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Abstract 

Newton's Second Law of Motion for one-dimensional inviscid flow of an incompressible 

fluid, in the absence of external forces, ts often expressed in a form known as Bernoulli's 

equation: 

There are two distinct forms of Bernoulli's equation used in the system of equations 

which is commonly considered to describe sound production in a trumpet. 

The flow between the trumpeter's lips is, in the literature, assumed to be quasi-steady. 

From this assumption, the first term of the above Bernoulli equation is omitted, since it is 

then small in comparison to the other two terms. 

The flow within the trumpet itself is considered to consist of small fluctuations about 

some mean velocity and pressure. A l(nearized version of Bernoulli's equation (as used 

in the equations of linear acoustics) is then adequate to describe the flow. In this case it is 

the second term of the above equation which is neglected, and the first term is retained. 

Given that the flow between the trumpeter' s lips is that same flow which enters the 

trumpet itself, a newcomer to the field of trumpet modelling might wonder whether the 

accepted model is really correct when these two distinct versions of the Bernoulli 

Equation are used side by side. 

This thesis addresses this question, and raises others that arise from a review of the 

standard theory of trumpet physics. The investigation comprises analytical and 

experimental components, as well as computational simulations. 

No evidence has been found to support the assumption of quasi-steady flow between the 

lips of a trumpeter. An alternative flow equation is proposed, and conditions given for its 

applicability. 
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Preface 

The work discussed in this thesis germinated, in February of 1992, from a project idea for 

a one-year masters program in Electrical and Electronic Engineering at the University of 

Canterbury: to synthesise trumpet sounds by implementing, in real-time, a mathematical 

model of trumpet physics. 

After two years at the University of Canterbury, I summarised my findings in a report 

(Redhead, 1993) and sent copies to four researchers who I thought may be interested. 

Chapter One of thi s thesis represents (mainly) the findings of my two years at the 

University of Canterbury. 

My report was received favourably by Shigeru Yoshikawa (Japan), who cited it in an 

article published by the Journal of the Acoustical Society of America (Yoshikawa, 1995), 

and by Douglas Keefe (U.S.), whose response led to my visit to the University of 

Washington, Seattle. Chapter Five describes the results of an experiment performed 

when I visited the University of Washington, Seattle, for three weeks of 1994. 

Chapters Two to Four, Chapter Six and Chapter Seven have originated from my 

subsequent two years at Massey University. 

None of the content of this thesis, m whole or in part, has been presented before for 

examination at any university. 
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Modelling of 

Sound-Production in the Trumpet 

The exact means by which sound oscillations are produced and maintained in many wind 

instruments is, to date, uncertain . A large obstacle to the pursuit of such knowledge has 

been the difficulty of making detailed physical measurements while the instrument is 

being played. Many parameters and variables of the system (such as lung pressure and 

diaphragm force, vocal tract shape and facial muscular tension) are, to a large extent, 

unmeasurable. But some useful results have been obtained in spite of these difficulties 

(Martin, 1942; Henderson, 1942; Stubbins, Lill ya & Frederick, 1956; Weast, 1963; 

Bouhuys, 1965; Vivona, 1968; Elliott & Bowsher, 1982; Barbenal, Davies & Kenny, 

1986; Yoshikawa & Plitnik, 1993; Copley & Strong, 1994; Yoshikawa, 1995). 

It is a far simpler matter to investigate the acoustical response of a particular wind 

instrument shape in isolation from the musician. By appropriate coupling of an electro­

acoustic transducer to the musical instrument a frequency response may be determined for 

the instrument alone (Webster, 1947; Igarashi & Koyasu, 1953; Benade, 1973; Backus, 

1974, 1976; Smith & Daniell, 1976; Pratt, Elliott & Bowsher, 1977; Elliott, Bowsher & 

Watkinson, 1982). Other less specific studies also have relevance to musical instrument 

analysis (Jansson & Benade, 1974; Silcox & Lester, 1982; Davies, 1988). 

A number of researchers have directed their efforts towards developing apparatus which 

sounds a wind instrument artificially from a supply of compressed air (Webster, 1919a; 

Martin , 1942; Backus, 1963, 1964; Backus & Hundley, 1971; Wilson & Beavers, 1974; 

Fletcher, Silk & Douglas, 1982; Idogawa et al., 1988). 

In recent years, the ever-increasing speed, capacity and availability of computational 

resources has seen mathematical modelling become an invaluable tool in the investigation 

of wind instrument operation (Pyle, 1969; Stewart & Strong, 1980; Saneyoshi, Teramura 

& Yoshikawa, 1987; Park & Keefe, 1988; Sommerfeldt & Strong, 1988; Yoshikawa, 
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1988; Barjau & Agull6, 1989; Keefe, 1990, 1992; Strong, 1990b; Brown & Schumacher, 

1990; Strong & Dudley, 1993; Adachi & Sato, 1995). Mathematical modelling offers 

significant a9vantages over experimental procedures, particularly in the separate analysis 

of subsysterris of the overall system ( e.g. Dudley & Strong, 1990, 1993). 

The idea of mathematical modelling of musical instruments has been received eagerly by 

· Electronic Engineers hoping to implement such models using fast and efficient algorithms 

for real-time synthesis of musical instrument sounds (Smith, 1991a; Valimaki et al.,1992; 

Cook, 1992; Borin, De Poli & Sarti, 1992; Rodet & Doval, 1992). But while providing 

additional motivation for the study of musical instrument operation, it is the present 

author's view that the birth of physical modelling synthesis has also brought to the field a 

sense of urgency which, perhaps, has not been completely advantageous inasmuch as 

attention to model detail is concerned. 

Sound synthesis via a mathematical model of a real musical instrument promises 

numerous and significant advantages over other synthesis techniques (Smith, 1991a). 

However, these synthesisers can only yield accurate reproduction of traditional musical 

instrument sounds if based upon sufficiently accurate mathematical models of those 

instruments. Some engineers state that " ... in general, a serious comparison between 

reality and simulated results cannot give satisfactory results" (Borin, De Poli & Sarti, 

1992). Others have turned their attention away from applying the known models and 

towards improving the models themselves (Redhead, 1993). 

Although this thesis focuses especially upon improving the model of sound-production in 

the trumpet, some of the conclusions are more broadly applicable to other wind 

instruments, and particular to other members of the brass family . 
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1.1 Fundamentals of Trumpet-Playing Technique: 

To sound a note, the trumpet player draws his or her lips taut and places them against the 

mouthpiece of the instrument. Air from the lungs is used to set the lips into vibration, as 

depicted in Figure 1. 1. By thus buzzing the lips against the trumpeCmouthpiece, a stable 

acoustic oscillation may result - though not necessarily at the same pitch as for the lips 

alone (Dale, 1965). 

mouth: 

Figure 1.1 : 

Valve Action: 

mouthpiece: 

backbore 

throat 
________ cup 

Lips Against The Trumpet Mouthpiece 

The modern trumpet is fitted with three two-way valves. Depressing a valve adds a short 

detour to the path of any travelling sound wave within the instrument. There are a total of 

2 3 = 8 fingering positions possible; the player thus has access to eight different horn 

geometries from the one instrument. The first, second and third valves lower the pitch by 

approximately two, one and three semitones respectively. This gives seven possible notes 

( one of which has alternative fingering) as shown in Figure 1.2. 
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Figure 1.2: Lower Notes Are Produced As More Valves Are Depressed 

Selection of Higher Harmonics: 

Most trumpet tunes contain more than the seven pitches shown in Figure 1.2. The 

trumpeter is able to extend this range by varying the tautness of the lips. Several stable 

oscillations are possible for each fingering position, and the lip parameters determine 

which one of these is excited. Ideally, the geometry of the instrument is such that the 

fundamentals of these stable oscillations (for any one fingering position) are related to 

each other through membership of the same harmonic series (Figure 1.3). 

