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Abstract 

Each year, the world’s top orange producers output millions of oranges for human 

consumption.  This production is projected to grow by as much as 64 million in 2010 

and so the demand for fast, low-cost and precise automated orange fruit grading 

systems is only deemed to become more increasingly important.   

There is however an underlying limit to most orange blemish detection algorithms.  

Most existing statistical-based, structural-based, model-based and transform-based 

orange blemish detection algorithms are plagued by the following problem:  any pixels 

in an image of an orange having about the same magnitudes for the red, green and blue 

channels will almost always be classified as belonging to the same category (either a 

blemish or not).  This however presents a big problem as the RGB components of the 

pixels corresponding to blemishes are very similar to pixels near the boundary of an 

orange.  In light of this problem, this research utilizes a priori knowledge of the local 

intensity variations observed on rounded convex objects to classify the ambiguous 

pixels correctly.  The algorithm has the effect of peeling-off layers of the orange skin 

according to gradations of the intensity.  Therefore, any abrupt discontinuities detected 

along successive layers would significantly help identifying skin blemishes more 

accurately.  A commercial-grade fruit inspection and distribution system was used to 

collect 170 navel orange images.  Of these images, 100 were manually classified as 

good oranges by human inspection and the rest are blemished ones.  We demonstrate 

the efficacy of the algorithm using these images as the benchmarking test set.  Our 

results show that the system garnered 96% correctly classified good oranges and 97% 

correctly classified blemished oranges.  The proposed system is easily customizable as 

it does not require any training.  The fruit quality bands can be adjusted to meet the 

requirements set by the market standards by specifying an agreeable percentage of 

blemishes for each band. 
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Chapter 1 

Research Description  

1.1  Overview of the Current State of Technology  

Orange is an important horticultural produce around the world amounting to 

millions of tons per annum (Thomas, 2009).  Post-harvest diseases and mechanical 

damages greatly reduce the market value.  Traditional inspection of fruits is 

performed by human experts, which is considered to be time-consuming and 

subjective (Brosnan & Sun, 2004).  With the advent of fast and high-precision 

machine vision technologies, automation of the grading process is expected to reduce 

labour cost while significantly improving the efficiency, consistency and accuracy of 

this process (Du & Sun, 2004).  Grading of fruits shares several common features 

with more classical automated inspection of manufactured goods.  However there are 

not many robust and accurate grading systems targeting fruit defects comprehensively 

in the market.  This defect scrutiny problem is significantly more difficult, because 

there is a wide range of colour and texture variations found in natural products (Chen, 

Chao, & Kim 2002).       

Machine vision systems form their judgment based on specially designed image 

processing software (Bharati, Liu & John, 2004).  Texture classification algorithms 

are grouped into four major categories based on the types of features they are 

associated with, such as statistical-based (Unay, 2005), structural-based (Recce, Taylor, 

Piebe & Tropiano, 1996), model-based (Chang, et al., 1994) and transform-based 

(Vijayarekha & Govindaraj, 2006) algorithms.  However, most of the existing 

algorithms are not able to explicitly mark the pixels corresponding to the blemishes 

but could only provide a final answer (i.e. good or bad orange).  Moreover, most of 

these systems are not easily customizable to meet the evolving requirements set by the 

market.  For instance, a system trained to return 3 different possible fruit quality 
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bands will have to be retrained exhaustively by experts if the customer wishes to add 

more fruit quality bands.  This tedious process is usually time-consuming and 

end-users of the system will not have the ability to refine the system on their own.  

Different fruit species and varieties will demand for a completely different training set, 

long and arduous process of system refinement, increase in labor and production cost, 

etc, and will not always guarantee to produce the desired performance. 

Typically, texture classification algorithms utilize abstracted features from a spatial 

or frequency domain that cannot be cross-examined visually by humans (Johnson, 

2008).  It is extremely difficult to define any geometrical or spectral properties for 

the orange skin due to the wide-spectrum in variation found in organic produce.  

Texture classification algorithms are largely based on the use of neural networks as 

these systems are very good at finding useful correlations between features 

(Egmont-Petersen, Ridder & Handels, 2002).  However, they require a vast amount 

of training exemplars, and are computationally intensive to train.  Several 

researchers attempted to use a neural network-based classifier to achieve a more 

thorough analysis of the surface of fruits. 

Here, we mention some of the prominent researches done on orange fruit grading.  

In (Recce, Taylor, Piebe & Tropiano, 1996), it is developed a high speed vision based 

orange grading system which is largely based on the use of neural networks to achieve 

a more thorough blemish analysis, including the detection of stems.  Multiple views 

of an orange are analyzed and any views with low probability of containing defects or 

a stem would be excluded from further processing.  This probability is estimated by 

a neural network algorithm that feeds on colour histograms (normalized red and green) 

extracted from the images.  The resulting probability determines the goodness of 

Gaussian curve-fitting and that is used for grading oranges in the first stage of 

processing.  It was reported that many detectors do not respond strongly to the 

defects on oranges.  Therefore, five larger and smoother operators were invented for 

local defect detection purpose.  Moreover, the orange pickers would have filtered 

some of the bad oranges already and so most oranges with good quality are delivered 
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to the packing house.  Sorting the image on the pipeline can improve the throughput 

and overall grading performance.  As a result, the time frame required for processing 

each orange is relatively smaller as blemished and relatively bigger oranges that take 

longer to process are placed at a lower priority in the queue.  This algorithm however, 

is computationally expensive, and the intelligent time management has to be 

incorporated with state-of-the art hardware.  Large amount of training samples are 

also required before any testing is done. 

In (Vijayarekha & Govindaraj, 2006), it is suggested that features extracted from 

the images of fruit in either spatial or frequency domain can be used for defect 

classification.  Wavelet-based texture classification methods use the wavelet 

sub-bands to extract textural features.  These features are analyzed and extracted at 

different scales.  The high frequency sub-band is decomposed further into a 

combination of high-frequency and low-frequency sub-windows.  This is repeated 

successively until 16 sub-windows are extracted (or two levels with Daubechies).  

The algorithm is described to work similar to an advanced edge detector.  It detects 

the blemishes by finding the intensity transition areas.  However, the algorithm fails 

if the oranges are fully rotten and there are no textural differences on the fruit.      

In (Unay, 2005), a novel artificial neural network-based segmentation and apple 

grading system was proposed.  The background of the image is removed using a 

constant thresholding approach.  The experiment results show that using a constant 

threshold will remove some of the low intensity areas as well, such as some very 

dark blemishes.  Hence, a morphological filling operation is also used to recover 

these small holes.  As for the inputs, statistical, textural and shape-based features 

are extracted from each of the four filter images, and are fed to support vector 

machines classifier.  The regions identified as the stem are removed from the 

segmentation result.  The algorithm was tested on five supervised classifiers, such 

as the Linear Discriminated Classifier (LDC), Nearest Neighbor Classifier (k-NN), 

Fuzzy Nearest Neighbor Classifier (fuzzy k-NN), Adaptive Boosting (AdaBoost) and 

Support Vector Machines (SVM).  It was noted that the AdaBoost and SVM 
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classifiers perform the best with 90.3% overall recognition.  As reported, the SVM 

is deemed more suitable to this system, because it does not require previous training 

set.     

Upon examining the aforementioned algorithms, a novel system for grading 

oranges into different quality bands, according to their surface characteristics, is 

devised and presented in this paper.  Both ripe and unripe oranges comprise the 

benchmarking dataset.  It was observed that unripe oranges are more difficult to 

analyze for defect detection due to the colour transition areas.  In addition, global 

intensity variation between pixels from the same orange is deemed not to be sufficient 

to classify defects correctly.  Most of the existing algorithms are disregarding this 

significant issue.  However, the novel algorithm takes full advantage of the global 

intensity variation for blemish detection purposes.  We provide evidence of the 

merits of using this global intensity variation in our experiments.  

1.2  Research Objectives  

To devise an adaptive, intelligent grading system for oranges that allows for 

ripe/unripe classification, blemish detection, stem detection and removal, feature 

quantification and grading using the local intensity variation on RGB colour images.   

1.3  Research Methodology 

1. Study advanced image processing techniques, such as canny edge detection and 

Otsu’s optimum thresholding method. 

2. Study colour models in which way colours can be represented, such as RGB 

colour model.  

3. Study advanced texture classification methods, such as model-based and 

transform-based methods.   

4. Implement existing fruit grading algorithms.  
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5. Modify and improve existing fruit grading algorithms.  

6. Explore the flaws and strengths of existing algorithms in order to devise a novel 

algorithm.  

7. Gather and create a complete dataset for testing ripe and unripe oranges.  

8. Design and develop a novel ripe/unripe orange classification algorithm. 

9. Design and develop a novel blemish detection algorithm.  

10. Design and develop a novel stem detection and removal algorithm. 

11. Design and develop a novel blemish quantification algorithm. 

12. Design and develop a novel grading algorithm.  

13. Test the novel orange grading algorithm. 

14. Modify and improve the novel orange grading algorithm. 

15. Study advanced parallel image processing algorithms. 

16. Explore the flaws and strengths of the parallel image processing algorithms.  

17. Compare the performance of the system developed against the commercial 

available orange grading systems.   

1.4 Scope and Limitations of Research   

1. The novel algorithm is implemented and tested for ripe and unripe oranges only. 

2. Database consists of 170 navel orange images. 

3. Orange images are taken from the commercial machine on a standard operating 

condition.   

1.5  Benchmarking Testbed 

The proposed algorithms presented here were tested on a collection of 170 

(blemished and unblemished, ripe and unripe) orange images captured using 

commercial-grade sorting equipment, operating at standard conditions. 

As depicted in Figure 1, the commercial machine is comprised of a transport 



 

system that moves and rotates the orange fruit

controlled lighting that houses multiple digital cameras (

pixels) and mirrors.  The imaging system captures 25 images per fruit at different 

angles and is interfaced with a computer through an IEEE 1394 connection.  The 

computer can control the camera for adjusting any of the view settings, such as hue, 

brightness, contrast, lens focus and magnification.

Fig.
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Fig. 1. Commercial orange grading system. 
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detection and removal, blemish quantification and grading.  The algorithm is 

implemented and tested, and the experiment and analysis are presented in detail.     

Chapter 6 reviews the contributions of this work, and identifies promising areas of 

research worthy of conducting future works.   
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Chapter 2  

Theoretical Framework 

2.1  Advanced Image Processing Techniques 

Various intelligent image processing techniques are presented in this section, such 

as Otsu’s method and Canny edge detector.  Machine vision systems form their 

judgment based on specially designed image processing software.  Image 

processing is the core part of the fruit grading system.      

2.1.1 Otsu’s Method 

2.1.1.1  Overview 

Thresholding is the simplest method of image segmentation.  The core process in 

the thresholding is the choice of segmentation point.  From a grayscale image, 

thresholding can be used to create binary images.  Individual pixels in an image are 

marked as foreground pixels, for instance if their values are greater than the 

segmentation point, as background pixels otherwise.  Logical matrix contains only 

“0” and “1” can be used to represent an image.  Typically the foreground pixel is 

given a value of “1”, and the background pixel is given a value of “0”.  The 

segmentation point may be selected manually by a user or computed automatically 

using a thresholding method.  The mean or median value will work well to obtain a 

sufficient threshold value based on the most dominant pixel values in a noiseless 

image with uniform foreground and background pixel values, however this will 

generally not be the case (Johnson, 2008).  An example of object segmentation 

using a constant threshold value is shown in Figure 2.    
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Fig. 2. Object segmentation using a constant threshold value. 

In machine vision and image processing, Otsu’s thresholding method is used to 

automatically perform histogram shape-based image thresholding, or converting a 

gray level image to a binary image (Zhang & Hu, 2008).  The histogram method 

assumes that there is some average value for the foreground and background pixels, 

but the actual pixel values have some variations around the average value.  Otsu’s 

thresholding method minimizes the weighted within-class variance and this turns out 

to be the same as maximizing the between-class variance.  Otsu’s thresholding 

method operates directly on the grey level histogram and assumes that the image to 

be thresholded contains two classes of pixels (i.e. foreground and background).  

The difficult part during the process of clustering pixels is that two classes of pixels 

usually overlap, so minimizing the error of classifying a background pixel as a 

foreground becomes significant.  Otsu’s thresholding method calculates the 

optimum threshold by separating these two classes, so that their combined spread 

(intra-class variance) is minimal.  Otsu’s thresholding method makes each cluster as 

tight as possible and minimizing their overlap.  Otsu’s thresholding method does 

not require much specific knowledge of the image, and is robust against image noise.   

The cost of Otsu’s thresholding method is computationally cheap once the 

histogram is generated.  However, the cost of Otsu’s thresholding method would be 

very expensive when extended to a multi-level threshold due to the fact that a large 

number of iterations are required for computing the cumulative probability and the 

mean of a class (Cao, Shi & Cheng, 2002).  In real time application, most of the 

methods suffer from time-consuming computations for multilevel thresholding.  

TSMO thresholding method is a two–state multi-threshold Otsu method which can 

significantly improve the efficiency with an accuracy equivalent to Otsu’s method by 

greatly reducing the iterations required for computing the between-class variance in 
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a gray image.                                

The way to adjust the threshold is to increase the spread of one class and decrease 

the spread of the other.  The goal then is to select the threshold that minimizes the 

combined spread.  The within-class variance as the weighted sum of the variances 

of each cluster is defined as:   

��� ��� �  	
����
����  �  	����������           �1�      

Otsu’s thresholding method minimizes the weighted within-class variance and this 

turns out to be the same as maximizing the between-class variance which is defined 

as:  

�
���� � � �� ��� ��� �  	
���	������
��� �  �������           �2�     

2.1.1.2  General Algorithm  

Input : Grey scale image.  

Output : Threshold. 

Data: I = grey scale image, t = Threshold, i = grey level in image I, minGL = 

minimum grey level in image I, maxGL = maximum grey level in image I. 

1 foreach  grey level i in image I  do  

  ComputeProbability() 

end 

2 ComputeAverageIntensity() 

3 foreach  grey level i in image I  do  

  ComputeClassProbabilityForClassOne() 

ComputeClassProbabilityForClassTwo() 

ComputeClassMeanForClassOne() 

ComputeClassMeanForClassTwo() 

ComputeClassVarianceForClassOne() 
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ComputeClassVarianceForClassTwo() 

ComputeWeightedSumVariance() 

end   

4 t = FindMaxWeightedSumVariance() / FindMinWeightedSumVariance()   

1. Compute the probability p for each grey level.   

�� � ����             

n is the number of pixels at grey level i.  tn is the total number of pixels in 

image I.  

2. Compute the average intensity m for image I.   

� � ∑ ��������������      

3. Step through all possible thresholds t = minGL…maxGL.  The assumption is 

that pixels in image I are divided into two classes, class one and class two (i.e. 

foreground and background) by a threshold t.  Class one denotes pixels with 

grey levels from 1 to t, and class two denotes pixels with grey levels from t+1 to 

maxGL.    

1. Compute the class probabilities for class one and class two separated by a 

threshold t.   

• Compute class probability for class one.    

	
 � ∑ ����������   

• Compute class probability for class two.  

	� � ∑ ����������!
     "#   	� � 1 �  	
  

2. Compute the class means for class one and class two separated by a 

threshold t. 

• Compute class mean for class one.  

�
 � ∑ �� ������������	
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• Compute class mean for class two.  

�� � ∑ �� ��������!
	�     "#    �� � �� �  ∑ �� �������� �	�  

3. Compute weighted sum of variances for class one and class two separated 

by a threshold t. 

• Compute class variances for class one. 

�
� � ∑ � �  �
������������	
  

• Compute class variances for class two. 
��� � ∑ � �  ��������������!
 	�  

• Compute weighted sum of variances of two classes. 

��� �  	
�
�  �  	����    "#    �
� �  	
	� ��
 �  ��� �     
4. Desired threshold corresponds to the minimum σw

2 or maximum σb
2.  

For an illustration of the inner working of this algorithm with data samples, see 

appendix A.  

2.1.2 Canny Edge Detection 

Edge detection is the process of finding sharp contrasts in intensities.  This 

process significantly reduces the amount of data in an image, while preserving the 

most important structural features.  The majority of existing algorithms can be 

classified into two categories (Johnson, 2008), such as Laplacian of a Gaussian, first 

and second derivatives.   

Canny edge detector is considered to be the ideal edge detection algorithm for 

images that are corrupted with white noises, and well known for its ability to 
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generate single-pixel thick continuous edges (Canny, 1986).  Canny’s idea and 

algorithm can be found in his paper, "A Computational Approach to Edge Detection".  

He followed a list of criteria to improve current methods of edge detection. 

1. The first and most obvious criterion is the low error rate.  It is important 

that edges occurring in an image should not be missed. 

2. The second criterion is the edge points are well localized.  In other words, 

the distance between the edge pixels as found by the detector and the actual 

edge is to be at a minimum. 

3. A third criterion is to have only one response to a single edge.  This was 

added because the first two steps were not substantial enough to completely 

eliminate the possibility of multiple responses to an edge. 

2.1.3 Morphological Operators 

2.1.3.1  Overview 

Often it is necessary to process binary images.  In a binary image, each pixel can 

only take two values, such as zero or one.  The value is primarily used to denote the 

presence or absence of a feature which could be the result of previous processing, 

such as edge detection.  The binary image also gives information about the shape of 

an object.  Neighborhood operators for binary images are called morphological 

operators because they deal with the shape information (Johnson, 2008).   

A pixel can be connected to another pixel in two ways, such as four connected and 

eight connected.  A simple way to decide if a pixel is joined to one of its neighbors 

is to check all eight of the neighbors.  Pixels are four connected, if they are joined 

to the left, right, above or below, but not diagonally.  Pixels are eight connected, if 

they are joined to the central pixel.  Eight connectedness correctly connects 

diagonal lines.  However, it also connects the background across a diagonal line.  

The background must be treated differently from the foreground if eight 
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connectedness is used.  Figure 3 shows a four connected and eight connected 

figures. 

 
Fig. 3. Four and eight connectivity(Johnson, 2008). 

Shrink and expand are two important morphological operators.  Shrink will clear 

the pixels that have any non-class neighbors.  Expand will set the pixels that have 

any class neighbors.  An expand followed by a shrink is called a closed because it 

fills small holes between objects.  A shrink followed by expand is classed an open 

because it keeps the small holes between objects open.  Figure 4 shows the shrink, 

expand, open and close.              

