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Abstract 

The cryolite ratio of an industrial aluminium electrolyte can effect many variables 

within the process including the overall energy efficiency. Careful control of the 

cryolite ratio is therefore very important. Currently no online measurements of the 

cryolite ratio are used in industry. 

The use of potential measurements between a sodium alloy electrode and an aluminium 

electrode, as a means of cryolite ratio measurement was investigated. The observed 

potential changes during cryolite ratio step changes were typically of the correct 

direction and of similar magnitude to the predicted potential changes calculated from 

activity data. 

The cryolite ratio of the electrolyte was found to change continuously during 

experiments. This was mainly due to the evaporation of NaAIF4, which was identified 

by X-ray diffraction. This change in the cryolite ratio meant that long term stability of 

the electrodes was difficult to accurately quantify. 

Electrode damage was found to occur after several hours of use and was contributed to 

the intrusion of electrolyte into the porous boron nitride used as the electrode body. 

Furthermore the activity of the sodium alloy electrode was found to change significantly 

during experiments due to the loss of sodium into the electrolyte. This damage to the 

electrodes is thought to have effected the stability of measurements considerably. 

Dropping metal electrodes were investigated as a possible means of overcoming the 

changes in electrode activity. The overall stability of the potential measured between a 

dropping Pb-Na electrode and an aluminium electrode was somewhat better than the 

stability of potentials measured between two static pool electrodes. Operating 

difficulties with the dropping Pb-Na electrode combined with the short lifetime of these 

electrodes makes these electrodes unsuitable for industrial use. 

Some suggestions have been made for future electrode designs with single use designs 

recommended as the most viable option especially for industrial use. 
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1 Introduction & Literature Review 

1. 1 Introduction to the aluminium industry 

1.1.1 Aluminium Production 

Aluminium is produced by the electrochemical reduction of alumina (AhO3) as shown 

by Equation 1. 1. 

(1.1) 

This reaction is performed industrially in the Hall-Heroult cell, named after Hall and 

Heroult who independently developed the current method of smelting aluminium in 

1886. Figure 1.1 shows a schematic of the Hall-Heroult cell. 

----Anode 

Figure 1.1 Hall-Heroult Cell Schematic 

Frozen Side Ledge 

Electrolyte 

Aluminium Pad 

-Cathode 

Total annual production of aluminium is reaching close to 24 million tonnes per year 

[l]. 

1.1.2 The Hall-Heroult Cell 

The Hall-Heroult cell consists of 4 main components, the anode, cathode, aluminium 

pad, and electrolyte. 

1 



The anode is made from a mixture of petroleum coke and coal pitch, and provides the 

carbon for the reaction, as shown in Equation 1.1. Anodes can either be classified as 

Prebake or Soderberg anodes depending on their construction method. As the name 

suggests Prebake anodes are baked into a carbonaceous block before being placed into 

the cell. Soderberg anodes are baked in position, using waste heat from the cell. The 

anodes have conducting rods inserted into them, which provides the electrical current to 

drive the electrochemical reaction. The reaction oxidises carbon from the anode, which 

means the anodes must be continually lowered into the electrolyte or renewed to 

maintain the electrical contact with electrolyte. 

Like the anode, the cathode is constructed from petroleum coke and coal pitch, also 

having steel conductor bars inserted through it to carry the electrical current from the 

cell. The cathode is not used up in the reaction, so it is only replaced once the high 

temperatures and corrosive electrolyte damage it. Because of the highly corrosive nature 

of the electrolyte a frozen ledge of electrolyte is allowed to form on the sides of the 

cathode to reduce the wear and damage. 

The aluminium pad is simply the molten aluminium, which is produced during the 

process. The level of this liquid pad will increase continuously as the aluminium is 

produced. This means that the aluminium must be siphoned out by vacuum once the 

level exceeds a set height. Failure to remove the aluminium can result in the anode 

touching the aluminium pad causing short circuits. Some aluminium should always be 

present to minimise the wear of the carbon cathode from the corrosive electrolyte. 

The electrolyte is where the reaction to reduce alumina takes place. The electrolyte 

should have the following characteristics to be successful for smelting aluminium. 

• High alumina solubility 

• Low aluminium solubility 

• High electrical conduction 

• Low raw material cost 

• Higher decomposition voltage than alumina 

2 



Currently, only cryolite (Na3AlF6) based electrolytes are used for industrial aluminium 

electrolysis. Further detail on the electrolyte will be given in the following sections. 

