Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Establishing Death in Stranded

Odontocetes (Toothed Whales)

Using Other Mammals:

A Pilot Study

A thesis presented in partial fulfillment of requirements for the degree of Master of Science in Zoology At Massey University

Katherine A. Paul 2003

Acknowledgements

I am extremely indebted to my Supervisors Associate Professor Robin Fordham, Dr Per Madie and Dr Geoff Barnes for all their support and encouragement throughout the study. I am especially grateful for their confidence in me during the more difficult times of the study.

I would also like to thank Gary McDonald of Marineland of New Zealand in Napier and all of his staff, for his willingness to help, and especially for his unlimited access to their precious dolphins; Auckland Zoological Park and their staff, for their assistance and access to their sea lions, Massey University Large Animal Teaching Unit (LATU), Alison Quinn and Robin Whitson for their access and assistance with their cattle; Palmerston North City Council, Alex Davies, Peter Davies, and Alan Nutman who allowed me access during the euthanasia of their dogs: Keith Lapwood for access to the sheep in his physiology laboratories; and Massey University Teaching Hospital for access to their dogs for initial practice of the techniques.

Many thanks to Travis Dombroski, Jane McDermott and Yvette Cottam for their help with the practical parts of the study; to Erica Reid for driving me to Napier and Duncan Hedderly for his assistance with the statistics used in the study.

I am especially grateful to all the support I received from the Ecology Department, Massey University and to all the postgraduates for their advice and encouragement

Lastly I would like to thank my friends and family for all their encouragement and love especially during difficult times. I

Table of Contents

	Page
Title Page	i ii
Acknowledgements	
Table of Contents	
List of Figures	vi
List of Tables	x
Abstract	1
General Introduction	2
Chapter One: Cetacean Strandings	4
1.1 Introduction	5
1.2 Definition	5
1.3 Strandings of single individuals	6
1.4 Multiple and Mass strandings	7
1.5 New Zealand Whale strandings	11
1.6 Similarities between Species that Frequently Strand	14
1.7 The pilot whale (<i>Globicephala spp.</i>)	18
1.8 The killer whale (Orcinus orca)	20
1.9 Summary	22
1.10 References	23
Chapter Two: Handling and Health Assessment of	31
Cetaceans at a Stranding	
2.1 Introduction	32
2.2 Conditions of a Typical Stranding	32
Example One	32
Example Two	34
Example Three	36
2.3 Summary of examples	39
2.4 Current Legislation concerning Cetacean Strandings	39
2.5 Health Assessment of Stranded Animals	41
2.5.1 Body Condition	42
2.5.2 Breathing	43
2.5.3 Discharges	43

	2.5.4 Temperature	44
	2.5.5 Skin	44
	2.5.6 Other signs	45
	2.5.7 Behaviour	45
	Current Procedures involving assistance at a Stranding 🚿	46
2.7	Guidelines for Euthanasia	49
• •	2.7.1 Method of Euthanasia	49
	Marine Mammal Stranding Networks	51
2.9	References	54
Cha	apter Three: Determining Death in Mammals	57
	and Features Affecting this Procedure	
	in Cetaceans	
3.1	Introduction	58
3.2	Measuring Death in Mammals	58
	The Effect of Anatomy and Physiology on	59
	Determination of Death in Cetaceans	
	3.2.1 Bradycardia	59
	3.2.2 Body Size	61
	3.2.3 Blubber	63
	3.2.4 The Skeleton	65
	3.2.5 Blowhole	68
	3.2.6 Breath holding Ability and the Lungs	70
	Summary of anatomical and physiological features	74
3.5	References	74
Cha	apter Four: Arterial Blood Supply in Mammals	81
4.1	Introduction	82
4.2	Cerebral blood circulation in mammals	82
4.3	Marine mammals (excluding Cetacea and Sirenia)	85
4.4	The Rete Mirabile	86
	4.4.1 Summary Tables	89
4.5	Cerebral blood supply in Carnivora	90
4.6	Cerebral blood supply in Pinnipedia	95
	Cerebral blood supply in Sirenia	98
	Cerebral blood supply in Artiodactyla	101
4.9	Cetacean Cardiovascular System	106
	4.9.1 cervico-thoracic vasculature	110

