Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

# Interactions of AtRGL1, a Negative Regulator of Gibberellic Acid Signalling

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Biochemistry

Massey University, Palmerston North

New Zealand.

David John Sheerin 2005

#### Abstract

*Arabidopsis thaliana* AtRGL1 (repressor of ga1-3 like-1) is a negative regulator of the signal transduction pathway of the plant hormone gibberellin. AtRGL1 belongs to the DELLA subfamily within the GRAS family of plant regulatory proteins. There are four other DELLA proteins, including AtRGA (repressor of ga1-3) and AtRGL2, encoded by the *A. thaliana* genome. Previous studies provided evidence that the DELLA proteins are nuclear localised and are functionally divided into N- and C-terminal domains. The N-terminal domain perceives the gibberellin signal, while the C-terminal domain functions as a negative regulator of transcription and also as a possible dimerisation domain. Previous studies have also shown that *AtRGL1*, and *AtRGL2* function together in the regulation of the development of the inflorescence and that *AtRGL1* is primarily expressed in this tissue.

To investigate how DELLA proteins function in gibberellin signalling, I sought plant proteins that interact with AtRGL1. Two proteins, p24 (24 kDa) and p64 (64 kDa), were isolated from wild-type plant nuclear extracts by affinity to the N-terminal 121 amino acid residues of AtRGL1. The identity of these two proteins remains to be established. To investigate the interactions of the C-terminal domain of AtRGL1 an anti-AtRGL1 polyclonal antiserum was developed for co-immunoprecipitation experiments. However, AtRGL1 was not detectable in plant nuclear extracts from the inflorescence of wild-type plants, precluding this approach.

The possibility of DELLA protein dimerisation was also investigated using AtRGA, AtRGL1, and AtRGL2 in yeast 2-hybrid experiments. Yeast 2-hybrid protein interaction results suggest that AtRGA, AtRGL1, and AtRGL2 do not form homo- or hetero-dimers. Complexities encountered with this approach could make these results invalid, so these interactions require further investigation.

#### Acknowledgments

I would like to thank my supervisors Dr Jasna Rakonjac and Dr Toshi Foster for their guidance and support throughout this thesis. I would also like to thank all the people in the Helipad lab who have helped me through my research. I would also like to like to thank the people at the HortResearch Palmerston North plant immunology lab, who are lead by Dr William Jones, for supplying materials and advice. Thank you also to my friends and family for their support throughout the past two years.

This research was supported by a fellowship and funding from HortResearch.



## **Table of Contents**

| Abstract              | ii   |
|-----------------------|------|
| Acknowledgments       | iii  |
| Table of contents     | iv   |
| List of Figures       | vii  |
| List of Tables        | viii |
| List of Abbreviations | ix   |
| Note on nomenclature  | xii  |

#### Chapter 1. Introduction

| 1.1. Introduction to plant hormones                                | 1  |
|--------------------------------------------------------------------|----|
| 1.2. Gibberellins act through a signal transduction pathway        | 2  |
| 1.2.1. Production of gibberellic acids                             | 5  |
| 1.2.2. Cell perception of gibberellic acids                        | 5  |
| 1.2.3. Cytoplasmic secondary messengers                            | 7  |
| 1.2.4. Nuclear molecular switch                                    | 9  |
| 1.2.5. Gene regulation and cell responses                          | 12 |
| 1.2.6. Regulation of gibberellin responses by other plant hormones | 14 |
| 1.3. Organisation of DELLA proteins                                | 16 |
| 1.4. Degradation of DELLA proteins                                 | 17 |
| 1.5. Developmental functions of DELLA proteins                     | 22 |
| 1.6. Speculative gibberellic acid signalling pathway               | 25 |
| 1.7. How do DELLA proteins function?                               | 27 |
| 1.7.1. Hypothesis                                                  | 28 |
| 1.7.2. Aim 1                                                       | 28 |
| 1.7.3. Aim 2                                                       | 28 |
|                                                                    |    |

