
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

ALGORITHMS AND IMPLEMENTATION

OF FUNCTIONAL DEPENDENCY

DISCOVERY IN XML

A thesis presented in partial fulfilment of the requirements for the degree

of

MASTER OF INFORMATION SCIENCES

IN

INFORMATION SYSTEMS

at Massey University, Palmerston North, New Zealand

Zheng Zhou

May 2006

Acknowledgement

I wish to take this opportunity to give my sincere thanks to Associate Professor, Dr.
Sven Hartmann for his kind and enlightening guidance and constructive suggestions
throughout this research and valuable recommendations on improvement of the thesis.

It has been my pleasure to meet those wonderful people at the University and I have
developed a solid friendship with many of them; without their support in varied forms,
it would have been an arduous year for me. Particularly, I am thankful to Madre
Chrystall for her inspiring encouragement, valuable technical advice on MySQL and
kind proofreading. I also benefited from discussions with Thu Trinh who shared with
me her knowledge on Latex. Furthermore, the Massey Masterate Scholarship which I
was awarded in 2005 academic year has made my life financially manageable.

Finally, I owe my entire life and all my success to my parents for their incomparable
enormous love; they are appreciated, respected and treasured by me forever and a day.
My heart is always warmed also by the fondness from my aunt and my sister. They
light up my life and are my everything.

Zheng Zhou
9May2006

Contents

1 Introduction

1.1 Background

1.2 Motivations

1.3 Related Work

1.3.1 Hypothesis Research

1.3.2 Schema Derivation Algorithms .

1.3.3 Schema Tree Inference Algorithms .

6

6

6

9

9

. 10

11

1.3.4 XML-RDB Mapping . 12

1.4 Our Contribution . 14

1.5 Thesis Outline . 14

2 XML Essentials

2.1 XML Basics .

2. 2 XML Schema Schemes

15

. 15

. 16

2.2.1 The DTD (Document Type Definition) Family 16

2.2.2 The W3C XSD (XML Schema Definition) Family 16

2.2.3 The RELAX NG Family . 17

2

CONTENTS

2.2.4 The DataGuide Family . .

2.3 Functional Dependencies in XML

3 XML Schema Extraction

3.1 Element Relationship Model for XML (ER-XML)

3.2 ER-XML Extraction

3

17

18

19

19

. 23

3.2.1 Depth-First Search (DFS) vs . Breadth-First Search (BFS) 23

3.2.2 ER-XML Extraction (EXE) Algorithm 25

4 XML-Relation Data Transformation 29

4.1 Preliminary Definitions . 29

4.1.1 Rooted Tree and XML Tree . 29

4.1. 2 XML Schema Tree . 30

4.1.3 XML Schema Tree Features 30

4.1.4 Mappings between XML Trees . 31

4.1.5 XML Data Tree 33

4.1.6 Functional Dependencies for XML 33

4.1.7 Schema Vertex Table . 35

4.2 Transformation Methodology . 36

4.3 The Algorithm SVT-Trans . 39

4.3.1 SVT-Trans Overview . 39

4.3.2 Handling NULL Values . 42

5 Prototype System 45

CONTENTS

5.1

5.2

5.3

System Overview . .

5.1.1

5.1.2

Functionality

System Architecture

Functional Dependency Inference Algorithms .

5.2 .1

5.2.2

5.2.3

The Naive Algorithm

The Enhanced Algorithm Using Transversals .

The Enhanced Algorithm FastFDs

Implementation Considerations

5.3.1

5.3.2

5.3.3

5.3.4

Programming language - Java

Data Definition and Manipulation Language - MySQL .

XML Parser - DOM.

Data Structure

6 Case Study

6.1 Walking Through XFD-Miner

6.2 Performance Testing

7 Conclusion and Future Work

7.1 Conclusion ..

7.2 Future Work .

A XFD-Miner Guide

A. l Environment Configuration

A.2 Run XFD-Miner

4

45

45

46

47

48

49

50

52

52

54

54

55

59

59

61

65

65

66

68

68

69

CONTENTS

A. 2 .1 Installed Directory Tree

A.2.2 Execute XFD-Miner

A.3 Miscellaneous

5

. 69

.. 70

. 71

B Sample XML document: warehouse.xml 72

Bibliography 77

Chapter 1

Introduction

1.1 Background

Following the advent of the web, there has been a great demand for data interchange

between applications using internet infrastructure. XML (eXtensible Markup Language)

provides a structured representation of data empowered by broad adoption and easy

deployment. As a subset of SGML (Standard Generalized MarkupLanguage), XML has

been standardized by the World Wide Web Consortium (W3C) [Bray et al., 2004]. XML

is becoming the prevalent data exchange format on the World Wide Web and increasingly

significant in storing semi-structured data. After its initial release in 1996, it has evolved

and been applied extensively in all fields where the exchange of structured documents in

electronic form is required.