	4.9.2 The internal carotid	115
4.10) References	118
Cha	apter Five: Vision in Cetacea	126
5.1	Introduction	127
5.2	The Cetacean eye	127
5.3	Visual Acuity	133
5.4	Colour Perception in Cetaceans	137
5.5	The Fundus of the Eye	139
5.6	The Importance of Vision in Cetacean Lives	143
	5.6.1 Detection of Predators	145
	5.6.2 Finding and Capturing Prey	146
	5.6.3 Social Communication and Interaction	149
5.7	Summary	154
5.8	References	155
Ch	apter Six: The Retinal Pulse as a method for Determining Death	165
6.1	Introduction	166
6.2	Study Animals and Methods	166
6.3	Results	173
	6.3.1 Domestic Cattle	173
	6.3.2 Domestic Dogs	178
	6.3.3 Sheep	183
	6.3.4 Seals and sea lions	185
	6.3.5 Dolphins	185
6.4	Discussion	186
6.5	References	189
Ger	neral Discussion	191

List of Figures

Figure 1.1	Stranded pilot whale (Globicephala spp.)	4
	from the Chatham Islands	
Figure 1.2	Pilot whale stranding in New Zealand	8
	using people and a low-flying helicopter	
	to herd animals out to sea	
Figure 1.3	Sperm whale stranding in the Wellington	9
	Region of New Zealand	
Figure 1.4	Sperm whale stranding in the Chatham	10
U	Islands New Zealand	
Figure 1.5	Pilot whale stranding in the Wellington	12
0	Region of New Zealand	
Figure 1.6	Map of New Zealand showing the location	13
0	of the most frequent stranding sites	
Figure 1.7	Shark wound healing on a five year old	15
	male bottlenose dolphin, Shark Bay	
	Australia	
Figure 1.8	Comparison of the short-finned pilot	19
	whale (<i>Globicephala macrorhynchus</i>),	
	and the long finned pilot whale	
	(Globicephala melas)	
Figure 1.9	Geographical distribution of pilot whales	19
inguie ins	(Globicephala spp.)	17
Figure 1 1(Geographical distribution of killer whales	21
inguie i.i.	(Orcinus orca) based on documented	<u> </u>
	records	
Figure 1.1	A male killer whale of Patagonia	22
riguie 1.1	intentionally beaching in order to catch sea	44
	lion pups on the shore	
Figure 2.1	An air-lifted dolphin	31
-	False killer whales in the Dry Tortugas, in a	34
rigure 2.2	tight group formation	54
Figure 2.3		36
Figure 2.5	The Tryphena pilot whales with locals	50
	attempting to right those whales that are	
	disorientated.	

Figure 2.4	Shortly after the Tryphena whales were refloated, they restranded at this site on the	38
	falling tide.	
Figure 2.5	Diagram of examples of different body condition	42
Figure 2.6	Examples of emaciated animals not suitable for refloating	42
Figure 2.7	A female sperm whale that has drifted in the last stages of a stranding onto a submerged reef.	44
Figure 2.8	Examples of how sheets can be used to keep the cetacean cool also note the scooped out mud for easy bucketing of water	47
Figure 2.9	Map of the United States showing the four geographical regions that compose the stranding network	52
Figure 3.1	Comparison of the blubber between (A)a pinniped and (B) a cetacean	63
Figure 3.2	Comparison between different marine mammals, and a 'typical' terrestrial mammal of their different insulation structures	64
Figure 3.3	Diagram showing the skeletons of (a) a mysticete and (b) an odontocete	66
Figure 3.4	Skeletal systems of some representative marine mammals along with the 'typical' terrestrial mammal	67
Figure 3.5	Blowholes of (A) a mysticete and (B) an odontocete	68
Figure 3.6	Differences in the nasal passages of (a) mysticete, (b) sperm whale and (c) dolphin	69
Figure 3.7	Graph showing lung versus oxygen stores in shallow and deep diving mammals	71
Figure 3.8	Diagram showing the morphology of the airways and the alveoli of different mammals	73
Figure 4.1	Diagram of the blood supply to the brain in a generalized placental mammal	83
Figure 4.2	Diagram of the systemic arteries in the dog (<i>Canis familiaris</i>)	91
Figure 4.3	Diagram of the systemic arteries in the dog (<i>Canis familiaris</i>) entering the brain	93

