveillance and control programme (DSSCP) (Alban

et al. 2002, Mousing et al. 1997). These extracts comprised pig and farm level data. We

chose data from 2003 for analysis since this was the period with the highest proportion of

geo-referenced farms (96.2%).

Data were managed using a relational database (Microsoft Access 2002 for Windows; Mi-

crosoft Corporation, Washington, USA) and spreadsheet software (Microsoft Excel 2002

for Windows; Microsoft Corporation). Statistical analyses were performed using the R

statistical package version 2.2.0 (R Development Core Team 2007) and WinBUGS ver-

sion 1.4.1 (Imperial College and MRC, UK). R contributed packages spatstat (Baddeley

& Turner 2005), geoR (Ribeiro Jr. & Diggle 2001), splancs (Rowlingson & Diggle 1993)

and sm (Bowman & Azzalini 1997) were also used.
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4.3.2 Pig-level data

There were 578,268 individual finisher pig meat-juice results. Each included the date

of sampling, the central husbandry register number identifying the farm of origin, and

the result of the Danish-mix ELISA. A result of greater than 20 OD% was classified as

positive. This is the cut-off for positivity that has been used by the DSSCP since 1st

August 2001 (Alban et al. 2002).

4.3.3 Farm-level data

Of the 10,571 farms for which individual pig results were available 10,166 also had east-

ing and northing coordinates of the farm house. This represented 96.2% of the con-

tributing farms. The 405 farms without coordinate information were excluded from the

analyses. Each farm had its central husbandry register number which included a number

indicating within which of the 15 Danish counties the farm was located. Because they

contributed very few farms, the two counties that constituted the county of Copenhagen

were merged.

4.3.4 Spatial analysis

To investigate the spatial distribution of slaughter pig farms we used three techniques:

kernel estimation, nearest neighbour distance, and the inhomogeneous K function.

We calculated kernel density estimates (Diggle 1985) of farm locations to visualise the

broad scale variability in farm density. Spatially adaptive smoothing was implemented

by weighting the global bandwidth at each data point with weights derived from a pilot

estimate (Marshall & Hazelton 2008). Regions that are data rich (e.g. Jutland), therefore,

receive less smoothing so as to preserve fine detail, whereas regions where the data are

sparse (e.g. Zealand) receive more smoothing. A linear boundary kernel with a Gaussian

base, was used to reduce boundary bias, and a global smoothing bandwidth of 17 km was

chosen using the normal optimal method (Bowman & Azzalini 1997).

For each county, we calculated the distance from every farm location to its nearest neigh-

bour.
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We estimated a non-stationary analogue of the standard K function, the inhomogeneous

K-function (Baddeley et al. 2000), to investigate for evidence of local aggregations of

pig farms after allowing for their non-uniform density. The K-function is defined as the

expected number of further points within a distance r of an arbitrary point, divided by the

overall density of the points (Ripley 1976).

K(r) =
N(r)

λ
(4.1)

In Equation 4.1 K(r) is the standard K-function, N(r) is the expected number of neigh-

bouring farms within a distance r of an arbitrary farm and λ is the farm density. In-

homogeneous K-function analysis was performed using five large approximately square

areas that included 82% of the sampled farms (Figure 4.1). Square areas were chosen

to avoid the instability that may be associated with unusual window geometry (Ripley

1988). Analysis of the whole of the country was prevented by computational and ge-

ographical constraints. To reduce the instability due to edge effects, Ripley’s isotropic

corrections were implemented (Ripley 1988). One hundred simulated realisations of an

inhomogeneous Poisson process were generated and the inhomogeneous K-functions of

these were calculated to produce an envelope around the observed data. This provides

a way of testing if the observed pattern of farms is aggregated even after allowing for

its non-uniform density. The practical value of the inhomogeneous K-function over the

standard K-function is that the former permits a more global measure of aggregation as it

allows for spatial inhomogeneity of the pattern (a varying λ).

To investigate if there were spatial aggregations of case farms over that of all farms, the

observed-difference K-function was calculated. A farm was defined as a case if it had a

proportion of positive pigs greater than or equal to 0.4. We chose this cut-off as it is the

cut-off between levels 1 and 2 of the serological Salmonella finisher index. If herds are

in level 2 or 3, there are requirements placed upon them e.g. pen faecal samples must be

collected from the herd, and there are penalty ‘Salmonella deductions’ reducing payments

to these producers. Approximately 3% of herds were in levels 2 or 3 during 2003.

For each county, separate K-functions at distances r were calculated for both case farms,

Kcase(r), and for all farms, Kpop(r), and the observed difference function D(r) was cal-

culated as follows:
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D(r) = Kcase(r)−Kpop(r) (4.2)

The null hypothesis was of no extra aggregation of cases over that of the population

corresponding to the cases being a random sample from the population. This permits

the use of randomisation tests which do not require the underlying point process to be

stationary (Diggle et al. 2007). Upper and lower permutation envelopes were produced

by 99 random re-labellings of the cases and population. Values of the observed difference

function were calculated for each permutation to investigate if there was any significant

deviation of the observed difference function from zero (Chetwynd & Diggle 1998).

Our second approach to determine if there were any second-order effects was to inves-

tigate the hypothesis that geographically close farms were more similar than those ge-

ographically distant. The relationship between the outcome response (the proportion of

pigs positive per farm) and the effect of herd size and farm was examined by fitting a

generalised linear mixed model as follows:

log(pij/1− pij) = β0 + β1xij + Ui (4.3)

In Equation 4.3 the logit of the observed probability of the jth pig from the ith farm being

seropositive, pij , was estimated as a function of a binary variable representing large herd

size category, and a random effect term, Ui, which was normally distributed with a mean

of zero and variance σ2.

The model was applied to all farms in Denmark that had easting and northing coordinates

supplied and were producing pigs for slaughter in 2003. The model was sequentially run

on all Danish pig producing counties as computational constraints prevented modelling

all farms at once.

Model parameters were estimated using a Bayesian approach, implemented in WinBUGS

version 1.4.1. Markov chain Monte Carlo (MCMC) methods were applied to the observed

data to simulate values from the joint conditional distributions of the unknown quantities.

We chose relatively non-informed prior and hyperprior distributions for all model param-

eters: for the fixed-effects we chose Normal(0, 0.000001) and for σ2 (the variance of

the farm random-effect term), we chose Gamma(0.1, 0.001). Three chains were run and
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convergence was judged to have occurred on the basis of visual inspection of time series

and Gelman-Rubin plots (Toft et al. 2007). The length of the chain was determined by

running sufficient iterations to ensure the Monte Carlo standard errors for each parameter

were less than 5% of the posterior standard deviation. A total of 30,000 iterations were

run with a burn in of 5000 iterations.

The farm level random effects from the model were plotted onto county map outlines

in an initial investigation into the presence or otherwise of second-order spatial effects.

Then omni-directional binned semivariograms were plotted. These illustrate the differ-

ence between pairs of data points (farm level random effects) within a given spatial lag

(the distance between pairs of farms) (Isaaks & Srivastava 1989). If there was spatial de-

pendency between farms we would expect an upward trend in the variogram. Conversely,

little or no spatial auto-correlation would produce an essentially flat variogram. Direc-

tional semivariograms at angle sizes of 0, 45, 90, and 135 degrees (tolerance of ±22.5

degrees) were plotted to investigate if the spatial structure was anisotropic.

The significance of the spatial auto-correlation was determined by permuting the data val-

ues on the spatial locations to produce simulation envelopes. As permuted data should not

exhibit spatial dependency any points lying outside these simulation envelopes indicate

significant spatial auto-correlation. The magnitude of the spatial auto-correlation was de-

termined by calculating the ratio of nugget to total semivariance. The nugget semivariance

is the point at which an extrapolated fitted line would cross the vertical axis. A nugget

to total semivariance ratio of less than 25% indicated strong spatial dependence, between

25 and 75% indicated moderate spatial dependence, and greater than 75% indicated weak

spatial dependence (Cambardella et al. 1994).

As we were interested in small-scale spatial dependency for both K function and semivar-

iogram analysis, the maximum distance investigated was ten kilometres.

4.4 Results

There were 10,166 farms sampled in 2003 in the Danish program with coordinate in-

formation. Figure 4.2 is the edge-corrected kernel smoothed map of the farm density.

Smoothed farm density was normally distributed with a mean of 0.20 and a standard
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deviation of 0.09 farms per square kilometre. The range of smoothed densities varied

through-out the country from zero in Copenhagen to 0.47 per square kilometre in Viborg.

Figure 4.1 shows the location of counties and the five areas used in the investigation of

inhomogeneous K-function estimation. Table 4.1 gives the area, number of farms, and

farm density for each of the five areas selected for inhomogeneous K-function analysis.

In total, the areas encompassed 8286 of the 10,166 farms sampled for 2003. Over all five

areas there was a wide range of farm densities from a median of 0.30 (range 0.03–0.38)

farms per square kilometre in North Jutland to 0.14 (range 0.01–0.30) in Zealand.

The inhomogeneous K-function analysis of all large square areas showed that the ob-

served pattern of farms was not aggregated. Figure 4.3 shows the inhomogeneous K-

function for the square area in the north of Jutland, all estimates lie within the simulation

envelopes that are produced under the null hypothesis of no aggregation.

The median nearest-neighbour distance was 0.77 km (IQR: 0.69; range: 0.01–11.56 km).

Figure 4.4 is a boxplot of these distances for four of the Danish counties.

Using the cut-off of greater than or equal to 40% meat-juice ELISA positive pigs in a herd

produced 272 case farms. The case incidence risk was 3%. Figure 4.5 shows the observed-

difference K-function between case and population farms for the counties of Nordjylland,

Arhus, Ringkobing, and Sonderjylland. Nordjylland, Ringkobing, and Arhus show ev-

idence of local spatial aggregation of case farms over that of all farms. The extent of

the aggregation was 1 km for Nordjylland and 4 km for Arhus. For Ringkobing it was

statistically significant at 6 km with points beyond the simulation envelope. Together,

these three counties held 40% of the Danish pig population in 2003. The results for the

remaining counties were similar to that of Sonderjylland, showing no evidence for local

spatial aggregation of case farms over that of all farms.

When the farm level random effects were plotted by their coordinates, there were no ap-

parent aggregations of similar sized random effects. This pattern was seen in all counties.

However, semivariograms for most large pig-producing counties showed evidence of spa-

tial dependency with an upward trend in the variogram at up to four kilometres distance.

Although most counties had all points lying within the simulation envelopes, the four

main pig producing counties, Nordjylland, Viborg, Arhus and Sonderjylland had points

below the envelopes indicating significant spatial auto-correlation from two to four kilo-

metres (Figure 4.6). Together, these four counties held 50% of the Danish pig population
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in 2003. The nugget to total semivariance ratios of these four counties was approximately

70%, indicating moderate spatial auto-correlation. The strength of the dependency was

proportional to slaughter pig density with the exception of Fyn. Variograms for the re-

maining pig producing counties are shown in Figure 4.7.

Table 4.2 shows the farm-level prevalence unadjusted for herd size, proportion of farms

in the large herd size category, odds ratios for large herd size, and the variance of the

random effects with 95% Bayesian credibility intervals for each county. The unadjusted

farm-level prevalence was highest at approximately 5% in the north of Jutland (Nordjyl-

land and Arhus) and lowest, at approximately 1%, in the east of Denmark (Bornholm and

Roskilde). All counties in Jutland and Fyn had 43% or more farms in the large herd size

category. Odds ratios for Nordjylland, Fyn, Ribe, Vejle, and Viborg were significant, sug-

gesting that pigs in these counties were at more risk of being seropositive if herd size was

large (greater than 2000 finishers produced annually) than if it was medium (between 200

and 2000 finishers produced annually). The variance of the random effects was greatest

in Sonderjylland, indicating that farms in this county showed the most variation in farm

level prevalence of Salmonella.



4.4 Results 97

Table 4.1: Area, number of farms, number of case farms, and
farm density for the five approximately square regions used in
K-function analysis, Denmark, 2003. Data originate from
the Danish swine Salmonella surveillance and control
programme.

Location Area Number of Farm density
(sq. km.) farms (farms per sq. km.)

Median1 Range1

North Jutland 2645 832 0.30 0.03–0.38
Central Jutland 15,960 4232 0.23 0.06–0.39
South Jutland 8712 1623 0.17 0.02–0.32
Fyn 3248 738 0.23 0.05–0.36
Zealand 5625 859 0.14 0.01–0.30

1 Calculated using the spatstat library (Baddeley & Turner 2005) in R.
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Table 4.2: Unadjusted farm-level Salmonella seroprevalence, odds ratios for large herd size, pro-
portion of farms in the large herd size category, and variance of the farm level random effects
for Danish pig producing counties in 2003. Data originate from the Danish swine Salmonella
surveillance and control programme.

County Prevalence % Odds Ratios Proportion farms in Variance random
(95% CI1) (95% CI1) large size category2 effects (95% CI1)

Nordjylland 5.93 (5.5–6.3) 1.154 (1.01–1.32) 0.4 1.3 (1.2–1.5)
Bornholm 1.0 (0.7–1.3) 0.92 (0.48–1.77) 0.18 2.3 (1.7–3.3)
Sonderjylland 3.3 (2.8–3.8) 1.04 (0.80–1.36) 0.5 3.7 (3.2–4.2)
Fyn 3.6 (3.3–4.0) 1.25 (1.03–1.52) 0.46 1.6 (1.4–1.8)
Viborg 3.5 (3.2–3.9) 1.27 (1.07–1.52) 0.44 2.0 (1.8–2.3)
Storstrom 1.4 (1.2–1.7) 1.33 (0.95–1.85) 0.32 2.0 (1.6–2.5)
Ribe 2.0 (1.6–2.5) 1.66 (1.14–2.41) 0.43 2.8 (2.3–3.5)
Ringkobing 3.5 (3.2–3.9) 0.92 (0.77–1.10) 0.48 2.0 (1.8–2.2)
Arhus 4.9 (4.5–5.4) 1.09 (0.91–1.30) 0.48 1.7 (1.5–1.9)
Roskilde 1.1 (0.7–1.7) 1.65 (0.75–3.75) 0.42 1.7 (1.0–3.2)
Vejle 2.9 (2.5–3.3) 1.34 (1.05–1.70) 0.48 2.2 (1.9–2.5)
Vestsjalland 1.8 (1.5–2.1) 1.01 (0.76–1.34) 0.3 1.8 (1.4–2.1)
Frederiksborg 1.5 (0.8–2.3) 0.87 (0.34–2.26) 0.26 1.6 (0.8–3.2)

1 95% Bayesian credible intervals.
2 had over 60 pigs tested in 2003 (equates to an annual slaughter of greater than 2000 finishers).
3 unadjusted farm-level prevalence.
4 Interpretation: In Nordjylland the odds of a pig being seropositive was increased by a factor of 1.15 (95%
Bayesian credible interval 1.01-1.32) if the pig was from a large (greater than 2000 finishers produced
annually) herd than if it was from a medium (between 200 and 2000 finishers produced annually) herd.



4.4 Results 99

Nordjylland

Viborg

Arhus
Ringkobing

Vejle
Ribe

Sonderjylland

Fyn

Frederiksborg

CopenhagenVestjalland

Roskilde

Storstrom

Bornholm

0 30 60 90 km

N

0 30 60 90

Figure 4.1: Map of Denmark showing location of counties and of the five areas used in the inves-
tigation of inhomogeneous K-function estimation.
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Figure 4.2: Kernel smoothed map showing variation in Salmonella meat-juice tested slaughter
herd densities across Denmark in 2003. Herds that produced less than 200 pigs for slaughter
annually were not tested. Units are farms per square kilometre. Data originate from the Danish
swine Salmonella surveillance and control programme.
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Figure 4.3: Inhomogeneous K-function for farms in north Jutland, 2003 (solid line). The dashed
lines represent the inhomogeneous K-function of 100 simulated realisations of a inhomogeneous
Poisson process. All points fall within the simulation envelope showing that the observed pattern
of farms was not aggregated. Data originate from the Danish swine Salmonella surveillance and
control programme.
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Figure 4.4: Boxplot of nearest neighbour distances for four Danish counties, 2003. Data originate
from the Danish swine Salmonella surveillance and control programme.
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Figure 4.5: Observed difference K-function between case and population farms for Nordjylland,
Arhus, Ringkobing and Sonderjylland. The circles represent the difference between the two K-
functions and the dot-dashed lines the simulation envelope based on 99 random re-labellings of
the cases and population. A farm was defined as a case if in 2003 the proportion of positive results
was greater than 40%. Data originate from the Danish swine Salmonella surveillance and control
programme.
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Figure 4.6: Spatial semivariograms fitted to the herd-size adjusted farm level random effects for
the counties of Arhus, Viborg, Sonderjylland and Nordjylland. The solid line represents the semi-
variance and the dot-dash lines the simulation envelopes obtained by permutation of the data on
the spatial locations. Data originate from the Danish swine Salmonella surveillance and control
programme.
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Figure 4.7: Spatial semivariograms fitted to the herd-size adjusted farm level random effects for
remaining pig producing counties. The solid line represents the semivariance and the dot-dash
lines the simulation envelopes obtained by permutation of the data on the spatial locations. Data
originate from the Danish swine Salmonella surveillance and control programme.
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4.5 Discussion

Slaughter-pig farm density showed large variation both at the country-wide and at the

local level in Denmark in 2003. The areas of highest farm density are in Viborg and

Nordjylland on the Jutland peninsula (0.47 farms per square kilometre); the lowest are

on the island of Zealand. The distribution pattern of farms followed a random inhomo-

geneous Poisson process, and although farms had near neighbours they did not spatially

aggregate. With regard to Salmonella seropositivity, we found consistent evidence for

spatial dependency at distances of approximately four kilometres. The strength of the

spatial dependency varied throughout the country being proportional to farm density. Our

findings were in concordance with those that have reported short distance between farms

(Berends et al. 1996), neighbouring an infected farm (Langvad et al. 2003) and pig density

(Fedorka-Cray et al. 2000) as potential risk factors for Salmonella infection in pigs.

