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"Science teaches us about the deepest issues of origins, natures, and fates - of our 
species, of life, of our planet, of the Universe. For the first time in human history, we 
are able to secure a real understanding of some of these matters. Every culture on Earth 
has addressed such issues and valued their importance. All ofus feel goosebumps when 
we approach these grand questions. In the long run, the greatest gift of science may be 
in teaching us, in ways no other human endeavour has been able, something about our 
cosmic context, about where, when, and who we are." 

Carl Sagan - The Demon-Haunted World 

Amendments: 

Page 81: Top lines of page should read - The RNAstructure tree (Figure 5.2C) groups 

the chloroplast sequences together but does not group the cyanobacterial species 

(Synechocystis, Anabaena and Anacyshs) together unless the E. coli outgroup is 

removed. 

Page 126: The following reference should be included: 

Pascual, A and Vioque, A ( 1996) Cloning, purification and characterisation 

of the protein subunit of ribonuclease P from the cyanobacterium Synechocystis sp. 

PCC 6803 . Eur J Biochem 241: 17-24 
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Abstract 

Bioinformatics is applied here to examine whether RNA secondary structure 

data can reflect distant evolutionary relationships. This is important when there is little 

confidence in sequence data such as when looking at the evolution of RNase MRP 

(MRP). 

RNase P (P) and RNase MRP (MRP) are ribonucleoproteins (RNPs) that are 

involved in RNA processing and due to functional and secondary structure similarities, 

are thought to be evolutionary related. P activity is found in all cells, and fits the 

criteria for inclusion in the RNA world (Jeffares et al. 1998). MRP is found only in 

eukaryotes with essential functions in both the nucleus and mitochondria. The RNA 

components of P and MRP (pRNA and mrpRNA) cannot be aligned with any certainty, 

which leads to a lack of confidence in any phylogenetic trees constructed from them. 

If MRP evolved from P only in eukaryotes then it is an exception to the general 

process of the transfer of catalytic activity from RNA, to ribonucleoproteins, to proteins 

(Jeffares et al. 1998). An alternative possibility that MRP evolved with P in the RNA 

world (and has since been lost from all but the eukaryotes) is raised and examined. 

Quantitative comparisons of the pRNA and mrpRNA biological secondary structures 

have found that the third possibility of an organellar origin ofMRP is unlikely. 

Results show that biological secondary structure can be used in the evaluation of 

an evolutionary relatedness between MRP and P and may be extended to other catalytic 

RNA molecules . Although there are many protein families, this may be the first 

evidence of the existence of a family of RNA molecules, although it would be a very 

small family . 

Secondary structures derived with folding programs from pRNA and mrpRNA 

sequences are examined for use in the characterisation of catalytic RNA sequences. The 

high AT content in organellar genomes may hinder the identification of their catalytic 

RN A sequences. A search strategy is developed here to address this problem and is 

used to identify putative pRNA sequences in the chloroplast genomes of four green 

plants. A maize chloroplast pRNA-like sequence is examined in more detail and shows 

many characteristics seen in known pRNA sequences. Folding programs show some 

potential for the characterisation of possible catalytic RNA sequences with only a small 

bias in the results due to sequence length and AT content . 
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Chapter I 

Introduction 

Bioinformatics, a new and exciting field m the biological sciences, 1s a 

powerful tool in the investigation of evolutionary relationships. Bioinformatics is 

applied here to examine two themes. Firstly, RNA secondary structure data is shown to 

reflect evolutionary relationships where the times of divergence are so old that there is 

little confidence in sequence data. Secondly, this secondary structure data is combined 

with sequence and functional data to examine the evolution of RNase MRP (MRP), 

especially the possibility of it being part of the RNA world. 

RNase P (P) is already thought to be part of the RNA world, an early stage in the 

evolution of life, where RN A was both catalytic and the holder of the genetic 

information (Jeffares et al. 1998). MRP is thought to be evolutionary related to P due 

to functional and secondary structure similarities, but due to its presence only in 

eukaryotes, has not previously been considered to be part of the RNA world. These 

ribonucleoproteins (consisting of a catalytic RNA and at least one protein subunit) have 

RNA components (pRNA and mrpRNA) with little sequence homology, resulting in 

sequence alignments that have not enough reliability to confidently examine their 

evolutionary relatedness (Sbisa et al. 1996). 

