Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Design of an FPGA-Based Smart Camera and its Application Towards Object Tracking

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering in Electronics and Computer Engineering

at Massey University, Manawatu, New Zealand

Miguel Contreras

2016

Abstract

Smart cameras and hardware image processing are not new concepts, yet despite the fact both have existed several decades, not much literature has been presented on the design and development process of hardware based smart cameras. This thesis will examine and demonstrate the principles needed to develop a smart camera on hardware, based on the experiences from developing an FPGA-based smart camera. The smart camera is applied on a Terasic DE0 FPGA development board, using Terasic's 5 megapixel GPIO camera. The algorithm operates at 120 frames per second at a resolution of 640x480 by utilising a modular streaming approach. Two case studies will be explored in order to demonstrate the development techniques established in this thesis.

The first case study will develop the global vision system for a robot soccer implementation. The algorithm will identify and calculate the positions and orientations of each robot and the ball. Like many robot soccer implementations each robot has colour patches on top to identify each robot and aid finding its orientation. The ball is comprised of a single solid colour that is completely distinct from the colour patches. Due to the presence of uneven light levels a YUV-like colour space labelled YC_1C_2 is used in order to make the colour values more light invariant. The colours are then classified using a connected components algorithm to segment the colour patches. The shapes of the classified patches are then used to identify the individual robots, and a CORDIC function is used to calculate the orientation.

The second case study will investigate an improved colour segmentation design. A new HSY colour space is developed by remapping the Cartesian coordinate system from the YC_1C_2 to a polar coordinate system. This provides improved colour segmentation results by allowing for variations in colour value caused by uneven light patterns and changing light levels.

Acknowledgments

I would like to thank my supervisors, Donald Bailey and Gourab Sen Gupta, for all their support throughout this thesis. I am grateful to Donald, for being the driving force that always pushed me to go the extra mile and achieve more. I am thankful to Sen for always being a friendly person to talk to and for his helpful advice.

I would like to thank my mum Lindy Lockett, my dad Raul Contreras, my stepdad Maurice Sackett, and my brother Ben Contreras, for their unconditional love and support throughout this thesis. As teachers, Mum and Dad always put an emphasis on education and our happiness, and worked tirelessly to ensure we had both. I am eternally grateful for my Mum, Dad, stepdad, and brother, for keeping me grounded through the good times and focused through the rest. Thank you Dad and Pop (my grandfather, Alan Lockett) for being the beacons that guided me towards, and inspired, my love of engineering.

I would also like to thank all the friends and neighbours who have supported me from the start with their time, advice, proof reading and listening ears. Special thanks to Sam Corpe, for his support and company through the many long days and late nights at Massey.

Publications

- 1) D. Bailey, G. Sen Gupta, and M. Contreras, "Intelligent Camera for Object Identification and Tracking," in *Robot Intelligence Technology and Applications 2012*. vol. 208, ed: Springer International Publishing, 2012, pp. 1003-1013.
- M. Contreras, D. Bailey, and G. Sen Gupta, "FPGA Implementation of Global Vision for Robot Soccer as a Smart Camera," in *Robot Intelligence Technology and Applications* 2013. vol. 274, ed: Springer International Publishing, 2013, pp. 657-665.
- 3) M. Contreras, D. Bailey, and G. Sen Gupta, "Techniques for Designing an FPGA-Based Intelligent Camera for Robots," in *Robot Intelligence Technology and Applications* 2014. vol. 345, ed: Springer International Publishing, 2014, pp. 633-646.
- M. Contreras, D. Bailey, and G. Sen Gupta, "Robot Identification using Shape Features on an FPGA-Based Smart Camera," in *29th International Conference on Image and Vision Computing New Zealand (IVCNZ '14)*, Hamilton, New Zealand, 2014, pp. 282-287.
- 5) D. Bailey, M. Contreras, and G. Sen Gupta, "Towards automatic colour segmentation for robot soccer," in *6th International Conference on Automation, Robotics and Applications (ICARA '15)*, Queenstown, New Zealand, 2015, pp. 478-483.
- 6) D. Bailey, M. Contreras, and G. Sen Gupta, "Bayer interpolation with skip mode," in *Irish Machine Vision and Image Processing (IMVIP '15)*, Dublin, Ireland, 2015, pp. 67-74.