As with the growing popularity of XML, the issue of functional dependency in XML has

recently received well deserved attention. The driving force for the study of dependencies

in XML is it is as crucial to XML schema design, as to relational database(RDB) design

[Abiteboul et al., 1995].

1.2 Motivations

As semi-structured data has become prevalent with the growth of the Internet and other

on-line information repositories, many organisational databases are presented on the web

as semi-structured data. Designing a 'good' semi-structured database is increasingly cru-

6

1.2. MOTIVATIONS 7

cial to sustain data integrity and prevent data redundancy, inconsistency and updating

anomalies. Redundant information caused by functional dependencies in XML may give

rise to such problems. Therefore, identifying XML functional dependencies and thus

achieving normalisation becomes vital in good XML design.

Often in design practice, we are facing a task of finding all possible functional dependencies

satisfied by a given XML document, which may imply business rules. Thus emerges a

new research direction: the XML dependency discovery problem, on which however, little

investigation has been conducted so far though a breakthrough would be of prominent

value in practice.

XML schema plays a substantial role in discovering functional dependencies of XML data,

since they are defined on top of schematic information, as with relational databases.

In addition, it is well-known that XML schema information specifies the internal structure

of an XML document, which realises the promise of XML as the universal data represen

tation format enabling free electronic data interchange (EDI) and integration of disparate

data sources. It is also critical in the efficient storage of XML data as well as formulation,

optimisation and query processing [Garofalakis et al., 2000]. Unfortunately, in practice

many XML documents are not associated with schema definitions, giving rise to the task

of inferring the schematic information from XML documents.

Our preliminary feasibility studies on XML dependency discovery have suggested the

'divide-and-conquer' strategy, leading to the following problem decomposition:

1. XML Schema Extraction

This is determined by the fact explained previously that XML schema information

is essential but absent in most cases. Certain generalisation of input data is often

required in schema extraction; ideally the extracted schema should, on one hand,

tightly represent the data, and be concise and compact on the other hand. As the

two requirements essentially contradict each other, finding an optimal tradeoff is a

difficult and challenging task [Chidlovskii, 2001] .

2. XML-Relation Data Transformation

Next, semantic data held in the original XML instance is extracted into a tabular

CHAPTER 1. INTRODUCTION 8

format with the help of its schema. The inspiration for such a transformation

comes from appreciation of over 20 years of work invested in relational database

technology. Relational functional dependencies have been well explored and some

inference algorithms with satisfactory performance are already in existence, which

we can leverage to assist in discovering functional dependencies in XML. There have

been some research endeavours on mapping XML documents to relational tables, as

further illustrated in the section 'Related Work'.

3. Relational FD Inference

The final step is to apply some well-developed relational functional dependency

inference algorithms to the data in relational format after the transformation to

achieve our ultimate goal.

Figure 1.1 shows the entire work flow:

XML Document Step2
I------,.-----

Step 1

XML Schema

XML Data
Transformation

Step 3

FD
Inference

Figure 1.1: High Level Work Flow

1.3. RELATED WORK 9

1.3 Related Work

1.3.1 Hypothesis Research

The inference of structure out of semi-structured data has been long-standing in the

XML research area [Sakakibara, 1997]. Some approaches investigated possible solutions

derived from theoretical grammatical inference and were very powerful at the conceptual

level. [Ahonen, 1996] presented a technique based on machine learning, with the help

of finite-state automata describing the given instances completely. These automata were

modified by considering certain context conditions, corresponding to generalisation of the

underlying language, which were then converted into regular expressions to construct

the grammar. Although traditional grammatical inference methods for DTD generation

stated in [Ahonen, 1996] are theoretically appealing (as they guarantee to infer languages

falling within certain language classes), it is not clear whether the structure within the

limited context is valid in practice, i.e., its theoretical appeal may not necessarily translate

into practical applicability.

[Young-Lai, 1996] discussed a grammatical inference method generating stochastic finite

automata using an adapted stochastic method and attempted to improve it by isolating

low frequency data components and allowing adjustment at the generalisation level. This

approach was derived from more recent work in grammatical inference, with the base

algorithm known as Alergia [Carrasco and Oncina, 1994]. As with the methods of Ahonen,

Alergia has strong theoretical significance. Again, though, our interest lies in practical

performance. Moreover, none of them even touched the problem of how to present schema

information with high understandability to the user.