 
Fig. 4. Expand, shrink, close and open(Johnson, 2008). 

The neighborhood operators, min and max work the same as shrink and expand.  

Taking the original image away from the expanded image works the same way as a 

contour detector.  It is correspond to the outer four connected edge.           

The shrink operator can be used to reduce the size of a region.  If the contour of a 

region is important than shrinking to nothing, then an operator can be applied to 

shrink the region to its skeleton.  The skeleton is a set of points which are 

equidistant from the two or more close edge points in the image (Johnson, 2008).  

Skeletonisation may be performed by repeatedly applying an operator which shrinks 

the image until the skeleton remains.  Figure 5 shows an example of shrinking a 

region to its skeleton.        

 
Fig. 5. Shrink a region to its skeleton(Johnson, 2008). 
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2.1.3.2  Convex Hull 

In mathematics, the convex hull is defined as follows. 

1. A set of data points P. 

2. A real vector space V. 

3. P in V is the smallest convex set containing P.  

For a given non-empty finite set of n data points, the convex hull computation 

means find the boundary points which can form a simple closed polygonal chain 

(Preparata & Hong, 1977).  The polygonal chain should contain all the data points 

P and its convex set is minimal.  The number of points on the convex hull is 

defined as follows:   

       $%&�'(��)� � *∑ +�,�-��
 .,� / ), +� /  R, +� 2 0, ∑ +� � 1, 4 � 1,2, …-��
 6     �3�    

Convex hull is a very useful image processing technique in computer vision.  

Figure 6 shows some holes within the red layer in a binary image.   

 

Fig. 6. Original image. 

Figure 7 shows the convex image after the convex hull operation.  The holes 

within the red layer are sealed.  

 

Fig. 7. Convex image. 

The original image is defined as mask one, and the convex image is defined as 

mask two.  The holes in the original image can be easily segmented by using mask 

two minus mask one.  Figure 8 illustrates the sealed holes, which are referred to the 



 - 16 -     . .

stem or blemishes in Section 5.4.8.      

 
Fig. 8. Sealed holes.  

2.2  Colour Space 

2.2.1   Overview 

  Colour is the visual perceptual property corresponding in humans to the categories 

called red, yellow, blue and others.  Spectrum of light is the distribution of light 

energy versus wavelength.  Colour derives from the spectrum of light interacting in 

the eye with the spectral sensitivities of the light receptors (Werblin, Jacobs & 

Teeters, 1996).  Colour can be represented as tuples of numbers, typically as three 

or four values or colour components (Deng et al., 2001).  Figure 9 illustrates the 

RGB and CMYK colour model.  The way of describing colours in such an abstract 

mathematical model is called colour space.  RGB colour space is the most common 

way to encode colours in computing for sensing, representation, and display of 

images (Bumbaca & Smith, 1987).            

RGB CMYK  

  

Fig. 9. RGB and CMYK colour model. 
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2.2.2  RGB Colour Space 

Human eye is sensitive to three additive primary colours, red, green and blue.  In 

machine vision, RGB (Red Green Blue) colour space is one of the most popular 

additive colour systems which are derived from human perception of colour 

(Rogowitz, 2001).  It is called an additive colour system, since you could add light 

from the primary colours to make new colours.  Human visual system is able to 

differentiate between 100-200 grey levels and 30,000-50,000 colours (Johnson, 

2008).  For this reason most vision systems use 256 grey levels (8 bits per pixel) or 

256 levels of red, green and blue (24 bits per pixel).  The 256 levels of red, green 

and blue usually do not represent equally spaced intensities, due to gamma 

correction (Farid, 2001).  Figure 10 demonstrate a board array of colours (more 

than 16 million) can be displayed by using an appropriate combination of red, green 

and blue intensities.     

RGB Colour Space 

 

 

 

 

Fig. 10. Example of RGB colour space. 

In RGB colour space, each primary colour is expressed as a channel which is used 

to refer to a certain component of an image in the conventional term (Bumbaca & 

Smith, 1987).  A channel can be used to generate a grayscale image with the same 

size as the original image.  In a grayscale image, each pixel only carries intensity 
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information.  The intensity of a pixel is expressed within a given range between a 

minimum and maximum, inclusive.   For instance, the weakest intensity is black(0), 

the strongest intensity is white(255) and many shades of gray in between.  Figure 

11 shows an example of the colour channel splitting of a full RGB colour image.  

The column at left shows the isolated colour channels in natural colours, while at 

right there are their grayscale equivalences:       

      

  Fig. 11. Colour channel splitting of a full RGB colour image. 

2.3  Parallel Image Processing System  

2.3.1   Overview  

Nowadays large amount of data are required for image processing, e.g., medical 

imaging, the traditional single processor is not able to complete complex tasks 

within a reasonable time frame  Parallel image processing (PIP) has been a topic of 

interest for many years.  The basic idea is to use multi-processors to perform a 

single or multiple tasks at the same time (Messom, 2008).  Large problems can 

almost always be divided into smaller ones.  The maximum speedup is n with n 

processors.  But in practice, it can’t be achieved according to Amdal’s Law 

(Onyuksel & Hosseini, 2002).  The serial section is usually slow, such as reading 

data from a CD.  The communication between processors is also considered to be 

time-consuming (Lekic, Mijanovic & Gobovic, 2002).    
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2.3.2 System Architecture   

Palatin, Buzek, and Beran (2007) developed a parallel image processing system.  

Figure 12 is a block schematic of the system developed. 

 

Fig. 12. Parallel image processing system(Palatin, Buzek, & Beran, 2007). 

The system consists of six logical layers, such as system layer, control layer, 

functional layer, shell layer, optimization layer and application layer.  Each layer 

performs a specific task.   

1. System Layer: Parallel environment. 

2. Control Layer: Communication between processors. 

3. Functional Layer: Image processing algorithms. 

4. Shell Layer: User interface. 

5. Optimization Layer: Monitoring the system and optimize the performance. 

6. Application Layer: Various image processing tasks. 

The system can be divided into two parts, such as application and module.  

Functional modules can be implemented in parallel.  The system uses the 

master-worker parallel programming to control modules by application: 

• An application(master) sends commands to the system. 

• Commands are stored in the shared memory. 

• The functional modules(workers) take these commands, perform requested 

tasks and return the results back to the application. 
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• One application can send another command before getting the result from 

previous one.  Each functional module may internally consist of many 

parallel processes. 

• It would be very efficient if the functions provided by the module can be 

paralleled. 

• A segmentation module can have several processes (sub modules).  Each 

of them does the segmentation for one part of the image.  Then the module 

joins the results of all the sub modules. 

Two ways to reduce the unnecessary communication: 

1. A shared database of data objects, not application.  

2. Sending data directly from one module to the other (pipelining).   

The shared memory is implemented as a shared associative memory, e.g. 

• The data is accessed by a key value, not address.  

• Provided by the coordination language Linda. 

• The system is designed to use Linda implementation called Glenda as a 

basic parallel environment.  
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Chapter 3  

Review of Related Literature 

3.1   High Speed Vision-Based Quality Grading of Oranges 

3.1.1   Overview 

Recce, Taylor, Piebe and Tropiano (1996) developed a high speed vision-based 

orange grading system which is largely based on the use of neural networks to achieve 

a more thorough analysis, including the detection of stems.  It is hard to define any 

geometrical or spectral properties for the orange skin, so the neural network classifier 

is fed by different feature extractors.   

Most of the processing of fresh fruits in the packing house is highly automated, 

such as washing and packing.  However the most important steps, e.g., inspection 

and grading in quality, are still performed manually throughout the world.  This is 

because the automated quality control requires fast and complex image analysis.   

Oranges are categorized according to surface textures, such as discolouration, 

bruising and other blemishes.  The grading is based on the size of defects on the 

orange.  If the stem can be successfully separated from the potential defects, then the 

accuracy of the resulted grading would be improved.        

High speed is required in the real-time application, and a global inspection is 

applied by default to every view of each orange.  In general, high quality oranges 

take shorter time to be categorized, and low quality oranges take longer time.  The 

processing time is also affected by the orange size.  Most of the oranges with good 

quality are delivered to the packing house.  For this reason, the time frame between 

adjacent oranges can be much smaller than the time spent to process the most detailed 

analysis for a worst-case orange.  Sorting the image on the pipeline can improve the 

throughput and overall grading performance.  The intelligent time management has 
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to be incorporated with state-of-the art hardware, such as digital signal processor and 

specialized neural network parallel processor. 

Vision-based quality grading system is tested in section 4.2.  

3.1.2 Image Capture and Processing  

The hardware components are constructed as follows:  

1. A master processor. 

2. A colour frame grabber based on Texas Instruments TMS320C40 DSP. 

3. A Philips prototype board based on a L-Neuro2 parallel neural engine. 

4. An industrial digital interface board.  

There are three main image processing stages, such as histogram analysis, local 

defect search and stem detection.  A fourth process provides the global supervision 

and control of the other three processes.  The controlling process keeps track of the 

locations of individual oranges that are currently within the machine.  Oranges are 

rolled and moved under the camera.  The entire surface of the orange is imaged by 

using six planar views normal to the axes of a Cartesian coordinate.   

As soon as the image is captured, the initial image extraction is performed by the 

C40 DSP.  Afterwards, each of the views is analyzed, and a view is excluded from 

further processing if the particular view has low probability to contain either defects 

or the stem.  This probability is predicted by a neural network algorithm that 

classifies colour histograms (normalized red and green) of the pixels.   

The DSP passes the remaining views to the L-Neuro board for a more detailed 

analysis on the local surface area.  A region-based operator is applied to the whole 

image, and each region is classified as normal or defected using a second neural 

network.   

Before treating an identified region as a defect, it is necessary to double check if the 

defect is a stem or not.  If the defect is much bigger or smaller than the size of a 
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typical stem, then there is no need to perform this operation.  A third neural network 

is used for the stem identification.         

After classification, the oranges on the pipeline are deflected to appropriate bins 

using purpose built pneumatic valves.   

3.1.3 General Algorithms  

3.1.3.1  Histogram Analysis  

The first stage in image processing is named histogram analysis.  The colour 

distribution of each of the views of an orange is analyzed and turned into features, 

such as mean and standard deviation.  Histogram analysis of the normalized pixel 

values is targeted on the red and green components only.  The assumption is that a 

good orange has normally distributed red and green colour components, since the 

natural skin pigmentation is composed mostly of one colour.  Defects tend to 

interrupt the smooth normal distribution on the red and green components.  However 

this effect is small and the number of pixels on the defected area is not predictable.  

Therefore, a view can be computed by the fit of the frequency distribution of the pixel 

values on the red and green components.  The result which fit well to a Gaussian will 

be classified as a good orange.  The best fit Gaussian g(x) is given by:  

 8�,� � 
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where x is the pixel value, σ and µ are the standard deviation and mean computed 

from the distribution.  The error is the summed difference between the best fit 

function and the histogram data.  Defects produce characteristic ranges of errors in 

specific segments of the histogram.  For this reason, the histogram data is divided 

into a set of segments I i, where: 

C� � |∑ E� �,� �  8�,�|, / )�          �5�  

The experiments show that a simple scoring rule based on the fit of a Gaussian to 
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the original histogram does not perform well compared with a neural network based 

classifier.  The neural network based classifier is able to learn the characteristic 

differences in a measured distribution from a normal distribution.  The neural 

network applied in this system is a modified form of the back-propagation training 

algorithm.  The input layer has ten neurons and combines information from the red 

and green histograms.  The output layer has two neurons.  Two classes are 

predefined, one is for good oranges and the other one is for defected oranges.  

Oranges classified into the second class are passed to the second stage for a more 

detailed analysis.     

In the first stage, a fraction of the top quality oranges may be classified as a lower 

quality band.  From the commercial point of view, upgrading the quality is better 

than downgrading the quality.  However, it is safer to downgrade the quality in the 

first stage and perform a more detailed analysis in the second stage.  

The number of training samples should be at least ten times larger than the number 

of weights in a multilayer back-propagation network.  More than three thousand of 

orange samples are used for training including a twenty percent testing set. 

3.1.3.2  Local Defect Search 

Defects can be segmented from the normal skin for a more detailed analysis.  

Local colour variation between pixels from the same orange should not be identified 

as defects.  Various types of defects make the segmentation process even harder by 

only looking at the local structural or textural properties.  All defect types contribute 

roughly equally to the final grading decision.  The defect detector using a set of 

masks is applied to regions of the orange image.  The defect is characterized by a 

discontinuity in the skin pigmentation.  The extracted local features are fed into the 

second neural network classifier.                        

Many edge detectors do not respond strongly to the defects on oranges.  For this 
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reason, five larger and smoother operators are invented for the local defect detection 

purpose.  There are two key steps in this operation.  

1. Divide the image in regions(NxN).  N is the typical size of defects.   

2. Apply five operators on red and green components separately.  Each 

operator is an NxN matrix with integer elements, such as zero and one.  

The first four operators are defined as follows: 

mHI
 � J 1,  K L��1, "�E<#M N<O         mHI� � J 1, P K L��1, "�E<#M N<O    
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The fifth operator is constructed based on the results of the third and fourth operators.  

��QY � Z���QU ���QR��QR ��QU [           �7�                

Convolution is a simple mathematical operation which is fundamental to many 

common image processing operators.  The following formula shows the convolution 

of NxN matrix and operator.     

C-],^ � ∑ ∑ ,�Q],^�Q�
���
 ��Q-      (8)                   

The input layer of the second neural network contains ten neurons.  Applying each 

of the five masks to the red and green components separately will generate ten results 

after computation.  The output layer of the second neural network contains two 

neurons.  Two classes are predefined, one is for normal skin, and the other one is for 

defected skin.  The database used in the second stage is the same as the one in the 

first stage.  Defects are extracted for training purposes.  Some defects are the same, 

which differ only in the selection of the start point.  The convolution is only applied 

to arbitrarily partitioned regions.  This can help to increase the computational speed.  

In the second stage, the stem is treated the same as defects.    

 



 - 26 -     . .

3.1.3.3  Stem Detection  

Stem is hard to distinguish from defects.  Histogram does not show significant 

differences between the stem and defects.  Stem has a much more regular structure 

than defects.  The high degree of radial symmetry can be used to aid the 

identification of stem.  The family of Zernike moments is a powerful technique for 

stem detection.  Zernike moments are very sensitive to circular symmetries and 

invariant under rotation.  A two dimensional square mask based on a Zernike 

polynomial is taken to have a unit radius in polar coordinates.  Each pixel is assigned 

a complex value.     

_���`, #� � �a"N��`� � P b N c��`�� b d���#�           �9�   

The Zernike polynomial Rnm is defined as follows:   

d�� � ∑ �f
�g��fh�!h!j�klm�@ f�n!jklm@ f
n! #��f�h�             �10�h��k=m�@h�o   

where n is the major order of the Zernike polynomial, and m is the minor order.      

Figure 13 shows three Zernike masks.  

 
Fig. 13. Example of Zernike masks(Recce, Taylor, Piebe & Tropiano,1996). 

The spatial features extracted from the suspected stems are fed into the third 

neural network classifier.   

3.1.4 System Performance   

This system is aimed directly for use in a commercial machine with stringent 

real-time requirements.  The features of this system are cost-effective, robust, 
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simple and suited for implementation in parallel hardware.  The experiment is 

based on four views of oranges.   

1. The first view contains no defects. 

2. The second and third views contain defects which have been detected.  

3. The fourth view contains a detected stem.        

Table 1 shows the errors given by the best of the neural networks tested.  The 

error labeled “down” is the misclassification that potentially leads to a final 

downgrading of the orange.    

Network Training Set Test Set 

 � down � over � down � over 

Histogram 0.00% 0.00% 13.73% 2.06% 

Defect 0.00% 0.62% 0.80% 2.02% 

Stem 0.11% 0.87% 0.44% 1.31% 

Table 1. Vision-based algorithm classification result(Recce, Taylor, Piebe & Tropiano,1996). 

The largest variance between the training and test errors is the histogram analysis.  

The histogram contains no spatial information, and unlikely to be refined significantly.  

Increasing the number of training samples may help to solve this problem.  The 

evidence for the advantage provided by use of neural networks is shown in Figure 14. 

Part A is a good orange.  Part B contains a detected stem.  Part C and D contain 

identified defects.              

 

Fig. 14. Processed orange images using high speed vision-based algorithm(Recce, Taylor, Piebe & 

Tropiano,1996). 
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3.2  Citrus Fruit External Defect Classification 

3.2.1  Overview   

Vijayarekha and Govindaraj (2006) suggest that features extracted from the images 

of citrus fruit in either spatial or frequency domain can be used for defect 

classification.  The external surface quality is directly related to the marketing and 

sales.  The automatic grading system can significantly improve the accuracy and 

consistency while eliminating the subjectivity of manual inspection.   

The defects on the external surface are caused by two reasons.  

1. Pre-harvest and Post-harvest diseases.  The major diseases are diplodia and 

phomopsis stem-end rot, splitting, pitting, green and blue mold, sour and 

brown rots, anthracnose, and alternaria rot, etc.   

2. Mechanical damages during transportation.         

The defects on the citrus fruit are characterized by different textures.  Among 

various textures, three types of defects are categorized, such as pitting, splitting and 

stem-end rot.   

1. Pitting is caused by mechanical damage or reduced gas exchange during 

transportation.  Pits can coalesce to form irregular patches and brown to 

black blemishes.       

2. Splitting is caused by the inability of the outer skin to hold the weight of the 

whole fruit.  The outer skin of the citrus fruit splits and the inner pulp gets 

exposed.  The defective region is usually brighter compared with the normal 

skin.   

3. There are two types of stem-end rot, such as phomopsis stem-end rot and 

diplodia stem-end rot.  Both types are very similar at the initial state, 

however, phomopsis stem-end rot soon will become tan to dark brown and a 

clear line of demarcation is formed at the junction between diseased and 

normal skin.                                            
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Wavelet packet transform (WPT) extents the wavelet transform.  Wavelet 

analysis provides the spatial and frequency information which is useful for texture 

classification.  The features, e.g., mean and standard deviation, are extracted from 

each of the detail as well as the approximation sub-windows, and then fed into the 

Artificial Neural Network (ANN) classifier for defect classification. 

This system cannot classify the stem-end rot defect which appears on the entire 

surface of the fruit under inspection.  If the edges are not clearly defined, then the 

features extracted from such images are not useful.  The citrus fruit classification 

process is shown in Figure 15.   

