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ABSTRACT 

This thesis describes a project investigating the synthesis and characterization of 

new higher nuclearity arene-ruthenium-sulfur clusters and arene-ruthenium-nitrogen 

complexes. 

The thesis is divided into four chapters, with the introduction in Chapter One. The 

synthesis and characterization of new higher nuclearity arene-ruthenium-sulfur clusters 

are described in Chapter Two. These include two novel clusters, [Ru5S4(cymene)4](PF6)2, 

[RU4(S2)(SO)(cymene)4](PF6)2 and one known cluster, [Ru3S2(cymene)3](PF6)2. The X-ray 

crystallographic structures of these three arene-ruthenium-sulfur clusters are discussed in 

detail including how the number of valence electrons influences the structure, how the 

solid state structure and single crystal structure effect each other and how the structures 

determine the chemical shifts and other characters of the clusters. The unusual signals of 

these three clusters on 1H NMR spectra are discussed carefully. The mechanisms of 

formation of arene-ruthenium-sulfur clusters are described m detail. Some 

electrochemistry and calculations (quantum chemistry) are also involved. 

The synthesis and characterization of arene-ruthenium-nitrogen complexes are 

described in Chapter Three. These include two new mono-nuclear complexes, 

[RuCb(NH3)(cymene)], [Ru(NH3)3(cymene)](PF6)2, one novel amide dimer 

[RuCl(NH2)(cymene)h and one known complex, [RuCl(NH3)2(cymene)]PF6. The 

mechanisms ofreactions in which they are formed are also discussed. In Chapter Four, the 

experimental data is presented. 

The X ray crystallography of [Ru5S4(cymene)4](PF6)2, 

[Ru4(S2)(SO)(cymene)4](PF6)2, [RuCh(Nlh)(cymene)] and [RuCl(NH2)(cymene)h is 

described in detail. 
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CHAPTER ONE INTRODUCTION 

1.1. Transition metal compounds 

This thesis is about the synthesis and characterization of high nuclearity ruthenium 

clusters. The underlying motivations for examining these clusters include: 

The first involves industrial catalysis and the multi-electron redox reactions such 

as Haber-Bosch process (nitrogen reduction) and fuel processing (hydrodesulfurization, 

dehydration and hydrocracking). 

Catalysts lie at the heart of many industrial processes. The more efficient the 

catalysts used, the more energy can be saved in the processes of production. A major task 

of industrial chemistry is to discover new efficient catalysts. Transition metals and their 

clusters are one of the main choices for catalysts in industries. 

The second involves modeling catalysis either in industrial or biological systems 

such as nitrogen reduction, hydrogenation and other reductions of small molecules. 

Insights into the mechanisms of catalytic processes offer the prospect of improved 

efficiency. In multi- component heterogeneous sulfide catalysts, many phases are present 

and more than one active site or reaction channel may be present, and it is not always 

clear which phase catalyses a given channel. 

The chemistry of transition metal clusters has helped the study of heterogeneous 

catalysts and catalysis in several ways: modes of ligands binding to multi-metallic sites 

are often the same on metal surfaces and clusters. Ligand transformations on clusters may 

be used as guides to similar reaction pathways on the heterogeneous catalysts. Clusters 

may be adsorbed on surfaces and their surface reactions may then be followed by various 

spectroscopic techniques. The surface structure formed in these reactions are often 

catalytically active and comparison of the . activity of catalysts prepared from 

organometallic cluster precursors with that of conventionally prepared catalysts can give 

useful information on active site structures and reaction mechanisms. 
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In biochemical systems, the exact mechanisms of nitrogenases and hydrogenases 

are still not yet clear after almost one century of study. Many scientists have tried to 

mimic and model these processes using synthesized transition metal clusters in vitro, and 

a lot of progress has been made particularly during the last forty years . It both benefits the 

mechanisms that are studied in biological and chemical systems at the same time. 

1.1.1. Transition metal clusters 

Transition metal clusters are complexes that contain a group of transition metal 

atoms joined by metal-metal bonds. A cluster usually contains a metal core surrounded by 

ligands. 

Sometimes, this definition is not very strict. Compounds without metal-metal 

bonds but with metals joined together by ligands as bridges are also called clusters. For 

example, iron-sulfur cubane cluster, [Fe4S4] is the basic component of many 

metalloproteins, in which iron atoms are joined together by sulfur atoms as bridges. 

(Figure 1) 

Figure 1 Structure of cubane cluster [Fe4S4] 

There are several aspects that effect the characters of the cluster: 

• The type of the metal atoms 

Ruthenium and iron are both group eight transition metals, and it is well known 

that ruthenium has a greater catalytic ability than iron. For example, ruthenium has been 
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known to be 45 times as catalytically active as its equivalent weight of iron as promoters 

in Haber-Bosch process 1. 

