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ABSTRACT 

Some models proposed for the analysis of contingency tables are 
reviewed and illustrated with examples. 

These include standard loglinear models; models which are suitable 
for ordinal categorical variables such as ordinal loglinear, log­
multiplicative and logit models, and models based on an underlying 
distribution for the response; and models for incanplete and square 
tables. 

Estimation methods and inference are also discussed. 
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1. 

CHAPrER I: INTROCUCTION 

1.1 Categorical variables 

This thesis discusses different types of models that can be used to 
describe categorical data. A categorical variable differs fran a 
continuous variable in that rather than being able to take on a 
continuous range of values, it is only classified into a certain 
number of categories. An example would be marital status, which could 
have categories such as married, widowed, divorced, or "other". If we 
classify each member of a sample simultaneously on t¼D or more 
categorical variables, then we can form a cross-classification table. 
For example, we might classify 1000 people by their marital status and 
age (where age has only been measured in categories) such as in Table 
1.1. 

Table 1.1: Cross-classification table of 1000 people by age and 
marital status 

Age (years) 

< 25 

25 - 40 

> 40 

TOTAL 

Married 

100 
200 
120 

420 

Marital Status 
Widowed 

10 
50 
75 

135 

Divorced 

10 
100 

80 

190 

Other 

180 
50 

25 

255 

Total 

300 
400 

300 

1000 

A cross-classification table is also referred to as a contingency 
table or cross-tabulation. 

For sane variables such as marital status and sex, the only sensible 
way to measure them is to classify them into categories. However, 
sane other variables, such as age and incane, can be measured on a 
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continuous scale, but it is often more convenient to simply categorize 
them. 

1.2 Two-Dimensional Tables 

Consider a two-way table of counts with the row variable, X, having r 
categories, and the column variable, Y, having c categories - thus 
there are r rows and c columns. We will denote the actual count in 
the ith row and jth column by nij, and the corresponding expected 
count under sane model as mij• The row and column totals are: 

C 

ni+ = Enij 
j=l 

r 

n+j = L nij 
i=l 

The total number of observations is 

L L nij = N 
i j 

Assuming that neither category has fixed marginal totals, the 
probability that a given individual is classified into cell (i, j) is: 

Tiij = P (X tables on level i and Y takes on level j) 

where 

TI •. lJ = mij 
N 

I TI ij = n+j 
i 

In ij = TI i+ 
j 



H1Tij = 1 
ij 

If X and Y are independent, then 

1Tij = P (X tables on level i) x P (Y takes on level j) 

= 1Ti+ 1T+j 

Since the expected value of nij is 

ffiij = Nrr ij 

then under the model of independence 

ffiij = N ,r i+ 1T +j 

3. 

Later, we will discuss models that allow X and Y to be associated in 
sane way. For these models the expected values depend on more than 
just the marginal probabilities. 

1.3 Three-Dimensional Tables 

We can extend the notation introduced in Section 1. 2 to the case of 
three-way tables. A three-way table with variables X, Y and Z having 
r, c and !l categories respectively, will be said to have observed 
counts nijk with corresp::mding expected counts mijk and population 
probabilities n ijk• 

An example of a three-way table is Table 1.2 which classifies a sample 
of 1593 people by their age, religion and frequency of church 
attendance (Knoke and Burke, 1980, p.68). 
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Table 1.2: Effect of age and religion on church attendance 

Church Attendance 
Religion Age I.ow Mediun High 'Ibtal 

Non-Catholic Young 322 124 141 587 
Old 250 152 194 596 

Catholic Young 88 45 106 239 
Old 28 24 119 171 

TOTAL 688 345 560 1593 

Later, we will fonnulate models that allow various types of 
association between the variables. 

1.4 Sampling Models 

There are three canmon sampling models that are used for the 
collection of cross-classified data. We will illustrate for the case 
of an rxcxi table classified by variables X, Y and z. These results 
can be easily generalized to tables of a different dimension. 

