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Abstract

Each year, the world’s top orange producers outpllions of oranges for human
consumption. This production is projected to gtmmas much as 64 million in 2010
and so the demand for fast, low-cost and precigenated orange fruit grading

systems is only deemed to become more increasimgigrtant.

There is however an underlying limit to most orabggmish detection algorithms.
Most existing statistical-based, structural-baseddel-based and transform-based
orange blemish detection algorithms are plagueti®yjollowing problem: any pixels
in an image of an orange having about the same itoags for the red, green and blue
channels will almost always be classified as bdlupdgo the same category (either a
blemish or not). This however presents a big mobas the RGB components of the
pixels corresponding to blemishes are very sintdapixels near the boundary of an
orange. In light of this problem, this researdhtia¢s a priori knowledge of the local
intensity variations observed on rounded convexeabjto classify the ambiguous
pixels correctly. The algorithm has the effecpetling-off layers of the orange skin
according to gradations of the intensity. Therefany abrupt discontinuities detected
along successive layers would significantly helpniafying skin blemishes more
accurately. A commercial-grade fruit inspection alistribution system was used to
collect 170 navel orange images. Of these imab@3,were manually classified as
good oranges by human inspection and the restlam@dhned ones. We demonstrate
the efficacy of the algorithm using these imageshasbenchmarking test set. Our
results show that the system garnered 96% correlethgified good oranges and 97%
correctly classified blemished oranges. The preg@ystem is easily customizable as
it does not require any training. The fruit qualitands can be adjusted to meet the
requirements set by the market standards by spegifyn agreeable percentage of

blemishes for each band.
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Chapter 1

Research Description

1.1 Overview of the Current State of Technology

Orange is an important horticultural produce aroduhd world amounting to
millions of tons per annum (Thomas, 2009). Posws diseases and mechanical
damages greatly reduce the market value. Traditionspection of fruits is
performed by human experts, which is consideredbéo time-consuming and
subjective (Brosnan & Sun, 2004). With the advehtfast and high-precision
machine vision technologies, automation of the igiaghrocess is expected to reduce
labour cost while significantly improving the eféacy, consistency and accuracy of
this process (Du & Sun, 2004). Grading of fruiter®s several common features
with more classical automated inspection of martufad goods. However there are
not many robust and accurate grading systems taggetiit defects comprehensively
in the market. This defect scrutiny problem isngigantly more difficult, because
there is a wide range of colour and texture vamaifound in natural products (Chen,

Chao, & Kim 2002).

Machine vision systems form their judgment basedspecially designed image
processing software (Bharati, Liu & John, 2004)exflire classification algorithms
are grouped into four major categories based ontypes of features they are
associated with, such as statistical-based (U} structural-based (Recce, Taylor,
Piebe & Tropiano, 1996), model-based (Chang, etl&94) and transform-based
(Vijayarekha & Govindaraj, 2006) algorithms. Howev most of the existing
algorithms are not able to explicitly mark the pexeorresponding to the blemishes
but could only provide a final answer (i.e. goodbad orange). Moreover, most of
these systems are not easily customizable to rheevolving requirements set by the

market. For instance, a system trained to retuuifférent possible fruit quality



bands will have to be retrained exhaustively byeetsif the customer wishes to add
more fruit quality bands. This tedious processusially time-consuming and

end-users of the system will not have the abilityreéfine the system on their own.
Different fruit species and varieties will demarmd & completely different training set,
long and arduous process of system refinementgaserin labor and production cost,

etc, and will not always guarantee to produce twrdd performance.

Typically, texture classification algorithms utdizabstracted features from a spatial
or frequency domain that cannot be cross-examinggaly by humans (Johnson,
2008). It is extremely difficult to define any gmetrical or spectral properties for
the orange skin due to the wide-spectrum in vamafiound in organic produce.
Texture classification algorithms are largely basadthe use of neural networks as
these systems are very good at finding useful tdmas between features
(Egmont-Petersen, Ridder & Handels, 2002). Howeey require a vast amount
of training exemplars, and are computationally nstee to train. Several
researchers attempted to use a neural network-bzaesdifier to achieve a more

thorough analysis of the surface of fruits.

Here, we mention some of the prominent researcbee dn orange fruit grading.
In (Recce, Taylor, Piebe & Tropiano, 1996), it evdloped a high speed vision based
orange grading system which is largely based omsleeof neural networks to achieve
a more thorough blemish analysis, including thectain of stems. Multiple views
of an orange are analyzed and any views with lavbalility of containing defects or
a stem would be excluded from further processinthis probability is estimated by
a neural network algorithm that feeds on coloutdgisams (normalized red and green)
extracted from the images. The resulting probgbilietermines the goodness of
Gaussian curve-fitting and that is used for gradomgnges in the first stage of
processing. It was reported that many detectorshatorespond strongly to the
defects on oranges. Therefore, five larger andotineo operators were invented for
local defect detection purpose. Moreover, the geapickers would have filtered

some of the bad oranges already and so most orantfegood quality are delivered
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to the packing house. Sorting the image on thelipi@ can improve the throughput
and overall grading performance. As a resulttithe frame required for processing
each orange is relatively smaller as blemishedratadively bigger oranges that take
longer to process are placed at a lower priorithhenqueue. This algorithm however,
is computationally expensive, and the intelligemhet management has to be
incorporated with state-of-the art hardware. Laagsount of training samples are

also required before any testing is done.

In (Vijayarekha & Govindaraj, 2006), it is suggektidat features extracted from
the images of fruit in either spatial or frequerdymain can be used for defect
classification.  Wavelet-based texture classifamatimethods use the wavelet
sub-bands to extract textural features. Theseafestare analyzed and extracted at
different scales. The high frequency sub-band ésothposed further into a
combination of high-frequency and low-frequency -subdows. This is repeated
successively until 16 sub-windows are extractedtga levels with Daubechies).
The algorithm is described to work similar to avatced edge detector. It detects
the blemishes by finding the intensity transitioras. However, the algorithm fails

if the oranges are fully rotten and there are wtutal differences on the fruit.

In (Unay, 2005), a novel artificial neural netwdsised segmentation and apple
grading system was proposed. The background ofntlage is removed using a
constant thresholding approach. The experimenitseshow that using a constant
threshold will remove some of the low intensity ageas well, such as some very
dark blemishes. Hence, a morphological filling @en is also used to recover
these small holes. As for the inputs, statistitetural and shape-based features
are extracted from each of the four filter imagasd are fed to support vector
machines classifier. The regions identified as $tem are removed from the
segmentation result. The algorithm was testedivandupervised classifiers, such
as the LineamDiscriminated Classifier (LDC), Nearest Neighboas&3ifier (k-NN),
Fuzzy Nearest Neighbor Classifier (fuzzy k-NN), Atlee Boosting (AdaBoost) and
Support Vector Machines (SVM). It was noted thl¢ tAdaBoost and SVM

-3-



classifiers perform the best with 90.3% overalloggation. As reported, the SVM
is deemed more suitable to this system, becawhmeg not require previous training

set.

Upon examining the aforementioned algorithms, aehosystem for grading
oranges into different quality bands, accordingtheir surface characteristics, is
devised and presented in this paper. Both ripe wmgpe oranges comprise the
benchmarking dataset. It was observed that urotpages are more difficult to
analyze for defect detection due to the colourditaon areas. In addition, global
intensity variation between pixels from the samenge is deemed not to be sufficient
to classify defects correctly. Most of the exigtialgorithms are disregarding this
significant issue. However, the novel algorithrkets full advantage of the global
intensity variation for blemish detection purpose$Ve provide evidence of the

merits of using this global intensity variationdaor experiments.

1.2 Research Objectives

To devise an adaptive, intelligent grading systemn dranges that allows for
ripe/unripe classification, blemish detection, stdetection and removal, feature

guantification and grading using the local intensriation on RGB colour images.

1.3 Research Methodology

1. Study advanced image processing techniques, sucanay edge detection and
Otsu’s optimum thresholding method.

2. Study colour models in which way colours can bergsented, such as RGB
colour model.

3. Study advanced texture classification methods, sashmodel-based and
transform-based methods.

4. Implement existing fruit grading algorithms.
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10.
11.
12.
13.
14.
15.
16.
17.

Modify and improve existing fruit grading algoritism

Explore the flaws and strengths of existing aldponis in order to devise a novel
algorithm.

Gather and create a complete dataset for tesfiegand unripe oranges.
Design and develop a novel ripe/unripe orange ifiesson algorithm.

Design and develop a novel blemish detection algori

Design and develop a novel stem detection and rehabgorithm.

Design and develop a novel blemish quantificatigor@hm.

Design and develop a novel grading algorithm.

Test the novel orange grading algorithm.

Modify and improve the novel orange grading aldormit

Study advanced parallel image processing algorithms

Explore the flaws and strengths of the parallelgenprocessing algorithms.
Compare the performance of the system developethsigdne commercial

available orange grading systems.

1.4 Scope and Limitations of Research

The novel algorithm is implemented and tested ifue and unripe oranges only.
Database consists of 170 navel orange images.
Orange images are taken from the commercial maann standard operating

condition.

1.5 Benchmarking Testbed

The proposed algorithms presented here were temted collection of 170

(blemished and unblemished, ripe and unripe) oraimgages captured using

commercial-grade sorting equipment, operatingaaidsrd conditions.

As depicted in Figure 1, the commercial machineamprised of a transport
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system that moves amdtates the orange fr, anda vision inspection systewith
controlled lighting thahouses multiple digital camereAVT marlin 033C, 640x480
pixels) and mirrors. The imaging system captures 25 imagedruit at differen
angles and is interfaced with a computer throughEstE 1394 connection. Tt
compuer can control the camera for adjusting any ofvileg settings, such as ht

brightness, contrast, lens focus and magnifice

Transport System Vision Inspection System

Fig. 1. Commercial orange grading system.

1.6 Structure of the Thesis Documentatio

This thesisconsists ofsix chapters. Chapter Presents advanced ima

processing techniques, colour models and inteltigarallel distributed systems.

Chapter 3presents a review of related literature, discussidganced robu,
intelligent fruit grading systems in detail, andabzing the flaws and strengths

previous approaches.

Chapter 4provides the implementation experierfor someimage processing ar
fruit grading algorithms. Most of themare largely based on thee of neural
network to achieve a more thorough analysis of sieface offruits. The

performance is improved by modifying some of thgoathms

Chapter Joresents the novel orange grading algorithm deeelop The algorithn
is based on the locahtendty variation between pixels from the same oranc
Views that may contain defects are further analyzgidg geometrical and spect
properties from the natural surface charactes of oranges. Five key steps at

introduced, such asipe/unripe orane classification, blemishdetection, ster
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detection and removal, blemish quantification amddomg. The algorithm is

implemented and tested, and the experiment angsasalre presented in detail.

Chapter 6 reviews the contributions of this worhg &entifies promising areas of

research worthy of conducting future works.



Chapter 2

Theoretical Framework

2.1 Advanced Image Processing Techniques

Various intelligent image processing techniquespaesented in this section, such
as Otsu's method and Canny edge detector. Maahisien systems form their
judgment based on specially designed image prougssoftware. Image

processing is the core part of the fruit gradingtem.

2.1.1 Otsu’s Method

2.1.1.1 Overview

Thresholding is the simplest method of image segatiem. The core process in
the thresholding is the choice of segmentation tpoikfrom a grayscale image,
thresholding can be used to create binary imageslividual pixels in an image are
marked as foreground pixels, for instance if theélues are greater than the
segmentation point, as background pixels otherwid@gical matrix contains only
“0” and “1” can be used to represent an image. iCBlly the foreground pixel is
given a value of “1”, and the background pixel iseqp a value of “0”. The
segmentation point may be selected manually byea aiscomputed automatically
using a thresholding method. The mean or mediarewaill work well to obtain a
sufficient threshold value based on the most dontimexel values in a noiseless
image with uniform foreground and background pixelues, however this will
generally not be the case (Johnson, 2008). An pkamf object segmentation

using a constant threshold value is shown in Figure



Fig. 2. Object segmentation using a constant thresholdeval

In machine vision and image processing, Otsu’sstiolling method is used to
automatically perform histogram shape-based imagesholding, or converting a
gray level image to a binary image (Zhang & Hu, @00 The histogram method
assumes that there is some average value for tegrémund and background pixels,
but the actual pixel values have some variationsirad the average value. Otsu’s
thresholding method minimizes the weighted withiess variance and this turns out
to be the same as maximizing the between-clasan@@i Otsu’s thresholding
method operates directly on the grey level histogead assumes that the image to
be thresholded contains two classes of pixels fapeground and background).
The difficult part during the process of clusteripigels is that two classes of pixels
usually overlap, so minimizing the error of clagsif a background pixel as a
foreground becomes significant.  Otsu’s threshgidimethod calculates the
optimum threshold by separating these two classeghat their combined spread
(intra-class variance) is minimal. Otsu’s threslmad method makes each cluster as
tight as possible and minimizing their overlap. s thresholding method does

not require much specific knowledge of the imagwl ia robust against image noise.

The cost of Otsu’s thresholding method is comporatly cheap once the
histogram is generated. However, the cost of @tduesholding method would be
very expensive when extended to a multi-level thoé due to the fact that a large
number of iterations are required for computing ¢henulative probability and the
mean of a class (Cao, Shi & Cheng, 2002). In tiea application, most of the
methods suffer from time-consuming computations raultilevel thresholding.
TSMO thresholding method is a two—state multi-thodd Otsu method which can
significantly improve the efficiency with an accayaequivalent to Otsu’s method by

greatly reducing the iterations required for conmpythe between-class variance in
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a gray image.

The way to adjust the threshold is to increasesfitead of one class and decrease
the spread of the other. The goal then is to s#hecthreshold that minimizes the
combined spread. The within-class variance asvigighted sum of the variances

of each cluster is defined as:

o5() = w ()i () + w (D)o (t) (1

Otsu’s thresholding method minimizes the weightdthiw-class variance and this
turns out to be the same as maximizing the betwésss variance which is defined

as:

of(t) = 02— 02(t) = w (Dw, ([ () — p2(1)]? ()

2.1.1.2 General Algorithm

Input: Grey scale image.
Output: Threshold.
Data: | = grey scale imagd, = Threshold, = grey level in imagd, minGL =

minimum grey level in image maxGL =maximum grey level in image

1 foreach greyleveliinimage | do
ComputeProbability()

end

2 ComputeAveragelntensity()

3 foreach greyleveliinimage | do
ComputeClassProbabilityForClassOne()
ComputeClassProbabilityForClassTwo()
ComputeClassMeanForClassOne()

ComputeClassMeanForClassTwo()

ComputeClassVarianceForClassOne()
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ComputeClassVarianceForClassTwo()
ComputeWeightedSumVariance()
end

4 t = FindMaxWeightedSumVariance() / FindMinWeighted8(ariance()

1. Compute the probabilitg for each grey level.

n;
L' tn

nis the number of pixels at grey leviel tn is the total number of pixels in
imagel.

2. Compute the average intensmyfor imagel.

maxGL .
i=mingL Pi U

m=
3. Step through all possible thresholds minGL...maxGL The assumption is
that pixels in imagé are divided into two classes, class one and ¢lesqi.e.
foreground and background) by a threshbld Class one denotes pixels with
grey levels froml tot, and class two denotes pixels with grey levels ftointo
maxGL.
1. Compute the class probabilities for class one dassdwo separated by a

thresholck.

* Compute class probability for class one.
w1 = Yiminer Pi
» Compute class probability for class two.
w, =XRET P or wy=1- wy

2. Compute the class means for class one and classséparated by a
threshold.

» Compute class mean for class one.

maxGL .

1, = ZizminGL P

, =2l b
wq
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» Compute class mean for class two.

maxGL : t 1

_ Zi=t+1 Pil _ (m ~ 4Li=minGL Pil)
pp=="———— o =
Wy w3

3. Compute weighted sum of variances for class oneclass two separated
by a threshold.

» Compute class variances for class one.

t .
2 Zi:minGL(l - :ul)zpi
o =
wq

» Compute class variances for class two.

GL(;
o2 = Yt (= 42)?P,
2 0y

» Compute weighted sum of variances of two classes.
04 = w10f + w05 or 0f = wiw, (1 — py)?
. .. . 2
4. Desired threshold corresponds to the mlnlmm%or maximumoy, .

For an illustration of the inner working of thiggatithm with data samples, see

appendix A.

2.1.2 Canny Edge Detection

Edge detection is the process of finding sharp restg in intensities. This
process significantly reduces the amount of dataninmage, while preserving the
most important structural features. The majorifyeaisting algorithms can be
classified into two categories (Johnson, 2008)hsaasLaplacian of a Gaussian, first

and second derivatives.

Canny edge detector is considered to be the idige eetection algorithm for

images that are corrupted with white noises, andl Ww®wn for its ability to
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generate single-pixel thick continuous edges (Cai®86). Canny's idea and
algorithm can be found in his papé&k Computational Approach to Edge Detection”
He followed a list of criteria to improve currenethods of edge detection.
1. The first and most obvious criterion is the lowoerrate. It is important
that edges occurring in an image should not beadiss
2. The second criterion is the edge points are wehllzed. In other words,
the distance between the edge pixels as foundebgetector and the actual
edge is to be at a minimum.
3. A third criterion is to have only one response tsirggle edge. This was
added because the first two steps were not sulatanbugh to completely

eliminate the possibility of multiple responsestoedge.

2.1.3 Morphological Operators

2.1.3.1 Overview

Often it is necessary to process binary images.a bmary image, each pixel can
only take two values, such as zero or one. Theaevial primarily used to denote the
presence or absence of a feature which could beethdt of previous processing,
such as edge detection. The binary image als® givermation about the shape of
an object. Neighborhood operators for binary insagee called morphological

operators because they deal with the shape infamg@tohnson, 2008).