1.2 Electrolyte Composition 

1.2.1 Industrial Electrolytes 

As mentioned in the previous section the electrolyte is made up principally of cryolite 

(Na3AlF6). Most industrial smelter cells operate with the addition of aluminium fluoride 

(AIF3), as well as calcium fluoride (CaF2), and occasionally magnesium fluoride 

(MgF2), sodium chloride (NaCl), and lithium fluoride (LiF) to improve cell 

performance. The electrolyte will also contain dissolved alumina (AhO3) that undergoes 

reduction to produce aluminium. 

1.2.2 Cryolite and Bath Ratio 

The cryolite ratio (CR) is used to describe the composition of the electrolyte within the 

smelter cell. It is defined as the molar ratio of sodium fluoride to aluminium fluoride. 

For pure cryolite the cryolite ratio is equal to 3. 

molesNaF 
CR=---

molesAIF3 

(1.2) 

Another term that is often used, is the bath ratio (BR). This is simply the mass ratio of 

sodium fluoride to aluminium fluoride. Due to the molecular masses of sodium fluoride 

and aluminium fluoride, the bath ratio is approximately half the cryolite ratio. 

BR= mass NaF = .!..cR 
massAIF3 2 

(1.3) 

Because most cells operate with additions of AlF3, excess AlF3 weight percentages are 

often quoted. 
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1.2.3 Typical Composition of an Industrial Electrolyte 

Typically, an industrial electrolyte consists of cryolite, 5-15 wt% AlF3 [2,3], 2-5 wt% 

AJiO3 [2,3], and 3-8 wt% CaF2 [3]. This corresponds to a cryolite ratio of approximately 

2.1-2.65. Other additives, such as MgF2, LiF, and NaCl [4] have also been used in 

industrial electro I ytes 

1.3 Effect of Electrolyte Composition on Smelter Cell Variables 

The aim of this section is to show how the electrolyte composition can affect many 

important variables within an aluminium smelter cell. Due to the nature of this work the 

emphasis will be placed on how the cryolite ratio or excess AlF3 concentration affects 

these variables. 

As aluminium production has relatively low energy efficiency, the goal should be to 

maximise the overall energy efficiency of the process by careful selection and control of 

the electrolyte composition. This discussion will also consider how each variable can 

affect the energy efficiency of the overall process. It should be noted that many of the 

variables within a smelter cell are highly correlated and it is often difficult to accurately 

determine the effect of a single variable. 

1.3.1 Liquidus, Superheat, and Bath Temperature 

Due to the high temperatures used during aluminium smelting, this variable should be 

examined to some degree. There are three temperatures within a smelter-cell that can be 

considered: Liquidus, Bath, and Superheat Temperature. 

The liquidus temperature is simply the temperature at which the electrolyte melts. As 

Figure 1.2 shows, there is considerable variance in the liquidus temperature over the 

NaF-AlF3 system. Typical industrial electrolytes have liquidus temperatures ranging 

from 930 to 985 °C (based on 1.2.3 and [S]). 

4 
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Figure 1.2 NaF-AlF3 Phase Diagram [6] 

The bath temperature is the actual temperature of the electolyte within the cell and is a 

result of the bath composition and thermal balance of the cell [7] . The bath temperature 

must be above the liquidus temperature for the electrolyte to be in a liquid state. The 

superheat temperature is the difference between the bath and liquidus temperatures. The 

superheat of the electrolyte is important when considering the thermal balance and 

therefore the side ledge of the cell [2,7-9]. 

Temperature of the bath has been shown to affect many other variables within the cell 

such as electrical conductivity [10], density of aluminium and electrolyte [11], and 

alumina dissolution rate [12,13]. It has also been shown that decreasing the cryolite 

ratio to lower the liquidus and bath temperatures, results in an increase of the <::urrent 

efficiency [14,15]. 
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1.3.2 Alumina Solubility and Dissolution Rate 

As the goal of the Hall-Heroult process is to produce aluminium, alumina must be 

dissolved into the electrolyte to enable the reaction shown by Equation 1.1 to proceed. 

This indicates that alumina solubility and dissolution rate are important variables when 

operating a smelter cell. It has been sh<?wn that the composition of the bath is an 

important factor in the dissolution rate of alumina [12,13] and alumina solubility [16]. 

Temperature has also been found to affect the dissolution rate of alumina [12,13]. 

Maintaining and controlling the dissolved alumina concentration is also important in 

reducing the occurrence of anode effects in the cell [17], which are characterised by 

rapid increases in the cell voltage and emission of greenhouse gases such as CF4 and 

C2F6. 

