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Abstract 

The energy efficiency and performance of an aluminium smelter depends critically on the 

quality and consistency of properties of the carbon electrodes that are consumed during 

the nom1al operation of the electrolytic cells or "pots". Unfortunately, although a small 

number of experts are able to assess anode quality by examining lOx images of samples, 

no objective method exists for making quality determinations. This thesis is about a 

project that has the goal of deve loping such an objective method. 

This thesi s describes methods that have been developed for the characterization of the 

microstructure of carbon anodes. As a result of the process by which they are 

manufactured, carbon anodes contain pores or voids caused by out-gasing. In this 

continuing project we have concentrated on developing means for characterising the size 

and spatia l distributions of these voids. Some of the methods used to characterise the 

spatial distribution include order neighbour analysis (a mc:thod used in geographical 

studies), and statistical tex ture analysis. These methods and the analysis described in this 

thesis are of general application. 
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1. INTRODUCTION 

The quality of the anodes used in the smelting process is of critical importance to 

aluminium manufacture. The Bluff smelter, operated by New Zealand Aluminium 

Smelters, typical ly consumes up to 400 one tonne carbon anodes every day, and as the 

smelter produces their own carbon anodes on-site it has direct contro l over the anode 

quality. 

The anodes are made up of a mixture of aggregate (85%) and pitch(] 5%). The aggregate 

is composed of the butts from old anodes, coarse coke, and crushed fines and is bound 

together with the pitch. The quality of the anodes is critically dependent on the amount of 

pitch added when the anodes are being manufactured. 

The aggregate and pitch are mixed together at 160 °C and formed with a vibration press 

into one tonne anodes a t 150 °C. These "green" anodes are then baked for approximately 

20 days at 1100-1200 °C in a large kiln . The baking process drives off the volatile 

fraction of the pitch and carbonises the remainder into coke . This release of volatiles 

forms fine voids in the binder (pitch)/fines matrix. 

Too much pitch will inevitably increase the number of voids formed, hence weakening 

the overall anode structure . This weakened structure can cause an anode to crack and 

pieces fall into the pot during smelting, which can then put the pot out of action. Also, the 

increased number of voids present in the anode increases the ai r permeability and air 

reactivity . This increases the rate at which the anodes burn away. This overpitching also 

causes "strings" of voids to form around the larger particle s (butts, coke) in the anode, 

weakening the structure. 

Too little pitch in the mixture will cause the anodes to lack binding, and be weak and 

brittle, leading to similar problems to overpitching. Underpitching also causes many 

larger voids to form throughout the anode. 

An optimum pitching level exists where anodes have a maximum density and a fine 

porous structure. 

Presently, physical properties such as the air permeability, compressive strength, 

resistivity, carbon dioxide reactivity of the anodes are measured for quality control. 

Comalco Aluminium Limited have developed a subjective optical macroscopy technique 

for assessing the pitching level and degree of compaction in baked anodes [l]. This 

method relies on the subjective visual appraisal by an expert of 1 Ox macrographs of anode 

samples. 
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The following points arose from further consultation [2] with experts in visual quality 

assessment. 

Most of the information needed to di stin g uish between ancxles of varying pitching 

level is thought to lie within the void structure. 

• Not only is the void size histogram of interest, but the relative spacing between 

voids is also important. 

• It is important to analyse a large number of images of each sample to get an idea 

of the overall structure of the anode. A single image may be misleadi ng . It is 

assumed that a single anode core sample is sufficiently representative of the 

complete anode. 

There may be slight differences in structure and texture resultin g from different 

forming processes, and different aggregate batches. 

From the above points it can be seen that it is desirable to find methods of charac teri sing 

the size and spatial distributions of th e voids within the anode samp les. This project 

outlines some quantitative image process in g methods developed to determine if 

differences in these distributions exist between anodes of differe nt pitching leve ls and 

forming conditions (ie forming temperature and time). This was undertaken as a step to 

overcoming the subjectivity of methcxls relying on human vision. 