A pixel can be connected to another pixel in twysyauch as four connected and
eight connected. A simple way to decide if a pisgbined to one of its neighbors
is to check all eight of the neighbors. Pixels fang connected, if they are joined
to the left, right, above or below, but not diagbna Pixels are eight connected, if
they are joined to the central pixel. Eight coriedness correctly connects
diagonal lines. However, it also connects the pemknd across a diagonal line.

The background must be treated differently from tfmeeground if eight
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connectedness is used. Figure 3 shows a four ctatheand eight connected

Voo

An Eight Connected Figure A Four Connected Figure

figures.

Fig. 3. Four and eight connectivity(Johnson, 2008).

Shrink and expand are two important morphologiqarators.  Shrink will clear
the pixels that have any non-class neighbors. Bckpeall set the pixels that have
any class neighbors. An expand followed by a &hisncalled a closed because it
fills small holes between objects. A shrink folleavby expand is classed an open

because it keeps the small holes between objeets. og-igure 4 shows the shrink,

Sk~ L

original expand shrink close open

expand, open and close.

Fig. 4. Expand, shrink, close and open(Johnson, 2008).

The neighborhood operators, min and max work tineesas shrink and expand.
Taking the original image away from the expandedgeworks the same way as a

contour detector. It is correspond to the outer fmnnected edge.

The shrink operator can be used to reduce theo§iaeegion. If the contour of a
region is important than shrinking to nothing, them operator can be applied to
shrink the region to its skeleton. The skeletonaiset of points which are
equidistant from the two or more close edge poimtthe image (Johnson, 2008).
Skeletonisation may be performed by repeatedlyyapgplan operator which shrinks

the image until the skeleton remains. Figure Sashan example of shrinking a

Ay

Fig. 5. Shrink a region to its skeleton(Johnson, 2008).

region to its skeleton.
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2.1.3.2 Convex Hull

In mathematics, the convex hull is defined as fedo
1. Aset of data pointB.
2. Areal vector spac¥.

3. PinVis the smallest convex set containihg

For a given non-empty finite set afdata points, the convex hull computation
means find the boundary points which can form apgntlosed polygonal chain
(Preparata & Hong, 1977). The polygonal chain &haeontain all the data points
P and its convex set is minimal. The number of ian the convex hull is

defined as follows:
Hconvex(X) = {Z?:l aiXi |xi € X, a; € R, a; = 0, Z?:l a; = Lk=12, } (3)

Convex hull is a very useful image processing tegpha in computer vision.

Figure 6 shows some holes within the red layerbmary image.

Holes

Fig. 6. Original image.

Figure 7 shows the convex image after the convdk dperation. The holes

within the red layer are sealed.

Fig. 7. Convex image.

The original image is defined as mask one, andctimvex image is defined as
mask two. The holes in the original image can dslg segmented by using mask

two minus mask one. Figure 8 illustrates the skhtdes, which are referred to the
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stem or blemishes in Section 5.4.8.

Fig. 8. Sealed holes.

2.2 Colour Space

2.2.1 Overview

Colour is the visual perceptual property corresjiiog in humans to the categories
called red, yellow, blue and others. Spectrumigtitlis the distribution of light
energy versus wavelength. Colour derives fromsgiectrum of light interacting in
the eye with the spectral sensitivities of the tighceptors (Werblin, Jacobs &
Teeters, 1996). Colour can be represented asstwpleumbers, typically as three
or four values or colour components (Deng et @0Q13. Figure 9 illustrates the
RGB and CMYK colour model. The way of describirgazirs in such an abstract
mathematical model is called colour space. RGBuo$pace is the most common
way to encode colours in computing for sensingreggntation, and display of

images (Bumbaca & Smith, 1987).

RGB

Fig. 9. RGB and CMYK colour model.



2.2.2 RGB Colour Space

Human eye is sensitive to three additive primaipue, red, green and blue. In
machine vision, RGBRed GreenBlue) colour space is one of the most popular
additive colour systems which are derived from hanerception of colour
(Rogowitz, 2001). It is called an additive col@mystem, since you could add light
from the primary colours to make new colours. Homvésual system is able to
differentiate between 100-200 grey levels and 3B80 000 colours (Johnson,
2008). For this reason most vision systems useg®&levels (8 bits per pixel) or
256 levels of red, green and blue (24 bits perlpixeThe 256 levels of red, green
and blue usually do not represent equally spacdensities, due to gamma
correction (Farid, 2001). Figure 10 demonstrateoard array of colours (more
than16 million) can be displayed by using an appropr@isbination of red, green

and blue intensities.
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Fig. 10. Example of RGB colour space.

In RGB colour space, each primary colour is exméss a channel which is used
to refer to a certain component of an image indteventional term (Bumbaca &
Smith, 1987). A channel can be used to genergrayscale image with the same

size as the original image. In a grayscale imageh pixel only carries intensity
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information. The intensity of a pixel is expresseithin a given range between a
minimum and maximum, inclusive.  For instance \eakest intensity is black(0),
the strongest intensity is white(255) and many ebhaaf gray in between. Figure
11 shows an example of the colour channel splitth@ full RGB colour image.

The column at left shows the isolated colour ch&nire natural colours, while at

right there are their grayscale equivalences:

.®-0 "
SINON

AJISUdU |

Fig. 11. Colour channel splitting of a full RGB colour im&ag

2.3 Parallel Image Processing System

2.3.1 Overview

Nowadays large amount of data are required for en@gcessing, e.g., medical
imaging, the traditional single processor is noteats complete complex tasks
within a reasonable time frame Parallel image @semg (PIP) has been a topic of
interest for many years. The basic idea is to mséi-processors to perform a
single or multiple tasks at the same time (Mess@@@8). Large problems can
almost always be divided into smaller ones. The&imam speedup is with n
processors. But in practice, it can’'t be achiewtording to Amdal's Law
(Onyuksel & Hosseini, 2002). The serial sectioussially slow, such as reading
data from a CD. The communication between proeessoalso considered to be

time-consuming (Lekic, Mijanovic & Gobovic, 2002).
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2.3.2 System Architecture

Palatin, Buzek, and Beran (2007) developed a @hralage processing system.

Figure 12 is a block schematic of the system deeslo

| User interface Application )

l Modules

( Monitoring. optimization ]

( Interpreter
w l w l
E Control layer

l OS Unix_ PVM, Glenda '

Fig. 12. Parallel image processing system(Palatin, BuzeBe$an, 2007).

The system consists of six logical layers, suchsystem layer, control layer,
functional layer, shell layer, optimization layemdaapplication layer. Each layer
performs a specific task.

1. System Layer: Parallel environment.
Control Layer: Communication between processors.
Functional Layer: Image processing algorithms.

2

3

4. Shell Layer: User interface.

5. Optimization Layer: Monitoring the system and opaeithe performance.
6

Application Layer: Various image processing tasks.

The system can be divided into two parts, such @dication and module.
Functional modules can be implemented in paralleThe system uses the
master-worker parallel programming to control meguby application:

* An application(master) sends commands to the system
 Commands are stored in the shared memory.
e The functional modules(workers) take these commapeldorm requested

tasks and return the results back to the applicatio
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One application can send another command befotangehe result from

previous one. Each functional module may internally consist ofnya
parallel processes.

It would be very efficient if the functions providéoy the module can be
paralleled.

A segmentation module can have several procesabsniedules). Each
of them does the segmentation for one part ofrttege. Then the module

joins the results of all the sub modules.

Two ways to reduce the unnecessary communication:

1. Ashared database of data objects, not application.

2. Sending data directly from one module to the ofpgrelining).

The shared memory is implemented as a shared aigeanemory, e.g.

The data is accessed by a key value, not address.
Provided by the coordination language Linda.
The system is designed to use Linda implementatadled Glenda as a

basic parallel environment.
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Chapter 3

Review of Related Literature

3.1 High Speed Vision-Based Quality Grading of Gmges

3.11 Overview

Recce, Taylor, Piebe and Tropiano (1996) developddgh speed vision-based
orange grading system which is largely based omskeof neural networks to achieve
a more thorough analysis, including the detectibetems. It is hard to define any
geometrical or spectral properties for the orarige, S0 the neural network classifier

is fed by different feature extractors.

Most of the processing of fresh fruits in the pagkhouse is highly automated,
such as washing and packing. However the most rif@mosteps, e.g., inspection
and grading in quality, are still performed manydhroughout the world. This is

because the automated quality control requiresafagtcomplex image analysis.

Oranges are categorized according to surface &stwsuch as discolouration,
bruising and other blemishes. The grading is basedhe size of defects on the
orange. If the stem can be successfully sepafaigtdthe potential defects, then the

accuracy of the resulted grading would be improved.

High speed is required in the real-time applicgtiand a global inspection is
applied by default to every view of each orangen géneral, high quality oranges
take shorter time to be categorized, and low qualitnges take longer time. The
processing time is also affected by the orange sik#ost of the oranges with good
quality are delivered to the packing house. F@& tbason, the time frame between
adjacent oranges can be much smaller than thespeet to process the most detailed
analysis for a worst-case orange. Sorting the emaygthe pipeline can improve the

throughput and overall grading performance. Thelligent time management has
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to be incorporated with state-of-the art hardwateh as digital signal processor and

specialized neural network parallel processor.

Vision-based quality grading system is tested aiige 4.2.

3.1.2 Image Capture and Processing

The hardware components are constructed as follows:
1. A master processor.

2. A colour frame grabber based on Texas Instrusn€nS320C40 DSP.
3. A Philips prototype board based on a L-Neura2lpel neural engine.
4

An industrial digital interface board.

There are three main image processing stages, asutiistogram analysis, local
defect search and stem detection. A fourth propesades the global supervision
and control of the other three processes. Theralting process keeps track of the
locations of individual oranges that are currentithin the machine. Oranges are
rolled and moved under the camera. The entiraserdf the orange is imaged by

using six planar views normal to the axes of a&h coordinate.

As soon as the image is captured, the initial imageaction is performed by the
C40 DSP. Afterwards, each of the views is analyzed a view is excluded from
further processing if the particular view has lomlgability to contain either defects
or the stem. This probability is predicted by aunaé network algorithm that

classifies colour histograms (normalized red arg) of the pixels.

The DSP passes the remaining views to the L-Neowardofor a more detailed
analysis on the local surface area. A region-bagestator is applied to the whole

image, and each region is classified as normalefealed using a second neural

network.

Before treating an identified region as a defégg necessary to double check if the

defect is a stem or not. If the defect is muchgbrgor smaller than the size of a
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typical stem, then there is no need to performdpisration. A third neural network

is used for the stem identification.

After classification, the oranges on the pipelime deflected to appropriate bins

using purpose built pneumatic valves.

3.1.3 General Algorithms

3.1.3.1 Histogram Analysis

The first stage in image processing is named higtoganalysis. The colour
distribution of each of the views of an orange nelgzed and turned into features,
such as mean and standard deviation. Histogratyssmaf the normalized pixel
values is targeted on the red and green compowahts The assumption is that a
good orange has normally distributed red and gm@aur components, since the
natural skin pigmentation is composed mostly of awdour. Defects tend to
interrupt the smooth normal distribution on the aadl green components. However
this effect is small and the number of pixels oa tlefected area is not predictable.
Therefore, a view can be computed by the fit offtequency distribution of the pixel
values on the red and green components. The seBigh fit well to a Gaussian will

be classified as a good orange. The best fit Gaugéx) is given by:

1 —(x— w?

9@) = ——=e 22 @)

wherex is the pixel values andu are the standard deviation and mean computed
from the distribution. The error is the summedfeddnce between the best fit
function and the histogram data. Defects produ@eacteristic ranges of errors in
specific segments of the histogram. For this neaite histogram data is divided

into a set of segments where:

i = Xxh(x) = g)|x €X; ()

The experiments show that a simple scoring ruledbas the fit of a Gaussian to
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the original histogram does not perform well coneplawith a neural network based
classifier. The neural network based classifieralde to learn the characteristic
differences in a measured distribution from a ndrmigtribution. The neural
network applied in this system is a modified foritlee back-propagation training
algorithm. The input layer has ten neurons andksnes information from the red
and green histograms. The output layer has tworonsu Two classes are
predefined, one is for good oranges and the otlmer is for defected oranges.
Oranges classified into the second class are passt#te second stage for a more

detailed analysis.

In the first stage, a fraction of the top qualitaimges may be classified as a lower
quality band. From the commercial point of vievpgrading the quality is better
than downgrading the quality. However, it is sdfedowngrade the quality in the

first stage and perform a more detailed analysikensecond stage.

The number of training samples should be at leastimes larger than the number
of weights in a multilayer back-propagation networlviore than three thousand of

orange samples are used for training includingentypercent testing set.

3.1.3.2 Local Defect Search

Defects can be segmented from the normal skin fonoae detailed analysis.
Local colour variation between pixels from the samn@&nge should not be identified
as defects. Various types of defects make the settion process even harder by
only looking at the local structural or texturabperties. All defect types contribute
roughly equally to the final grading decision. THefect detector using a set of
masks is applied to regions of the orange imagée defect is characterized by a
discontinuity in the skin pigmentation. The extestlocal features are fed into the

second neural network classifier.

Many edge detectors do not respond strongly tad#dfects on oranges. For this
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reason, five larger and smoother operators arentedefor the local defect detection
purpose. There are two key steps in this operation

1. Divide the image in regionskN). N is the typical size of defects.

2. Apply five operators on red and green componengarséely. Each

operator is atNxN matrix with integer elements, such as zero and one

The first four operators are defined as follows:

. n . n
—1, otherwise —1, otherwise

1, i>j 1, i< (N—))
mi;=1{ 0, i=j m =4 0, i=(N—)) (6)
—1, otherwise —1, otherwise

The fifth operator is constructed based on theltesfithe third and fourth operators.

4 3
My TMmy;
misj =< 3 4 > (7)
Convolution is a simple mathematical operation \Wwhis fundamental to many
common image processing operators. The followorghtila shows the convolution

of NxNmatrix and operator.
Il:’g =X Z;'l=1 x{jg mﬁ‘j (8)

The input layer of the second neural network coistéén neurons. Applying each
of the five masks to the red and green compon@&marately will generate ten results
after computation. The output layer of the secowedral network contains two
neurons. Two classes are predefined, one is fonalcskin, and the other one is for
defected skin. The database used in the secogd stdhe same as the one in the
first stage. Defects are extracted for trainingppses. Some defects are the same,
which differ only in the selection of the start pbi The convolution is only applied
to arbitrarily partitioned regions. This can h&pincrease the computational speed.

In the second stage, the stem is treated the sauhefects.
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3.1.3.3 Stem Detection

Stem is hard to distinguish from defects. Histagrdoes not show significant
differences between the stem and defects. Stena Inasch more regular structure
than defects. The high degree of radial symmeap ©e used to aid the
identification of stem. The family of Zernike monie is a powerful technique for
stem detection. Zernike moments are very sensitiveircular symmetries and
invariant under rotation. A two dimensional squamask based on a Zernike
polynomial is taken to have a unit radius in pal@ordinates. Each pixel is assigned

a complex value.
Zym(0,1) = [cos(mB) + j * sin(mB)] * Ry (1) 9
The Zernike polynomiaR,nis defined as follows:

_(n-m)

(-1)5(n-s)! _
R — 2 (n-2s) 10
nm ZS:O S!((n-lz—m)_z)!(n-;m_l)!r ( )

wheren is the major order of the Zernike polynomial, and the minor order.

Figure 13 shows three Zernike masks.

[+

Fig. 13. Example of Zernike masks(Recce, Taylor, Piebeogidno,1996).

The spatial features extracted from the suspedemssare fed into the third

neural network classifier.

3.1.4 System Performance

This system is aimed directly for use in a comnaranachine with stringent

real-time requirements. The features of this systre cost-effective, robust,
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simple and suited for implementation in parallefdveare. The experiment is

based on four views of oranges.
1. The first view contains no defects.

2. The second and third views contain defects whicke leeen detected.

3. The fourth view contains a detected stem.

Table 1 shows the errors given by the best of #gral networks tested. The

error labeled “down” is the misclassification thpbtentially leads to a final

downgrading of the orange.

Network Training Set Test Set
- down - over - down - over
Histogram 0.00% 0.00% 13.73% 2.06%
Defect 0.00% 0.62% 0.80% 2.02%
Stem 0.11% 0.87% 0.44% 1.31%

Table 1. Vision-based algorithm classification result(Rectaylor, Piebe & Tropiano,1996).

The largest variance between the training andeests is the histogram analysis.
The histogram contains no spatial information, anlikely to be refined significantly.
Increasing the number of training samples may helgolve this problem. The
evidence for the advantage provided by use of heetavorks is shown in Figure 14.

Part A is a good orange. Part B contains a detestiem. Part C and D contain

identified defects.

Fig. 14. Processed orange images using high speed visisaebalgorithm(Recce, Taylor, Piebe &

Tropiano,1996).
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3.2

3.21

Citrus Fruit External Defect Classification

Overview

Vijayarekha and Govindaraj (2006) suggest thaturest extracted from the images

of citrus fruit in either spatial or frequency damacan be used for defect

classification. The external surface quality isedily related to the marketing and

sales.

The automatic grading system can significamprove the accuracy and

consistency while eliminating the subjectivity ohnual inspection.

The defects on the external surface are causeddyeasons.

1.

Pre-harvest and Post-harvest diseases. The mhagases are diplodia and
phomopsis stem-end rot, splitting, pitting, greem d&lue mold, sour and
brown rots, anthracnose, and alternaria rot, etc.

Mechanical damages during transportation.

The defects on the citrus fruit are characterizgddifferent textures. Among

various textures, three types of defects are catsgh such as pitting, splitting and

stem-end rot.

1.

Pitting is caused by mechanical damage or retlgees exchange during
transportation. Pits can coalesce to form irregplaches and brown to
black blemishes.