1.3.3 Aluminium Solubility and Re-oxidation 

One disadvantage of cryolite based electrolytes, is the solubility of aluminium metal. 

The loss of aluminium by dissolution and then re-oxidation in the electrolyte melt 

corresponds to a significant loss in the current efficiency [4] (see 1.3.7). The re

oxidation of dissolved aluminium can occur via the following reactions (referred to as 

back reactions). 

(1.4) 

(1.5) 

It has been shown that the cryolite ratio and the temperature [18] can affect the 

solubility of aluminium, and ultimately the current efficiency. 

Equation 1.6 shows a correlation for the aluminium solubility as a function of bath 

composition and temperature [19]. 
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DM=-0.288+0.0003 t +0.027 BR-0.0019[CaF2 ] 

- 0.0036[LiF]- 0.0029[NaCl] 

where: concentrations e.g. [CaF2] are in wt% 

BR = Bath ratio 

T = Temperature (0 C) 

DM =Dissolved Aluminium concentration (wt%) 

1.3.4 Heat Balance and Side Ledge 

(1.6) 

The heat balance of the cell is a very important factor when both designing and 

operating a Hall-Heroult cell. Because of the highly corrosive nature of the cryolite 

based electrolyte a frozen side ledge must be formed to protect the side lining of the 

cell. This frozen side ledge is formed when the electrolyte temperature at the sides is 

below the liquidus temperature causing the electrolyte to solidify. This side ledge is rich 

in cryolite (CR= 3) so changes in the size of the side ledge effects the bulk composition 

of the bath. The heat balance of the cell (i.e. the balance between the heat loss and heat 

gain) affects the size of this side ledge. 

To illustrate the effect which bath composition has on the side ledge and heat balance, 

the effect of an AlF3 addition can be examined [7]. Upon an AlF3 addition, the liquidus 

temperature of the electrolyte decreases. This will result in the superheat of the bath 

increasing, as initially the bath temperature will not decrease. This increase in superheat 

will cause some of the side ledge to be re-melted, resulting in the cryolite ratio of the 

electrolyte being higher than expected after the AlF3 addition. The smaller side ledge 

will allow higher heat loss through the side lining eventually lowering the bath 

temperature and reforming more side ledge. During this change in the cells heat balance 

there will also be a number of other variable changes such as electrical resistance, 

aluminium solubility, density, and of course current and energy efficiency [7]. If the 

heat balance of the cell is not managed correctly, cell failure can arise from corrosion 

and thermal damage of the side lining. 
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1.3.5 Electrical Conductivity 

As the reduction of alumina to aluminium is carried out electrochemically, the electrical 

conduction of the cell is very important in minimising the total electricity consumption. 

There has been much work carried out in this area with some very comprehensive 

reviews available [20]. The widely accepted Choudhary model for the electrical 

conductivity of cryolite-based electrolytes was developed over 25 years ago [21] 

(Equation 1.7). 

lnK = 2.0156-0.0207[Al20 3 ]-0.005[CaF2 ]-0.0166[MgF2 ] 

+ 0.0178[LiF] + 0.0063[NaCl] + 0.2175CR - 2068
.4 

T 

where: concentrations e.g. [Ah03] are in wt% 

CR = cryolite ratio 

T = Temperature (K) 

K =electrical conductivity (S.cm·1) 

(1.7) 

There have been other models suggested [22], which also show that the cryolite ratio 

and concentration of other additives effect the electrical conductivity of the electrolyte. 

1.3.6 Density 

The density is a vital factor that can affect the performance of the Hall-Heroult cell [11]. 

The density of NaF3-AlF3 melts is shown at various temperatures (Figure 1.3). 

The difference in density between the electrolyte and the aluminium pad has a major 

effect on the stability of the bath-metal interface [11] . At fixed bath compositions, the 

density difference increases with increasing temperature [11]. Bath -composition also 

contributes to the density induced flow patterns found close to the side ledge [11]. 
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Figure 1.3 Densities of NaF-AlF3 Mixtures [23], 

(1) 1000 °C, (2) 1050 °C, (3) 1100 °C 

1.3. 7 Current and Energy Efficiency 

The previous sections have looked at how the bath composition, in particular the 

cryolite ratio, can affect many chemical and physical properties of the electrolyte. These 

properties are important when considering the current and energy efficiency of the 

process. 