1.4.1 Poisson 

We observe a set of independent Poisson processes, one for each 
cell in the table ov.er a ~ixed time period·, with no prior knowledge 
of the total number of observations to be taken. The count nijk in 
each cell will have a Poisson distribution with mean mijk, i.e. 
the probability function for nijk has the fonn 

nijk -mijk 
f (nijk) = mijk e 

Xijk 1 



The log likelihood function is 

log L(nijk) = l 
i, j ,k 

nijk log mijk - l 
i, j ,k 

5. 

mijk - l 

Since the cells contain counts having independent Poisson 

distributions, the total count in the table, N, has a Poisson 

distribution with mean 

m+++ = l mijk 
ijk 

1.4.2 Multinanial 

We take a fixed sample of size N and cross-classify each member of 

the sample according to the categorical variables. The cell counts 

{ nij0 will have the mul tinanial distribution specified by the 
sample size N and the rcz population probabilities {TI ijk}. The 

probability of a particular set of cell counts {nijk} that Slllll to N 

is the multinanial likelihood 

L(nijk) = _N_._1 __ 

TI nijk! 
i, j ,k 

The log likelihood is 

log L( nijk) = I = 
i, j ,k 

TT nijk 

TI ijk 
i, j ,k 

nijk log TI ijk + log N! - I 
i, j ,k 

The expected value of each nijk is mijk = Nrrijk• 

1.4.3 Product Multinanial 

For each canbination of one or more categorical explanatory 

variables, we take a multincmial sample of fixed size which is 

classified by the remaining response variable( s). For example, 

suppose we fix the 9, layer totals and take a sample of size n++k 

for each k. Let TI ij ( k) be the probability of an observation 

falling into the ith category of X and the jth category of Y, given 
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that it falls into the kth category of Z (i.e. ,r ijJ</,r ++k). The 
cell counts within the kth layer have the multinanial distribution 
specified by the sample size n++k and the probabilities {,r ijk 
k = 1, ••• , t}, and cell counts fran different layers are 
independent. The cell counts in layer k have the probability 
function 

n++k! 
. n nijk! 

I • l,J 

. II . 
l,J 

nijk 
1fiJ'(k) 

and the product of these fran the t layers gives the probability 
function for the whole table (the product multinanial likelihood) 

= II n++k II 
k II 1,J 
i,j· nijk ! 

,r ij (k) nijk 

The expected value of each nijk is mijk = n++k 1fij(k)• 

1. 4.4 Eauivalence of Results for Different Sampling Models 

For the models that will be discussed in this thesis, the maximum 
likelihood estimates (MLEs) are the same for all sampling schemes. 
The one condition required is that a term corresponding to the 
fixed margin( s) in the product mul tinanial sampling scheme be 

included in the model ( for more details see Append ix 1) • Because 
of this equivalence, generally models will be phrased as though the 
sampling scheme was multinanial. 

1.5 ResP?nse and Explanatory Variables 

Each variable ( i.e. margin) in a table can be thought of as either an 
explanatory variable (factor) which affects others, or as a response 
variable which depends on other factors. 

Fbr three-dimensional tables there are three possible canbinations: 

(i) no explanatory, three response variables 
(ii) one explanatory, two response variables 

( iii) . tv.D explanatory, one response variable. 
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Examples of these three types of tables include Tables 1. 2, 1. 3 and 
1. 4. 

Table 1.3: Occupation (0), Education (E), and Aptitude (A) 
of oorld War II volunteers 

01 (self employed, business) 02 (self employed, professional) 

El E2 E3 E4 El E2 E3 E4 

Al 42 55 22 3 1 2 8 19 
A2 72 82 60 12 1 2 15 33 
A3 90 106 85 25 2 5 25 83 
A4 27 48 47 8 2 2 10 45 
AS 8 18 19 5 0 0 12 19 

03 ( teacher) 04 (salary employed) 

El E2 E3 E4 El E2 E3 E4 

Al 0 0 1 19 172 151 107 42 
A2 0 3 3 60 208 198 206 92 
A3 1 4 5 86 279 271 331 191 
A4 0 0 2 36 99 126 179 97 
AS 0 0 1 14 36 35 99 79 

1.5.1 Three Responses 

Type (i) tables are only rarely found in practice. However Table 
1.3 can be thought of as one. The data, taken fran Fienberg (1980, 
p.45) refer to the classification of 4353 World War II volunteers 
into four occupational groups by four levels of education and five 
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levels of aptitude. Because of the sampling scheme and the way in 
which the individuals were classified ( see Fienberg for further 
details), all three variables can be thought of as responses. 