Splitting is caused by the inability of the qus&in to hold the weight of the
whole fruit. The outer skin of the citrus fruitlée and the inner pulp gets
exposed. The defective region is usually brightanpared with the normal
skin.

There are two types of stem-end rot, such asnppsis stem-end rot and
diplodia stem-end rot. Both types are very simidrthe initial state,
however, phomopsis stem-end rot soon will becomadadark brown and a
clear line of demarcation is formed at the junctlmetween diseased and

normal skin.
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Wavelet packet transform (WPT) extents the wavetansform. Wavelet
analysis provides the spatial and frequency infoionawhich is useful for texture
classification. The features, e.g., mean and stahdeviation, are extracted from
each of the detail as well as the approximationsuolows, and then fed into the

Artificial Neural Network (ANN) classifier for det# classification.

This system cannot classify the stem-end rot defdoth appears on the entire
surface of the fruit under inspection. If the exlgee not clearly defined, then the
features extracted from such images are not useiithe citrus fruit classification

process is shown in Figure 15.

Input

Segmenta
Image > gn o

No

Yes No

external
defect

C{‘“\’N , WPT Full
assifier @ Feamre [ Image

Llxtraction

Fig. 15. Citrus fruit external defect classification proségijayarekha & Govindaraj, 2006).

The citrus fruit classification system is testegaction 4.3.

3.2.2 Wavelet Packet Texture Analysis

Wavelet-based texture classification methods ektrextural features from the
wavelet sub-bands. The advantages of using waaeddysis are listed below:

1. Decompose the given input image into frequency lsds. Textures
presented in the image can be analyzed and exdrattifferent scales.

2. Both low and high frequency sub windows can be yaeal. The high
frequency sub window can be used as the next higbeel of
decomposition.

3. A high value of the wavelet packet transform caogint represents more
edges in the image. A low value of the wavelet kpactransform

coefficient represents a smooth texture.
-29-



The decomposition is performed by convolving thigioal signal separately with
two half brand pass wavelet filters.

1. The low pass decomposition filter (LD) removdisfrequencies that are
above half of the highest frequency and collectly d¢ime low frequency
contents in the signal. The low pass filteringvkal the resolution, but
leave the scale unchanged.

2. A high pass decomposition filter (HD) removelstla¢ frequencies that are
below half of the highest frequency and collectyydhe high frequency

contents.
The formula of the wavelet packet transform is medi as follows:
Y[n] = Y h[k].x[2n — K] (11)

where Y[n] is the output sequence, aifh] is the input signal. Wavelet packet
transform analyzes the signal at different freqydmands with different resolutions
by decomposing the signal into a coarse approxanaéind detail information.
Approximations and details are two orthogonal sabsp by splitting an individual

discrete signal. Figure 16 shows the decompositii@n bank structure.

Fig. 16. Decomposition filter bank structure of WPT(Vijagldna & Govindaraj, 2006).
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The mean and standard deviation of 16 sub-windoevs@mputed for each image

using the following formulas:

Mean(m) = %Zﬁ'j:lpij Standard deviation = [% Yicalpyy —m]*1%% (12)

where R is the coefficients of the wavelet packet transfed image at row and

columnj, andN is the total number of pixels.

3.2.3 Neural Network Classifier

The neural network classifier is constructed a®Wes:
1. Thirty-two input neurons.
2. Three output neurons.
» Pitting Defect: [1-1-1]
* Splitting Defect: [-11-1]
« Stem-end Rot Defect: [-1-1 1]

3. Ten hidden neurons.

The neural network architecture is shown in Figlife

Hidden neurons

il

i2

Tansig

Transfer
function

Tansig
Transfer

function

Fig. 17. Neural network classifier for defect classificaifvijayarekha & Govindaraj, 2006).

The error is considered to be the sum-squared. erfi@n neurons in a single

hidden layer are found on a trial, and the erraida minimal. The training
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method is the gradient descent back-propagatioh wibmentum and adaptive
learning rate. The momentum helps in faster cayerage. Training stops at any
of the following four conditions:

1. Maximum number of loops is reached.

2. Exceed the maximum time frame.
3. The predefined goal is reached.
4

Gradient falls below minimum gradient.

The transfer function between the hidden and outpoyedr is the bipolar tangent
sigmoid non-linear transfer function. Features moemalized and given as the
input vector. The network cannot be over traine@ihe classification is defined as
follows:

1. If the first output neurorPl is higher than the others, then the fruit may
contain pitting defects.

2. If the second output neurd?? is higher than the others, then the fruit may
contain splitting defects.

3. If the third output neuro®3 is higher than the others, then the fruit may

contain stem-end rot defects.

3.2.4 System Performance

Twenty-three citrus fruits are collected from tharket. They are manually
categorized as follows:
1. Three citrus fruits are good.
2. Eight citrus fruits have pitting defects.
3. Five citrus fruits have splitting defects.
4

Seven citrus fruits have stem-end rot defects.

The image capture system is constructed as follows:
1. Acolour CCD camera (Pulnix TMC-6700 CL).

2. A C-mount lens of focal length 6mm.
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3. Acamera link interface compatible frame grabbed ¢&ll- 1428).
4. An illumination source.

5. Apersonal computer system (Intel Pentium IV @Z5HEZ).

The citrus fruits are placed on the vertical stan@ihree images are captured for
each fruit with proper illumination at different gibons. An image bank is
generated for the image processing and classicggurpose. The neural network
classifier is trained using twenty-three citrusitu Forty-nine citrus fruits are
selected as the testing dataset. They are marostgorized as follows:

1. Eight citrus fruits are good.

2. Nineteen citrus fruits have pitting defects.
3. Twelve citrus fruits have splitting defects.
4

Ten citrus fruits have stem-end rot defects.

Table 2 shows the classification result.

Fruit Image | No. of Images | No. of No. of Wrongly | o4 of Correct
Types Correctly Classified
Classified Images Classification
Images
Pitting 19 16 3 84.21%
Stem-end rot 10 5 5 50.00%
Splitting 12 12 0 100.00%

Table 2. Citrus fruit external defect classification res(Mijayarekha & Govindaraj, 2006).

The classification for the stem-end rot defectsasideal. This is because some
test samples are fully rotten and there are nataktifferences on the fruit surface
area. The intensity variation on such images isobwious and the edges are not
prominently defined. Increasing the number ofnirey samples may help to
identify the stem-end rot defects better. Somesrotimages and artificial neural
network classification results using wavelet padkansform features are shown in

Table 3.
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Image Outputs obtained Classitication
Pl P2 P3

0.9996 -0.9993 -0.9988 Pitting
(1.9993 -0.9965 -(1.9982 Pitting
0.9995 -0.9997 -0.9983 Pitting
-0.9687 -0.9983 09558 Stem-end rot
-0.9813 -0.6173 0.8965 Stem-end rot
~0.9768 0. 7844 0.5761 Stem-end rot
-0.9930 0.9989 -1.0000 Splitting
-0.9259 0.9280 -0.9995 Splitting
-0.9921 0.9920 -0.9999 Splitting

Table 3. Part of the citrus fruit classification resultstivimages(Vijayarekha & Govindaraj, 2006).

3.3 Intelligent Fruit Sorting System

3.3.1 Overview

Guo and Cao (2004) developed an intelligent fraitisg system based on colour
image processing. The system is designed for rnmywith circular shape, such as

apple and orange. A block schematic of the syséeshown in Figure 18.

. -
Vision System co
ce
]

sorting mechanism

N " s
U || Electric control
g Frglj.lit um@ponalﬂjon a.ncw System
=

z= = J P g Q

Fig. 18. Colour image processing based intelligent fruittsg system(Guo & Cao, 2004).

The system consists of three parts.
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1. Electric control system.
2. Vision inspection system.

3. Fruit transportation and sorting mechanism.

The vision inspection system is constructed asvel
1. Two CCD cameras are installed on the top left agist toncerns witl20
degrees from each other.

2. One CCD camera is installed above the pans.

Majority of the fruit surface areas are imaged byeé cameras. Some surface
areas may not be inspected. However, the expetimesnlt shows that this has
little influence on the overall performance. A ¢i#oschematic of the vision

inspection system is shown in Figure 19.

Frujt images -------------.._.__-------....m-.--.
e tﬁ: Fruit images
'E —” '@.: : H
Tenge scquerient e
g
=
T Tmaging systerm
- Oprical FLET sensor

Fig. 19. Vision inspection system in fruit sorting systeod@ Cao, 2004).

The system requirement is about five apples pesrgkcso one apple has to be
fully processed within two hundred milliseconds.heTtime allocation is designed
as follows:

1. Image acquirement is limited within one hundred lisetonds. Two
Matrox Meteor-11 frame grabbers are chosen to spgedhe process of
image acquisition. The experiment shows that threages can be
captured within one hundred milliseconds.

2. Image processing is limited within one hundred isetonds. Three

captured images have to be processed within ondrédmilliseconds.

In order to improve the system performance, thiefohg steps should be applied.

1. Optical fiber sensor is adopted to provide outdidgger signal for the
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image system.
2. Multi-threads program structure is designed to mwprthe grabbing speed.
3. Single field grab mode is applied to resolve therdeld image problem

caused by motion.

3.3.2 Feature Extraction

Fruit segmentation is an important step before smagocessing. The fruit
segmentation has to be done within fifty milliseden The algorithm is required to

maintain certain precision.

Ohta colour space is derived based on a set obgotial colour features. The
conversion from RGB to Ohta colour space is lined @omputationally cheap

compared with HSI and HSV. The formula is showlowe

(R+G+B)

( 11 =

' w5 I, =R-B

4 L= ——= , _ (2G-R-B) (13)
2 R )

(26-R-B)
[ 1y - e

2

A constant threshold value is selected for imaggmemtation purpose. The
experiment result shows that tHe colour feature can mask out the image

background. A sample segmentation result is shaviagure 20.

Original image Result of threshold segmentation

Fig. 20. Result of fruit segmentation using a constantshodd(Guo & Cao, 2004).

After the segmentation process, some noises dr@stthe background. Blob
algorithm is selected as the noise removal toolhe Pprocedure is defined as

follows:
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1. Select a constant value.

2. If the area is smaller than the constant valua) thavill be removed from

the image.

The result after implementing the blob algorithnsi®wn in Figure 21.

Fig. 21. Result of noise removal using blob algorithm(Gu@&o, 2004).

The contour detection is crucial to the correcitfshape feature extraction. The
contour of apple blob is not smooth and traditioeddje detector will mislead the
feature extraction. The interpolation-based contdetection is applied in this
system. There are four key steps in this process.

1. Compute the coordinates of geometrical center pleaplob.

2. Search twenty-four points on the contour fifteegrée each.

3. Compute the distances between the contour poidtgi@ometrical center.
4

The distances are used as the lengths of relahigs.

An example of the interpolation-based contour deirdgs show in Figure 22.

Fig. 22. Interpolation-based contour detection(Guo & Cad02).

3.3.3 Colour Ratio Judgment

Uniform red colour distribution on the apple sudarea is one of the criteria in
quality inspection. High correlation coefficierttave been obtained between the

sugar content and the colour ratio of apple. Tolew space is converted from
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RGB to HSI. The HSI colour space consists of tltemponents, such as hue,
saturation and intensity. Hue is the pure colsaturation is the contrast level, and
intensity is the brightness. HSI colour spaceoisstdered to be more intuitive than

RGB colour space. The conversion from RGB to l4Sldfined as follow:

(H _ cos‘l{ (R-G)+(R-B) }
24/(R-6)2+(R—B)(G-B)
{s = 1- R+;+G [min (R, G, B)] (14)
R+B+G
=

3

Figure 23 shows the hue colour feature distributioRed colour is not uniform

and restricted in certain areas.

E
&\1,'[[{-‘!#&

A

Fig. 23. Hue colour feature distribution(Guo & Cao, 2004).

Figure 24 shows the result of searching red pixets image.

Red pixels

Fig. 24. Result of searching red pixels in an image(Guoa(2004).

The colour ratio of apple can be calculated usiegfollowing formula. C is the
colour ratio. R, Rz andRy are the areas of red pixels on the left, right toml

images. A, Ar andAr are the areas of apple on the left, right and nogges.

_ R;+RR+RT
- A +AR+AT

(15)
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3.3.4 Naive Bayes Classifier

A good classifier can learn standard patterns fdiifierent samples. The naive
Bayes classifier is selected and trained for quaiitspection purpose. The
probability distribution of the apple image is cmlesed to be a Gauss normal
distribution. The estimated priori probability d#ies are computed using the

following formula:

i) plrlw) = e (-S) (16

20

The estimated priori probabilities of classes aoenguted using the following
formula. K is the total number of objects in the training se; is the number of

objects from the clagsin the training set.

(w,) = K 17
The following formula shows how to classify all thatterns into class

vy = maxpGlogp@)]  (18)

3.3.5 System Performance

The system is tested using FuJi apples. Thresaedaame predefined as follows:
1. Class A: More than seventy percent of the suriadeep red.
2. Class B: Forty to seventy percent of the surfaaed.

3. Class C: Less than thirty percent of the surfacedl.

Ten typical samples are selected from each classdiming purpose. Sixty apples

are selected for testing purpose. They are manocalegorized as follows:

1. Twenty of them should belong to class A.
2. Twenty of them should belong to class B.

3. Twenty of them should belong to class C.
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The classification result is shown in Table 4.

Samples Number of apples classified into each group Accuracy
A B C
A 18 2 0 90%
B 1 17 2 85%
C 0 1 19 95%

Table 4. Classification result of intelligent fruit sortingystem(Guo & Cao, 2004).

The apple cannot be rotated on the conveying systeraome part of the surface
is unchecked. This is the main reason why somihefapples are misclassified.
If more images can be captured per image, thepehiermance of this system will

be improved.

34 Neural Network-Based Apple Grading

34.1 Overview

Unay (2005) developed a novel artificial neuratwork-based segmentation and
apple grading system. Database consists of oneiui@ges of “Jonagold” apples.
Images are captured from a diffusely illuminatediemment. The high resolution
monochrome digital camera has four interferencedfss filters centered at 450
nm(BL), 500nm(GR), 750 nm(RE), and 800 nm(IR) with respecbeadwidths of
80, 40, 80 and 50 nm. Each filter image is comgaget30x560pixels with eight

bits-per-pixel resolution. Figure 25 shows somanegles of the filter images.

28

Fig. 25. BL, GR, RE, and IR filter imaggnay, 2005).

“Jonagold” variety is selected, because the biww@d skin is more difficult in
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segmentation due to the colour transition areasguré 26 shows some examples of

the “Jonagold” apples.

Fig. 26. “Jonagold” apple sample@dJnay, 2005).

3.4.2 Defect Segmentation

Features are extracted from each of the four fiteages using the following

formulas:
1
( average(w) . LyN . b
1
standard deviation(o) = (ﬁ N (pi — /1)2)2
minimum(min) = min(p;) fori=1..N
statistical {  maximum(max) = max(p;) fori=1..N
gradient(grad) = max — min
N p.—1)3
skewness(skew) = M#
No
N (p.—p)*
\ kurtosis(kurt) = Ziz P i)”

No#*

i i + where is the
textural | invariant moment(Q,) — D207 Doz Dy

l normalized central moment
(  area(S) = N

shape < perimeter(P) = N, (19)
, . P?
(circularity(C) = oo

Image preprocessing is required before the defegtnentation. Images are

captured on a dark, uniform coloured background.coAstant threshold value is

-41-



used to segment the apple from the background. eXperiment result shows that
using a constant threshold will remove some lovensity areas as well, such as
some very dark blemishes. Hence, a morphologiiiialgf operation is also used to
recover these small holes. After background remdvait area is eroded by a

rectangular structuring element with size adapivehe fruit size.

Sometimes the neural network misclassifies hedifisyie closer to the fruit edges.
An added new feature is inversely and linearlytesldo the distance of each pixel
from the geometric center of the fruit. The neunatiwork used for segmentation is
the back-propagated network of perceptron neurB®N{N), which makes binary
decision between defected and healthy skin. Thehag thirteen input neurons,
five hidden neurons and two output neurons. Thgmgatation performance is
independent of the number of hidden neurons ahwee f The net uses the adaptive
learning rate and cross validation technique. f{f&ieing and validation sets do not

overlap.

Stem appears as dark blobs on images which itasitn some of the blemishes.
BPNN does not consider the presence or absentesd# tegions. Figure 27 shows
the stem before and after removal. The defected iardisplayed in white on both

images.

Fig. 27. Stem removal using neural network-based appleiggadlgorithm{Unay, 2005).

There are four key steps in the defect segmentatiocess.
1. Background removal and threshold-based object segtien.
2. Statistical, textural and shape based featuresxracted and introduced to
support vector machines classifier.
3. The regions identified as the stem are removed ftben segmentation

result.
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3.4.3 Neural Network Classifier

Average, standard deviation and median valuesaoelated over the segmented
areas from all filter images. The ratio of defelcpexels is also computed as one of
the features. The features are normalized to havaverage of zero and standard
deviation of one before the classification. Fiupervised classifiers are tested for
the same algorithm.

1. Linear Discriminated Classifier (LDC), searches farlinear decision
boundary that separates the feature space into halb-spaces by
minimizing a criterion function.

2. Nearest Neighbor Classifier (k-NN), assigns an abjeo the most
represented category among the k nearest samptlestafbject.

3. Fuzzy Nearest Neighbor Classifier (fuzzy k-NN)the fuzzified version of
K-NN. The formula is defined as follows:

-2
(et

u;(x) = = (20)

Zea (= [)m=1

ui(x) is the predicted membership value of test samte classi, u; is the
membership of " neighbor to thé™ class, andn is the fuzzifier parameter
that determines how heavily the distance is weijhte

4. Adaptive Boosting (AdaBoost), tries to form a finsttong classifieq)
from an ensemble of weak learnéspy continuously adding these weak
learners until the desired training error is reacheThe formula for a test

samplex is defined as follows:

g(x) = sgn[T ¥ a h(x)]  (21)

5. Support Vector Machines (SVM), is a statisticalrtéag method based on
the structural risk minimization procedure. In thieary case, SVM tries
to find the hyperplane that separates the classés maximum margin.