The current efficiency is defined as the ratio between the actual metal output (kg/ Amp) 

and the theoretical aluminium output (kg/Amp). According to Faraday's law, the 

theoretical output of aluminium is calculated at 0.3354 g/ Amp. Most industrial cells 

operate with high current efficiency values of between 85 % and 95% [24]. 

The energy efficiency is simply defined as the ratio of actual energy input (kWh/kg Al) 

and the theoretical energy required (kWh/kg Al). Using the thermodynamics for the 

reduction of alumina to aluminium it is found that the theoretical energy requirements 

are 5.64 kWh/kg Al for an isothermal process. Currently all industrial smelters operate 

with energy efficiencies below 50%. 
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Equation 1.8 gives the overall specific energy consumption. 

E = 2.980*V 
X 

where: E = Specific energy consumption [kWh/kg Al] 

V = Cell voltage 

x = Current efficiency 

(1.8) 

As discussed in section 1.3.3, the current efficiency is primarily affected by the re

oxidation of dissolved aluminium. Bath temperature is considered to be one of the most 

influential variables that can be used to increase the current efficiency by reducing this 

re-oxidation rate [25]. Operating at low cryolite ratios, by the addition of AlF3, is one 

way of reducing the liquidus temperature of the melt. 

The cell voltage, which appears m Equation 1.8, is the result of three different 

contributions: 

• The decomposition voltage which provides the energy for Equation 1.1 

• Polarisation voltage at the electrode-electrolyte interfaces 

• Voltage drops due to the resistance of cell components (electrodes, electrolyte etc.) 

Section 1.3.5 described how the electrical conductivity of the electrolyte and therefore 

voltage drop, is affected by the bath composition and temperature. Improving the 

electrical conductivity can reduce the voltage drop and therefore increase the overall 

energy efficiency. 

Bath composition, namely the cryolite ratio, is therefore a vital variable that can be used 

to maximise the current and energy efficiency of the smelting process. 
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1.4 Changes in the Cryolite Ratio 

As shown in the previous sections the bath composition, especially the cryolite ratio, 

influences many variables within the Hall-Heroult cell. Therefore it is important to 

select an electrolyte composition that will optimise the process, to give high aluminium 

production rates with low operating and capital costs. However this selection of bath 

composition is not the end of the problem: the bath composition in industrial smelter 

cells continuously changes with time. Generally there is a net decrease in the AlF3 

concentration (i.e. a net increase in CR) with approximately 20 kg of AlF3 consumed 

per tonne of aluminium produced [25] . Reasons for this change are given in the 

following sections. 

1.4.1 Reactions of Electrolyte with Impurities 

There are many impurities that enter the cell during the process of producing 

aluminium. These impurities include various metals oxides and usually enter the cell 

during the addition of alumina. The following equation shows how these impurities can 

react with the electrolyte to change the composition of the bath. This leads to a net 

decrease in the AlF3 concentration. 

(1.9) 

where: M is a divalent metal such as Ca or Mg 

1.4.2 Reaction of Electrolyte with Moisture 

Moisture can also enter the cell and react with the electrolyte. Equation 1. 10 shows the 

reaction between cryolite and water, leading to a decrease in the AlF3 concentration. 

Hydrogen fluoride is also released adding to the fluoride loss from the cell. 

(1.10) 
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1.4.3 Side Ledge Changes 

As discussed in paragraph 1.3.4, side ledge changes can effect the composition of the 

electrolyte, as the side ledge is rich cryolite. When this frozen ledge is re-melted or 

dissolved into the bulk of the electrolyte, it will increase the overall cryolite ratio of the 

cell. Likewise there will be a decrease in the cryolite ratio during the formation of the 

side ledge. It has been estimated that a change of ± 20% in the side ledge mass can 

effect the AIF3 concentration by ± 2% for a certain cell type [26]. Side ledge changes 

occur when the heat balance of the cell is disrupted by events such as the anode effect, 

material addition to the cell, or cell voltage changes. 

1.4.4 Evaporation and Dusting of Electrolyte Species 

The evaporation of various electrolyte species can also change the composition of the 

bath. The major vapour species is considered to be NaAIF4 [27], which will cause an 

increase in the cryolite ratio of industrial electrolytes. Hydrogen fluoride gas is another 

component found in the exhaust gas. This gas originates from the reaction between the 

electrolyte and water (Equation 1.10). Entrainment of electrolytic species in the anode 

gas is the other contributor to fluoride loss in industrial cells [27] . These entrained 

species may either be in a liquid or solid state. 