:J r r t I 
Figure 1.3: Some Of The Notes That 

May Be Sounded With No Valves 

Depressed 

The mouth position and lip parameters of the player define his or her embouchure. Using 

variations of both embouchure and fingering position, the practised trumpeter will often 

be capable of producing a full complement of notes within a range of around two-and-a­

half octaves. 

Lipping: 

The player is also able vary the embouchure to effect small variations to the frequency of 

a note without swapping to another stable oscillation; the player is then said to be lipping 

the note up. This technique may be used by a skilled player to overcome inherent tuning 
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deficiencies of an instrument, and also for bending a note for musical effect (useful for 

playing jazz). 

Dynamic Level: 

The trumpet player varies the loudness or dynamic level of the music primarily through 

control of the diaphragm and upper abdominal muscles, thereby causing changes to the 

flow-rate of air from the lungs. Concurrent adjustment to the embouchure may be 

necessary to prevent the oscillation from jumping to another harmonic of the system. 

Tone Control: 

The origins of the steady-state tone of a trumpet sound are perhaps a little more unclear. 

A player will often prefer the tone of one instrument over another, and certainly the 

geometry of the instrument plays a significant role in the tonal quality of the sound it 

produces. The trumpet, cornet and flugel horn are three brass instruments which all have 

the same bore length. Their characteristic differences in tone quality are attributed to the 

different proportions of cylindrical and conical ducting along the length of the 

instruments. 

Significant differences in tonal quality of the instrument can also be afforded by means 

of a mute. Several different shapes of mute are readily available. A mute is designed to 

si t in the flared end (the bell) of the trumpet, thereby affecting its acoustic reflection and 

transmission properties. 

Aside from these more concrete factors, two players will often produce notes of 

different tonal quality upon playing the same instrument. This indicates that the musician, 

as well as the instrument, influence the tone. Furthermore, an individual trumpeter is able 

to deliberately vary the tone of a note while maintaining a constant dynamic level. These 

effects have been attributed to variations of parameters of the player's oral cavity and 

vocal tract (Stauffer, 1968). Differences of geometry (determined by tongue position, for 

example) and perhaps also of the resilience of the muscle walls of the oral cavity and 

vocal tract (determined by the state of muscular tension) could be responsible for changes 

in trumpet tone. 
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Articulation: 

The manner in which the player controls the attack of a note is known as articulation. If 

the flow of air into the trurppet is obstructed briefly by the tongue before starting a new 

note, then that note is said fo be tongued. Pre·ssure builds behind the tongue and the lips 

are unable to oscillate. When the tongue is released, there is a sudden burst of air 

available to aid the initiation of the new oscillation. 

The process of tonguing a note is analogous to the pronunciation of unvoiced plosives 

in speech production - especially It/. A similar function can be formed further back in the 

mouth by forming the syllable lk/. The lk/ may be usefully alternated with It/ in very fast 

passages; this technique is known as double-tonguing. 

When a smooth or slurred transition between two notes is required, the second note is 

not tongued. The change of note is effected by the variation of embouchure and/or 

fingering position only, without interruption of the air supply to the instrument and 

without a subsequent burst of air to aid the initiation the new oscillation. 
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1.2 The Traditional Trumpet Model: 

Any musical instrument which is capable of generating sustained notes of stable loudness 

is an example of a self-excited oscillator. 

A self-excited oscillator is characterised by the presence of an energy supply which is 

either static (i .e. it has constant properties throughout time) or quasi-static (i.e. its 

properties do vary in time, but upon a time scale much longer that the period of the 

oscillation). It is the motion of the oscillator itself which regulates the rate of transfer of 

energy from the energy reservoir to the oscillation. The forcing function of the oscillator 

thus depends upon time only through the state of the system and its time derivatives. 

static 
energy 
supply 

Figure I .4: 

forcing function system s4tte 

SELF-EXCITED OSCILLATOR 

Feedback Structure of Self-Excited Oscillator 

When, during each cycle of system osci llation, more energy is received from the reservoir 

tha t is lost from the oscillator th rough other means, the amplitude of the oscillation 

increases. When less energy is received from the reservoir than is lost from the oscillator 

through other means, the amplitude of the oscillation decreases. An oscillation of stable 

amplitude results when the energy received per cycle balances that lost from the 

oscillator. 

Wind instruments and bowed string instruments are examples of self-excited musical 

oscillators. For most wind instruments, a quasi-static energy supply is provided by the 

force exerted by the musician' s diaphragm muscles upon the air held by the lungs. (The 

pipe organ and the bagpipes are exceptions.) For bowed string instruments, the quasi­

static energy supply is in the form of the musician's drawing of the bow steadily across 

the string(s). 
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Percussion instruments (e.g. drums, piano) and plucked string instruments are examples 

of musical oscillators which are not self-excited. These receive energy once, at the 

beginning of each a note, and the energy of the oscillation begins to decay from that 

moment. 

Energy is lost from a musical oscillator in two important ways. Of most interest is the 

energy of the system oscillation which is transformed into sound energy. The energy is 

then propagated away. Secondly, a proportion of the kinetic energy of motion of any kind 

is always converted irreversibly into heat energy, so that it is no longer useful to the 

system. This loss of useful energy is known as damping. There is damping associated 

with all moving parts of an oscillator, and there is also damping associated with (both 

acoustic and non-acoustic) fluid motions. 

Generator - Resonator Decomposition: 

Musically useful self-excited oscillators, though overall strongly non-linear, can often be 

described in terms of conceptually separate linear and non-linear subsystems which react 

with each other within a feedback loop (McIntyre, Schumacher & Woodhouse, 1983). 

This decomposition (see Figure 1.5 below) proves very useful in the analysis of the 

complicated overall-nonlinear system. 

-----------,\ 

/:~ergy ' ' 

\,,_source 
..... ________ .... ,/ 

' ' 

Figure 1.5: 

feedback signal 

__., 
nonlinear linear 

- element - element - . 
(self-excited) (passive) 

GENERATOR RESONATOR 

- a coustic 
output 

• 

Basic Components of a Self-Excited Musical Oscillator 

The generator subsystem receives energy from a constant energy source and releases it as 

an energy oscillation into the resonator. The resonator receives oscillatory energy 

presented by the generator, and combines this (linearly) with the energy it has already. 
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Energy oscillations of certain frequencies are favoured by the resonator. Whereas the 

generator acts as an energy modulator, the resonator acts as a linear energy filter. 

Often feedback between the resonator- and the generator provides a means for the 

generator to "lock in" to a frequency favoured by the resonator. This gives stability to the 

frequency of the resulting oscillation. 

Wind Instruments 

For wind instruments, the source of energy is most often provided by the diaphragm 

muscles of the musician, exerting a pressure force upon the air contained by the lungs. 