The formula for a test samptas defined as follows:
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g(x) = sgn[¥i_, a; yiK(s;, )] (22)

N is the number of training samples,is the class label, ar(s,x) is the

kernel function.

Sample of the dataset are randomly ordered befameirtg. This can help to

prevent biased classification.

3.4.4 System Performance

Some examples of segmentation by neural networklayen in Figure 28. The

defected regions are in gray colour and healthyg amevhite colour.
n

Fig. 28. Example of segmentation using neural netwthkay, 2005).

After the segmentation step, features are extracted the segmented regions,
and apples are classified into two predefined elaby several supervised classifiers.
The experiment result is shown in Table 5. “D’emsfto defected class, and “H” to

healthy one.
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classifiers LDC 5-NN Fuzzy 5-NN AdaBoost SVM
ground truth| ground truth ground truth ground truth ground truth
classes D H D H D H D H D H
confusion| D | 227 | 51 | 213| 27| 211 26 214 21 220 25
matrice: | H| 19 | 229| 33| 253 35 254 30 259 24 25
class % 92.3|81.8|86.6| 90.4| 85.8| 90.7, 878 925 894 91
overall % 86.7 88.6 88.4 90.3 90.3

Table 5. Result of classification using neural network-tthgeading algorithnfUnay, 2005).

=

The worst classifier in overall performance i fimear discriminant classifier

(LDC).

and SVM classifiers perform best wi80.3% overall recognition.

Nearest neighbor and fuzziness classiterge similar results.

AdaBoost

The SVM is

more suitable to this system, because it doesaoplire previous training sets.
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Chapter 4

Preliminary Explorations

Intelligent image processing techniques and frtadmg algorithms are modifie
implemented and tested in tichapter. The experimeand analysis are preseni
in detail. The flawsandstrengths of previous approachee explored in order i

devisea novel algorithm.

4.1 (Qsu’s Method

4.1.1 Experiment and Analysis

In machine vision and image processing, Otsu’'sstiolling methao (described in
Section 2.1.1)is used to automatically perform histogram sl-based image
thresholding. The histogram method assumet there is araverage value for tr
foreground and background pixels. In this case,ftileground is the orange, &
the background is the conving system. Four Examples apeesente in this

section for testing Otss’'method.
1. Example One Testing OtsL’s method on ripe oranges

Figure 29shows a ripe orancimage with no blemishes.

Fig. 29. Ripe orange sample for testing Otsu’s method.

Figure 30shows three isolated colour channelnatural colours.

Red Channel Green Channel Blue Channel

Fig. 30. Isolated colour channels for a ripe orange sample.
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The thresholdvalues are computefor three channels separatelising Otsu’s
method.

* Red channel: 96

* Green channel: 46

« Blue channel: 9

Figure 31 showsthe processed images after applying threshols on three

channels separately.

Red Channel Green Channel Blue Channel

Fig. 31. Example oripe orange segmentatiarsing Otsu’s methc

Otsus method works perfectly « the isolated red and greashanne. The
average intensity on th#ue chann¢is low due to the nature of the orai, so some

background pixels appear che right image.
2. Example Twa Testing OtsL’s method on blemished ripe orange

Figure 32shows a ripe orancimage with blemishes.

Fig. 32. Blemished ripe range sample for testing Otsu’s method.

The thresholdvalues are computefor three channels separatelging Otsu’s
method.

* Red channel: 94

* Green channel: 53

¢ Blue channel: 11

Figure 33 showshe processed images after applying threshols on three

channels separately.
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Red Channel Green Channel Blue Channel

Fig. 33. Example oblemished ripe orange segmentation using Gtmethod.

Small holes appear on tlleft image which is caused by sohogv intensityareas
on the red channekuch asblemishes and stem. Has no impact on t overall

performance. Igeneral Otsu’s method works finr blemished ripe orangt
3. Example Three Testing Otst’s method on unripe oranges

Figure 34shows an unripe oran image with no blemishes.

Fig. 34. Unripe orange sample for testing Otsu’s method

Figure 35shows three isolated colour channelnaturalcolours.

Red Channel Green Channel Blue (:‘lzannel

Fig. 35. Isolated colour channels for unripe orange sample

The thresholdvalues are computefor three channels separatelising Otsu’s
method.

* Red channel: 55

* Green channel: 50

¢ Blue channel: 11

Figure 36 showsthe processed images after applying threshols on three

Red Channel Green Channel Blue Channel

channels separately.

Fig. 36. Example ounripe orange segmentation using Ossuethoc
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Small loles appear on thleft and right images which amaused by differer
reasons. It is evident to see that O’s method is able to identifsome low
intensity area®n the orange sk, such as blemisheslit seems like the blemish
easier to be detected on the red channel. In ger@tsi’'s method works fine fc

unripe oranges.
4. Example Four. Testing OtsL's method on blemished unripe orangt

Figure 37shows an unripe oran image with blemishes.

Fig. 37. Blemishecunripe orange sample for testing Otsu’s method

The thresholdvalues are computefor three channels separatelising Otsu’s
method.

* Red channel: 67

* Green channel: 48

* Blue channel: 11

Figure 38 showsthe processed images after applying threshols on three

channels separately.

Red Channel Green Channel Blue Channel

Fig. 38. Example oblemished unripe orange segmentation using ®ts@thod.

Holes on theleft image are caused by the colour transitiarea on the red
channel. Holes on thmiddle imag are caused by the low intensity ai on the
green channelsuch as blemishes. Holes on right imageare not important ii
this case. tlis evident to see that ttintensity variation on the green channel

more imporant than the others for blemish identifica.

-49 -



4.1.2 Algorithm Refinements

Otsu’s method works fine for the segmentation @nge and conveying system,
however, the cost of Otsu’s method is computatignakpensive. Constant
thresholds can be used to replace Otsu’s methobe bfightness of the conveying
system is very low compared with the orange skind, the best contrast appears on

the red channel. Figure 39 shows the result ohggasegmentation on the red

channel using a constant threshs0d

Red Channel

RGB

Thresholding

Fig. 39. Orange segmentation on the red channel using ataanthreshold value fifty.

One hundred orange images are randomly selected fhe database. The
comparison is made between Otsu's method and cdnstaesholds. The
assumption is that Otsu’s method is one hundrectepéraccurate on object
segmentation. Orange segmented by a constanhtiieis compared with the one
segmented using Otsu’s method. False and trugiyeosate are selected as the

statistical judgment.

1. False Positive Rate
False positive rate is the proportion of negativ&ances that were erroneously
reported as being positive. If a background pigedrroneously classified as a
foreground pixel, then the pixel will be claimed adalse positive instance.

All the background pixels are classified as negainstances.

number of false positive instances (23)

for =

total negative instances

2. True Positive Rate
True positive rate is the proportion of positivestances that reported as being
positive. If a foreground pixel is reported aoeefjround pixel, then the pixel

will be claimed as a true positive instance. Aletforeground pixels are
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classified as positive instances.

number of true positive instances

tpr = (24)

total positive instances

Figure 40 shows the result of orange segmentatgingua constant threshold
value50. Low false positive rates with high true positiketes indicate that the

constant thresholBl0 can achieve a similar result with Otsu’s method.

0.3
0.25 8
o
7 0.2
[¢»]
J 015
?,
g' 0.1
& 005
[¢]
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0 0.2 0.4 0.6 0.8 1
True Positive Rate

Fig. 40. True and false positive rates using a constargshold value fifty.

Some background pixels are erroneously classifedoaeground pixels. This
means the threshold value can be increased. Fdjushows the result of orange

segmentation using a constant threshold véQ.e

0.3

0.25

0.2
0.15

0.1
0.05 L
1

a1ey aANIsod asjed

0 T T T T
0 0.2 0.4 0.6 0.8

True Positive Rate

Fig. 41. True and false positive rates using a constargghold value seventy.

It is evident to see that the false positive ratesrease and the true positive rates

stay the same. Most of the background pixels aotassified correctly without
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affecting the foreground pixels. In conclusionpsiant thresholds can be used as a

replacement of Otsu’s method.

4.1.3 Summary

Otsu’s method works fine for the segmentation @nge and conveying system,
however, it is computational expensive. Constamesholds can be used as a
replacement of Otsu’s method on the red channehe $tatistical analysis of true
and false positive rates shows that most of thelpivelong to the orange are
classified correctly, and a few pixels belong tce tlkonveying system are
misclassified. The threshold value has to be cbadragcordingly when the lighting
condition is changed. The following steps havéddollowed in order to find the
best threshold value.

1. Adjust the camera and light source.

2. Select one hundred orange samples randomly.

3. Apply a constant threshold on the red channel.

4. Compare the result with Otsu’s method using steéistneasurements, such
as true and false positive rates.

5. The best threshold appears when the true positites rare high and the

false positive rates are low.

Once the orange is extracted from the conveyingesy®n the red channel, then a
mask can be generated and applied to the greerblaedchannel separately for
orange segmentation. In this way, it is more ateuthan applying Otsu’s method
on the blue channel. Because the average intemsitige blue channel is very low,

the foreground and background pixels can be easigd up.
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4.2 High Speed Vision-Based Quality Grading of Ganges

The algorithms presented by (Recce, Taylor, Pied@edfiano, 1996) are tested in
this section for getting some experience only. Bhgorithms implemented are
slightly different from the original work (descritbén Section 3.1) due to the limited
resources. The first (histogram analysis) and rs@¢lmcal defect search) stages of
processing are tested separately for demonstrapogel. The combined result of

implementing all three stages (described in Secti@rB) is also presented.

4.2.1 Histogram Analysis

4.2.1.1  Algorithm Details with Sample Computations

The histogram analysis of normalized pixel valigeetargeted on the red and green
channels only. The assumption is that a good erdrag normally distributed red
and green colour components. A constant threskallte seventy is applied on the
red channel for orange segmentation purpose. -Stdtee art histogram-based
features are extracted from the isolated red aedrgchannels separately, such as
mean, variance, skewness, kurtosis, energy andpntr The pixel values on both
red and green channels are normalized between mheniae. The histogram is
calculated based on the scaled grey levels. Fid@rshows an example of the

scaled histogram on the red channel.
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Fig. 42. Example of scaled histogram.

The approximate probability densiB/for each scaled grey levelis computed
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using the following formula:

number of pixels at each grey level (25)
total number of pixels

Pi:

Figure 43 shows an example of computed probaliktysities for each scaled grey

level.

1 2 3 4 5 B 7 8 9

Fig. 43. Probability densities for each scaled grey level.

Six features are extracted based on the histogtaained from the red and green

channels separately.

1. Mean
=YL, Pi  (26)
2. Variance
o=Y_,P(i-w? (27

3. Skewnessis a measure of the asymmetry of the probabiligtribution of a

real-valued random variable.

skewness = Vo Y1 P (i —w)? (28)

4. Kurtosis is a measure of the “peakedness” of the probghdistribution of a

real-valued random variable.
kurtosis = o Y P (i—wt (29)

5. Energy

energy = Y7_, P, (30)
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6. Entropy is a statistical measure of randomness that carsée to characterize

the texture of the input image.

entropy = Y;_, P, InP, (31)

4212 Neural Network Classifier

The network neurons are constructed as follow:
1. Twelve input neurons.
2. Two output neurons: P1 andP2.
* Good Orange Class: [1-1]
* Blemished Orange Class: [-1 1]

3. Five hidden neurons.

The input layer has twelve neurons and combinesrmmdtion from the red and
green histograms. Two output classes are predefsueh as good orange class and
blemished orange class. Oranges classified in¢éobiflemished orange class are
passed to the second stage (local defect searcty moore detailed analysis. The
hidden layer has five neurons. This is to endueenumber of training samples is at
least ten times larger than the number of weighEeatures are randomly shuffled
six hundred times before feeding the neural networkhis can help to improve the
performance of the neural network classifier. Aaded description of the neural
network is presented below:

1. Network Type: Feed-forward back-propagation

2. Performance Function: Sum squared error(SSE)

3. Training Function: Gradient descent with momentand adaptive
learning rate(TRAINGDX)

4. Transfer Function: Log-sigmoid transfer functio®GSIG)

The orange classification is predefined as follows:

1. |If the first output neuro®lis positive and higher tha2, then the orange
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will be classified as a good orange.
2. If the second output neurdP2 is positive and higher thaR1, then the

orange will be classified as a blemished orange.

421.3 Performance

Seventy oranges are selected as the trainingsetata They are manually
categorized as follows:
1. Fifty of them are good oranges.

2. Twenty of them are blemished oranges.

One hundred oranges are selected as the testiagetlat They are manually
categorized as follows:
1. Fifty of them are good oranges.

2. Fifty of them are blemished oranges.

Histogram based features are extracted from the aredl green components
separately. Twelve features per image are fed timotrained neural network for

classification. The result is shown in Table 6.

Fruit Image | No. of Images | No. of No. of Wrongly | o4 of Correct
Types Correctly Classified
Classified Images Classification
Images
Good 50 19 31 38%
Orange
Blemished 50 31 19 62%
Orange

Table 6. Result of implementing histogram-based analysis.

In the first stage of processing (histogram ana)ysa fraction of the top quality
oranges might be classified as a lower quality baritlis safer to downgrade the
quality in the first stage and perform a more detaanalysis in the second stage

(local defect search). However the number of abretassifications for blemished
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oranges is very low. This means many blemishedga®s are incorrectly classified

into the good orange class. If that is the cdseatgorithm needs to be refined.

4.2.1.4  Algorithm Refinements

Image preprocessing is performed before extradtieghistogram-based features
from the red and green components. Each pixelevplon the red and green
components is replaced by the maximum variance gnfaur directions using the

following formula:

pij =

Pi-3)j1tP3+3)j] Pi(-3)1Pi(+3) P-3)G-3)TP+3)(j+3) P>i-3)(j+3)TP>i+3)(j-3) (32)

max[
2 2 2 2

For an illustration of the inner working of thisgalithm with data samples, see
Appendix B. Figure 44 shows the result after reipig the pixel values on the red
channel. The algorithm works the same as an aédaedge detector. All the

noises are eliminated and potential features anairesd.

Fig. 44. Example of image preprocessing.

The training algorithm is changed to fussy trainind\ fuzzy training algorithm
(Zhou, Li & Jin, 2002) is proposed to improve thatprn recognition performance
of neural network as an alternative to the conesati back-propagation training
algorithm with hard-decision supervision(HDS). [Eafl@ shows the classification

result.
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Fruit Image No. of Image: | No. of No. of Wrongly | o4 of Correct
Types Correctly Classified
Classified Images Classification
Images
Good Orange 50 30 20 60%
Blemished 50 34 16 68%
Orange

Table 7. Result oimplementing modified histogram-based analysis

The system performan: significantly improved after image preproces.
However thenumber of correct classificatis for bothgood and blemisheoranges

is still low.

4.2.2 Local Defect Search

4.2.2.1 Algorithm Details with Sample Computations

The defect is characterized by a discontinuitykim pigmentatio. The typical
size of defectdN is setto be30x30. Five operatorgdescribed in Section 3.1.3
are applied to the regions on the red and grcomponentseparately. Th
convolution is only applied to arbitrarily partitied region, which is aimed t
reduce the computationalcost. Figure 45 shows twpartitionec normal and
defectedregions with a typical size (30x3Q Someregions selected for traini

are the same, which differ only in the selectiothaistart point.

1 -

Neormal Region Defected Region

Fig. 45. Sampleregions selected with a typical size of 30x30.

Block-wise features areextracted from the partitioned regiors additional
features, which are considered to be useful foalltexture classification. There
are two types of bloclkvise features, such as mean blvarianceand squared bloc

variance. The mean block varianimbvis defined as follows:
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NN
i=0j=0Mij _ ZZ:O(PU — Py)?

mbv = NN m;; 3

(33)

where p; is the pixel value within the regidikN), R is the eight

neighborhood-pixels g which is defined as follows:

Pb:

[Pa-1G-1) Pa-1)j Pa-nG+1)  Pig+1) Pa+nyg+1) Pa+ni  Pa+nG-1)  Pig-1)]

The squared block variansbvis defined as follows:

NN
_ XiZ0j=o(my; — mbv)?

bv = 34
oY mbv 34

For an illustration of the inner working of thisgalithm with data samples, see

Appendix C.

4222 Neural Network Classifier

The neural network constructed is the same as mieedescribed in histogram
analysis (described in Section 4.2.1.2). Orandassified into the blemished
orange class may be passed to the third stagerif@ssan Section 3.1.3.3) for a
more detailed analysis. In the second stage (lbefalct search), the stem is traded
as defects. |If the defect has a similar size withypical stem, then the defect

definitely will be analyzed in the third stage (deised in Section 3.1.3.3).

4223 Performance

Five operators (described in Section 3.1.3.2) are appidhe partitioned regions
on the red and green channels separately. Blosk-\igatures are extracted as
additional features from the red and green chansepsmrately. The result after

classification is shown in Table 8.
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Fruit Image | No. of Images | No. of No. of Wrongly | o4 of Correct
Types Correctly Classified
Classified Images Classification
Images
Good 50 33 17 66%
Orange
Blemished 50 20 30 40%
Orange

Table 8. Result of implementing modified local defect searc

The number of correct classifications for blemish@@dnges is low. Many

blemished oranges are misclassified into the gaadge class. There are a few

possible explorations.

1.

Increasing the number of training samples malp He improve the
performance.

The typical size of defecké might be too big or too small.

The convolution is only applied to arbitrarilyaritioned regions. The

defected area might be missed.

4.2.3 Overall Quality Grading System Assessment

Oranges are examined in the following three stages:

1.

