Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

NON-EQUILIBRIUM DYNAMICS FROM FEW- TO MANY-BODY SYSTEMS

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at Massey University, Albany, New Zealand

Jayson Gutierrez Cosme

2017

Abstract

We study different nonequilibrium phenomena of isolated quantum systems ranging from few- to many-body interacting bosons. Firstly, we have suggested the dynamics of the center-of-mass motion to sensitively detect unconverged numerical many-body dynamics in potential with separable quantum motion of the center of mass. As an example, we consider the time evolution of attractive bosons in a homogenous background and use it to benchmark a specific numerical method based on variational multimode expansion of the many-body wave function - the Multiconfigurational time-dependent Hartree for bosons (MCTDHB). We demonstrate that the simplified convergence criterion based on a threshold value for the least occupied mode function fails to assure qualitatively correct result while our suggested convergence test based on the center-of-mass motion correctly detects the deviation of numerical results from the exact results.

Recent technological progress in manipulating low-entropy quantum states has motivated us to study the phenomenon of interaction blockade in bosonic systems. We propose an experimental protocol to observe the expected bosonic enhancement factor in this blockade regime. Specifically, we suggest the use of an asymmetric double-well potential constructed by superposition of multiple optical tweezer laser beams. Numerical simulations using the MCTDHB method predict that the relevant states and the expected enhancement factor can be observed.

In the second half of the thesis, we have investigated the onset of quantum thermalization in a two-level generalization of the Bose-Hubbard dimer. To this end, the relaxation dynamics following a quench is studied using two numerical methods: (1) full quantum dynamics and (2) semiclassical phase-space method. We rely on arguments based on the eigenstate thermalization hypothesis (ETH), quantum chaos as seen from the distribution of level spacings, and the concept of chaotic eigenstates in demonstrating equilibration dynamics of local observables in the system after an integrability-breaking quench. The same issue on quantum thermalization can be viewed from a different perspective using semiclassical phase-space methods. In particular, we employ the truncated Wigner approximation (TWA) to simulate the quantum dynamics. In this case, we show that the marginal distributions of the individual trajectories which sample the initial Wigner distribution are in good agreement with the corresponding microcanonical distribution.

Acknowledgments

First of all, I want to thank my supervisor Prof. Joachim Brand for being a wonderful mentor to me. I want to thank him for the countless opportunities that he has given me to pursuit interesting scientific inquiries. Most of all, I am grateful to him for taking his chances on me – a student who came all the way from a relatively obscure third world country.

I would like to thank Dr. Mikkel Andersen and Dr. Christoph Weiss for the research collaborations. I am also thankful to Dr. Alexej Streltsov for providing us access to his MCTDHB-Lab code. I also want to thank Sasha Fialko for introducing to me the topic of quantum thermalization.

I also want to express my gratitude to both current and former members of our group in CTCP for stimulating discussions: Antonio Muñoz-Mateo, Shreya Ghosh, Sasha Fialko, Lauri Toikka, Ulrich Ebling, Peter Jeszenszki, Sophie Shamailov, and Alex Ayet. I also want to thank my officemates: Lukas Wirz, Lukas Trombach, and Morten Piibeleht for providing a nice working environment. I was fortunate enough to play and enjoy table tennis games with the following people: Lukas Wirz, Lukas Trombach, Lukáš Pašteka and Peter Jeszenszki.

I want to specially mention Lukáš Pašteka and Antonio Muñoz-Mateo for all the interesting conversations we had in our coffee breaks. I have found lifelong friends in the two of you. I also want to thank the Raduban family for the special friendship.

I would also like to thank my extended family for their unrelenting support. To my parents, Eduardo and Ma. Teresa Cosme, and to my brother, Jefferson Cosme, thank you for your understanding and for always supporting me.