This local spatial dependency adds to the current knowledge of the epidemiology of sub-

clinical Salmonella in Danish slaughter pig farms and can inform future strategies aimed

at optimising the control program. For example, more intensive sampling of farms within

a four kilometre radius of identified problem farms, such as those in level 2 or 3, on the Jut-

land peninsula is likely to capture more positive results, leading to interventions that may

result in enhanced food safety. Likewise, we propose the concept of reduced sampling

of farms that are near neighbours of ‘Salmonella-free’ farms. ‘Salmonella-free’ refers to

farms enrolled in the ‘risk based’ scheme which has been running since July 2005. This

scheme requires one sample per month to be taken from herds with a Salmonella index

level of nil and a minimum ten negative meat-juice samples in the last six months. To date,

50% of herds meet these criteria. Our study has identified that when spatial dependency is

present, such as on Jutland, there are farms that provide essentially redundant information

that could potentially be eliminated from the surveillance programme. Spatial sampling

optimization for groundwater monitoring has been achieved using the variogram (Ling et

al. 2003, Cameron & Hunter 2002), and we propose it may be used to optimise sampling

in the DSSCP. If spatial dependency is present in other disease programmes, both within

and beyond Denmark, then these strategies could be applied to these programmes. For ex-

ample, evidence for spatial dependency has been found between bulk milk tank titres for

Salmonella Typhimurium in Texas dairy herds (Graham et al. 2005) and between cattle
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herds in Denmark with regard to Salmonella Dublin infection (Ersbøll & Nielsen 2008).

Local farm density is a well recognised risk factor when investigating epidemics of an-

imal disease (Gibbens et al. 2001, Mintiens et al. 2003, Le Menach et al. 2005, Sellers

2006). The density of neighbouring herds was associated with so-called ‘neighbourhood

infections’ during the 1994 classical swine fever epidemic in Belgium (Mintiens et al.

2003), and ‘local’ spread accounted for 79% of means of spread in the first five months of

the 2001 foot-and-mouth disease epidemic in Great Britain (Gibbens et al. 2001). High

farm density implies that the distance between farms is short; in these examples a neigh-

bourhood was an area of one kilometre radius around an infected farm and local meant

within three kilometres of an infected place.

Although we are less familiar with farm density investigation in relation to a sub-clinical

endemic infection such as Salmonella in Danish finisher pig herds, there are compelling

reasons to investigate it. If Salmonella is not already present, or if a novel serovar is in

circulation, then pig herds are at risk from its introduction through many routes, the two

main ones being the introduction of infected pigs and contaminated feed (Lo Fo Wong et

al. 2002). The latter is thought to be of minor importance as there are stringent controls

on animal feed in Denmark; in 2005 the prevalence of Salmonella in animal feed was low.

There is much support for the theory that the introduction of infected pigs is a likely source

of Salmonella for Danish pig farms (Berends et al. 1996, Baggesen et al. 1996b, Stärk et

al. 2002, Lo Fo Wong et al. 2004a). It is common farming practice to purchase stock from

a geographically close supplier and this could lead to small-scale spatial dependency in

the data. Denser farming areas probably offer more choice of supplier. Lo Fo Wong et

al. (2004a) reported that the odds of seropositivity increased significantly if greater than

three suppliers were used.

The other ‘external’ sources of Salmonella such as visitors (Funk et al. 2001), vermin

(Steinbach & Kroell 1999, Fedorka-Cray et al. 2000), and sharing of contaminated equip-

ment (Langvad et al. 2003) can also be farm density dependent. Rodents and flies have

been found to carry Salmonella (Letellier et al. 1999, Barber et al. 2002), and the small

distances between many of the Danish pig farms are well within the range of the brown

rat (Endepols et al. 2003). In addition, airborne spread is possible at least over short

experimental distances (Proux et al. 2001, Oliveira et al. 2006). Our findings of spatial

dependency between farms with regard to Salmonella seropositivity, and aggregation of
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Salmonella case farms over that of all farms at distances of up to four kilometres could

be due to these locally-acting processes or the contagious nature of the disease. Temporal

studies would help elucidate this.

The inhomogeneous K-function is a relatively new technique. It has been used to high-

light significant differences in the spatial aggregation of vacuoles in mice brains infected

with different transmissible spongiform encephalopathies (Webster et al. 2006). The use

of the inhomogeneous K-function to summarise the spatial pattern of farms seems sensi-

ble. It allows for the spatial variation in intensity of the underlying point pattern which

is likely to occur in animal production systems and is clearly seen in pig farm density

in Denmark. By allowing for the non-uniform intensity of the spatial locations of farms,

it permits hypothesis testing for aggregation. Our results support the hypothesis that the

farm distribution pattern follows a random inhomogeneous Poisson process with no ag-

gregation beyond that.

Even though our data set was effectively a census of Danish finisher swine herds in 2003,

there was potential for selection, misclassification, and confounder bias in our study. Se-

lection bias may have occurred when we excluded 405 of 10,571 (4%) of farms because

coordinate information was unavailable. As our database was drawn from herds regis-

tered in March 2004 the 10,571 farms with available coordinate information were still in

production then and were likely to be different from the 405 that no longer were. However

this is likely to be of little importance as this group of farms represents only 4% of the

total.

Further selection bias may have occurred in selecting the five large areas for the inho-

mogeneous K-function analysis. These were approximately square and excluded some

areas of pig farms (notably Bornholm) and restricted the sites for consideration to those

on large land masses. Nonetheless we believe the coverage of farms within the five areas

was suitably representative of all pig farms tested in 2003; 82% were included and the

case incidence risk (3%) was the same as that for all farms.

The use of the farm house locations over that of the actual polygonal boundaries of the

farm may potentially lead to an over-estimation of the distance between farms (misclas-

sification bias). This would be of much significance in extensive sheep or beef cattle

farming systems were farm sizes are large. However it is likely to be of little consequence

in intensive production systems such as the Danish pig farms we are investigating here.
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The adjustment for herd-size in the geostatistical model was made as a number of ear-

lier Danish studies (Baggesen et al. 1996b, Carstensen & Christensen 1998) and a recent

Canadian one (Farzan et al. 2006) have reported large herd size as a risk factor for in-

creased seropositivity in slaughter pig herds. However, later studies in Denmark (Stege

et al. 2001) and Europe-wide (Lo Fo Wong et al. 2004a) showed no association, and a

Dutch study (van der Wolf et al. 2001) showed that large herd size was protective. In

this study, the effect of herd size was not investigated per se, but adjusting for herd size

was undertaken in the context of its effect on spatial dependency. The odds ratios re-

ported suggest increased risk in some counties as herd size increases. The reason for this

may be that there are local practices, such as more movements of pigs between farms or

higher within-farm pig density, which make large herd size more of a risk for increased

Salmonella seroprevalence in these counties. Nevertheless, these results must be inter-

preted with caution as the effect of herd size is likely confounded by other covariates,

such as feeding and biosecurity practices that we have no information on. The next chap-

ter incorporates more covariates for a 1995 subset of the data to address this issue.

Distance can be defined in different ways; Euclidean, time of travelling, or in terms of

social networks (Haining 2003). Ideally, all three definitions should be considered in the

spatial epidemiological investigations and we should not constrain ‘locality’ to only imply

spatial proximity. This study focussed on Euclidean distance between farm houses, but

future studies in relation to social networks would appear to be a logical next step. This

could be particularly helpful in tracing the dissemination of infected pigs.

We have outlined an approach to combine geo-referenced farm location information and

routinely collected control programme data using techniques from spatial point pattern

and geostatistical analysis. This has extended the current knowledge of the epidemiology

of sub-clinical Salmonella in Danish slaughter pig farms. Furthermore we have demon-

strated how our approach has the potential to optimise sampling strategies while main-

taining consumer confidence in food safety. These techniques could be readily applied to

data from other programmes in different countries.
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Towards incorporating spatial risk analysis for

Salmonella seropositivity into the Danish swine

Salmonella surveillance and control programme

Benschop, J., Stevenson, M., Dahl, J., French, N. (2008) Towards incorporating spatial risk analysis
for Salmonella seropositivity into the Danish swine surveillance programme. Preventive Veterinary
Medicine 83:347-359

5.1 Abstract

An increased incidence of pork-related human salmonellosis in Denmark led to the devel-

opment of a national control programme for Salmonella in Danish swine herds in 1993.

The aim of the programme has been met and now the issue of cost-effectiveness is receiv-

ing greater attention. An appropriate way to address this is to bring a risk-based focus to

the programme. We describe a practical approach to risk-based surveillance through spa-

tial risk assessment using serological and questionnaire data from 2280 herds in 1995. A

mixed effects logistic regression model was fitted and both first- and second-order spatial

properties of the random effects were investigated. We identified wet-feeding (OR: 0.64;

95% CI: 0.54-0.75) and SPF health status (OR: 0.65; 95% CI: 0.52-0.81) as protective

factors for Salmonella seropositivity. Purchasing feed (OR: 1.81; 95% CI: 1.61-2.04) was

a risk factor. The west of the study area generally, and the north of Jutland in particular,

experienced the greatest disease risk after controlling for the covariates. There was some

evidence for spatial dependency between farms at distances of 6 km (95% CI: 2-35 km)
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on the Jutland peninsula. We conclude that when farm location details are analysed in

conjunction with routinely recorded surveillance information (such as that collected by

the Danish swine Salmonella surveillance and control programme) and targeted indus-

try surveys (such as those conducted by slaughterhouse co-operatives), our knowledge of

the behaviour of disease in animal populations is enhanced providing a more informed

framework for designing efficient, risk-based surveillance strategies.

5.2 Introduction

The Danish swine Salmonella surveillance and control programme was initiated in 1993

by the Danish Ministry of Food, Agriculture and Fisheries in response to increasing num-

bers of human cases of salmonellosis attributable to pork consumption (Alban et al. 2002,

Mousing et al. 1997). This on-going programme is based on the serological surveillance

of all herds that produce more than 200 pigs per annum and their subsequent assign-

ment into one of three levels of a Serological Salmonella Index (SSI). SSI levels 1 to

3 represent low, medium and high levels of Salmonella in the herds, respectively, with

level 2 and 3 herds paying penalties and undergoing on-farm investigations. The pro-

gramme’s objective is to lower the prevalence of Salmonella so that domestically pro-

duced pork is no longer an important source of salmonellosis in humans (Mousing et al.

1997). Since 2001 the prevalence of Salmonella in Danish pork (monitored at the slaugh-

terhouse) has reduced from 1.5% to 1% of carcass swab samples taken. The number of

cases of salmonellosis in humans in Denmark attributable to pork consumption decreased

from 1444 in 1993 to 142 in 2004 (Nielsen et al. 2001, Ministry of Family and Consumer

Affairs 2005). An in-depth discussion of the programme is provided by Hald et al. (2005).

Since 2004, the cost-effectiveness of Salmonella surveillance has received greater atten-

tion, with both industry and regulatory authorities wanting to achieve the greatest reduc-

tion in Salmonella for their financial investment (Ministry of Family and Consumer Af-

fairs 2005). A simulation study using data from 2001 to 2002 of the Danish programme

found that the number of samples taken from low prevalence herds could be reduced

without jeopardising food safety (Enoe et al. 2003). This led to the development of a

risk-based approach to Salmonella surveillance implemented in mid-2005 (Ministry of

Family and Consumer Affairs 2005). Herds with no positive samples from the previous
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three months testing are sampled once per month instead of the previous random sampling

based on herd size. For those herds under the risk-based scheme this represents a four-

fold reduction in the number of samples taken as the prior average number of samples per

herd per month was 4.3 (Enoe et al. 2003).

A recent discussion paper on risk-based surveillance in veterinary medicine and veteri-

nary public health states that although the risk-based concept is generally accepted, its

practical basis is undeveloped (Stärk et al. 2006). In this paper we describe a practical

approach to risk-based surveillance in the use of spatial risk assessment to direct surveil-

lance activities. We use Danish Salmonella surveillance data from 1st October 1995 to

31st December 1995. A previous statistical analysis of a subset of these surveillance

data reported a pig-level seroprevalence of 4.3% and found that the risk of seropositivity

increased with increasing herd size, with dry- versus wet-feeding, and with purchased

versus home-mixed feed (Dahl 1997). We refine and extend this analysis to investigate

unaccounted for variation in Salmonella risk and propose that our findings have the po-

tential to inform surveillance strategy. Many European studies have investigated risk

factors such as herd size, feed type, and hygiene, for salmonellosis in pig herds (Dahl

1997, van der Wolf et al. 2001, Belœil et al. 2004, Nollet et al. 2004, Lo Fo Wong et al.

2004a). We and others have reported on the variation in spatial patterns of seroprevalence

of Salmonella in Denmark (Mousing et al. 1997, Carstensen & Christensen 1998, Ben-

schop et al. 2008a). However, disease risk is affected by factors which themselves exhibit

spatial variation, such as vector or feed abundance. Thus, spatial variation is generally of

interest if it persists after accounting for known risk factors.

Our objectives are to target limited investigative resources using a risk-based approach;

firstly, at farms with risk factors associated with the presence of disease, and secondly, at

farms in those areas where there is an excess of Salmonella risk beyond that explained by

those identified risk factors.
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5.3 Materials and methods

5.3.1 Data description and handling

The data comprised 45,103 individual pig meat-juice serology results obtained from 1st

October 1995 until 31st December 1995 from 3784 herds in the Danish swine Salmonella

surveillance and control programme (Mousing et al. 1997). These data were linked,

through a unique herd identifier, to responses from a processor co-operatives question-

naire collected during the same time period. The questionnaire was mailed to all suppliers

(approximately 10,000) of two of the three processor co-operatives active at the time. Its

intent was to gather information on suppliers for an industry database. Those herds in the

west of Jutland that supplied the third slaughterhouse co-operative (approximately 6000)

were excluded (Figure 5.1).

Questionnaire responses provided details of herd demography and details of herd man-

agement, including the type of feed offered, specific pathogen free health status, floor

type, feed source, and whether or not pigs had regular access to straw throughout the

growing period. The original three questionnaire categories for feed type (dry, liquid, or

both) and feed supply (purchased, home-mixed, or both) were collapsed into a two-level

response as the both category for each represented less than 2% of farms. The original

seven questionnaire categories for floor type were combined into a two-level response as

there was little variability among the seven categories. The remaining categorical vari-

ables (health status and access to straw) were left in their original format and herd size

was analysed as a continuous variable. Table 5.1 shows the number of herds in each level

of the categorical variables.

5.3.2 Risk factor analysis

A complete case analysis comprising a subset of 2280 of the 3784 farms was performed.

This subset of 2280 farms contributed 37,825 of the 45,103 serology results (83%).

A binary response variable at the pig level was created from the serology data. If a meat-

juice serology result had an optical density percentage of greater than 20 the sample was

deemed positive; this is the cut-off currently used in the Danish swine Salmonella surveil-

lance and control programme (Alban et al. 2002).
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The continuous variable herd size was checked to see if it was linear in its log odds

(Hosmer & Lemeshow 1989). Polynomials of herd size and biologically plausible two-

way interaction terms between the main-effect variables were considered for inclusion.

We developed a logistic regression model using a Bayesian approach to identify factors

associated with a meat-juice sample being Salmonella positive.

log(pij/1− pij) = β0 +
6∑

k=1

βkxik + Ui (5.1)

In Equation 5.1 the logit of the observed probability of the jth pig from the ith farm being

seropositive, pij , was modelled as a function of k farm-level explanatory variables and a

random effect term, Ui, which was normally distributed with a mean of zero and variance

σ2.

Markov chain Monte Carlo methods were applied to the data to simulate values from the

joint conditional distributions of the unknown quantities using WinBUGS version 1.4.1

(Gilks et al. 1994). Initially, we stipulated data augmentation priors for the intercept term

and for the following covariates: feed type, feed supply, and health status (Table 5.2).

These were based on subjective information about the likelihood ascribed to various com-

binations of covariate values (Congdon 2001). For example, we assumed the proportion

of positive pigs in a typical herd to be most likely 0.10 with 95% certainty that it would

be less than 0.25. This information was then expressed as a conjugate prior beta density

(Congdon 2001). In this context, the term typical means a herd with mean herd size and

all categorical covariates set to the reference category: dry feed type; home-mixed feed

supply; conventional health status, with access to straw, and slatted flooring. Relatively

non-informative normally distributed priors centred at zero and with a variance of 1 were

used for the following covariates: herd size, access to straw and slatted flooring. A non-

informative gamma distribution (shape parameter of 0.1 and inverse scale parameter of

0.001) was used for the variance of the random farm effect term.

Sensitivity to the covariate priors was evaluated by re-running the models with non-

informative normally distributed priors centred at zero and with a large variance (10,000).

Three chains were run and convergence was judged to have occurred on the basis of vi-

sual inspection of time series and Gelman-Rubin plots (Toft et al. 2007). The length of the

chain was determined by running sufficient iterations to ensure the Monte Carlo standard
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errors for each parameter were less than 5% of the posterior standard deviation. A total

of 40,000 iterations were run with a burn in of 5000 iterations.

5.3.3 Spatial analysis

We investigated both first- and second-order spatial patterns in the data by evaluating if

farms with similar values of random effects tended to be closer together in space. The

term first-order relates to the large-scale trend in the pattern, the variation in the mean

value of a process in space. Second-order patterns are local or small-scale effects that

result from the spatial correlation of the process.

Of the 2280 complete-case farms 1820 (80%) had recorded easting and northing coordi-

nates. The remaining 460 farms had easting and northing coordinates randomly drawn

from within the boundaries of their respective communes. Communes were the smallest

spatial area available to the authors and in 1995 there were 255 pig-producing communes

ranging in area from 20 to 58 km2. This was an appropriate means for dealing with

this type of missing data for two reasons: the size of those communes that produce pigs

are small relative to the entire land area of Denmark (43,000 km2); and we use these

within-commune randomly generated coordinates to make inferences only at the broad

(first-order) spatial scale.

An edge-corrected Gaussian kernel estimate of the intensity function of the random farm

effects was produced to visualise the first-order spatial pattern. Kernel estimation is a

mathematical function that can be applied to point data (such as farm locations) to smooth

it (Bowman & Azzalini 1997). It is particularly useful when the farm density is so high

it is not possible to obtain a visual impression of the point pattern. The estimate was

produced by weighting the point locations of farms by the random farm effects (Baddeley

& Turner 2005). The initial choice of bandwidth of 21 km was made using the normal

optimal method (Bowman & Azzalini 1997). However, for the purpose of investigating

the spatial variation the pattern appeared over-smoothed, so a bandwidth of 7 km was

iteratively selected. To test the sensitivity of the result to farms given randomly selected

coordinates, two kernel estimation surfaces were produced: (1) for all 2280 complete-

case farms and (2) for those 1820 farms with recorded coordinate information. We tested

the null hypothesis that the proportion of pigs positive was the same for farms both with
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(n = 460) and without (n = 1820) missing coordinate information (Newcombe 1998).