 

Fig. 15. Citrus fruit external defect classification process(Vijayarekha & Govindaraj, 2006). 

The citrus fruit classification system is tested in section 4.3.  

3.2.2 Wavelet Packet Texture Analysis    

Wavelet-based texture classification methods extract textural features from the 

wavelet sub-bands.  The advantages of using wavelet analysis are listed below:   

1. Decompose the given input image into frequency sub-bands.  Textures 

presented in the image can be analyzed and extracted at different scales.      

2. Both low and high frequency sub windows can be analyzed.  The high 

frequency sub window can be used as the next higher level of 

decomposition.   

3. A high value of the wavelet packet transform coefficient represents more 

edges in the image.  A low value of the wavelet packet transform 

coefficient represents a smooth texture.                     
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The decomposition is performed by convolving the original signal separately with 

two half brand pass wavelet filters.  

1. The low pass decomposition filter (LD) removes all frequencies that are 

above half of the highest frequency and collects only the low frequency 

contents in the signal.  The low pass filtering halves the resolution, but 

leave the scale unchanged.       

2. A high pass decomposition filter (HD) removes all the frequencies that are 

below half of the highest frequency and collects only the high frequency 

contents.    

The formula of the wavelet packet transform is defined as follows: 

p�c� � ∑ h�k�. x�2n � k�           �11�  

where Y[n] is the output sequence, and X[n]  is the input signal.  Wavelet packet 

transform analyzes the signal at different frequency bands with different resolutions 

by decomposing the signal into a coarse approximation and detail information.  

Approximations and details are two orthogonal subspaces by splitting an individual 

discrete signal.  Figure 16 shows the decomposition filter bank structure. 

 

Fig. 16. Decomposition filter bank structure of WPT(Vijayarekha & Govindaraj, 2006). 
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The mean and standard deviation of 16 sub-windows are computed for each image 

using the following formulas: 

v<wc��� � 
x ∑ y�Qx�,Q�
     z�wc{w#{ {<| w� "c � �
x ∑ �y�Qx�,Q�
 � ����o.Y    �12�  

where Pij is the coefficients of the wavelet packet transformed image at row i and 

column j, and N is the total number of pixels.   

3.2.3 Neural Network Classifier   

The neural network classifier is constructed as follows: 

1. Thirty-two input neurons.  

2. Three output neurons.   

• Pitting Defect:  [1 -1 -1] 

• Splitting Defect:  [-1 1 -1] 

• Stem-end Rot Defect:  [-1 -1 1] 

3. Ten hidden neurons. 

The neural network architecture is shown in Figure 17.  

 

Fig. 17. Neural network classifier for defect classification(Vijayarekha & Govindaraj, 2006). 

The error is considered to be the sum-squared error.  Ten neurons in a single 

hidden layer are found on a trial, and the error basis is minimal.  The training 
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method is the gradient descent back-propagation with momentum and adaptive 

learning rate.  The momentum helps in faster convergence.  Training stops at any 

of the following four conditions: 

 1. Maximum number of loops is reached. 

 2. Exceed the maximum time frame.  

 3.  The predefined goal is reached.  

 4. Gradient falls below minimum gradient.  

The transfer function between the hidden and output layer is the bipolar tangent 

sigmoid non-linear transfer function.  Features are normalized and given as the 

input vector.  The network cannot be over trained.  The classification is defined as 

follows: 

1. If the first output neuron P1 is higher than the others, then the fruit may 

contain pitting defects.  

2. If the second output neuron P2 is higher than the others, then the fruit may 

contain splitting defects. 

3. If the third output neuron P3 is higher than the others, then the fruit may 

contain stem-end rot defects.  

3.2.4 System Performance 

Twenty-three citrus fruits are collected from the market.  They are manually 

categorized as follows:   

1. Three citrus fruits are good.  

2. Eight citrus fruits have pitting defects. 

3. Five citrus fruits have splitting defects. 

4. Seven citrus fruits have stem-end rot defects.    

The image capture system is constructed as follows: 

1. A colour CCD camera (Pulnix TMC-6700 CL).  

2. A C-mount lens of focal length 6mm.  
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3. A camera link interface compatible frame grabber card (NI- 1428). 

4. An illumination source.    

5. A personal computer system (Intel Pentium IV @2.18 GHZ).  

The citrus fruits are placed on the vertical stand.  Three images are captured for 

each fruit with proper illumination at different positions.  An image bank is 

generated for the image processing and classification purpose.  The neural network 

classifier is trained using twenty-three citrus fruits.  Forty-nine citrus fruits are 

selected as the testing dataset.  They are manually categorized as follows:       

1. Eight citrus fruits are good.  

2. Nineteen citrus fruits have pitting defects. 

3. Twelve citrus fruits have splitting defects. 

4. Ten citrus fruits have stem-end rot defects. 

Table 2 shows the classification result.  

Fruit Image 
Types 

No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification 

Pitting 19 16 3 84.21% 
Stem-end rot 10 5 5 50.00% 
Splitting 12 12 0 100.00% 

Table 2. Citrus fruit external defect classification result (Vijayarekha & Govindaraj, 2006). 

The classification for the stem-end rot defects is not ideal.  This is because some 

test samples are fully rotten and there are no textural differences on the fruit surface 

area.  The intensity variation on such images is not obvious and the edges are not 

prominently defined.  Increasing the number of training samples may help to 

identify the stem-end rot defects better.  Some other images and artificial neural 

network classification results using wavelet packet transform features are shown in 

Table 3.  
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Table 3. Part of the citrus fruit classification results with images(Vijayarekha & Govindaraj, 2006). 

3.3  Intelligent Fruit Sorting System  

3.3.1  Overview 

Guo and Cao (2004) developed an intelligent fruit sorting system based on colour 

image processing.  The system is designed for any fruit with circular shape, such as 

apple and orange.  A block schematic of the system is shown in Figure 18.   

 

Fig. 18. Colour image processing based intelligent fruit sorting system(Guo & Cao, 2004). 

The system consists of three parts. 
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1.  Electric control system. 

2. Vision inspection system. 

3. Fruit transportation and sorting mechanism. 

The vision inspection system is constructed as follows:   

1. Two CCD cameras are installed on the top left and right concerns with 120 

degrees from each other.   

2. One CCD camera is installed above the pans.  

Majority of the fruit surface areas are imaged by three cameras.  Some surface 

areas may not be inspected.  However, the experiment result shows that this has 

little influence on the overall performance.  A block schematic of the vision 

inspection system is shown in Figure 19.   

 

Fig. 19. Vision inspection system in fruit sorting system(Guo & Cao, 2004). 

The system requirement is about five apples per second, so one apple has to be 

fully processed within two hundred milliseconds.  The time allocation is designed 

as follows:   

1. Image acquirement is limited within one hundred milliseconds.  Two 

Matrox Meteor-II frame grabbers are chosen to speed up the process of 

image acquisition.  The experiment shows that three images can be 

captured within one hundred milliseconds.    

2. Image processing is limited within one hundred milliseconds.  Three 

captured images have to be processed within one hundred milliseconds.      

In order to improve the system performance, the following steps should be applied.  

1. Optical fiber sensor is adopted to provide outside trigger signal for the 
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image system.  

2. Multi-threads program structure is designed to improve the grabbing speed.  

3. Single field grab mode is applied to resolve the blurred image problem 

caused by motion.  

3.3.2 Feature Extraction  

Fruit segmentation is an important step before image processing.  The fruit 

segmentation has to be done within fifty milliseconds.  The algorithm is required to 

maintain certain precision.  

Ohta colour space is derived based on a set of orthogonal colour features.  The 

conversion from RGB to Ohta colour space is liner and computationally cheap 

compared with HSI and HSV.  The formula is shown below:   

}~�
~�    C
 �  ��!�!��R C� �   �� – ���    CR  � ���f�f��U

O                  J C�� � d � �    CR�  � ���f�f���
O               �13�  

A constant threshold value is selected for image segmentation purpose.  The 

experiment result shows that the I2 colour feature can mask out the image 

background.  A sample segmentation result is shown in Figure 20.  

 

 Fig. 20. Result of fruit segmentation using a constant threshold(Guo & Cao, 2004). 

After the segmentation process, some noises are still on the background.  Blob 

algorithm is selected as the noise removal tool.  The procedure is defined as 

follows:     
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1. Select a constant value.    

2. If the area is smaller than the constant value, then it will be removed from 

the image.  

The result after implementing the blob algorithm is shown in Figure 21.     

 

Fig. 21. Result of noise removal using blob algorithm(Guo & Cao, 2004).  

The contour detection is crucial to the correct fruit shape feature extraction.  The 

contour of apple blob is not smooth and traditional edge detector will mislead the 

feature extraction.  The interpolation-based contour detection is applied in this 

system.  There are four key steps in this process.    

1. Compute the coordinates of geometrical center of apple blob.  

2. Search twenty-four points on the contour fifteen degree each.  

3. Compute the distances between the contour points and geometrical center.   

4. The distances are used as the lengths of relating radius.  

An example of the interpolation-based contour detection is show in Figure 22.  

 

Fig. 22. Interpolation-based contour detection(Guo & Cao, 2004). 

3.3.3 Colour Ratio Judgment 

Uniform red colour distribution on the apple surface area is one of the criteria in 

quality inspection.  High correlation coefficients have been obtained between the 

sugar content and the colour ratio of apple.  The colour space is converted from 
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RGB to HSI.  The HSI colour space consists of three components, such as hue, 

saturation and intensity.  Hue is the pure colour, saturation is the contrast level, and 

intensity is the brightness.  HSI colour space is considered to be more intuitive than 

RGB colour space.  The conversion from RGB to HSI is defined as follow:   

}~~
�
~~�$ � cosf
 � ��f��!��f������f��@!��f����f���

z � 1 � R�!�!� �min �d, �, ���
C � �!�!�R

           �14�O   

Figure 23 shows the hue colour feature distribution.  Red colour is not uniform 

and restricted in certain areas.       

 

Fig. 23. Hue colour feature distribution(Guo & Cao, 2004).  

Figure 24 shows the result of searching red pixels in an image.     

 
Fig. 24. Result of searching red pixels in an image(Guo & Cao, 2004).  

The colour ratio of apple can be calculated using the following formula.  C is the 

colour ratio.  RL, RR and RT are the areas of red pixels on the left, right and top 

images.  AL, AR and AT are the areas of apple on the left, right and top images.    

� � ��!��!����!��!��           �15�  
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3.3.4 Naive Bayes Classifier  

A good classifier can learn standard patterns from different samples.  The naive 

Bayes classifier is selected and trained for quality inspection purpose.  The 

probability distribution of the apple image is considered to be a Gauss normal 

distribution.  The estimated priori probability densities are computed using the 

following formula:  

y�,|	]�       y�,|	� �  
√�;9 <,y j� ��f��@�9 n          �16�  

The estimated priori probabilities of classes are computed using the following 

formula.  K is the total number of objects in the training set.  Kr is the number of 

objects from the class r in the training set.     

y�	]� � �]�           �17� 

The following formula shows how to classify all the patterns into class r. 
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3.3.5 System Performance   

The system is tested using FuJi apples.  Three classes are predefined as follows:    

1. Class A:  More than seventy percent of the surface is deep red.  

2. Class B:  Forty to seventy percent of the surface is red.  

3. Class C:  Less than thirty percent of the surface is red.  

Ten typical samples are selected from each class for training purpose.  Sixty apples 

are selected for testing purpose.  They are manually categorized as follows:  

1. Twenty of them should belong to class A.  

2. Twenty of them should belong to class B.   

3. Twenty of them should belong to class C.   
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The classification result is shown in Table 4.  

Samples Number of apples classified into each group Accuracy 

A B C 

A 18 2 0 90% 

B 1 17 2 85% 

C 0 1 19 95% 

Table 4. Classification result of intelligent fruit sorting system(Guo & Cao, 2004). 

The apple cannot be rotated on the conveying system, so some part of the surface 

is unchecked.  This is the main reason why some of the apples are misclassified.  

If more images can be captured per image, then the performance of this system will 

be improved.     

3.4  Neural Network-Based Apple Grading 

3.4.1  Overview  

  Unay (2005) developed a novel artificial neural network-based segmentation and 

apple grading system.  Database consists of one-view images of “Jonagold” apples.  

Images are captured from a diffusely illuminated environment.  The high resolution 

monochrome digital camera has four interference band-pass filters centered at 450 

nm(BL), 500 nm(GR), 750 nm(RE), and 800 nm(IR) with respective bandwidths of 

80, 40, 80 and 50 nm.  Each filter image is composed of 430x560 pixels with eight 

bits-per-pixel resolution.  Figure 25 shows some examples of the filter images.   

 

Fig. 25. BL, GR, RE, and IR filter images(Unay, 2005). 

“Jonagold” variety is selected, because the bi-coloured skin is more difficult in 
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segmentation due to the colour transition areas.  Figure 26 shows some examples of 

the “Jonagold” apples.  

 
Fig. 26. “Jonagold” apple samples(Unay, 2005). 

3.4.2 Defect Segmentation  

Features are extracted from each of the four filter images using the following 

formulas:  
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Image preprocessing is required before the defect segmentation.  Images are 

captured on a dark, uniform coloured background.  A constant threshold value is 
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used to segment the apple from the background.  The experiment result shows that 

using a constant threshold will remove some low intensity areas as well, such as 

some very dark blemishes.  Hence, a morphological filling operation is also used to 

recover these small holes.  After background removal, fruit area is eroded by a 

rectangular structuring element with size adaptive to the fruit size.  

Sometimes the neural network misclassifies healthy tissue closer to the fruit edges.  

An added new feature is inversely and linearly related to the distance of each pixel 

from the geometric center of the fruit.  The neural network used for segmentation is 

the back-propagated network of perceptron neurons (BPNN), which makes binary 

decision between defected and healthy skin.  The net has thirteen input neurons, 

five hidden neurons and two output neurons.  The segmentation performance is 

independent of the number of hidden neurons above five.  The net uses the adaptive 

learning rate and cross validation technique.  The training and validation sets do not 

overlap.  

  Stem appears as dark blobs on images which is similar to some of the blemishes.  

BPNN does not consider the presence or absence of these regions.  Figure 27 shows 

the stem before and after removal.  The defected area is displayed in white on both 

images.                                                        

 

Fig. 27. Stem removal using neural network-based apple grading algorithm(Unay, 2005). 

There are four key steps in the defect segmentation process.  

1. Background removal and threshold-based object segmentation.  

2. Statistical, textural and shape based features are extracted and introduced to 

support vector machines classifier.  

3. The regions identified as the stem are removed from the segmentation 

result.   
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3.4.3 Neural Network Classifier  

Average, standard deviation and median values are calculated over the segmented 

areas from all filter images.  The ratio of defected pixels is also computed as one of 

the features.  The features are normalized to have an average of zero and standard 

deviation of one before the classification.  Five supervised classifiers are tested for 

the same algorithm.  

1. Linear Discriminated Classifier (LDC), searches for a linear decision 

boundary that separates the feature space into two half-spaces by 

minimizing a criterion function. 

2. Nearest Neighbor Classifier (k-NN), assigns an object to the most 

represented category among the k nearest samples of that object.  

3. Fuzzy Nearest Neighbor Classifier (fuzzy k-NN), is the fuzzified version of 

K-NN.  The formula is defined as follows:        

���,� � ∑ ©�ª�«�f�ª«� =@m=�¬ª �
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         �20�  

ui(x) is the predicted membership value of test sample x for class i, uij is the 

membership of j th neighbor to the i th class, and m is the fuzzifier parameter 

that determines how heavily the distance is weighted.      

4. Adaptive Boosting (AdaBoost), tries to form a final strong classifier(g) 

from an ensemble of weak learners(ht) by continuously adding these weak 

learners until the desired training error is reached.  The formula for a test 

sample x is defined as follows: 

8�,� � N8c­∑ +��m®>��
 E��,�¯       �21�  

5. Support Vector Machines (SVM), is a statistical learning method based on 

the structural risk minimization procedure.  In the binary case, SVM tries 

to find the hyperplane that separates the classes with maximum margin.  

The formula for a test sample x is defined as follows:  
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N is the number of training samples, yi is the class label, and K(si,x) is the 

kernel function.  

Sample of the dataset are randomly ordered before training.  This can help to 

prevent biased classification.    

3.4.4 System Performance 

Some examples of segmentation by neural network are shown in Figure 28.  The 

defected regions are in gray colour and healthy ones in white colour.       

 

Fig. 28. Example of segmentation using neural network (Unay, 2005). 

After the segmentation step, features are extracted from the segmented regions, 

and apples are classified into two predefined classes by several supervised classifiers.  

The experiment result is shown in Table 5.  “D” refers to defected class, and “H” to 

healthy one.         
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classifiers LDC 5-NN Fuzzy 5-NN AdaBoost SVM 

 ground truth ground truth ground truth ground truth ground truth 

classes  D   H D   H D   H D   H D   H 

confusion 

matrices 

D 227  51 213 27 211 26 216 21 220 25 

H 19  229 33 253 35 254 30 259 26 255 

class %  92.3  81.8 86.6  90.4 85.8 90.7 87.8 92.5 89.4 91.1 

overall %  86.7 88.6 88.4 90.3 90.3 

Table 5. Result of classification using neural network-based grading algorithm(Unay, 2005). 

  The worst classifier in overall performance is the linear discriminant classifier 

(LDC).  Nearest neighbor and fuzziness classifiers have similar results.  AdaBoost 

and SVM classifiers perform best with 90.3% overall recognition.  The SVM is 

more suitable to this system, because it does not require previous training sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Chapter 4  

Preliminary Explorations

Intelligent image processing techniques and fruit grading algorithms are modified, 

implemented and tested in this 

in detail.  The flaws and 

devise a novel algorithm.        

4.1  Otsu’s Method

4.1.1  Experiment and Analysis

In machine vision and image processing, Otsu’s thresholding method

Section 2.1.1) is used to automatically perform histogram shape

thresholding.  The histogram method assumes tha

foreground and background pixels.  In this case, the foreground is the orange, and 

the background is the convey

section for testing Otsu’s method. 

1. Example One: Testing Otsu

Figure 29 shows a ripe orange 

Fig. 29.