Most importantly, I want to thank Johnine Cosme for making my life complete. You have sacrificed a lot for me. You gave up everything and dove in headfirst to experience this roller coaster of an adventure with me and for these I am eternally grateful. This thesis is dedicated to you.

Table of Contents

Li	List of Tables			
\mathbf{Li}	st of	Figure	es	xi
1 Introduction				1
	1.1	Outlin	e of this thesis	4
	1.2	List of	Publications	6
2	The	oretica	al Background	7
	2.1	Bose-E	Einstein Condensates	7
		2.1.1	Dilute Bose gas	9
		2.1.2	Gross-Pitaevskii equation	10
	2.2	Tight-	Binding Model	14
		2.2.1	Localized wave functions	14
		2.2.2	Optical potentials	16
		2.2.3	Effective Hubbard-like model	18
	2.3	Quant	um ergodicity in closed quantum systems	20
		2.3.1	Quantum chaos	21
		2.3.2	Eigenstate thermalization hypothesis	24
3	Nur	nerical	l Methods	28
	3.1	Multic	configurational time-dependent Hartree for bosons	28
		3.1.1	MCTDHB wave function	28
		3.1.2	Time-evolution of the MCTDHB wave function	30
	3.2	Trunca	ated Wigner approximation	33
		3.2.1	Wigner distribution	33
		3.2.2	Time-evolution of observables	36

4	Cen	ter-of-mass motion as a sensitive convergence test for variational			
	mul	ti-mode quantum dynamics	38		
	4.1	Introduction	38		
	4.2	Multi-mode expansion for one-dimensional bosons	40		
	4.3	Interaction dependence of the center-of-mass (COM) variance	41		
	4.4	Proof of the bounds for the width of the single-particle density	42		
	4.5	Exact solution of the two-particle problem	46		
	4.6	Details of the numerical simulations	47		
	4.7	Simulating quench dynamics	48		
	4.8	Natural occupancy criterion	51		
	4.9	Role of the particle number	54		
	4.10	MCTDHB simulations with $N = 2$ particles $\ldots \ldots \ldots \ldots \ldots$	56		
		4.10.1 Convergence of MCTDHB results with increasing M	56		
		4.10.2 Delocalization of COM: Unphysical coupling of COM and rel-			
		ative motion \ldots	59		
	4.11	Discussion and Conclusions	62		
5	Inte	Interaction blockade for bosons in an asymmetric double well 6			
	5.1	Introduction	63		
	5.2	Bose-Hubbard model	65		
	5.3	Effective Bose-Hubbard parameters	72		
	5.4	Interaction blockade in asymmetric double well	73		
		5.4.1 Optical tweezer potential	74		
		5.4.2 MCTDHB and Convergence	76		
		5.4.3 Few particle quantum simulations	81		
		5.4.4 Fidelity calculation between MCTDHB wave functions	85		
		5.4.5 Dynamics for $N = 2$	88		
	5.5	Discussion and Outlook	90		
6	Qua	ntum thermalization of ultracold bosons in a 1D double-well	l		
	pote	ential	93		
	6.1	Introduction	93		
	6.2	Model and Quench Dynamics	97		
	6.3	Ratio of Consecutive Level Spacings Distribution	100		
	6.4	Eigenstate Thermalization Hypothesis	102		
	6.5	Quench Dynamics	106		
		6.5.1 Comparison of Diagonal to Microcanonical Expectation Values	106		
		6.5.2 Delocalized Initial States	110		
		6.5.3 Relaxation of Mode Occupation Number	113		
		6.5.4 Subsystem Thermalization and Prethermalization	117		

	6.6 Prethermalization and Timescales	121	
	6.7 Summary and Conclusion	124	
7	 Semiclassical perspective on thermalization of ultracold bosons in 1D double-well potential 7.1 Introduction 		
	7.2 Truncated Wigner Approximation	127	
	7.3 Thermalization from semiclassical dynamics	128	
	7.4 Summary	134	
8	Conclusions	135	
Α	Parity symmetry	137	
в	3 Imaginary time propagation		
\mathbf{C}	Improved relaxation	140	
D	Discrete variable representations	141	
Bi	Bibliography 14		