The second-order spatial pattern was evaluated by plotting semivariograms of the ran-

dom farm effects produced for the subset of 1820 farms that had recorded easting and

northing coordinates (Isaaks & Srivastava 1989). Semivariograms were produced for the

four geographically distinct regions of Denmark: the Jutland peninsula, and the islands

of Funen, Zealand, and Bornholm (Figure 5.1). The semivariogram plots the semivari-

ance as a function of the distance between pairs of farms (Isaaks & Srivastava 1989).

If farms with more similar random effects were closer together in space than those with

less similar random effects, we would expect that the semivariance would increase as a

function of distance to reach an asymptote. This indicates the range of influence, the dis-

tance at which random farm effects are no longer correlated. To estimate this distance,

we visually appraised the semivariograms and produced envelopes for each variograms

based on 999 Monte Carlo permutations of the data. Here, the random farm effects were

randomly allocated to each farm location and, as permuted data should not exhibit spa-

tial dependency, any points lying outside these simulation envelopes indicated significant

spatial auto-correlation. Directional semivariograms at angles of 0, 45, 90, and 135◦ (with

a tolerance of±22.5◦) were plotted to determine if the spatial distribution of random farm

effects varied with direction.

The within-farm or locally erratic component of the total variance was estimated from

the semivariograms by comparing the nugget variance to the total variance (Cambardella

et al. 1994). The nugget variance is the point at which an extrapolated fitted line would

cross the vertical axis and is a measure of purely random variation (Oliver & Kharyat

1999). If the proportion of nugget to total variance is high, there is evidence for a strong

within-farm component to the variance.

Having identified spatial correlation in the variogram from the Jutland peninsula, we fur-

ther analysed data from that region. We fitted a generalised linear spatial model to the

Jutland data by extending the model shown in Equation 5.1 with the addition of a term

S(yi) (Diggle et al. 2002b). S(yi) is a zero mean normal process with a variance ν and

a Matérn correlation function ρ(d,Φ, κ) (Matérn 1960). Here Φ is the range parameter,

which controls the rate at which correlation in random farm effects approach zero with

increasing distance d, and κ controls the smoothness of the decrease in auto-correlation

as a function of distance. This model allows formal estimation of the range of spatial
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correlation and a measure of the uncertainty about it.

The computer programme R (R Development Core Team 2007) was used for data han-

dling and management. Spatial analyses were performed in R using the contributed pack-

ages spatstat (Baddeley & Turner 2005) and geoRglm (Christensen & Ribeiro Jr. 2002).

5.4 Results

The response rate to the mailed questionnaire was approximately 37%. For complete case

data the median herd size was 400 pen placers for slaughter pigs (IQR: 250–700), the

median number of pigs sampled per herd was 48 (IQR: 35–63), and the proportion of pigs

positive was 10.1%. Table 5.1 shows the distribution of categorical variables for complete

case farms stratified by positivity.

The variable herd size was linear in its log odds and no interaction terms were included

in the model. The results from the complete case analysis (n = 2280) are shown in Table

5.3. The practice of purchasing feed increased the odds of a pig being Salmonella positive

by a factor of 1.81 (95% CI 1.61–2.04). SPF herd status and the practice of wet-feeding

decreased the odds of a pig being Salmonella positive by a factor of 0.65 (95% CI 0.52-

0.81) and 0.64 (95% CI 0.54-0.75) respectively. There was no difference in the monitored

parameters when the covariate priors were varied.

The edge-corrected kernel estimate of the intensity function of the random farm effects is

shown in Figure 5.2. Throughout the whole study area there were more positive random

effects associated with farms on the Jutland peninsula and on Funen (in the west), com-

pared with those on Zealand and Bornholm (in the east). The upper fifth (solid line) and

twenty-fifth (dashed line) percentiles have been superimposed on the map to highlight

areas with the most positivity. The largest area was in the north of Jutland and smaller

pockets were found in centre and south east of the peninsula, and in the east of Funen.

There was no visible difference between the first-order pattern between the two kernel es-

timation surfaces (including and excluding farms with randomly generated coordinates).

The proportion of pigs positive was 9.5% for farms with (n = 460) missing coordinates

and 10.2% for farms with recorded coordinates (n = 1820). The 95% confidence interval

for the difference was 0.2-1.1% and the associated p-value was 0.01. This indicates that

the null hypothesis of no difference between these two groups could be rejected.
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Semivariograms of the random farm effects are shown in Figure 5.3. For all regions, all

points are within the simulation envelopes indicating no significant spatial dependency,

and the plots for Funen, Zealand and Bornholm are essentially flat. However, the plot

for the Jutland peninsula clearly shows an upward trend in the variogram indicating some

spatial dependency in the data for this region at distances to approximately 4-8 km. The

within-farm component of the variance accounted for approximately 95% (on the islands)

to 50% (on Jutland) of the total variance. The generalised linear spatial model fitted to

Jutland data estimated the range parameter, Φ, at 6 km with a 95% credible interval (CI)

of 2-35 km.
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Table 5.2: Informed priors used for fixed effects in modelling
factors associated with Salmonella seropositivity

Variable Prior distribution
Intercept beta(3.44, 22.99)
Feed type beta(2.95, 26.96)
Feed supply beta(5.04, 23.90)
Health status: SPF beta(2.88, 36.70)
Health status: SPF (with Mycoplasma) beta(2.45, 23.78)
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Table 5.3: Factors associated with Salmonella seropositivity in 37,825 meat-juice ELISA results,
taken from 2280 Danish finisher pig herds (complete-cases), from 1st October to 31st December
1995. Data originate from the Danish swine Salmonella surveillance and control programme.

Variable Level Posterior Mean Posterior SD MC error OR(95% CI)

Herd size1 continuous 0.03 0.01 <0.01 1.04 (1.02–1.05)

Feed type wet or mixed -0.45 0.08 <0.01 0.64 (0.54–0.75)2

dry reference

Feed supply purchased 0.59 0.06 <0.01 1.81 (1.61–2.04)
home mixed or both reference

Health status SPF -0.43 0.11 <0.01 0.65 (0.52–0.81)
conventional reference

Model Statistics: Intercept, −2.89; DIC, 9797.91.
SD: Standard deviation; CI: Bayesian credible interval; MC error: Monte Carlo standard error of the
posterior mean; OR: odds ratio
1 Number of pen places for finishers (rescaled by subtracting the mean, then dividing by 100).
2 Interpretation: Once adjusted for herd size, feed supply, and health status, a pig on a farm using
wet-feeding had 0.64 times the odds of being Salmonella positive compared with a pig on a dry-feeding
farm (95% CI: 0.54-0.75).
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Figure 5.1: Map of Denmark showing Jutland peninsula and main islands. Study herd locations
are shown as points. Herds in the area to the west of the dashed line were not surveyed.
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Figure 5.2: Edge-corrected kernel estimate of the intensity function of the random farm effects
with the upper fifth percentile (solid line) and twenty-fifth percentiles (dashed line) superimposed.
Herds in areas in the west of Jutland were not surveyed. Data originate from the Danish swine
Salmonella surveillance and control programme.
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Figure 5.3: Spatial semivariograms fitted to random farm effects from farms in Jutland, Funen,
Zealand and Bornholm. The dotted lines represent the Monte Carlo simulation envelopes. Data
originate from the Danish swine Salmonella surveillance and control programme.
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5.5 Discussion

Our analyses show that the use of purchased feed was positively associated with Salmonella

seropositivity in this population. SPF herd status and wet-feeding were negatively associ-

ated with Salmonella seropositivity. The random farm effects showed a strong first-order

spatial pattern with identified areas of unexplained risk for Salmonella seropositivity in

the north of Jutland, and in the west of the study area. Variogram analyses of the farm ran-

dom effects showed evidence of local spatial dependency between farms on the Jutland

peninsula but not between those on the islands. However, throughout the whole study

area there was a strong within-farm component to the variance, indicating unexplained

variation beyond that accounted for by the risk factors and/or spatial dependency.

A previous analysis of a subset of these data identified similar risks for Salmonella seropos-

itivity to those reported here (Dahl 1997). Many other studies have identified a positive

association between the practice of dry-feeding (van der Wolf et al. 2001, Belœil et al.

2004, Farzan et al. 2006) and Salmonella risk.

It is important to explain further our finding with regard to the practice of purchasing feed

being positively associated with Salmonella seropositivity. In Denmark pig feed has been

heat treated and monitored for Salmonella since 1993 (Christensen 2003). The prevalence

of Salmonella in feed has been low (Ministry of Family and Consumer Affairs 2006) and

the main serovar found in Danish pigs (Salmonella typhimurium) has not been found

in Danish produced feed (Baggesen et al. 1996a). However, purchased feed is almost

exclusively produced from finely ground meal which is sold as pellets, and there is much

evidence that it is these physical characteristics of the feed that constitute the Salmonella

risk (Bach Knudsen 2001, Lo Fo Wong et al. 2004a, Mikkelsen et al. 2004, Hedemann et

al. 2005) rather than the fact that feed is purchased per se.

We have used industry-derived questionnaire results and routinely collected national con-

trol programme data to quantify farm-level risk factors for disease and we propose that the

methodology reported here might be used to further refine the conduct of surveillance for

salmonellosis in the Danish pig industry. For example, farms with management practices

associated with a higher than expected prevalence of Salmonella (such as dry-feeding)

might be preferentially sampled over those with management practices associated with a

lower prevalence of disease (such as wet-feeding). However, the operation of such a sam-
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pling strategy will require more data than is currently routinely collected. An analysis of

the potential benefits gained through such targeting would need to be weighed up against

the costs of both implementing the sampling strategy, and gathering the necessary data.

The first-order spatial pattern evident in the random farm effects might also inform sam-

pling. Data on the location of farms is routinely collected so the operational cost of this

sampling strategy would be entirely in the implementation. The positive-sign random

effects evident in the north of Jutland, and in pockets on the peninsula and in Funen, indi-

cate disease risk that was present after controlling for the farm-level covariates included

in the model. This is suggestive of unmeasured influences at either the farm-level, such as

biosecurity and hygiene (Belœil et al. 2004), and/or at a regional level, such as a common

contaminated pig supply or the effect of a farm adviser. Identifying the reasons for this

unaccounted for level of disease via investigative effort targeted specifically at the region

of interest should allow for more efficient use of surveillance resources.

Our finding of spatial dependency with regard to Salmonella seropositivity at distances

of 6 km (95% CI: 2–35 km) between farms on the Jutland peninsula has the potential

to inform surveillance. We have demonstrated that the random effects associated with

each study farm on Jutland are correlated to an extent determined by the distance between

them. This may allow further targeting of investigative effort, for example, preferentially

sampling of farms within a 6 km radius of an identified problem farm. Nevertheless,

determining what constitutes a problem herd is not straightforward: herds categorised at

SSI level 3 (representing high levels of Salmonella risk), are an obvious choice. However,

due to the dynamic nature of the current system herds may only be in this category for as

little as one month. Capturing this changing problem herd status will be challenging.

The strong within-farm component to the variance also has important ramifications for

surveillance. This raises issues for our targeted surveillance proposal as there is variation

unexplained by the risk factors and spatial dependency. Investigating what determines

this variation over and above that we have already accounted for is an important area for

further study. Possible other determinants of risk include both those associated with the

introduction of Salmonella, such as the number of weaner suppliers, and those associated

with the spread of Salmonella through a herd, such as pen construction (Lo Fo Wong et

al. 2004a).

Our use of incomplete data from both industry and control programme sources has po-
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tentially introduced bias into our results. In the first instance we were aware of selection

bias as we had questionnaire information from suppliers of only two of the three Danish

processor co-operatives active at the time. The area excluded from the study (the west

of Jutland), includes a large number of pig producers. This reduced our effective eligible

population from approximately 16,000 to 10,000 farms. Secondly, the response rate to

the mailed questionnaire was 37%. Poor response rates to questionnaires might introduce

bias if there are systematic differences between those that respond and those that do not.

Other sources of bias included those related to misclassification when we collapsed the

number of categories for floor type, feed type, and feed source for the purposes of the

analysis. Because this was non-differential, it would only bias our results towards the null

(Sackett 1979).

Further selection bias occurred during our investigation into second-order effects. Be-

cause the exact distance between pairs of farms up to 10 km apart was required, we only

included farms with exact coordinate information available. The 1820 complete-case

farms for which we had this information were still in production in 2004 and were likely

to be different from the 460 farms that were no longer in production. We found that the

population of pigs from farms no longer in production were significantly different from

those that were: they were from smaller herds and had a lower proportion of seropositiv-

ity.

We acknowledge that our use of only complete-cases of data is a limitation of this study

as in most situations this will introduce bias (Donders et al. 2006). Even though producers

were unaware that their questionnaire responses were to be linked to Salmonella serology

in their herds, we have evidence from our analysis that the non-response bias was differ-

ential. Generally the population of pigs from farms with missing covariate information

had a higher proportion of seropositivity than those where the covariate information was

complete. However, there were exceptions, e.g. pigs from farms with missing health sta-

tus information showed the opposite effect. It is, therefore, difficult to speculate as to the

direction and the magnitude of the bias introduced by complete case analysis.

While we do not present the results in this chapter, we advise that we have performed sen-

sitivity analyses by comparing our results using imputed data (all 3784 farms) with those

from complete-case analysis and found no significant difference between the two. More

information about this can be seen in Appendix A. A detailed explanation of the handling
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of these missing data with an extension into more sophisticated imputation techniques is

beyond the scope of this study but has potential for future work.

The use of targeted surveillance is extensive in the veterinary world as a tool to make best

use of limited resources and there are many examples of on-going systems, such as fallen

stock for bovine spongiform encephalopathy in Europe (Giovannini et al. 2005), previous

infection history for tuberculosis in cattle in Australia (Radunz 2006) and importation

history for brucellosis in cattle in the United Kingdom (Stack & Perrett 2005). A recent

discussion paper on risk-based surveillance in veterinary medicine and veterinary pub-

lic health states that although the risk-based concept is generally accepted, its practical

basis is undeveloped (Stärk et al. 2006). We demonstrate a practical basis for risk-based

surveillance by combining and analysing information from different sources (in this case a

national disease surveillance programme and industry-derived survey data), and including

farm location information to enhance our knowledge of the behaviour of disease in animal

populations, and provide a more informed framework for designing efficient surveillance

strategies.

5.6 Conclusion

In this population, the use of purchased feed for pigs was positively associated with

Salmonella seropositivity, whilst SPF herd status and wet-feeding were negatively as-

sociated. Once adjusting for these covariates we identified pockets of unexplained risk

for Salmonella seropositivity, the largest being in the north of Jutland. We found spatial

dependency with regard to Salmonella seropositivity at distances of 6 km between farms.

We propose that there is potential to exploit these spatial and risk factor findings for tar-

geting surveillance. However, there was much unexplained non-spatial variation between

farms and investigating what determines both the pockets of risk and the farm-level vari-

ation is an important area for further study. We conclude that by combining farm location

details, routinely recorded surveillance information, and industry surveys, we have put

the concept of risk-based surveillance into practice and further identified another valuable

use for geo-referenced data in veterinary epidemiology.
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6.1 Abstract

The control programme for Salmonella infection in Danish swine has reduced the number

of human cases attributable to pork consumption and the focus is now on cost-effectiveness.

We applied time-series and longitudinal analyses to data collected between January 1995

and May 2005 to identify if there were predictable periods of risk that could inform sam-

pling strategy; to investigate the potential for forecasting for early aberration detection;

and to explore temporal redundancy within the sampling strategy. There was no evidence

of seasonality hence no justification to change to targeted sampling at high-risk periods.

The forecast of seropositivity made using an ARIMA (0, 1, 2) model had a root-mean-

squared percentage error criterion of 8.4%, indicating that accurate forecasts are possible.

The lorelogram identified temporal redundancy at up to 10 weeks, suggesting little value

in sampling more frequently than this on the average farm. These findings have practical

applications for both farm-level sampling strategy and national-level aberration detection

which potentially could result in a more cost-effective surveillance strategy.
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6.2 Introduction

In industrialised countries, most cases of human salmonellosis are foodborne, and pork

has been implicated as an important source (Nielsen & Wegener 1997, Hald et al. 2004).

In Denmark, the estimated number of cases attributed to domestically produced pork has

decreased substantially from 22 cases per 100,000 head of population in 1993 to 2.6 cases

per 100,000 in 2004 (Ministry of Family and Consumer Affairs 2005). This decrease

has been largely attributed to the Danish swine Salmonella surveillance and control pro-

gramme (DSSCP) which was established by the Danish Ministry of Food, Agriculture

and Fisheries in 1993.

Finisher pigs are known to carry Salmonella and it is these that can contaminate the food

product, which is then capable of infecting humans (Botteldoorn et al. 2003). Carriage oc-

curs in the gut, lymph nodes, and tonsils. Bacteria may directly or indirectly contaminate

the carcass during evisceration and other processes that occur in the slaughterhouse such

as scalding or cutting (Pearce et al. 2004). In addition, there is accumulating evidence

to suggest that pigs may become infected during transport to slaughter, or while waiting

in lairage (Rostagno et al. 2003). However, in Denmark 95% of pigs have less than 3

hours of transport and lairage 1 (Alban & Stärk 2005), so the chance of infection occur-

ring during these processes is likely to be minimal. Therefore, the predominant source

of Salmonella that contaminates the carcasses and presents a risk to human health will

be the farm of origin. What is unknown about the farm-level risk of infection is whether

or not it is constant over time or fluctuates on a seasonal basis. Although this issue has

been addressed by other authors (Carstensen & Christensen 1998, Christensen & Rudemo

1998, Hald & Andersen 2001) the follow-up period for each of these studies was short.

In this paper our first aim was to apply time-series methods to data collected by the

DSSCP over a ten-year period and to describe the key temporal features of trend, cyclic-

ity, and autocorrelation. Subsequent to the successful reduction in pork-attributed hu-

man cases, attention is now focused on the cost-effectiveness of Salmonella surveillance

(Anonymous 2006) and an understanding of the temporal pattern of Salmonella sero-

prevalence in pigs can partially address this need. If identified predictable periods of

high risk are found then a risk-based approach would involve sampling more frequently

1http://www.danskeslagterier.dk
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at these times and less frequently at periods of less risk (Stärk et al. 2006).

Our second aim was to evaluate the predictability of the seroprevalence time series with

a view to using the data for forecasting. By comparing forecasts with the data that was

actually observed there is the possibility of being able to readily detect aberrant behaviour.