Figure 4.4	Diagram showing the blood vessels supplying	94
	the eye in the dog (Canis familiaris)	
Figure 4.5	Diagram showing the blood supply to the brain in Pinnipedia	97
Figure 4.6	Diagram showing the blood supply to the brain	100
Figure 4.7	in Sirenia Diagram showing the blood supply to the brain in demostic cettle (<i>Reg termus</i>)	105
Figure 4.8	in domestic cattle (<i>Bos taurus</i>) Diagram showing the blood supply to the brain in cetacea	109
Figure 5.1	Drawing of a bottlenose dolphin (<i>Tursiops truncatus</i>), binocularly looking at an object	126
Figure 5.2	Diagram of a cross section of the eye of a harbour porpoise (<i>Phocoena phocoena</i>)	127
Figure 5.3	Anterior part of the eye with surrounding tissue	129
	Diagram showing the comparison of the eye and lens shape of a human, pinniped, and cetacean;	131
Figure 5.5	optics in air and water A rod and a cone as found in the retina of	137
rigure 5.5	Balaneoptera physalus	157
Figure 5.6	Diagram of the fundus of a bottlenose dolphin	141
F' 67	(Tursiops truncatus)	140
Figure 5.7	Bottlenose dolphins (<i>Tursiops truncatus</i>) chasing	148
Figure 5.8	fish onto mud banks in South Carolina Rotating pairs of Hawaiian spinner dolphins (Stenella longirostris)	150
Figure 5.9	Shark bay bottlenose dolphin (<i>Tursiops truncatus</i>) calf spy-hops during play	151
Figure 5.10	0 Examples of cetacean pigmentation patterns (a) beluga <i>Delphinapterus leucas</i> (b) killer whale <i>Orcinus orca</i> (c) spectacled porpoise <i>Phocoena dioptrica</i>	153
Figure 6.1	A common dolphin (Kelly) being lifted from	165
U	its pool	
Figure 6.2	Looking into the eyes of an adult male New Zealand fur seal (Angel) using an	168
	ophthalmoscope	
Figure 6.3	An adult male Californian sea lion (Skuttles) at Auckland Zoo	169

viii

Figure 6.4 Looking into the eyes of a common dolphin	171
(Kelly) at Marineland using an ophthalmoscope	
Figure 6.5 Tilting of the dolphin during the procedure	172
to observe a retinal pulse	
Figure 6.6 Relationship of the difference between retinal	175
pulse rate and heart rate and the mean of these	
two measures	
Figure 6.7 Relationship between retinal pulse rate and heart	176
rate in cattle using a regression line	
Figure 6.8 The predicted heart rate of cattle using the retinal	177
pulse rate	
Figure 6.9 Data set for the time of death in dogs (Canis	180
familiaris) showing the relationship between the	
two measurements	
Figure 6.10 Relationship between retinal pulse and heart beat	181
in the times of death in dogs (Canis familiaris)	
Figure 6.11 Scatter graph of the entire data set	182
Figure 6.12 Scatter graph for the data set excluding	182
the three outliers	

List of Tables

4.1	List of Abbreviations for Figure 4.1	83
4.2	Descriptions of the different types of rete mirabile	89
4.3	Descriptions of the different vessels from in	89
1 1	the rete mirabile	07
	List of Abbreviations for Figure 4.5	97
4.5	List of Abbreviations for Figure 4.6	101
4.6	List of Abbreviations for Figure 4.7	106
4.7	List of Abbreviations for Figure 4.8	110
6.1	Mean of the Retinal Pulse Rate (beats/min)	174
	and the Heart Rate (beats/min) in live cattle	
	(Bos taurus), and the difference between these	
	scores	
6.2	Table showing the time of cessation of the heart	178
	beat and the time of cessation of the retinal pulse	
	in dogs (Canis familiaris)	
6.3	Observational data the time of cessation of the retinal	183
	pulse in sheep	