## Chapter 2. Materials and methods

| 2.1. Materials and reagents    | 29 |
|--------------------------------|----|
| 2.2. General methods           | 29 |
| 2.2.1. Molecular biology       | 29 |
| 2.2.2. Protein electrophoresis | 29 |

| 2.2.3 Western blotting                                | 30 |
|-------------------------------------------------------|----|
| 2.3. Bacterial strains and culture conditions         | 30 |
| 2.4. Plant material and growth conditions             | 30 |
| 2.5. Yeast strains and culture conditions             | 31 |
| 2.6. Bacterial recombinant protein expression         | 31 |
| 2.6.1. Purification of MBP-LacZ                       | 32 |
| 2.6.2. Purification of MBP-AtRGL1 <sup>(1-121)</sup>  | 32 |
| 2.6.3 Purification of AtRGL1 <sup>(1-121)</sup> -TrxA | 33 |
| 2.7. Extraction of plant nuclear proteins             | 34 |
| 2.8. Affinity purification                            | 36 |
| 2.9. Mass spectroscopy                                | 36 |
| 2.10. Anti-AtRGL1 polyclonal antibodies               | 36 |
| 2.11. Cloning of full length DELLA genes              | 37 |
| 2.12. Yeast 2-hybrid experiments                      | 40 |
| 2.12.1. HIS3 reporter gene assay                      | 41 |
| 2.12.2. LACZ reporter gene assay                      | 41 |
|                                                       |    |

## Chapter 3. Results

| 3.1. Affinity purification of AtRGL1-interacting proteins           | 47 |
|---------------------------------------------------------------------|----|
| 3.1.1. Expression and purification of the AtRGL1 'bait' protein     | 49 |
| 3.1.2. Preparation of plant nuclear extract                         | 51 |
| 3.1.3. Affinity purification of AtRGL1-interacting proteins         | 53 |
| 3.2. Antibody characterisation                                      | 60 |
| 3.2.1. Characterisation of an anti-DELLA peptide                    | 60 |
| monoclonal antibody, 5E1                                            |    |
| 3.2.2. Production of an anti-AtRGL1 polyclonal antibody             | 63 |
| 3.2.3. Characterisation of the capacity of anti-AtRGL1 $^{(1-121)}$ | 65 |
| polyclonal antibodies to immunoprecipitate the antigen              |    |
| from solution                                                       |    |
| 3.3. Analysis of DELLA-DELLA protein interactions                   | 67 |
| 3.3.1. Expression of DELLA proteins in Saccharomyces                | 69 |
| cerevisiae                                                          |    |
| 3.3.2. Yeast 2-hybrid analysis of DELLA-DELLA protein               | 72 |
| interactions                                                        |    |

| Chapter 4. | Discussion |
|------------|------------|
|------------|------------|

| 4.1. Isolation of AtRGL1-interacting proteins             | 77 |
|-----------------------------------------------------------|----|
| 4.2. Investigation of DELLA-DELLA protein interactions    | 80 |
| 4.3. Future identification of AtRGL1-interacting proteins | 83 |
| 4.4. Plans for immunoprecipitation of AtRGL1              | 84 |
| 4.5. Further investigation of yeast 2-hybrid experiments  | 87 |
| er 5. Conclusions                                         | 88 |