The identification of an aberration in national herd seroprevalence could be used as a

screening test to alert authorities to emerging problems.

Our third aim is to address the question of temporal redundancy within the sampling

strategy. In this study, temporal redundancy encompasses the situation where farms are

sampled so often that the dependency between these repeated samples could deem some

testing unnecessary. We use the lorelogram, a technique related to that previously used in

animal tracking (Salvatori et al. 1999), environmental radiometry (Dowdall et al. 2003),

and ground-water monitoring (Cameron & Hunter 2002), to suggest an optimised sam-

pling strategy for the DSSCP.

6.3 Materials and methods

6.3.1 The Danish swine Salmonella surveillance and control programme

The ongoing DSSCP has been based on the testing of meat-juice samples from finisher

pig herds since 1995. The current sampling strategy has been in place since August 2001

and includes all herds with an annual kill of >200 slaughter pigs (representing 99% of

all finisher herds in Denmark). The number of animals sampled at slaughter depends on

herd size, with 60, 75, or 100 pigs sampled per herd per year. All samples are analysed at

the Danish Institute for Food and Veterinary Research using the Danish mix-ELISA. This

test can detect O-antigens from at least 93% of all serovars known to be present in Danish

pigs (Mousing et al. 1997). On the basis of testing, herds receive a monthly serological

Salmonella index which is based on a weighted average of the results from the previous 3

months. The levels of index are low (index 1–39); medium (index 40-69); and high (index

≥70) (Alban et al. 2002). In addition, testing is carried out in feed mills, multiplying and

breeding herds, slaughter plants, and on fresh pork.

There have been a number of changes to the DSSCP since its inception. These include

penalising farmers supplying pigs with an unacceptable level of serological Salmonella
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index, lowering the positive cut-off for the Danish mix-ELISA, and introducing a fourth

level of index (nil) where low risk herds are sampled less frequently (Anonymous 2006).

The latter has been in place since July 2005.

6.3.2 The data

Two extracts of data were obtained from the central database of the DSSCP. These com-

prised the results of meat-juice testing conducted from 1st January 1995 to 31st May 2005

inclusive. The first data extract provided for each farm a unique identifier and details of

farm location. The second data extract provided details of the 6,992,082 carcasses tested

over the 10-year study period. Details included the unique farm identifier, the date of

sampling, and the result of the Danish-mix ELISA. For these analyses an ELISA optical

density percentage (OD%) >20 was classified as positive. This is equivalent to an ad-

justed OD% of >10: the cut-off for positivity that has been used by the DSSCP since 1st

August 2001 (Alban et al. 2002).

For the period 8th May 2002 until 30th September 2004 inclusive, herd-size data were ex-

tracted from the Danish Central Husbandry Register and health status data were extracted

from the Danish Specific Pathogen Free (SPF) Company.

6.3.3 Statistical analysis

Time-series analysis

We used time-series methods to describe the components of trend, cyclicity, and autocor-

relation in the data. We reasoned that the exploration of trends in the data would facilitate

the evaluation of the control programme, and that identification of seasonality or other

temporal autocorrelation has the potential to inform surveillance.

To describe the trend, the weekly incidence risk (IR) of seropositivity was presented as a

time-series graph. The presence of trend was formally tested using a bootstrapped Spear-

man test (Henderson 2005). The positive results were then stratified into three levels: low

(10–20 adjusted OD%); medium (21–50 adjusted OD%); and high positive (>50 adjusted

OD%) and the weekly IR of the three strata were plotted. For all time-series plots loess
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smoothing splines were applied to the raw time series to emphasise the major features

while reducing distraction from random variation (Bowman & Azzalini 1997).

The time series was stratified by region to investigate spatial variation in temporal pat-

terns. Each regional series was further stratified by level of positivity. Because there were

very few farms in the Copenhagen region (n=8), they were aggregated with farms from a

larger adjacent region, Frederiksborg. A regional map of Denmark is shown in Chapter 3

(Figure 3.1).

The data were rendered stationary to provide a degree of replication within the series facil-

itating further statistical analysis (Diggle 1990). We first took the log of the proportion of

samples positive to stabilise the variance and then detrended the series by fitting a priori

a second-order polynomial to stabilise the mean. These transformations were performed

on the overall time series and then for each region individually, allowing a more detailed

examination of spatio-temporal variation. The model residuals were then examined as a

near-stationary time series.

To identify the presence of seasonal effects, we first examined grouped box plots and sea-

sonal sub-series plots. Secondly, we tested the statistical significance of calendar month

by fitting an autoregressive linear model and calculating the coefficient of determination

(R2
autoreg) using the method proposed by Moineddin et al. (2003). Thirdly, to identify

cyclicity including that produced by seasonality, a periodogram was plotted (Box et al.

1994). This involved fitting sinusoidal waves with a discrete set of frequencies (Fourier

frequencies) to the data. Using this technique, the data were transformed to reveal cycli-

cal behaviour. The practical value of the periodogram is that it can identify frequencies

which are not always predictable before data are examined.

Temporal autocorrelation in the aggregated weekly data was identified using lagged scatter-

plots, autocorrelation (ACF) plots, and partial autocorrelation (PACF) plots. An autore-

gressive moving-average (ARMA) process was fitted to the data with examination of ACF

and PACF plots used to identify the starting orders of the process (Box et al. 1994).

Model parameters were estimated by maximum-likelihood methods using the Kalman

filter. Overall model fit was assessed using Akaike Information Criteria (Diggle 1990).

Residuals were examined in three ways: plotting as a time series; checking the autocor-

relation function; and applying the LjungBox test for independence (Ljung & Box 1978).

Model performance was estimated by calculating the amount of the original series vari-
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ance that was explained by the model (Lopez-Lozano et al. 2000). This is analogous to

the coefficient of determination (R2) of a linear model.

Predictive modelling

For forecasting two subsets of the series were taken: (1) from weeks 1–487 to construct

the model; and (2) from week 488 onwards for validation. We applied log transformation

and differencing of the raw series to achieve stationarity. For forecasting we did not apply

a polynomial fit since it places global assumptions on the data which may poorly estimate

the fit beyond the range of the period of interest (Diggle 1990).

Identification of the order of differencing was by examination of ACF plots and estimat-

ing the variance of the series. An autoregressive integrated moving-average (ARIMA)

process was fitted using the methods and diagnostics described previously. The predic-

tive ability of the model was evaluated by two methods: (1) plotting the forecast and its

90% tolerance intervals and comparing it with the observed data; and (2) calculating the

root-mean squared percentage error criterion (De Gooijer & Hyndman 2006).

Farm-level investigation

For this part of the study we used data from 8th May 2002 to 30th September 2004. This

was for two reasons: (1) for this 127-week period we had additional farm-level variables

for 86% of farms allowing a stratified analysis to be conducted, and (2) computational

constraints.

Repeated measures on the same farm would be expected to be correlated, and determining

the correlation structure has the potential to inform sampling strategy. For every week that

a particular farm was sampled, the outcome was defined as positive if at least one result

for the week was positive, and negative if all results for the week were negative. There

were 11,754 farms contributing 697,877 farm weeks which were approximately uniformly

distributed throughout the period of interest.

For stratification, a subset comprising 86% of the original 11,754 farms for which farm-

level variables were available was extracted. This comprised 10,064 farms and 609,537

farm-weeks. These farms were stratified into two herd-size levels: small (<700 slaughter

pigs, n=5605) and large (>700 slaughter pigs, n=4459). A second stratification was made



6.4 Results 137

by health status: conventional (n=7028) and SPF (n=3036). We defined conventional

herds as those not in the Danish SPF system. The proportion of positive farm-weeks for

the period was expressed as the IR.

The serial correlation of these repeated binary outcomes was explored using the lorelo-

gram (Heagerty & Zeger 1998). This is the mean log odds ratio between observations at

each weekly time lag. It is a counterpart to the variogram approach for continuous lon-

gitudinal responses (Diggle et al. 2002a). Both allow for the irregular spacing between

sampling times on different farms and approximate an average measure of temporal de-

pendency of the repeated measures on farms. We produced lorelograms for all farms,

and then for the different strata, to identify if herd size and health status influenced the

temporal dependency structure.

6.4 Results

Time-series analysis

Figure 6.1 presents a loess smoothed plot of all positive results over the study period,

stratified by levels of positivity. With regard to all positive results, the first three years of

the control programme had the highest IR (10-16%). This was followed by a decline in

IR from mid-1997. From 1999 to 2002 there was a period of relative stability with the

percentage positive between 4% and 8%. In mid-2003 there was a large rise in positivity

from 5% to 10% over one month. The IR remained at about 10% until the end of the

study period. The Spearman test gave a value of−0.28 (p<0.001), confirming the overall

decreasing trend. The variance in the series was higher with higher IRs: the variance from

1995 to 1997 was 7.0, from 1998 to 2002 was 1.4, and from 2003 onwards was 3.9. In

addition, in the first three year period (1995–1997) there is an apparent seasonal pattern

to the data with visible peaks in February and November.

These trends were broadly followed for all three strata, although in the first three years of

the DSSCP the series for the high positive strata (>50 adjusted OD%), was consistently

lower than the other strata and, in the period from late 1996 to late 1997, did not show the

peak shown by the other strata. The heterogeneity seen in the time series for high positive

strata was accentuated when these were stratified by region. There was considerable vari-
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ation across the country (Figure 6.2a–d). However, even in the regions in Zealand (Figure

6.2d) and on Bornholm (Figure 6.2c, solid line), where the level and variation in positivity

was generally lower, the overall trend showed an initial fall in positivity until 1998, then

a plateau until a rise in 2003. Figure 6.2a (regions in the north of Jutland) shows that the

time series for Arhus has a different pattern compared with the other regions in the area.

When the series was stratified by region alone there were time periods when it appeared

as if all regions were simultaneously experiencing a rise in the percentage of pigs positive

(see Figure 6.3). This was most noticeable in early 1996, early 1997, and late 2003.

Moreover, there were clear regional differences in IR: regions in the north and south of

Jutland, and in the west of the country had higher IRs compared with the east.

Figure 6.4 presents the model residuals for the series once detrended by taking the log

and fitting a second-order polynomial. The results for Denmark and for the main pig-

producing counties are broadly similar. All show peaks of positive residuals in early

1996, early 1997, and late 2003, as in the raw data. However, a prominent peak of positive

residuals in late 2000 only occurred in Nordjylland, Viborg, Ringkobing, and Ribe (circles

in Figure 6.4b, c, e, and f). These four counties are contiguous in the north-west of Jutland.

This peak was less evident in Arhus, Vejle, and Fyn and absent in Sonderjylland and on

Zealand and Bornholm.

There was large variability between years and no indication of cyclicity in the grouped

box and seasonal sub-series plots (Figure 6.5). The R2
autoreg for the autoregressive linear

model was <1% indicating that calendar month was a very poor predictor of the series.

The periodograms of the complete time series (n=544 weeks) showed no clear seasonality.

There was a minor and non-significant peak at a frequency of three: this indicates a weak

181-week cycle (Figure 6.6).

Lagged scatter-plots indicated serial dependence up until at least 16 weeks. The auto-

correlation plot showed strong autocorrelation but no indication of a regular pattern as

would be expected if seasonality were a factor. Examination of the ACF and PACF plots

indicated that an autoregressive (AR) model, with order >1, may be appropriate. Model

fitting resulted in a best fit of AR(3) to the stationary series. The residuals were ran-

domly distributed in time. They were not significantly autocorrelated when tested by the

ACF plot and the Ljung-Box test. The amount of the stationary series variance that was

explained by fitting the model was 69%.
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Predictive modelling

For forecasting, an ARIMA (0, 1, 2) model gave the best fit. The residuals were not sig-

nificantly autocorrelated and the amount of the logged series variance that was explained

by fitting the model was 86%.

When the forecasts were superimposed on the logged observed data, the observed value

lay well within the 90% tolerance limits of the forecast (Figure 6.7). The root-mean-

squared percentage error criterion for the one-week-ahead forecast was 8.4% indicating

the model had a reasonable forecasting ability.

Farm-level investigation

The farm-week IR (the proportion of positive farmweeks) for all 11,754 farms was 10.6%

(95% CI: 10.4-10.9). For the subset of 10,064 farms, there were statistically significant

differences between the strata: small and large farm IRs were 9.3% (95% CI: 9.0-9.7) and

12.2% (95% CI: 11.8–12.6) respectively. Conventional and SPF farm IRs were 11.3%

(95% CI: 10.9–11.6) and 10.1% (95% CI: 9.6-10.5) respectively.

The lorelograms for the stratified data are shown in Figure 6.8. There were two points of

interest that apply to these plots, and to the equivalent plot for all 11,754 farms. Firstly,

the log odds ratios decrease rapidly up to a lag of 10 weeks, beyond which the decrease

is more gradual. At lag 1 the odds ratio is approximately seven indicating that positive

farm-weeks tend to follow each other. These first 10 weeks show statistically significant

temporal dependency, but beyond that there is still a strong downward trend in the lorel-

ogram with the mean stabilising at about 66 weeks. Secondly, the mean remains at levels

well above zero, suggesting that positive correlation remained at large time separations.

This occurs as a result of heterogeneity between farms: some farms having relatively

frequent positive weeks and some having very few or none.

There were also subtle differences in the plots for different strata. The two strata with the

lowest IR (small and SPF herds) had mean odds ratios of eight at lag one, and stabilised

at week 56 with a mean odds ratio of 2.5. The two strata with the highest IR (large and

conventional herds) had mean odds ratios of 6.5 at lag one, and stabilised at week 76 with

a mean odds ratio of 2.
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Figure 6.1: Loess smoothed plot of the percentage of pigs positive for the Danish mix-ELISA
stratified by level of positivity. Data originate from the Danish swine Salmonella surveillance and
control programme.
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Figure 6.2: Loess smoothed plots of the percentage of pigs in the high positive strata for the Dan-
ish mix-ELISA stratified by region. Data originate from the Danish swine Salmonella surveillance
and control programme.
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Figure 6.3: Loess smoothed plots of the percentage of pigs positive for the Danish mix-ELISA
stratified by region. In 1996, 1997 and 2003 all regions experienced simultaneous rises in the
percent of seropositive pigs. Data originate from the Danish swine Salmonella surveillance and
control programme.
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Figure 6.4: Plot of stationary time series for (a) Denmark, (b) Nordjylland, (c) Viborg, (d) Arhus,
(e) Ringkobing, (f) Ribe, (g) Sonderjylland, and (h) Fyn respectively. The raw series has been
logged to stabilise the variance and then detrended with a second-order polynomial. The dashed
horizontal line is at the median percentage positive (0). The circles highlight the peak of positive
residuals seen in counties in the north-west regions of Jutland in late 2000. Data originate from
the Danish swine Salmonella surveillance and control programme.
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Figure 6.5: Monthplot of the time series residuals. The raw series has been logged to stabilise
the variance and then detrended with a second-order polynomial. Data originate from the Danish
swine Salmonella surveillance and control programme.
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Figure 6.6: (a) Raw and (b) Daniell smoothed periodograms of the weekly time series residu-
als, Denmark, 1995–2004. The vertical bar on the right hand side of the plot indicates the 95%
confidence interval illustrating that there is no clear peak that would indicate significant cyclicity.
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posed (dashed line) on the logged observed data. Data originate from the Danish swine Salmonella
surveillance and control programme.
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Figure 6.8: Lorelograms (estimated mean log odds ratio as a function of lag time) for stratified
data from May 2002 until September 2004. Grey shading is the 95% confidence intervals around
the log odds ratios. Data originate from the Danish swine Salmonella surveillance and control
programme.
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6.5 Discussion

This study has used accumulated data from the first 10 years of the DSSCP to investigate

key temporal epidemiological features, explore the potential for forecasting, and address

the question of temporal redundancy. Our focus has been on the application of both

established and novel techniques to respond to the need for optimisation in the DSSCP.

The raw series showed a significant decreasing trend which was complex. The dramatic

reduction in IR over the first 31
2

years was predominant and probably due to the effect

of the control programme (Hald & Andersen 2001). From mid-1998 there was relative

stability until a sudden rise in September 2003 when the IR rose from 6% to 10%. This

rise was so sudden that a laboratory error was suspected and it was subsequently found

that a problem in August 2002 had resulted in underreporting of positive results (Bak et

al. 2007). This increase in seroprevalence may have been a factor in the small rise in pork-

derived human salmonellosis cases in 2003, compared with 2002. However, 2004 saw a

continuation in the long-term trend of a reduction in human cases that had been evident

since 1996 (Ministry of Family and Consumer Affairs 2005). We decided to stratify by

level of positivity because differences exist in the pigs’ serological response depending on

the serovars involved, time since infection, and infection pressure within a herd (Nielsen

et al. 1995). Most serovars other than Salmonella typhimurium give only a moderate

serological response with the Danish Mix-ELISA (Lo Fo Wong et al. 2003). Therefore,

our finding of a different trend for the high positive strata (>50 adjusted OD%), in the

first three years of the DSSCP, may indicate that at that time there was relatively greater

contribution from serovars other than Typhimurium (Figure 6.1). This could explain why

the time series for the high positive strata in Arhus shows a different pattern compared

with the other regions in the north of Jutland (Figure 6.2a). The pattern of a low, almost

stationary percentage of pigs in the high positive strata seen in the eastern counties (Figure

6.2d) may be a result of either infection with serovars with low test sensitivity, or low

herd-level infection pressures, or both.

Regional stratification identified times (early 1996 and early 1997) when the whole coun-

try was experiencing an increased IR. This may point to a seasonal pattern or to lab-

oratory anomalies. The regional differences in IR are in agreement with earlier work

(Carstensen & Christensen 1998, Mousing et al. 1997) and may be associated with large
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herd size: regions with high IR have the largest pig populations and larger pig farms.

However, the relationship between herd size and Salmonella seroprevalence is complex,

with some studies identifying a positive association between herd size and seroprevalence

(Carstensen & Christensen 1998) and others identifying a negative association (van der

Wolf et al. 2001).

The aggregations of positive residuals in the northwest regions of Jutland in late 2000

suggest a local epidemic. This could be due to the dissemination of contaminated feed or

infected pigs throughout the area, possibly in combination with a regional practice that

would favour rapid spread such as sharing of seasonal workers or machinery.

We found no evidence of a seasonal pattern in seroprevalence in our analysis of these

10 years of data. This is in agreement with a European-wide longitudinal study of sero-

prevalence in finisher pigs from October 1996 and May 1999 (Lo Fo Wong et al. 2004b).