New complexes of lanthanide and actinide series are providing new insights. Early 

in 1992, Evans et al. found that a mononuclear 112 -hydrazine samarium complex could be 

synthesized by protonation of an [N2H2f complex, which is an interesting models for the 

mechanism of dinitrogen reduction 2. 

• The number of the metal atoms 

The number of the metal atoms in the cluster may influence the ability of the 

electron storing and transferring, and hence the ability of catalysis. Poly-nuclear clusters 

usually have more ability of catalysis than corresponding mono- or bi-nuclear complexes. 

For example, in a recent quantum chemical study, Siegbahn et.al suggested that N2 is 

four-coordinated in the [Fe8S9]
2- cluster rather than two-coordinated in the dimer model. 

Add two hydrogen atoms on the bridging sulfur between the cubanes, making all iron 

atoms Fe2+, opens up the cavity for easy access of N2. Hence N2 is activated with N-N 

distance of 1.21 A in the cluster model rather than 1.19 A in the dimer model 3, which 

indicates that N2 is more activated in the cluster model. 

• The way that metal atoms joined together 

It is different in characters of metal-metal multiple bonds compared to metal-metal 

single bonds. For example, [Os3(C0)12] is more stable comparing to its unsaturated 

derivative [H20s3(C0)10] that contains one Os=Os double bond in it 97
. 

• The type of the ligands and the mode of coordination 

Complexes with sulfur-containing ligands have different properties to those with 

other element containing ligands, such as oxygen and nitrogen. For example, 

[(benzene)~u4(0H)4]4+ (Figure 2a) decomposes with hydroxide ion to corresponding bi­

nuclear complexes 4, while [(p-cymene)3Ru3S2]2+ just opens one of its metal-metal bond 

when it gains two electrons giving [(p-cymene)3Ru3S2] (Scheme 1) 5
. 
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(S)-(-)8INAP 

a 

PPh2 

. ,, 11 ,,\PPh2 

b 

Figure 2. Structures of [(benzene)~u4(OH)] 4
+ and a stereo ligand (S)-(-)BINAP 

- 2a· 

+ 2a· 

2 ... Scheme 1 Structure change from [Ru3S2( cymene)3] · to [Ru3S2( cymene)3] 

Some complexes have been known with stereo-ligands, which have been designed 

for special use of catalysts. For example, BINAP-Ru(2+) 6 that produced by treatment of 

[RuC'2(ri6-benzene)h with (R)- or (S)-BINAP (Figure 2b) can catalyze the highly 

enantioselective hydrogenation of functionalized ketones 6 and ~-substituted (E)-~­

( acylamino )acrylic acid 7
. 

This project has been targeted at the synthesis and characterization of ruthenium 

sulfur ( also some nitrogen) arene clusters with the underlying aim of modeling catalysis 

and testing for catalytic activity. 
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1.1.2. Iron-sulfur clusters and their functions 

The well known iron sulfur clusters can offer insights that are helpful to design the 

aim compounds, and one possible role for ruthenium sulfur clusters might be to model the 

mechanism of iron clusters in biological systems, vise versa. 

Models that uncover the mechanistic detail of nitrogen reduction are an attractive 

target. For example, [Fe4S4) cluster is the subunit of all the clusters in the three kinds of 

nitrogenases. There are also three kinds of hydrogenases and except "iron, nickel free" 

one, [F e4S4] cluster consists the clusters in the other two kinds of hydrogenases. In sulfite 

reductase, the (Fe4S4] cluster is bridged by a cystine sulfur atom to a heme group 8 (Figure 

3 a) . In the two distinct clusters of carbon monoxide dehydrogenase, it is bridged by an 

unknown atom to a nickel center cluster 9 (Figure 3 b ). 

S·Cys 

a b 

Figure 3 Structures of sulfite reductase and carbon monoxide dehydrogenase 

Nature' s modular iron-sulfur clusters include [Fe2S2], [Fe3S4], and (Fe4S4] clusters 

(scheme 2). There are several ways of showing their structural versatility and robustness. 

They have facility for conversion and interconversion in both the free and protein bound 

conditions (chemical systems and biological systems, respectively). They also undergo 

ligand exchange reactions and oxidative degradation 10
. 
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Scheme 2 Localization-delocalization patterns of iron sulfur clusters 

Iron-sulfur clusters have functions of electron transferring, accepting, donating, 

shifting and storing because of their versatility and robustness. Other functions not of a 

redox nature have also been discovered. These include the binding and activation of 
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substrates at the unique iron site of [Fe4S4] cluster in the catalytic function of actonitase 11 

and related enzymes, and apparently stabilizing radicals in reductions occurring by a free­

radical pathway. There is evidence that the clusters can function in coupling electron 

transfer to proton transport 12
. 