The resonator subsystem of a wind instrument is generally considered to be the column 

of air inside the instrument, in which acoustic standing waves build up. The resonator is 

provided with acoustic energy by the generator subsystem, and it loses acoustic energy in 

the form of sound radiated from its open end. In addition to the energy lost in the form of 

acoustic radiation, there is additional energy loss through the irreversible conversion of 

kinetic energy to heat energy. This is an inevitable result of motion of any kind; energy is 

lost from the acoustic motion within the air column via internal fluid friction called 

viscosity. Any wall vibrations of the resonator, in response to the enclosed acoustic 

oscillations, are responsible for additional radiation and dissipation losses. 

The generator subsystem of wind instruments is responsible for the conversion of a 

steady pressure force, provided by diaphragm of the musician, into acoustic flow energy 

(which is oscillatory in nature), for provision to the resonator subsystem. Thus it can be 

said that the generator subsystem, for wind instruments, has a role of flow modulation. 

For all wind instruments, very little is known about the flow modulation performed by the 

generation subsystem as compared with the amount of knowledge and understanding of 

the (linear) resonator subsystem. 

The vast majority of wind instruments modulate the airflow by means of a vibrating 

body in a narrow passage somewhere within the system. (Exceptions are the flute and 

recorder families, whistles and flue organ pipes - these utilise aerodynamic instability to 

make the conversion from steady to oscillatory flow.) Flow modulation is caused by a 

vibrating body near a flow constriction in all reed instruments, the brass family, and in the 

voiced sounds of human speech. 
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The traditional model of sound-production in the trumpet is based upon a proposition by 

Webster (1919a) that the trumpeter's lips act as a pressure-controlled valve: "A spring of 

variable tension holds the valve in place and the proper pressure can cause a puff of air, 
} 

which generates a sound in the horn which on reflection arrives at the valve in the proper 

phase to maintain vibration." 

Resonator Equations: 

The resonator subsystem of the trumpet is depicted below in Figure 1.6. 

acoustic standing 
wave 

LINEAR SUBSYSTEM 

reflection transmission 
( ) 

Figure 1.6 Resonator Subsystem for the Trumpeter-Trumpet System 

The resonator behaviour is assumed linear and time-invariant, and therefore can be 

conveniently described in terms of its acoustical impedance (Webster, 1919b). The 

acoustical impedance relates a pressure difference P(ro) to an acoustic volume velocity 

Q(ro) at each frequency ro : 

Z(ro) = P(ro) / Q(ro). 

Experimental data are avai lable for the acoustical input impedance of trumpets (e.g. 

Backus, 1976; Elliott, Bowsher & Watkinson, 1982). 

Many theoretical results are available for the mathematical description of linear 

acoustics within the trumpet and also at its open end (Levine & Schwinger, 1948; Young, 

1966; Benade, 1968; Benade & Jansson, 1974). 
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The treatment of sound propagation in a duct, as an analogue to electrical current in a 

transmission line, is well-known (Morse & Ingard, 1968, §9.1). The basic theory has 

been refined considerably for application to woodwind instruments especially (Keefe, 

1990b). 

The idea of discretising the whole duct (transmission line) into a number of short 

lengths, each having lumped parameters, has found favour among modellers. The method 

of approximating a duct shape by a concatenation of several short cylindrical tubes has 

been popular for many years with modellers of the processes of human speech (Flanagan, 

1972; Flanagan, Ishikaza & Shipley, 1975; Rabiner & Schafer, 1978; Bonder, 1983). A 

related method, which gives a better approximation for a given elemental length of duct, 

but which has not been extensively exploited because of the added numerical 

complexities, involves the use of truncated cones as duct elements instead (Plitnik & 

Strong, 1979; Causse, Kergomard & Lurton, 1984). 

When it is desirable to describe the resonator in the time domain the inverse Fourier 

transform of the acoustical input impedance Z(w) will give the impulse response z(t) . 

The system response to an arbitrary input signal is then calculated by convolution of the 

impulse response with that input signal. A more computationally convenient method is to 

use the reflection function , usuall y denoted r(t). This may be thought of as the 

disturbance found at the mouthpiece after an impulse is sent at t = 0 and the tube then 

terminated there by a perfect absorber. Using the re flection function, the pressure in the 

mouthpiece is conceptualised as the sum of incoming and outgoing waves (Equation 1.1 

below), related through convolution (Equation 1.2 below) (Schumacher, 1978, 1981; 

McIntyre, Schumacher & Woodhouse, 1983). 

P2 (t) = p;n{t) + Pm,, (t) 

P;11 (t) = r(t )* Pout (t) 

(I. 1) 

( 1.2) 

The resonator description is then completed by taking the volume velocity between the 

lips as the input acoustic volume velocity for the trumpet. 

q = i-[ p /JIii ( t) - pill ( f)] 
0 

( 1.3) 
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Figure 1.7: Pressures In The Mouthpiece 

In Equation (1.3), Z0 is the characteristic acoustic impedance at the entryway to the 

trumpet, given by Z
0 

=pc/ A;n, where A;,. is the cross-sectional area at the entry, and p 

and c are the fluid density and sonic speed, respectively, for the fluid at rest conditions. 

Alternatively, a digital waveguide description of the resonator is also possible (Smith, 

1986, 1991 b, 1992). 

Little further discussion of the resonator description will be made in this thesis. The 

linearity of the resonator makes its mathematical description straightforward. The choice 

of the method of description is largely a matter of convenience. 

Generator Equations: 

The following description is of the generator subsystem of a basic trumpet model. 

Modifications to this basic model structure have been proposed by various authors from 

time to time, but are not considered in detail here. The model described here has been 

implemented before for the purpose of physical modelling synthesis of brass instrument 

sounds (Cook, 1991 ). 

It is common in the literature to consider only the upper lip of the player as a vibrating 

body in the formulation of the model, the lower lip being treated as a fixed boundary. 

Experimental evidence seems to support such an approach: trumpet tones can be produced 

without lower lip vibrations by using a partially filled-in mouthpiece (Henderson, 1942), 

and some brass players have been observed to play without movement of their lower lip 

even while using a standard mouthpiece (Weast, 1963). 

The lip motion is represented by the displacement x of a single mass-spring-damper 

oscillator. The mass m of the vibrating body is asssumed constant, the restoring force -sx 
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is assumed linear and the damping - bx is assumed viscous (proportional to the speed of 

motion). The forcing function for the oscillator is taken as the product of the pressure 

difference Pi - p2 across the lip and its area AT normal to the flow (the superscript 'T' 

being used to denote the transverse area),.as shown in Figure 1.8 below. 

(1.4) 

Figure 1.8: The Lip As A Mass-Spring-Damper Oscillator 

The pressure in the mouth Pi is assumed constant and the pressure in the trumpet 

mouthpiece p2 is related to the mouth pressure by an equation referred to by some 

modellers as a Bernoulli Equation: 

P1-P2 =fu
2 ( 1.5) 

Here u is the speed of the flow between the player's lips, and p is its density. 