Chapter 5. Conclusions

References

90

# List of Figures

| Figure 1-1 Phenotypes of A. thaliana GA signalling mutants.                             | 3  |
|-----------------------------------------------------------------------------------------|----|
| Figure 1-2 Gibberellic acid signal pathway model.                                       | 4  |
| Figure 1-3 DELLA protein domain organisation.                                           | 15 |
| Figure 1-4 Structure and function of an SCF E3 ubiquitin ligase complex.                | 19 |
| Figure 1-5 Detailed speculative gibberellic acid signal pathway model.                  | 26 |
| Figure 3-1 Schematic of co-affinity and affinity purification procedures.               | 48 |
| Figure 3-2 MBP-AtRGL1 <sup>(1-121)</sup> fusion protein purified from <i>E. coli</i> .  | 50 |
| Figure 3-3 Soluble plant nuclear extract.                                               | 52 |
| Figure 3-4 Affinity purification of MBP-AtRGL1 <sup>(1-121)</sup> -interacting proteins | 55 |
| from whole plant nuclear extract.                                                       |    |
| Figure 3-5 Affinity purification of MBP-AtRGL1 <sup>(1-121)</sup> -interacting proteins | 57 |
| from inflorescence nuclear extract.                                                     |    |
| Figure 3-6 Schematic of immunoprecipitation.                                            | 61 |
| Figure 3-7 Western blot analysis of plant nuclear extract using anti-DELLA              | 62 |
| antibodies.                                                                             |    |
| Figure 3-8 Fractionation and determination of the specificity of                        | 64 |
| anti-MBP-AtRGL1 <sup>(1-121)</sup> antiserum.                                           |    |
| Figure 3-9 Immunoprecipitation of AtRGL1 <sup>(1-121)</sup> -TrxA using purified anti-  | 66 |
| AtRGL1 <sup>(1-121)</sup> polyclonal antibodies.                                        |    |
| Figure 3-10 Schematic of yeast 2-hybrid analysis of DELLA-DELLA                         | 68 |
| protein interactions.                                                                   |    |
| Figure 3-11 Western blot detection of AD-DELLA fusions expressed in yeast.              | 70 |
| Figure 3-12 Western blot detection of AD- and BD-DELLA protein fusions                  | 71 |
| expressed in yeast.                                                                     |    |
| Figure 3-13 LACZ reporter gene analysis of DELLA-DELLA protein                          | 75 |
| yeast 2-hybrid interactions.                                                            |    |
| Figure 4-1 Schematic of possible DELLA-DELLA dimer interaction with                     | 82 |
| reporter gene promoters.                                                                |    |

# List of Tables

| Table 1. Plasmids                                                             | 42 |
|-------------------------------------------------------------------------------|----|
| Table 2. Bacterial strains                                                    | 43 |
| Table 3. Primers                                                              | 44 |
| Table 4. Yeast strains                                                        | 45 |
| Table 5. Antibodies                                                           | 46 |
| Table 6. <i>HIS3</i> reporter gene assay of DELLA-DELLA protein interactions. | 74 |

## Abbreviations

| 3-AT               | 3-amino-1,2,4-trazole                                                   |
|--------------------|-------------------------------------------------------------------------|
| ABA                | Abscisic acid                                                           |
| AD                 | GAL4 activation domain                                                  |
| AMP                | Ampicillin                                                              |
| AmSO <sub>4</sub>  | Ammonium sulfate                                                        |
| AP                 | Alkaline phosphatase                                                    |
| AtASK1             | A. thaliana Arabidopsis Skp like-1                                      |
| AtGAI              | A. thaliana Gibberellic acid insensitive                                |
| AtGAMYB33          | A. thaliana Gibberellic acid induced MYB-33                             |
| AtGAMYB65          | A. thaliana Gibberellic acid induced MYB-65                             |
| AtGCR1             | A. thaliana G-protein coupled receptor-1                                |
| AtGPA              | A. thaliana G-protein α subunit                                         |
| AtHDA19            | A. thaliana Histone deacetylase-19                                      |
| AtLFY              | A. thaliana Leafy                                                       |
| AtLRP              | A. thaliana Lateral root primordium                                     |
| AtPKL              | A. thaliana Pickle                                                      |
| Atrga∆17           | A. thaliana Repressor of gal-3, deletion of 17 amino acid DELLA motif   |
| AtRGL1             | A. thaliana Repressor of gal-3-1                                        |
| Atrgl1 $\Delta$ 17 | A. thaliana Repressor of gal-3-1, deletion of 17 amino acid DELLA motif |
| AtRGL2             | A. thaliana Repressor of ga1-3-2                                        |
| AtRGL3             | A. thaliana Repressor of ga1-3-3                                        |
| AtSHI              | A. thaliana Short internodes                                            |
| AtSLY1             | A. thaliana Sleepy-1                                                    |
| AtSLY2             | A. thaliana Sleepy-2                                                    |
| AtSNY              | A. thaliana Sneezy (AtSLY2)                                             |
| AtSPY              | A. thaliana Spindly                                                     |
| BD                 | GAL4 DNA binding domain                                                 |
| BnSCL1             | B. napus Scarecrow like-1                                               |
| BSA                | Bovine serum albumin                                                    |
| cDNA               | complementary deoxyribonucleic acid                                     |
| cGMP               | Cyclic guanosine monophosphate                                          |
| c-Myc              | Mammalian c-Myc oncogene epitope                                        |