Figure 30 shows three isolated colour channels in 

Fig. 30
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Preliminary Explorations  

Intelligent image processing techniques and fruit grading algorithms are modified, 

implemented and tested in this chapter.  The experiment and analysis are presented 

and strengths of previous approaches are explored in order to 

a novel algorithm.          

tsu’s Method 

Experiment and Analysis 

In machine vision and image processing, Otsu’s thresholding method

is used to automatically perform histogram shape

thresholding.  The histogram method assumes that there is an average value for the 

foreground and background pixels.  In this case, the foreground is the orange, and 

background is the conveying system.  Four Examples are presented

s method.  

: Testing Otsu’s method on ripe oranges 

shows a ripe orange image with no blemishes.   

 
. Ripe orange sample for testing Otsu’s method. 

shows three isolated colour channels in natural colours.   

    

0. Isolated colour channels for a ripe orange sample. 

    . .

Intelligent image processing techniques and fruit grading algorithms are modified, 

and analysis are presented 

are explored in order to 

In machine vision and image processing, Otsu’s thresholding method (described in 

is used to automatically perform histogram shape-based image 

average value for the 

foreground and background pixels.  In this case, the foreground is the orange, and 

presented in this 

  



 

The threshold values are computed 

method.    

• Red channel:  96

• Green channel:  

• Blue channel:  9

Figure 31 shows the processed images after applying the 

channels separately.   

  

Fig. 31. Example of 

Otsu’s method works perfectly on

average intensity on the blue channel

background pixels appear on t

2. Example Two: Testing Otsu

Figure 32 shows a ripe orange 

Fig. 32. Blemished ripe o

The threshold values are computed 

method.    

• Red channel:  94

• Green channel:  

• Blue channel:  11

Figure 33 shows the processed images after applying the 

channels separately.    
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values are computed for three channels separately 

96 

Green channel:  46 

9 

the processed images after applying the threshold

    

Example of ripe orange segmentation using Otsu’s method

’s method works perfectly on the isolated red and green channel

blue channel is low due to the nature of the orange

background pixels appear on the right image.       

: Testing Otsu’s method on blemished ripe oranges

shows a ripe orange image with blemishes. 

 
Blemished ripe orange sample for testing Otsu’s method. 

values are computed for three channels separately 

4 

Green channel:  53 

11 

the processed images after applying the threshold

    . .

 using Otsu’s 

thresholds on three 

   

using Otsu’s method. 

channel.  The 

due to the nature of the orange, so some 

s method on blemished ripe oranges 

 

 using Otsu’s 

thresholds on three 



 

Fig. 33. Example of 

Small holes appear on the 

on the red channel, such as 

performance.  In general,

3. Example Three: Testing Otsu

Figure 34 shows an unripe orange

Fig. 34. 

Figure 35 shows three isolated colour channels in 

    

Fig. 35

The threshold values are computed 

method.    

• Red channel:  55

• Green channel:  

• Blue channel:  11

Figure 36 shows the processed images after applying the 

channels separately.   

    

Fig. 36. Example of 
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Example of blemished ripe orange segmentation using Otsu’s method. 

mall holes appear on the left image which is caused by some low intensity 

, such as blemishes and stem.  It has no impact on the

general, Otsu’s method works fine for blemished ripe oranges.

: Testing Otsu’s method on unripe oranges 

shows an unripe orange image with no blemishes. 

 

 Unripe orange sample for testing Otsu’s method  

shows three isolated colour channels in natural colours.       

 

5. Isolated colour channels for unripe orange sample  

values are computed for three channels separately 

55 

Green channel:  50 

11 

the processed images after applying the threshold

 

Example of unripe orange segmentation using Otsu’s method.

    . .

  

s method.   

low intensity areas 

has no impact on the overall 

for blemished ripe oranges. 

colours.        

 

 using Otsu’s 

thresholds on three 

s method.   



 

Small holes appear on the 

reasons.  It is evident to see that Otsu

intensity areas on the orange skin

easier to be detected on the red channel.  In general, Otsu

unripe oranges.           

4. Example Four: Testing Otsu

Figure 37 shows an unripe orange

Fig. 37. Blemished 

The threshold values are computed 

method.    

• Red channel:  67

• Green channel:  

• Blue channel:  11

Figure 38 shows the processed images after applying the 

channels separately.      

    

Fig. 38. Example of 

Holes on the left image

channel.  Holes on the middle image

green channel, such as blemishes.  Holes on the 

this case.  It is evident to see that the 

more important than the others for blemish identification
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oles appear on the left and right images which are caused by different 

It is evident to see that Otsu’s method is able to identify 

on the orange skin, such as blemishes.  It seems like the blemish is 

easier to be detected on the red channel.  In general, Otsu’s method works fine for 

         

: Testing Otsu’s method on blemished unripe oranges

shows an unripe orange image with blemishes. 

 
Blemished unripe orange sample for testing Otsu’s method.

values are computed for three channels separately 

67 

Green channel:  48 

11 

the processed images after applying the threshold

    

 

Example of blemished unripe orange segmentation using Otsu’s method. 

left image are caused by the colour transition areas

middle image are caused by the low intensity areas

, such as blemishes.  Holes on the right image are not important in 

t is evident to see that the intensity variation on the green channel is 

ant than the others for blemish identification.      

    . .

caused by different 

s method is able to identify some low 

It seems like the blemish is 

s method works fine for 

s method on blemished unripe oranges 

. 

 using Otsu’s 

thresholds on three 

s method.   

areas on the red 

are caused by the low intensity areas on the 

are not important in 

variation on the green channel is 
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4.1.2 Algorithm Refinements 

Otsu’s method works fine for the segmentation of orange and conveying system, 

however, the cost of Otsu’s method is computationally expensive.  Constant 

thresholds can be used to replace Otsu’s method.  The brightness of the conveying 

system is very low compared with the orange skin, and the best contrast appears on 

the red channel.  Figure 39 shows the result of orange segmentation on the red 

channel using a constant threshold 50.        

     

Fig. 39. Orange segmentation on the red channel using a constant threshold value fifty.   

One hundred orange images are randomly selected from the database.  The 

comparison is made between Otsu’s method and constant thresholds.  The 

assumption is that Otsu’s method is one hundred percent accurate on object 

segmentation.  Orange segmented by a constant threshold is compared with the one 

segmented using Otsu’s method.  False and true positive rate are selected as the 

statistical judgment.   

1. False Positive Rate          

False positive rate is the proportion of negative instances that were erroneously 

reported as being positive.  If a background pixel is erroneously classified as a 

foreground pixel, then the pixel will be claimed as a false positive instance.  

All the background pixels are classified as negative instances.   

�y# � �©�
(] &° °�±h( �&h���'( ��h���%(h�&��± �(^���'( ��h���%(h           �23�  

2. True Positive Rate 

True positive rate is the proportion of positive instances that reported as being 

positive.  If a foreground pixel is reported as a foreground pixel, then the pixel 

will be claimed as a true positive instance.  All the foreground pixels are 
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classified as positive instances.  

�y# � �©�
(] &° �]©( �&h���'( ��h���%(h�&��± �&h���'( ��h���%(h            �24�  

Figure 40 shows the result of orange segmentation using a constant threshold 

value 50.  Low false positive rates with high true positive rates indicate that the 

constant threshold 50 can achieve a similar result with Otsu’s method.       

 

    Fig. 40. True and false positive rates using a constant threshold value fifty. 

Some background pixels are erroneously classified as foreground pixels.  This 

means the threshold value can be increased.  Figure 41 shows the result of orange 

segmentation using a constant threshold value 70.    

 

    Fig. 41. True and false positive rates using a constant threshold value seventy. 

It is evident to see that the false positive rates decrease and the true positive rates 

stay the same.  Most of the background pixels are reclassified correctly without 
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affecting the foreground pixels.  In conclusion, constant thresholds can be used as a 

replacement of Otsu’s method.  

4.1.3  Summary 

Otsu’s method works fine for the segmentation of orange and conveying system, 

however, it is computational expensive.  Constant thresholds can be used as a 

replacement of Otsu’s method on the red channel.  The statistical analysis of true 

and false positive rates shows that most of the pixels belong to the orange are 

classified correctly, and a few pixels belong to the conveying system are 

misclassified.  The threshold value has to be changed accordingly when the lighting 

condition is changed.  The following steps have to be followed in order to find the 

best threshold value.     

1. Adjust the camera and light source.  

2. Select one hundred orange samples randomly. 

3. Apply a constant threshold on the red channel.   

4. Compare the result with Otsu’s method using statistical measurements, such 

as true and false positive rates.  

5. The best threshold appears when the true positive rates are high and the 

false positive rates are low.  

Once the orange is extracted from the conveying system on the red channel, then a 

mask can be generated and applied to the green and blue channel separately for 

orange segmentation.  In this way, it is more accurate than applying Otsu’s method 

on the blue channel.  Because the average intensity on the blue channel is very low, 

the foreground and background pixels can be easily mixed up.   
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4.2   High Speed Vision-Based Quality Grading of Oranges  

The algorithms presented by (Recce, Taylor, Piebe & Tropiano, 1996) are tested in 

this section for getting some experience only.  The algorithms implemented are 

slightly different from the original work (described in Section 3.1) due to the limited 

resources.  The first (histogram analysis) and second (local defect search) stages of 

processing are tested separately for demonstrate purpose.  The combined result of 

implementing all three stages (described in Section 4.2.3) is also presented. 

4.2.1 Histogram Analysis  

4.2.1.1  Algorithm Details with Sample Computations   

The histogram analysis of normalized pixel values is targeted on the red and green 

channels only.  The assumption is that a good orange has normally distributed red 

and green colour components.  A constant threshold value seventy is applied on the 

red channel for orange segmentation purpose.  State-of-the art histogram-based 

features are extracted from the isolated red and green channels separately, such as 

mean, variance, skewness, kurtosis, energy and entropy.  The pixel values on both 

red and green channels are normalized between one and nine.  The histogram is 

calculated based on the scaled grey levels.  Figure 42 shows an example of the 

scaled histogram on the red channel.      

 
Fig. 42. Example of scaled histogram.  

The approximate probability density P for each scaled grey level i is computed 
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using the following formula:  
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Figure 43 shows an example of computed probability densities for each scaled grey 

level.   

 
Fig. 43. Probability densities for each scaled grey level. 

Six features are extracted based on the histogram obtained from the red and green 

channels separately.        

1. Mean 

� � ∑ ��³��
            �26�  

2. Variance  

� � ∑ ��³��
 � � ���          �27�  

3. Skewness is a measure of the asymmetry of the probability distribution of a 

real-valued random variable.   

N4<Mc<NN � √�fR ∑ ��³��
 � � ��R          �28�  

4. Kurtosis is a measure of the “peakedness” of the probability distribution of a 

real-valued random variable.   

4�#�"N N � √�fU ∑ ��³��
 � � ��U          �29�  

5. Energy   

<c<#8¦ � ∑ ���³��
           �30�  
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6. Entropy is a statistical measure of randomness that can be used to characterize 

the texture of the input image.   

<c�#"y¦ � ∑ ��³��
  ln ��          �31�  

4.2.1.2  Neural Network Classifier  

The network neurons are constructed as follow:           

1. Twelve input neurons.  

2. Two output neurons:  P1 and P2.    

• Good Orange Class:  [1 -1]   

• Blemished Orange Class:  [-1 1] 

3. Five hidden neurons. 

The input layer has twelve neurons and combines information from the red and 

green histograms.  Two output classes are predefined, such as good orange class and 

blemished orange class.  Oranges classified into the blemished orange class are 

passed to the second stage (local defect search) for a more detailed analysis.  The 

hidden layer has five neurons.  This is to ensure the number of training samples is at 

least ten times larger than the number of weights.  Features are randomly shuffled 

six hundred times before feeding the neural network.  This can help to improve the 

performance of the neural network classifier.  A detailed description of the neural 

network is presented below:  

1. Network Type:  Feed-forward back-propagation 

2. Performance Function:  Sum squared error(SSE) 

3. Training Function:  Gradient descent with momentum and adaptive 

learning rate(TRAINGDX)  

4. Transfer Function:  Log-sigmoid transfer function(LOGSIG)  

The orange classification is predefined as follows:    

1. If the first output neuron P1 is positive and higher than P2, then the orange 
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will be classified as a good orange.  

2. If the second output neuron P2 is positive and higher than P1, then the 

orange will be classified as a blemished orange. 

4.2.1.3  Performance   

  Seventy oranges are selected as the training dataset.  They are manually 

categorized as follows: 

1. Fifty of them are good oranges.  

2. Twenty of them are blemished oranges. 

One hundred oranges are selected as the testing dataset.  They are manually 

categorized as follows:    

1. Fifty of them are good oranges.  

2. Fifty of them are blemished oranges.  

Histogram based features are extracted from the red and green components 

separately.  Twelve features per image are fed into the trained neural network for 

classification.  The result is shown in Table 6.  

Fruit Image 
Types 

No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification 

Good 
Orange 

50 19 31 38% 

Blemished 
Orange 

50 31 19 62% 

Table 6. Result of implementing histogram-based analysis. 

In the first stage of processing (histogram analysis), a fraction of the top quality 

oranges might be classified as a lower quality band.  It is safer to downgrade the 

quality in the first stage and perform a more detailed analysis in the second stage 

(local defect search).  However the number of correct classifications for blemished 
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oranges is very low.  This means many blemished oranges are incorrectly classified 

into the good orange class.  If that is the case, the algorithm needs to be refined.    

4.2.1.4  Algorithm Refinements   

Image preprocessing is performed before extracting the histogram-based features 

from the red and green components.  Each pixel value p on the red and green 

components is replaced by the maximum variance among four directions using the 

following formula:         

y�Q �
�w , µ���=��ª!���l��ª� ���ª=��!���ªl��� ���=���ª=��!���l���ªl��� ���=���ªl��!���l���ª=��� ¶      �32�    

For an illustration of the inner working of this algorithm with data samples, see 

Appendix B.  Figure 44 shows the result after replacing the pixel values on the red 

channel.  The algorithm works the same as an advanced edge detector.  All the 

noises are eliminated and potential features are remained.       

       

Fig. 44. Example of image preprocessing. 

The training algorithm is changed to fussy training.  A fuzzy training algorithm 

(Zhou, Li & Jin, 2002) is proposed to improve the pattern recognition performance 

of neural network as an alternative to the conventional back-propagation training 

algorithm with hard-decision supervision(HDS).  Table 7 shows the classification 

result.    

 

 



 

Fruit Image 
Types 

No. of Images

Good Orange 50 
Blemished 
Orange 

50 

Table 7. Result of 

The system performance

However the number of correct classification

is still low.   

4.2.2 Local Defect Search 

4.2.2.1  Algorithm Details with Sample Computations

The defect is characterized by a discontinuity in skin pigmentation

size of defects N is set to be 

are applied to the regions on the red and green 

convolution is only applied to arbitrarily partitioned regions

reduce the computational 

defected regions with a typical size of 

are the same, which differ only in the selection of the 

Fig. 45. Sample 

  Block-wise features are 

features, which are considered to be useful for local texture classification.  

are two types of block-wise features, such as mean block 

variance.  The mean block variance 
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No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification

 30 20 
 34 16 

Result of implementing modified histogram-based analysis.

system performance significantly improved after image preprocessing

number of correct classifications for both good and blemished 

Local Defect Search  

Algorithm Details with Sample Computations 

The defect is characterized by a discontinuity in skin pigmentation.  

to be 30x30.  Five operators (described in Section 3.1.3.2)

are applied to the regions on the red and green component separately.  The 

convolution is only applied to arbitrarily partitioned regions, which is aimed to

the computational cost.  Figure 45 shows two partitioned

regions with a typical size of 30x30.  Some regions selected for training

are the same, which differ only in the selection of the start point.      

   
Sample regions selected with a typical size of 30x30. 

wise features are extracted from the partitioned regions 

features, which are considered to be useful for local texture classification.  

wise features, such as mean block variance and squared block 

The mean block variance mbv is defined as follows:  

    . .

% of Correct 

Classification 

60% 
68% 

. 

significantly improved after image preprocessing.  

good and blemished oranges 

  

.  The typical 

(described in Section 3.1.3.2) 

separately.  The 

, which is aimed to 

partitioned normal and 

regions selected for training 

  

 as additional 

features, which are considered to be useful for local texture classification.  There 

and squared block 
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where pij is the pixel value within the region(NxN), Pb is the eight 

neighborhood-pixels of pij which is defined as follows:  
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The squared block variance sbv is defined as follows:   

        

N·| � ∑ ���Q � �·|��xx��oQ�o �·|            �34� 

For an illustration of the inner working of this algorithm with data samples, see 

Appendix C. 

4.2.2.2  Neural Network Classifier  

The neural network constructed is the same as the one described in histogram 

analysis (described in Section 4.2.1.2).  Oranges classified into the blemished 

orange class may be passed to the third stage (described in Section 3.1.3.3) for a 

more detailed analysis.  In the second stage (local defect search), the stem is traded 

as defects.  If the defect has a similar size with a typical stem, then the defect 

definitely will be analyzed in the third stage (described in Section 3.1.3.3).  

4.2.2.3  Performance 

Five operators (described in Section 3.1.3.2) are applied to the partitioned regions 

on the red and green channels separately.  Block-wise features are extracted as 

additional features from the red and green channels separately.  The result after 

classification is shown in Table 8.    
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Fruit Image 
Types 

No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification 

Good 
Orange 

50 33 17 66% 

Blemished 
Orange 

50 20 30 40% 

Table 8. Result of implementing modified local defect search. 

The number of correct classifications for blemished oranges is low.  Many 

blemished oranges are misclassified into the good orange class.  There are a few 

possible explorations.  

1. Increasing the number of training samples may help to improve the 

performance.  

2. The typical size of defects N might be too big or too small.       

3. The convolution is only applied to arbitrarily partitioned regions.  The 

defected area might be missed.  

4.2.3 Overall Quality Grading System Assessment   

Oranges are examined in the following three stages: 

1. Histogram Analysis 

In the first stage of processing, a fraction of top quality oranges may be 

classified as a lower quality band.  It is safer to downgrade the quality in 

the first stage and perform a more detailed analysis in the second stage.     

2. Local Defect Search  

The defect is characterized by a discontinuity in the skin pigmentation.  

All defect types contribute roughly equally to the final grading decision.  

The convolution is only applied to arbitrarily partitioned regions.  In the 

second stage, the stem is traded as defects as well.   