Scheme 2 illustrates the localization-delocalization patterns of iron sulfur clusters. 

[Fe4S4] clusters contain delozalized Fe2·5+Fe2·5+ pairs in their most common oxidation 

states 13
. For [Fe2S2]1

+, only when Cys is mutated to a Ser, the cluster is vanlence­

delocalized with S = 9/2 14
. The [Fe3S4]

0 clusters provide strong evidence that the 

delocalized pair has spin S = 9/2 15
. Spin-state variability depending on cluster 

environment is considered as a possible control factor for substrate specificity and gated 

electron transfer 10 
. 

1.1.3. Ruthenium, Haber-Bosch process and hydrodesulfurization 

(HDS) 

The first Haber-Bosch production plant started up at BASF in 1913 5
. Haber-Bosch 

process is still the best industrial process for reduction of N2 with H2 to form ammonia: 

3H2 (g) + N2 (g) 400-700°C, Fe, 30000 kPa 

The reaction has been running under conditions of high temperature and high pressure. 

The most widely used catalyst of this process is BASF-developed catalyst that consists of 

. h 16 a-iron as t e promoter . 

Great energy savings could be obtained by an improvement in catalytic activity of 

catalysts allowing for operation at lower temperatures and pressures. Therefore, new 

efficient catalysts that can be used at much milder conditions need to be found . 

Ruthenium is considered to possess great potential in development of new 

catalysts for the ammonia synthesis. In the early 1970s, Ozaki and co-workers introduced 
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a carbon-supported ruthenium catalyst promoted by alkali metal 17
•
18 at 250°C and 80 kPa. 

Ruf AC-K (AC = activated carbon) exhibited a 10-fold increase in the rate of NH3 

synthesis compared to a conventional promoted iron catalyst under similar conditions. 

Since then, Ru/ AC-K has been developed for industrial use 19
. Recently, a number of 

papers have reported the adsorption and the activation of dinitrogen and dihydrogen on 

ruthenium catalysts by Izumi et.al 20
,
21

,
22

. 

Besides this, it is also found that ruthenium has significant ability of catalysis in 

other processes such as hydrodesulfurization (HDS) process 23
'
24

. For both heterogeneous 

and homogeneous catalysts in this process, ruthenium is almost the most active promoters 

compared to other metals that have been known 25
. (This will be discussed later in section 

1.2). 

1997-1998, the world production of ammonia is almost 200 million tons, which is 

still far less than required 26
. 

1.1.4 Arene as ligands in transition metal clusters 

There are several ways in which arene rings coordinate to metal atoms, such as 112 
- , 

112
-, and 116

- 7t coordination 27
, which implies that clusters with arene rings as ligands have 

great flexibility and robustness, and therefore, the great ability of electron storing and 

transferring during catalysis processes. (Scheme 3) 

G 
\:/ 

.. 
M 

Scheme 3 

.. ~ :7 
I 

M 

.. .. ~ 
I 

M 

Ways that arene rings coordinate to metal atoms 
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Geiger 101
, Finke 102 and their co-workers have demonstrated that some cationic 

metal arene complexes can undergo simultaneous 2e· reduction. These reductions are 

associated with a 116-to-T\4 change in the hapticity of the arene (Scheme 19). 

2+ 

~ 
+ 2e 

- 2e 

M M 
Ln Ln 

Scheme 19 Tl 6 -tO-T\ 4 change of the arene ring 

Depending on this, Rauchfuss et.al 5 suggest an alternative structural possibility for 

the 5oe· cluster [Ru3Si(cymene)J]. In this alternative structure the closo Ru3S2 core is 

retained, but one arene adopts the 114
- geometry (Figure 51) rather than the Tt6- geometry 

with one metal-metal bond opened. (The open structure was shown in Figure 11.) 

Figure 51 Alternative structure of [Ru3S2( cymene )3] 

It has also been reported the electrophilic properties of arene rings. Mononuclear 

systems have been studied quite extensively 107
. For instance the [Cr(CO)3] fragment 

shows an electron withdrawing effect on coordinating arene rings, resulting in an 

activation towards the addition of nucleophiles 108
. The influence of a metal cluster should 

be even larger. Both Tt6 (terminal) and µ3-112 :112:T\2 (face bridging) coordination modes of 
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the arene rings have been found in many clusters such as 0s3(C0)9(.u.3-r,2:17 2:17 2-CJ16) 109
, 

