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Abstract

We study different nonequilibrium phenomena of isolated quantum systems ranging

from few- to many-body interacting bosons. Firstly, we have suggested the dynamics

of the center-of-mass motion to sensitively detect unconverged numerical many-body

dynamics in potential with separable quantum motion of the center of mass. As

an example, we consider the time evolution of attractive bosons in a homogenous

background and use it to benchmark a specific numerical method based on variational

multimode expansion of the many-body wave function - the Multiconfigurational

time-dependent Hartree for bosons (MCTDHB). We demonstrate that the simplified

convergence criterion based on a threshold value for the least occupied mode function

fails to assure qualitatively correct result while our suggested convergence test based

on the center-of-mass motion correctly detects the deviation of numerical results from

the exact results.

Recent technological progress in manipulating low-entropy quantum states has

motivated us to study the phenomenon of interaction blockade in bosonic systems.

We propose an experimental protocol to observe the expected bosonic enhancement

factor in this blockade regime. Specifically, we suggest the use of an asymmetric

double-well potential constructed by superposition of multiple optical tweezer laser

beams. Numerical simulations using the MCTDHB method predict that the relevant

states and the expected enhancement factor can be observed.

In the second half of the thesis, we have investigated the onset of quantum ther-

malization in a two-level generalization of the Bose-Hubbard dimer. To this end,

the relaxation dynamics following a quench is studied using two numerical methods:
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(1) full quantum dynamics and (2) semiclassical phase-space method. We rely on

arguments based on the eigenstate thermalization hypothesis (ETH), quantum chaos

as seen from the distribution of level spacings, and the concept of chaotic eigen-

states in demonstrating equilibration dynamics of local observables in the system

after an integrability-breaking quench. The same issue on quantum thermalization

can be viewed from a different perspective using semiclassical phase-space methods.

In particular, we employ the truncated Wigner approximation (TWA) to simulate

the quantum dynamics. In this case, we show that the marginal distributions of

the individual trajectories which sample the initial Wigner distribution are in good

agreement with the corresponding microcanonical distribution.

iv



v



Acknowledgments

First of all, I want to thank my supervisor Prof. Joachim Brand for being a

wonderful mentor to me. I want to thank him for the countless opportunities that he

has given me to pursuit interesting scientific inquiries. Most of all, I am grateful to

him for taking his chances on me – a student who came all the way from a relatively

obscure third world country.

I would like to thank Dr. Mikkel Andersen and Dr. ChristophWeiss for the research

collaborations. I am also thankful to Dr. Alexej Streltsov for providing us access to

his MCTDHB-Lab code. I also want to thank Sasha Fialko for introducing to me the

topic of quantum thermalization.

I also want to express my gratitude to both current and former members of our

group in CTCP for stimulating discussions: Antonio Muñoz-Mateo, Shreya Ghosh,
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