 



 

3. Stem Detection 

The stem has a much more regular spatial structure than the defects.  

family of Zernike moments is a powerful technique for stem detection.  

Zernike moments are very sensitive to circular symmetries and invariant 

under rotation.  

Three neural network classifiers are trained for 

workflow is described in Figure 46

One hundred oranges are selected as

categorized as follows:   

1. Fifty of them are good oranges. 

2. Fifty of them are 

The final result after classification is shown 
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Stem Detection  

The stem has a much more regular spatial structure than the defects.  

family of Zernike moments is a powerful technique for stem detection.  

Zernike moments are very sensitive to circular symmetries and invariant 

Three neural network classifiers are trained for each stage separately

in Figure 46.   

Fig. 46. System workflow. 

One hundred oranges are selected as the testing dataset.  They are

    

are good oranges.  

 blemished oranges. 

result after classification is shown in Table 9.  

    . .

The stem has a much more regular spatial structure than the defects.  The 

family of Zernike moments is a powerful technique for stem detection.  

Zernike moments are very sensitive to circular symmetries and invariant 

each stage separately.  The 

 

set.  They are manually 
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Fruit Image 
Types 

No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification 

Good 
Orange 

50 32 18 64% 

Blemished 
Orange 

50 30 20 60% 

Table 9. Result of implementing improved vision-based grading algorithm. 

The classification result is poor.  There are a few suggestions which may help to 

improve the performance.  

 1. Increasing the number of training samples for each stage.  

 2. Add some new features.  

3. The convolution may apply to more regions on each image.  

4. The typical size of defect N can be readjusted. 

4.3  Citrus Fruit External Defect Classification  

The algorithms introduced by (Vijayarekha & Govindaraj, 2006) are tested in this 

section.  The algorithms implemented might be slightly different from the original 

work (described in Section 3.2) due to the limited resources.     

4.3.1  Algorithm Details with Sample Computations  

Image preprocessing is performed in the following order.   

 1. Convert colour image into grey scale image.  

 2. Grey scale image is de-noised using the median filter.   

 3. Orange is cropped to its size.     

Figure 47 shows a sample orange image before and after the image preprocessing. 
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Fig. 47. Sample image before and after preprocessing.  

The decomposition (two levels with Daubechies ten wavelet) splits both the 

approximation and detail windows of the first level of decomposition resulting to 

sixteen sub-windows.  Figure 48 is an example of the derived sixteen sub-windows 

after decomposition.  Mean and standard deviation of the wavelet coefficients are 

computed for each of the sixteen sub-windows (described in Section 3.2.2).       

 

Fig. 48. Example of decomposition resulting to 16 sub-windows. 

4.3.2  Neural Network Classifier    

The network neurons are constructed as follows:           

1. Thirty-two input neurons.  

2. Two output neurons:  P1 and P2.    

• Good Orange Class:  [1 -1]   

• Blemished Orange Class:  [-1 1] 

3. Ten hidden neurons. 

Features f extracted from the sub-windows are normalized between zero and one 

using the following formula:  
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where F is a set of features, and n is the total number of features.  Normalized 

features nf are randomly shuffled six hundred times before feeding to the neural 

network.   

A detailed description of the neural network is presented below:  

1. Network Type:  Feed-forward back-propagation 

2. Performance Function:  Sum squared error(SSE) 

3. Training Function:  Gradient descent with momentum and adaptive 

learning rate(TRAINGDX)  

4. Transfer Function:  Bipolar tangent sigmoid non-linear transfer 

function(TANSIG)  

The orange classification is predefined as follows:    

1. If the first output neuron P1 is positive and higher than P2, then the orange 

will be classified as a good orange.  

2. If the second output neuron P2 is positive and higher than P1, then the 

orange will be classified as a blemished orange. 

4.3.3 Overall Citrus Fruit Defect Classification System Assessment  

Seventy oranges are selected as the training dataset.  They are manually 

categorized as follows: 

1. Fifty of them are good oranges.  

2. Twenty of them are blemished oranges. 

One hundred oranges are selected as the testing dataset.  They are manually 

categorized as follows:   

1. Fifty of them are good oranges.  

2. Fifty of them are blemished oranges.  
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Wavelet-based features are extracted from the images and normalized.  Features 

are fed into the trained neural network for classification.  Table 10 shows the result 

after classification.  

Fruit Image 
Types 

No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification 

Good Orange 50 16 34 32% 
Blemished 
Orange 

50 41 9 82% 

Table 10. Result of implementing external defect classification algorithm. 

The number of correct classifications for blemished oranges is high.  However, a 

lot of good oranges are actually misclassified into the blemished orange class.  

There are a few suggestions which may help to improve this system.  

1. Increasing the number of training samples. 

2. Reconsider the features extracted from the sixteen sub-windows.  Kurtosis, 

energy and entropy are useful features which can be extracted as well.  
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Chapter 5 

Novel Algorithms on Orange Grading System 

5.1 Central Thesis 

  There is a limit to most existing statistical-based (Unay, 2005), structural-based 

(Recce, Taylor, Piebe & Tropiano, 1996), model-based (Chang, et al., 1994) and 

transform-based (Vijayarekha & Govindaraj, 2006) orange blemish detection 

algorithms.  Any two pixels in an orange image having about the same magnitudes 

for the red, green and blue channels will almost always be classified as belonging to 

the same category (either a blemish or not).  This however presents a big problem, 

as depicted in Figure 49, it is possible to have several pixels depicting more or less 

the same colour channel values, but should belong to different categories.  In the 

figure, pixel A reflects R=134, G=86, B=24 and should be classified as a normal skin.  

On the other hand, Pixel B is described to have colour channel values very close to 

Pixel A, but should be classified as belonging to a blemish.  In light of this problem, 

this research utilizes a priori knowledge of the local intensity variation observed on 

rounded convex objects to classify the aforementioned pixels correctly.  

For any rounded convex object, the intensity gradually increases from the edges to 

the center in a two-dimensional image.  The proposed algorithm partitions the 

given image into eight orange colour classes (described in Section 5.4.1).  This in 

turn would generate different layers/classes using average intensities for a given 

image (illustrated in Figure 49).  These layers are then refined further to eliminate 

extraneous layers (described from Section 5.4.2 to 5.4.7).  Finally, the blemishes 

are detected by employing a convex hull approach on the topmost layer.  Any 

discontinuities between successive layers/classes will lead to the identification of 

blemishes (described in Section 5.4.8). 



 

Fig. 49. Blemish detection

5.2 System Architecture

A block schematic of the orange grading

Fig. 50. Block schematic of 

In the first stage of processing

to the natural skin colour, such as ripe and unripe oranges.  

blemish detection process 

novel blemish detection algorithm simulates how human

local intensity variations 

orange skin by using absolute pixel values per se (i.e. RGB) but instead consider the 

neighboring orange surface chara

bit tricky as it closely resembles blemishes.  Therefore, in this research, stem 
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detection based on a specified local intensity variation range. 

System Architecture 

orange grading system is shown in Figure 50.

Block schematic of the novel orange grading algorithm. 

processing, oranges are classified into two categories according 

to the natural skin colour, such as ripe and unripe oranges.  This is followed by the 

process which is the core part of the orange grading system.  

algorithm simulates how humans make observations of the 

local intensity variations phenomenon.  Humans do not judge the colours of the 

orange skin by using absolute pixel values per se (i.e. RGB) but instead consider the 

neighboring orange surface characteristics.  Detecting the stem on the other hand is a 

bit tricky as it closely resembles blemishes.  Therefore, in this research, stem 

    . .
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detection is performed only after identifying all possible blemishes.         

Quantifying blemishes is a necessary precursor to grading the oranges.  Here, the 

percentage of blemishes over the whole orange is computed as the main grading 

feature.  In addition, the different quality bands can be adjusted easily according to 

the requirement set by the market. 

5.3  Ripe/Unripe Orange Classification 

Oranges can be classified into two categories according to the natural skin colour, 

such as ripe and unripe oranges.  Figure 51 shows two examples of the ripe and 

unripe oranges.                 

       

Fig. 51. Ripe and unripe oranges.  

Roughly speaking, if more than one quarter of an orange has green colour, then it 

should be classified as an unripe orange.  The blemish detection algorithms for ripe 

and unripe oranges are slightly different due to the skin colour variation.  The 

formula for orange classification oc is defined as follows: 

"a � ¼�N�] �  ¼�N�^          �36�      

Otsu’s method (described in Section 2.1.1) is applied on the isolated red and green 

channels separately.  The value of oc increases when the skin colour turns to more 

orange.  The threshold t was empirically found to be 40, and the results of applying 

the classification rules below completely adhere to human visual inspection.    

• If oc is greater than t, then the orange will be classified as a ripe orange  

• If oc is less than or equal to t, then the orange will be classified as an unripe 

orange.   
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A subset of the test set (100 hundred oranges) was selected as the testing dataset.  

Fifty of them are ripe oranges and fifty are unripe oranges.  The computed values 

for oc are plotted in Figure 52 for all 100 oranges.  It is evident that there is a clear 

boundary between ripe and unripe oranges.  All 100 classification results all agree 

with human visual inspection.  

 
Fig. 52. Orange classification for ripe and unripe oranges.  

5.4  Blemish Detection 

Oranges are assessed according to the surface texture, such as discoloration, 

bruising and other blemishes.  All blemish types contribute roughly equally to the 

final grading decision.  Blemish detection algorithm is the core part of the orange 

grading system.   

5.4.1 Orange Colour Class   

5.4.1.1  Colour Space Exploration 

All possible colours can be made from three primary colours red, green and blue.  

The following example demonstrates that a broad array of colours can be displayed 
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by using an appropriate combination of red, green and blue intensities.  There are 

three coloured light beams with dimmer switches, one red light, one green light, and 

one blue light.  Three coloured light beams are used to shine three primary colours 

onto a black wall and dimmer switches are used to adjust the intensity of each 

primary colour.  A representation of the additive colour mixing is shown in Figure 

53.    

 
Fig. 53. A representation of the additive colour mixing(Wikipedia, 2008).  

A similar result could be achieved using the Paint.net which is a famous tool for 

image processing.  Three coloured light beams are simulated by using the red, 

green, and blue components separately.  The dimmer switch on each light beam is 

simulated by adjusting the intensity of each component.  Figure 54 shows the 

colour component window in Paint.net.      

 

Fig. 54. Colour component window in Paint.net. 

  The orange colour class is derived from the combinations of primary colours. 

Figure 55 shows eight predefined orange colour classes which produce different 

results in colour and brightness.  For instance, pure red colour is classified as an 

orange red class, and the combination of red and green colour is classified as an 

orange yellow class.  Each of these classes may contain many intensity levels from 

the weakest to strongest.  The average intensity of each orange colour class is a 

very useful feature in statistics.       
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Fig. 55. Predefined orange colour classes. 

5.4.1.2  Derived Formula     

An RGB image consists of three colour channels, red, green and blue channel.  

Each channel can be manipulated separately from the others.  A channel can be 

used to generate a grayscale image of the same size as the RGB image.  Otsu’s 

method (described in Section 2.1.1) is made to operate independently on each of the 

colour channels, and assumes that the image to be thresholded contains two classes 

of pixels (i.e. foreground=1 and background=0).   

It is adamant to custom-build a colour class that is especially designed for 

identifying the blemishes.  As mentioned earlier, looking at the absolute pixel value 

per se does not suffice for accurate blemish detection.  In this section, we introduce 

the orange colour class that is derived from the combination of colour primaries.  

Table 11 shows the detailed classifications for eight orange colour classes.  

Orange Colour Class 

Class No. Class Name Red Green Blue  

 

 

1 Background Class 0 0 0 

2 Blue Class 0 0 1 

3 Green Class 0 1 0 

4 Cyan Class 0 1 1 

5 Red Class 1 0 0 

6 Magenta Class 1 0 1 

7 Yellow Class 1 1 0 

8 White Class 1 1 1 

Table 11. Orange colour class classification.  
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“1” means presence of the primary colour, and “0” means absence.  For instance, if 

a pixel is a member of the orange red class, then its value on the red channel is “1”, 

and on both green and blue channels are “0”.   

The following formula shows the method of classifying a single pixel into one of 

the eight predefined orange colour classes.  In turn, all the pixels will be classified 

as one of the eight colour classes.            

��wNNW"��,Q� � 4d<{��,Q� � 2�#<<c��,Q� � ���<��,Q� �  1          �37�  
�"# 1 ½    ½  d"MN, 1 ½  P ½  �"���cN                                                 

5.4.1.3  General Algorithm  

Input : RGB Image. 

Output : Orange class distribution matrix. 

Data: I = input RGB image, M = orange class distribution matrix, rows = the 

number of rows in image I, cols = the number of columns in image I, R = isolated 

red channel, G = isolated green channel, B = isolated blue channel, ro = threshold 

on the red channel, go = threshold on the green channel, bo = threshold on the blue 

channel, RB = converted binary image for the red channel, GB = converted binary 

image for the green channel, BB = converted binary image for the blue channel, p 

= pixel in image I, c = computed class number for pixel p. 

1 (R, G, B) = IsolateColourChannels(I)  

2 M = Zeros(rows, cols)     

3 (ro, go, bo) = Otsu(R, G, B)   

4 RB = ThresBinary(R, ro) 

GB = ThresBinary(G, go) 

BB = ThresBinary(B, bo) 

5 foreach  pixel p in image I  do    

  c = ComputeClassNo(p)   



 

  M = StoreCompute

end 

1. Extract red, green and blue 

2. Create a matrix of the same size as

orange class distribution 

3. Use Otsu’s method to 

separately.     

4. Convert three channels to binary images 

corresponding optimum threshold

• If the pixel value 

this pixel as a background pixel.  A background pixel is given a value 

of “0”.  

• If the pixel value

pixel as a foreground pixel.  A foreground pixel is given a value of 

“1”.  

5. Loop through all the pixels in 

• Apply the formula

in image I.  

• Store the class number 

The orange 

each single 

distribution matrix with detailed analysis.   

     

     Table 12. 
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StoreComputedClassNo(c)   

and blue channel separately from image I.  

Create a matrix of the same size as the image I.  This matrix is defined as a

istribution matrix M which is a two dimensional array. 

Otsu’s method to compute the optimum thresholds for three channels 

Convert three channels to binary images separately according to their 

corresponding optimum thresholds.   

value is less than or equal to the threshold value, then mark 

as a background pixel.  A background pixel is given a value 

pixel value is greater than the threshold value, then mark this 

foreground pixel.  A foreground pixel is given a value of 

Loop through all the pixels in image I.  

Apply the formula 32, and compute the class number c for each

 

re the class number c into the orange class distribution

 class distribution matrix holds the class information for 

single pixel p.  Table 12 is an example of the orange class 

distribution matrix with detailed analysis.    

. Orange class distribution matrix with detailed analysis.

    . .

.  This matrix is defined as an 

array.  

for three channels 

according to their 

threshold value, then mark 

as a background pixel.  A background pixel is given a value 

the threshold value, then mark this 

foreground pixel.  A foreground pixel is given a value of 

for each pixel p 

istribution matrix M.  

the class information for 

is an example of the orange class 

 

range class distribution matrix with detailed analysis.  
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5.4.1.4  Missing Orange Colour Class  

There are eight orange colour classes.  Some of them might be not available due 

to the nature of the orange texture.  The orange class distribution matrix can be 

used to analyze the distribution and availability of the orange colour classes.  Table 

13 is an instance of the orange class distribution matrix.  Class five is not available 

in this case.              

Orange Class Distribution Matrix 

1 3 8 2 2 2 

4 8 8 6 8 8 

8 6 4 1 8 8 

8 8 7 8 8 7 

8 4 8 4 8 1 

1 5 6 8 8 4 

Table 13. Example of the orange class distribution matrix. 

The class availability is analyzed below for ripe and unripe oranges separately.  

1. Experiment One: Ripe orange   

One hundred oranges are randomly selected from the database.  Fifty of them 

are blemished oranges and fifty are good oranges.  After a class availability test, 

the result is shown in Table 14.  The orange red and magenta classes are not 

available for all the selected ripe oranges.  In other words, the pure red colour 

and the combination of red and blue colours are not available.   

 

Table 14. Orange colour class availability test for ripe oranges in the database. 
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2. Experiment Two: Unripe Orange 

Fifty oranges are randomly selected from the database.  Twenty of them are 

blemished oranges and twenty are good oranges.  After a class availability test, 

the orange red and magenta classless are not available for all the selected unripe 

oranges as well.  This may refer to the light source and nature of the orange 

texture.    

5.4.1.5  The Order of Orange Colour Classes    

Each of these orange colour classes produces different results in colour and 

brightness.  Due to the observed nature of the orange skin colours, the different 

orange colour class described in this section is ordered incrementally according to 

their average intensities.  For instance, the combination of red and green colour is 

brighter than the combination of blue and green colour.  For other fruits, the order 

of the orange colour classes has to be changed accordingly to match the incremental 

sequence.   

5.4.1.6  Summary 

All possible colours can be made from three primary colours red, green and blue.  

Pixels in a given RGB image are classified into one of the eight orange colour 

classes.  The class number for each pixel is stored in the orange class distribution 

matrix for further analysis.   

Some of the orange colour classes might be not available, such as orange red and 

magenta classes.  This is caused by the light source and nature of the orange texture.  

The brightness of the orange colour classes increases from class one to eight.  This 

order is specially designed for orange only.      
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5.4.2 Orange Class Mean  

5.4.2.1  Overview 

Mean has two related meanings in statistics, such as arithmetic mean and 

population mean.  Arithmetic mean is the one selected in this algorithm and often 

simply called the “mean”.  For a given data set, the average is the sum of the 

measurements divided by the number of measurements and to compute a number as 

being the average.  Changing the order of the measurements does not affect the 

final result.  The formula of mean μ is defined as follows: 

� � ∑ �����
c         �38�  
where P is the pixel value, and n is the number of pixels.  The orange class mean 

refers to a measure of the average intensity of each orange colour class.  The mean 

for each orange colour class is computed on three channels separately for a given 

RGB image.  In turn, for each orange colour class, there will be three class means 

associated with it.  Computed orange class means are stored in the orange class 

mean matrix which consists of eight rows and three columns.  

5.4.2.2  General Algorithm 

Input : RGB Image, Orange class distribution matrix.      

Output : Orange class mean matrix. 