|--|

Abstracti
Acknowledgmentsii
Publicationsiii
Table of Contentsiv
List of Figuresvii
List of Tablesx
Chapter 1 Introduction 1
1.1. Introduction
1.2. What is a Smart Camera? 2
1.3. Why use an FPGA?
1.4. Issues with Smart Camera Design 4
1.5. Goals7
1.6. Overview
Chapter 2 Smart Camera Design
2.1. Introduction
2.2. Current Research
2.3. Development and Testing Scheme11
2.4. Hardware Design Principles
2.4.1. Programming Languages14
2.4.2. Modularity 15
2.4.3. Parameterisation 16
2.4.4. Stream Processing 16
2.4.5. Pipelining
2.5. Module Design
2.5.1. Synchronous Design
2.5.2. Asynchronous Design 20
2.6. Summary
Chapter 3 Case Study 1: Robot Soccer
3.1. Introduction
3.2. Context
3.3. Robot Soccer

	3.3.1. Review of Algorithms	26
	3.3.2. Review of Smart Camera Architecture	29
	3.4. Design Specifications	30
	3.5. Hardware	
	3.5.1. FPGA	31
	3.5.2. Camera	31
	3.6. Smart Camera Architecture	36
	3.7. Communication	40
	3.7.1. RS-232	40
	3.8. Algorithm Overview	42
	3.9. Bayer Demosaicing Filter	44
	3.10. Edge Enhancement Filter	49
	3.11. Colour Space Conversion	52
	3.12. Colour Thresholding	54
	3.13. Noise Suppression Filter	56
	3.14. Connected Component Analysis	60
	3.15. Centre of Gravity	72
	3.16. Robot Association	73
	3.17. Robot Recognition	80
	3.18. Orientation and Position	87
	3.19. Camera Performance	91
	3.19.1. Area	93
	3.19.2. Centre of Gravity	94
	3.19.3. Robot Association and Recognition	95
	3.19.4. Robot Orientation	96
	3.19.5. Robot Soccer Algorithm	98
	3.20. Conclusion	98
C	hapter 4 Case Study 2: Improved Colour Segmentation	100
	4.1. Introduction	100
	4.2. Context	100
	4.3. Algorithm Overview	101
	4.4. Colour Correction & Exposure Control	102
	4.5. Colour Space	107

4.6. Modified YC ₁ C ₂	110
4.7. Hue Thresholding	112
4.8. Discussion	113
4.9. Conclusion	118
Chapter 5 Discussion and Conclusion	120
5.1. Discussion	120
5.1.1. Development and Testing Scheme	121
5.1.2. Modularity	123
5.1.3. Parameterisation	125
5.1.4. Stream Processing	126
5.1.5. Pipelining	126
5.2. Conclusion	127
5.3. Future Development	128
5.3.1. Case Study 1: Robot Soccer	128
5.3.2. Case Study 2: Improved Colour Segmentation	129
References	131

List of Figures

Figure 1 - Development and testing scheme for an FPGA-based smart camera	.11
Figure 2 - Block diagram for a basic image capture architecture on an FPGA	.11
Figure 3 - Block diagram demonstrating module connectivity	.15
Figure 4 - Basic example of a pipeline algorithm processing a concurrent pixel stream over	
multiple clock cycles	.18
Figure 5 - Black box diagram of a synchronous pipeline design with a 4-stage pipeline	.19
Figure 6 - Demonstration of a 3x3 window within a buffered image	.19
Figure 7 - Windowed design creating a 3x3 window	.20
Figure 8 - Black box diagram of a synchronous window design with a 3x3 window	.20
Figure 9 - Black box diagram of an asynchronous FIFO Buffer design	.21
Figure 10 - Black box diagram of an asynchronous pipeline design with a 4-stage pipeline	.22
Figure 11 - View from the camera in a global vision configuration	.25
Figure 12 - Quadrilateral robot patch design	.25
Figure 13 - Robots with an oblique robot patch design, and the ball	.26
Figure 14 - Basic robot soccer image processing algorithm design	.27
Figure 15 - Terasic DEO Development Board	.31
Figure 16 - TRDB-D5M Camera	.32
Figure 17 - Bayer Pattern	.33
Figure 18 - Actual physical location of captured pixels	.33
Figure 19 - Camera blanking areas (image courtesy of Terasic hardware specifications [42])	.34
Figure 20 - Synchronisation signal behaviour (image courtesy of Terasic hardware	
specifications [42])	.34
Figure 21 - Image captured using the TRDB-D5M using the standard lens	.35
Figure 22 - Raw image captured from camera using DSL213A-670-F2.0 lens and 2x skipping	.36
Figure 23 - Basic smart camera architecture	.36
Figure 24 - Cross domain architecture using DRAM buffer	.38
Figure 25 - Cross domain architecture using FIFO buffer	.39
Figure 26 - The architecture for the robot soccer smart camera	.40
Figure 27 - RS-232 driver black box diagram	.41
Figure 28 - Basic module connectivity	.42
Figure 29 - Overview of the image processing algorithm	.42
Figure 30 - Notation for pixel channels	.44
Figure 31 - Standard 3x3 bilinear interpolation	.45
Figure 32 - Closest physical pixels for processing bilinear interpolation, with appropriate	
weightings by distance	.45
Figure 33 - Proposed 4x4 bilinear interpolation using weighted equations to compensate for	
skipping	.46
Figure 34 - Pixel weighting based on distance measured (a) pixel centred, (b) block centred,	(c)
block cornered	.46
Figure 35 - Proposed bilinear test image with artefact examples	.47
Figure 36 - Direct implementation block diagram for bilinear Bayer interpolation	.48
Figure 37 - Optimised design block diagram for bilinear Bayer interpolation	.48