Similarly, temporal studies of passive laboratory-based surveillance data from 1991 to

2001 in Ontario (Zhang et al. 2005) and Alberta, Canada (Guerin et al. 2005b) found no

seasonal pattern in Salmonella isolation from production animals, including pigs. Pigs

are likely to be infected with Salmonella from a variety of sources including herd mates,

introduced animals, contaminated feed, rodents, and the environment. None of these need

be seasonally distributed.

Previous work on the DSSCP reported a seasonal pattern of seroprevalence throughout the

period 1995-1997 (Carstensen & Christensen 1998, Christensen & Rudemo 1998, Hald

& Andersen 2001). This was characterised by a summer trough and a late winter-early

autumn peak. We also found visible peaks in February and November from 1995 to 1997

which may be due to seasonal effects, laboratory error, or simply random variation. It

would appear that, if inspected over a long enough period, the distribution of Salmonella

seroprevalence does not follow a consistent seasonal pattern. Thus, we conclude that there

is no apparent benefit in targeting sampling to particular times of the year. The seasonal

pattern in human cases is much clearer, with consistent reports of a late summer-early

autumn peak (Hald & Andersen 2001, Guerin et al. 2005a).

Our finding of a minor, non-significant peak in the periodogram analysis equating to a

cycle of 181 weeks (Figure 6.6) probably reflects the residual peaks that are visible in

Figure 6.4 in late 1996, 2000 and late 2003. This apparent cyclicity is probably arte-

factual and due to laboratory problems in late 2003 (Bak et al. 2007) and in late 1996
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(P. Willeberg, personal communication, 2005). The peak in 2000 was due to a regional

excess of Salmonella seropositivity in the north-west of Jutland.

Fitting the AR process to the data provided a temporal summary for the logged poly-

nomialdetrended series. A second-order polynomial was fitted a priori, allowing us to

visualise and explain the complex trend in the national time series in three stages : (1)

the dramatic effect of a successful control program (1995-1998); (2) a period of relative

stability (1999-2002); and (3) a period of increasing national seroprevalence coincident

with the laboratory problem in September 2003. We found that the current value of the

percentage of pigs positive for the Danish-mix ELISA in any given week was dependent

on the three preceding values, with most weight on the immediately preceding value. Our

findings are identical to the relative weighting of 3:1:1 which is currently used to calculate

the index for identifying herds for intervention in the DSSCP (Alban et al. 2002).

Forecasting is inherently challenging as it involves making assumptions based on past

behaviour in the face of random variation. We used an ARIMA model that analyses the

series as a function of its past values (AR), its trend (I) and its abrupt changes in the near

past (MA) (Box et al. 1994). As it does not require a stationary series at the outset, the

potential problem of imposing global assumptions on data that may poorly estimate the fit

beyond the range of the period of interest are overcome (Diggle 1990). ARIMA models

have traditionally been applied in the financial sector but are increasingly being used in

medicine; recently as a tool for anomaly detection public health surveillance (Le Strat

2005). Forecasting nationally one-week-ahead, as done here, would provide a baseline to

which observed data could be compared. Observations outside a preset alarm threshold

could signal an investigation to ascertain if the problem was geographically widespread

or clustered within particular regions. Forecasts themselves could be done on a regional

basis allowing for regional differences in seroprevalence. Within this context we envisage

real-time calibration of the model, as additional data fed into the model should improve

its predictive ability.

The lorelogram has been used to explore serial correlation of repeated binary outcomes

for constipation treatment efficacy (Choi et al. 2005) and schizophrenia symptoms (Hea-

gerty & Zeger 1998). Although we are not aware of the previous use of the lorelogram

for optimising a sampling strategy, the temporal variogram (a counterpart to the lorel-

ogram for a continuous response variable), has been used for this purpose (Salvatori et
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al. 1999, Dowdall et al. 2003, Cameron & Hunter 2002). Our finding of a ten-week pe-

riod of statistically significant temporal dependency indicates that at the farm level there

is a strong temporal memory up to (and to a lesser extent beyond) that lag. Extending

this idea further would suggest that there is little value in sampling more frequently than

every 10 weeks on the average farm. However, this theoretical approach needs to be bal-

anced against the practicalities and advantages of the current continuous sampling and

intervention strategy. Nonetheless, sampling at this reduced frequency (every 10 weeks)

might be investigated for those herds enrolled in the risk based scheme which has been

running since July 2005 (Anonymous 2006). This scheme requires one sample per month

to be taken from herds with a Salmonella index level of nil and a minimum of 10 negative

meat-juice samples in the last three months. To date 50% of herds meet these criteria.

It appears that there is a stronger episodic effect (i.e. faster decay in the lorelogram be-

fore reaching relative stability) in small and SPF herds when compared with large and

conventionally managed herds. The more persistent temporal dependency in the large

and conventional herds indicates that these herds could benefit most from a reduced fre-

quency of sampling. However, the results for the different strata must be interpreted with

caution as there is potential for bias here. Our choice of binary outcome (i.e. a farm-week

is positive if it has at least one result positive) would predispose large herds to having

more positive farm-weeks than small herds purely by chance as they are sampled more

frequently. The log odds ratios between observations at very long lag periods should also

be interpreted with caution as there are few pairs contributing to this lag.

Due to the near complete coverage of sampling in the DSSCP (all herds producing >100

finishers per annum prior to 1st August 2001, all producing >200 pigs at or after 1st Au-

gust 2001) our dataset is effectively a census of the population of Danish finisher herds.

This has enabled inferences to be made about the Salmonella status of all Danish fin-

isher herds over the period January 1995 to May 2005. However, the sampling scheme

used prior to August 2001 resulted in pigs from large herds being proportionally over-

represented. The results from this early period may be subject to this ascertainment bias.

We have applied time series and longitudinal analytical methods to identify patterns in

both national and farm-level data for sub-clinical salmonellosis in Danish swine. These

findings have direct and practical applications for both farm-level sampling strategies and

national-level aberration detection, which potentially could result in a more cost-effective
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surveillance strategy.
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C H A P T E R 7

Bayesian zero-inflated predictive modelling of

herd-level prevalence for risk-based surveillance

7.1 Abstract

The national control programme for Salmonella in Danish swine herds in 1993 has led

to a large decrease in pork-associated human cases of salmonellosis. The pork industry

is increasingly focussed on the cost-effectiveness of surveillance while maintaining con-

sumer confidence in the pork food supply. Using national control programme data from

2003 and 2004, we developed a zero-inflated binomial model to predict which farms were

most at risk of Salmonella and then preferentially sampled these high-risk farms. This

type of modelling allows assessment of similarities and differences between factors that

affect herd infection status (introduction) and those that affect the seroprevalence in in-

fected herds (persistence and spread). The model suggested that many of the herds where

Salmonella was not detected were infected but at a low prevalence. Using cost and sen-

sitivity, we compared the results to those under the standard sampling scheme, based on

herd size, and the recently introduced risk-based approach. Model based results were

less sensitive but show significant cost savings. Further model refinements, sampling

schemes, and the methods to evaluate their performance are important areas for future

work and should continue to occur in direct consultation with Danish authorities.
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7.2 Introduction

New challenges for animal health surveillance for zoonotic disease in the 21st century

are manifold and include those brought about by increased trade, limited resources, con-

sumer awareness, and disease emergence (Woolhouse & Gowtage-Sequeria 2005, Hodges

& Kimball 2005, Fevré et al. 2006, Vorou et al. 2007). This paper is focussed on the ad-

ditional challenge of developing exit or reduction strategies for surveillance systems for

diseases that in the past represented an important risk, when today the risk to consumers

is substantially reduced (Willeberg 2006). Bovine spongiform encephalopathy (BSE) in

the United Kingdom and Salmonella in Danish pork are examples of diseases that meet

these criteria.

When compared with the approximately 184,000 (Bradley et al. 2006) cases of BSE diag-

nosed in United Kingdom (UK) cattle born before the reinforced feed ban (on 1st August

1996), there has been a very small and diminishing number of cases (144 to date) born

after the ban.1 Although it is clear that the UK BSE epidemic has neared its end, tests

still continue on all slaughtered cattle aged over 30 months and all fallen stock aged over

24 months (Hueston & Bryant 2005). At the time of writing (December 2008), there are

plans to increase the age limit to 48 months for healthy slaughter stock.2

The Danish swine Salmonella surveillance and control programme (DSSCP) was insti-

gated in 1993 by the Danish Ministry of Food, Agriculture and Fisheries in response to

a human epidemic of salmonellosis during the summer of that year. This was traced to

Salmonella infantis in pork and involved some 550 recorded cases. The programme’s

objective is to lower the prevalence of Salmonella so that domestically produced pork is

no longer an important source of salmonellosis in humans (Mousing et al. 1997). Since

2001, the prevalence of Salmonella in Danish pork (monitored at the slaughterhouse) has

reduced from 1.5% to 1% of carcass swab samples (Ministry of Family and Consumer

Affairs 2006). The estimated number of cases of salmonellosis in humans in Denmark

attributable to pork consumption decreased from 1444 in 1993 to 215 in 2005 (Nielsen et

al. 2001, Ministry of Family and Consumer Affairs 2006).

At the time of writing (December 2008), there is a large and sustained outbreak of hu-

man salmonellosis due to Salmonella enterica serotype Typhimurium phage type U292
1http://www.defra.gov.uk/animalh/bse/controls-eradication/feedban-bornafterban.html
2http://www.food.gov.uk/news/newsarchive/2008/dec/bse
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occurring in Denmark. Interestingly, no cases have been observed in countries outside

Denmark despite the fact that 85% of Danish pork production is exported. In the face of

this epidemic, the current climate in Denmark is probably not conducive for proposing a

surveillance reduction strategy. Such strategies require a delicate balance between satisfy-

ing producer and industry concerns about cost-effective testing and maintaining consumer

confidence in food supply. Salmonella and BSE were the food risks most dreaded in a UK

survey of food risk perception undertaken in 1999 (Kirk et al. 2002) and a recent survey of

consumers identified meat as the food item in which confidence had decreased the most

(Verbeke et al. 2007). It makes sense that any strategy involving a reduction in testing

should demonstrate an equal or greater sensitivity as the existing one, regardless of the

potential efficiency gains.

The means to evaluate the sensitivity of a surveillance programme and subsequently com-

pare alternatives has been recently explored in the veterinary epidemiological literature

(Audigé et al. 2001, Cannon 2002, Martin et al. 2007a). In this context, a surveillance

programme is considered as a diagnostic system which aims to correctly identify the

presence or absence of an unwanted agent. By quantifying the characteristics of the di-

agnostic system (such as its specificity and sensitivity), a surveillance programme can be

formally evaluated. For example, Audigé et al. (2001) defined surveillance sensitivity as

the probability of declaring an area infected, given that infection exists, for the evaluation

of surveillance for porcine reproductive and respiratory syndrome (PRRS) in Switzerland.

Quantification of the sensitivity of a surveillance system allows one to compare alterna-

tive surveillance strategies. For example, the comparison of the sensitivity of the currently

targeted surveillance system for classical swine fever (CSF) in Denmark with that of a

simulated non-targeted system identified that the current system was twice as sensitive

compared with the simulated, non-targeted system (Martin et al. 2007a). In another Dan-

ish example, the sensitivity of the current surveillance programme for infectious bovine

rhinotracheitis (IBR) was compared with three other surveillance scenarios targeting spe-

cific geographical areas and risk periods (Chriel et al. 2005).

To date, techniques involving scenario tree methodology have been used for proof of

disease freedom for exotic, non-zoonotic, and clinically severe animal infections such

as PRRS, CSF and IBR. In this paper we apply zero-inflated binomial modelling to the

endemic, zoonotic, and sub-clinical infection of Danish finisher pigs with Salmonella
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spp. Proof of disease freedom is not the end-point here. The issue is rather to maintain

the status of domestically produced pork as a minor source of salmonellosis in humans.

We propose that it is possible to both maintain consumer confidence in food supply, and

fulfil industry requirements for a surveillance reduction strategy with a targeted approach,

whereby populations with higher risk of infection are preferentially sampled. Our objec-

tive is firstly to develop a model that predicts which farms are most at risk of Salmonella.

Secondly, we preferentially sample the high-risk farms and compare our results to those

under: (1) the standard sampling scheme, based on herd size, and (2), the recently intro-

duced risk-based approach (Ministry of Family and Consumer Affairs 2006). In this way,

we are able to evaluate the impact of alternative sampling strategies on overall system

performance.

7.3 Materials and methods

7.3.1 Data sources

Data were obtained from three sources. Firstly, every pig herd is required to register

with the Danish Central Husbandry Register. This provided a unique identifier (the CHR

number), details of farm location, herd size, and the number of sows in the herd.

The second source of data was from the central database of the DSSCP. We used the re-

sults from 9735 farms in 2003 (n = 578,260 individual samples) for initial model building.

The DSSCP database also provided results from the 8151 farms sampled at least 10 times

in 2004 that were also sampled in 2003. This comparison was required to investigate

the performance of our different sampling schemes. Details retrieved from the DSSCP

database included the CHR number, the date of sampling, and the result of the Danish-

mix ELISA (DME). This test measures antibodies in meat-juice to determine the previous

exposure of finisher pigs to Salmonella spp. and can detect O-antigens from at least 93%

of all serovars known to be present in Danish pigs (Mousing et al. 1997). The principal

advantages of serological methods for Salmonella detection is the ability to assay a large

number of samples rapidly at relatively low cost and high sensitivity when compared to

bacteriology (e2 per sample).
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For these analyses, an ELISA optical density percentage (OD%) greater than 20 is clas-

sified as positive. This is equivalent to an adjusted OD% of greater than 10: the cut-off

for positivity that has been used by the DSSCP since 1st August 2001 (Alban et al. 2002).

All samples included in this study were analysed at the Danish Institute for Food and

Veterinary Research using the DME. On the basis of testing, herds receive a monthly

‘serological Salmonella index’ which is based on a weighted average of the results from

the previous three months. The levels of index are low level or no antibodies (index 0–39,

level 1); medium (index 40–69, level 2); and high (index 70 or greater, level 3) (Alban

et al. 2002). Herds in the medium and high index have reduced payments for finisher

pigs sent to slaughter and must collect pen-faecal samples to determine the subtype and

distribution of Salmonella in the herd.

The third source of data was the Danish Specific Pathogen Free (SPF) Company which

provided health status details associated with each farm.

We chose to analyse data from 2003 and 2004 as we had access to additional farm-level

details such as herd size, health status, and the number of sows on the farm for those

respective years.

7.3.2 Sampling schemes

Four sampling schemes were used or developed:

1. Original herd size based sampling (OHS)

This sampling strategy was in place from August 2001 until July 2005. Using this

approach, the eligible population comprised all herds with an annual kill greater

than 200 slaughter pigs (representing 99% of all finisher herds in Denmark). The

number of samples taken depended solely on herd size: the aim was to take 60,

75, or 100 samples annually from herds with an estimated annual kill of 200–2000

(small), 2001–5000 (medium), and greater than 5000 (large) slaughter pigs respec-

tively (Alban et al. 2002). For the purposes of this paper, we have used this sampling

scheme to represent the bench-mark to which we compare the alternative sampling

strategies. Figure 7.1 shows the distribution of pigs that were actually sampled per

herd for 2003 and 2004.
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2. Danish Meat Association risk-based sampling (DRB)

In July 2005, the surveillance system became performance-based which reduced

the annual sample size by approximately one-third. For herds that had no positive

meat-juice samples over the previous three months, the sample size was reduced to

one sample per month (Enoe et al. 2003, Ministry of Family and Consumer Affairs

2006). If a herd then had one or more positive samples, the strategy reverts to one

based on herd-size (OHS). We apply a modified version of these sampling criteria

to herds in 2004 based on their performance in 2003. Our modification is that we

have extended the time period over which herds are assessed to determine their

prevalence to be the whole year, rather than the previous three months.

3. Model derived risk-based sampling A (MRBA)

We developed a targeted surveillance sampling strategy based on our previous risk-

factor, spatial, and temporal analyses of the DSSCP data (Benschop et al. 2008a,b,c).

All herds with a predicted median within-herd seroprevalence at or below a model

determined cut-off in 2003 were identified as low risk and were placed on the DRB

scheme. This prediction was based on the farm’s covariate pattern and random farm

effect. All other herds (above the predicted within-herd seroprevalence threshold)

were left on the current sampling scheme for 2004 based on herd size (OHS).

4. Model derived risk-based sampling B (MRBB)

As in MRBA above all herds with a predicted median within-herd seroprevalence

at or below a model determined cut-off in 2003 were identified as low risk and

were placed on the DRB scheme. The remaining herds were then assigned to two

different sampling schemes depending on their predicted seroprevalence in 2003:

(1) those with a predicted seroprevalence that was ≤ 0.25 or ≥ 0.55 were left on

the current sampling scheme based on herd size; (2) those with a predicted sero-

prevalence of between 0.25 and 0.55 were more intensively sampled to provide

95% confidence that we were within 0.05 of the true value of the predicted sero-

prevalence. This range was chosen as these herds were near the cut-off for level 2

Salmonella status (0.40).
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7.3.3 Model development for the sampling schemes

The frequency histogram of the herd-level prevalence based on the actual test results

from the OHS sampling strategy for 2003 and 2004 (Figure 7.2) showed a large amount

of variation with a predominance of test-negative herds. These test-negative herds can

come from two types of disease-negative herds: (1) those that are truly uninfected and

therefore every sample is negative, and (2); those that are, in fact, infected but provide

insufficient samples to detect the presence of infection. This led us to propose a zero-

inflated binomial (ZIB) approach to model herd level Salmonella prevalence as it reflected

our understanding of what is happening on the farm. The ZIB model has two herd level

outcomes, the probability of infection and — conditional on infection being present —

an estimate of herd-level seroprevalence. This type of modelling can provide an added

advantage over logistic regression: an ability to assess the extent of the similarities and

differences between factors affecting herd infection status (invasion) and those affecting

the seroprevalence in infected herds (persistence and spread).

Variables that might explain both the presence of infection and herd level prevalence

included herd size, farm location, the number of sows present, and herd health status.

Herd size was the actual number of slaughter pigs produced for the year; this was centred

by subtracting the mean and dividing by 1000. Health status was a three level categorical

variable: conventional, specific pathogen free (SPF), and SPF with Mycoplasma. The

presence of sows was expressed as a three level ordinal variable: farms with no sows,

farms with less than or equal to 125 sows (some), and farms with over 125 (many).