It is believed that most of the void information lies in voids of the size range between 

0.05 and 0.7 mm in diameter as this is the void size range the visual experts use to make 

discriminations. If two pixels represent 0.05 mm then a spatial resolution of 40 

pixels/mm is needed. For the purposes of the project two spatial resolutions were 

concentrated on: 10 pixels/mm and 40 pixels/mm. The 10 pixels/mm was also chosen to 

determine if there was any gross texture pattern present. 
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2 BACKGROUND 

2 .1 Background Literature Search 

It was decided to undertake a literature search to find if there were any previous similar 

studies to thi s work and to investigate ways of charac terising the size and spatial 

distributions of the voids . The literature search found no previou s work on carbon ancxie 

quality assessment using image analysis. The search covered statistical texture analysis 

[3,4,5 ,6] as a means of charac terising the anode quality as thi s has been successful ly 

applied to industrial problems [7,8J in the past. The search :ilso concentrated on methods 

of characterising size and spatial distributions. A method found for char:icterising spa tial 

di stribution s was order neighbour analysis r91, which is widely used in geographical 

studies. 

These methods are described below. 

2. 2 Statistical Texture Analysis 

Statistical texture analysis is a powerful tech nique that is used to characterise tex ture 

features in an image in a quantitative, cons is tent and objective w:iy. The tex ture of an 

image is concerned with the spatial distribution of the gray levels in the image. This 

distribution can be deterministic or stochastic in the extreme as shown in figure 2.1. 

Deterministic textures are best analysed using strucrur:il methods such as placement rules 

and tree diagr:ims while stochastic textures such as carbon anodes are best analysed 

statistically. These stochastic textures can be analysed statistically using four different 

intermediate matrix method s [3,4,5,61 : 

1. Spatial gray level dependency method, SGLDM [3J 

2. Gray level difference method, GLDM [4] 

3. Gray level run length method, GLRLM [SJ 

4. Neighbouring gray level dependency methcxi, NGLDM [6] 

The intermediate matrices calculated from each of the above methods describe in coded 

form the spatial relationships between the gray levels in the image. These intermediate 

matrices allow the calculation of texture features to be made which in turn attempt to 

describe the texture in a meaningful way. For the purposes of this project we have 

concentrated on the most popular of the intem1ediate texture matrix based methods, the 

spatial gray level dependency method (SGLDM), because it has finer discriminating 
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power than the other statistical methods. The other three methods have been included here 

for completeness. 

• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 

Deterministic 

Stoc hastic 

Figure 2.1 - T ex ture Types 
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2.2.1 Spatial Grav Level Depe ndencv Method 

The spatial gray leve l dependency method [31 is the mos t widely used method and is 

based on the estimation of the second ord e r joint conditional probability density function s 

f(i,j ,d,a) where di s the intersample spac in g and a is th e direction (ie 0°, 45°, 90°, 135 °). 

This is illu strated in fi gu re 2.2. 

~ -,., ___ _ 

135 deg,-ee::: ·,.,_ 

Left Han1j Di;:igonal 

,;' 
/ 45 degrees 

/ Riqht Hand Diaqonal 
/ - -

/ 

·· ...... , ... __ 

-

,~ 

Figure 2.2 - Directions 

f(ij ,d,a) is the probability of going from gray level i to gray leve l}, in distanced between 

the two, and in direction a (0°, 45°, 90°, and 135 °) . If there are Ng gray level s in the 

image then the intem1ediate matrix P(i.j.d.a) is NJ.; x Ng in size. 

0 

() 

0 

2 

0 

0 
') 

2 

2 

3 

I 

2 

4 

Figure 2.3 - Simple Image 

The above method calculates four P(i,j,d,a) intem1ediate matrices, one for each direction 

a. For example, the simple image in figure 2.3 which has 5 gray levels (0-4), will result 

in four 5 x 5 matrices, one for each direction a. The resulting intermediate matrix for the 

horizontal direction is shown in figure 2.4. 
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Figure 2.4 - P(iJ,1,0): 0 ° 

The underscored 4 in the P(i ,j,l ,0°) matrix above is the num ber of times a gray level O is 

next to the same level in the image in the horizontal direction. 