P cleaves tRNA precursors to form the mature 5' ends of tRNA molecules with 

activity being found all cells tested (i .e. universally) including prokaryotes, eukaryotes 

and also in organelles. Prokaryotic P consists of an RNA strand, and a single protein 

subunit, whereas the P encoded in the nucleus of eukaryotes has several protein subunits 

(Pace and Smith 1990). Fungi such as Saccharomyces cerevisiae and Aspergillus 

nidulans have retained their mitochondrial -encoded pRNA whereas vertebrate 

mitochondria and the fission yeast Schizosaccharomyces pombe have lost their pRNA 

gene and use a nuclear-encoded product. In plants, mitochondrial pRNA activity has 

been shown (Marchfelder and Brennicke 1993), but to date no genes have been 

characterised. 

The secondary structure of prokaryotic pRNA has been seen in the past to show 

characteristic features for different phylogenetic groups of pRNA (Pace and Brown 

1995) and consensus structures have been drawn for these groups of eubacteria and 

archaebacteria (Haas et al. 1996, Pace and Brown 1995). This is an indication that some 

features in the pRNA secondary structure are fixed and others variable. For the 
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purposes of this study, prokaryotic pRNA includes that from eubacteria mitochondria, 

and plastids (chloroplast and cyanelle). The pRNA from archaebacteria is not covered 

at this time due to processing power and time considerations. 

MRP (Mitochondrial Ribosomal Processing) has been found only in eukaryotes 

initially as an endoribonuclease that cleaves RNA primers for the initiation of 

mitochondrial DNA replication (Morrissey and Tollervey 1995). Subsequently a 

nuclear function in rRNA processing was identified, consistent with its predominant 

localisation to the nucleolus (Lygerou et al. 1996). MRP consists of an RNA moiety 

and multiple protein subunits with at least 7 of these, Pop 1 p (Morrissey and Tollervey 

1995), Pop3p (Dichtl and Tollervey 1997) Pop4p (Chu et al. 1997), Pop5p, Pop6p, 

Pop7p and Pop8p (Chamberlain et al. 1998) proteins being shared with P in the yeast 

Saccharomyces cerevisiae. It is possible that these proteins have structural 

characteristics that allow them to interact with both mrpRNA and pRNA. mrpRNA 

secondary structures (Schmitt et al. 1993) have only been characterised for eight species 

and show great similarity with each other despite being from plant, yeast and vertebrate 

species. The nucleotide sequences of these mrpRNAs vary greatly in length and 

nucleotide composition, making alignment of all eight sequences difficult. 

Characteristics ofMRP, eubacterial, eukaryotic and organellar Pare summarised 

in Table 1.1. Cartoon representations and biological secondary structures of pRNA and 

mrpRNA show the sharing of some proteins between mrpRNA and the eukaryotic 

pRNA and the conserved presence of the pseudoknot pairing regions (Figure 1.1). 

Comparisons of the RNA secondary structures between mrpRNA and pRNA 

have shown similarity in shape, especially in the 'cage region' of the RNA molecule in 

which there is the characteristic pseudoknot formation (Forster and Altman 1990). 

(Pseudoknots are structural elements that may act as a recognition site for proteins 

involved in replication initiation or translational regulation. The NMR structure of the 

classical pseudoknot has been determined (Kolk et al. 1998).) However, to date, there 

has been no published quantitative comparison of pRNA and mrpRNA secondary 

structure. When pRNA and mrpRNA secondary structures are broken down into 

simplified structures it can be seen that a large proportion of the secondary structure is 

shared between these two RNA molecules (Figure 1.2). 
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Table 1.1: Summary of characteristics and simplifi ed secondary structure diagrams of MRP, eubacterial, eukaryotic and organellar P. 
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Table 1.1 continued: Summary of characteristics and simplified secondary strncture diagrams ofMRP, eubacterial, eukaryotic and 
organellar P . 
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Figure l. 2: Simplified secondary structure of rnrpRN A showing features 
similar to that of eukaryotic, eubacterial and mitochondrial pRNA 
Key: 

Features common to rnrpRNA and pRNA 

Features common to rnrpRNA and eubacterial pRNA. 

Features common to rnrpRNA and eukaryotic pRNA. 

Features common to rnrpRNA and organellar pRNA. 

Features forming the pseudoknot region. 

The secondary structure and functional similarities between MRP and P have led 

to the conclusion that these two ribonucleoproteins (RNP's) are evolutionary related 

(Morrissey and Tollervey 1995). Both the P and MRP ribozymes cleave RNA's to 

generate 5' phosphate and 3' hydroxyl termini in a reaction requiring divalent cations 

(Forster and Altman 1990). They are both sensitive to puromycin, an antibiotic which 

inhibits pre-tRNA processing (Potuschak et al. 1993), and enzymatic activities from P 

and MRP isolated from several organisms cofractionate through multiple stages of 

biochemical purification (Paluh and Clayton 1995). It has been reported that MRP and 

P may be involved together in a macromolecular complex within the nucleolus (Lee et 

al. 1996). A contrary theory, however, is that the relationship between MRP and P may 

be of a functional nature based on their sharing of many protein subunits (Sbisa et al. 