List of Tables

4.1	Ground state energy E and the two largest natural occupancies from	
	MCTDHB calculations of $N = 2$ trapped bosons	57
5.1	Dimensionless renormalized interaction strength $\tilde{\Lambda} = \Lambda m w_0^2 / \hbar^2$, where	
	Λ is the renormalized coupling strength of the contact interaction, for	
	various M	79

List of Figures

- 2.1 Sketch of a double-well potential and its eigenstates and possible localized wave functions.(Left) Four lowest single-particle eigenstates of a double-well potential (black) with their corresponding eigenvalues (dashed-dotted horizontal lines). (Right) Similar to the one on the left but now the localized wave functions are shown. Note that the eigenstates and localized wave functions are offset by the corresponding ing value of the single-particle energies and on-site energies, respectively. 15

51

Convergence with increasing number of modes M for N = 2 with $\tilde{g} =$ 4.7 -2: (a) Ground-state energy and (b) single-particle density variance. Dashed horizontal lines correspond to the exact values. Symbols denote the MCTDHB results for different M. The exponent of the power law fit, ν , is also shown. (Inset) Log-log plot of the absolute difference 60 Two-particle density $\rho^{(2)}(x,y) = 2|\Psi(x,y)|^2$ for N = 2 with $\tilde{g} = -1$ 4.8at different times: Left [(a),(c),(e)] $t\omega_0 = 0$ and right [(b),(d),(f)] $t\omega_0 =$ 30. Comparison between [(a),(b)] exact, [(c),(d)] Gross-Pitaevskii (M =1), and [(e),(f)] M = 5....61 Level structure within the Bose-Hubbard model for (left) N = 1 and 5.1(right) N = 2. Rapid quench to the position of the anti-crossing will induce coherent oscillations with a frequency proportional to the inverse of the energy splitting. The parameters are: $U_L/J = 7$, $U_R/J = 4$. 66 Energy splittings at tunneling resonances involving single boson tun-5.2neling for N = 2 (left) and N = 3 (right). Markers correspond to numerical results from exact diagonalization of the full Hamiltonian. Solid lines correspond to the expected \sqrt{N} scaling in the interaction blockade limit. Broken lines denote the result of first-order perturba-69 tion in Eq. (5.15). Other parameter: $U_R = 4U_L/7$ Asymmetric double well optical tweezer at the x - z plane. Shown 5.3is the potential V(r) of Eq. (5.27) formed with P = 3 laser beams for parameter values: $\{V_i/h\}$ (kHz) = $\{4659.775, 4137.962, 4585.886\}$ and $\{x_i/w_0\} = \{-0.658, 0.264, 1.176\}$. 75Single-particle energy splitting ΔE for N = 1 and intra-well interaction 5.4energy $U_{\ell} = U_L = U_R$ of a symmetric double with two optical tweezer beams as a function of the beam separation d with $V_0/h = 5$ MHz. The horizontal dashed-dotted line represents the minimum energy splitting 77for experimentally observable single-particle tunneling.

5.5 Relaxation using imaginary time propagation within MCTDHB for $N = 2 ({}^{87}\text{Rb})$ at the avoided crossing. (Left) the energy difference between the ground and first-excited state. (Right) Natural occupancies of the ground-state single-partice density matrix.