1 foreach  orange colour class  do  

2   foreach  isolated colour channel  do 

    ComputeClassMean() 

    StoreComputedClassMean()   

  end 

end 
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The derived orange class distribution matrix stores the class information for each 

pixel in a given RGB image.  For all the pixels that belong to the same class, 

compute the average of pixel values on three channels separately.  Table 15 is an 

example of the orange class mean matrix with specified class numbers.  

 

 Table 15. Example of the orange class mean matrix.                    

5.4.2.3  Algorithm Refinements  

The distribution of pixel values within each orange colour class is considered to 

be a normal distribution.  The normal distribution describes data that cluster around 

the mean.  Sometimes a set of numbers might contain outliers.  The outlier is the 

intensity of a pixel which is much lower or higher than the others.  The outliers are 

erroneous data caused by different reasons, such as leaves on the conveying system.  

The outliers affect the accuracy of the computed orange class means.  

There are three steps to recalculate and improve the orange class means.   

1. Sort the pixel values.  

2. Discard an equal amount of data at the high and the low ends.  For most 

statistical applications, five to twenty-five percent of the ends are discarded.  

Ten percent of the ends are discarded in this algorithm.      

3. Compute the orange class means using the remaining data.  
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5.4.2.4 Effects of Illumination Intensity Variations on Ripe 

Orange Skin 

Figure 56 is a ripe orange image with two blue lines drawing across the centre.            

 
Fig. 56. Example of ripe orange image with two blue lines drawing across the center.  

Table 16 shows the selected pixel values along the horizontal blue line on red, 

green and blue channels separately.      

Selected Pixel Values along the Horizontal Blue Line 

Cols 10 20 30 40 50 60 70 80 90 100 110 120 130 

R 12 16 104 157 183 204 255 218 176 145 97 20 14 

G 10 11 50 77 84 96 104 101 82 68 51 14 12 

B 6 9 10 18 18 24 27 25 16 14 13 11 7 

Table. 16. Intensity variations along the horizontal blue line.   

The average intensity gradually increases from the edges to the center of the image 

due to its rounded convex contour.  The following are some of the observed 

properties:      

1. The most significant intensity variation occurs on the red channel.  The 

pixel value varies between 12 and 255.   

2.  The average intensity on the green channel is lower than the red channel. 

The pixel value varies between 10 and 104. 

3. The average intensity on the blue channel is very low.  The pixel value 

varies within a very small range.    

Figure 57 shows the intensity variation along the vertical blue line on red, green 

and blue channels separately.  
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Fig. 57. Intensity variations along the vertical blue line.   

  Due to the natural of the orange skin colour, the red and green channels of an 

orange image are more important for statistical analysis.  Figure 58 shows two 

pixels selected from the normal and blemished skin separately.   

 

Fig. 58. Two pixels selected from normal and blemished skin separately.  

The blemished skin is usually darker than the normal skin.  The intensity varies on 

three channels differently.  The absolute pixel value dropped 135 on the red channel, 

42 on the green channel, and 5 on the blue channel.    

 

 



 

5.4.2.5 Effects of 

Orange Skin

Figure 59 is an unripe orange image with t

Fig. 59. Example of unripe orange 

Table 17 shows the selected pixel values

green and blue channels separately

Selected Pixel Values

Cols 10 20 30 40

R 70 87 96 113

G 71 84 101 107

B 6 19 24 2

Table 17

The average intensity gradually 

The following are some of the observed properties:

1. The average intensity on the red

ripe oranges in Table 16

2. Due to the natural of the unripe orange texture, t

green channel becomes more important in this case.  The pixel value varies 

between 70 and 118

3. The intensity variation on the blue channel is not 

intensity is very low.

Figure 60 shows the intensity variation along the vertical red line 

and blue channels separately. 

- 80 - 

Effects of Illumination Intensity Variations on Unripe 

Orange Skin 

ripe orange image with two red lines drawing across the centre. 

 
ripe orange image with two red lines drawing across the center.

selected pixel values along the horizontal red

green and blue channels separately. 

Selected Pixel Values along the Horizontal Red Line 

40 50 60 70 80 90 100 110

13 121 137 144 114 110 105 89

107 111 115 118 108 102 100 81

27 28 27 29 25 25 19 18

7. Intensity variations on the horizontal red line. 

gradually increases from the edges to the center of the image

The following are some of the observed properties:    

The average intensity on the red channel is lower compared with the 

ripe oranges in Table 16.  The pixel value varies between 68 and

Due to the natural of the unripe orange texture, the intensity variation 

becomes more important in this case.  The pixel value varies 

118.  

The intensity variation on the blue channel is not important.  The average 

is very low.   

shows the intensity variation along the vertical red line 

and blue channels separately.  

    . .

Illumination Intensity Variations on Unripe 

drawing across the centre.              

the center. 

horizontal red line on red, 

 

110 120 130 

89 77 68 

81 73 70 

8 16 10 

the center of the image.  

is lower compared with the one for 

and 144.   

variation on the 

becomes more important in this case.  The pixel value varies 

.  The average 

shows the intensity variation along the vertical red line on red, green 



 

Fig. 6

Figure 61 shows three pixels selected from the normal and 

separately.       

Fig. 61. Three pixels selected from 

The intensity variation among three pixels 

1. Pixel C to Pixel B

• The average intensity of orange colour skin is 

the green colour 

colour skins should not be considered as blemishes.   

2. Pixel C to Pixel A, Pixel B to Pixel A

• The intensity of blemished skin is usually darker than 

skin.   

• The intensity variations on both red and green channels are 

important figures for blemish detection.   

 

- 81 - 

60. Intensity variations along the vertical red line.   

three pixels selected from the normal and blemished

pixels selected from the normal and blemished skin separately

among three pixels is analyzed below.    

B 

The average intensity of orange colour skin is usually 

green colour skin.  The intensity variation between different 

colour skins should not be considered as blemishes.   

A, Pixel B to Pixel A 

The intensity of blemished skin is usually darker than 

The intensity variations on both red and green channels are 

important figures for blemish detection.    

    . .

 

blemished skin 

 
normal and blemished skin separately.  

usually brighter than 

.  The intensity variation between different 

colour skins should not be considered as blemishes.    

The intensity of blemished skin is usually darker than the normal 

The intensity variations on both red and green channels are 
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5.4.2.6  Summary 

Orange class mean is a measurement of the central tendency for each orange 

colour class.  Sometimes a set of numbers might contain outliers.  The outlier is 

the intensity of a pixel which is much lower or much higher than the others.  The 

outliers are erroneous data caused by different reasons, such as leaves on the 

conveying system.  Ten percent of the ends are discarded in this algorithm.   

The average intensity gradually increases from the edges to the center of the 

image.  Due to the nature of the orange texture, the intensity variation on the red 

and green channel is more important for statistical analysis.        

5.4.3 Orange Class Standard Deviation   

5.4.3.1  Overview 

In statistics, standard deviation is a simple measure of the spread of a dataset.  

Standard deviation can often find the story behind the data, such as the tightness of 

data samples that are clustered around the mean.  A low standard deviation 

indicates that all the pixel values are very close to the same value (class mean), while 

the high standard deviation indicates that all the pixel values are clearly more spread 

out across a large range of levels.  The formula of standard deviation σ is defined as 

follows: 

� � ¿∑ �§�f��@k� � �           �39�        

where P is the pixel value, µ is the class mean, and n is the number of pixels in the 

class.  There are eight orange colour classes and three colour channels in a given 

RGB image, so twenty-four orange class standard deviations will be computed in 

total.  Orange class standard deviation is a statistical measure of the dispersion of 

the class members.        
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5.4.3.2  General Algorithm 

Input : RGB Image, Orange class distribution matrix.      

Output : Statistical analysis matrix  

1 foreach  orange colour class  do  

2   foreach  isolated colour channel  do 

    ComputeClassStandardDeviation() 

    StoreComputedClassStandardDeviation ()   

  end 

end 

For all the pixels that belong to the same class, compute the class standard 

deviations on three channels separately for a given RGB image.  Table 18 is an 

example of the statistical analysis matrix on the first dimension with specified class 

numbers.  

 
Table 18. Example of the statistical analysis matrix. 

The statistical analysis matrix is a three-dimensional array with eight rows and 

columns.  The elements of a three-dimensional array can be thought of as a set of 

two-dimensional arrays.  The first, second, and third dimensions are used to store 

the computed data on the red, green and blue channels separately.  For instance, the 

class standard deviation 20 of class one on the red channel is stored at the first row 

and column on the first dimension.   
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5.4.3.3  Summary 

Orange class standard deviation is a simple measure of the spread of a dataset.  A 

low class standard deviation indicates that all the pixel values are very close to the 

class mean, while a high class standard deviation indicates that all the pixel values 

are clearly more spread out across a large range of levels.  The orange class 

standard deviation is derived from the original standard deviation in statistics.   

The computed class standard deviations are stored in the statistical analysis matrix 

for further analysis.  

5.4.4 Between-Class Squared Mean Difference  

5.4.4.1  Overview 

Between-class squared mean difference is a numerical description of how far apart 

the orange colour classes are.  In mathematics, there are two common methods to 

compute the distance between two objects, e.g., absolute difference and squared 

difference.  Absolute difference is a numerical value without regard to its sign.  

The following example demonstrates how the absolute difference works.   

A = 8, B = 6, 

Diff1 = A – B = 2,  Diff2 = B – A = -2, 

absDiff1 = |A - B| = 2,  absDiff2 = |B – A| = 2 

Squared difference is a squared numerical value without regard to its sign.  The 

following example demonstrates how the squared difference works.  

sqrtDiff1 = (A – B)2 = 4,  sqrtDiff2 = (B – A)2 = 4 

Absolute difference and squared difference basically works the same on the way 

of regarding to its sign.  However, the squared difference enlarged the distance 

between two objects.  The between-class squared mean difference smd is defined as 
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follows:  

N�{ � ��� �  ����          �40�    

where A and B represents any one of the eight orange colour classes, and A ≠ B.  

smd is a measure of the squared difference between two class means.  A 

small-valued smd indicates that two classes are similar to each other.     

5.4.4.2 General Algorithm 

Input : Orange class mean distribution matrix.      

Output : Statistical analysis matrix  

1 foreach  orange colour class  do  

2   foreach  isolated colour channel  do 

    ComputeBetweenClassSquaredMeanDifference () 

    StoreComputedBetweenClassSquaredMeanDifference ()  

  end 

end 

Compute the between-class squared mean differences for each orange colour class 

on three channels separately.  Table 19 is an example of the statistical analysis 

matrix on the first dimension with specified class numbers.   

 
Table 19. Statistical analysis matrix with computed between-class variances.  

For instance, the smd 18 between class one and two is stored at the second row 

and first column, which is the same as the one at the first row and second column.  
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In statistics, a matrix of covariances between elements of a random vector is called 

covariance matrix (Besson, Bidon & Tourneret, 2008).  The formula is defined as 

follows: 

���,Q� � ��Q,��          �41�     

Table 20 shows an example of the covariance matrix.  Data along the blue diagonal 

line follows the symmetry principle, e.g., C(2,1) is the same as C(1,2) in terms of  

the between-class squared mean difference.   

 
Table 20. Example of the covariance matrix. 

5.4.4.3  Summary 

Between-class squared mean difference is a numerical description of how far apart 

the orange colour classes are.  Absolute difference and squared difference are two 

common methods to compute the distance between two objects.  However, the 

squared difference enlarged the distance between two objects.  The computed 

between-class squared mean differences are stored in the statistical analysis matrix.  
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5.4.5 Closest Neighbor Class   

5.4.5.1  Overview 

The task of this section is to identify which classes are close to each other.  The 

word close in terms of colour expression means that two classes have a similar visual 

impact.  In Figure 62, the closest neighbor class of Class One is Class Four.  Class 

Two and Class Three have very different colours compared to the others, so they are 

defined as standalone classes.         

 
Fig. 62. Similarity of the orange colour classes. 

Figure 63 illustrates the relationship among these four classes. 

 
Fig. 63. Demonstration of the closest neighbor class. 

  Of course, the similarity among different classes cannot be measured by human 

eye in a real time application.  The statistical analysis matrix stores the information 

which is especially designed for this task.  The orange class standard deviation and 

between-class variation are used as the measure of the closest neighbor class.     

5.4.5.2  Mean Selection for Skewed Distributions    

The following example demonstrates how the average distance between class one 

and two is computed.           

distR[1,2] = 80 Distance on the Red Channel between Class One and Two, 

distG[1,2] = 70 Distance on the Green Channel , 
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distB[1,2] = 6    Distance on the Blue Channel, 

averageDist[1,2] = (80 + 70 + 6) / 3 = 52  

52 is the average distance between class one and two.  In statistics, the arithmetic 

average of a set of values is one of the most commonly used statistical measurements. 

However, it is less accurate for skewed distributions.  For example, the arithmetic 

average of six values: 20, 18, 17, 16, 10, 1 is: 

(20 + 18 + 17 + 16 + 10 + 1) / 6 = 13.6667        

The average is skewed downwards by a few numbers with very small values, 

however, the majority numbers are bigger than 10.  The data stored in the statistical 

analysis matrix among three dimensions are considered to be a set of skewed values.   

• Data in the first dimension derived from the isolated red channel is the most 

important.   

• Values in the first and second dimensions are usually much bigger than the 

third dimension.      

This is caused by the nature of the orange texture.  The skin colour of an orange is 

more likely to be red, maybe a little bit green, and almost no blue.  To compute a 

more accurate average for a set of skewed values is a challenge.  Quadratic mean, 

geometric mean and harmonic mean are compared in the following examples using 

the same data, e.g., 80, 70, 60.            

1. Example One: Quadratic Mean 

Quadratic mean is also called power mean.     

• Compute the power of each element in the dataset and sum the 

results.  

802 + 702 + 62 = 11336 

• Divide the sum by the number of elements in the dataset. 

11336 / 3 = 3779 

• Compute the square root.  

        sqrt(3779) = 61 
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2. Example Two: Geometric Mean 

• Multiply all the elements in the dataset. 

80 * 70 * 6 = 33600 

• Compute the one-third power of the multiplication.  

336001/3 = 32  

3. Example Three: Harmonic Mean 

• Divide each element by one and sum the results. 

1/80 + 1/70 + 1/6 = 0.1935 

• Divide the value by the number of elements.  

3 / 0.1935 = 15 

Quadratic mean is more towards to the maximum elements in the dataset, harmonic 

mean is more towards to the minimum elements, and arithmetic mean and geometric 

mean are in between.  Table 21 shows the computed means.    

 
Table 21. Example of four different means.  

The mean selected for this algorithm is the quadratic mean.  The formula is 

defined as follows: 

À� � ¿∑ Ák@�k �R           (42)      

where V is the value stored in the statistical analysis matrix, and n represents the first, 

second and third dimensions in the order of 1, 2 and 3 separately.     
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5.4.5.3  General Algorithm  

Input : Statistical analysis matrix.      

Output : Closest neighbor array.   

Data: QM = temporary matrix used to store computed quadratic means.  SA = 

statistical analysis matrix.     

1 foreach  element in statistical analysis matrix SA  do  

ComputeQuadraticMean() 

StoreComputedQuadraticMean() 

end 

2 foreach  orange colour class  do  

FindClosestNeighborClass() 

StoreComputedCloestNeighborClass() 

end 

1. Compute the quadratic mean for each element in the statistical analysis matrix.  

Table 22 is an example of the statistical analysis matrix with three dimensions.  

The quadratic mean 7.5 is computed using the numbers 10, 8 and 2, and stored 

in the temporary quadratic mean matrix at the corresponding position.  In real 

time application, the quadratic mean matrix is a two-dimensional array with 

eight rows and columns.       

 

Table 22. Example of the computation for quadratic means.  

2. Find the closest neighbor class for each orange colour class using the quadratic 

mean matrix.  Table 23 is an example of the quadratic mean matrix with eight 

rows and columns.  The closest neighbor class of class one is class eight 8, 

which is derived by finding the column/row number with minimum value in the 
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first column/row.  The closest neighbor array is an array with eight elements, 

which is designed to store the closest neighbor class number for each orange 

colour class.        

 

   Table 23. Example of finding the closest neighbor class.  

5.4.5.4  Closest Neighbor for Ripe and Unripe Oranges 

Table 24 is an example of the orange class mean matrix for a ripe orange from the 

real application.  The class means between class seven and eight are very similar 

for all three channels, and they are closest neighbors.  Class five and six are not 

available, so the means are filled with zeros.                

 
Table 24. Example of the orange class mean matrix for a ripe orange.  

Table 25 is an example of the orange class mean matrix for an unripe orange. 

Class three and four are closest neighbors.  Class five and six are not available as 

well.                

 

Table 25. Example of the orange class mean matrix for an unripe orange. 
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 The skin colour variation causes the difference in the class neighbor classification.  

5.4.5.5  Summary 

Some of the orange colour classes could be very similar to each other.  It is 

important to find the closest neighbor for each orange colour class.  The data stored 

in the statistical analysis matrix is considered to be a set of skewed values, so the 

average values among three dimensions are computed using the quadratic mean.  

The skin colour variation causes the difference in the class neighbor classification.           

5.4.6 Class Reclassification   

5.4.6.1  Overview 

The closest neighbor array presents the relationship among the eight orange colour 

classes.  Table 26 is an example of the closest neighbor array with specified class 

numbers for demonstration purpose.      

 

Table 26. Example of the closest neighbor array with specified class numbers. 

Three types of classes are defined in this section, such as standalone class, missing 

class and similar class. 

1. Standalone Class 

A class has no closest neighbor.  In Table 26, class one, two and three are 

standalone classes.  Pixels in this class are different from others in terms of 

colour components and brightness.         
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2. Missing Class 

A class does not exist.  In Table 26, class four, five and six are missing 

classes.  Zero in the closest neighbor array indicates that the current class 

is not available.  

3. Similar Class 

Two classes are similar to each other.  In Table 26, class seven and eight 

are closest neighbors.  They can be merged together to form a new class.   

Table 27 shows the newly derived classes after class reclassification.  Class one, 

two and three stay the same, class four, five and six are deleted, and class seven and 

eight are merged together to form a new class.   

 

Table 27. Class reclassification. 

5.4.6.2  Colour Components and Brightness 

Due to the nature of the orange texture, the orange yellow and white classes are 

usually similar to each other.  The blue component for an orange image is very 

minor.  The orange colour classes can also be considered as clusters.  Pixels within 

the same cluster are similar to each other in terms of colour components and 

brightness.  Clustering is a common technique for statistical data analysis.   