2, 2 2 6 109 6 110 · Rll6C(C0)11(µ3-17 .17 :17 -C&H6)(17 -C5.fL,) and Ru6C(CO)ll(Tl -C&H6)2 . Different 

coordination mode leads to different activation of arene rings. When coordinated to a tri­

osmium carbonyl cluster 0s3(C0)9(µ3-r,2:172 :172-C6&) in the face-capping mode, benzene 

is activated towards nucleophiles such as H·, Me· or Ph·, which add the ring in the exo 

position 111
. In contrast, nucleophiles do not appear to add to plain arenes which are 

coordinated to a tris-( cyclopentadienylcobalt) cluster 112_ 

Different coordination modes of arene rings also lead to different molecular 

aggregations. For example, it has been found that there are two different kinds of 

coordination modes of the arene rings in a pair of isomeric bis-arene clusters 

Rll6C(CO)n(µ3-1{17 2:172-C6&)(176 -C6&) 109 and Ru6C(C0)11)(176-C&H6)2 110
. In both 

crystals the benzene ligands face each other in graphitic arrangements, causing the 

formation of molecular "snakes" and "rows", respectively . (Figure 53) 106
. 

Figure 53 Molecular aggregation of Rll6C( CO )11 (µ3-17 2:r{172 -C6&)( 17 
6 
-C6&) 
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Central of the arene ruthenium chemistry is the dimeric complex [(arene)RuChh 

prepared from the reaction of cyclohaxadienes and hydrated ruthenium trichloride 28
. The 

p-cymene derivative of these dimers was selected for this study because of its good 

solubility compared to the bezene and hexamethylbezene derivatives, ease of synthesis 

from commercially available a-phellandrene and convenient 1H NJv[R. characteristics of 

its derivatives. The chemical shift of hydrogen atoms on the cymene ring, the methyl 

group and isopropyl group are all easy to recognize, especially the chemical shift of the 

four hydrogen atoms on the cymene ring are very specific when the ring coordinates to 

metal atoms. But the chemical shift of hydrogen atoms on the benzene ring is only one 

single peak, which is more difficult to identify compared to the cymene ring. 

Although the work on ruthenium arene clusters has been done for several decades, 

very few ruthenium arene clusters have been found . In 1975, Stephenson described the 

characterization of cubane cluster [Ru4(0H)4(benzene)]4
+ (Figure 2 a) formed by the base 

hydrolysis of [(bezene)RuChh 29 
. The electron-deficient clusters [MJI,i(arene)4]

2
+ (M = 

Ru, Os) has been briefly reported in 1986 (Figure 4 a) 30
, and their properties of activating 

dihydrogen have been discovered by Suss-Fink et al. in 1993 31
. The first arene ruthenium 

sulfur cluster [(p-cymene)3Ru3S2]
2

+ (Figure 4 b) was made by Lockmayer et.al using [(p­

cymene )RuChh as starting material in 1989 5
. (This will be discussed in detail later in 

section 2.2.1.) 

3/2 [(p-cymene)RuChh + 2 s2
• 
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a b 

Figure 4 Scrucrures of[Rt.4.E-L(benzene)4]2;. and [Ru,S-z(cymene)JJ2-

1.1 . 5. Sulfur as ligands in transition metal clusters 

Sulfur-containing compounds have long been known to act as poisons for noble 

metal catalySts because of their Strong coordinating and adsorptive properties, which 

~a.use chem to block reactive metal sites n Nevertheless, many transition metal sulfides 

(S 2
") display intriguing catalytic activity in their own way. Sulfide ligands form relatively 

strong bonds with many transition metals, and the ligands can play an important role in 

Stabilizing di- and poly-nuclear complexes against fragrnencation _~process during catalysis 

:;J . This gives the cluster a metal core that can catalytically store and transfer electrons and 

protons to molecules . 

Sulfur donor ligands tend to favor lower oxidation states of metal ions. The 

relatively positive reduction potentials of the sulfide complexes, for example, when 

compared co relative oxygen or nitrogen donor systems, provide a favorable environment 

for many catalytic reduction reactions that have been characterized 34
. The redox ch_a.nges 

of the sulfide complexes can be attributed by changes in the formal oxidation states of ~e. 

metal ions. However, the ability of coordinated_ sulfide ligands to participate in redox 

chemistry, for example, 

2 s2
• - 2 e· • s-s2

• 
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d 35 has also been prove . 

It has been found that sulfur can act m an important role in the 

hydrodesulfurization processes. Dihydrogen is split by metal-sulfur center to metal­

hydride and thiol hydride 36
. 

It is claimed that protonation of the activated dinitrogen proceeds with the aid of 

the bridging hydrosulfido ligands in the Fe/Mo cluster by several groups recently 37
. 