[Garofalakis et al., 2000] proposed XTRACT, a specialized DTD induction system con

sisting of a generation module , a factoring module and an MDL1 (Minimum Description

Length) module. XTRACT employed generalisation and factorisation of regular expres

sions, to derive a pool of candidate DTDs, and then used the MDL principle as the basis

to make a final selection. Still, XTRACT requires human intervention and judgement in

making a choice out of all candidates.

1The reader of interest in MDL is referred to [Rissanen, 1978, Rissanen, 1989] for further details .

CHAPTER 1. INTRODUCTION 10

1.3.2 Schema Derivation Algorithms

Some research focusing on XML practice has also been going on, mainly centring on DTD

and schema tree extraction. [Chen, 1991] talked about generation of 'de-facto grammar',

which simply aggregated structures of all XML instances to be the DTD . The de-facto

grammar is obviously far too simple and limited.

[Chidlovskii, 2002] modelled the XML schema as extended context-free grammars and

developed an extraction algorithm inspired by methods of grammatical inference. The

algorithm was also said to cope with the schema determinism requirement imposed by

XML DTDs and XML Schema languages. He defined (range) Extended Context Free

Grammar (ECFG) as a 5-tuple G = (T, N, D , 5, Start), where T, N and D are disjoints

set of terminals, non-terminals and datatypes; Start is an initial non-terminal and 5 is a

finite set of production rules. The rules take the form A-+ a for A E N, where a is a range

regular expression over terms, and one term is a terminal-nonterminal-terminal sequence

like t B t', briefly t: B, where t, t' ET and BE NU D. The extraction algorithm firstly

generalized ECFG from XML content, which was then transformed to an XML schema

definition. Details of the algorithm are shown in Figure 1.2:

0. Represent XML documents as set I of structured examples.

1. Induce an extended context-free grammar G from J:

1.1 Create the initial set of nonterminals N:

1.2 Merge nonterminals in N with the similar content and context;

1.3 Determine tight datatypes for terminals in G;

1.4 Generalize contents in nonterminals into range REs.

2. Transform the result ECFG G into an XML Schema definition S.

Figure 1.2: ECFG Extraction Algorithm (Adapted from [Chidlovskii 2002, p. 292])

In addition to work concerned with the problem of DTD inference, there have also been

many papers published on related topics. Most notable amongst these is work within the

Lore semistructured database project to infer DataGuides [Goldman and Widom, 1997].

This included the MakeDataGuide algorithm to construct a strong DataGuide over a

source database as shown in Figure 1.3 - A DataGuide is strong iff it shares exactly

the same set of label paths as in the source, nothing more or less. Despite its simplicity

and high understandability at the conceptual level, the algorithm does not even mention

1.3. RELATED WORK 11

any technical aspects, such as data structure, i.e., how the schematic information can be

actually stored and utilised.

/ / Input: o, the aid of the root of a source database

/ / Effect: dg is set to be the root of a strong DataGuide for o

targetHash = global empty hash table , to map source target sets to DataGuide

objects

dg = global aid

MakeDataGuide(o) {

}

dg = NewObject()

targetHash.Insert(o, dg)

RecursiveMake(o, dg)

RecursiveMake(tl, dl) {

}

p = set of < label, oid> children pairs of each object in t1

foreach (unique label l in p) {

t2 = set of oids paired with l in p

d2 = targetHa.sh.Lookup(t2)

if (d2 != nil) {

add an edge from dl to d2 with label l

} else {

}

}

d2 = NewObject()

targetHa.sh.Insert(t2, d2)

add an edge from dl to d2 with label l

RecursiveMake(t2, d2)

Figure 1.3: Algorithm MakeDataGuide (Adapted from [Goldman et al. 1997 , Figure 4,

p. 8])

1.3.3 Schema Tree Inference Algorithms

The subject of schema tree and related issues, such as tree extraction, are not recent in

research area. A labelled tree specifying nesting relationships between labelled vertices

was referred to as XML schema tree elements [Cruz et al., 2004]. A schema tree was also

defined as an ordered tree representing the XML schema in terms of a set of constructors:

CHAPTER 1. INTRODUCTION 12

sequence (','), repetition ('*'), union ('I'), < tagname > (corresponding to a tag) and

< simpletype > (corresponding to base types) [Ramanath et al., 2003].