Figure 64 simulates the derived new classes in Table 27 using clusters.  The 

process of assigning a pattern into one of the pre-defined clusters is called 

classification.  A pattern is a set of measurements, such as intensity level.        

 



 

 

There are four distinct clusters in 

1. Cluster one contains th

cluster belong to the background. 

2. Cluster two contains 

3. Cluster three contains the pixels with 

belong to this cluster due to the nature of the orange

4. Cluster four contains the pixels with the combination of red and green 

colour.  Cluster five contains the pixels with the

and blue colour.  

components and brightness, so

cluster.  

5.4.6.3  General Algorithm

Input : Closest neighbor array, Orange class mean matrix. 

Output : New class mean matrix. 

1 foreach  orange colour classes

ReclassifyOrangeColourClasses

ComputeNewClassMean

StoreComputedNewClassMean

end 
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Fig. 64. Clusters.               

distinct clusters in Figure 64.        

contains the pixels with very low intensities.  

cluster belong to the background.   

Cluster two contains the pixels with pure green colour.  

Cluster three contains the pixels with pure blue colour.  Not many pixels 

to this cluster due to the nature of the orange texture.  

Cluster four contains the pixels with the combination of red and green 

.  Cluster five contains the pixels with the combination of red, green

.  Pixels in cluster four and five have similar colour 

and brightness, so they can be merged together 

Algorithm  

Closest neighbor array, Orange class mean matrix.       

New class mean matrix.    

orange colour classes  do  

ReclassifyOrangeColourClasses() 

NewClassMean() 

NewClassMean() 

    . .

 

.  Pixels in this 

.  Not many pixels 

 

Cluster four contains the pixels with the combination of red and green 

combination of red, green 

have similar colour 

together to form one 
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Reclassify the orange colour classes according to the closest neighbor array.   

• Leave standalone classes as they are.  

• Delete all the classes which are not available.  

• Merge all the similar classes together to form a new class.  

Compute the new class mean for two similar classes (i.e. Class A and Class B).  

The formula is defined as follows:  

W<M��wNNv<wc � x©�§��(±ÂÃ±�hhÄ(��Â ! x©�§��(±ÅÃ±�hhÄ(��Å x©�§��(±Â! x©�§��(±Å           �43�    

where NumPixel is the number of pixels, and ClassMean is the original class mean.  

  The newly computed class means are stored in the new class mean matrix.  The 

new class mean matrix is similar to the orange class mean matrix, which differ only 

in the number of rows.  After class reclassification, the number of new classes is 

not always the same.  

5.4.6.4  Summary  

There are three key steps for the class reclassification.   

1. Leave standalone classes as they are.  

2. Delete all the classes which are not available.  

3. Merge similar classes together to form a new class.  

The class mean has to be recomputed for newly derived classes.  The recomputed 

class means are stored in the new class mean matrix for pixel reclassification.   
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5.4.7 Pixel Reclassification  

5.4.7.1  Overview 

  After class reclassification, pixels no longer belong to one of the eight original 

orange colour classes.  Pixels should be reclassified into one of the newly derived 

classes based on the new class mean matrix.  Find which new class each pixel 

belongs to is the task of this section.   

5.4.7.2  Data Analysis   

Table 28 is an example of the new class mean matrix.             

 

Table 28. Example of the new class mean matrix for demonstration purpose.  

For a given pixel p, the pixel values on three channels are 127, 55 and 16 

separately.  The differences between the pixel value (127) and class means (23, 52, 

145, 228) on the red channel are 104, 75, 18, 101, and the pixel value is more close 

to class three.  The differences on the blue channel are 10, 2, 4 and 6, and the pixel 

value is more close to class two.  The differences on the red channel are bigger and 

more important than the others.              
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5.4.7.3  General Algorithm 

Input : New class mean matrix, RGB image.       

Output : Pixel reclassification matrix.    

Data: NCM = new class mean matrix, classMean = class mean in new class mean 

matrix NCM, I = input RGB image, p = pixel in image I.   

1 foreach  pixel p in image I  do  

2   foreach  class mean classMean in new class mean matrix NCM  do 

     ComputeSumSquaredDifference() 

end 

3    FindMinSumSquaredDifference() 

4    StoreNewPixelValue() 

end 

Step through each pixel in the RGB image.  For each pixel examined, compute 

the differences separately for each colour channel (i.e. R, G, B) between the pixel 

value p and class mean µ for each of the three channels.  Next, apply the quadratic 

mean for combining these differences together, and this will give us the final ssd.  

The formula is defined as follow:       

NN{ � ¿∑ �§kf�k�@�k � R          �44�         

where n represents the red, green and blue channels in the order of 1, 2 and 3.   

Pixel will be classified as a member of the class with the minimum ssd.  The 

pixel value is replaced by the corresponding class mean on the red channel and 

stored in the pixel reclassification matrix which is a two-dimensional array with the 

same size as the RGB image I.  For an illustration of the inner working of this 

algorithm with data samples, see appendix D.  
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5.4.7.4  Summary 

Pixels no longer belong to one of the eight original orange colour classes after 

class reclassification.  Pixels should be reclassified according to the newly derived 

classes.  The differences between the pixel value and class means on the red 

channel are bigger and more important than the others, so the sum squared difference 

is selected for the computation of a set of skewed values.    

5.4.8 Blemish Identification   

5.4.8.1  Overview  

The blemishes on the orange are caused by various reasons, such as poor air 

during transportation, pre/post-harvest diseases and mechanical damages.  The task 

of this section is to identify the blemished areas.  Experiments are presented for ripe 

and unripe oranges separately.    

5.4.8.2  Topmost Layer Slicing 

The top layer slicing phase of the algorithm is important as this defines the region 

of inspection.  Figure 65 shows a grey scale image generated using the pixel 

reclassification matrix.   

 

Fig. 65. Image generated using the pixel reclassification matrix.     

Only the topmost layer is analyzed and the reasons are explained as follow: 

1. The lighting condition is better on the top of the orange.  

2. Noise is filtered out, such as background pixels.      
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3. The orange is rotated on the conveying system, so unprocessed parts can be 

analyzed in the next image.   

4. Reduce unnecessary computations for unstable data.  

5.4.8.3  Blemish Segmentation  

The blemishes are identified by employing a convex hull approach (described in 

Section 2.1.3.2) on the topmost layer.  Two key steps are described as follow:           

1. Segment the blemishes from the topmost layer.  

• Crop the topmost layer, and designate it as Mask1 

• Apply the convex hull technique on the cropped image and 

designate the result as Mask2. 

• Extract the blemishes by subtracting the cropped image from the 

convex image (i.e. Mask2 – Mask1).       

2. Count the number of pixels in the segmented image.          

Figure 66 illustrates the process of the blemish segmentation.      

 
Fig. 66. Segment the blemished area on the very top layer. 

5.4.8.4  Refinement of Blemish Segmentation   

Figure 67 shows some leftovers in the segemnted image which are caused by the 

rough edges in the cropped image.  Experiments show that these little spots around 

the edges may add up to a relatively big value.         



 

The rough edges in 

morphological operators (

Figure 68 shows two segmented

cropped image.  This step reduc

maintaining blemish detection accuracy.

      

Fig. 68. Segmented image before and after the erode operation. 

5.4.8.5  Sample Execution of Blemish Segmentation  

This section shows some of the results garnered for a variety of orange grades.   

Figure 69 shows the blemish identification 

blemishes were marked as there is none.  The stem was also extracted correctly.

Fig. 69. 
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Fig. 67. Spots in the segmented image. 

The rough edges in the cropped image should be smoothed using the 

operators (described in Section 2.1.3) before the convex hull.  

segmented images before and after smoothing the edges in the 

This step reduces the presence of noise around the edges, while 

maintaining blemish detection accuracy.  

      

Segmented image before and after the erode operation.        

Sample Execution of Blemish Segmentation   

This section shows some of the results garnered for a variety of orange grades.   

shows the blemish identification results for ripe oranges.

blemishes were marked as there is none.  The stem was also extracted correctly.

. Blemish identification results for ripe oranges.  

    . .

cropped image should be smoothed using the 

in Section 2.1.3) before the convex hull.  

images before and after smoothing the edges in the 

es the presence of noise around the edges, while 

        

 

This section shows some of the results garnered for a variety of orange grades.   

for ripe oranges.  Here, no 

blemishes were marked as there is none.  The stem was also extracted correctly. 

 



 

Figure 70 shows the blemish identification 

Fig. 70. Blemish identification

Figure 71 shows the blemish identification 

Fig. 71. Blemish identification results for unripe oranges.

Figure 72 shows a series of 

for a blemished unripe orange

identified by the proposed algorithms.  The results also prove that the proposed 

algorithms are robust to confounding colour transition

and vice-versa).                
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shows the blemish identification results for blemished ripe oranges. 

Blemish identification results for blemished ripe oranges. 

shows the blemish identification results for unripe oranges.  

Blemish identification results for unripe oranges. 

shows a series of algorithm executions on a set of photographs 

a blemished unripe orange.  It is evident that the blemishes were

by the proposed algorithms.  The results also prove that the proposed 

are robust to confounding colour transition areas (from orange to green

                 

    . .

for blemished ripe oranges.   

 

 

 

 

photographs captured 

were accurately 

by the proposed algorithms.  The results also prove that the proposed 

areas (from orange to green 



 

Fig. 72. Blemish identification

5.4.8.6  Experiment and Analysis

Two experiments are presented for good and blemished 

1. Experiment One: Good

The skin colour of a good orange

nothing should be detected.  

uniformly distributed.   

Fig. 73. Result of image processing for 

The blemish detection 

positive rate is computed for each orange

positive rate is close to one.
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Blemish identification results for blemished unripe oranges.

Experiment and Analysis on Ripe Oranges 

Two experiments are presented for good and blemished ripe oranges separately

: Good Orange      

good orange is smooth and uniformly distributed, therefore 

nothing should be detected.  In Figure 73, the intensity on the topmost

      
Result of image processing for a good ripe orange.  

blemish detection algorithm is tested using one hundred oranges

computed for each orange.  The algorithm is accurate only 

positive rate is close to one.  The formula is described below: 

    . .

 

for blemished unripe oranges. 

separately.         

uniformly distributed, therefore 

topmost layer is 

is tested using one hundred oranges.  True 

only if the true 
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Pixels within topmost layer with the highest intensity will be classified as true 

positive instances.  The total number of positive instances is the number of pixels 

on the topmost layer.   

The computed true positive rates are shown in Figure 74.  It is evident to see that 

the true positive rates are very high.  Pixels which are not classified as the true 

positive instances are mainly caused by the stem.  The stem in this stage is treated 

the same as blemishes.              

 

Fig. 74. True positive rates computed based on one hundred good ripe oranges. 

2. Experiment Two: Blemished Oranges 

Figure 75 illustrates that the intensity on the topmost layer is not uniformly 

distributed.  Holes are identified as blemishes which are usually darker than the 

normal skin area.      

     
Fig. 75. Result of image processing for a blemished ripe orange. 

The blemish detection algorithm is tested on seventy blemished oranges.  The 

blemishes indentified by the algorithm are compared with the one manually 
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extracted.  In Figure 76, t

right image is extracted manually

      

Fig. 76. Blemish identification testing

True and false positive rate

• True positive instances are

reported as being 

• False positive instances are the p

erroneously reported as being positi

True and false positive rates are plotted in Figure 77

Fig. 77. True and false positive r

The true positive rates are 

the testing result.   

1. The blemishes are marked manually and it might be too big or too small.  
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, the middle image is generated by the algorithm

right image is extracted manually using the layer in Paint.net.         

       

Blemish identification testing for blemished ripe orange. 

positive rates are computed as the statistical measurement

instances are the pixels which are in the blemished area 

being positive.    

instances are the pixels which are in the normal skin area 

erroneously reported as being positive.   

rates are plotted in Figure 77 for seventy blemished oranges.   

false positive rates plotted for seventy blemished ripe oranges.  

he true positive rates are low.  There are many human factors which

are marked manually and it might be too big or too small.  

 are not marked but identified by the blemish detection

0.2 0.4 0.6 0.8

True Positive Rate

    . .

image is generated by the algorithm and the 

   

   

measurement.    

the blemished area and 

ixels which are in the normal skin area and 

for seventy blemished oranges.       

 

plotted for seventy blemished ripe oranges.   

human factors which may affect 

are marked manually and it might be too big or too small.   

blemish detection 

1
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algorithm.  This is caused by the following three reasons:  

• The original image is not clear enough.  

• The examiner has different thought for the blemishes.   

• The examiner forgot to mark some blemishes.    

3. Figure 78 shows some blemishes are identified outside of the topmost layer 

which will not be considered in the current image.  The layers are 

generated dynamically at the run time, so it is hard to estimate which part of 

the orange is within the topmost layer.  A rough estimation is made in this 

case.   

    

Fig. 78. Blemishes identified outside of the topmost layer.  

4. Figure 79 shows some blemishes are hard to differentiate by human eye due 

to the poor lighting conditions.   

     

Fig. 79. Some blemishes are hard to detect by human eye.  

Due to various negative human factors, the statistical analysis in this section is 

used for reference only.   

5.4.8.7  Experiment and Analysis on Unripe Oranges  

Two experiments are presented for good and blemished unripe oranges separately.   

1. Experiment One: Good Unripe Orange 

Figure 80 shows a processed image with layers painted in colour.  Hole A is 

caused by the skin colour variation from orange to green.  Hole B is caused by the 



 

stem at the bottom of the image.

Fig. 80. Example of 

The colour transaction area

intensity is usually darker on the green skin 

merging the top two layer

The stem is treated as blemishes in this stage. 

Fig.

The blemish detection 

computed true positive rates 

true positive rates are very high

Fig. 82. True positive 

0.98

0.985

0.99

0.995

1

0

T
rue P

ositive R
ate

- 106 - 

stem at the bottom of the image.             

       
Example of skin colour variation on an unripe orange. 

transaction area should not be identified as blemishes, 

intensity is usually darker on the green skin area.  Figure 81 shows the result of 

layers.  Hole A is disappeared, and Hole B stays 

The stem is treated as blemishes in this stage.                   

 
Fig. 81. Result of merging the top two layers. 

blemish detection algorithm is tested on sixty good unripe oranges

computed true positive rates are plotted in Figure 82.  It is evident to see that th

true positive rates are very high. 

ositive rates computed based on sixty good unripe orange
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shows the result of 
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2. Experiment Two: Blemished Unripe Orange 

The average intensity of unripe oranges is lower than the ripe oranges, and the 

intensity variation between the normal and blemished skin is smaller.  Figure 83 

shows two images captured for the same orange from different angles.  Pixel A and 

B are traced for inspection purpose.  The colour channel values of Pixel B vary a lot 

when the position is changed.                 

     
Fig. 83. Intensity variation for blemished unripe oranges. 

Figure 84 illustrates that the blemishes are identified more accurately when the 

position is changed.     

 
Fig. 84. Blemish identification with different positions. 

5.5  Stem Detection and Removal 

The stem should be treated differently from blemishes, and therefore should be 

isolated.  Stem isolation is performed basically using Otsu’s method (described in 

Section 2.1.1) operating on the red channel.  The result is used as a threshold that 

segregates the stem from the orange skin.   

The basis of this technique is illustrated by example.  Figure 85 shows three 

selected pixels from different skin areas.  The colour channel values of a stem are 

usually smaller than the blemishes.  The pixel value varies the most on the red 

channel.      



 

Fig. 85. 

Figure 86 on the other hand, 

background class (conveying system) using the 

method on the red channel.  Holes within the foreground class (orange) will not be 

classified as blemishes.   

 

Fig.

Figure 87 shows some deep

also segmented into the background class.  However,

reduced to the minimum extent.

 

Fig.

Figure 88 points out the deep blemish
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 Intensity variation among three selected pixels.  

on the other hand, illustrates how the stem pixels are segmented into the 

background class (conveying system) using the threshold derived from Otsu

method on the red channel.  Holes within the foreground class (orange) will not be 

   

         

Fig. 86. Stem detection using Otsu’s method.  

deep blemishes with very low intensities on 

into the background class.  However, the misclassified 

reduced to the minimum extent.   

         

Fig. 87. Blemishes misclassified as the stem.  

the deep blemish which causes the misclassification.  

 

Fig. 88. Depth of the blemish.  

 

    . .

 

the stem pixels are segmented into the 

derived from Otsu’s 

method on the red channel.  Holes within the foreground class (orange) will not be 

   

on the orange are 

misclassified pixels are 

 

the misclassification.           
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5.6  Blemish Quantification 

Blemishes are quantified based on the proportion of blemishes found for each 

orange fruit.  We define this as bnp/tnp.  On the other hand, the proportion of good 

orange skin is defined relative to the proportion of blemishes.  This is defined as p 

for each orange fruit as follows: 

y � 1 � 
�����           �46�         

where bnp is the number of blemish pixels (described in section 5.4.8.3), and tnp the 

total number of pixels on the topmost layer.  

The factors which may affect the accuracy of the system are explored as follow:   

1. The blemishes are outside of the topmost layer which is not analyzed in the 

current image. 

2. The rough edges are not smoothed perfectly, and some leftovers are treated 

as blemishes. 

3. The stem is partially removed. 
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5.7   Grading 

The novel algorithm was tested on 170 oranges.  100 were manually classified as 

good oranges by experts, while 70 were classified as blemished oranges by the same 

inspectors.   

Figure 89 shows the classification results before smoothing the rough edges.   

 

Fig. 89. Classification results before smoothing the rough edges. 
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Figure 90 shows the classification results after smoothing the rough edges.  The 

performance is improved.        

 

 Fig. 90. Classification results after smoothing the rough edges. 
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Figure 91 shows the classification results after removing the stem.   

 
Fig. 91. Classification results after removing the stem. 

The layers are generated dynamically at run time, which differ in the size for the 

same orange due to the lighting changes.  Blemishes should be quantified based on 

stable and predictable measurements.  p is redefined for each orange fruit as 

follows: 
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y � 1 �  
����           �48�     

where tp is the total number of pixels on the whole orange.  Figure 92 shows the 

classification results.   

     Fig. 92. Classification results using the new formula.  
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It is evident that the classified good oranges mostly clustered within the Grade A 

quality band, according to the proposed algorithms.  This amounts to 96% correct 

classification.  On the other hand, the classified blemished oranges scattered across 

the graph in different quality bands.  This proves that the algorithm is able to work 

out varying degrees of quality for blemished oranges.  Altogether, the algorithm 

garnered 97% correct classification results for the blemished fruits.   