The area of the orifice formed by the lips is taken to be proportional to the displacement x 

of the oscillating body, in accordance with the results of Martin's stroboscopic 

observations of a trumpeter's lips (Martin, 1942; figs. 4 - 6). Martin's graphs collectively 

suggest that the horizontal lip displacement and the aperture area are roughly 

proportional. Thus the volume velocity of the flow, q (cubic metres per second), may be 

defined by 

q =kux (1.6) 

Equations ( 1.1) to ( 1.6) give a system of six equations in six unknowns (assuming that r(t) 

is known, as well as the values of the various system parameters). These are repeated 

here: 
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P2 (t) = P;,, (t) + P,,111 (t) 

P;,,(t) = r(t)* p"111 (t) 

1 
q = 2 [P"u' (t)- P;,, (t) ] 

0 

p 2 
P, - p, =-u 

- 2 

q = kux 
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1.3 Discussion of Some Concerns Regarding the Traditional Model: 

The traditional trumpet model presented in the previous section fails to provide a 

convincing description of how sound is produced in the trumpet. Although the acoustical 

theory of the (linear) resonator subsystem is well understood, there is cause for concern in _ 

the mathematical description of the generator subsystem. 

1.3.1 Concern over the Accepted Bernoulli Equation: 

Equation (1.5), referred to by trumpet modellers as "Bernoulli's Equation", is repeated 

below: 

It is common in the literature to replace the particle velocity u using the relation q = uA 

where q is the volume velocity, and A is the duct cross-sectional area at that position. 

(This replacement assumes that the flow does not separate from the walls of the duct 

between positions 'l' and '2' .) Equation ( 1.5) becomes: 

pq2 
P1 - P2 = 2 A2 ( 1.7) 

Actually, this equation is only an approximation to a very special form of Bernoulli's 

equation. Equation ( 1.8) below is that special Bernoulli equation; it is valid for steady, 

quasi-} D flow (flow is quasi- ID when velocity u and thermodynamic properties of the 

fluid are constant over any flow cross-section) of a fluid which has zero fluid viscosity 

(i .e. zero internal fluid friction), and which moves with constant density p, as it moves 

between two places (designated 'I' and '2' in Figure 1.9). 
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1 2 
Figure 1.9: Bernoulli Equation Variables at a Constriction 

Furthermore, Equation 1.8 requires that there is no momentum transfer between the fluid 

and its surroundings (including gravitational effects) as it moves. 

P, -p, = >[(!:)' -(!J] (1.8) 

There is an unwholesome number of unjustified assumptions in the use of even Equation 

(1.7) to describe the flow between the lips of a trumpeter. Comparison between Figures 

1.7 and 1.9 shows that q and A of Equation (I. 7) corresponds to q2 and A2 of Equation 

(1.8). Consequently a further assumption required for this Equation (1.7) to be valid, if 

Equation ( 1.8) is already known to be valid, is 

(!J «(:J 
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It can be concluded that Equation ( 1.7) will adequately describe the flow between the lips 

of the trumpeter if: 

• the flow 1s steady (or vanes so slowly in time that the steady form of the 

Bernoulli equation gives an acceptable approximation to the motion), 

• the velocity u and thermodynamic properties of the fluid are constant over any 

flow cross-section (or such variations as so small as to have no effect upon the motion), 

• the fluid viscosity is zero (or is so small that it has negligible effect upon the 

transport of fluid momentum between the lips), 

• the fluid density is constant ( or varies so little that these variations have no 

noticeable effect upon the overall motion of the fluid), 

• the fluid is unaffected by gravity ( or the effect of gravity upon the fluid 1s 

negligible with respect to the overall motion), 

• there no momentum transfer to or from the fluid at its boundaries by external 

forces acting upon the fluid as it moves , 

• the flow does not separate from the lips as irflows, 

. (:J «(::)' 

1.3.2 Further Concern Over the Flow Description Near the Lips: 

Somewhere in the vicinity of the trumpeter's vibrating lips, there is some region of space 

where new acoustic energy is being generated, to be radiated outward as soundwaves. 

Such a region is said to contain an acoustic source. The actions of the source are 

responsible for the acoustic pressure fluctuations experienced at places far away from that 

source. But in the near field of an acoustic source, there are also other pressure 

fluctuations present which do not propagate as sound. The traditional model incorrectly 

assumes that all time-varying pressures at the lips can be regarded as acoustic . 

Confusion between unsteady convective fluid motion and acoustic fluid motion sometimes 

arises when such fluctuations occur at audio frequencies, on account of both types of 

motion being accompanied by pressure fluctuations. The term pseudosound has been 

coined by workers in the field of aero-acoustics in an attempt to clarify the distinction 

between fluctuating pressures associated with unsteady convective flow and the sound 
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proper (Ffowcs Williams, 1969). Pseudosound refers to the pressure fluctuations which 

exist in the fluid as a result of local fluid accelerations; pseudosound does not propagate 

at all. 

Texts upon the subj~ct of acoustics often refer to non-propagating pressures as being 

reactive (Morse & Ingard, 1968). There are always reactive pressures in the near field of 

an acoustic source. But, because the reactive pressures do not propagate, only the radiated 

. (sound) pressures are significant at places far from the source (i.e. in the far field). 

In the case of the vibration of the trumpeter's lips, the reader will agree that there is some 

sort of acoustic source in the vicinity of the lips. Because the propagation medium (the 

player's breath) is moving relative to this acoustic source, the reactive pressures near the 

source will be convected away. Thus the convected flow into the trumpet will be 

characterised by spatial pressure gradients . The pressure fluctuations experienced 

downtream of the lips will then be a combination of convected pressure gradients and 

sound propagation. 

Implications for Experimental Measurements: 

The presence of pseudosound fluctuations has implications for the interpretation of 

pressure measurements made in the vicinity of the lips, since a microphone will respond 

to all pressure fluctations, not discriminating between sound and pseudosound (the ear 

does too - Ffowcs Williams & Lighthill, 1971 ). 

Consider a flow-control valve at x = 0 that opens and closes at a frequency of 680 Hz 

(which lies within the range of the trumpet) . The wavelength of the sound follows from 

c 340 ms-1 

11, =-z---=0.Sm 
s f 680 s- 1 

A microphone placed at a distance of, say, IO mm from the flow control will measure a 

sound pressure which lags the pressure at the control mechanism by one-fiftieth of the 

period of the oscillation. Such a phase difference is barely significant. 

Now consider a pseudosound fluctuation, coincident with the sound fluctuation at the 

flow-control, but which is convected with a mean velocity of 10 ms- 1
• (Comparable flow 

speeds have been measured in the throat of a trumpet mouthpiece at approximately this 



19 

frequency - Elliott & Bowsher, 1982.) During one period of the flow-control mechanism, 

the pseudosound is convected by approximately the distance 

u 10 ms·1 

A =-=---:::::15mm 
/JS f 680 s·l 

The microphone, 10 mm from the flow-control mechanism, will measure a pseudosound 

pressure which lags that at the control mechanism by two-thirds of an oscillation period. 

The total pressure fluctuation as measured by the microphone cannot be assumed to give 

a faithful indication of fluctuations that are occurring at the control mechanism since the 

pressure signal detected by the microphone has an acoustic component and a pseudosound 

component that correspond to different instants of time in the history of the flow 

controller. Redhead (1993) has proposed an experiment in which an indication of the 

relative importance of convected and propagated pressure fluctuations, at a particular 

location, could be obtained through correlating the microphone output signal with that of 

another microphone placed a small distance downstream. The results of such an 

experiment appear in Chapter Five of this thesis. 