Figure 38 - 3x3 edge enhancement filter window	. 49
Figure 39 - Blurry image from the Bayer Interpolation module	. 50
Figure 40 - Edge enhancement with a 3x3 window	. 50
Figure 41 - (a) 5x5 filter window, (b) Edge enhancement with a 5x5 window	. 51
Figure 42 - Block Diagram for Edge Enhancement filter	. 52
Figure 43 - Illustration of the YUV colour space transform (image courtesy of Sen Gupta et a	I.
[36])	. 53
Figure 44 - YC ₁ C ₂ module black box diagram	. 54
Figure 45 - Block diagram for the YC_1C_2 module	. 54
Figure 46 - Individual colour thresholding logic for YC ₁ C ₂ thresholding	. 55
Figure 47 - Block diagram of colour thresholding module	. 55
Figure 48 - (a) 8 bits per pixel labelled image, (b) 12 bits per pixel labelled image	. 56
Figure 49 - Close up view of noise introduced during labelling	. 56
Figure 50 - Horizontal and vertical unidirectional filter design for noise suppression	. 57
Figure 51 - 3x3 multidirectional filter design for noise suppression	. 58
Figure 52 - (left) processed image using unidirectional filters, (right) processed image using	
multidirectional filter	. 58
Figure 53 - 5x5 multidirectional filter design for noise suppression	. 59
Figure 54 - Processed image using 5x5 multidirectional filter	. 59
Figure 55 - (left) Test image, (a) close up of robot from test image, (b) close up of robot after	r
noise filter	. 60
Figure 56 - Example of a common two-pass connected component labelling algorithm	. 60
Figure 57 - Block diagram for connected component module	. 63
Figure 58 - Asynchronous synchronisation signal	. 64
Figure 59 - 2-way and 4-way connectivity windows	. 64
Figure 60 - Diagonal only connections in 4-way window	. 64
Figure 61 - Connected component analysis window notation	. 65
Figure 62 - 4-state transition diagram for connectivity logic	. 65
Figure 63 - Simplified 2-state transition diagram for connectivity logic	. 66
Figure 64 - Example of a concave merging error in a single-pass solution	. 66
Figure 65 - Results for statistically gathered label assignment	. 67
Figure 66 - Dual port read/write data table	. 69
Figure 67 - Dual port RAM data table with dedicated ports	. 69
Figure 68 - Real-time finished component detection example	. 70
Figure 69 - Small components (noise) within connected component algorithm	. 70
Figure 70 - Results from the connected component analysis algorithm	. 71
Figure 71 - Block diagram for centre of gravity module	. 72
Figure 72 - Robot colour patch layout	. 73
Figure 73 - Worst-case scenario for robot association	. 74
Figure 74 - Various scenarios used to test the robot association module. (a, b) Ideal, (c, d)	
Worst-case	. 75
Figure 75 - Results of applying the threshold to each image, showing the identified robots	
within bounding boxes	. 76
Figure 76 - Euclidean distances compared with linear approximations	. 77