1.4.5 Time Lag and Overfeeding 

It has been reported that there is a time lag between the addition of AlF3 and the 

resulting change in the AIF3 conc-entration (28]. This time lag can be anywhere between 

several hours and several days in length [28,29]. Because of this time lag, ()ell operators 

can overreact to AIF3 concentration measurements, resulting in ex-cessive AIF3 addition 

and eventually a lower than expected cryolite ratio !28]. This overreaction may also 

occur when the cryolite ratio gets to low and soda is added to correct the baths 

composition. 
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1.5 Electrolyte Composition Measurement 

As discussed is section 1.4, the cryolite ratio of industrial electrolytes, continuously 

changes with time. Currently there is no in situ method for accurately measuring the 

cryolite ratio. As seen in section 1.3, the cryolite ratio affects many bath variables, so 

fast and accurate measurement of the cryolite ratio is important in order to control these 

variables. A brief description of various techniques used for cryolite ratio and bath 

composition measurements is given below. 

1.5.1 Traditional Wet Chemical Analysis 

There are many chemical methods that can be used to determine the cryolite ratio of the 

electrolyte. Typical methods include: 

• Pyro-titration [30] 

• Titration with AlCh [31,32] 

• Titration with Th(N03)4 [31,32] 

Pyro-titration is performed on acidic electrolyte samples (i.e. CR< 3) by first adding a 

known quantity of NaF to a molten sample. The excess AlF3 present in the sample 

reacts with the newly added NaF, forming cryolite. The neutralisation point of the 

titration can be determined by dripping an indicator such as phenolphthalein or 

bromothymole blue on to a cooled portion of the sample. Once this neutralisation point 

is reached, the mass of NaF used in the pyro-titration can be used to calculate the excess 

AlF3 per-centage or cryolite ratio. 

Volumetric titration of the cryolite ratio firstly involves the selective di-ssolution of NaF 

and AlF3 containing compounds in a NaOH solution. A known ex-cess of standardised 

NaF solution is added and the solution neutralised with HCl, followed by saturation 

with NaCl. The aluminium present in the solution forms cryolite, and the remaining 

exce-ss F is titrated with an AlCh solution while boiling, using eriochrome cyanamide 
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as the indicator. This method is used for AlF3 rich samples typically giving the cryolite 

ratio with an accuracy of± 0.4 - 0.6 units [32]. 

The titration of excess F using thorium nitrate is another method of determining the 

cryolite ratio of an electrolyte sample. For samples rich in AlF3, the sample is first 

sintered with a measured quantity of NaF at 600-800 °C for at least 20 minutes. During 

this process the excess AlF3 is converted to cryolite. Depending on the cryolite ratio, the 

excess AlF3 can be in the form of chiolite (Na5AhF14) (1.65 < CR < 3) or both chiolite 

and AlF3 (CR< 1.65) [6] . If the electrolyte sample is basic (CR> 3) no sintering step is 

needed. 

(1.11) 

(1.12) 

The sinter is finely ground and leached with water to dissolve the remaining NaF. The 

excess of F is titrated with Th(NO3)4, using sodium alizarin sulphonate as the indicator. 

This method gives highly reproducible results with a typical accuracy of ± 0.1 units 

[31,32]. The problems with this method arises from the sintering reaction which is 

required when analysing acidic electrolytes. At the high temperatures used in this 

sintering step, AlF3 rich species such as NaAlF4 can be lost as a vapour. This loss 

results in the measured cryolite ratio being overestimated. 

These traditional chemical methods are generally time consuming and labour intensive 

due to the nature of the reactions involved, and can suffer from lack of reproducibility 

[32]. 

1.5.2 Instrumental Analysis 

There are several instrumental techniques, which can determine the composition of the 

electrolyte. These include atomic absorption spectroscopy, x-ray diffraction, and K-ray 

fluorescence and Fluoride selective electrodes. 
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Atomic absorption spectroscopy is a very common technique of determining the 

concentrations of a wide range of elements in a solution, providing a relatively quick 

analysis of a sample using instruments that are relatively common in most laboratories. 

The benefit of atomic absorption spectroscopy is that no sintering or melting the sample 

is required. 

Provided that the alumina content of a sample is known, the cryolite ratio could be 

calculated simply by analysing a solution containing the dissolved electrolyte sample, 

for both sodium and aluminium. Other compounds including calcium, magnesium and 

lithium fluoride could also be measured this way. 