Consequences for the Model: 

It is clear that there is no consideration of pseudosound in the traditional trumpet model. 

The pressure in the player's mouth is assumed static while the pressure within the trumpet 

mouthpiece is assumed to be acoustic only. The traditional model assumes that all 

unsteady pressure is sound by equating the whole of the volume flow of air between the 

trumpeter's lips to the acoustic volume flow into the trumpet. Determination of the 

relative importance of the pseudosound and acoustical pressures in the vicinity of the lips 

is integral to the determination of the acoustic energy being produced there, and also to 

the determination of the fluid forces upon the lips. 

Separation of the acoustic contribution to the overall flow field is a problem within the 

domain of aero-acoustics. When the Mach number of the flow remains small, i.e. 

u << c, this separation is simplified by knowledge that the pseudosound is quite 

uninfluenced by fluid compressibility (Ffowcs Williams, 1969). For this reason, the non­

acoustic contribution to an overall flow field is sometimes referred to as the 

hydrodynamic component of the motion . 
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Little work has surfaced describing fluid-dynamical aspects of flow modulation within 

wind instruments (but see St. Hilaire, Wilson & Beavers, 1971 ). Fortunately, this is 

beginning to change (Hirschberg et al., 1990a, 1990b ). Modellers of human speech 

production seem to have taken :the fluid dynamics of the system more seriously (van den 

Berg, Zantemna & Doomenbal, 1957; Gupta, Wilson & Beavers, 1973; Kaiser, 1983; 

Teager & Teager, 1983; Pelorson et al., 1994 ). 

1.3.3 What Excitation Mechanism for the Flow-Induced Vibration? 

Flow modulation is caused by a vibrating body near a flow constriction in all reed 

instruments, the brass family, and in the voiced sounds of human speech. The action of 

flow modulation, by the vibrating body upon the passing flow, is coupled to the forcing 

action of the passing flow upon the oscillating body. The phenomena of flow modulation 

and flow-induced vibration are coupled within a feedback loop, as shown in Figure 1.10 

below. 

BODY MOTION 

flow-induced vibration 
(by fluid forces on the body) 

flow modulation 
(by movement of the fluid's boundaries) 

upstream 
flow ----.i FLUID MOTION 

downstream 
1---- • flow 

conditions conditions 

Figure 1.10: Coupling Of Flow Modulation And Flow-Induced Vibration 

Many wind instruments (e.g. clarinet, saxophone, oboe, bassoon and some organ pipes) 

employ a reed, which vibrates in a narrow part of the instrument bore as the musician 

plays. Brass players use their own lips as a reed. 

A number of different fluid-dynamic mechanisms may be responsible for the behaviour 

of a flow-induced vibration, and for many situations it is a complex interaction of several 

of these which determines the resultant motion (Wambsganss, 1976, 1977). Some 

oscillators are known to be excited by completely different mechanisms, depending upon 
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the incident flow velocity (Parkinson & Smith, 1962; Thang & Naudascher, 1986a, 

1986b). In this section some fundamental aspects of flow-induced vibration are 

introduced. 

Movement-Induced Excitation: 

Consider a fluid of infinite extent moving in the x-direction past a fixed, rigid body. If the 

body has axial symmetry about the x-ax is, then the fluid force upon the body is in the 

direction of fluid motion, and can be written (Massey, 1989: §8.8.3) 

F=Co £U 2 AT 
2 

Here C0 is a drag coefficient, Ar is a characteristic body area transverse to the flow (the 

definition of which depends upon the body geometry), p is the fluid density and U is the 

free-stream velocity; the free-stream velocity is the velocity of the fluid at a distance so far 

from the body that it is unaffected by the body's presence. 

Now consider that the body itse lf is also moving, but with velocity x, m the same 

direction as the flow. The resulting drag force will be given by (Morse & Ingard, 1968: 

Equation 11.3.35) 

Notice that the fluid force is now dependent upon the velocity of the body. (The reader 

may know that, in some cases, a velocity-dependent force upon a simple harmonic 

oscillator can lead to self-excited oscillations.) Any resulting flow-induced oscillation of 

the immersed body is said to be due to movement-induced excitation (Naudascher & 

Rockwell, 1980). 

Movement-induced vibrations do not reqmre the force upon the body to be axially 

symmetric as in the above example. More generally, a body moving relative to a fluid 

will be subject to fluid forces in three orthogonal directions, and moments about their 

axes. The resulting flow-induced oscillation might have up to six degrees of freedom. 

The term galloping (Blevins , 1977: ch. 4) is usually used to signify an oscillation with 

only one degree of freedom , while oscillations that rely upon body motions of two or 

more degrees of freedom for their existence are termed flutter (Parkinson, 1971 ). 
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Instability-Induced Excitation: 

For a real fluid, the fluid velocity on the surface of a stationary immersed body will be 

zero. This is known as the no-slip co;_;zdition, and it applies to any body in contact with a 

viscous fluid; all real fluids are viscous. The no-slip condition also applies to bodies in 

motion; it is the relative velocity between the body and the fluid which is then zero upon 

the body surface. A short distance from the surface of the body, the flow velocity is 

almost as great as that in the free stream. The region in between, where the fluid velocity 

changes appreciably (from zero at the body surface to U a short distance out), is known as 

a boundary layer (Batchelor, 1967; Schlichting, 1968). 

If the fluid velocity is sufficiently large (the requisite flow speed depends upon the fluid 

viscosity and the geometry of the body) then the boundary layer will separate from the 

body surface, and a wake will be formed downstream of the body. Downstream of the 

body, there will continue to be a layer of fluid across which the fluid velocity changes 

appreciably, and this is known as a shear layer. Shear layers are unstable, and when 

appropriately perturbed may roll up into discrete vortices which are then convected away 

with the flow. 

If a body in the fluid sheds vortices periodically, then the fluid force upon that body also 

varies periodically, since the fluid force upon the body varies throughout the vortex­

shedding process. If the body is not fixed, then the time-varying force upon the body can 

excite oscillations at the frequency of the vortex-shedding. The resulting flow-induced 

vibration is said to be a result of instability-induced excitation (Naudascher & Rockwell, 

1980). 

In contrast with the movement-induced excitation described already, the fluid force 

upon the body does not rely upon the body's motion for its time variation. The fluid force 

is time-varying even when the body is fixed . Furthermore, when the body is cantilevered, 

there are two resonant frequencies to be considered - the frequency associated with the 

vortex-shedding from the body when held fixed and the structural resonance frequency of 

the body when allowed to vibrate in a vacuum. The composite flow-induced vibration is 

not simple when these two frequencies are close, since the vortex-shedding can lock on to 

the natural vibration frequency of the body: When a body oscillates in response to vortex 

shedding, the induced motion of the body periodically displaces the point of flow 

separation from the body, at the frequency of the body vibration. These perturbations 

consolidate the vortex shedding process, and the vibration amplitude can increase until 
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such time as the body vibrations and the oscillating flow together extract the maximum 

amount of energy that can be provided by the incident flow. 

A flow-induced vibration caused by instability-induced excitation is sometimes referred 

to as a vortex-induced vibration (Blevins, 1977: ch. 3). However, the '. shedding of 

(discrete) vortices is not an essential feature of oscillations caused by instability-induced 

excitation. The essential feature is the flow instability giving rise to fluid oscillations, and 

thus an oscillatory force upon the body. 