Histogram Analysis
In the first stage of processing, a fraction of tpmlity oranges may be
classified as a lower quality band. It is safedtavngrade the quality in

the first stage and perform a more detailed amaiysine second stage.

Local Defect Search

The defect is characterized by a discontinuity he skin pigmentation.
All defect types contribute roughly equally to theal grading decision.
The convolution is only applied to arbitrarily gadned regions. In the

second stage, the stem is traded as defects as well
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3. Stem Detection
The stem has a much more regular spatial struthame the defects. The
family of Zernike moments is a powerful technique sStem detection.
Zernike moments are very sensitive to circular swtmies and invariar

under rotation.

Three neural network classifiers are trained each stage separat. The

workflow is describedn Figure 4t.

Input Histogram No No
—— . - _—

Image Analysis = defect

Local Defect - No No
Search defect
Yes I

Stem Yes No

. L ——

Detection defect

defact

Fig. 46. System workflow.

One hundred oranges are selecte the testing datet. They ai manually
categorized as follows:
1. Fifty of themare good oranges

2. Fifty of them areblemished oranges.

The finalresult after classification is shovin Table 9.
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Fruit Image | No. of Images | No. of No. of Wrongly | o4 of Correct
Types Correctly Classified
Classified Images Classification
Images
Good 50 32 18 64%
Orange
Blemished 50 30 20 60%
Orange

Table 9. Result of implementing improved vision-based gradilgorithm.

The classification result is poor. There are a $eggestions which may help to
improve the performance.
1. Increasing the number of training samples &mhestage.
2. Add some new features.
3. The convolutiormay apply to more regions on each image.
4

The typical size of defedd can be readjusted.

4.3 Citrus Fruit External Defect Classification

The algorithms introduced by (Vijayarekha & Govirma2006) are tested in this
section. The algorithms implemented might be sljgtifferent from the original

work (described in Section 3.2) due to the limiteslources.

4.3.1 Algorithm Details with Sample Computations

Image preprocessing is performed in the followingdeo.
1. Convert colour image into grey scale image.
2. Grey scale image is de-noised using the mddian

3. Orange is cropped to its size.

Figure 47 shows a sample orange image before aémdtla¢é image preprocessing.
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Before After

Fig. 47. Sample image before and after preprocessing.

The decomposition (two levels with Daubechies teavelet) splits both the
approximation and detail windows of the first lewdl decomposition resulting to
sixteen sub-windows. Figure 48 is an example efdérived sixteen sub-windows
after decomposition. Mean and standard deviatioth® wavelet coefficients are

computed for each of the sixteen sub-windows (desdrin Section 3.2.2).

Fig. 48. Example of decomposition resulting to 16 sub-wirelow

4.3.2 Neural Network Classifier

The network neurons are constructed as follows:
1. Thirty-two input neurons.
2. Two output neurons: P1 andP2.
* Good Orange Class: [1-1]
* Blemished Orange Class: [-1 1]

3. Ten hidden neurons.

Featured extracted from the sub-windows are normalized betwzero and one

using the following formula:
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f— mix F

1<F<n
nf = 35
f max F — mix F (35)
1<Fsn 1<Fsn

whereF is a set of features, amdis the total number of features. Normalized
featuresnf are randomly shuffled six hundred times beforedifeg to the neural

network.

A detailed description of the neural network isgergted below:
1. Network Type: Feed-forward back-propagation
2. Performance Function: Sum squared error(SSE)
3. Training Function: Gradient descent with momentwnd adaptive
learning rate(TRAINGDX)
4. Transfer Function: Bipolar tangent sigmoid noreén transfer

function(TANSIG)

The orange classification is predefined as follows:
1. |If the first output neuroPlis positive and higher tha2, then the orange
will be classified as a good orange.
2. If the second output neurdP2 is positive and higher thaR1, then the

orange will be classified as a blemished orange.

4.3.3 Overall Citrus Fruit Defect Classification Sgtem Assessment

Seventy oranges are selected as the training data3éey are manually
categorized as follows:
1. Fifty of them are good oranges.

2. Twenty of them are blemished oranges.

One hundred oranges are selected as the testiagetlat They are manually
categorized as follows:
1. Fifty of them are good oranges.

2. Fifty of them are blemished oranges.
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Wavelet-based features are extracted from the ismagd normalized.

are fed into the trained neural network for clasatfon.

after classification.

Table 10 shows the result

Fruit Image No. of Images | No. of No. of Wrongly | o4 of Correct

Types Correctly Classified o
Classified Images Classification
Images

Good Orange 50 16 34 32%

Blemished 50 41 9 82%

Orange

Table 10. Result of implementing external defect classitcaalgorithm.
The number of correct classifications for blemisbeahges is high. However, a

lot of good oranges are actually misclassified itie blemished orange class.

There are a few suggestions which may help to ingthis system.

1. Increasing the number of training samples.

2. Reconsider the features extracted from the six$abrvindows.

energy and entropy are useful features which caxtracted as well.
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Chapter 5

Novel Algorithms on Orange Grading System

5.1 Central Thesis

There is a limit to most existing statistical-edgUnay, 2005), structural-based
(Recce, Taylor, Piebe & Tropiano, 1996), model-based (Chaatgal., 1994) and
transform-based (Vijayarekha & Govindaraj, 2006amye blemish detection
algorithms. Any two pixels in an orange image hgvabout the same magnitudes
for the red, green and blue channels will almostgk be classified as belonging to
the same category (either a blemish or not). Tbisever presents a big problem,
as depicted in Figure 49, it is possible to hawes pixels depicting more or less
the same colour channel values, but should belongjfterent categories. In the
figure, pixel A reflects R=134, G=86, B=24 and slddoe classified as a normal skin.
On the other hand, Pixel B is described to havewothannel values very close to
Pixel A, but should be classified as belonging tdeanish. In light of this problem,
this research utilizes a priori knowledge of thealointensity variation observed on

rounded convex objects to classify the aforemeetigoixels correctly.

For any rounded convex object, the intensity grédircreases from the edges to
the center in a two-dimensional image. The progoakgorithm partitions the
given image into eight orange colour classes (d@strin Section 5.4.1). This in
turn would generate different layers/classes usingrage intensities for a given
image (illustrated in Figure 49). These layersthen refined further to eliminate
extraneous layers (described from Section 5.4.8.407). Finally, the blemishes
are detected by employing a convex hull approachthentopmost layer. Any
discontinuities between successive layers/classiktdead to the identification of

blemishes (described in Section 5.4.8).
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¥ R:134
Pixel A G- 86

(Blemished Skin) | p. 24

Pixel B R:133

: G:71
(Normal Skin) B: 19

Fig. 49. Blemishdetectiot based ora specified local intensity variation rang

5.2 System Architecture

A block schematic of therange gradir system is shown in Figure 50

Orange Colour Class
) Classification
(see Section 5.4.1)

Blemish Detection | - -
P age (see Section 5.4) Gore Statistical Analvsis

(see Section 5.4 2to 5.4.5)

Stem ‘ Orange Colour Class

Detection and Removal Reclassification
(see Section 5.3) H (see Section 5.4.6)

see Section 5.6

Gradi Blemish Pixel Reclassification
Final Grade thce Sl:c t:;gs 7 Quantification (see Section 5.4.7)

Blemish Identification
(see Section 5.4.8)

Fig. 50. Block schematic cthe novel orange grading algorithm.

In the first stage gbrocessin, oranges are classified into two categories acag!
to the natural skin colour, such as ripe and unoinges. This is followed by the
blemish detectioprocesswhichis the core part of the orange grading systeThe
novel blemish detectioalgorithm simulates how hums makeobservations of th
local intensity variationpphenomenon. Humans dwt judge the colours of tt
orange skin by using absolute pixel values pei.eeRGB) but instead consider t
neighboring orange surface clcteristics. Detecting the stem on the other hand

bit tricky as it closely resembles blemishes. €Ehae, in this research, ste
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detection is performed only after identifying atigsible blemishes.

Quantifying blemishes is a necessary precursordadigg the oranges. Here, the
percentage of blemishes over the whole orange ngpuated as the main grading
feature. In addition, the different quality bareds be adjusted easily according to

the requirement set by the market.

5.3 Ripe/Unripe Orange Classification

Oranges can be classified into two categories daupto the natural skin colour,
such as ripe and unripe oranges. Figure 51 shewsekamples of the ripe and

unripe oranges.

Fig. 51. Ripe and unripe oranges.

Roughly speaking, if more than one quarter of ange has green colour, then it
should be classified as an unripe orange. Theibledetection algorithms for ripe
and unripe oranges are slightly different due te #kin colour variation. The

formula for orange classificatiart is defined as follows:
oc = Otsu, — Otsu, (36)

Otsu’s method (described in Section 2.1.1) is &gpbn the isolated red and green
channels separately. The valueogfincreases when the skin colour turns to more
orange. The threshotdvas empirically found to b&0, and the results of applying
the classification rules below completely adherbuman visual inspection.

* If ocis greater that, then the orange will be classified as a ripe gean

e If ocis less than or equal tothen the orange will be classified as an unripe

orange.
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A subset of the test set (100 hundred oranges)selasted as the testing dataset.
Fifty of them are ripe oranges and fifty are unrgganges. The computed values
for oc are plotted in Figure 52 for all 100 oranges. is kevident that there is a clear
boundary between ripe and unripe oranges. All dé8sification results all agree

with human visual inspection.
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Fig. 52. Orange classification for ripe and unripe oranges.

5.4 Blemish Detection

Oranges are assessed according to the surfaceetestuch as discoloration,
bruising and other blemishes. All blemish typestdbute roughly equally to the
final grading decision. Blemish detection algamitls the core part of the orange

grading system.

5.4.1 Orange Colour Class

54.1.1 Colour Space Exploration

All possible colours can be made from three prin@ipurs red, green and blue.

The following example demonstrates that a broaayaof colours can be displayed
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by using an appropriate combination of red, gread blue intensities There are

three coloured light beams with dimmer switche® md light, one green light, and
one blue light. Three coloured light beams arelueeshine three primary colours
onto a black wall and dimmer switches are useddjosa the intensity of each
primary colour. A representation of the additivdocir mixing is shown in Figure

53.

Fig. 53. A representation of the additive colour mixing(\édia, 2008).

A similar result could be achieved using the Pagttwhich is a famous tool for
image processing. Three coloured light beams enellated by using the red,
green, and blue components separately. The dirsmiéch on each light beam is
simulated by adjusting the intensity of each congmin Figure 54 shows the

colour component window in Paint.net.

RN 013
G 23
B N 53

Fig. 54. Colour component window in Paint.net.

The orange colour class is derived from the coumimns of primary colours.
Figure 55 shows eight predefined orange colourselmsavhich produce different
results in colour and brightness. For instancee pad colour is classified as an
orange red class, and the combination of red aedngcolour is classified as an
orange yellow class. Each of these classes magioomany intensity levels from
the weakest to strongest. The average intensityach orange colour class is a

very useful feature in statistics.
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Fig. 55. Predefined orange colour classes.

54.1.2 Derived Formula

An RGB image consists of three colour channels, ggden and blue channel.
Each channel can be manipulated separately fronotiers. A channel can be
used to generate a grayscale image of the sameasitee RGB image. Otsu’s
method (described in Section 2.1.1) is made toaipandependently on each of the
colour channels, and assumes that the image thrbshblded contains two classes

of pixels (i.e. foreground=1 and background=0).

It is adamant to custom-build a colour class tmsatespecially designed for
identifying the blemishes. As mentioned earliegking at the absolute pixel value
per se does not suffice for accurate blemish detect In this section, we introduce
the orange colour class that is derived from thelboation of colour primaries.

Table 11 shows the detailed classifications foheggange colour classes.

Orange Colour Class

Class No Class Nam Red | Green | Blue
1 Background Clas 0 0 0
2 Blue Clas 0 0 1
3 Green Clas 0 1 0
4 Cyar Clas: 0 1 1
5 Red Clas 1 0 0
6 Magenta Clas 1 0 1
7 Yellow Clas: 1 1 0
8 White Clas 1 1 1

Table 11. Orange colour class classification.
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“1” means presence of the primary colour, and “@ams absence. For instance, if
a pixel is a member of the orange red class, ttsevailue on the red channel is “1”,

and on both green and blue channels are “0”.

The following formula shows the method of classityia single pixel into one of
the eight predefined orange colour classes. Im, @il the pixels will be classified

as one of the eight colour classes.
ClassNog jy = 4Red; j + 2Greeng; j) + Blueg ;) + 1 (37)

for1< i < Rows,1< j < Columns

54.1.3 General Algorithm

Input: RGB Image.

Output: Orange class distribution matrix.

Data: | = input RGB imageM = orange class distribution matrisgws = the
number of rows in imagk cols = the number of columns in imageR = isolated
red channel(z = isolated green channdl, = isolated blue channaip = threshold
on the red channedo = threshold on the green chanrm,= threshold on the blue
channelRB = converted binary image for the red chan@d,= converted binary

image for the green chann@&B = converted binary image for the blue chanpe

= pixel in imagd, ¢ = computed class number for pixel

(R, G, B)= IsolateColourChannel3(
M = Zerosfows, col3

(ro, go, bg = OtsuR, G, B

A W DN P

RB= ThresBinaryR, ro
GB = ThresBinaryG, go
BB = ThresBinaryB, bo

5 foreach pixel pinimage | do

¢ = ComputeClassNpj
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M = StoreCompuidClassNog)

end

1. Extract red, greeand bluechannel separately from imabe
2. Create a matrix of the same siz« the imagel. This matrix is defined asn
orange classistributionmatrix M which is a two dimensionalrray.
3. Use Otsu’s method tocompute the optimum thresholdsr three channel
separately.
4. Convert three channels to binary imagseparately according to thei
corresponding optimum threshs.
» If the pixelvalueis less than or equal to ttiereshold value, then ma
this pixelas a background pixel. A background pixel is giaevalue
of “0".
» If the pixel value is greater tharnhe threshold value, then mark tl
pixel as aforeground pixel. A foreground pixel is given alua of

“17.

5. Loop through all the pixels iimagel.
* Apply the formuli 32, and compute the class numbdéor eact pixel p
in imagel.
» Stae the class numbec into the orange classstributior matrix M.
The orangeclass distribution matrix holdghe class information fc
each single pixel p. Table 12is an example of the orange cli

distribution matrix with detailed analysis.

Orange Class Distribution Matrix

I Red. Green I
Fed, Green, Blue

Matrix | ClassNo. | Primary Colors | No. of Pixel

1[3[8]2[2]2]] 1 ] Nothing | 4
4 8 8 6 8 8§ 2 Blue 3
816 471188 | 3 ] Green | 1
§ 8 7 8 §8 7 4 Green, Blue 5
JEIEAEREREN 5 ] Red | 2
15 6 8 8§ 4 6 Red, Blue 3

7 2

8

—_
(=%

Table 12. Orange class distribution matrix with detailed argf
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54.1.4 Missing Orange Colour Class

There are eight orange colour classes. Some of thght be not available due
to the nature of the orange texture. The orangssctistribution matrix can be
used to analyze the distribution and availabilityh@ orange colour classes. Table
13 is an instance of the orange class distributiatrix. Class five is not available

in this case.

Orange Class Distribution Matrix

8
8
4
7
8

A |00 | O |N
P N |00 |00 N

= |00 |0 |0 |~ |k
H |00 OO |00 |W

O |00 |0 |0 |0 |IN

5 6 8 4

Table 13. Example of the orange class distribution matrix.
The class availability is analyzed below for ripelainripe oranges separately.
1. Experiment One: Ripe orange

One hundred oranges are randomly selected fronddtebase. Fifty of them
are blemished oranges and fifty are good orangafier a class availability test,
the result is shown in Table 14. The orange retl /magenta classes are not
available for all the selected ripe oranges. Imeotwords, the pure red colour

and the combination of red and blue colours areaxatlable.

Class No. Class Name Color Component | Availability
1 Background Class None Yes
2 Blue Class Blue Yes
3 Green Class Green Yeg
4 Cvan Class Blue. Green Yes
5 Red Class Red No
6 Magenta Class Red. Blue No
7 Yellow Class Red. Green Ves
8 White Class Red. Green, Blue Yes

Table 14. Orange colour class availability test for ripe oiges in the database.
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2. Experiment Two: Unripe Orange

Fifty oranges are randomly selected from the da@mbaTwenty of them are
blemished oranges and twenty are good orangeser Aftlass availability test,
the orange red and magenta classless are notladesita all the selected unripe
oranges as well. This may refer to the light seusad nature of the orange

texture.

54.15 The Order of Orange Colour Classes

Each of these orange colour classes produces atffaresults in colour and
brightness. Due to the observed nature of thegerakin colours, the different
orange colour class described in this section der@d incrementally according to
their average intensities. For instance, the coatlwn of red and green colour is
brighter than the combination of blue and greerwol For other fruits, the order
of the orange colour classes has to be changeddatgly to match the incremental

sequence.

5.4.1.6 Summary

All possible colours can be made from three prin@ipurs red, green and blue.
Pixels in a given RGB image are classified into afiethe eight orange colour
classes. The class number for each pixel is storékde orange class distribution

matrix for further analysis.

Some of the orange colour classes might be notadl@j such as orange red and
magenta classes. This is caused by the light s@amd nature of the orange texture.
The brightness of the orange colour classes inesefiem class one to eight. This

order is specially designed for orange only.
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5.4.2 Orange Class Mean

54.2.1 Overview

Mean has two related meanings in statistics, susharhmetic mean and
population mean. Arithmetic mean is the one seteah this algorithm and often
simply called the “mean”. For a given data set #verage is the sum of the
measurements divided by the number of measuremedt$o compute a number as
being the average. Changing the order of the nmmeamnts does not affect the
final result. The formula of meamis defined as follows:

n_p.
p=="— (38)
where Pis the pixel value, and is the number of pixels. The orange class mean
refers to a measure of the average intensity di eaange colour class. The mean
for each orange colour class is computed on thheanels separately for a given
RGB image. In turn, for each orange colour cl#sste will be three class means
associated with it. Computed orange class meamsstared in the orange class

mean matrix which consists of eight rows and tlw@amns.