Logistic regression model was used for initial model building. Bivariate analyses found

all covariates significant at the p ≤ 0.25, level and using data from 2003 we built a

multivariable model using the statistical software R (version 2.5.1) (R Development Core

Team 2007). All putative risk factors were significant at p ≤ 0.05. The continuous

variable herd size was checked to see if it was linear in its log odds (Hosmer & Lemeshow

1989). Polynomials of herd size and biologically plausible two-way interaction terms

between the main-effect variables were considered for inclusion.

Once satisfied with the model structure, we developed a logistic model within a Bayesian

framework using WinBUGS version 1.4.1 (Gilks et al. 1994). Initially, we stipulated

informed priors for the intercept term, and covariates relating to location, health status,
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and the number of sows present on farm. We based these on published literature supplying

subjective information about the likelihood ascribed to various combinations of covariate

values (Congdon 2001). For example, from earlier work on other data from the Danish

Salmonella surveillance and control programme we believed that it would be a protective

factor for a herd to have SPF health status (Benschop et al. 2008b). Moreover, residing in

the district of Sonderjylland in the south of Jutland would be a risk factor for herd-level

seropositivity (Benschop et al. 2008a). Based on available literature, an increased number

of sows on farms was considered a risk factor for Salmonella in finishers (Hautekiet et al.

2008).

Priors for the Bayesian logistic regression model were expressed in terms of a conjugate

beta density (Congdon 2001). We used a non-informed, normally distributed prior centred

at zero and with a variance of 1 for the effect of herd size, given information about the

effect of this variable on seropositivity was not certain or conflicting. Three chains were

run and convergence was judged to have occurred on the basis of visual inspection of

time series plots and Gelman-Rubin plots (Toft et al. 2007). The length of the chain was

determined by running sufficient iterations to ensure the Monte Carlo standard errors for

each parameter were less than 5% of the posterior standard deviation. A total of 40,000

iterations were run with a burn in of 4000 iterations.

The logistic regression model was extended to a zero-inflated binomial model and speci-

fied as follows:

Casesi ∼ Binomial(popi, pi) (7.1)

Here, the number of cases from the ith herd is binomially distributed as a function of the

number of trials (tests for Salmonella antibodies in meat-juice) popi, and the probability

of of a test being positive (adjusted OD% > 10), pi.

We further defined:

pi = ρi ∗ Ji (7.2)

where Ji is an indictor variable representing infection status of the ith herd, and ρi is the

seroprevalence conditional on the presence of infection. The term ρ therefore represents
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the probability of finding infection in a randomly chosen pig from an infected herd. The

latent variable Ji is distributed as:

Ji ∼ Bernoulli(qi) (7.3)

where qi is the probability of a herd being infected. This latent variable was modelled as:

log(qi/1− qi) = α0 + α1x1i + . . .+ αmxmi + Ai (7.4)

In Equation 7.4, the logit of the observed probability of the ith herd being infected,

logit(qi), was modelled as a function of m = 4 farm-level explanatory variables (herd

size, location, the number of sows present and health status) and a random effect term,

Ai, which was normally distributed with a mean of zero and precision σ. For the ZIB

model, the continuous variable herd size was categorised to facilitate model convergence.

The categories chosen were the same as those used by the DSSCP (Alban et al. 2002).

The latent variable ρi was modelled as:

log(ρi/1− ρi) = β0 + β1x1i + . . .+ βmxmi +Bi (7.5)

In Equation 7.5, the logit of the probability of observing infection in a randomly chosen

pig from the ith infected farm was modelled as a function of the four farm-level explana-

tory variables defined earlier, and a random effect term for herd, Bi, which was normally

distributed with a mean of zero and precision τ .

We set non-informed, normally distributed priors centred at zero and with a precision of

0.5 for each of the fixed effect terms, including the intercept. Sensitivity to these priors

was evaluated by re-running the models with a precision of 1 and 0.2. For the precision of

the random farm-level effects, σ and τ , we specified a precision of 1. Sensitivity to these

priors was evaluated by re-running the models with a precision of 0.5 and 0.3.

Three chains were run and convergence was judged to have occurred on the basis of visual

inspection of plots of the sampled values as a time series (Toft et al. 2007). The required

number of iterations of the Gibbs sampler was determined by running sufficient iterations

to ensure the Monte Carlo standard errors for each parameter were less than 5% of the
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posterior standard deviations. A total of 30,060 iterations were run with a burn in of 1000

iterations.

We proposed using this model on 2003 data to inform sampling strategies for the sub-

sequent year (2004). To check for consistency between years (2003 and 2004), we ran

the model on both years of data separately and compared the magnitude and direction of

the regression coefficients and the correlation between the random farm effects. A scatter

plot of the median conditional seroprevalence qi versus the median probability of infec-

tion ρi (Figure 7.3) was used to identify the cut-off for the two model derived risk-based

sampling schemes A and B.

7.3.4 Comparison of the sampling schemes

The results from all four sampling schemes were compared by considering cost, the num-

ber of false negative farms (a measure of sensitivity), and the number of farms identified

by the model with a within herd seroprevalence of ≥ 0.40.

Costs were compared by adding up the number of tests taken under each of the four

sampling schemes. Only the costs of meat-juice testing were taken into account, with

each meat-juice sample tested costinge2 . These costs are borne by the producers through

levies on each pig slaughtered. There are follow-on tests once herds reach level 2 and 3,

costing e200 with further costs if herds are found to be positive. Although important to

affected producers, these follow-on tests were not considered in this study.

For each farm (n = 8151) there were 1020 iterations stored from the model and these

were used to determine the false negative rate and the number of farms detected with a

within-herd seroprevalence of ≥ 0.40 for each of the four sampling schemes.

The number of farms that were falsely reported as negative and the sensitivity for each of

the four sampling schemes were determined using the following process:

(a) the Ji parameter, the indictor variable representing infection status of the ith herd, for

2004 was examined at each iteration. If it equalled one, then, for that iteration, the farm

was considered infected. Otherwise for that iteration the farm was considered uninfected;

(b) ρi, the predicted within-herd seroprevalence given the herd was infected, for 2004 was

determined for each iteration when the farm was infected. ρi was combined with the num-

ber of pigs sampled, using the binomial distribution to determine the number of positives
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that would be detected at each iteration;

(c) a false negative iteration was defined as one where the farm was infected at the it-

eration, but no positives were detected at that iteration. The number of false negative

iterations was summed and divided by the number of total iterations to give the number

of false negative farms;

(d) this was expressed as the sensitivity of the sampling scheme by dividing the number

of false negative farms by the total number of farms (n = 8151), and subtracting this

fraction (the false negative fraction) from one.

The number of farms with a predicted seroprevalence of ≥ 0.40 for each of the four sam-

pling schemes was determined using the following process:

(1) the number of positives detected at each iteration was determined as in steps (a) and

(b) in the preceding paragraph;

(2) the number of positives was divided by the number sampled to give the detected sero-

prevalence at each iteration;

(3) the number of iterations that had detected seroprevalences at ≥ 0.40 was summed and

divided by the number of total iterations to give the number of farms that had a detected

seroprevalence at ≥ 0.40.

7.4 Results

7.4.1 Data sources

In 2003, there were 9735 herds in the programme. The median number of pigs finished

per year was 2000 (IQR: 800–3700). In total, 5938 herds (61%) kept no sows, 1752 (18%)

kept some and 2045 (21%) kept many. A total of 7107 herds (73%) were of conventional

health status, 586 (6%) of SPF status and 2042 (21%) of SPF with Mycoplasma. Finally,

978 herds (10%) were from Sonderjylland.

7.4.2 Model development for the sampling schemes

All predictors were significant in the simple logistic regression model developed in R. The

results of the Bayesian model using all these predictors are shown in Table 7.1. Compared
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with pigs from conventional health status herds, pigs from SPF health status and SPF-

Mycoplasma status herds had 0.69 (95% CI: 0.66–0.72) and 0.93 (95% CI: 0.91–0.96)

times the odds of being Salmonella positive, respectively. Compared with herds having

1 to 125 sows, having none or more than 125 sows increased the odds of a pig being

Salmonella positive by a factor of 1.33 (95% CI: 1.28–1.38) and 1.36 (95% CI: 1.32–

1.41), respectively. Compared with farms located outside of Sonderjylland, the odds of

pigs being Salmonella positive on farms within Sonderjylland was increased by a factor

of 1.32 (95% CI: 1.28–1.36).

Estimated coefficients for the ZIB model are shown in Tables 7.2 and 7.3. Table 7.2

shows the factors included in the zero-inflated part of the model; these are interpreted

as factors associated with the probability of a herd being infected. A herd producing less

than 2000 (small), or greater than 5000 (large) pigs for slaughter per year had a 1.58 (95%

CI: 1.18–2.11) and 2.08 (95% CI: 1.42–3.14) greater odds of infection with Salmonella,

respectively, compared with herds producing between 2000 and 5000 (medium) pigs per

year for slaughter. Compared with herds within farms located outside of Sonderjylland,

the odds of a Sonderjylland herd being infected with Salmonella was decreased by a factor

of 0.25 (95% CI: 0.19–0.33).

Table 7.3 shows the model results for the binomial part of the ZIB model; these are inter-

preted as variables associated with the level of seropositivity in a herd, given that the herd

is infected. The odds of a pig being seropositive in an infected small or large herd was in-

creased by a factor of 1.16 (95% CI 1.06-1.28) compared with a pig being seropositive in

an infected medium herd. The remaining results were similar to those provided in Table

7.1 for the logistic regression model.

The ZIB model was insensitive to changes in the precision parameter of the prior dis-

tribution assigned to Ai and Bi. The zero-inflated part of the model showed a five-fold

increase in the value of the posterior standard deviation when compared with the binomial

part of the model.

As we planned to use this model, based on 2003 data, to predict the probability of infec-

tion and seropositivity in 2004, we checked for consistency between the two years. This

was thought to be important, because substantial changes in pig- and herd-level risks for

infection (arising from, for example, changes in herd size or changes in the price of feed)

from one year to the next could reduce the ability of the 2003 model to predict herd-level
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behaviour in 2004. The magnitude and sign of the regression coefficients for 2003 and

2004 were compared. There was no change in sign of the estimated regression coeffi-

cients for each year. The two alpha coefficients (for the variables SPF health status and

many sows) showed minor changes in magnitude between years with overall conclusions

remained unchanged. For example, the alpha coefficient for SPF health status changed

from 0.56 in 2003 to 0.36 in 2004. The beta coefficients (for variables associated with

seropositivity, given infection) were similar between years.

The 8151 random farm-level effects for the two years were compared using scatter-plots

and the relationship between them quantified using Pearson’s product-moment correlation

coefficient. Figure 7.4 shows the random effect terms Ai from the zero-inflated part of

the ZIB model from 2004 as a function of those from 2003. There are four points to note:

(1) there is moderate positive correlation between years (cor = 0.18, 95% CI: 0.16–0.20);

(2) there is a skew towards the bottom left of the plot indicating a larger variance in the

negative than in the positive valued random farm-level effects; this is likely to be due to

the positive value for the intercept, α0 (2.36, 95% CI: 2.00–2.74); (3) the random effect

terms are tightly clustered around zero indicating that that the contribution of herd-level

variation to the outcome was small; and (4) the cruciate-shaped pattern allows one to

visualise the change in the contribution of unmeasured herd-level factors over the two

year period. For example, a point positioned in the bottom right quadrant of Figure 7.4

would represent a herd with a positive random effect term in 2003 changing to negative

in 2004. Given the measured herd-level factors (i.e. the fixed effects) remained the same,

this would reflect a change in the influence of unmeasured herd-level factors on the herd’s

probability of being infected with Salmonella.

Figure 7.5 shows the random effect termsBi from the seropositivity part of the ZIB model.

Here, there is stronger consistency between years compared with Figure 7.4 (cor = 0.52,

95% CI: 0.51–0.54), particularly in the herds with a seroprevalence lower than what the

fixed effects part of the model alone would predict (negative random effects). Secondly,

there is a skew towards the top right quadrant of the plot indicating a larger variance in

the positive than in the negative-valued random farm effects. This is likely to be due

to the negative value for the β0 coefficient (-3.33, 95% CI: -3.41 – -3.24). Thirdly, the

random effect terms are less tightly clustered around zero than they are in Figure 7.4. This

indicates that that the contribution of unmeasured herd-level variation to the outcome was
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large, relative to the fixed effects component of the model.

A scatter plot of the median conditional seroprevalence qi as a function of the median

probability of infection ρi for 2003 is shown in Figure 7.3. There is a partial distinction in

predicted seroprevalence between herds that were detected as positive (red open circles)

and those that were not (green open circles). This provided us with our cut-off threshold

of 0.09 predicted seroprevalence for the sampling schemes. This plot suggests that many

of the herds where the Salmonella has not been detected were actually infected but at a

low prevalence.

7.4.3 Comparison of the sampling schemes

Table 7.4 shows the performance of each of the sampling schemes. The scheme with the

lowest cost was MRBA; the one with the highest cost was OHS. The one with the lowest

number of false negatives and highest sensitivity was OHS and the one with the highest

number of false negatives and lowest sensitivity was MRBA and MRBB. The scheme that

reported the largest number of high positive farms was MRBA and MRBB.
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Table 7.1: Results of a logistic regression model showing factors associated with Salmonella
seropositivity in 578,260 meat-juice ELISA results taken from 9735 Danish finisher herds in 2003
as a part of the national surveillance and control programme.

Variable Level Posterior Mean Posterior SD MC error OR (95% CI)

Intercept - -2.88 0.01 ≤0.001 -

Herd sizea Continuous 2.9∗10−2 0 ≤0.001 1.02(1.01–1.03)

Health Status Conventional Reference - - -
SPF -0.37 0.02 ≤0.001 0.69(0.66–0.72)b

SPF (with Mycoplasma) -0.07 0.01 ≤0.001 0.93(0.91–0.96)

Sow Status No sows 0.31 0.02 ≤0.001 1.33(1.28–1.38)
Some sows (1-125) Reference - - -
Many sows (>125) 0.28 0.02 ≤0.001 1.36(1.32–1.41)

Sonderjylland No Reference - - -
Yes 0.28 0.02 ≤0.001 1.32(1.28–1.36)

Model Statistics: Intercept, -2.88; DIC, 8689.65.
SD: Standard deviation; CI: Bayesian credible interval; MC error: Monte Carlo standard error of the poste-
rior mean; OR: odds ratio
a Number of finishers produced (rescaled by subtracting the minimum, then dividing by 1000).
b Interpretation: Once adjusted for herd size, number of sows, and location , a pig on a farm with SPF
health status had 0.69 times the odds of being Salmonella positive compared with a pig on a farm with
conventional health status (95%CI: 0.66-0.72).
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Table 7.2: Zero-inflated binomial model output showing factors associated with Salmonella infec-
tion status in 8151 Danish finisher herds in 2003 as a part of the national surveillance and control
programme.

Variable Level Posterior Mean Posterior SD MC error OR (95% CI)

Intercept - 2.36 0.19 0.008 -

Herd size Small 0.46 0.15 0.004 1.58(1.18–2.11)
Medium Reference - - -
Large 0.73 0.21 0.005 2.08(1.42–3.14)

Health Status Conventional Reference - - -
SPF 0.56 0.46 0.011 1.67(0.85–5.02)
SPF (with Mycoplasma) -0.14 0.16 0.003 0.87(0.63–1.18)

Sow Status None 0.14 0.21 0.008 1.15(0.75–1.71)
Some Reference - - -
Many 0.05 0.24 0.009 1.04(0.64–1.67)

Sonderjylland No Reference - - -
Yes -1.38 0.14 0.003 0.25(0.19–0.33)a

SD: Standard deviation; CI: Bayesian credible interval; MC error: Monte Carlo standard error of the poste-
rior mean; OR: odds ratio
a Interpretation: Once adjusted for herd size, number of sows, and herd health status, a farm located in Son-
derjylland had 0.25 times the odds of being Salmonella positive compared with a farm located elsewhere
(95%CI: 0.19-0.33).
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Table 7.3: Zero-inflated binomial model output showing factors associated with Salmonella
seropositivity in 8151 Danish finisher herds in 2003 as a part of the national surveillance and
control programme.

Variable Level Posterior Mean Posterior SD MC error OR (95% CI)

Intercept - -3.33 0.04 0.002 -

Herd size Small 0.15 0.04 0.002 1.16(1.08–1.24)
Medium Reference - - -
Large 0.15 0.05 0.002 1.16(1.06–1.28)

Health Status Conventional Reference - - -
SPF -0.37 0.07 0.002 0.69(0.61–0.78)
SPF (with Mycoplasma) -0.08 0.04 0.001 0.92(0.85–0.99)

Sow Status None 0.28 0.05 0.003 1.32(1.20–1.45)
Some Reference - - -
Many 0.28 0.06 0.003 1.33(1.19–1.48)

Sonderjylland No Reference - - -
Yes 0.52 0.05 0.002 1.68(1.51–1.86)a

SD: Standard deviation; CI: Bayesian credible interval; MC error: Monte Carlo standard error of the poste-
rior mean; OR: odds ratio
a Interpretation: Once adjusted for herd size, number of sows and herd health status , a pig on a farm lo-
cated in Sonderjylland had 1.68 times the odds of being Salmonella positive compared with a pig on a farm
located elsewhere (95%CI: 1.51–1.86).
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Table 7.4: Performance of four sampling schemes for surveillance for
Salmonella in Danish finisher herds in 2004, n = 8151 herds

Sampling scheme OHS DRB MRBA MRBB

Number of false negative farmsa 731 1186 3257 3251

Sensitivity 0.91 0.85 0.60 0.60

Number of high positive farmsb 304 849 1148 1199

Cost of sampling scheme (e1000) 1,118 959 372 479

a Farms infected in 2004 with Salmonella but not detected by the sampling scheme
b Farms the sampling scheme has detected at a Salmonella seroprevalence of ≥ 0.40
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Figure 7.1: The distribution of the number of pigs sampled for Salmonella per herd in (a) 2003
(five outliers removed) and (b) 2004 (seven outliers removed). Data are from the Danish swine
Salmonella surveillance and control programme.