Fluid Oscillator Effects: 

Two types of flow-induced vibration excitations have been described for a body in a 

moving fluid of infinite extent. There are important additions that must be considered 

when the motion of the oscill ating body occurs within a confined region of the flow. In 

such cases the motion of the body can have a drastic effect upon motion of the fluid past 

it , and thereby, the upstream and the downstream fluid behaviour. Since it is the fluid 

motion which determines the subsequent forcing function for the body vibrations, the 

result is a coupling between the body oscillator and a fluid oscillator (Naudascher & 

Rockwell , 1980). 

A fluid oscillator may appear in conjunction with either of the two excitation 

mechanisms described above. A fluid osc illator is passive; it does not add energy to the 

system. It contributes to the behav iour of a self-excited oscillation by modifying (the 

amplitude and/or phase of) the fluid fo rcing function upon the body oscillating in the 

flow . 

(The vibration of the trumpeter's lips certainly occurs within a confined region of fluid. 

Martin (1942) observed that the lips completely obstruct the flow once during each cycle 

of oscillation.) 

As a result of fluid oscillator coupling, the fluid forces upon a structure in a flow are 

altered due to the fact that an otherwise steady incident flow then has an unsteady 

component (Blevins, 1977: ch.6). These new effects may sometimes be even more 

significant than original excitation forces upon the body, even though they rely upon the 

latter for their existence. It is possible for these fluid oscillator forces to become the 

major determinants of the flow-induced vibration (Kolkman & Vrijer, 1987). 
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Acoustic Resonator Effects: 

If a flow-induced vibration occurs in some region where there is a resonant sound field of 

such magnitude that the acoustic fluid motions contribute significantly to the overall fluid 

velocity field, then the fluid force upon the body will obviously include a significant 

contribution from the acoustic fluid motion. But if the flow-induced vibration is caused 

by instability-induced excitation, there are also other means by which acoustic fluid 

motion can influence the behaviour of the oscillation: 

The instability at a point of flow separation, such as at the trailing edge of an immersed 

body, is known to be receptive to acoustic perturbations (Morkovin & Paranjape, 1971; 

Ho & Huerre, 1984 ). At such places, the acoustic and hydrodynamic contributions to the 

overall fluid motion combine to collectively satisfy a boundary condition known as the 

Kutta condition (Crighton, 1981, 1985). A hydrodynamic flow field which reponds to 

incident sound, in order that the combined acoustic plus hydrodynamic motion might 

satisfy a Kutta condition, is said to be receptive to acoustic perturbations. As the fluid is 

convected away the shear layer instability leads to amplification of such responses of the 

hydrodynamic flow field to the incident sound. In this manner the hydrodynamic flow 

field, and hence the forcing function for the oscillating body, is controlled by the sound 

field present. 

Lock-in of vortex-shedding with the vibrations of a body in a flow has been mentioned 

already. The shedding of vortices from an immersed body can also lock onto the 

frequency of a resonant sound field (Graham & Maull, 1971). Vortex-induced vibration 

of a body which sheds vortices at a frequency dictated by a resonant sound field is thus 

constrained to motion at that same frequency. 

1.3.4 On the Mechanism of Sound Production: 

The science of acoustics often classifies acoustic sources as being monopole, dipole or 

quadrupole in nature (Morse & Ingard, 1968; Lighthill, 1952). 

A monopole acoustic source is idealised as a point in space where new fluid is 

introduced, and retracted, in an oscillatory fashion. This source term has no spatial 

dependence; the generating motion has no preferred direction, but produces a wave which 

radiates spherically outwards from the centre of the source. The density fluctuation at x, a 

large distance r from the centre of the source region, will be given by (Lighthill, 1952: 

Equation 9). 
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p(x,t)-p0 ""' 
1 

2 J Q(y,t-!._)dy 
4nrc c 

source 
region 

The function Q· gives the time-rate of change of the rate of introduction of mass, per unit 

volume, within the source region. The density at the distance r is µroportional to the rate 

of change of the flow introduction at a time r I c earlier. The time t - r I c is known as 

the retarded time. 

A dipole source is characterised by an oscillatory force upon the fluid medium. A 

dipole might be thought of as two monopole sources side by side, but opposite in sign, so 

that one expands as the other contracts. The resulting pressure field is directional. When 

the source region is much smaller than the wavelength of the sound (Lighthill, 1952: 

Equation 12), 

p(x,t)-p 0 ""'-
4 

I 
3 
~ f F;(y,t-!._)dy 

nrc r c 
source 
region 

The far field fluctuations are greatest in the direction of the force, since X; = rcos8, where 

8 is the angle measured from the fo rce direction . 

Quadrupole sources accompany flu ctuations in certain types of stresses within a fluid. 

The specially-formulated Lighthill stress tensor is usually denoted Tu. A quadrupole 

source might be thought of as comprising four monopole sources. For a lateral 

quadrupole, the four are arranged in a tiny square, and diagonally opposite monopoles 

have the same sign . The monopoles which make up a longitudinal quadrupole lie all 

along the same line. For both types , the pressure field is directional. When the 

wavelength of the sound is much larger than the source region , the resulting far-field 

density fluctuations are given by (Lighthill, 1952: Equation 17) 

p(x,t)-p
0 
:;,::-

1
-

4 
~~ J Y;(y,t-!._)dy 

4nrc r r ~ c 
source 
region 

The previous three equations are approximate solutions for the pressures far away from 

the source being considered. The far field sound pressures radiating from a dipole source 

are of lower order than those from a monopole source, and those from quadrupole sources 

are lower again; notice the increasing power of c in the denominators of the pressure 

equations (also of r ). 
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Possible Sources at a Trumpeter's Lips: 

Some possibilities for the sound-production mechanism at the vibrating lips of the 

trumpeter will now be examined. Recall that monopole sources result from a changing 

rate of introduction of new fluid, dipole sources ca~ arise through fluctuating forces 

applied to the fluid, and quadrupole sources will be due to stresses appearing as a result of 

the fluid motion. Also, if there are any monopole sources present, these will be the most 

important, then dipoles, then quadrupoles. 

A monopole source would be signalled by any changing rate of introduction of new fluid 

at any place within the flow. Because the aperture between the lips of the trumpet player 

is always changing, the rate of introduction of air into the trumpet is time-varying, and so 

this could be interpreted as a monopole source. 

The introduction of air into the trumpet is accompanied by the release of air from the 

player's mouth, so that there is really a pair of monopoles of opposite sign. One 

monopole represents the changing rate of introduction of fluid into the trumpet 

mouthpiece; the other represents the changing output rate of fluid from the player's mouth 

(see Figure 1.1 1). The combined result of two adjacent, oppositely-signed monopoles is a 

dipole source. 

Figure 1.11: Acoustic Sources Due To Changing Flow-Rate Between The Lips 

A second dipole source is evident through the motion of the trumpeter's lips. This motion 

indicates a fluctuating force upon the lips, and this force is necessarily provided by the 

flow. Since for every action there is an equal and opposite reaction (Newton's First Law), 

the motion of the lips also indicates the presence of a time-varying force upon the fluid, 

and this provides a dipole sound source. Radiation is most favoured in the direction of 
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motion of the lips. In Figure 1.12, the directionality of the motion, and hence the dipole 

sound field, is indicated by the arrow. 