79

81

83

- 5.6 Slice of the natural orbitals for the ground-state at the avoided crossing of N = 2 and M = 4 at z = 0 as a function of x and y. Top-Left: highest occupied orbital; Top-Right: second highest occupied orbital; Bottom-Left: third highest occupied orbital; Bottom-Right: least occupied orbital. We have checked that the general features of the four highest occupied orbitals remain unchanged even for M = 7.
- 5.8 Ground, first-, and second-excited states as a function of V_3 for the asymmetric double well for (left) N = 2 and (right) N = 3. The reference ground-state energies are $E_1^{AC}/h = -11.653$ MHz for N = 2and $E_1^{AC}/h = -17.480$ MHz for N = 3. Solid lines correspond to MCTDHB results. Broken lines correspond to diagonalization of the Bose-Hubbard Hamiltonian. Resonances are indicated in circles. . . . 84

5.11	Dynamics for $N = 2$ following a quench to the position of the avoided	
	crossing from the ground state at the largest value of V_3 in Fig. 5.8.	
	Dashed-curve (left y-axis) denotes the dynamics of the expectation	
	value of mode occupation number in the right (wide) well $\langle \hat{n}_R \rangle$ within	
	the Bose-Hubbard model. Solid curve (right y-axis) depicts the dy-	
	namics of the average center-of-mass position in the axis of asymmetry	
	$\langle x \rangle / w_0$ calculated from MCTDHB	89
5.12	Multiple particle energy splittings as a function of N . Solid line corre-	
	sponds to the expected \sqrt{N} dependence. The dashed line corresponds	
	to the first-order approximated splitting given by Eq. (5.15) for an ef-	
	fective Bose-Hubbard parameter of $U_L/J \approx 7$ and $U_R/J \approx 4$. Blue	
	crosses correspond to the numerical results at the positions of reso-	
	nance indicated by the circles in Figs. 5.7 and 5.8	90
6.1	Schematic of the double-well potential with two energy levels. The	
	interlevel coupling U^{01} adds another degree of freedom in the system,	
	which is expected to break integrability. \hdots	97
6.2	(Left) Distribution of the ratio of adjacent level spacings r (Right)	
	Mean value $\langle r \rangle$ as a function of the interaction parameter. The GOE	
	(dashed-dotted) and the Poissonian (dashed) averages are also shown.	101
6.3	Distributions of EEV for $NU^0/\hbar\omega_0 = 4$ but $U^{01} = 0$. (a) \hat{n}_L^0 (b) \hat{n}_L^1 .	103
6.4	Distributions of EEV of \hat{n}_L^0 (left) and \hat{n}_L^1 (right) for (a)-(b) $NU^0/\hbar\omega_0 =$	
	2, (c)-(d) $NU^0/\hbar\omega_0 = 3$, and (e)-(f) $NU^0/\hbar\omega_0 = 4$. Vertical lines mark	
	the mean energies of initial states for the dynamics in the subsequent	
	sections: (dashed) $E_0/\hbar\omega_0 = 81.053$, (dotted) $E_0/\hbar\omega_0 = 99.202$, (solid)	
	$E_0/\hbar\omega_0 = 101.181$, and (dashed-dotted) $E_0/\hbar\omega_0 = 115.9409$	105
6.5	Distributions of consecutive EEV gaps of \hat{n}_L^0 for different interaction	
	strengths. \ldots	106
6.6	Relative deviations between the microcanonical and the mean energy	
	of all possible initial Fock states for $NU^0/\hbar\omega_0 = 4.$	107