Figure 77 - Block diagram of robot association module	78
Figure 78 - State transition diagram for the image processing logic, within the robot assoc	ciation
module	78
Figure 79 - Robot team and identity patch	80
Figure 80 - Test images for the recognition module	81
Figure 81 - Ambiguous circles and squares, (left) two circles, (right) two squares	84
Figure 82 - Block diagram for the recognition module	86
Figure 83 - (a) orientation baseline, (b) orientation offset	88
Figure 84 - Block diagram for CORDIC function	89
Figure 85 - Block diagram for orientation processing algorithm	90
Figure 86 - Black box diagram for the orientation and position module	90
Figure 87 - (a, b) images from random interval scenario, (c, d) images from sequential sce	nario
	92
Figure 88 - Measured real-world orientations of robots within test scenarios	97
Figure 89 - The susceptibility of YC ₁ C ₂ to global lighting changes	101
Figure 90 - The susceptibility of YC ₁ C ₂ to uneven lighting patterns	101
Figure 91 - Colour correction and exposure control as a pre-processing filter	103
Figure 92 - Colour correction and exposure control in-line with the sensor readout	103
Figure 93 - Block diagram for colour correction logic	106
Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control	and
Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction	and 106
Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour	and 106 107
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry 	and 106 107 108
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry 	and 106 107 108 108
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry Figure 98 - Colour pixel distribution in the HSY colour space 	and 106 107 108 108 109
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm. 	and 106 107 108 108 109 110
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) 	and 106 107 108 109 110 110
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm. Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44). 	and 106 107 108 108 109 110 110 111
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm. Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) 	and 106 107 108 108 109 110 111 111
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm. Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits 	and 106 107 108 108 109 110 110 111 112 112
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm. Figure 100 - Colour pixel distribution using original YC1C2 transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 104 - Individual colour thresholding logic for HSY thresholding 	and 106 107 108 108 109 110 111 111 112 112 113
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 104 - Individual colour thresholding logic for HSY thresholding Figure 105 - HSY global lighting improvement 	and 106 107 108 109 110 110 111 112 112 113 114
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC1C2 transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 105 - HSY global lighting improvement	and 106 107 108 108 109 110 111 111 112 112 113 114 114
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 104 - Individual colour thresholding logic for HSY thresholding Figure 105 - HSY global lighting improvement Figure 107 - Shape distortion from colour segmentation (example 1) 	and 106 107 108 109 110 110 111 112 112 113 114 114 115
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 104 - Individual colour thresholding logic for HSY thresholding Figure 105 - HSY global lighting improvement Figure 106 - HSY uneven lighting pattern improvement Figure 107 - Shape distortion from colour segmentation (example 1) 	and 106 107 108 108 109 110 110 111 111 112 112 113 114 115 115
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 104 - Individual colour thresholding logic for HSY thresholding Figure 105 - HSY global lighting improvement Figure 107 - Shape distortion from colour segmentation (example 1) Figure 108 - Shape distortion from colour segmentation (example 2) 	and 106 107 108 109 109 110 110 111 112 112 113 114 115 115 115
 Figure 94 - (left) Un-optimised frame, (centre) Exposure control, (right) Exposure control colour correction Figure 95 - Averages of different light intensities for a single colour Figure 96 - RGB colour space geometry Figure 97 - HSV colour space geometry. Figure 98 - Colour pixel distribution in the HSY colour space Figure 99 - HSY module location in robot soccer algorithm Figure 100 - Colour pixel distribution using original YC₁C₂ transform (11) Figure 101 - Colour pixel distribution using equation (44) Figure 102 - Colour pixel distribution using equation (45) Figure 103 - Hue thresholding limits Figure 104 - Individual colour thresholding logic for HSY thresholding Figure 105 - HSY global lighting improvement Figure 107 - Shape distortion from colour segmentation (example 1) Figure 109 - Size reduction in low illumination from colour segmentation Figure 110 - Colour bieleding introduced by Bayer interpolation 	and 106 107 108 108 109 110 110 111 111 112 112 113 114 115 115 115 116

List of Tables

Table 1 - Distance (measured in pixels) between the team patch and correct orientation patch
Table 2 - Distance (measured in pixels) between the team patch and incorrect orientation
patch (worst-case)
Table 3 - Results for complexity descriptors from the test images in Figure 80
Table 4 - Results for moment spread descriptors from the test images in Figure 80 84
Table 5 - Results for area descriptors from the test images in Figure 80 85
Table 6 - Results from testing average area normalised recognition method on the FPGA 87
Table 7 - Results for processing only one orientation patch using the same averaging
processing pipeline
Table 8 - Results for the detected areas for each robot patch within 4 different lighting
scenarios
Table 9 - Centre of gravity results for X coordinates
Table 10 - Centre of gravity results for Y coordinates
Table 11 - Results for the robot recognition test (calculated values and colour coded pass or
fail)
Table 12 - Orientation results for robots extracted by the smart camera. Converted to degrees
from FPGA binary values
Table 13 - Comparison of shape values between hue and box thresholding methods 116
Table 14 - Analysis of the centre of gravity results between the hue and box thresholding
methods