Dance gave a model of that the bridging sulfido ligands mediate proton transfer to the 

coodinated dinitrogen bound to the Fe4 face of the Fe/Mo sulfido cluster via µ-SH 

intermediate (Figure 44) 37
c-f_ 

cysteine-275 

hydrogen bond 

\ 

The Fe7MoS9(cysteine)(histi~)(homocicrate) cluster. showing 
hydrogen bonds from behind the s: ltoms fl:i.nking the front face. :ind the 
postulated tr.msfer of H to bound N: by inversion of (Sl....H) 

Figure 44 Model of dinitrogen binding to Fe4 face of Fe/Mo cluster 
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Recently, Hidai et al. have proved this experimently by investigating the reactivity 

of dinuclear complexes (Ru, Ir or Rh) containing bridging hydrosulfido ligands toward 

coordinated dinitrogen on tungsten giving NH3 
38. They have given the first example of 

proton transfer from metal µ-SH complexes to coordinated dinitrogen, especially those µ­

SH ligands in cationic dinuclear complexes because they are more acidic than those in 

corresponding neutral complexes. (Scheme 12) 

N 
Ill 
N 

P....._ I _.p w • 
P~ I ...._N::N 

p 
1 

Scheme 12 

H H 7 Cl H H 7 BF 4 

S, S P' S S P"..._,__ ,x1 r:\,x,1?:; 
Cp"-lr lr-Cp' or <~'-Fe Fe->'-) 

\/ ~I\/ • :::=/ 
S P S P, 
H 2 Ph H Ph 4 

NH3 • • • • • • 

P=PMe2Ph: P'::PPh2 

Proton transfer from metal-SH complexes to coordinated dinitrogen 

Some transition metal clusters have been synthesized, which are analogues to the 

cubane subunit of the clusters in nitrogenases and hydrogenases, such as (Et4N)2[(Cl4-

cat)(CH3CN)Mof e3S4Ch] 39 (Cl4-cat = tetrachlorocatecholate), (Figure 5 a) and 

[Ru4S4Cp*4]2
Ho (Figure 5 b). It has been proved that [Fe4S4(SR)4]2

· (R = Ph, C6~e) 

can catalyze the reduction of diphenylacetylene to cis-stilbene by excess sodium 

borohydride in CH3CN I MeOH 41 . The (EtiN)2 [(C4-cat)(CH3CN)M0Fe3S4Ch] cluster, in 

which Mo atom has a coordination environment very similar to that in nitrogenases, can 

catalyze the four-electron reduction of N=N bond of cis-dimethyldiazene giving 

methylamine. 
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a b 

Many ruthenium sulfur clusters have been synthesized and characterized. Most of 

them are CO containing clusters such as [Ru6SJ(H)(CO)15] 
42 . A Ru-Mo cluster 

[{CpMo(CO)2}2SRu(CO)3] that contains a µ3-sulfide ligand, which has the same mode of 

coordination as in [(p-cymene)3Ru3S2]
2

+, was found to promote a nonreductive coupling 

of alkynes 43 . 

1.2. Transition metal sulfur complexes for catalysis --­

hydrodesulfurization (HDS) 

Transition metal complexes are widely used for catalysts. Hydrodesulfurization is 

one of their very important applications. 

The hydroprocessing of petroleum represents one of largest scale chemical 

processes carried out by industries in the world today. In this procedure, crude oil is 

treated with hydrogen at high pressure (1500-3000 lbf in"2
) over a hot heterogeneous 

catalyst (Co- or Ni- promoted, Mo or W sulfide supported on AhO3) (500 - 825°C) to 
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remove nitrogen, sulfur and residue metals prior to further processing 44
. The removal of 

sulfur from residues in oil is commonly referred to as hydrodesulfurization. 

On one hand, since new drilling techniques allow the recovery of heavier crude 

oils that contain higher levels of sulfur, removal of this element is becoming even more 

important, particularly for those countries that possess very large reserves of heavy 

crudes. On the other hand, recent environmental pollution regulations require lower 

amounts of sulfur in fuels, which can not be achieved using known technology. Thus there 

is increasing interest in developing new catalysts and processes for the removal of sulfur 

from the organosulfur compounds in petroleum. 

1.2 .1 Industry catalysts and mechanisms 

Many metals are more active as HDS promoters than cobalt or nickel mixture. The 

active sequence has been proven to be: Ni < Co < Pd < Pt < Re < Ir < Rh < Os ::; Ru 45
. 