The underscored I in the P(i.j, 1,0°) matrix above is the num ber of times gray level O is 

next to gray level 2 in the ill1age in the horizontal direction . 

The four P(i,j,d,a) matrices are norll1alised by ;1 normali si ng function dependant on the 

size of the Region of Interest (ROI) in the chosen ill1age to give the four intermediate 

matrices: f(i,j,d,O 0 ),f( i,j,cl,45 °),f( ij,d, 90 °), ancl f( i ,j.d, 135 °). 

Haralick et al. [3] proposed various features that can be calcutHed from the thesef(ij,d,a) 

matrices. These features are energy, entropy, inertia, homogeneity and correlation. The 

equations for these features can be found in Appendix D. Analysis of these features may 

allow discrimination between anode images. 

Energy is a measure of the homogeneity of the image. In a homogeneous image 

the energy will be high and for a nonhomogeneous image the energy will be low. 

• Entropy is a measure of the complexity of an image. The more complex an image 

is the higher the entropy is. 

• Inertia is a measure of the amount of local variations present in the image. The 

more local variations (contrast) present the higher the inertia. 

• Homogeneity is a measure of the degree with which similar gray levels tend to be 

neighbours. 

• Correlation is a measure of gray level linear dependencies. 

2.2.2 Gray Level Difference Method 

The gray level difference method [41 works on the gray level differences between two 

adjacent pixels separated by a distanced. Letf(x,y) be the digital image andf(x,y) = 

/f(x,y)j(x+,1x, y+L1y)! where Lh and L1y are integers giving the displacement d. 
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Let P' be the probability density function off'. If there are Ng gray levels in the image 

then P' has the form of a Ng dimensional vector whose ith component is the probability 

thatf(x ,y) will have value i. It is simple to compute P'(i) fromf by counting the number 

of times each value of f(x ,y) occurs. 

The above method is calculated for each of the four basic directions a as shown in figure 

2.2. 

Weszka et al. [ 4) proposed various features that can be calculated from the four P'(i) 

matrices. These features are contrast, angular second moment, entropy, mean and inverse 

different moment. The equations for these feawres can be found in Appendix D. These 

features attempt to describe the texture numerica lly. 

The contrast is the second moment abou t P'(i). This is greatest when the visual 

contrast in the image is large. 

The angular second moment is smallest when P'{i) art all as equal as possible and 

large when some v:ilues are high and some low. 

The entropy is largest for equal P'(i) and sm:illest when they are very unequal. 

• The mean is smallest when P'(i) are concentrated near the origin and largest when 

they are far from the orig in . 

2.2.3 Grav Level Run Leng:rh Method 

The gray level run length method 151 is based on calculating the number of gray level runs 

of various lengths in the four basic directions a as shown in figure 2.2. A gray level run 

is a set of consecutive co-linear pixels of the same gray level. The length of the run is the 

number of pixels in the run . 

The intermediate matrices P(i,j) specify the number of times the image contains a run of 

lengthj, in the given direction, consisting of pixels of gray level i . Let Ng be the number 

of gray levels and Nr be the number of different possible run lengths. 

Using the image in figure 2.5, the P(iJ) matrix for 0° is shown in figure 2.6. 
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() 

? 

3 
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? 
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3 

3 

3 
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0 

Figure 2.5 - The Image 
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Figure 2.6 - P(i,.i) for oo 

The underscored 1 means the gray leve l I has one run of leng th 3 in the image. 

Galloway [5] proposed various fea rnres th at can be calculated from the four P(i ,j) 

matrices. These fea tures are long run emphasis, short run emphasis, gray level 

nonuniformity, run length no11unifor111ity and run percentage. The equations for these 

features can be found in Appendix D. These features attempt to describe the texture 

numerical! y. 