1996). 
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This study investigated three general hypotheses, based on functional 

characteristics, of the relatedness of P and MRP. pRNA, mrpRNA and 16S rRNA 

sequences and secondary structures used in this study, are shown in Table 1.2. 

The three groups of hypotheses are as follows: 

I MRP evolved from an eukaryotic nuclear P in the nucleus of the 

eukaryotic cell. This could occur by gene duplication followed by divergence of 

function of the two homologues. This is the theory most commonly suggested in 

previous studies (Morrissey and Tollervey 1995, Reddy and Shimba 1996, Chamberlain 

et al. 1996). MRP would have been incorporated into multiple eukaryotic functions and 

has also gained an essential function in mitochondria. Under this hypothesis MRP is 

found only in eukaryotes because it was never in any of the other lineages! MRP is 

present in animals, yeasts, and plants indicating an early divergence from P; however, 

MRP need not have been present in all early eukaryotes. We would expect under this 

hypothesis the secondary structures of the mrpRNA to be more similar to eukaryotic 

pRNA than to prokaryotic pRNA. 

Under this hypothesis MRP is an exception to the transfer process of catalysis 

(RNA to RNP to protein) (Jeffares et al. 1998) with a ribonucleoprotein taking on a new 

catalytic function after the widespread availability of protein catalysts. 

II MRP evolved from an endosymbiont P. MRP could have evolved from 

the hypothetical endosymbiotic fusion that formed the first eukaryote (Gupta and 

Golding 1996) or by some later endosymbiosis that Jed. to the mitochondrion. The 

endosymbiotic origin theory accounts for the essential mitochondrial function of MRP. 

It has been shown that organellar DNA can be transferred to the nucleus and yet retain a 

function in the organelle (Brennicke et al. 1993, Wischmann and Schuster 1995, 

Blanchard and Schmidt 1995). This theory proposes that MRP picked up the additional 

rRNA processing functions in the nucleus. We might expect here that mrpRNA would 

retain some organellar characteristics such as a higher A + T content in nucleotide 

sequence and be more closely related in secondary structure to that of the organellar or 

prokaryotic pRNA. 

Ill MRP and P evolved in the RNA world. The RNA world hypothesis 

suggests that DNA and proteins evolved from a world in which RNA was the both the 

catalytic and information storage molecule, and that today's catalytic RNA species are 

molecular relics from this time. There are three main criteria used to evaluate the 
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antiquity of an RN A molecule ( Jeff ares et al. 1998) and pRN A fits all three of these 

criteria by being ubiquitous, catalytic and central to metabolism. MRP on the other 

hand fits only the last two criteria, being present only in the eukaryotic lineage. A 

central concept to the RNA world is that proteins with superior catalytic properties have 

gradually replaced RNA as the catalytic molecule (and that no novel catalytic RNAs 

would be formed after the advent of efficient protein synthesis, Jeffares et al.1998). 

However, it is difficult to see how a molecule such as MRP could have evolved 

only in the eukaryotic lineage and then integrate itself so intimately into rRNA 

processing, mitochondrial genome replication, and perhaps other functions central to 

eukaryotic metabolism. It has been found that eukaryotes carry more proposed 'relics' 

of the RNA world than prokaryotes. These 'relics' include small nucleolar RNAs, 

spliceosomes, telomerase, and self-splicing introns, which are all absent from 

prokaryotes (Jeffares et al 1998). MRP was the only widely occurring catalytic RNA 

not suggested to be a relic from the RNA world in Jeffares et al . 1998. 

Again there are several variants of this hypothesis; MRP could have evolved 

from P, P evolving from MRP, and MRP and P evolving independently in the RNA 

world. 

With such an early divergence expected between pRNA and mrpRNA (at least 

back to the divergence of eukaryotes), nucleotide sequence alignments may not be 

reliable enough to determine with confidence any evolutionary relationship. It is 

expecte~ however, that examination of the RNA secondary structure may yield the 

required information when the sequence data cannot. 

It has been shown that many sequences can fit the same secondary structure 

(Fontana et al. 1993) which allows the catalytic RNA sequence to vary even if the 

function of the molecule remains unchanged. The secondary structure of the catalytic 

RNA molecule has both fixed 'motifs' that represent areas that are critical to 

maintaining the function, and other regions that are free to vary in presence or size. It is 

expected that these fixed and variable regions of the catalytic RNA secondary structure 

will change according to the evolution of the function of the molecule, and thus may be 

used to determine evolutionary relationships when the sequence data may not. 