A method has also been described where by the excess aluminium fluoride is first 

reacted with potassium chloride in the presence of fluoride ions, as shown by Equation 

1.13 [33]. 

(1.13) 

Once the reaction is complete, the remaining potassium chloride is determined by flame 

atomic absorption spectroscopy. This method enabled cryolite ratios between 2.4 and 3 

to be determined, with a standard deviation of ± 0.9-3.4% [33]. This method may be 

considered simpler than other atomic absorption techniques as only potassium needs to 

be analysed and the alumina content does not need to be known. 

X-ray diffraction and x-ray fluorescence are considered more useful than the other 

instrument techniques as the analysis can be performed directly on solidified samples 

taken from the bath [32]. X-ray diffraction identifies compounds from characteristic 

diffraction patterns each compound produces. The intensity of the peaks within the 

diffraction pattern is related to the amount of that particular compound present in the 

sample. When a sample of electrolyte is taken from the bath, a range of crystalline 

compounds form upon-cooling, as shown below [32]. 
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• Cryolite (Na3AlF6) 

• Chiolite (NasAlJF14) 

• Calcium Cryolite (NaF.CaF2.AlF3) 

• Fluorite (CaF2) 

• Sodium Fluoride (NaF) 

• Alumina (AhO3) 

• Lithium Cryolite (LiJALF6) 

• Aluminium Fluoride (AlF3) at CR < 1.65 [6] 

The cryolite ratio can be determined by comparing the intensities of a certain cryolite 

peak and a peak from chiolite, as the majority of excess AlF3 crystallises as chiolite 

[32). An internal standard method of determining the cryolite ratio by x-ray diffraction 

has also been discussed and showed good agreement with a titration technique [34). 

However when electrolytes with high AlF3 concentrations (above 24wt% ), are 

solidified, AlF3 is also crystallised, making this method unsuitable these electrolytes 

[35). 

X-ray fluorescence may be used to determine the concentration of elements within the 

electrolyte. Like x-ray diffraction the solid sample must be prepared in a consistent way 

to ensure results are comparable. There are also some inter-elemental effects, which 

must be considered when analysing the result. X-ray fluorescence has been successful in 

determining the cryolite ratio, CaF2, and AhO3 concentration of low temperature 

electrolytes [35). 

Fluoride -selective electrodes are another way that the cryolite ratio of an electrolyte 

sample can be determined [30,36]. Fluoride selective electrodes provide a potential 

response to the free F present in a solution, which is typically logarithmic in respect to 

-concentration. 

For acidic (CR<3) samples, the excess AlF3 is reacted with NaF to produce cryolite 

before the remaining sodium fluoride is determined using the fluoride selective 

electrode. This reaction -can be performed in aqueous solutions [36] or by sintering the 

sample with the -sodium fluoride at high temperature as -shown by equations 1.11 and 
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1.12 [30]. Sintering at high temperature can result in the volatilisation of AlF3 rich 

species, so this needs to be considered. Once the excess AIF3 has reacted, the potential 

of the solution is measured using a fluoride selective electrode. The potential is 

compared to a standard curve to determine the quantity of NaF remaining, allowing the 

cryolite ratio to be calculated. This method has been found to give results in good 

correspondence to other methods such as X-ray diffraction [36], pyro-titration and the 

thorium nitrate titration [30]. 

1.5.3 Using other Bath Variables 

From measurements of bath and liquidus temperature, it is be possible to calculate the 

cryolite ratio provided the content of alumina and other additives is known. 

Temperature measurements have been used for calculating the excess AlF3 

concentration in industrial cells [25,37-39]. There are probes available for liquidus 

temperature [40] and alumina content [41] measurement in industrial cells. This method 

of cryolite ratio measurements could be developed further although currently liquidus 

temperature and alumina content measurements are not widely performed in industrial 

cells. A method utilising differential temperature measurement has also been suggested 

as a method by which the cryolite ratio or alumina content can be measured [42]. Bath 

resistance has also been used in a model to control the AlF3 content of industrial 

electrolytes [2S]. 

1.5.4 Electrochemical Measurement 

Electrochemical measurements of cryolite ratio changes, have been made in cryolite

alumina melts using liquid aluminium and sodium alloy electrodes [3]. The galvanic 

cell used for measuring the cryolite ratio is shown below. 