[Chen et al., 2002] stated a schema tree generation algorithm as displayed below:

ALGORITHM 3: Generate schema tree
INPUT: Node N of the tree T' constructed at Step 7 in Algorithm 1
OUTPUT: Schema tree

Step 1: if N is a leaf node then return;
Step 2: for all child node C of node N do
Step 3: if name of edge E which connect C and N existed at the same level then{
Step 4: find node C'and corresponding edge E'holding same name with E, which

connects C' and N;
Step 5: all subtrees of C is moved to be subtrees of C';
Step 6: delete node C and edge E;}
Step 7: for all child node C of node N do
Step 8: recursively applying algorithm 3 from node C;

Fig.9: Generate schema tree algorithm

Figure 1.4: Schema Tree Generation (Adapted from [Chen et al. 2002 , Figure 9, p.84])

There are at least three deficits in this algorithm: firstly, it only considers, compares and

processes identical elements appearing at the same level (in Step 3), exclusive of the sce

nario with one element occurring at different levels. Secondly, it just simply aggregates

subtrees of all occurrences of an element (node) (in Step 5), which will merely give a

document tree at most, instead of a schema tree as supposed. Third, structural informa

tion captured is rather poor; only a collection of possible sub-element names, without any

knowledge of element order, whether they are optional, compulsory, or iterating.

1.3.4 XML-RDB Mapping

Researchers have already shown their interest in transforming data in XML format into

relational database. [Christophides et al., 1994] proposed a one-to-one mapping from each

element declaration in the DTD to a relation. It is apparently a simple way of generating

corresponding relational schema but likely leads to excessive fragmentation.

[Shanmugasundaram et al., 1999] suggested analyse a DTD and automatically convert it

to a set of relational schemata. To do this, the original DTD should be firstly simplified

by discarding element order information before generating the final relation schema:

1.3. RELATED WORK 13

• Basic approach Generate a DTD graph after grouping or flattening element

frequency specifications and the respective element graph on which the relational

schemata are decided;

• Shared approach Create a separate relation for each element node represented

by multiple relations in the basic approach, and share this relation; or

• Hybrid approach

element processing.

Same as the shared approach except for some variance in

Their work will also result in excessive fragmentation of DTDs, causing unnecessary data

scatter, which incurs unaffordable cost from joins when multiple relations need to be

accessed.

A new inlining algorithm was put forward by [Lu et al., 2003], featuring modeling XML

attributes as XML elements since they can be treated as elements without further nesting

structure. It comprises similar steps as the others: Create a DTD graph after DTD

simplification and inline as many descendant elements as possible to an XML element to

eliminate redundancy caused by shared elements in the generated schema, which is to be

eventually generated based on the inlined DTD graph. Such an inlining algorithm can

relatively reduce redundancy in comparison to the shared approach introduced previously,

though data scatter is still present.

[Yan and Fu, 2001] described construction of schema prototype trees representing the

structure of a simplified DTD and subsequent generation of relational schema proto

types . They also briefly mentioned functional dependency and candidate key detection

and relational schema prototype normalisation techniques.

In a summary of relevant literature, most of them are of little practical significance and ap

plicability as their studies are no more than academic research, although their complexity

varies. Furthermore, none of them even addressed how to render the schema information

to the user. Nearly all research on XML-RDB mapping is somewhat a schema-awared

approach, requiring the existence of the DTD to operate, which most XML documents in

practice lack. Excessive data fragmentation is another common awkwardness; we end up

with an unmanageably large number of relations, complicating the situation since many

functional dependencies may span several relations.

CHAPTER 1. INTRODUCTION 14

1.4 Our Contribution

In our research, we delved into both schema extraction and the XML-Relation data trans

formation problem. A novel data representation model, ER-XML (Element Relationship

model for XML) was devised, utilising an implementation-focused algorithm capable of

being directly applied to XML practice. ER-XML can also help to extract and identify

cardinality constraints. The data structure invented was properly designed to facilitate

graphical representation generation as well as compatibility validation. As for XML

Relation transformation, we have developed an entire set of algorithms, SVT-Trans with

the help of ER-XML and the concept of 'Almost Copy' in XML tree , which retrieves

semantic data from an original XML document and places them into a relational for

mat using recursion computation. The output of SVT-Trans can be directly exploited

by relational functional dependency discovery algorithms. A prototype system was also

successfully implemented and a case study was provided which demonstrated correctness

and soundness of our work.

1.5 Thesis Outline

Following the introduction and review of related work, Chapter 2 of the thesis presents

some essential XML and affiliated technology. We investigate XML schema extraction and

illustrate the ER-XML model and the ER-XML Extraction (EXE) algorithm in Chapter

3. Chapter 4 discusses in detail SVT-Trans designed to convert XML data into a relation.

Some preliminary definitions are also covered. Design decisions and architecture of the

prototype system, XFD-Miner, unfold in Chapter 5, with a case study in Chapter 6.

Finally, Chapter 7 summarises our work and points out future research directions.