172 Predictive modelling of herd-level prevalence for risk-based surveillance

Proportion of 
positive samples per herd in 2003

N
um

be
r o

f h
er

ds

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

(a) 2003 histogram

Proportion of 
positive samples per herd in 2004

N
um

be
r o

f h
er

ds

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
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Figure 7.2: The distribution of the actual within-herd prevalence of Salmonella per herd in (a)
2003 and (b) 2004. Data are from the Danish swine Salmonella surveillance and control pro-
gramme.
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Figure 7.3: Scatter plot of median predicted seroprevalence as a function of median predicted
probability of infection derived from a zero-inflated binomial model. Farms with at least one
positive sample detected in are represented by the red open circles. Those with no positive samples
detected are represented by the green open circles. Data are from 8151 farms sampled in the
Danish swine Salmonella surveillance and control programme in 2003.
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Figure 7.4: Scatter plot of the random farm effects Ai in 2003 as a function of those from 2004
(from the zero-inflated part of the ZIB model). Data are from 8151 farms sampled in the Danish
swine Salmonella surveillance and control programme in 2003 and 2004. The solid and dashed
lines represent the upper 10th and 25th percentiles of the smoothed density of the points.
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Figure 7.5: Scatter plot of the random farm effects Bi in 2003 as a function of those from 2004
(from the seropositivity part of the ZIB model). Data are from 8151 farms sampled in the Danish
swine Salmonella surveillance and control programme in 2003 and 2004. The solid and dashed
lines represent the upper 10th and 25th percentiles of the smoothed density of the points.
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7.5 Discussion

We report on the use of a zero-inflated binomial model to investigate the performance

of alternative sampling strategies for zoonotic Salmonella. To the best of our knowledge

practical applications of this technique in the veterinary literature are scarce. Reports

of the counterparts of these techniques for count data, zero-inflated Poisson and zero-

inflated negative binomial models are more numerous. In Indonesia, Cheung (2006) used

a ZIB model in the regression analysis of the cognitive function of Indonesian children.

In an ecological context Martin et al. (2005) discuss the use of zero-inflated binomial and

Poisson models in situations where both true and false zeroes occur. As far as we are

aware, this is the first application of zero-inflated binomial modelling to endemic disease

surveillance; there is potential to use this approach in the design of other surveillance

systems.

Our model is based on our earlier work in Chapters 3 and 5 that identified farm- and herd-

level risk factors for Salmonella status (Benschop et al. 2008a,b) in Danish pig herds.

Our proposed sampling strategies were not based on season as we found this was not

an associated risk factor based on work from Chapter 6 (Benschop et al. 2008c). How-

ever, it is important to consider seasonality in a targeted surveillance strategy, as time of

the year typically has an effect on the incidence of infectious disease. For example, the

pattern of human cases of salmonellosis consistently reports a late summer-early autumn

peak in Denmark (Hald & Andersen 2001) and in Canada (Guerin et al. 2005a). This

seasonality may be due to both direct and indirect effects of climate. The effect of sea-

sonal effects has modified surveillance strategies for infectious diseases. In Denmark,

for example, it has been recommended that sampling for infectious bovine rhinotracheitis

(IBR) occurs primarily during the winter months of the year (Chriel et al. 2005). Hu-

man influenza surveillance in New Zealand using sentinel practices operates only during

the winter months, from May to September (Population and Environmental Health Group

2008).

One variable, herd size, was a significant risk factor for both infection with Salmonella

and subsequent seroprevalence. When compared with medium size herds (producing

2000 to 5000 pigs for slaughter per annum), both large (producing greater than 5000

pigs) and small (producing less than 2000 pigs) size herds were at greater risk. Keeping
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none or greater than 125 sows was a risk factor when compared with keeping 1–125 in the

seroprevalence model only. It is likely that the results for these two variables act through

mechanisms such as buying in and mixing of pigs, number of visitors, biosecurity mea-

sures, feeding systems, and other management factors (Leontides et al. 2003, Farzan et al.

2006).

When compared with being located elsewhere, being located in Sonderjylland signifi-

cantly decreased the odds of a herd being infected with Salmonella but significantly in-

creased the odds of a pig from an infected herd being Salmonella positive. There is no

convenient explanation for this seeming paradox, but it may be related to the herd demo-

graphics within this region. This region forms a border with Germany and there are two

distinct types of farms present: the small family-owned and more traditional operations

and larger modern premises, particularly on the island of Als. Earlier work reported in

Chapter 4 has shown that farms in this region (compared with all other regions) showed

the most variation in farm level prevalence of Salmonella (Benschop et al. 2006).

The use of the ZIB model has the potential to allow assessment of the extent of the sim-

ilarities and differences between factors that affect herd infection status (introduction)

and those that affect the seroprevalence in infected herds (persistence and spread). One

can think of introduction as issues pertaining to with external biosecurity such as rodent

control, number, and type of suppliers, and visitor policy, while persistence and spread

falls under internal biosecurity such as type of partitions between pens (Lo Fo Wong et

al. 2004a, Bollaerts et al. 2008) and use of an all-in-all-out production system vs. a con-

tinuous one (Belœil et al. 2004, Lurette et al. 2008). Figure 7.3 would suggest that many

of the farms where the disease has not been observed are actually infected but with low

prevalence. We predicted no farms had less than a 55% probability of infection.

We chose to use the same set of risk factors in both parts of the ZIB model and report all

findings including those where the 95% Bayesian credible intervals overlapped the null

value. We believe that our framework for zero-inflated modelling has provided a useful

starting point for further exploration of the technique but at this stage we must be cautious

not to over-interpret the results. With regard to risk factors for seroprevalence our results

(Table 7.3) were very similar to those found when a logistic regression model alone (Table

7.1) was used. Although this may call into question our decision to use a ZIB model it is

an interesting finding to be explored in the future.
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7.5.1 A discussion of sampling

There is a a significant amount of literature that has preceded this work in the determi-

nation of sampling strategy as the DSSCP has evolved to where it is today (Mousing et

al. 1997, Nielsen et al. 2001, Alban et al. 2002, Ekeroth et al. 2003, Enoe et al. 2003).

The quandary remains that on the one hand if too few samples are taken then there is

less chance of detecting a positive in an infected herd, however, if on the other hand,

small numbers of samples may make it too easy for a herd to reach a cut-off proportion

purely by chance. The current risk-based system seems a reasonable compromise in that

only 12 samples a year are taken from herds that have been consistently negative (Min-

istry of Family and Consumer Affairs 2006). Once a positive is detected, herds return

to the higher intensity herd-size based system with 60, 75 or 100 samples taken before

a threshold criterion is applied. Our model supports that decision by providing reassur-

ance that even if a non-detected farm is infected, it will most likely be infected at a low

seroprevalence (Figure 7.3).

We present only a few sampling schemes, as this chapter’s primary focus is the develop-

ment of the concept rather than fine-tuning for the best sampling scheme. As expected,

the scheme with the lowest cost (e372,000) was MRBA; the next lowest at almost one

third as much again was MRBB at e479,000. It is important to reiterate that for each

scenario these are the direct costs associated only with sampling meat-juice at the abat-

toir; no follow-on costs associated with on farm testing, hygienic slaughter or carcass

downgrading are included. A full-cost benefit analysis is beyond the scope of this chapter

but would be important groundwork prior to implementation of a change in the sampling

regime.

The schemes with the lowest sensitivity were also MRBA and MRBB. We defined false

negatives as farms that were infected in 2004 but had no positives detected by the sampling

scheme. Both model base sampling schemes had 39% of farms falling into this category.

If the aim of the scheme is to detect every infected herd then these schemes perform

poorly. However the aim of the scheme is to identify herds with a high seroprevalence,

and then enforce certain requirements on these herds, The detection of every infected herd

is not an aim. This work would suggest that there are very few herds that are not infected

and most herds have a predicted seroprevalence below 40% (see Figure 7.3).
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We have fitted the model at one point in time, using accumulated data from 2003 to de-

termine sampling for 2004. This model could be updated on a monthly basis allowing

incorporation of the latest meat-juice results, and allowing for dynamic changes in co-

variates as herds increase in size, no longer keep sows, or enter an SPF health status, to

take several examples. The development of model refinements, sampling schemes, and

the methods to evaluate their performance are important areas for future work and would

make the best use of this new tool. This should continue to occur in direct consultation

with Danish authorities.

7.5.2 A discussion of future work

If we want to implement this type of targeted surveillance, we recommend gathering

more data to inform these models. For example, the type of feed used has been found

to be significantly associated with Salmonella status (Farzan et al. 2006, Hautekiet et

al. 2008). This type of information may result in an increased sensitivity of the model

based sampling strategy. Current registry databases such as the CHR should be advised to

broaden the type of baseline information gathered to facilitate this. To assist in selecting

the type of baseline information that would prove useful, a nested case-control study

within the Danish cohort could be used to more precisely identify risk factors.

The incorporation of spatial autocorrelation into the model is a challenging and important

area to consider. We have previously identified in Chapters 4 and 5 that there is spatial

dependency between farms with regard to Salmonella status up to distances of approxi-

mately four km (Benschop et al. 2006, 2008a). A first step along this road would be to

examine the model residuals for spatial autocorrelation. We propose that farms within

this radius of level 2 or 3 herds be preferentially sampled. This would require careful

consideration and be analytically complex, as the current allocation of herds into levels

is continuous, i.e. a herd can be in level 2 one month then back to normal, level 1, in the

next.

As well as the spatial dependency, we would like to extend the model further. We believe

that it is likely a herd’s infection probability and its seroprevalence are highly correlated.

A way to express this is to use a multivariate normal distribution for the random effects

Ai and Bi. It seems reasonable to assume that herds that are frequently infected have a
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higher seroprevalence than herds that are infected only occasionally.

7.5.3 A discussion of bias, confounding, and chance

In 2003, the laboratory processing the meat-juice samples realised it was experiencing

technical problems. These started in 2002, and were resolved in September 2003 (Bak et

al. 2007). The cause was irregularities in the automatic microtitre-plate washing machine,

which resulted in artificially low OD percentages in one corner of the microtitre plates.

This resulted in fewer samples testing positive than were truly positive; a misclassification

of the outcome of our model. However, this misclassification bias was almost certainly

independent of the exposure and so any resulting bias would be towards the null (Sackett

1979). Another source of non-differential misclassification bias is that we used tests with

imperfect sensitivity and specificity.

By using only herds that had 10 or more meat-juice samples taken, we excluded herds

both new to the programme and those going out of production. It is feasible that herds in

both these scenarios may be more likely to have a different Salmonella status than other

herds resulting in differential selection bias.

Our use of random farm effects should have gone most of the way towards dealing with

the issues of unmeasured variables such as the effect of the experience of the herd owner.

The confounder of most importance is likely to be the effect of the penalty system on

Salmonella status. Owners are highly motivated to avoid entry into levels 2 or 3, and if

they do enter they try to leave as soon as possible as there are considerable costs associated

with these classifications. This is one of the key reasons why predicting how a herd will

perform based on the previous years’ performance is complex.
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General Discussion

8.1 Introduction

This thesis has taken data from the first ten years of the Danish swine Salmonella surveil-

lance and control programme (DSSCP) and used spatial, temporal, and risk factor analysis

to develop methods for optimising the surveillance strategy. The first study (Chapter 3)

developed a novel method of spatially adaptive smoothing to describe the spatial epidemi-

ological features of the results from the first ten years of the programme (1995–2004). The

conditional probability of a farm being a case was consistently high in the the south-west

of Sonderjylland on the Jutland peninsula, identifying this area for further investigation

and targeted surveillance. The identification of clustering of case farms informed the next

study, described in Chapter 4.

Chapter 4 is an investigation of the patterns of spatial dependency in the data from 2003.

K-function analyses provided evidence for aggregation of Salmonella case farms over that

of all farms at distances of up to six kilometres. Semivariogram analyses of the random

farm-level effects from a Bayesian logistic regression model (adjusted for herd size) of

Salmonella seropositivity identified spatial dependency between pairs of farms up to a

distance of four kilometres apart. The strength of the spatial dependency was positively

associated with slaughter pig farm density. The study described how this might inform

the surveillance programme by potentially targeting herds within a 4 kilometre radius of

level 2 or 3 herds.

In the third study (Chapter 5), farm location details, routinely recorded surveillance in-

formation, and industry survey data were combined to build a Bayesian seroprevalence
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model. This identified wet-feeding and specific pathogen free herd health status as protec-

tive factors for Salmonella seropositivity, while purchasing feed was a risk factor. After

adjusting for these covariates, pockets of unexplained risk for Salmonella seropositivity

were identified, and spatial dependency was found at distances of up to 6 km (95% CI:

2–35 km) between farms. A generalised linear spatial model was fitted to the Jutland data

allowing formal estimation of the range of spatial correlation and a measure of the un-

certainty around it. There was a large within-farm component to the variance, suggesting

that gathering more farm level information would be advantageous if this approach was

to be used to target surveillance strategy.

Chapter 6 again considers data from the whole study period, 1995 to 2004. A detailed

temporal analysis of the data revealed there was no consistent seasonal pattern, and cor-

respondingly no benefit in targeting sampling to particular times of the year. Spatio-

temporal analyses suggested a local epidemic of increased seroprevalence occured in west

Jutland in late 2000. Lorelogram analyses showed a defined period of statistically signifi-

cant temporal dependency, suggesting that there is little value in sampling more frequently

than every 10 weeks on the average farm.

The final study (Chapter 7) uses findings from the previous chapters to develop a zero-

inflated binomial (ZIB) model to assist in the development of a risk-based sampling ap-

proach. The ZIB model is a useful tool when considering both risk factors for introduction

of Salmonella between herds, and those for subsequent spread once introduced within a

herd.

This thesis began with a literature review of change and emergence of diseases and how

they present challenges for surveillance. There are two major changes within Denmark

around the surveillance for zoonotic Salmonella that are worthy of mention. They will

now be discussed in this concluding chapter of the thesis.

8.1.1 From on-farm interventions to interventions at the slaughter-

house

During the life of the Danish swine Salmonella surveillance and control programme there

has been a change an increase in the application of interventions at the slaughterhouse
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whilst maintaining those occurring on-farm. The focus is currently on post-harvest initia-

tives with increasing attention given to decontamination after slaughter and to surveillance

cost-effectiveness.

A study by Alban & Stärk (2005) concluded that focussing solely on primary production,

at the expense of the rest of the farm-to-fork continuum, would be an economically ineffi-

cient approach to reducing Salmonella in Danish pork further. Danish farmers have done

much towards reducing Salmonella since the start of the programme such as increasing

biosecurity and using wet or coarse feeding. The current system puts a constant pressure

on the herds with highest Salmonella prevalence by the use of penalty fees (Nielsen et al.

2001). Other studies have also found that interventions at the slaughterhouse, rather than

on farm, had the highest impact on the number of contaminated carcasses (van der Gaag

et al. 2004b, Swanenburg et al. 2001b). The Danish Meat Association has an intensified

Salmonella programme at slaughterhouses, the objective of which is to single out slaugh-

terhouses that, over time, have a high Salmonella prevalence on individual carcasses.

A recent retrospective study of the Danish programme (Hurd et al. 2008) demonstrated

that, except for the first few years, the on-farm programme had minimal impact in re-

ducing the number of positive carcasses and pork attributed human cases. Prospective

scenarios out to 2013 showed a similar result: on-farm efforts aimed at Salmonella reduc-

tion will not markedly improve public health. The Hurd et al. (2008) study showed that

carcass decontamination was the most effective means of reducing human risk. Currently,

hot-water decontamination is used by one Danish processing company for finishers from

all level-3 Salmonella herds and those from herds positive for Salmonella typhimurium

DT104.

8.1.2 The change in human cases of salmonellosis in Denmark

Throughout this thesis, I have made reference to the decline in estimated number of cases

of salmonellosis in humans in Denmark attributable to pork consumption. These have

decreased from 1444 in 1993 to 215 in 2005 (Nielsen et al. 2001, Ministry of Family

and Consumer Affairs 2006). At the time of writing (December 2008) there is a large

and sustained outbreak of human salmonellosis due to Salmonella enterica serotype Ty-

phimurium phage type U292 occurring in Denmark. This was first detected in April 2008
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(Ethelberg et al. 2008a), and a total of 1158 cases have been identified to 3rd December

2008, making it the largest outbreak recorded in Denmark since the present surveillance

system became active in 1980 (Ethelberg et al. 2008b). Proposing of a further surveillance

reduction strategy in the face of this epidemic, will be challenging.

The 2008 outbreak serves to remind us that we are dealing with a very dynamic system.

There are many examples of Salmonella serotypes emerging to take up new niches (Call-

away et al. 2008). New Zealand currently is in the midst of an outbreak of Salmonella

enterica serotype Typhimurium phage type 42 (ProMED-mail 2008c). To January 14

2009 this outbreak has affected 68 people and has been linked to contaminated flour.

8.2 Lessons learnt

8.2.1 The value of multi-disciplinary collaboration

Working closely with a mathematician has led to the development of a predictive model

for Salmonella surveillance in Denmark that could be applied to other surveillance sys-

tems (Chapter 7). Working closely with statisticians has led to the development of the

novel adaptive smoothing technique (Chapter 3). This technique will soon be available

as a package ‘adsmooth’, to be used within the software R (R Development Core Team

2007). Two recent Belgian publications on Salmonella in pig herds further reflect the

benefits of similar inter-disciplinary collaborations. Hautekiet et al. (2008) have devel-

oped a sanitary risk index using weighted risk factors to classify high risk herds to form

a basis for targeted sampling. Another Belgian group used semi-parametric quantile re-

gression with P -splines to propose an alternative method to identify pig herds with a

high Salmonella infection burden based on their previous serological data (Bollaerts et al.

2008).

Work within this thesis has also used techniques that have traditionally been used in other

disciplines, and applied them to surveillance data. These include the inhomogeneous K-

function in Chapter 4, the lorelogram in Chapter 6 and the zero-inflated binomial model

in Chapter 7.

A highly technical approach can lead to impractical solutions, and it is important that the-

oretical advances are well grounded in biology, and are feasible. I have been fortunate in
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working alongside highly-skilled people who deal with everyday problems and are keen to

integrate their technical knowledge into practical situations. Furthermore, having a close

working relationship with the veterinarians and scientists in the Danish Meat Association

keeps the work centred on the need to stay practical.

There have been discussions as to whether Denmark would change from its current surveil-

lance scheme to a targeted one, and it is most likely that Denmark will continue with the

current programme. Despite some disadvantages, including expense, the current form

of the DSSCP gives a direct measure of Salmonella in the herd, and Denmark is inclined

towards having integrated surveillance schemes on a national scale. However, other coun-

tries and especially those new to the European Union that have no tradition for surveil-

lance on a national scale may be more likely to embark on a risk-factor based sampling

scheme. These countries are more likely to have fewer resources to commit to surveil-

lance, and so a lower cost Salmonella surveillance programme could be appropriate.