(1.14) 

This <::orresponds to the following overall cell reaction: 

17 



3NaF + Al ~ 3Na + AIF3 (1.15) 

with the following Equation describing to potential between the electrodes: 

where: E = Potential difference between electrodes [V] 

E0= Standard Potential of the cell [V] 

R = Gas constant, 8.314 [J/mol.K] 

T = Temperature [K] 

n = Number of electrodes involved 

F = Faraday constant, 96490 [C/mol] 

ax = activity of species x 

(1.16) 

Assuming the activities of the aluminium and sodium electrodes remain -constant this 

equation simplifies to: 

(1.17) 

where: Ee is a constant potential term 

This shows that a change in the ratio of the AIF3 and NaF activities {i.e. a change in the 

cryolite ratio) will correspond to a change in the measured potential between an 

aluminium and sodium alloy electrode. 

The basic equipment set-up used for these electrochemical measurements is shown in 

Figure 1.4. 
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Figure 1.4 EMF cell set-up [3]. 

The results from this work showed that the potential could indeed be used to measure 

the cryolite ratio changes, however problems with the stability of the electrodes were 

found [3]. The activities of the electrodes, in particular the sodium alloy electrode, were 

found to change with time [3]. This was suggested to be due to the dissolution of 

sodium into the molten electrolyte [3]. Aluminium was also found within the sodium 

alloy electrode and is believed to be due to the reaction shown by Equation 1.18 [3]. 

3Na+AlF3 ~3NaF+Al (1.18) 

Although the liquid pool electrodes have stability problems in cryolite-based melts, it is 

believed that electrochemical measurement of the cryolite ratio is possible, provided 

that stable electrodes can be constructed. The benefit of an electrochemical method to 

determine the cryolite ratio would be the speed and-ease of obtaining the results. 

Several other workers [43] have carried out other electrochemical measurements in 

cryolit-e-based melts using galvanic cells. One such cell as shown below was used to 

measure the activity data for the NaF-AlF3-Ah03 system [44]. 

Pb-Na/ Na3AlF6 o> a.-Ah03 <sat> I a.-Ah03 / NaFc1> AlF3 (diss) cx.-Ah03 <sat/ Pb-Na (1.19) 

19 



The cell shown in Equation 1.19 gave quite stable potential measurements for cryolite 

ratios above 2, and the potential was found to be a linear function of the cryolite ratio 

[44]. The sodium-lead alloy used was found to be a reliable sodium electrode with the 

relative change of the measured potential being typically ±0.1 mV/hr [44]. 

Activity data for AlF3 and NaF in cryolite based melts have been reported in literature 

to some degree [44-47]. These activity measurements will enable the theoretical 

potentials or potential changes to be calculated, for cells similar to those shown by 

equation 1.14. The activity of NaF and AlF3 has been calculated as a function of the 

cryolite ratio (Figure 1.5). 
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Figure 1.5 Activity of NaF and AIF3 in the NaF-AIF3 system, as a 

function of CR at 1300 K [ 46] 
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1.6 Electrodes for Electrochemical Sensors 

As discussed above, it is critical that stable electrodes are used when constructing a 

system to make potentiometric measurements of the cryolite ratio. In order to test 

electrode stability the potential between the electrode in question, and an electrode that 

is known to be stable must be measured. Provided that this measured potential is stable 

over some period the electrode can be considered stable. If a stable test electrode does 

not exist, the electrode in question should be compared to another identical electrode 

[48]. Variation from a potential difference of zero indicates a lack of stability. 

1.6.1 Liquid Metal Electrodes 

As discussed in section 1.5.4, electrodes constructed using static pools of liquid metal 

have been partly successful for electrochemical measurements in laboratory cells [3]. 

These can suffer from dissolution and contamination reactions (Equation 1.18), which 

prevents these electrodes, particularly liquid sodium alloy electrodes, from remaining 

stable over any extended period in cryolite melts. It has been shown that aluminium 

electrodes constructed using a wetted molybdenum hook design, have good stability in 

cryolite melts [48]. Several authors [48,49] have also described liquid aluminium 

electrodes where the aluminium is allowed to sit above a density-modified bath 

containing high levels of BaF2• 

1.6.2 Gas Electrodes 

Gas electrodes have been successfully used to determine the activity of species within a 

cryolite melt (43]. These electrodes usually incorporate a platinum wire or carbon rod, 

over which a gas such as oxygen, carbon monoxide, or carbon dioxide is flushed. It is 

felt that these electrodes should be avoided due to difficulties when used in industrial 

cells [3]. 
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1.6.3 Solid Electrodes 

There are some solid electrodes that have been used for electrochemical measurements 

in cryolite based melts [43]. These electrodes can be constructed from various metal 

oxides and aluminium alloys [43]. These electrodes are reported to suffer from 

corrosion and stability problems, due to the extreme conditions found in industrial 

electrolytes. 