| Co-IP     | Co-immunoprecipitation                                     |
|-----------|------------------------------------------------------------|
| Col-0     | Columbia-0                                                 |
| DAPI      | 4',6-Diamidino-2-phenylindole                              |
| DEAE      | Diethylaminoethyl                                          |
| DMSO      | Dimethyl sulphoxide                                        |
| DNA       | Deoxyribonucleic acid                                      |
| DTT       | 1,4-Dithiothreitol                                         |
| EDTA      | Ethylenediaminetetraacetic acid                            |
| GA        | Gibberellic acid                                           |
| GAL4      | GAL4 transcription factor                                  |
| GARE      | Gibberellic acid responsive element                        |
| GFP       | Green Fluorescent Protein                                  |
| HA        | Influenza hemagglutin epitope                              |
| HDAC      | Histone deacetylase                                        |
| HEPES     | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid         |
| HGP       | Heterotrimeric G-protein                                   |
| HRP       | Horseradish peroxidase                                     |
| HvCDPK1   | H. vulgare Calcium dependent protein kinase-1              |
| HvGAMYB   | H. vulgare Gibberellic acid induced MYB                    |
| HvHSIMYB  | H. vulgare Spindly interacting MYB                         |
| HvHSINAC  | H. vulgare Spindly interacting NAC                         |
| HvSAD     | H. vulgare Sad                                             |
| HvSLN1    | H. vulgare Slender-1                                       |
| HvSPY     | H. vulgare Spindly                                         |
| IgG       | Immunoglobulin G                                           |
| Imidazole | 1,3-Diaza-2,4-cyclopentadiene                              |
| IPTG      | Isopropylthio-β-D-galactoside                              |
| KAN       | Kanamycin                                                  |
| Ler-0     | Landsberg erecta-0                                         |
| MALDI TOF | Matrix assisted laser desorption ionisation time of flight |
| MBP       | Maltose-binding protein                                    |
| miR159    | Micro ribonucleic acid 159                                 |
| miRNA     | Micro ribonucleic acid                                     |
| mRNA      | Messenger ribonucleic acid                                 |

| MWCO      | Molecular weight cut-off                       |
|-----------|------------------------------------------------|
| NHS       | N-hydroxysuccinimide                           |
| NLS       | Nuclear localisation signal                    |
| O-GlcNAc  | O-linked N-acetyl glucosamine                  |
| ONPG      | O-Nitrophenol-galactoside                      |
| OsD1      | O. sativa Dwarf-1                              |
| OsDOF3    | O. sativa DNA binding with one finger-3        |
| OsGID2    | O. sativa Gibberellic acid insensitive dwarf-2 |
| OsSLR1    | O. sativa Slender rice-1                       |
| p24       | 24 kDa AtRGL1-interacting protein              |
| p53       | Murine p53                                     |
| p64       | 64 kDa AtRGL1-interacting protein              |
| PAGE      | Poly-acrylamide gel electrophoresis            |
| PBS       | Phosphate buffered saline                      |
| PCR       | Polymerase chain reaction                      |
| PEG       | Poly-ethylene glycol                           |
| PMSF      | Phenylmethylsulphonylfluoride                  |
| SCF       | Skp-Cullin-F-box                               |
| SD        | Synthetic dropout                              |
| SDS       | Sodium dodecyl sulfate                         |
| StPHOR1   | S. tuberosum Photoperiod-responsive-1          |
| T antigen | SV40 large T antigen                           |
| TBS       | Tris-buffered saline                           |
| TBST      | Tris-buffered saline Tween-20                  |
| Tris      | Tris (hydroxymethyl) aminomethane              |
| TrxA      | Thyrodoxin domain A                            |
| UV        | Ultra violet                                   |

#### Note on Nomenclature

Gene names and symbols are written in *italics*, and proteins are in standard text. Wildtype genes and products are in uppercase, mutants are in lower case. For plant species, the two letters preceding a gene/protein refer to the species. At, *Arabidopsis thaliana*. St, *Solanum tuberosum*. Hv, *Hordeum vulgare*. Os, *Orysa sativa*. Bn, *Brassica napus*.