5.4.2.2 General Algorithm

Input: RGB Image, Orange class distribution matrix.

Output: Orange class mean matrix.

1 foreach orange colour class do

2 foreach isolated colour channel do
ComputeClassMean()
StoreComputedClassMean()

end

end
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The derived orange class distribution matrix stéhesclass information for each
pixel in a given RGB image. For all the pixelsttlielong to the same class,
compute the average of pixel values on three charsgparately. Table 15 is an

example of the orange class mean matrix with sjgecdlass numbers.

Class No. Red Channel | Green Channel | Blue Channel

1 23 13 _ 6
2 52 31 Il 18
3 145 73 12
4 0 i _ 0
5 0 0 ' 0
6 0 0 0
7 225 | 113 13
8 2290 114 23

Table 15. Example of the orange class mean matrix.

5.4.2.3  Algorithm Refinements

The distribution of pixel values within each orang®our class is considered to
be a normal distribution. The normal distributiescribes data that cluster around
the mean. Sometimes a set of numbers might cootdirers. The outlier is the
intensity of a pixel which is much lower or hightean the others. The outliers are
erroneous data caused by different reasons, suldaess on the conveying system.

The outliers affect the accuracy of the computeshge class means.

There are three steps to recalculate and impraverdnge class means.
1. Sort the pixel values.
2. Discard an equal amount of data at the hightaedow ends. For most
statistical applications, five to twenty-five pent®f the ends are discarded.
Ten percent of the ends are discarded in this idhgor

3. Compute the orange class means using the rergadata.
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5.4.2.4  Effects of lllumination Intensity Variations on Ripe

Orange Skin

Figure 56 is a ripe orange image with two bluedideawing across the centre.

Fig. 56. Example of ripe orange image with two blue linesvwdng across the center.

Table 16 shows the selected pixel values alonghtitezontal blue line on red,

green and blue channels separately.

Selected Pixel Values along the Horizontal Blue Lin
Cols| 1C [ 20| 3C | 4G 50 60 7C 8C 9C | 10C | 11C | 12C | 13C
R 12| 16| 104| 157/ 183 204 255 | 218| 176 145 97 2C 14
G 10( 12| 50 | 77 | 84 | 96 | 104 | 101 | 82 | 68 | 51 14 | 12
B 6 9 10 18 18 24| 27 25 16 14 13 11 7

Table. 16. Intensity variations along the horizontal bluedin

The average intensity gradually increases frometiiges to the center of the image

due to its rounded convex contour. The following some of the observed

properties:
1. The most significant intensity variation occurs the red channel. The
pixel value varies betweet? and255.

2. The average intensity on the green channewvgid than the red channel.

The pixel value varies betweé&f and104.

3. The average intensity on the blue channel iy \@v. The pixel value

varies within a very small range.

Figure 57 shows the intensity variation along tleetical blue line on red, green

and blue channels separately.
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Fig. 57. Intensity variations along the vertical blue line.

Due to the natural of the orange skin colour, i@ and green channels of an
orange image are more important for statisticallysma Figure 58 shows two

pixels selected from the normal and blemished skparately.

R:224 R: 89 ;
Pixel A G' 104 G' 62 Pixel B
(Normal Skin} B:.ZU B:.ls (Blemished Skin)

Fig. 58. Two pixels selected from normal and blemished siqrarately.

The blemished skin is usually darker than the nbska. The intensity varies on
three channels differently. The absolute pixelgalropped.350n the red channel,

42 on the green channel, aBan the blue channel.
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5.4.2.5 Effects of lllumination Intensity Variations on Unripe

Orange Skir

Figure 59 is an uipe orange image witlwo red linesdrawing across the centr

Fig. 59. Example of unpe orangeimage with two red lines drawing acrobe cente

Table 17 shows theelected pixel valur along thehorizontal re line on red,

green and blue channels separ-.

Selected Pixel Value along the Horizontal Red Line

Cols| 10| 20| 30 | 40 [ 50 [ 60 [ 70 | 80 | 90 | 100 | 11C | 120 | 130

R (70| 87| 9| 13| 121 | 137| 144 | 114| 110 105 8¢ | 77 | 68

G | 7184101107 | 111 | 115| 118 | 108 | 102 | 100 | 81 | 73 | 70

B 6 | 19| 24| 27 | 28 27129 | 25| 25| 19| & | 16 | 10

Table 17. Intensity variations on the horizontal red line.

The average intensityraduallyincreases from the edgesth® center of the ima.
The following are some of the observed propel

1. The average intensity on the channeis lower compared with trone for
ripe oranges in Table . The pixel value varies betwe68 anc 144.

2. Due to the natural of the unripe orange textithe intensityariationon the
green channddecomes more important in this case. The pixelevahries
between70 and11¢.

3. The intensity variation on the blue channel isimportant The averag

intensityis very low

Figure 60shows the intensity variation along the vertical h@e on red, green

and blue channels separate
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Fig. 60. Intensity variations along the vertical red line.

Figure 61 showghree pixels selected from the normal ablemisher skin

separately.

Pixel B Efg’
(Green Colour Skin)| ., B
B:24 Redl Pixel A
. ](3'22 (Blemished Skin)

Pixel C

R:180
(Orange Colour Skin)| G: 121
B:

[ ——

8
2
6

Fig. 61. Threepixels selected froithenormal and blemished skin separa.

The intensity variatiommong three pixelis analyzed below.
1. Pixel C to PixeB
e The average intensity of orange colour skiusuallybrighter than
the green colourskin.  The intensity variation between differe

colour skins should not be considered as blemishe

2. Pixel Cto Pixel, Pixel B to Pixel /
* The intensity of blemished skin is usually darkeartthe normal
skin.
 The intensity variations on both red and green wohEn are

important figures for blemish detection.
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5.4.2.6 Summary

Orange class mean is a measurement of the ceatrdéericy for each orange
colour class. Sometimes a set of numbers mightagomutliers. The outlier is
the intensity of a pixel which is much lower or rhugigher than the others. The
outliers are erroneous data caused by differentoregs such as leaves on the

conveying system. Ten percent of the ends araudled in this algorithm.

The average intensity gradually increases from détiges to the center of the
image. Due to the nature of the orange texture,iritensity variation on the red

and green channel is more important for statisacallysis.

5.4.3 Orange Class Standard Deviation

543.1 Overview

In statistics, standard deviation is a simple measi the spread of a dataset.
Standard deviation can often find the story behhreddata, such as the tightness of
data samples that are clustered around the meanlowAstandard deviation
indicates that all the pixel values are very clwsthe same value (class mean), while
the high standard deviation indicates that allgixel values are clearly more spread
out across a large range of level§he formula of standard deviatienis defined as

follows:

n .—11)2
o= Z)_:l(Pl. ﬂ) (39)

n

where Pis the pixel valuey is the class mean, amds the number of pixels in the
class. There are eight orange colour classeshaeéd tolour channels in a given
RGB image, so twenty-four orange class standardatiens will be computed in
total. Orange class standard deviation is a staisneasure of the dispersion of
the class members.
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5.4.3.2 General Algorithm

Input: RGB Image, Orange class distribution matrix.

Output: Statistical analysis matrix

1 foreach orange colour class do
2 foreach isolated colour channel do
ComputeClassStandardDeviation()
StoreComputedClassStandardDeviation ()
end

end

For all the pixels that belong to the same classnpute the class standard
deviations on three channels separately for a gR&B image. Table 18 is an
example of the statistical analysis matrix on ting dimension with specified class

numbers.

Class No. 1 2 3 4
1 20

th
N
- |
(=]

40 -
- 15

66

SO 1 Sy Lh B e e
1
(=]

Table 18. Example of the statistical analysis matrix.

The statistical analysis matrix is a three-dimenalaarray with eight rows and
columns. The elements of a three-dimensional areaybe thought of as a set of
two-dimensional arrays. The first, second, anddthimensions are used to store
the computed data on the red, green and blue clsasegarately. For instance, the
class standard deviati&0 of class one on the red channel is stored at teerbw

and column on the first dimension.
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5.4.3.3 Summary

Orange class standard deviation is a simple meaduihe spread of a dataset. A
low class standard deviation indicates that allghel values are very close to the
class mean, while a high class standard deviatidicates that all the pixel values
are clearly more spread out across a large rangevels. The orange class

standard deviation is derived from the originahdi@d deviation in statistics.

The computed class standard deviations are stordégkistatistical analysis matrix

for further analysis.

5.4.4 Between-Class Squared Mean Difference

5441 Overview

Between-class squared mean difference is a nurhdesaription of how far apart
the orange colour classes are. In mathematicss e two common methods to
compute the distance between two objects, e.gglatesdifference and squared
difference. Absolute difference is a numericalueawithout regard to its sign.

The following example demonstrates how the absalifterence works.
A=8,B=6,
Diffil=A-B=2, Diff2=B-A=-2,
absDiffl = |A-B| =2, absDiff2=|B-A|=2

Squared difference is a squared numerical valubowit regard to its sign. The

following example demonstrates how the square@miffce works.
sqrtDiffl = (A—Bf =4, sqrtDiff2 = (B-Aj=4

Absolute difference and squared difference basgicatirks the same on the way
of regarding to its sign. However, the squarededdhce enlarged the distance

between two objects. The between-class squared thfarencesmdis defined as
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follows:

smd = (ug — up)*  (40)

where A and B represents any one of the eight orange colousetasand A~ B.
smd is a measure of the squared difference between dlaes means. A

small-valuedsmdindicates that two classes are similar to eachroth

5.4.4.2 General Algorithm

Input: Orange class mean distribution matrix.

Output: Statistical analysis matrix

1 foreach orange colour class do
2 foreach isolated colour channel do
ComputeBetweenClassSquaredMeanDifference ()
StoreComputedBetweenClassSquaredMeanDiffer@nce
end

end

Compute the between-class squared mean differéoiceach orange colour class
on three channels separately. Table 19 is an deapofpthe statistical analysis

matrix on the first dimension with specified classnbers.

Class No. 1 2 3 4 5 6 7 8
1 -- 18 10 21 34 56 12 7
2 18 -- 3 44 12 15 27 40
3 10 3 -- 22 41 33 8 11
4 21 44 22 -- 18 23 33 62
5 34 12 41 18 -- 15 21 33
6 56 15 33 23 15 -- 44 2
7 12 27 9 33 21 44 -- 8
8 7 40 11 62 33 2 8

Table 19. Statistical analysis matrix with computed betweksss variances.

For instance, themd 18 between class one and two is stored at the secnd

and first column, which is the same as the ond&alffitst row and second column.
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In statistics, a matrix of covariances between elesiof a random vector is called
covariance matrix (Besson, Bidon & Tourneret, 2008)he formula is defined as

follows:
Capy = Cii (41)

Table 20 shows an example of the covariance matiata along the blue diagonal
line follows the symmetry principle, e.d>(2,1) is the same a€(1,2)in terms of

the between-class squared mean difference.

1 2 3 4 5 6 7 8

= C(,2) C(,3) C(l,4) C(l,5 Crle) Cil,7) C(1,8)
Ci2,1) - Ci2,3) Cr24) C2,5) Cr26) C2,7) C(2,8)
Ci3,1) C3,2) -- Ci3,4) (3,5 Ci3,6) C3,7 C338)
Crd 1) Cf4,2) C4,3) -- C4,5) Cr4,6) CH,7) Cr48)
Ci3,1) C(5,2) C(5,3) C(5,4) - Ci5,6) C(5,7) C(5,8)
c6,1)  Cr6,2) C(6,3) C(6,4) C(6,5) - c6,7)  C(6,8)
C7,1) C(7,2) C(73) C(74) C(73) C(7.06) -- C(7,8)
C@81) C(82) C83) Ci84) Ci85) C86) C(87) -

L N & ] e W e

Table 20. Example of the covariance matrix.

5443 Summary

Between-class squared mean difference is a nurhdesaription of how far apart
the orange colour classes are. Absolute differemcesquared difference are two
common methods to compute the distance betweenotyects. However, the
squared difference enlarged the distance between digjects. The computed

between-class squared mean differences are stothd statistical analysis matrix.
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5.4.5 Closest Neighbor Class

5451 Overview

The task of this section is to identify which clessre close to each other. The
word close in terms of colour expression meanstthatclasses have a similar visual
impact. In Figure 62, the closest neighbor cldsSlass One is Class Four. Class
Two and Class Three have very different coloursganed to the others, so they are

defined as standalone classes.

Class Class
One Three

Fig. 62. Similarity of the orange colour classes.

Figure 63 illustrates the relationship among tHese classes.

Class
Three

Fig. 63. Demonstration of the closest neighbor class.

Of course, the similarity among different classaanot be measured by human
eye in a real time application. The statisticalgsis matrix stores the information
which is especially designed for this task. Thange class standard deviation and

between-class variation are used as the meastine ofosest neighbor class.

5452 Mean Selection for Skewed Distributions

The following example demonstrates how the avetigfance between class one

and two is computed.

distR[1,2] =80  Distance on the Red Channel between Class On&wad

distG[1,2] =70 Distance on the Green Channel
-87-



distB[1,2] =6 Distance on the Blue Channel,
averageDist[1,2] = (80 + 70 + 6) / 3 B2

52 is the average distance between class one and tiwcstatistics, the arithmetic
average of a set of values is one of the most camynsed statistical measurements.
However, it is less accurate for skewed distrimgio For example, the arithmetic

average of six values: 20, 18, 17, 16, 10, 1 is:
(20+18+17+16+ 10+ 1)/ 6 =13.6667

The average is skewed downwards by a few numbetis vary small values,
however, the majority numbers are bigger th@n The data stored in the statistical
analysis matrix among three dimensions are corsildter be a set of skewed values.
» Data in the first dimension derived from the isethted channel is the most
important.
* Values in the first and second dimensions are ysualch bigger than the

third dimension.

This is caused by the nature of the orange textufée skin colour of an orange is
more likely to be red, maybe a little bit greendaimost no blue. To compute a
more accurate average for a set of skewed valuesiallenge. Quadratic mean,
geometric mean and harmonic mean are compareck ifollowing examples using
the same data, e.@0, 70, 60
1. Example One: Quadratic Mean
Quadratic mean is also called power mean.
* Compute the power of each element in the datasgtsam the
results.
807 + 70° + 62 = 11336
* Divide the sum by the number of elements in thasktt
11336 /3 =3779
* Compute the square root.

sqrt(3779) = 61
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2. Example Two: Geometric Mean
*  Multiply all the elements in the dataset.
80 * 70 * 6 = 33600
» Compute the one-third power of the multiplication.

33600 = 32

3. Example Three: Harmonic Mean
* Divide each element by one and sum the results.
1/80 + 1/70 + 1/6 = 0.1935
* Divide the value by the number of elements.

3/0.1935=15

Quadratic mean is more towards to the maximum ei¢sria the dataset, harmonic
mean is more towards to the minimum elements, atith@tic mean and geometric

mean are in between. Table 21 shows the computadisn

Max Element 80
Quadratic Mean 61
Arithmetic Mean 52

| Geometric Mean | 32
Harmonic Mean 15
Min Element | 6

Table 21. Example of four different means.

The mean selected for this algorithm is the quadnaean. The formula is

defined as follows:

3 2
gm = Zn=1Vn” (42)

3

whereV s the value stored in the statistical analysisrixiagandn represents the first,

second and third dimensions in the ordet,d and3 separately.
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5.4.5.3 General Algorithm

1

2

Input : Statistical analysis matrix.
Output: Closest neighbor array.
Data: QM = temporary matrix used to store computed quadragans. SA=

statistical analysis matrix.

foreach element in statistical analysis matrix SAo
ComputeQuadraticMean()
StoreComputedQuadraticMean()

end

foreach orange colour class do
FindClosestNeighborClass()
StoreComputedCloestNeighborClass()

end

Compute the quadratic mean for each element irstétestical analysis matrix.
Table 22 is an example of the statistical analgsigrix with three dimensions.
The quadratic mean.5 is computed using the numbed@ 8 and2, and stored
in the temporary quadratic mean matrix at the epwading position. In real
time application, the quadratic mean matrix is @-timensional array with

eight rows and columns.

Quadratic
First Dimension Second Dimension Third Dimension Mean Matrix
0] - | - § | - | - 2] - | - 75

Table 22. Example of the computation for quadratic means.

Find the closest neighbor class for each orangeucalass using the quadratic
mean matrix. Table 23 is an example of the quadraéan matrix with eight
rows and columns. The closest neighbor class adscbne is class eigBt

which is derived by finding the column/row numbathaminimum value in the
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first column/row. The closest neighbor array isaaray with eight elements,

which is designed to store the closest neighbasclaumber for each orange

colour class.
1 2 3 4 5 6 7 8 Class No. Closest Neighbor
1 20 18 3 33 21 67 98 2 1 8
2 18 >
3 3 3
4 33 4
5 21 5
6 67 6
7 98 5
8 2 8

Table 23. Example of finding the closest neighbor class.

5454 Closest Neighbor for Ripe and Unripe Orares

Table 24 is an example of the orange class mearxnat a ripe orange from the
real application. The class means between clasmsand eight are very similar
for all three channels, and they are closest neighb Class five and six are not

available, so the means are filled with zeros.

classMean: 8x3 double =

16,2048 9. 7060 4.1241
43.4271 26,5189 14. 1981
135, 1845 65, 8570 8. 5428
165.4578  81.8189 15,2790

0 0 1]

0 0 1]

204, 4545 100, 1364 9.6818
203.5200 105.1776 17. 2501

Table 24. Example of the orange class mean matrix for a apnge.
Table 25 is an example of the orange class meanxnfat an unripe orange.
Class three and four are closest neighbors. Qiassnd six are not available as

well.

clazsMean: 8x3 double =

15, 9614 15. 8115 6, 9266
31.4272  33.4868 18. 8087
50,5260 53,9808 12. 8225
48,9138 B4, 2824 18. 7108

0 i} 0

0 i} 0
64,8042  67.4639 13. 4606
89,2344 88,1236  24.0544

Table 25. Example of the orange class mean matrix for arpgnorange.
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The skin colour variation causes the differencteclass neighbor classification.