6.7	Diagonal Ensemble (DE) vs Microcanonical Ensemble (ME) averages of	
	local operators for all possible initial Fock states. (a) \hat{n}_r^0 for $NU^0/\hbar\omega_0 =$	
	2; (b) \hat{n}_r^1 for $NU^0/\hbar\omega_0 = 2$; (c) \hat{n}_r^0 for $NU^0/\hbar\omega_0 = 3$; and (d) \hat{n}_r^1 for	
	$NU^0/\hbar\omega_0 = 3$	108
6.8	Similar to Fig. 6.7 but $NU^0/\hbar\omega_0 = 4$. (a) $\langle \hat{n}_r^0 \rangle$. (b) $\langle \hat{n}_r^1 \rangle$. (c) $\langle (\hat{n}_r^0)^2 \rangle$.	
	(d) $\langle (\hat{n}_r^1)^2 \rangle$. Vertical lines mark the energies similar to Fig. 6.4	109
6.9	LDoS of different initial states for $NU^0/\hbar\omega_0 = 4$. The dashed lines	
	correspond to the energy shell	111
6.10	(Color online) Relaxation dynamics of occupation number for $NU^0/\hbar\omega_0$	=
	4. Integrable case $U^{01}/\hbar\omega_0 = 0$ (dashed line) and finite $NU^{01}/\hbar\omega_0 = 2$	
	(solid line). The diagonal ensemble average is shown in black solid lines	
	for $NU^{01}/\hbar\omega_0 = 2$. Colors denote: (red) \hat{n}_L^0 , (magenta) \hat{n}_R^0 , (blue) \hat{n}_L^1 ,	
	and (green) \hat{n}_R^1	114
6.11	(Color online) Dynamics of occupation number for Fock states with	
	the same initial energy (a-d) $E_0/\hbar\omega_0 = 81.053, E_0/\hbar\omega_0 = 99.202,$	
	$E_0/\hbar\omega_0 = 101.181$, and $E_0/\hbar\omega_0 = 115.9409$. The dashed-dotted lines	
	correspond to the diagonal ensemble (DE) averages. The dashed lines	
	correspond to the microcanonical ensemble (ME) averages. An initial	
	product state is denoted as $ n_L^0, n_R^0, n_L^1, n_R^1\rangle$. Colors denote: (red) \hat{n}_L^0 ,	
	(magenta) \hat{n}_R^0 , (blue) \hat{n}_L^1 , and (green) \hat{n}_R^1	115
6.12	(Color online) Time evolution of the von Neumann entropy (solid lines)	
	compared to grand canonical entropy (dashed lines) for (a) $E_0/\hbar\omega_0 =$	
	81.05, (b) $E_0/\hbar\omega_0 = 99.20$, (c) $E_0/\hbar\omega_0 = 101.18$, and (d) $E_0/\hbar\omega_0 =$	
	115.94. The shaded area emphasizes the prethermalization plateaus.	
	The vertical dashed lines correspond to the thermalization time after	
	the prethermalized regimes in (b) and (c). Colors denote: (red) \hat{n}_L^0 ,	
	(magenta) \hat{n}_R^0 , (blue) \hat{n}_L^1 , and (green) \hat{n}_R^1	120

6.13	Energy differences across the spectrum. The eigenenergies E_n are ar-	
	ranged in increasing order $n \in [1, D]$ where D is the dimension of the	
	Hilbert space. (Top-Left) Low energy sector $n \in [1, 2000]$. (Top-Right)	
	Middle energy sector $n \in [2001, 5000]$. (Bottom) High energy sector	
	$n \in [5001, D].$	122

- 7.3 Ergodicity in TWA. As an example we show Wigner distributions of one of the lower levels. Initially the system is prepared in the Fock state (green cycle shown on the left) or in the coherent state (green bump shown on the right). Trajectories sampled from the initial states fill the available phase space as time evolves (blue dots). The distributions become essentially the same at some time and after that they do not change, which suggests thermalization is reached within TWA. In this sense, quantum fluctuations of the initial state turn into thermal fluctuations in the course of evolution.
- 7.4 (Upper panels) Comparison of the distributions P_n derived from the diagonal ensemble with the corresponding distributions derived from the grand-canonical ensembles. Both are compared with the corresponding data extracted from TWA. (Lower panels) The good agreement between the exact Wigner distribution and the distribution W_m 133

131

A.1 The red crosses denote the overlap coefficient C_n^k of the corresponding pair of the blue circles. When the two coincide with each other, the eigenstate has a definite parity. (Left) Even-parity eigenstate. (Right) Odd-parity eigenstate in which the red crosses are now $-C_n^k$ 138