Quantitative comparisons of pRNA and mrpRNA secondary structures are used here to 

calculate distances between these molecules in order to assess their relatedness. 
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Accession Number Len~of A+T•lo Secondary Structure 
Seouence Refe~ 

pRNA Sequences 
Eubact.erial 11RNA 
SvnechocyBtis sp. PCC6803 X65707 437 48 p 

Anabaena sp . PCC 7120 X65648 465 47 p 

Anacvstis n idulans PCC6301 X63566 38'5 43 p 

Pseudoon.abaena sp. PCC 6903 X73135 450 52 p 

&dlerichia coli Ml7569 377 38 p 

Bacillus subtilis Ml3175 401 51 p 

Rhodosoirillwn rubrum M59355 429 29 p 

Ai,roba<1erium tumefaciens M59354 402 36 p 

MJtodtoedria.l 11RNA 
Reclinomonas a!Th!ricana mitochondria AF007261 312 75 p 

Saccharomyces cerevisiae mitochondria U46121 448 87 No strud.ure 
A.sperg,i!lus nidu\SJL~ mitocboodria X93307 300 81 No structure 
Plastid DR!I\A 
Poq>hvra plJTl)urea chloropllllit U38804 383 63 p 

Cymoohora oaradoxa Cyanelle X89853 350 67 p 

Eukarvotic pRJ\'A 
Human (nuclear) Xl5624 340 36 Altman el aL 1993 
Mouse (nuclear) L08802 288 33 Altman el al. 1993 
Danio reri o (nuclear) 2ebrafish US0408 308 43 No SIIU cture 
Saccharomyces cerevisiae (nuclear) M27035 368 48 Tmn~cb and Engelke 1993 
Schizosaccharomvces 11ombe (nuclear) X04013 373 48 Tmn,ruch and Enitelke 1993 

mrpRNA Sequences 
Human X51867 264 36 Schmitt el al. I 993 
Bovine 225280 277 39 Schmitt el al. 1993 

Mouse .J03151 275 36 Schmitt ct al. 1993 
Rat J05014 273 35 Sdlmitt ct al. I 993 
Xampus (frog) 211844 277 45 Schmitt ct al . 1993 
Arabidoosis thaliana X65942 260 49 fuss et a l I 992 
Saccharomvces ca-evisiae 214231 339 60 Kiss et al. 1992 
Sdiizosaccharomyces pombe X04013 399 57 Paluh and Cla,100 1995 

16S rRNA structur:-es RDP sequence 

RDP 
Escberi dtia coli E.coli - - RDP 

Clostridium innoannn C.innocuurn - - RDP 

Mdhanococcus vannielli Mc.vanniel - - RDP 

Frankia Sf>. Fra.!iOORS - - RDP 

Stremomyces ooelicolor Stm.ooelic - - RDP 
Thamus thermophilus T.thcnnom - - RDP 

Bacil )us sulti lis B.subtilis - - RDP 

Awobact.erium tumefaciens Ae. tumefac - - RDP 

Spirodtaeta aurantia Spi.aurant - - RDP 
Thcnnoplasma acidoohilum Tpl.acidop - - RDP 
Myooplasma capricolum MClll)ricol - - RDP 

Methanoba<1erium formiciwm Mb.formici - - RDP 

Pseudomonas testostcroni Ps.testost - - RDP 

Table 1.2: pRNA , nupRNA and 16S rRNA sequences and secondary structures used in this study 
showing length, accession details, A+ T % and from where the secondary structures were obtained 
Key: P Obtained from the RNase P Database (Brown 1997). 

RDP Obtained from the Ribosomal Database Project (Maidak. et al. 1997). 
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This study examined two types of RNA secondary structure. The first is the 

secondary structure that the RNA forms in nature and is referred to here as the 

"biological secondary structure". The biological secondary structures of eubacterial 

pRNA have been studied extensively (Haas et al. 1994, Haas et al. 1996a, Haas et al. 

1996b, Green et al. 1996) and consensus structures calculated. Eukaryotic and 

organellar pRNA biological secondary structures are not as well defined with published 

hypothetical structures being used here. Some organellar sequences used in this study 

do not have any published secondary structure and are only used when sequence data 

alone is required. 

The second type of secondary structure is calculated from the nucleotide 

sequence data using folding programs. Such structures are determined only from the 

nucleotide sequence data and need not have any relationship to the function of the 

molecule. Thus, the calculated secondary structures may not have the same fixed and 

varied regions that are shown in the biological structures (Zuker 1989). 