8.2.2 The importance of data quality

I have been fortunate to have access to a very large data set that is well referenced in space

and time. Every pig herd is required to register with the Danish Central Husbandry Reg-

ister. This provides a unique identifier (the CHR number), with details of farm location

given as the coordinates of the farm house. As the pig farms used in this work are all in-

tensive production systems and small in land area, this use of the farm house location as a

measure for the herd location is likely to be reasonable. However, this measure of location

would be inappropriate if used to represent larger productive units such as high-country

New Zealand sheep stations or cattle farms in the Australian Outback.

During the project, the Danish Meat Association (DMA) provided additional data for

herds in 2003 and 2004. These included herd health status, number of sows, and herd

size measured as the number of finishers produced by each herd in a year. These detailed

data were used in Chapters 6 and 7. Metadata is information that describes the content,

quality, condition, origin, and other characteristics of data, and is a key issue in the field

of disease surveillance (Patridge & Namulanda 2008). Metadata about the DSSCP shows

that the data is generally of high quality. For example, data on herd health status is from

the Specific Pathogen Free Company, which is currently delivered through an on-line



186 General Discussion

connection. In 2003 and 2004, updates were monthly. Data for the number of finishers

produced each year is delivered every 13 weeks in IBM compact disc format produced by

the Zoonoses Register from the National Food Institute of Denmark. Data on the number

of sows comes from a yearly report farmers make to the CHR. The sow numbers are not

as precise as the other data, as farmers tend to use numbers from the previous year if they

consider there has been no substantial change.

Chapter 5 used data from a questionnaire delivered to swine producers in 1995. There

was missing covariate data in some of the responses to this questionnaire. This was com-

pensated for by Bayesian imputation and comparing this with complete case analysis.

In Chapters 3 and 5, there were missing spatial coordinates for some farms that were

compensated for by randomly drawing easting and northing coordinates from within the

boundaries of the farm’s respective communes. The adjustment for herd size in the model

used in Chapter 4 was based on the sample size taken, as at the time of that analysis the

other data were not available.

In many other surveillance systems, data quality is poor. For example, Bisoffi (2008)

reported that incidence rates of malaria in European travellers to Gambia are often diffi-

cult to determine. In this case there are both problems with the numerator and with the

denominator. Many cases of malaria are not reported to authorities and it is difficult to

enumerate the population at risk. This applies to both recognised groups of travellers to

Gambia: the European who visit as tourists and also those visiting friends and relatives.

A recently complete PhD thesis within our research group has addressed issues around

poor numerator and denominator data in poultry outbreaks of avian influenza in the So-

cialist Republic of Vietnam. In the case of the numerator, the surveillance and reporting

intensity of outbreaks was thought to vary across the country (Lockhart 2008). A spatial

zero-inflated Poisson model was used to assist in determining the risk factors for both

outbreak detection and number of outbreaks at the commune level.

8.3 Future perspectives

8.3.1 Future work for these data

The studies presented in this thesis have identified a number of areas for future work.
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An important area for further work would be to gather and analyse movement and contact

information in this population. Social network analysis has its roots in human epidemi-

ology and social sciences, but has recently been explored in a veterinary context (West-

garth et al. 2008, Brennan et al. 2008). The identification of high-risk farms through

the measurement and analysis of contact networks may enable greater understanding

of infection dynamics, and inform surveillance and control procedures (Christley et al.

2005). Movement of animals and animal product is a crucial control point in the spread

of zoonotic disease, not only in the consideration of the recruitment of infected pigs into

herds (Lo Fo Wong et al. 2004a) and their co-mingling during transport and lairage (Hurd

et al. 2002), but also in the context of the partitioning and dissemination of infected food

(Hodges & Kimball 2005).

The incorporation of spatial proximity as a risk factor to the predictive model is a chal-

lenging area for future work. Farms that perform poorly are currently penalised under the

current system. The penalties are in place to encourage producers to make changes in herd

management that will reduce Salmonella seroprevalence. Accordingly, the current allo-

cation of herds into levels is continuous, i.e. a herd can be in level 2 one month and then

be back to level 1 in the next. Targeting by spatial proximity may well be unacceptable

to producers. For example, a farmer who has minimal risk factors and is performing well

with respect to Salmonella would probably prefer to be tested directly under the current

system than be penalised by location alone.

If we want to implement model derived risk-based surveillance it will be necessary to

gather more data to inform these models. This type of information is likely to result in

increased sensitivity, making these options more attractive to authorities and consumers.

Current registry databases such as the CHR should be advised to broaden the type of

baseline information gathered to facilitate this and provide incentives for producers to

provide such data. To assist in selecting the type of baseline information that would

prove useful, a nested case-control study within the Danish cohort could be used to more

precisely identify risk factors.
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8.3.2 Is risk-based sampling ‘safe’?

The aim of risk-based surveillance is to provide the most sensitive means for disease

surveillance in a cost effective manner. If we do apply risk-based sampling techniques,

we need to be confident in the predictive value of the risk factors. It would be advisable

to supplement targeted surveillance with standard surveys at a regular interval to maintain

end user confidence. This should also assist in identifying new risk factors that may

become important over time.

A current example of this is a concern that has recently emerged about variant Creutzfeldt-

Jakob disease (vCJD) (ProMED-mail 2008b). Prior to December 2008, the risk factors for

development of vCJD had included age, residence in the UK and methionine homozygos-

ity (M/M) at codon 129 of the prion protein gene. Now a patient in a London hospital with

a PRNP-129 methionine heterozygosity (M/V) genotype has been diagnosed clinically as

a case of vCJD. If confirmed, this case may indicate that late onset vCJD is associated with

this genotype, and that a new wave of vCJD may be imminent as a delayed consequence

of the exposure of the UK population to BSE-contaminated meat.

8.3.3 Continual improvement of visualisation of surveillance data

In this thesis we developed a novel method of spatially adaptive smoothing and presented

the results as static conditional probability surfaces. New ways of visualising surveil-

lance data that present results in a readily-interpretable form are constantly being devel-

oped. For example, the use of movies, geovisual analytics and web-based mapping are

becoming more widely used.

Vieira et al. (2008) created a movie to allow visualisation of the changes in magnitude

and location of elevated breast cancer risk for the 40 years of residential history that was

smoothed over space and time. This was achieved by application of a two-dimensional

generalised additive model.

Geovisual analytics is a sub-area of the emerging research discipline of visual analyt-

ics, with specific focus on problems involving geographic phenomena (Keim et al. 2006).

Geovisual analytics allows users to interactively explore visual representations of geo-

graphic information, tapping perceptual and cognitive abilities to recognise and process
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patterns and outliers from a visual scene, link these patterns and outliers to existing knowl-

edge bases, and arrive at an appropriate course of action given the visual input. This an-

alytical approach has been applied to cervical cancer mortality data (Chen et al. 2008).

Chen et al. apply their methods to cervical cancer mortality data for the United States

between 2000 and 2004, and conclude that their proposed geovisual analytics approach

compliments traditional statistical methods in cluster identification by enhancing the in-

terpretation of identified clusters.

Electronic surveillance using web-based tools has proven to be of substantial value in

reporting outbreaks of infectious disease. However, trying to pinpoint a potential outbreak

and contain it before it spreads requires the constant surveillance of a continually growing

number of disparate news sources and alert services. HealthMap, a surveillance tool

developed by Clark Freifeld and John Brownstein, brings together disparate data sources

to achieve a comprehensive view of the current global status of infectious diseases and

their effect on human and animal health.1

8.3.4 Innovative surveillance

Surveillance for Johne’s disease in New Zealand deer herds

An innovative surveillance system in is the Johne’s Management Limited (JML) inte-

grated system of feedback to the primary producer of information from the deer slaughter

premises (Dr. Jaimie Glossop, personal communication). The information of predom-

inant interest is lesion status, i.e. an enlarged mesenteric lymph node which has been

found to be highly predictive of Johne’s disease status. Animal and farm identifier, farm

location, date of slaughter, and carcass weight information is also included. Every deer

commercially slaughtered in New Zealand is included in the database, and it is expected

that the system will be fully compatible with the recent National Animal Identification

and Tracing System, to be introduced for deer in 2010. The deer industry in New Zealand

is small, with approximately 500,000 deer slaughtered annually. This small size cou-

pled with the strong producer board support are crucial to the success of this initiative.

Monthly data is sent to producers facilitating strategic culling, breeding, and purchasing.

1http://www.healthmap.org/en

http://www.healthmap.org/en
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Plans are to analysis the data in space and time to produce reports of the prevalence of

Johne’s disease in slaughtered deer at the national, regional, and local levels.

Surveillance for ‘one medicine’

More than 20 years ago, Calvin Schwabe coined the term ‘one medicine’, to focus atten-

tion on the similarity between human and veterinary health interests (Zinsstag et al. 2005).

Today there is little doubt that veterinary medicine plays an essential role in protecting

and promoting public health, especially in the prevention and control of zoonotic diseases

(Sargeant 2008). Surveillance systems such as the global Salm-Surv project and ArboNet

(Lemmings et al. 2006) include both human and animal disease, and the sampling of food,

vectors, and environmental samples. Global issues such as the disruption of ecosystems,

increased trade, and climate change will bring veterinarians, doctors, ecologists and social

scientists together to respond to future challenges.

This complexity of natural phenomena is likely to result in increasing focus on the use

of novel data sources. For example, the abundance and behaviour of wildlife may act

as an early-warning system in the prediction of human disease. Pettersson et al. (2008)

reports how the huddling behaviour of bank voles, influenced by lack of snow cover, may

influence zoonotic disease transmission to humans in Finland. In a response to climatic

conditions reservoir hosts may seek shelter or food closer to barns, houses, and other

buildings, thereby increasing the exposure for the human population at risk.

Disease in pets or other animal ‘sentinels’ may also reflect disease in human popula-

tions. South Africa’s human tuberculosis epidemic has jumped from humans to pets, zoo

animals, and wildlife. The human strain of the disease has been found in springbok, mon-

gooses, baboons, and chimpanzees (ProMED-mail 2008d). Worldwide, the human strain

of the disease, Mycobacterium tuberculosis, is rare in animals, who are more commonly

infected with Mycobacterium bovis.

A controversial area in future surveillance systems may be the use of humans as sentinels

for animal or ecosystem disease. A study of avian influenza in Vietnam reports that human

cases were more likely to be reported prior to outbreaks in poultry (Phan et al. 2008). The

authors suggest this may have been due to delayed detection of clinical signs in poultry

flocks, or enhanced detection and reporting of poultry outbreaks after the local emergence
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of a human case. Similarly, Cook et al. (2004) suggest that human outbreak data can act

as a pivotal warning system for ecosystem injury and to guide interventions to preserve

both ecologic and human health. The outbreaks of hantaviruses in the Americas has acted

as a bioindicator for the disruption of the local distribution of natural vegetation. The

clearance and replacement of complex rainforest have encouraged a massive proliferation

of small mammals that act as vectors for hantaviral diseases.

Molecular surveillance

Molecular technology continues to develop, and it is becoming increasingly inexpensive

to determine the complete genome sequence of bacterial isolates. Genotypic methods

have been developed which can distinguish numerous different strains of pathogenic bac-

teria, giving epidemiologists an unprecedented ability to differentiate between individual

isolates. Typing and sub-typing are now essential tools for studying the microbiology

and epidemiology of pathogen populations, and these tools are increasingly being used in

infectious disease surveillance.

The fine typing of pathogens coupled with spatial information on cases has been used

in the surveillance for meningococcal disease (Reinhardt et al. 2008). A consensus on

molecular typing of meningococcal disease using variable regions of genes encoding

immuno-dominant antigens has recently been reached in Europe (Jolley et al. 2007). Ex-

tending this tool to other countries with a functioning laboratory surveillance of meningo-

coccal disease will be possible without changing typing attributes.

Work done in our research institute by combining typing information with spatial and

epidemiological data has provided insight into transmission pathways for campylobac-

teriosis in the Manawatu region of New Zealand (French 2008). Multi-locus sequence

typing was used. The poultry-strain associated human cases of campylobacteriosis were

largely confined to urban dwellers. The ruminant-strain associated human cases were pre-

dominantly in rural dwellers, and in children and adults with an occupation that is likely

to bring them into contact with ruminant faeces. This epidemiological information, when

combined with the relative contamination levels on food products, suggests that poultry

cases are likely to be acquired from food, whereas ruminant-associated cases are more

likley to result from direct contact with animal faeces.
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An important global health problem in the future and of today is the emergence of pathogens

of heightened virulence, such as Escherichia coli O157 (Reid et al. 2000), and Salmonella

enteritidis phage type-4, and the multidrug resistant phage type-DT104 (Callaway et al.

2008). There is evidence that this increase in virulence is through pathogens acquir-

ing genome segments through lateral gene transfer that result in gain-of-function traits

(Ochman et al. 2000). Stabler et al. (2008) report on the development and application of

an Active Surveillance of Pathogens (ASP) microarray which represents known antibi-

otic resistance genes, virulence determinants, and pathogenicity traits from 151 bacteria

species. Potential uses in surveillance include monitoring antimicrobial resistance, viru-

lence profile, and gene flux in pathogens, along with potentially identifying gene acquisi-

tions and new outbreak strains.

8.4 Conclusion

This thesis is concerned with the application of recently developed epidemiological and

statistical tools to inform the optimisation of a national surveillance strategy of consider-

able importance to human health. Although data from the Danish Salmonella surveillance

and control programme has been used in these investigations, the techniques may be read-

ily applied to other surveillance data of similar quality. The challenges health profession-

als face in the future for zoonotic disease surveillance are likely to continue to expand as

a result of a changing world. These changes may include increases in the disruption of

ecosystems by development, globalisation of food and feed supply, changes in climate,

and further disruption of human populations by conflict. Increased co-operation between

veterinary and human health communities will be necessary to meet these challenges in

public health. Inspiration can be taken from Calvin Schwabe, who in 1984 stated that

‘Improved human health is the sole among veterinary medicine’s several benefits to soci-

ety that arises from virtually all of veterinarians’ diverse activities. . . . There is now and

always has been only one medicine’, (cited by Sargeant (2008)).
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Appendix 1

A.1 Introduction

This material about the handling of missing values appears as an appendix to Chapter 5.

During the process of review for publication, this material was removed at the request of

the reviewers and editors. They felt the inclusion of missing values pulled the manuscript

in too many different directions. For completeness, I include this extra material which

originally appeared in the unpublished version of Chapter 5.

A.2 Materials and methods

A.2.1 Data description and handling

A lot of data were missing. The variable feed type had the highest percentage of missing

values at 29%. In other variables, missing values ranged from 3% to 11%. The variables

of herd size and access to straw had no missing values and there were no missing serology

results. We investigated how the missing covariate data related to seropositivity by testing

the null hypothesis that the proportion of pigs positive was the same for farms both with

(n = 1504) and without (n = 2280) missing covariate information (Newcombe 1998).

A.2.2 Risk factor analysis

To reduce the bias that might have been associated with complete case analysis, we im-

puted missing values in WinBUGS and re-ran the model using data from all 3784 farms.
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As all missing data were binary, they were modelled by giving each missing value a num-

ber drawn from an arbitrary distribution: Bernoulli (0.5). Sensitivity to this was evaluated

by re-running the models with missing covariate data drawn from extreme distributions:

Bernoulli (0) and Bernoulli (1).

A.3 Results

The proportion of pigs positive was 10.4% for farms with missing covariate information,

and 10.1% for farms with complete covariate information. The proportion of pigs positive

was 10.7% for farms with missing feed type information, and 10% for farms with this

information. The proportion of pigs positive was 8.7% for farms with missing health

status information, and 10.3% for farms with this information. The proportion of pigs

positive was 11.8% for farms with missing feed supply information, and 10% for farms

with this information. All p-values were less than 0.03, indicating that the null hypothesis

of no difference between these two groups (farms with and without missing covariate

information) could be rejected.

Table A.1 shows the results using all 3784 farms with imputed data for the missing co-

variates. The direction of effect for each covariate was the same as in the complete case

analysis (Table 5.3), but the magnitude of effect was reduced by approximately 5% for

feed type, 10% for feed supply, and 20% for health status. There was no difference in

the monitored parameters when the covariate priors were varied. However, the model was

mildly sensitive to missing covariate data being drawn from the extreme distributions.

With both Bernoulli (0) and (1) distributions, there were minor differences in the random

farm effects and variance terms, with more substantial differences in the estimated regres-

sion coefficients. The direction of effect for each covariate was the same, although the

magnitude of effect was reduced by approximately 10% for feed type, feed supply, and

health status.
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Table A.1: Factors associated with Salmonella seropositivity in 45,103 meat-juice ELISA results,
taken from 3784 Danish finisher pig herds from 1st October to 31st December 1995, using values
for the missing covariates drawn from a Bernoulli (0.5) distribution. Data originate from the
Danish swine Salmonella surveillance and control programme.

Variable Level Posterior Mean Posterior SD MC error OR(95% CI)

Herd size1 continuous 0.02 0.01 <0.01 1.02 (1.01–1.04)

Feed type wet or mixed -0.34 0.07 <0.01 0.71 (0.63–0.81)2

dry reference

Feed supply purchased 0.57 0.05 <0.01 1.77 (1.61–1.94)
home mixed or both reference

Health status SPF -0.23 0.08 <0.01 0.80 (0.68–0.94)
conventional reference

Model Statistics: Intercept, −2.86; DIC, 12407.78.
SD: Standard deviation; CI: Bayesian credible interval; MC error: Monte Carlo standard error of the
posterior mean; OR: odds ratio
1 Number of pen places for finishers (rescaled by subtracting the mean, then dividing by 100).
2 Interpretation: Once adjusted for herd size, feed supply, and health status, a pig on a farm using
wet-feeding had 0.71 times the odds of being Salmonella positive compared with a pig on a dry-feeding
farm (95% CI: 0.63–0.81).
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A.4 Discussion

Using only complete cases of data will introduce bias if the missing values are not com-

pletely at random (Schafer & Graham 2002). We overcame this issue and made use of data

from all 3784 farms by imputing the missing values within a Bayesian framework. How-

ever, it is important to consider that our use of both imputed data and within-commune

randomly generated coordinates may itself introduce bias or increased random error. We

checked that this was not the case in our study by performing sensitivity analyses which

compares the results both with and without the imputed data (Schafer & Graham 2002).
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