The long run emphasis gives greater weight to long runs of any gray leve l. 

• The short run emphasis gives greater weight to short run s of any gray level. 

When run s are equa ll y distributed throughout the gray level s the gray level 

nonuniformity is smallest. 

• When runs are equally distributed throughout the run lengths the run length 

nonuniformity is sma llest. 

• The run percentage is the lower for images wi th the greatest linear structure. 

2.2.4 Neighbouring Grav Level Derenclencv l\.kthocl 

The neighbouring gray leve l dependency method 1.6J is directionally independent. The 

intermediate matrix Q(k,s) is calculated by considering the rel ationship between a pixel 

and all its neighbouring pixels, at a distance less than or equal to d, at one time instead of 

in one direction at a time. 

4 4 6 C" 4 -:, _, _, 

4 4 C" -· ~. .:., (I 1 
--:, r, C" 0 (I 1 _, .:., -· 
2 0 '7 r, 3 2 1 .:., 

(I 0 '7 
1 7 

r, ..:, ,.., 
..:, 

(I 1 6 6 2: 2 

Figure 2.7 - The Image 
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For example consider the image in figure 2.7 which has 8 gray levels 0-7. 

An intermediate intern,ediate matrix P(i.j,d,a) is calculated. For the above example thi s is 

calculated on pixel 3,3 , which has a gray level of 5, in a neighbourhood of d=l around 

it, wi th the difference factor, a=zero. There is only one pixel in the neighbourhood of 

distance 1 ( d=J) with a gray level of 5 equal ( a=O) to that of pixel 3 ,3. Therefore 

P(3,3,J ,0)=(5, I ) where 5 is the gray level and 1 is the NGLDM number for the pixel 

3,3. 

The complete P(ij,1,0) for the image is shown in figure 2.8. 

(4,3) (5,2) (3,0) (0,2) 

(3, 1) (5, 1) (0,2) (0,2) 

(0,2) (7,2) (3,2) (3, 3) 

(0,3) (7,2) (7, 2) (3, 3) 

Figure 2.8 - F ( i ,.i, l ,0 ) 

Q(k,s) is the intermed iate 1mtrix for NGLDi\1 and is the total number of entries in P that 

have gray level k and NGLDM numbers . 

eg. Q(7,2)=3 because there are 3 entries of (7 .2) in the P matrix in figure 2.8. Therefore 

the Q matrix in figure 2.9 can be considered as frequency counts of the greyness variation 

of an image. It is similar to the histogram of the image. 

0 

l ~~'liY. 2: 

L~~-;.,~./ ':• _, 

:,. -·- <1 
C" -· 
6 
., 
( 

I] 

0 [I 

0 [I 

0 0 

1 

(I [I 

I] 

0 (I 

I] 0 

~ 

4 

0 

0 

0 

1 

I] 

':• _, 

0 

0 

2 

0 

0 

0 

Figure 2.9 - Q(k,s) 

As shown above Q(7,2) = 3. 

4 5 6 7 

(I (I (I 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

(I (I (I 0 

0 (I 0 0 

0 0 0 0 

(I 0 0 0 

Sun and Wee [6] proposed various features that can be calculated from the Q(k,s) matrix. 

These features are small number emphas is, large number emphasis, number 

nonuniformity, second moment and entropy. The equa1ions for these features can be 

found in Appendix D. These features attempt to describe the texture numerically. 
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• The small number emphasis is a measure of the fineness of the image. The finer 

the image is the larger the small number emphasis is. 

The large number emphasis is a measure of the coarseness of the image. The 

coarser the image is the larger the large number emphasis is. 

• The number nonuniformity is related to the coarseness of the image. 

• The second moment is a measure of the homogeneity of the image. The larger the 

second moment is the more homogeneous the image is. 

The entropy is related to the coarseness of the image. 

2 . 3 Order Neighbour Analysis 

Order neighbour analysis [9] is a method used in geographical studies to analyse point 

patterns in order to charac terise the spatial distribution. Order neighbour analys is 

recognises three types of point pattern : clustered, random and dispersed. These are 

shown in figure 2.10. 