5.4.5.5 Summary

Some of the orange colour classes could be verylasino each other. It is
important to find the closest neighbor for eacmgeacolour class. The data stored
in the statistical analysis matrix is considereéoa set of skewed values, so the
average values among three dimensions are compsied the quadratic mean.

The skin colour variation causes the differencthenclass neighbor classification.

5.4.6 Class Reclassification

546.1 Overview

The closest neighbor array presents the relatipresmong the eight orange colour
classes. Table 26 is an example of the closeghber array with specified class
numbers for demonstration purpose.

Class No. Closest Neighbor
1 1

2

LF I SN PR S
-~ 0 O O O W

S0~ &

Table 26. Example of the closest neighbor array with spedifilass numbers.

Three types of classes are defined in this sectiach as standalone class, missing
class and similar class.
1. Standalone Class
A class has no closest neighbor. In Table 26 sateee, two and three are
standalone classes. Pixels in this class areréiffédrom others in terms of

colour components and brightness.

-92 -



2. Missing Class
A class does not exist. In Table 26, class foue &ind six are missing
classes. Zero in the closest neighbor array itescthat the current class

is not available.

3. Similar Class
Two classes are similar to each other. In Tableck&s seven and eight

are closest neighbors. They can be merged togettierm a new class.

Table 27 shows the newly derived classes aftes ¢ledassification. Class one,
two and three stay the same, class four, five andre deleted, and class seven and

eight are merged together to form a new class.

Class No. Closest Neighbor Class No. Original Class
1 1 1 1

2 gl

2
3 3
4 8,7

Delete H

Merge |-

S0~ oo e LW
100 O O O

Table 27. Class reclassification.

5.4.6.2 Colour Components and Brightness

Due to the nature of the orange texture, the oraefjew and white classes are
usually similar to each other. The blue comporfentan orange image is very
minor. The orange colour classes can also be deresl as clusters. Pixels within
the same cluster are similar to each other in teomgolour components and

brightness. Clustering is a common techniquetitistical data analysis.

Figure 64 simulates the derived new classes ineT&l@l using clusters. The
process of assigning a pattern into one of thedpfsed clusters is called

classification. A pattern is a set of measuremeuish as intensity level.
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Class No. | Color Component ~ Symbol
1 None v
5 2 Blue \
g 3 Green 0
= 4 Blue, Green None
5 Red None
[ Red, Blue None
- Background 7 Red, Green *
vioevy ¥ $ Red, Green, Blue 5

Fig. 64. Clusters.

There are foudistinct clusters itFigure 64.

1.

Cluster onecontains te pixels with very low intensities Pixels in this
cluster belong to the backgroun

Cluster two containthe pixels with pure green colour.

Cluster three contains the pixels wpure blue colour Not many pixels
belongto this cluster due to the nature of the ori texture.

Cluster four contains the pixels with the combioatiof red and gree
colour  Cluster five contains the pixels with combination of red, gre:
and blue colour Pixels in cluster four and fivdnave similar colou
componentsand brightness, : they can be mergetbgetherto form one

cluster.

5.4.6.3 GeneraAlgorithm

1

Input : Closest neighbor array, Orange class mean me

Output: New class mean matri»

foreach orange colour class: do

ReclassifyOrangeColourClas()
Comput&ewClassMea()
StoreComputedewClassMea()

end
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Reclassify the orange colour classes accordinget@lbsest neighbor array.
* Leave standalone classes as they are.
* Delete all the classes which are not available.

* Merge all the similar classes together to forma nkass.

Compute the new class mean for two similar clagses Class A and Class B).

The formula is defined as follows:

NumPixelyClassMean + NumPixelgClassMeanpg

NewClassMean = (43)

NumPixelg+ NumPixelpg
whereNumPixelis the number of pixels, ar@lassMearis the original class mean.

The newly computed class means are stored iméteclass mean matrix. The
new class mean matrix is similar to the orangesctasan matrix, which differ only
in the number of rows. After class reclassificaithe number of new classes is

not always the same.

546.4 Summary

There are three key steps for the class reclags8dit
1. Leave standalone classes as they are.
2. Delete all the classes which are not available.

3. Merge similar classes together to form a newscla

The class mean has to be recomputed for newlyetbilasses. The recomputed

class means are stored in the new class mean rfatpixel reclassification.
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5.4.7 Pixel Reclassification

54.7.1 Overview

After class reclassification, pixels no longetoog to one of the eight original
orange colour classes. Pixels should be recladsifito one of the newly derived

classes based on the new class mean matrix. Hmchwew class each pixel

belongs to is the task of this section.

5.4.7.2 Data Analysis
Table 28 is an example of the new class mean matrix

Class No. Red Channel | _(}i'_ggpC)}h_]_;_glgi_ Blue Channel
1 23 13 6
' 52 | 31 18

2 .
3 145 | 73 12
4 228 113 27

Table 28. Example of the new class mean matrix for demoristrgurpose.

For a given pixelp, the pixel values on three channels are 127,a68 16
separately. The differences between the pixelevél27) and class means (23, 52,
145, 228) on the red channel are 104, 75, 18, &0dthe pixel value is more close
to class three. The differences on the blue cHaareelO, 2, 4nd 6,andthe pixel
value is more close to class two. The differerareshe red channel are bigger and

more important than the others.
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5.4.7.3 General Algorithm

Input: New class mean matrix, RGB image.
Output: Pixel reclassification matrix.
Data: NCM = new class mean matriglassMearr class mean in new class mean

matrix NCM, | = input RGB imagep = pixel in imagel.

1 foreach pixel pinimagel do
2 foreach class mean classMean in new class mean matrix NG

ComputeSumSquaredDifference()

end
3 FindMinSumSquaredDifference()
4 StoreNewPixelValue()
end

Step through each pixel in the RGB image. For gagél examined, compute
the differences separately for each colour chairel R, G, B) between the pixel
valuep and class meapn for each of the three channels. Next, apply thedcatic
mean for combining these differences together, tArdwill give us the finaksd

The formula is defined as follow:

’ 3 -
Ssd — Zn:l(P;‘L M‘n)z (44)

wheren represents the red, green and blue channels ordee ofl, 2 and3.

Pixel will be classified as a member of the clasth whe minimumssd The
pixel value is replaced by the corresponding clagsan on the red channel and
stored in the pixel reclassification matrix whigha two-dimensional array with the
same size as the RGB imabge For an illustration of the inner working of this

algorithm with data samples, see appendix D.
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5.4.7.4 Summary

Pixels no longer belong to one of the eight origio@nge colour classes after
class reclassification. Pixels should be reclassidccording to the newly derived
classes. The differences between the pixel vahet @dass means on the red
channel are bigger and more important than thestke the sum squared difference

is selected for the computation of a set of skewaddes.

5.4.8 Blemish ldentification

548.1 Overview

The blemishes on the orange are caused by vargasoms, such as poor air
during transportation, pre/post-harvest diseasdsvarhanical damages. The task
of this section is to identify the blemished areaBxperiments are presented for ripe

and unripe oranges separately.

5.4.8.2  Topmost Layer Slicing

The top layer slicing phase of the algorithm is amant as this defines the region
of inspection. Figure 65 shows a grey scale imggeerated using the pixel

reclassification matrix.

Fig. 65. Image generated using the pixel reclassificatiorrina

Only the topmost layer is analyzed and the reaaomgxplained as follow:
1. The lighting condition is better on the top of tihrange.

2. Noise is filtered out, such as background pixels.
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3. The orange is rotated on the conveying systemnpoogessed parts can be
analyzed in the next image.

4. Reduce unnecessary computations for unstable data.

5.4.8.3 Blemish Segmentation

The blemishes are identified by employing a conkah approach (described in
Section 2.1.3.2) on the topmost layer. Two kepstae described as follow:
1. Segment the blemishes from the topmost layer.
* Crop the topmost layer, and designate it as Mask
* Apply the convex hull technique on the cropped imaand
designate the result as Mask
» Extract the blemishes by subtracting the croppeagenfrom the

convex image (i.e. Magk- Mask).
2. Count the number of pixels in the segmented image.

Figure 66 illustrates the process of the blemigimsntation.

Input Crop(Mask;) Convex Hull(Mask;) Segmentation

Fig. 66. Segment the blemished area on the very top layer.

5.48.4 Refinement of Blemish Segmentation

Figure 67 shows some leftovers in the segemntedemaich are caused by the
rough edges in the cropped image. Experiments shatrhese little spots around

the edges may add up to a relatively big value.
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Crop(Mask,) Convex Hull(Mask,) Segmentation

Fig. 67. Spots in the segmented image.

The rough edges irthe cropped image should be smoothed using
morphological operators describedin Section 2.1.3) before the convex hul
Figure 68 shows tweegmente images before and after smoothing the edges i
cropped image. This step redies the presence of noise around the edges,

maintaining blemish detection accur:

Before After

Fig. 68. Segmented image before and after the erode oparz

5.4.8.5 Sample Execution of Blemish Segmentation

This section shows some of the results garnerec feariety of orange grades.
Figure 69shows the blemish identificatioresults for ripe orange: Here, no

blemishes were marked as there is none. The stsTalso extracted correc

Perfect
Unblemished
Skin

Fig. 69. Blemish identification results for ripe oranges.
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Figure 70shows the blemish identificaticresultsfor blemished ripe orange:

Manually
Extracted
Blemishes

Blemish
Identification
on the Topmost
Layer

Algorithmically
Segmented
Blemishes

Fig. 70. Blemish identificatio results for blemished ripe oranges.

Figure 71shows the blemish identificaticresults for unripe oranges.

Normal Colour
Variation, not
Blemish =

Fig. 71. Blemish identification results for unripe oranc

Figure 72shows a series @lgorithm executions on a setpfiotograph:«captured
for a blemished unripe orar. It is evident that the blemish&gere accurately
identified by the proposed algorithms. The results also prbwat the propose
algorithmsare robust to confounding colour transi areas (from orange to gre

and vice-versa).
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Fig. 72. Blemish identificatio resultsfor blemished unripe orangt

Blemish
Identification
on the Topmaost
Layer

Algorithmically
Sezmented
Blemishes

5.4.8.6 Experiment and Analysics on Ripe Oranges

Two experiments are presented for good and blemiripe orangeseparatel.
1. Experiment One Good Orange

The skin colour of ayood orang is smooth andiniformly distributed, therefor
nothing should be detectedin Figure 73, the intensity on thepmos layer is

uniformly distributed.

Fig. 73. Result of image processing fa good ripe orange.

The blemish detectioralgorithm is tested using one hundred orar. True
positive rate izomputed for each oran. The algorithm is accuratmly if the true

positive rate is close to o1  The formula is described below:
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L number of true positive instances
true positive rate = f truep (45)

total number of positive instances

Pixels within topmost layer with the highest intépswill be classified as true
positive instances. The total number of positiv&tances is the number of pixels

on the topmost layer.

The computed true positive rates are shown in Eigdr It is evident to see that
the true positive rates are very high. Pixels whace not classified as the true
positive instances are mainly caused by the stebhe stem in this stage is treated

the same as blemishes.

1 VW—’WWQQ—“—Q—
* V'S @ oo y 3
*% 0 et ¢ e et
0.998 L 2 &
& . ¢
§ 0.996 A 4 . L 2 L 2
= ¢
% 0.994
& 2
(0]
0.992
0.99 T T T T 1
0 20 40 60 80 100
Individual Orange

Fig. 74. True positive rates computed based on one hurgived ripe oranges.
2. Experiment Two: Blemished Oranges

Figure 75 illustrates that the intensity on thentogt layer is not uniformly
distributed. Holes are identified as blemishesciwhare usually darker than the

normal skin area.

Fig. 75. Result of image processing for a blemished rigmge.

The blemish detection algorithm is tested on sgvémished oranges. The

blemishes indentified by the algorithm are compawmith the one manually
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extracted.

In Figure 76he middleimage is generated by the algorit and the

right image is extracted manuz using the layer in Paint.net.

Fig. 76. Blemish identification testit for blemished ripe orange.

True and fals@ositive rats are computed as the statisticelasureme.

« True positiveinstances a the pixels which are ithe blemished areand

reported abeingpositive.

« False positivenstances are theixels which are in the normal skin arand

erroneously reported as being pwe.

True and false positivetes are plotted in Figure for seventy blemished oranges.

0.12
0.1
9 008
® *
T
@ 0.06
3 \4 * * . L 2
& 004 ° @
7 ¢ * PN
» o 7' " L 4 ¢
0.02 Tt O 3
$ o S 30OV 0,
O T ’I “ |. ’ T 1
0 0.2 0.4 0.6 0.8 1
True Positive Rate

Fig. 77. True andfalse positive atesplotted for seventy blemished ripe orange

The true positive rates alow. There are manfiuman factors whic may affect

the testing result.

1. The blemisheare marked manually and it might be too big ordowll.

2. Some blemishesare not marked but identified by th@emish detectic
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algorithm. This is caused by the following threasons:
* The original image is not clear enough.
* The examiner has different thought for the blenmsshe

* The examiner forgot to mark some blemishes.

3. Figure 78 shows some blemishes are identified @eitsf the topmost layer
which will not be considered in the current imagelhe layers are
generated dynamically at the run time, so it iglliarestimate which part of

the orange is within the topmost layer. A roughnestion is made in this

Fig. 78. Blemishes identified outside of the topmost layer.

case.

4. Figure 79 shows some blemishes are hard to diffieterby human eye due

to the poor lighting conditions.

ohe

Fig. 79. Some blemishes are hard to detect by human eye.

Due to various negative human factors, the stedis@nalysis in this section is

used for reference only.

5.4.8.7 Experiment and Analysis on Unripe Oranges

Two experiments are presented for good and blemiishepe oranges separately.
1. Experiment One: Good Unripe Orange

Figure 80 shows a processed image with layers guhiimt colour. Hole A is

caused by the skin colour variation from oranggreen. Hole B is caused by the
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stem at the bottom of the ima

Fig. 80. Example oskin colour variation on an unripe orange.

The colourtransaction are should not be identifieds blemishesalthough the
intensity is usually darker on the green sarea. Figure 8 hows the result ¢
merging the top twdayeis. Hole A is disappeared, akthle B staysunchanged.

The stem is treated as blemishes in this st

Fig. 81. Result of merging the top two layers.

The blemish detectioralgorithm is tested on sixty goaghripe orange. The
computed true positive ratare plotted in Figure 82. It Bvident to see thate

true positive rates are very h.
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Fig. 82. True msitiverates computed based on sigtyod unripe orancs.

-106 -



2. Experiment Two: Blemished Unripe Orange

The average intensity of unripe oranges is lowantthe ripe oranges, and the
intensity variation between the normal and blermdskkin is smaller. Figure 83
shows two images captured for the same orange ditierent angles. Pixel A and
B are traced for inspection purpose. The coloanakel values of Pixel B vary a lot

when the position is changed.

Pixel A

B33 | (NormalSkin) G:143 | Pixel A

Pixel B
27 (Blemished Skin)

70
G: 55 Pixel B
6

Fig. 83. Intensity variation for blemished unripe oranges.

Figure 84 illustrates that the blemishes are ifiedtimore accurately when the

d (o

Fig. 84. Blemish identification with different positions.

position is changed.

5.5 Stem Detection and Removal

The stem should be treated differently from blemsshand therefore should be
isolated. Stem isolation is performed basicallingOtsu’s method (described in
Section 2.1.1) operating on the red channel. Eseltis used as a threshold that

segregates the stem from the orange skin.

The basis of this technique is illustrated by ex@mpFigure 85 shows three
selected pixels from different skin areas. Thegoichannel values of a stem are
usually smaller than the blemishes. The pixel #aharies the most on the red

channel.
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R:222 Pixel A
G: 90 : ;
e 1:- ]4;0 g1z |(NormalSKin)
(Blemished SKin) | g9
R 76 Pixel B
G:39
B9 (Stem)

Fig. 85. Intensity variation among three selected pixels.

Figure 86on the other handllustrates howthe stem pixels are segmented into
background class (conveying system) using threshold derived from Ots’s
method on the red channel. Holes within the fayagd class (orange) will not |

classified as blemishes.

Fig. 86. Stem detection using Otsu’s method.

Figure 87 shows sonaee| blemishes with very low intensities the orange are
also segmentedhto the background class. Howe' the misclassifiedpixels are

reduced to the minimum exte

Fig. 87. Blemishes misclassified as the stem.

Figure 88 points ouhe deep blemis which causethe misclassification.

Fig. 88. Depth of the blemish.
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5.6 Blemish Quantification

Blemishes are quantified based on the proportiomlemishes found for each
orange fruit. We define this ésp/tnp  On the other hand, the proportion of good
orange skin is defined relative to the proportidilemishes. This is defined as

for each orange fruit as follows:

p:l_bﬂ (46)

tnp

wherebnpis the number of blemish pixels (described inisach.4.8.3), andnp the

total number of pixels on the topmost layer.

The factors which may affect the accuracy of theteay are explored as follow:
1. The blemishes are outside of the topmost layer lwisigot analyzed in the
current image.
2. The rough edges are not smoothed perfectly, ane deitovers are treated
as blemishes.

3. The stem is partially removed.
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5.7 Grading

The novel algorithm was tested on 170 oranges. wi@ manually classified as
good oranges by experts, while 70 were classifiedlemished oranges by the same

inspectors.