That is, ruthenium is the most active promoter compared to other metals in HDS processes 

while cobalt and nickel are still the metals of choice for current industry use. A good 

heterogeneous catalyst of Co/Mo/S compositions and the related Ni/W/S systems are 

widely used to catalyze the HDS of fossil fuel feedstocks 46
. The catalyst is conventionally 

prepared by impregnating a high-sulfur-area alumina with ammonium molybdate and a 

cobalt salt in an aqueous medium. This pre-catalyst is then treated with hydrogen and a 

source of sulfur (H2S, organic sulfur compounds, or the feed stocks) at temperature near 

350°C. This sulfidation step converts the molybdenum oxides into a MoS2-like phase that 

gives metal-sulfur cores indicating the active sites 47. 

Under the reducing atmosphere of high H2 pressures, the surfaces of these sulfides 

exhibit coordinatively unsaturated reduced metal sites. A redox HOS mechanism involves 

binding of thiophene at one of these electron rich sites, oxidative addition, sulfur removal 

and reduction of the metal 48 . A recently study on soluble transition metal sulfur clusters 

in homogeneous catalytic systems has proved this. A cluster [(Cp')2Mo2Co2S3(C0)4] (Cp ' 
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= CH3Cs~) with µ3- and ~-sulfur ligands could remove sulfur directly from thiophene 

producing a cubane cluster [(Cp')2M02C02S4(CO)2] (scheme 14) 49
• 

47
• 

50
. 

(CO)iCol~~~ ~---------coccoi, - · ccDicJ~~\''cc 
_ M. \ + RSH. -RH S :-\fb.s 

. . S'-._ "\I/,: \ 110 oc ~\ 
"Mo ' I C / Cp Cp p . 

Cp (1) (2) 

Scheme 14 

The principal mechanism proposed for the heterogeneous HDS of thiophenes is 

summarized in Scheme 4 51
. 

From the scheme, it can be seen that hydrogenation and hydrogenolysis are the 

main parts in the HDS process of thiophenes. 

( 0 ... Cs 
+ S (ads) 

9½ hvdrogenolysis ~ h, aro,~•rioo ~ - S (ads) 

0-0-Q,0-QD 
• S{.S)~ S /S 

H§ + hydrocarboM 

Scheme 4 The principal mechanism for heterogeneous HDS of thiophene 
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1.2.2 Catalytic hydrogenation reactions 

The development of efficient catalysts for plain hydrogenation of thiophenes 

remains an important goal in HDS chemistry. In fact, the cyclic thioether products can 

subsequently be desulfurized over conventional HDS catalysts under milder reaction 

conditions than those necessary to accomplish the hydrodesulfurization of the thiophene 

precursors. This aspects is particularly important for the benzothiophenes and 

dibenzothiophenes because the conventional catalysts can desulfurize the corresponding 

cyclic thioethers, dihydrobenzothiophenes and hexahydrodibenzothiophenes, without 

affecting the benzene rings, necessary to preserve a high octane number. 

Several homogeneous hydrogenation reactions of the model substrate 

benzothiophene to dihydrobenzothiophene have been carried out over the last fifteen years 
52· 53· 54· 55 Such as [RuCh(PPh3)3], [RuH(Cl)(CO)(PPh3)3] 56 and 

[Rh(Cp*)(MeCN)3][BF4]z, etc. The proposed mechanism of hydrogenation usmg 

[Rh(cod)(PPh3)2t (cod= cycloocta-1,5-diene) is shown i~ Scheme 5 54. 

Cb 
p'-. /p 

+ 
/ 

H s s 
I 

H_-Rh+- -p 

~ ""' 
H t p 

,u) + <9 " 
p~ /~ I ta' Rh+ I 

+ / '- ~ 
/Rh'\.. ~ [J 

p p 

Scheme 5 The proposed mechanism of hydrogenation using [Rh(cod)(PPh3)2t 
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At comparable donor-atom sets of the catalytic precursor, the hydrogenation 

activity increases in the order of Ir < Rh < Ru ~ Os, which is not far away from the trend 

observed for the heterogeneous HDS of dibenzothiophenes 57
. That is, ruthenium is almost 

the most active catalytic precursor in these processes. 

1.2.3 Catalytic hydrogenolysis reactions 

For hydrogenolysis reactions, those metal-mediated transformations of thiophenes 

that result in the opening and hydrogenation of the substrates to give the corresponding 

unsaturated thiols, which eventually are reduced to the saturated derivatives. 

For the reasons put forward in the case of the hydrogenation, the hydrogenolysis 

reactions of thiophenes are of great relevance for the conventional heterogeneous catalysts 

under milder conditions than those required to desulfurize the thiophenes directly . 

Ruthenium is also very active in these catalytic processes. A similar trend of 

activity is shown by the heterogeneous HDS catalysts, which emphasizes the great 

catalytic ability of ruthenium in these processes 58
. 