_: ~\'·.=:··: ··. 
-.~ .:·:·: . : ./,-: .. -
,\:_: _.;\-':_· 

.. · . 
• _< __ -·/ ' -:·. 

Random Clustered Dispersed 

Figure 2.10 - Point Pattern Types 

The distance to the nearest neighbour is calculated for each of the points in a pattern and 

from this data an R statistic can be calculated for the nearest ne ighbour level. It is 

assumed that there is no boundary around the point pattern as this will restrict the 

directions in which distance measurements can be made. This R statistic gives a statistical 

indication of the randomness of the spatial distribution of the pattern and the standard 

deviation for each R value can also be calculated. The equations for the R statistics and 

its standard deviation for the nearest neighbour level and the boundless case are shown 

below in equations 1 to 3 inclusive. 

where 

R(l) = r(l) 
p(l) (1) 

r(l) is the average nearest neighbour distance for the point pattern 

p(l) is the mean point to point distance for a random pattern 
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( 
N )--0.5 

pO)=o.s A 

where N is the number of points in the pattern 

A is the area covered 

o-[ R(I)] = 0.5228N-0 5 

(2) 

(3) 

Adjustments can be made to the R statistic and its standard deviation to take in to account 

a boundary being placed around the points. 

An R value of 1.0 (within the statistical bounds) indicates that the image is random. If the 

calculated R statistic is below the lower stati stical bound then the image tends towards a 

clustered pattern and if the calculated R stati stic is above the upper statistical bound then 

the image tend s towards a dispersed or regular pattern. 

Aplin al so suggests that t\\'O point patterns can be stati stically distinguished from one 

another by applying a two-sample Kolgomorov-Smirnov (KS) l 1 OJ goodness of fit test to 

the cumulative di stribution s of the nearest neighbour di stances. The KS test is described 

below. 

2.3.1 The Two-sample Kol~omorov-Smirnov Goodness of Fit Test 

The two-sample KS test is a rest of wh ether two independent samples have been drawn 

from the same population (or from population s with the same distribution). The two­

tailed test is sensitive to any kind of difference such as a change in the mean or variance in 

the distributions. The KS test is concerned with the agreement between two cumulative 

distributions. If the two samples have been drawn from the same population distribution , 

then the cumulative distributions of both samples may be expected to be similar allowing 

for random fluctuations. If the two cumulative distributions are too far apart at any point 

then the samples may have come from different populations, allowing for the level of 

confidence. 

To apply the KS test, cumulative frequency distributions are constructed for both of the 

point patterns to be tested, using the same intervals for both distributions. For each 

interval, one of the distributions is subtracted from the other and the largest absolute 

deviation is used in the KS test. This largest absolute deviation is then compared to the 

critical KS value which takes into account the number of points in each pattern and the 

desired level of confidence. If the largest absolute deviation is greater than the critical KS 

value then the two distributions are statistically different. These points are illustrated in 

the example below. 
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2.3.1.1 KS Test Example 

Sample Intervals (mm) Pattern I Cumulative Pattern 2 Cumulative 

Distribution Distribution 

< 0.04 () 0 

0.04 - 0.095 35 40 

0.095 - 0.15 250 176 

0.15 - 0.205 811 602 

0.205 - 0.26 1388 1073 

0.26 - 0.3 15 1953 1575 

0.315 - 0.37 2372 1970 

0.37 - 0.425 2725 2262 

0.425 - 0.48 2897 2454 

0.48 - 0.535 3012 2586 

0.535 - 0.59 3086 2665 

0.59 - 0.645 3161 2718 

0.645 - 0.7 3193 2754 

0.7 - 0.755 3205 2773 

0.755 - 0.8 1 3214 2787 

0.81 - 0.865 3224 2792 

0.865 - 0.92 3226 2802 

0.92 - 0.975 3226 2806 

0.975 - 1.03 3227 2806 

1.03 - 1.085 3227 2806 

1.085 - 1.14 3228 2806 

Figure 2.11 - Cumulative Distributions 
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Pattern 1 Cumulati\'e Pattern 2 Cumulative Absolute Differences 