1.6.4 Dropping Metal Electrodes 

Dropping metal electrodes have been used in electrochemical experiments since Kucera 

first developed them in 1903 (50]. They have traditionally been used for polarography, 

which was developed by Heyrovsky in 1922 (51]. Polarography is linear -sweep 

voltammetry, carried out at a dropping electrode. This electrode consists of a reservoir 

and a fine capillary (ID < 1 mm), from which the liquid metal is allowed to drip into the 

electrolyte (Figure 1.6). The drop of metal provides the electrical contact with the 

electrolyte. 

Polarography allows the changes in current resulting from the electrolysis of a solute, to 

be followed by a dropping electrode and an increasing applied voltage (52]. As the 

voltage sweeps, there will be a point at which a metal ion will be reduced. As this 

occurs the current increases sharply until the diffusion-limited current is reached at 

which point the current levels off [53]. Small polarographic maxima can also be 

observed in the polarogram, when the current exceeds the diffusion-limited current for a 

short period. This is suggested to be due to the streaming or convection of the 

electrolyte around the growing electrode drop [53]. These polarographic -curves have 

been widely used for quantitative analysis of both inorganic and organic solutes (53] as 

well as analysis of molten salts [54]. 
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Figure 1.6 Dropping Metal Electrode Schematic 

Dropping metal electrodes usually use mercury as the electrode metal, as this is liquid at 

room temperature, although molten metals such as lead [55,56] , bismuth [55,57] silver 

[57 ,58] and gold [57] have been used at higher temperatures. 

The benefit of using dropping metal electrodes is the continuously renewing electrode 

surface at the drop-electrolyte interface. This means that reactions between the 

electrolyte and the electrode metal do not affect the activity of the electrode, as any 

surface contamination or dissolution is lost when the drop falls away from the capillary. 
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The Hagen-Poiseuille Equation, as shown below, gives the flow rate of liquid metal 

from the capillary tube. 

1tr
4 pP 

m=---
811J 

where m = Mass flow rate of liquid metal [kg/s] 

r = Internal radius of capillary [m] 

p = Density of liquid metal [kg/m3
] 

P = Pressure of liquid metal head [Pa] 

1 = Length of capillary [m] 

Tl = Viscosity of liquid metal [Pa.s] 

(1.20) 

The drop' s formation will be restricted due to the surface tension of the electrolyte

metal interface. This is described as the back pressure on the drop, as given by Equation 

1.21. 

2y 
p back = 

r 

where: Pback = Back pressure on drop [Pa] 

r = radius of drop at any time [m] 

y = electrode-metal surface tension [N/m] 

(1.21) 

In most applications of dropping metal electrodes, the electrode is designed to give 10-

60 drops/min [53] at an overall flow rate of 1-4 mg/sec [S2]. There are some methods 

that have been used to control the dropping rate or flow rate of metal, by using 

mechanical drip dislodges [59], and pressure head-control [52,56,57]. There are several 

texts available that fully cover polarography and polarographic techniques [52,59]. 

Currently it is believed that dropping metal electrodes have only been used in 

electroanalytical techniques where a signal such as a voltage is actively applied to the 

cell in order to measure a response. They have not been utilised in a galvanic or passive 

cell set-up in order to measure the potential between two electrodes such as in 

potentiometry. 
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This type of electrode may be useful in a system to make potentiometric measurements 

of the cryolite ratio. The discussed activity changes of the sodium electrode could be 

avoided, if a sodium alloy is used as the metal in the dropping electrode. 

1. 7 Objectives of Work 

As shown by section 1.3 the cryolite ratio, can effect many variables with an industrial 

smelter cell, including the overall efficiency of the aluminium production process. 

Currently only laboratory based methods such as X-ray diffraction, are used to measure 

the cryolite ratio. As these methods have a time lag between sampling and 

measurement, cryolite ratio control based on these methods is difficult. A sensor that 

can measure the cryolite ratio in situ would greatly improve the ability for cryolite ratio 

control. 

The Objectives of this work are as follows: 

• Develop liquid metal electrodes for electrochemical cells 

• Investigate cryolite ratio measurement using electrochemical cells 

• Develop dropping metal electrodes for cryolite melts 

• Investigate dropping metal electrodes in electrochemical cells 
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