1.2.4.Catalytic desulfurization reaction 

Several transition metal cluster based systems have been developed evolving 

desulfurizing organic compounds. All the desulfurization action reported 59
•
60·61·62·63·64 

involves the concomitant action of two metals, one of which opens or activates the 

thiophene, while the other one promotes the extrusion of the sulfur atom. The later step 

can occur either thermally or by treatment with H2. Soluble clusters such as [Ru3(CO)12] 
65 

and [IrH(1,2-C,S-C12HsS)(triphos)] (triphos = MeC(CH2PPh2)3) 
66 are capable of straight 
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forwardly desulfurizing thiophenes giving catalytic amount of biphenyl and H2S under 

relatively mild condition. (Scheme 6) 

~ 
s 

Scheme 6 Desulfurization of.thiophenes by [Ru3(CO)l2] 

1.3. Nitrogenases and dinitrogen reduction 

~ Vb t(CO), 

Ru(C0)
3 

While reduced dinitrogen is an integral component of proteins, nucleic acids and 

most other biomolecules, dinitrogen is regarded as one of the most inert molecules under 

laboratory condition because of the large activation energy required to form ammonia. 

Consequently, acquisition of metabolically usable forms of nitrogen is essential for the 

growth and survival of all organisms, which implies that dinitrogen reduction is one of the 

most basic energy sources of human beings. Although elemental dinitrogen is abundant in 

the earth's atmosphere, the great difficulty ofreducing it to a usable form has been known 

for one century. The tough conditions of dinitrogen reduction in industries have already 

been shown earlier in Haber-Bosch process. 

On the other hand, some bacteria containing nitrogenases can reduce atomospheric 

dinitrogen to ammonia under ambient condition. 

There are three distinct kinds of nitrogenases, each of which consists essentially of 

two proteins. The most common nitrogenase contains irori and molybdnum but more 

recently two variants have been characterized. They are based upon iron and vanadium, 

and upon iron alone, respectively. The first one has been widely studied. 
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The molybdnum nitrogenase consists of two metalloproteins, the iron (Fe-) sulfur 

protein and the molybdenum iron (MoFe-) sulfur protein. The two clusters are P-cluster 

and Mo-cofacter, respectively, which are the active sites in the proteins. (Figure 6) 

Together, these proteins mediate the ATP-dependent reduction of dinitrogen to ammonia. 

--Cys 

/~ 
--Fe Fe-- ~, ;Cys 
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'/ ~ "'- / " ' ,' s--Mo / CHfHzCq 
Cys-Fe ___ s_ ,,Fe-- s-- Fe,,, I \is Of 
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s'-- Fe"'-...,. / --. 's 

s 

Figure 6 Structure of nitrogenase clusters 

P-cluster 

Mo-cofactor 

Currently, it has been discovered that the molybdenum atom is the dinitrogen 

binding site. Electrons are transferred from P-cluster to Mo-cofacter to achieve the 

dinitrogen reduction process. 

It has been suggested that sulfur atoms in the clusters act in a key role of activating 

dinitrogen molecules in redox chemistry. A recent quantum chemical study on 

nitrogenases showed that the bridging sulfide ligands might be the main factor responsible 

for the activation of dinitrogen and for the subsequent formation of the N-H bonds. When 

a hydrogen atom binds onto the bridging sulfur, the way that dinitrogen bind onto the 

cluster might change from end-on coordination to one of the metal atoms to bridging 
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coordination between two metal atoms, which might increase the activity of dinitrogen to 

form ammonia 3 (scheme 7). For example, for the dimeric model, it is calculated that the 

addition of first hydrogen becomes exothermic by 55.9 kcal / mol for B (with hydrogen 

atom on the sulfur bridge) rather than 18.5 kcal/ mo! for A (without hydrogen atom on 

the sulfur bridge). 
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1.3. I Transition metal mono- or bi-nuclear complexes in dinitrogen 

reduction 

The existence of biological nitrogen fixation has inspired chemists to research for 

purely chemical systems capable of fixing dinitrogen catalytically under mild condition. 

Since 196Os, a lot of work has been done to mimic biological nitrogen fixation using 

transition metal complexes. Protonation of mono- or binuclear transition metal complexes 

with coordinating dinitrogens has been the most interesting area during the last three 

decades. It has been proven that many this kind of complexes can be protonated to give 

ammonia or other intermediate compounds such as hydrazine in lower temperature and 

pressure 67. 