Frequency Distribution Frequency Distribution 

0 () 0 

0.0108 0.01 42 0.0034 

0.0774 0.0627 0.0147 

0.2512 0.2145 0.0367 

0.4299 0.3823 0.0476 

0.6050 0.56 12 0.0437 

0.734 8 0.7020 0.0327 

0.8441 0. 806 1 0.0380 

0.8974 0.8745 0.0229 

0.9330 0.9215 0.0114 

0.9560 0.9497 0.0062 

0.9792 0.9686 0.0106 

0.9891 0.98 14 0.0076 

0.9929 0.9882 0.0046 

0.9956 0.99 32 0.0024 

0.9987 0.9950 0.0037 

0.9993 0.9985 0.0008 

0.9993 l 0.0006 

0.9997 I 0.0003 

0.9997 l 0.0003 

1 l 0 

Figure 2.12 - Differences 
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Figure 2.11 shows a table of the cumulative distributions of the nearest neighbour 

distances for two different point patterns. 

The next step is to normali se the cumulative distribution with respect to the total number 

of points in each pattern to give the cumulative frequency distributions. For the first 

pattern the total number of voids is 3228, and for the second pattern it is 2806. 

The KS test is performed on the cumulative frequ ency distributions firstly by finding the 

largest absolute difference between the two di stributions and comparing this value to the 

critical KS value. Figure 2. 12 shows the cumulative frequency distributions and the 

resulting absolute differences. The largest absolute difference is shown in bold type. 

The largest absolute deviation bet\\'een the two cumulative frequency distributions is 

0.0476. Thi s value is compared to the critical KS value which takes into account the 

number of observations (points in each pattern) and the desi red level of confidence. If the 

critical KS value is less than 0.0476 then the two patterns are statistically different (ie the 

largest absolute deviation is greater than the critical KS value). For the 99% level of 

confidence the critical KS value was ctlc ulated a~ shown in equation 4 [ 10): 

KS = 1.0~ /ni + 11
" 

c~rlf ~ \ • 

y 11:llc (4) 

Where n1 and 112 are the 101:tl number of points in patterns I and 2 respectively. 

For this example the critical KS value is 0.04207. which is less than the largest absolute 

deviation. This means the two point patrern spatial di stributions are different at the 99% 

level of confidence. Another useful measure is to calculate the KS ratio which is the 

largest absolute deviation divided by the critical KS value. In this case the KS ratio is 

1.13. As the KS ratio is greater than 1.0 then we can say the two point pattern spatial 

distributions are different. A KS ratio less than 1.0 would indicate that the spatial 

distributions were the same. This measure gives an indication of the amount of 

difference. 

The sensitivity of the KS test was tested using gaussian curves based on equation 5: 

[
(z-ul'] I . . 

y(x) = --=e - 2..r 
a..j(:. ,r) 

where a is the standard deviation and ,LI is the mean. 

(5) 

Two gaussian curves with a mean of 0 and a standard deviation of 1 were created and the 

standard deviation of one of the curves was increased. The KS ratio was calculated at a 

99% level of confidence as the standard deviation increased. The standard deviation at 

which the KS ratio became 1 was found to be 1.019 or a 1. 9% increase. 
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T he process was then rereared for a dc>creasing s tandard deviation at a 99% level of 

confidence. The resulting sranclard deviarion at whic h the two distributions became 

significantly differenr was fou nd to be 0.981 or a 1.9% decrease . 

The process was then repealed for a changing mean at a 99% level of confidence where 

the standard deviation was kepi constant. The resulting mean at which the two 

distributions begin to differ was 0.06167. 

From the above sensitivity res ts ii was conclmkd that the KS test is quite sensitive to 

small variations in the mean and srandard deviations of the distributions being tested. 
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