Figure 1.12: Acoustic Source Due To Lip Vibrations 

A third dipole source is possible at the back of the mouthpiece cup. Because there is a 

time-varying flow emerging from between the player's lips (Figure 1.11), there must be a 

time-varying aerodynamic force upon the inside of the mouthpiece. This time-varying 

force could be responsible for additional sound generation (Figure 1.13). 

Figure 1.13: Acoustic Source Due To Unsteady Fluid Force Upon Mouthpiece 

Any unsteady introduction of fluid between the lips at a time t will produce acoustic 

energy at the lips at that same time t, but will produce sound at the back of the mouthpiece 

cup at some later time t+ T, where T is the time taken for the flow unsteadiness to be 

convected downstream from the lips to the back of the mouthpiece. The mouthpiece 

source lags the flow-modulation source by a time interval which depends upon the depth 

of the mouthpiece cup and the speed at which unsteadiness is convected by the flow . 

Such an acoustic source is thought to be important for the production of hole tones 

(Powell, 1953; Chanaud & Powell, 1965; Wilson et. al., 1971; Ho & Nossier, 1981; 

Rockwell, 1983). 
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Three dipole sources have been identified in the vicinity of the trumpeter's lips: the 

unsteady influx of air from the player's mouth, the time-varying force due to the lip 

motion directly, and the time-varying fluid force upon the back of the mouthpiece cup. 

Since dipole sound sources are of higher order than any quadrupole sources that may be 

present in the flow (Lighthill, 1952), the contributions of the latter to the radiated sound 

field are expected to be relatively insignificant. 

1.3.5 Concern Over the Description of Lip Dynamics: 

The function of the generator part of the complete trumpet system is to accept a steady 

energy influx from the player (air flow from the lungs) and to modulate this in some way 

to provide acoustic energy for the resonator. Many voice and wind instrument modellers 

have suggested that the generator subsystem should function as a self-excited oscillator in 

its own right (i.e. without relying upon feedback from the resonator subsystem). 

However, the generator part of the traditional trumpet model cannot operate alone as a 

self-excited oscillator. 

Self-excited oscillation is a special type of forced oscillation. A self-excited oscillator has 

the ability to regulate the rate of transfer of energy from a steady (or quasi-steady) energy 

reserve in such a manner that oscillation is maintained. The forcing function of a self­

excited oscillator is not a function of time directly, but instead depends upon the state 

variables of the oscillator (position, speed and acceleration). 

Recall that in the traditional trumpet model the lip vibrations are represented by the 

motion of a simple mass-spring-damper oscillator under the influence of an applied 

(pressure) force. This might be written as 

mx+bx+sx= F(t) (1.9) 

The traditional trumpet model uses the fo llowing forcing function for F(t): 

( 1.10) 

Consider what happens to Equation (I . I 0) when the resonator is decoupled from the 

generator of the traditional trumpet model. With the trumpet absent, the pressure p2 

becomes the ambient pressure outside the mouth (atmospheric pressure). The force upon 

the lips then reduces to F(t) = constant in the traditional trumpet model. Because the 
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resulting forcing function does not depend upon time (directly or indirectly), there is no 

scope for self-excited oscillations. 

This is contrary to the experience of trumpet players, suggesting one or more of the 

following: 

(a) p 1 or AT are actually system variables (i.e. they are not constant); 

(b) Equation ( 1.10) does not accurately describe the fluid force on the lips; 

(c) the assumption of a simple harmonic oscillator is too simplistic, 

and maybe a modification (such as a nonlinear restoring force) is required. 

The third possibility is now considered. 

Suitability of a One-Mass Model: 

The history of voiced-speech generator models shows that self-excited oscillations, 

though impossible for a single mass-spring-damper description of the vocal folds 

(Flanagan & Landgraf, 1968 ; Flanagan & Cherry, 1969), could be produced with a two­

mass model (Ishikaza & Flanagan, 1972). Still more complexity has been added by later 

researchers - by some to give a better representation of physiological reality (Titze, 1973, 

1974; Story & Titze 1995) and by others with the aim to produce a more natural-sounding 

speech synthesiser model (Koizumi, Tanuguchi & Hiromitsu, 1987). 

While speech modellers have gone to great lengths to model as closely as possible the 

anatomy of the vocal folds, the buccolabial musculature has not received any mention in 

the trumpet-modelling literature. The situat ion is actually much simpler than for the vocal 

folds. 

inside 

(} 

orbicularis oris 
pars peripheralis 

orbicularis oris 
pars marginalis 

Figure 1. 14: Top-Lip Profiles For Different Tensions of Pars Marginalis 
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Contraction of the muscle orbicularis oris pars marginalis is considered to alter the 

sectional profile of the red-lip rim. The upper and lower lips both transform to a narrower 

shape reminiscent of a truncated isosceles triangle. Both the length and the tension, of the 

so-called labial cords that result, can be delicately controlled (Williams et al., 1989). 

The vocal folds are much more difficult to model, as they may entertain oscillations of 

many degrees of freedom (the term vocal folds has gradually replaced vocal cords in the 

. literature since this has become known). Titze (1973, 1974) describes a model of the 

vocal folds that utilises sixteen coupled SDF oscillators. 

Stroboscopic and other studies of lip motion during trumpet-playing indicate that only the 

top lip need be modelled (Martin, 1942; Henderson, 1942; Weast, 1963). 

Motional Constraint: 

In the vertical direction, the distance of separation between the lips (alternatively, the area 

of the orifice between them) can never take a negative value. In the horizontal direction, 

the lip vibrations are restricted by the teeth behind them and the trumpet mouthpiece in 

front. One consequence of these motional constraints has been overlooked in the 

traditional mathematical description of trumpet operation - that the lips may already be 

under tension before a note begins. To illustrate this point, consider Figure 1. 15 to 

follow: 
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natural state 
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Figure 1.15: Plunger-in-Funnel Model In Absence of Fluid Forcing: "Pre-Tension" 
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Let x 0 denote the distance from the plunger to the funnel in the absence of fluid forces or 

motional constraints. Then the equation of motion for the mass, when a forcing function 

F(t) is added, is 

mx +fo: + s(x- x0 ) = F(t), x > 0 

~ mx+bx+sx= F(t) +sx0 , x>0 

For the case of x0 < 0, the term sx0 indicates the amount by which the spring is "pre­

tensioned" in the absence of any applied fluid forces. When the plunger is first at rest in 

the funnel (i.e. x = 0, i = 0) the applied fluid force must reach a threshold value jsx0 I 
before any motion of the plunger can commence. 

Lack of consideration of motional constraints in the traditional model (and the related 

possibility of pre-tension forces) has led to some remarkable conclusions regarding the 

playing of the trumpet. For example: "If the static opening of the lips in the absence of 

blowing pressure is zero, as is generally the case, then there is no threshold pressure 
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required ... " (Fletcher, 1990). This statement is contrary to the experiences of every brass 

instrumentalist. (The opposite of Fletcher's assertion also appears in the literature; see 

Worman, 1972.) 

Similarly disconcerting is a stat~ment that there is no upper limit to the static pressure 

provided by the musician, above which system oscillation is impossible (Fletcher, 1979a). 