Figure 89 shows the classification results befaneathing the rough edges.

0.99 - s ‘
i, W
T . .
L] & m W
g 0
[ ] [ |
097 — W % = =
[ |
O "L
¢ “ ' [ | [ ]
i . n o
R
0.95 -T. * * a
[ |
[ | L
- ' ) TS o
L J
[ |
L 2
; 0.93 .0 % ¢ Blemished Oranges
* .~ - BGood Oranges
7S L J
[ ] ¢ [
0.91 B m
l. °® *
N . ¢
e W ¢ O
[ ]
0.89 L W
o
'S g
R e o
14 X3
087 " ‘I T T T 1
0 20 40 60 80 100
Individual Orange

Fig. 89. Classification results before smoothing the roegles.
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Figure 90 shows the classification results afteoatmng the rough edges. The
performance is improved.
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Fig. 90. Classification results after smoothing the rouglges.
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Figure 91 shows the classification results afteraeing the stem.
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Fig. 91. Classification results after removing the stem.

The layers are generated dynamically at run tintaéchvdiffer in the size for the
same orange due to the lighting changes. Blemishesld be quantified based on
stable and predictable measurements.is redefined for each orange fruit as

follows:
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p=1-—=- (48)

wheretp is the total number of pixels on the whole orangEigure 92 shows the

classification results.
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Fig. 92. Classification results using the new formula.
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It is evident that the classified good oranges tpadtistered within the Grade A
quality band, according to the proposed algorithmBhis amounts to 96% correct
classification. On the other hand, the classibimished oranges scattered across
the graph in different quality bands. This protiest the algorithm is able to work
out varying degrees of quality for blemished orangeAltogether, the algorithm

garnered 97% correct classification results foritleenished fruits.

Also, as depicted in Figure 9,is predefined to b8.99 for the highest quality
grade. Therefore, ib is greater than or equal €99 then the orange is classified
to be of high quality. Table 29 summarizes thessifecation results produced by

the novel algorithm.

Fruit Image | No. of Images | No. of No. of Wrongly | o4 of Correct
Types Correctly Classified
Classified Images Classification
Images
Good 100 96 4 96%
Orange
Blemished 70 68 2 97%
Orange

Table 29. Summary of classification results using the nolgddthm.

Moreover, the grading criteria can be easily beustdd according to the
requirement set by the market, by defining the edéht quality bands. For
instance:

1. Grade A: pabove0.99
2. GradeB: pbetweer0.97and0.99
3. GradeC: pbetweer0.93and0.95
4. Grade D: pbelow0.93

-114 -



Chapter 6

Conclusion and Future Work

An adaptive intelligent fruit grading system fompei and unripe oranges is
proposed in this research. The contributions & thork are summarized as
follows:

1. It was observed that the global intensity variatimtween pixels from the
same orange is not sufficient to classify defedes¢ribed in Section 5.4.2.4
and 5.4.2.5). Most of the existing algorithms st addressing this
significant issue and one solution to the problsmresented here.

2. Most of the fruit grading algorithms are largelysbd on the use of neural
networks to achieve a more thorough analysis of filét’s surface
(described in Section 3). As part of the requireta¢hat makes it difficult
to correctly grade fruits are thousands of trainex@mples that have to be
gathered before the experiment and analysis. [Aroisess is considered to
be very time-consuming and computationally expensivOn the other
hand, the novel algorithm presented here doesempion training. It can
be implemented, tested and modified without anyrogs and lengthy
training requirements.

3. The novel algorithm may be suitable for grading sather fruits that have
the rounded convex surface property (described @tti@ 5.4.1.5).
However, the orange colour class proposed herehaile to be modified
slightly to be adapted for grading other fruits.

4. Some existing algorithms are able to grade fruits different quality bands
(i.e. histogram-based analysis, etc.). Howevechsalgorithms cannot
locate explicitly where the blemishes are on tlu.fr The novel algorithm
is able to locate the blemish and measure its angéa high level of

accuracy (described in Section 5.4.8).
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Oranges are assessed according to their surfadardexsuch as bruising,
discolouration and other blemishes. All these defigpes contribute roughly
equally to the final grading decision. The grasl@imeasure of the size of these
surface defects over the whole orange. An extensiothe proposed research
would be to incorporate some measure of depthHerkdemishes, based on their
relative intensities. In effect, it could be dedddhat the darker the blemishes are,

the deeper the damage is.

-116 -



Appendix A. Otsu’s Method

Algorithm Details with Sample Computations

Subset of a grey scale image is extracted to beahmeple data for demonstration
purpose. The sample data is a two dimensionay afrpicture elements which is
used to make up an image. It has a width(W=6) beight(H=6). The total
number of pixels in this sample data(N=36) is Wxt)6 Table 30 shows the

extracted sample data.

1 z 5 4 5 ]
1 4 1] 0 0 20 40
2 120 0 0 10 70 4
3 20 a0 70 120 220 7
4 10 1] 100 50 144 1
5 30 &0 0 1 1] 1
[ 20 10 20 1 10 30

Table 30. Sample data selected for Otsu’s method implementat

The algorithm of Otsu’s thresholding method is ietpénted in this section.
1. Initialize grey scale ranging froénto 255(L-1) L is chosen to b256
L =256

2. Initialize class probabilitgQ1) of class one to be
w1=0

3. Initialize the maximum or minimum between-classamace to b,
Minaw2 =0, minimizing the between-class variance
or

2 . .
Maxos, =0, maximizing the between —class variance

4. Find the maximum and minimum grey level sepdyate
MinGreyLevel =0
MaxGreyLevel = 220

5. Compute image histogram which is the distributad values for the pixels in
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the sample data. The histogram is shown in Fig§8re

g

B

4

EMMJ]MM i J\ I

Fig. 93. Histogram analysis for Otsu's method implementatio

Index starting value of an excel spreadshett isSo the first column indexed
Is corresponding to grey levBl It can be interpreted as there 8rpixels at

grey levelO in the sample data.

6. Compute grey levels probabilitidy for each grey level. The computed

probabilities are shown in Figure 94.

Probability
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Fig. 94. Probability analysis for Otsu’s method implemeiutat

Po=no/ N, 0.2222=8/36, atgrey level 0
Pi=n/N, 0.1111=4/36, atgreylevell
P,=m/ N, 0=0/36, at grey level 2

Pass=mss/ N, 0=0/36, atgreylevel 255

7. Compute grey levels medh

M = S(P*i)=(0.2222 *0) + (0.1111 * 1) + (0 * 2) + .... + (O * 255)
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= 35.6667, fi<L

8. Step through all possible thresholds. The #lgor used is to maximize the
between-class variance.
t = [MinGreyLevel...MaxGreyLevel] = [0...220]
» Att=0, 0<ic<t

1= YP, = Po= 0.2222
Wy=1-@y=1-02222=0.7778
temp =Y (i * P)) = 0 * 0.2222 = 0
(1= Y3 *P)/wy=temp /w1 =0/0.2222=0
p2=M-X(i* Pi)) / 2 = (M - temp) /o
= (35.6667 - 0) / 0.7778 = 45.8559
Ou2= (01« W7 * (U1 - Uo)° = 0.2222 * 0.7778 * (O - 45.8559% 363.4147
> Att=1 0<i<t
w1 = YPi=Po+P1=0.2222 + 0.1111 = 0.3333
Wy=1-@y=1-0.3333=0.6667
temp =Y(i * P)) = 0 * 0.2222 + 1 * 0.1111 = 0.1111
11= Y(i * P)) / 1 = temp ko1 = 0.1111 / 0.3333 = 0.3333
p2= (M- 3(i*Pi)) /w2 = (M - temp) /w2
= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307
Ob°= (1 % W » (U1~ U2)
=0.3333 *0.6667 * (0.3333 - 53.336ﬁ 624.1298
> Att=2, 0<i<t

w1 =P =Po+ P+ P>=0.2222 + 0.1111 + 0 = 0.3333

Wy=1-w1=1-0.3333 =0.6667

temp =3(i * P;) =0*0.2222 + 1 *0.1111 + 2 * 0 = 0.1111
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1= Y(i*P) /1 =temp o1 = 0.1111 / 0.3333 = 0.3333

2= M- 3(i*Pi))/ 2= (M -temp) /o>
= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307
2_ 2

Op = W1+ W2 * (U1~ U2)

= 0.3333 * 0.6667 * (0.3333 - 53.3367 624.1298

9. This step is equivalent to step 8. The algoritbsed is to minimize the
between-class variance. Step through all postibésholds.
t = [MinGreyLevel...MaxGreyLevel] = [0...220]
> Att=0, 0<ic<t

w1 = YP = Po=0.2222
Wy=1-wy1=1-02222=0.7778
temp =3(i * P)) =0 * 0.2222 = 0
=Y *P)/wq=temp /w1=0/0.2222=0
Hz= (M- X(i* P)) 02= (M - temp) [0

= (35.6667 - 0) / 0.7778 = 45.8559
templ =X (i - 1) * Pi = (0 - 0F* 0.2222 = 0
temp2 =3 (i -,Lt2)2 *Pi

=(1-45.8559)*0.1111 +
(2 - 45.8559)* 0 +

(220 - 45.85598)* 0.0278
=2181.9 t+X i < MaxGreyLevel

012 =Y (i - )* * Pil 1= templ/ w1 =0/0.2222 = 0

022 =i - 1) * Pyl 9= temp2 o= 2181.9 / 0.7778 = 2805.2
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Oul= 1% 012+ W2 * 6,7 =0.2222 * 0 + 0.7778 * 2805.2 = 2181.9
Att=1, 0<i<t
W1 = YP = Po+ P1=0.2222 + 0.1111 = 0.3333
wy=1-wq1=1-0.3333 =0.6667
temp =3 (i * P;) = 0 * 0.2222 + 1 * 0.1111 = 0.1111
U1 = Y(i* Pj) / 1= temp tv1 = 0.1111 / 0.3333 = 0.3333
pz =(M-3(i*Pi)) /2= (M -temp) Iz
= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307
templ =Y (i - 1) * P = (0 - 0.3333§* 0.2222 + (1 - 0.3333)* 0.1111
=0.0741
temp2 =x(i - 42)° * P,
= (2-53.330H*0 +

(3 - 53.3307)* 0 +

+

(220 - 53.3307) 0.0278
=1921.1 t+& 1 <MaxGreyLevel

0'12 =>(- ,ul)z *Pi/ 1=templ/wq1=0.0741/0.3333 = 0.2223
0'22 =>(- ,uz)z *Pil o=temp2/ wy=1921.1/0.6667 = 2881.5059

G2 = 1% 012 + W2 * 657 = 0.3333 * 0.2223 + 0.6667 * 2881.5059

=1921.2
Att=2, 0<ic<t

@1 = YP, = Po+ P1+ P,=0.2222 + 0.1111 + 0 = 0.3333
Wy=1-w1=1-0.3333 =0.6667
temp =X(i * P;) =0*0.2222 + 1 *0.1111 + 2 * 0 = 0.1111

w1 =Y(@*P)/@wy=temp v, =0.1111/0.3333 = 0.3333
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Ha =(M-3(i*Pi)) /2= (M -temp) /w2
= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307
templ =Y (i - u1)° * Pi = (0 - 0.33335* 0.2222 +
(1 -0.3333)* 0.1111 +
(2 -0.3333) 0
=0.0741
temp2 =3(i - 42)° * P,
= (3-53.330H*0 +
(4 - 53.330H)* 0.0278 +

(220 - 53.3307) 0.0278

=1921.1 t+¥ i <MaxGreyLevel
012 =Y(i - )’ * Pil 1 =templ 1 =0.0741/0.3333 = 0.2223
022 =i - 2)* * Pil wp=temp2 wy=1921.1/0.6667 = 2881.5059
0'W2: w1* 012 +wo* 022

=0.3333 *0.2223 + 0.6667 * 2881.5059
=1921.2

10. Desired threshold corresponds to the maxirrluflursvfab2 or minimum Minaw2

which is at grey levebO.
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Appendix B. Histogram Analysis

Algorithm Details with Sample Computations

The following example shows how the algorithm woiks the subset of an
isolated red component(Table 31). The task i©otopute a new value for the pixel

P(4,4) Currently the pixeP(4,4)has a valuéO.

1 2 3 4 5 ] 7

10| 20] 20/ s0 sof 30/ &0
30] 30/ o] 40 20/ edf o
40 0| 20/ eo| so| 100/ E0
200 90/ 3 0] 0] 30
40f 30/ 20 o] 0| o &0
40 10[ 10| sof 40| 20/ 10
70| 0| so 30/ e0| 10] 20

U= T, [ ST VR

Table 31. Sample data selected for image preprocessing.

1. On the vertical direction, both pixeR(1,4) and P(7,4) are three pixels away
from the pixelP(4,4).
1. Compute the arithmetic average betw®¢h,4)andP(7,4).
average =(P(1,4)+P(7,4))/ 2=(50+30)/ 2 =40

2. Compute the variance betweB(,4)and the average.

variance = P(4,4) — average = 10 — 40 = -30

3. The first candidate value is derived by the arace plusl28. Pixel
values can’'t be negative, so the constant vaReis added on top of
the variance.

valueOne = 128 + variance = 128 — 30 = 98

2. On the horizontal direction, both pixd¥4,1) andP(4,7) are three pixels away
from the pixelP(4,4).
1. Compute the arithmetic average betweéhl)andP(4,7).
average =(P(4,1)+P(4,7)) /1 2=(20 +30)/ 2 =25

2. Compute the variance betweef#,4)and the average.
variance = P(4,4) — average = 10 — 25 =-15
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3. The second candidate value is derived by thewee plusl28.

valueTwo = 128 + variance = 128 — 15 = 113

3. On the left diagonal direction, both pixeéi&1,1) and P(7,7) are three pixels
away from the pixeP(4,4).
1. Compute the arithmetic average betweéhl)andP(7,7).
average =(P(1,1)+P(7,7)) /2=(10+20)/ 2 =15

2. Compute the variance betwerf#,4)and the average.

variance = P(4,4) —average =10 - 15=-5

3. The third candidate value is derived by thearaze plusl28.
valueThree = 128 + variance = 128 — 5 = 123

4. On the right diagonal direction, both pixd¥¢1,7) andP(7,1) are three pixels
away from the pixeP(4,4).
1. Compute the arithmetic average betweéh7)andP(7,1).
average =(P(1,7)+P(7,1)) /2=(50+70)/ 2 =60

2. Compute the variance betwef#,4)and the average.

variance = P(4,4) — average = 10 — 60 = -50

3. The fourth candidate value is derived by theavare plusl28.

valueFour = 128 + variance = 128 - 50 = 78

The new pixel value foP(4,4)is the maximum value among these four candidate
values.

P(4,4) = Max[98 113 123 78] = 123
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Appendix C. Local Defect Search

Algorithm Details with Sample Computations

There are two types of block-wise features, onmeésn block variance, and the
other one is squared block varianc&.he following example demonstrates how the
algorithm works on a single pixd®(4,4) based on Table 31.P(4,4) has eight
neighborhood-pixels, such #&3,3), P(3,4), P(3,5), P(4,5), P(5,5), P(5,4), Bl5
and P(4,3).

1. Compute the variance betwedef,4)and eight neighborhood-pixels separately.

V1 = (P(3,3) - P(4,4)= (20 - 10f = 100
V2 = (P(3,4) - P(4,4%)= (60 - 10f = 2500
V3 = (P(3,5) - P(4,40= (50 - 10¥ = 1600
V4 = (P(4,5) - P(4,49= (10 - 10 =0

V5 = (P(5,5) - P(4,40)= (60 - 10¥ = 2500
V6 = (P(5,4) - P(4,4%)= (70 - 10f = 3600
V7 = (P(5,3) - P(4,40)= (20 - 10¥ = 100
V8 = (P(4,3) - P(4,49= (30 - 10¥ = 400

2. Compute the arithmetic mean of the eight vagann step one.

M(@4,4)=(V1+V2+V3+V4+V5+V6+V7+V8)8
= (100 +2500 +1600 +0 +2500 +3600 +100 +400) /8
=10800/8 = 1350

3. For each pixel within the region, repeat the potations in step one and two.

4. Add up all the values computed in step three.

5. Divide the computed value in step four by thaltaumber of pixels within the
region. The new value computed in this step iedahe mean block variance.

The mean block variance is given a valua4d0for demonstration purpose.

MBV = 1400
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Compute the squared difference betwei¢h,4) andMBV.
V = (M(4,4) — MBVJ = (1350 - 14009 = 2500

For each pixel within the region, repeat the potations in step six.

Add up all the values computed in step seven.

Divide the computed value in step eight by treamblock variance.

value computed in this step is called the squaleckbrariance.
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Appendix D. Pixel Reclassification

Algorithm Details with Sample Computations

The following computations demonstrate how the Ippeglassification works.
The colour channel values B{4,2) are 50, 20and7 on three channels separately.

Table 32 is an instance of the new class meanxrfatrdemonstration purpose.

Class No. Red Channel _lé_l‘EE‘l_.l Chanpgl Blue Channel

1 23 13 6
2 52 31 _ 18
3 145 _ 73 12
4 228.82 113.95 | 22.55

Table 32. New class mean matrix for demonstration purpose.
ssd(1) = sqgrt(((23-50)."2 + (13-20)."2 + (6-7).¥3) = 16.11
ssd(2) = sqgrt(((52-50).2 + (31-20)."2 + (18-7)./3)= 9.05
ssd(3) = sqrt(((145-50).2 + (73-20)."2 + (12-7))3)= 62.87
ssd(4) = sqrt(((228.82-50)./2 + (113.95-20)./2 2(85-7).A2) /3) = 116.96

P(4,2)is classified as a member of the class two. Tkel palue is replaced by
the corresponding class me&2 on the red channel and stored in the pixel
reclassification matrix which is a two-dimensiomatay with the same size as the

RGB image.
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