There are mainly two ways that dinitrogen molecules coordinate to the metal atoms 

in mono- or bi-nuclear complexes: end-on coordination to one metal atom or bridging 

coordination between two metal atoms, which have been mainly studied. In 

[RuH2(N2)(PPh3)2] 68 and cis-[Mo(N2)(PMe2Ph)4] 69, etc, the end-on coordinating 

dinitrogen can be reduced to ammoma at fairly mild conditions. In 

[ {Zr(CsMes)2(N2) }(N2)] 70 and [WCp*Me2(0C6F s)h(N2) 71 etc. , dinitrogen coordinating 

between two metal atoms can be reduced indirectly. 

Recently Hidai et al. found the first bimetallic catalytic system that tungsten 

dinitrogen complex cis-[W(N2)2(PMe2Ph)4] was treated with an equilibrium mixture of 

[RuCl(dppp)2]X .and trans-[RuCl(r{-H2)(dppp)2]X (X = BF4, PF6, or OS02CF3; dppp = 

1,3-bis(diphenylphosphino)propane) under 1 atmosphere of dihydrogen at 55 °C giving 

NH3 in moderate yield. It has been proven that the coordinating dinitrogen reacted with 

dihydrogen via the complexes with coordinating dihydrogen 72
. 
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1.3 .2. Transition metal clusters in dinitrogen reduction 

In dinitrogen reduction, the catalysts are expected to be poly-nuclear clusters with a 

maximum number of contacts with nitrogen during the catalysis process. 

When electrons transfer to dinitrogen in a metal complex, bond formation must 

compensate for the energy of NN bond loosening. Apparently, the larger the number of 

metal atoms directly bound to dinitrogen, the easier it is to reach the same extent of NN 

bond weakening, since each metal provides electrons to NN bond and therefore, is already 

a reductant at the stage of complex formation. Therefore, it might be expected that a three­

or even four-nuclear complex would activate dinitrogen more effectively than mono- or 

binuclear complexes. It is suggested that when dinitrogen bind on cluster 

[V3(catecholate)3], a tetranuclear intermediate might be formed (Scheme 8) 73 . 

Besides the way that the dinitrogen binds on the metal atoms, the number of the 

electrons that the cluster can store and transfer to the dinitrogen molecule for the requiring 

of breaking the NN bond is also very important in catalytic process. It needs six electrons 

altogether to reduce the dinitrogen to ammonia, which is difficult to achieve for mono- or 

bi-nuclear complexes. Sometimes, clusters can open their structures by breaking one 

metal-metal bond during electron storing and transferring processes, which implies larger 

abilities of catalysis than mono- or binuclear complexes. 
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Scheme 8 Tetranuclear intermediate of dinitrogen binding on [VJ(catcholate)3] 

1.4. Clusters in hydrogenases and hydrogenation 

The formation and consumption of dihydrogen by microorganisms are catalyzed 

by hydrogenases. Beside the hydrogenases without nickel and iron-sulfur clusters in 

methanogenic archaea 74
, the other two types of metal clusters in hydrogenases are [Ni, 

Fe, S or Se] and [Fe, S]. Both of the clusters exhibit sulfur-rich coordination spheres, 

which are believed to be the dihydrogen activation sites 75
' 

76
. On the basis of redox 

titrations and EPR spectra, it has been suggested that the nickel atom and iron atom are 

the dihydrogen binding sites in [NiFe] hydrogenases and nickel-free "iron only" 

hydrogenases, respectively. Both enzymes catalyze the redox equilibrium and the 

heterolytic cleavage of dihydrogen (Scheme 9) 77
: 
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HD+ HDO 

Scheme 9 Redox equilibrium catalyzed by hydrogenases 

The proposed mechanism is shown in Scheme 10: 
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Scheme 10 The proposed mechanism of heterolytic cleavage of dihydrogen 

The metal-sulfur sphere cleaves the dihydrogen via formation of 112-H2 and thiol species. 

Recently, Sellmann et.al found that the dihydrogen molecule can heterolytically be 

cleaved at ruthenium sulfur sites of cluster [Ru(PCy3)(' S/)] (' S/ = 1.2-bis((2-

mercaptophenyl)thiol)ethane(2-)) in the presence of NaOMe at very mild condition 

(Scheme 11) 78_ 
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Scheme 11 Dihydrogen cleaved at Ru-S sites of cluster [Ru(PCy3)(' S/)] 
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In this case, thiol hydride species could not yet be detected. However, an 

experiment on analogue rhodium cluster has been proven 79
. They both yield model 

compounds that combine structural and functional feature of the active centers in 

hydrogenases. 

1.5. New arene ruthenium sulfur clusters 

It has been shown that transition metal sulfur compounds play very important roles 

in a range of biological and industrial processes. 

The potential for insights into these processes from sulfur containing clusters is 

large. The next chapter of this thesis explores the synthesis and characterization of the 

new high nuclearity arene-ruthenium-sulfur clusters 