Abstract

The aim of this study was to investigate and evaluate a new method for determining death in stranded odontocetes (toothed whales). The new method was using the pulsations seen in the retinal blood vessels in the place of the heart rate. The retinal blood vessels can visualized, using an ophthalmoscope, in the fundus of the eye. Initially the procedure was to be testing using animals at a mass stranding, but there were no suitable strandings that took place during the time of the study.

Therefore other mammal species were used to test the procedure. These mammals were cattle, sheep, and dogs, with additional observational testing carried out on seals, sea lions and dolphins. The mammals were chosen because of their availability and supply.

The results showed that there was a strong relationship between the heart rate and the pulsations measured in the retinal blood vessels. This was expected as the cardiovascular system is connected and pulsations of blood vessels must have originated from the heart. The results using dogs, also indicated that there is a relationship between the cessation of the pulsations in the retinal blood vessels and the cessation of the heart beat. Dogs were used as a benchmark by which all other mammals could be compared.

Therefore this study indicates that it is possible to identify the cessation of the heart using the cessation of the pulsations in the retinal blood vessels

General Introduction

Cetacean (whales, dolphins and porpoises) strandings have been recorded since Aristotle 2000 years ago (Geraci 1978) and have provided intrigue and interest for both scientists and the general public since that time. Strandings can be divided into two categories, single strandings and multiple or mass strandings (Geraci 1978, Robson 1984, Dawson 1985). Single strandings occur in many species throughout the world, and have provided valuable scientific information (Odell 1987). But it is mass or multiple strandings, which can involve hundreds of individuals, that rouse the highest level of interest. This type of stranding happens only in certain parts of the world and regularly involves only certain species (Odell 1987), all of which are social odontocetes (toothed whales) (Geraci 1978).

At a mass stranding where seemingly healthy animals came ashore while still alive, 80% of those animals that strand will not survive (Mazzuca *et al* 1999). Therefore it is very important to be able to make accurate judgements about an animal's state of health in order to improve the overall welfare of the animals at a stranding. Unfortunately the 'usual' methods for determining death in mammals are difficult to apply to cetaceans, because of a number of anatomical and physiological features (Pabst *et al* 1999) that they have. This accurate assessment of their state of health is not a straight forward exercise.

The aim of this study is to investigate and evaluate a new method of determining death using pulsations in the retinal blood vessels. The intention was to examine recently stranded whales, however over two years far fewer than the average number of strandings occurred, and the

2

one or two that did were not accessible in time. Accordingly the measurement was tested using dogs, sheep and cattle with additional observational testing carried out on seals, sea lions and dolphins. In order to fully understand how this technique can be assessed it is important to understand the complexity of the cetacean cardiovascular and visual systems, and these are compared with those species used to test the procedure.

References

Dawson S. 1985. *The New Zealand Whale and Dolphin Digest*. Brick Row Publishing Co. Ltd. Auckland

Geraci J. 1978. *The enigma of marine mammal strandings*. <u>Oceanus</u> 21: 38-47

Mazzuca L., Atkinson S., Keating B. & Nitta E. Cetacean mass stranding in the Hawaiian Archipelago, 1957-1998. <u>Aquatic Mamma</u>ls 25: 105 – 114

Odell D. 1987. The mystery of marine mammal strandings. Cetus 2-6

Pabst D., Rommel S., & McLellan 1999. *The functional morphology of marine mammals*. In Reynolds J. & Rommel S. (eds) Biology of Marine Mammals. Smithsonian Institution Press. Washington pp 15-72

Robson F. 1984. *Strandings, ways to save whales*. Angus & Robertson Publishers Sydney