It is interesting that Fletcher's two statements, taken in conjunction, infer that any positive 

pressure gradient across the musician 's lips is suitable for exciting a trumpet into 

oscillation. It takes very little practice to refute this experimentally. 

Impact 

In the above plunger-in-funnel illustration, impact occurs when the plunger returns to the 

position x = 0, if it approaches with non-zero velocity. 

The question of impact has received rather different treatments in models of some mildly 

analogous systems. Hirschberg et al. ( 1990a) studied the behaviour of a reed organ-pipe 

and modelled the reed impact as an elastic collision. The momentum instantaneously lost 

from the oscillation through impact was instantaneously returned in the opposite 

direction: ie. x(t) ~ -x(t) at the moment of collision. 

Flanagan & Landgraf ( 1968) consider two different possibilities for the collision of the 

vocal folds during voiced speech. One scenario involved all momentum being 

instantaneously sapped from the vibration. For a completely inelastic collision 

.x(t) ~ 0 at the instant of impact. The other_ was termed a "purely viscous contact", where 

the boundary constraint x ~ 0 was actually violated, but at such times the damping 

constant of the motion was substantially increased. The advantage of the latter is that the 

closure times increase with the velocity of the approach at impact. 

A more comprehensive model may incorporate a second mass-spring-damper (with 

possibly different coefficients) to represent any yielding and/or vibration after an impact. 

Such an arrangement is depicted in Figure 1.16. 
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fluid flow 
-I> 

Figure I. I 6: Model of Impact of a Transversely Vibrating Piston In A Compliant Duct 

The effect of impact upon the behaviour of a single degree-of-freedom oscillator can be 

marked (Ipanov,1993, 1994; Budd, Fox & Cliffe, 1995; Narayanan & Sekar, 1995). 

1.3.6 The System is Incompletely Described: 

When a model accurately represents a physical system, the model and the system both 

function similarly when presented with identical sets of values for the various system 

inputs. There is no hope for this to be achieved by the traditional trumpet model, since 

some of the system inputs are not even present in the model description. 

Knowledge of trumpet-playing technique (described in Section I. I) reveals the physical 

gestures by which the trumpeter initiates and controls the sound produced. Recognition 

of these gestures can be used to define the controlling variables of the musical oscillator 

system. Two classes of physical gestures can be distinguished (Cadoz, Luciani & Florens, 

I 984 ). These are excitation gestures and modulation gestures. 

An excitation gesture is a means by which the musician effects a transfer of energy to 

the oscillator. When an instrumentalist has the ability to control the rate at which the 

energy is supplied to the system, the excitation gesture determines that rate. If this energy 

supply-rate determines the amount of energy that the system sheds as propagated sound, 

then the musician becomes part of a feedback loop that maintains the desired level of 

sound output. The player listens continually to the sound being produced, and makes 

adjustments using excitation gestures if it is too loud or too soft. 
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A modulation gesture is a control mechanism used to otherwise modify some 

characteristic of the oscillation. Modulation gestures may also feature within a feedback 

loop. For example, if a player hears a note to be out of tune then a modulation gesture 

may be used to correct this (see Figure 1.1 ~). 

aural feedback 

~ 
excitation gesture ... 

HUMAN 
, 

MUSICAL -

CONTROLLER modulation gestures - OSCILLATOR -

Figure 1.17: Human Control Of A Musical Oscillator 

The excitation gesture of the brass player corresponds to the muscular control of his 

diaphragm, which dictates the flow of air from the lungs; in the case of wind instruments, 

the influx of energy into the system is coincident with the flow of air from the lungs. 

Adjustment of the embouchure is a modulation gesture, since such adjustment does not 

add energy to the system. The same applies to the variation of the vocal tract parameters, 

and the actions of the fingers in changing the valve positions of the trumpet. A top-level 

representation of the trumpet-trumpeter system is illustrated in Figure 1.18: 
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Figure 1.18: 
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System Inputs and Outputs 

The trumpet-trumpeter system features an energy conversion mechanism. The energy 

provided by the excitation gesture of the musician (diaphragm force) is converted to 
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acoustic, heat and flow energy, and the modulation gestures of the player determine the 

finer details of that conversion process. The oscillating system thus comprises: 

- flow within the lungs, vocal tract and oral cavity of the player, 

- flow within the trumpet itself, and 

- the player's vibrating lips. 

In contrast to system illustrated in Figure 1.18, the system described by the traditional 

trumpet model begins at the mouth. The resonator subsystem includes only the inside the 

trumpet itself and the mouth is treated as a constant pressure source. This can give a valid 

representation of the trumpet oscillator only if the following two conditions are met: 

firstly, the modulation gestures involving variations of vocal tract characteristics must be 

shown to be unimportant, and secondly, the mouth pressure must be shown to be a 

functional equivalent of the diaphragm force. 

The effects of vocal tract shape in the sounding of wind instruments were examined 

experimentally many years ago (Hall, 1955; Stauffer, 1968). Another study measured the 

relative tensions of the facial muscles used in blowing the instrument (Stubbins , Lillya & 

Frederick, 1956) and the mechanical impedance of the vocal tract walls has been 

measured directly (Ishizaka, French & Flanagan, 1975). More recently, x-rays of various 

wind instrumentalists have been used to compare the acoustic resonant frequencies of the 

vocal tract to the pitch of the notes being sounded (Clinch, Troup & Harris, 1982). The 

evidence of these experimentalists shows that the effects of the vocal tract parameters are 

important in playing the trumpet. None of these effects can be described using the 

traditional model. 

Consider the respiratory system of the trumpet player, consisting of the lungs, vocal 

tract and oral cavity. At the lungs, a constant force provided by the diaphragm muscles 

will produce a steady flow of air from the lungs, while the vibration of the lips dictates 

that the flow out of the mouth is unsteady. Consequently the amount of air between the 

lungs and lips of the player must be continually changing. The rate of this change at each 

instant is determined by the difference between the instantaneous mass outflux at the lips 

and the (steady) mass influx from the lungs. The mass of air between the lungs and the 

lips must oscillate in value at the same frequency as the lip vibrations. The vocal tract 

thus functions as a fluid oscillator (Naudascher & Rockwell, 1980; see also Gupta, 

Wilson & Beavers, 1973). 
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There are two possible responses to the resulting mass oscillation. Firstly, the density of 

the air within the player's respiratory system may fluctuate in value, and secondly, the 

walls of the vocal tract may expand in response to the presence of additional air, altering 

the system's volume. Some variation of the density of the air is inevitable and, as a result, 

the mouth pressure must be oscillating at the frequency of lip vibration. Indeed, actual 

experimental measurements of a trombonist's mouth pressure have shown periodic 

fluctuations at the frequency of the lip oscillation (Elliott & Bowsher, 1982). 

Since the mouth pressure of the trumpeter is oscillatory, then the force exerted by the 

player's diaphragm muscles and the pressure in his or her mouth cannot be functional 

equivalents. The traditional trumpet model's exclusion of the lungs and vocal tract of the 

player is unjustified. 

The resulting model is incapable of describing any effects of the player's vocal tract 

parameters, nor the mass oscillation which occurs in the trumpeter's respiratory system. 

Some modellers have suggested that consideration of the vocal tr~ct might lead to self­

excited oscillation of the model lips even without the trumpet present (Fletcher, 1979a, 

1979b; Benade & Hoekje, 1982). 