Also, as depicted in Figure 92, p is predefined to be 0.99 for the highest quality 

grade.  Therefore, if p is greater than or equal to 0.99, then the orange is classified 

to be of high quality.  Table 29 summarizes the classification results produced by 

the novel algorithm.    

Fruit Image 
Types 

No. of Images No. of 
Correctly 
Classified 
Images 

No. of Wrongly 
Classified 
Images 

% of Correct 

Classification 

Good 
Orange 

100 96 4 96% 

Blemished 
Orange 

70 68 2 97% 

Table 29. Summary of classification results using the novel algorithm. 

Moreover, the grading criteria can be easily be adjusted according to the 

requirement set by the market, by defining the different quality bands.  For 

instance: 

1. Grade A:  p above 0.99 

2. Grade B:  p between 0.97 and 0.99 

3. Grade C:  p between 0.93 and 0.95 

4. Grade D:  p below 0.93 
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Chapter 6  

Conclusion and Future Work 

An adaptive intelligent fruit grading system for ripe and unripe oranges is 

proposed in this research.  The contributions of this work are summarized as 

follows:   

1. It was observed that the global intensity variation between pixels from the 

same orange is not sufficient to classify defects (described in Section 5.4.2.4 

and 5.4.2.5).  Most of the existing algorithms are not addressing this 

significant issue and one solution to the problem is presented here.   

2. Most of the fruit grading algorithms are largely based on the use of neural 

networks to achieve a more thorough analysis of the fruit’s surface 

(described in Section 3).  As part of the requirements that makes it difficult 

to correctly grade fruits are thousands of training examples that have to be 

gathered before the experiment and analysis.  This process is considered to 

be very time-consuming and computationally expensive.  On the other 

hand, the novel algorithm presented here does not rely on training.  It can 

be implemented, tested and modified without any rigorous and lengthy 

training requirements. 

3. The novel algorithm may be suitable for grading some other fruits that have 

the rounded convex surface property (described in Section 5.4.1.5).  

However, the orange colour class proposed here will have to be modified 

slightly to be adapted for grading other fruits.       

4. Some existing algorithms are able to grade fruits into different quality bands 

(i.e. histogram-based analysis, etc.).  However, such algorithms cannot 

locate explicitly where the blemishes are on the fruit.  The novel algorithm 

is able to locate the blemish and measure its area with high level of 

accuracy (described in Section 5.4.8). 
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Oranges are assessed according to their surface texture, such as bruising, 

discolouration and other blemishes.  All these defect types contribute roughly 

equally to the final grading decision.  The grade is a measure of the size of these 

surface defects over the whole orange.  An extension of the proposed research 

would be to incorporate some measure of depth for the blemishes, based on their 

relative intensities.  In effect, it could be deduced that the darker the blemishes are, 

the deeper the damage is. 
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Appendix A. Otsu’s Method 

Algorithm Details with Sample Computations 

Subset of a grey scale image is extracted to be the sample data for demonstration 

purpose.  The sample data is a two dimensional array of picture elements which is 

used to make up an image.  It has a width(W=6) and height(H=6).  The total 

number of pixels in this sample data(N=36) is WxH(6X6).  Table 30 shows the 

extracted sample data.             

Sample Data 

 

Table 30. Sample data selected for Otsu’s method implementation.  

The algorithm of Otsu’s thresholding method is implemented in this section.   

1.  Initialize grey scale ranging from 0 to 255(L-1).  L is chosen to be 256.  

  L = 256 

2. Initialize class probability(ω1) of class one to be 0. 

  ω1 = 0 

3. Initialize the maximum or minimum between-class variance to be 0; 

  Minσw
2 = 0,   minimizing the between-class variance 

  or 

  Maxσb
2 = 0,   maximizing the between –class variance  

4. Find the maximum and minimum grey level separately. 

  MinGreyLevel = 0 

  MaxGreyLevel = 220   

5. Compute image histogram which is the distribution of values for the pixels in 



 - 118 -     . .

the sample data.  The histogram is shown in Figure 93.       

 Histogram  

 

 

Fig. 93. Histogram analysis for Otsu’s method implementation. 

Index starting value of an excel spreadsheet is 1.  So the first column indexed 1 

is corresponding to grey level 0.  It can be interpreted as there are 8 pixels at 

grey level 0 in the sample data.   

6.  Compute grey levels probabilities Pi for each grey level.  The computed 

probabilities are shown in Figure 94.      

Probability 

 

 

 Fig. 94. Probability analysis for Otsu’s method implementation  

  P0 =  n0 / N, 0.2222 = 8 / 36, at grey level 0 

  P1 =  n1 / N, 0.1111 = 4 / 36, at grey level 1  

  P2 =  n2 / N, 0 = 0 / 36,  at grey level 2 

  ........ , .............., .............., 

  P255 =  n255 / N, 0 = 0 / 36, at grey level 255 

7.  Compute grey levels mean M.  

M = ∑(Pi * i) = (0.2222 * 0) + (0.1111 * 1) + (0 * 2) + ...... + (0 * 255) 
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       =  35.6667,  0≤ i ≤ L  

8. Step through all possible thresholds.  The algorithm used is to maximize the 

between-class variance.  

 t = [MinGreyLevel...MaxGreyLevel] = [0...220]           

� At t = 0,  0 ≤ i ≤ t 

  ω1 = ∑Pi = P0 = 0.2222 

ω2 = 1 - ω1 = 1 - 0.2222 = 0.7778 

  temp = ∑(i * Pi) = 0 * 0.2222 = 0 

µ1 = ∑(i * Pi) / ω1 = temp / ω1 = 0 / 0.2222 = 0  

µ2 = (M - ∑(i * Pi)) / ω2 = (M - temp) / ω2 

= (35.6667 - 0) / 0.7778 = 45.8559 

  σb
2 = ω1 * ω2 * (µ1 - µ2)

2 = 0.2222 * 0.7778 * (0 - 45.8559)2 = 363.4147 

� At t = 1,  0 ≤ i ≤ t  

  ω1 = ∑Pi = P0 + P1 = 0.2222 + 0.1111 = 0.3333 

ω2 = 1 - ω1 = 1 - 0.3333 = 0.6667 

  temp = ∑(i * Pi) = 0 * 0.2222 + 1 * 0.1111 = 0.1111 

µ1 = ∑(i * Pi) / ω1 = temp /ω1 = 0.1111 / 0.3333 = 0.3333  

µ2 = (M - ∑(i * Pi)) / ω2 = (M - temp) / ω2 

= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307 

  σb
2 = ω1 * ω2 * (µ1 - µ2)

2  

     = 0.3333 * 0.6667 * (0.3333 - 53.3307)2 = 624.1298 

� At t = 2,  0 ≤ i ≤ t  

  ω1 = ∑Pi = P0 + P1 +  P2 = 0.2222 + 0.1111 + 0 = 0.3333 

ω2 = 1 - ω1 = 1 - 0.3333 = 0.6667 

  temp = ∑(i * Pi) = 0 * 0.2222 + 1 * 0.1111 + 2 * 0 = 0.1111 
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µ1 = ∑(i * Pi) / ω1 = temp /ω1 = 0.1111 / 0.3333 = 0.3333  

µ2 = (M - ∑(i * Pi)) / ω2 = (M - temp) / ω2 

= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307 

  σb
2 = ω1 * ω2 * (µ1 - µ2)

2  

     = 0.3333 * 0.6667 * (0.3333 - 53.3307)2 = 624.1298 

..........................................................................................., 

…………………………………………………………... 

9. This step is equivalent to step 8.  The algorithm used is to minimize the 

between-class variance.  Step through all possible thresholds.     

 t = [MinGreyLevel...MaxGreyLevel] = [0...220]           

� At t = 0,  0 ≤ i ≤ t  

  ω1 = ∑Pi = P0 = 0.2222 

ω2 = 1 - ω1 = 1 - 0.2222 = 0.7778 

  temp = ∑(i * Pi) = 0 * 0.2222 = 0 

µ1 = ∑(i * Pi) / ω1 = temp / ω1 = 0 / 0.2222 = 0  

µ2 = (M - ∑(i * Pi)) / ω2 = (M - temp) / ω2 

= (35.6667 - 0) / 0.7778 = 45.8559 

  temp1 = ∑(i - µ1)
2 * Pi = (0 - 0)2 *  0.2222 = 0 

  temp2 = ∑(i - µ2)
2 * Pi      

     = (1 - 45.8559)2 * 0.1111 + 

    (2 - 45.8559)2 * 0   + 

    ......  ......  ......      + 

    (220 - 45.8559)2 * 0.0278 

    = 2181.9         t+1≤ i ≤ MaxGreyLevel               

σ1
2 = ∑(i - µ1)

2 * Pi / ω1 = temp1 / ω1 = 0 / 0.2222 = 0 

σ2
2 = ∑(i - µ2)

2 * Pi / ω2 = temp2 / ω2 = 2181.9 / 0.7778 = 2805.2 
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σw
2 = ω1 * σ1

2 + ω2 * σ2
2 = 0.2222 * 0 + 0.7778 * 2805.2 = 2181.9 

� At t = 1,  0 ≤ i ≤ t  

  ω1 = ∑Pi = P0 + P1 = 0.2222 + 0.1111 = 0.3333 

ω2 = 1 - ω1 = 1 - 0.3333 = 0.6667 

  temp = ∑(i * Pi) = 0 * 0.2222 + 1 * 0.1111 = 0.1111 

µ1 = ∑(i * Pi) / ω1 = temp /ω1 = 0.1111 / 0.3333 = 0.3333  

µ2  = (M - ∑(i * Pi)) / ω2 = (M - temp) / ω2 

= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307 

  temp1 = ∑(i - µ1)
2 * Pi = (0 - 0.3333)2 *  0.2222 + (1 - 0.3333)2 * 0.1111  

     = 0.0741 

  temp2 = ∑(i - µ2)
2 * Pi 

    = (2 - 53.3307)2 * 0    + 

      (3 - 53.3307)2 * 0    + 

      ......  ......  ....    + 

      (220 - 53.3307)2 * 0.0278 

    = 1921.1          t+1≤ i ≤ MaxGreyLevel    

σ1
2 = ∑(i - µ1)

2 * Pi /  ω1 = temp1 / ω1 = 0.0741 / 0.3333 = 0.2223 

σ2
2 = ∑(i - µ2)

2 * Pi /  ω2 = temp2 / ω2 = 1921.1 / 0.6667 = 2881.5059 

σw
2 = ω1 * σ1

2 + ω2 * σ2
2 = 0.3333 * 0.2223 + 0.6667 * 2881.5059  

 = 1921.2 

� At t = 2,  0 ≤ i ≤ t  

  ω1 = ∑Pi = P0 + P1 +  P2 = 0.2222 + 0.1111 + 0 = 0.3333 

ω2 = 1 - ω1 = 1 - 0.3333 = 0.6667 

  temp = ∑(i * Pi) = 0 * 0.2222 + 1 * 0.1111 + 2 * 0 = 0.1111 

µ1 = ∑(i * Pi) / ω1 = temp /ω1  = 0.1111 / 0.3333 = 0.3333  
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µ2  = (M - ∑(i * Pi)) / ω2 = (M - temp) / ω2 

= (35.6667 - 0.1111) / 0.6668 = 45.8559 = 53.3307  

  temp1 = ∑(i - µ1)
2 * Pi = (0 - 0.3333)2 *  0.2222 + 

          (1 - 0.3333)2 * 0.1111 + 

          (2 - 0.3333)2 * 0 

       = 0.0741 

  temp2 = ∑(i - µ2)
2 * Pi 

    = (3 - 53.3307)2 * 0    + 

      (4 - 53.3307)2 * 0.0278   + 

      ......  ......  ....       + 

      (220 - 53.3307)2 * 0.0278 

    = 1921.1         t+1≤ i ≤ MaxGreyLevel 

σ1
2 = ∑(i - µ1)

2 * Pi /  ω1 = temp1 / ω1 = 0.0741 / 0.3333 = 0.2223 

σ2
2 = ∑(i - µ2)

2 * Pi /  ω2 = temp2 / ω2 = 1921.1 / 0.6667 = 2881.5059 

σw
2 = ω1 * σ1

2 + ω2 * σ2
2  

 = 0.3333 * 0.2223 + 0.6667 * 2881.5059  

 = 1921.2   

...................................................................................................., 

................................................................................................... 

10. Desired threshold corresponds to the maximum Maxσb
2 or minimum Minσw

2 

which is at grey level 60.   
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Appendix B. Histogram Analysis 

Algorithm Details with Sample Computations  

The following example shows how the algorithm works on the subset of an 

isolated red component(Table 31).  The task is to compute a new value for the pixel 

P(4,4).  Currently the pixel P(4,4) has a value 10.       

 

Table 31. Sample data selected for image preprocessing.  

1. On the vertical direction, both pixels P(1,4) and P(7,4) are three pixels away 

from the pixel P(4,4).   

1. Compute the arithmetic average between P(1,4) and P(7,4).   

average = (P(1,4) + P(7,4)) / 2 = (50 + 30) / 2 = 40 

2. Compute the variance between P(4,4) and the average.        

   variance = P(4,4) – average = 10 – 40 = -30 

3. The first candidate value is derived by the variance plus 128.  Pixel 

values can’t be negative, so the constant value 128 is added on top of 

the variance.    

   valueOne = 128 + variance = 128 – 30 = 98 

2. On the horizontal direction, both pixels P(4,1) and P(4,7) are three pixels away 

from the pixel P(4,4).   

1. Compute the arithmetic average between P(4,1) and P(4,7).   

    average = (P(4,1) + P(4,7)) / 2 = (20 + 30) / 2 = 25  

2. Compute the variance between P(4,4) and the average.        

    variance = P(4,4) – average = 10 – 25 = -15 



 - 124 -     . .

3. The second candidate value is derived by the variance plus 128.     

    valueTwo = 128 + variance = 128 – 15 = 113 

3. On the left diagonal direction, both pixels P(1,1) and P(7,7) are three pixels 

away from the pixel P(4,4).   

1. Compute the arithmetic average between P(1,1) and P(7,7).   

    average = (P(1,1) + P(7,7)) / 2 = (10 + 20) / 2 = 15  

2. Compute the variance between P(4,4) and the average.        

    variance = P(4,4) – average = 10 – 15 = -5 

3. The third candidate value is derived by the variance plus 128.     

    valueThree = 128 + variance = 128 – 5 = 123 

4. On the right diagonal direction, both pixels P(1,7) and P(7,1) are three pixels 

away from the pixel P(4,4).   

1. Compute the arithmetic average between P(1,7) and P(7,1).   

    average = (P(1,7) + P(7,1)) / 2 = (50 + 70) / 2 = 60  

2. Compute the variance between P(4,4) and the average.        

    variance = P(4,4) – average = 10 – 60 = -50 

3. The fourth candidate value is derived by the variance plus 128.     

    valueFour = 128 + variance = 128 – 50 = 78 

The new pixel value for P(4,4) is the maximum value among these four candidate 

values.  

P(4,4) = Max[98 113 123 78] = 123 
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Appendix C. Local Defect Search 

Algorithm Details with Sample Computations  

There are two types of block-wise features, one is mean block variance, and the 

other one is squared block variance.  The following example demonstrates how the 

algorithm works on a single pixel P(4,4) based on Table 31.  P(4,4) has eight 

neighborhood-pixels, such as P(3,3), P(3,4), P(3,5), P(4,5), P(5,5), P(5,4), P(5,3) 

and P(4,3).   

1. Compute the variance between P(4,4) and eight neighborhood-pixels separately.  

  V1 = (P(3,3) - P(4,4))2 = (20 - 10)2 = 100 

  V2 = (P(3,4) - P(4,4))2 = (60 - 10)2 = 2500  

V3 = (P(3,5) - P(4,4))2 = (50 - 10)2 = 1600  

V4 = (P(4,5) - P(4,4))2 = (10 - 10)2 = 0  

V5 = (P(5,5) - P(4,4))2 = (60 - 10)2 = 2500  

V6 = (P(5,4) - P(4,4))2 = (70 - 10)2 = 3600  

V7 = (P(5,3) - P(4,4))2 = (20 - 10)2 = 100  

V8 = (P(4,3) - P(4,4))2 = (30 - 10)2 = 400     

2. Compute the arithmetic mean of the eight variances in step one. 

M(4,4) = (V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8) / 8  

= (100 +2500 +1600 +0 +2500 +3600 +100 +400) /8 

     = 10800 / 8 = 1350 

3. For each pixel within the region, repeat the computations in step one and two.  

4. Add up all the values computed in step three.  

5. Divide the computed value in step four by the total number of pixels within the 

region.  The new value computed in this step is called the mean block variance.  

The mean block variance is given a value of 1400 for demonstration purpose.  

  MBV = 1400 



 - 126 -     . .

6. Compute the squared difference between M(4,4) and MBV. 

  V = (M(4,4) – MBV)2 = (1350 - 1400)2 = 2500      

7. For each pixel within the region, repeat the computations in step six.  

8. Add up all the values computed in step seven.  

9. Divide the computed value in step eight by the mean block variance.  The new 

value computed in this step is called the squared block variance.         
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Appendix D. Pixel Reclassification 

Algorithm Details with Sample Computations  

The following computations demonstrate how the pixel reclassification works.  

The colour channel values of P(4,2) are 50, 20 and 7 on three channels separately. 

Table 32 is an instance of the new class mean matrix for demonstration purpose.  

 
Table 32. New class mean matrix for demonstration purpose.   

ssd(1) = sqrt(((23-50).^2 + (13-20).^2 + (6-7).^2) /3) = 16.11 

ssd(2) = sqrt(((52-50).^2 + (31-20).^2 + (18-7).^2) /3)= 9.05 

ssd(3) = sqrt(((145-50).^2 + (73-20).^2 + (12-7).^2) /3)= 62.87 

ssd(4) = sqrt(((228.82-50).^2 + (113.95-20).^2 + (22.55-7).^2) /3) = 116.96 

P(4,2) is classified as a member of the class two.  The pixel value is replaced by 

the corresponding class mean 52 on the red channel and stored in the pixel 

reclassification matrix which is a two-dimensional array with the same size as the 

RGB image. 
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