Within the fixed regions of the biological secondary structure it is expected that 

nucleotide changes in one part of a helix will be met by a corresponding change in 

another part of the sequence to allow the helix to remain unchanged. Thus it is still 

expected that sequences of similar functions will form similar secondary structures with 

the folding programs allowing the formation of a recognisable structural ' motif' . These 

motifs are possible identification features that could be used in the characterisation of 

putative catalytic RNA sequences. Secondary structures folded from pRNA and 

mrpRNA sequences with folding programs are examined for use in the characterisation 

of putative catalytic RNA sequences. 

Organellar genomes (mitochondria and chloroplast) ofter a uruque 

opportunity for the testing of searching, gene identification, and characterisation 

techniques. These genomes are small and many have been completely sequenced, and 

are available in databases such as Gen8ank. However the high AT content of organellar 

genomes often makes them hard to search with standard searching algorithms. 

Searching databases with a sequence of high AT content gives a high background of 

non-relevant matches often obscuring meaningful results. The distribution of pRNA 

and rnrpRNA (Figure 1.3) shows that although pRNA is found encoded in the 

mitochondrial DNA of plants, there is to date, no published green plant chloroplast­

encoded pRNA sequences. To test the feasibility of using RNA secondary structure to 
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characterise potential pRNA sequences, green plant chloroplast genomes were searched 

for putative pRNA sequences. 

Eu bacteria 

Key: 

Bacteria 
Cyanobacteria 
(Chloroplasts) 

Aquifex 

• .. ·•. ·•,, ···· . .... 

Sulfothermophiles 

Eukaryotes 
RNase P Activity 

RNase MRP activity 

Mitochondrialy 
encoded pRNA .... ··• .. . 

Giardia 
Trypanosoma 

-- Chloroplast 
encoded pRNA 

Animals 
Fungi 

~~ 

. .... :·:::·:::::··:: ···· 
····· Mitochondrial 

Protozoa 
(Reclinomonas) 

Plants 

Vertebrates S. pombe Saccharomyces Green Plants 
Higher Plants 

Red Algae 

Figure 1.3: Phylogenetic distribution of MRP and P. Dotted lines represent where activity has been 
shown but the RNA has not yet been characterised. Solid lines represent where the activity has been 
shown and has been characterised 

It is only recently that pRNA was characterised from the chloroplast of the red 

alga Porphyra purpurea (Reith and Munholland 1995), and from the cyanelle (a 

chloroplast-like plastid that still retains a cell wall) of Cyanophora paradoxa (Baum et 

al. 1996). Although it is expected that sequence homology between known pRNA 

sequences and putative green plant chloroplast pRNA sequences would be low, it is still 

expected that secondary structure (both a theoretical biological structure based on other 

pRNA structures and a folded structure), would show identifying secondary structure 

characteristics. One of the putative green plant chloroplast pRNA sequences (from the 

Zea mays - maize chloroplast) is examined more fully with other pRNA and mrpRNA 

sequences in this study. 
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There is a possibility that folded structures could be used in the same way as the 

biological structures, for determining evolutionary relationships. The biological and 

folded structures from two folding programs are shown for Hwnan pRNA (Figure 1 .4), 

Escherichia coli pRNA (Figure 1.5), and Human mrpRNA (Figure 1.6). These figures 

highlight how different the calculated structures are from the biological structures but 

also the similarities between the structures formed by the two different folding 

programs. 

Problems with the use of folding programs in the analysis of catalytic RNA may 

include how much influence characteristics such as the AT content and sequence length, 

have on the estimated structure. These factors are examined here using random 

sequences derived by shuffling pRNA and mrpRNA sequences of varying length and 

AT content. Protein-coding RNA sequences are also used as controls in order to 

evaluate any trends that may be used in identifying putative catalytic RNA sequences. 

The amount of pairing that is present in a folded structure could also be another tool in 

the identification of catalytic RNA sequences. 

In summary, this thesis looked at four main issues. The first was the evolution 

ofMRP and its relationship to P. The second was the use of RNA secondary structure 

in the characterisation of putative pRNA sequences from chloroplasts. The third was 

the use of biological secondary structure in determining evolutionary relationships, and 

the fourth was the evaluation of the structural output from folding programs. The 

techniques developed here may, in future, be applied to other RNA molecules especially 

those associated with the RNA world as well as the analysis of newly discovered 

potential RNA molecules. 
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Figure 1.5: E. coli pRNA biological and folded secondary 
structures. A, B, and C represent features that may be common to 
both the RNAstructure and the RNAdraw structures. 
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