1.5.2 Two Responses 

Table 1.4, taken fran Fienberg (1980, p.27) is an example of the 
second type of table. The data refer to the perch heights and 
diameters of tv.D different species of lizards. Species is an 
expalanatory variable which affects the responses of height and 
diameter. 

Table 1. 4: Perch height and diameter of two species of lizards 

Perch Diameter 

>4. 75 1 

<4. 75 1 

Sagrei Species 
Perch height 
< 4. 0" 

32 
11 

> 4. 0" 

86 
35 

1.5.3 One ResJ?)nse 

Distichus Species 
Perch height 

,;:; 4. 0" 

61 
41 

> 4. 0" 

73 
70 

Type (iii) tables are the most canmon three-dimensional tables. An 

example is given in Table 1.2 which illustrates the effect of the 
explanatory variables, religion and age, on the response, frequency 
of church attendance. 

1.5.4 Types of Models that can be Fitted 

For type ( i) tables only Poisson or multinomial sampling schemes 
are usually appropriate, whereas for types (ii) and (iii) we would 
also use a product-multinomial model in which the fixed marginal 
totals correspond to explanatory variables. 
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The distinction between explanatory and resfX)nse variables 
certainly affects the interpretation of the results, but often does 
not affect the types of models that can be fitted. A sensible 
approach for the analysis of tables with one or more explanatory 
variables is to condition on the values of these margins, treating 
them as fixed even in those cases where they are not. We will 
discuss this approach more fully later. 

1.6 Ordinal Categorical Data 

When one or more of the variables in a cross-classification is 
measured on an ordinal scale, we can use models which take account of 
this to give more powerful tests of association and simpler, more 
incisive measures of this association than models which simply treat 
all the variables as naninal. 

An illustration of an ordinal variable and the levels of its 
corresponding scale would be education which might be measured as 
primary sclxlol, high school, or tertiary education. 

Other examples would be consumer rating of a new food product as 
dislike a lot, dislike, indifferent, like, like a lot; or measuring 
the softness of water as soft, medium or hard. 

Ordinal scales canrnonly occur in many disciplines, such as the social 
sciences (e.g •. for measuring attitudes and opinions), marketing (e.g. 
for preference scales), medicine (e.g. for describing severity of an 
injury, or degree of recovery fran an illness). In many fields 
ordinal scales often result when discrete measurement is used with 
inherently continuous variables such as age, incane or social status. 
Often it is possible to measure a variable perhaps even on a 
continuous scale, but much quicker and more convenient to simply 
measure it on an ordinal scale. For instance, the amount of sediment 
left on a filter pad may be simply classified as none, slight, 
moderate or excessive by canparing it to a photographic standard 
rather than drying it and precisely weighing it. 

A categorical variable is referred to as "ordinal" rather than 
"interval" when there is a clear ordering of the categories but the 
absolute distances among them are unknown. For example, the variable 
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"education" is ordinal when measured with categories primary school, 
high school, university, but it is interval when measured with the 
integer values 0, 1, 2, ••• representing number of years of education. 

An ordinal variable is quantitative because it corresponds to 
different quantities of a certain characteristic, while qualitative 
variables which are measured on a naninal scale have no such property. 
Examples of nominal variables are race, religion or marital status. 
The order of listing of the categories of a naninal variable is 
obviously unimportant. 

1.6.1 Advantages of Using Ordinal Methods 

Most of the well-known methods for analysing categorical data (such 
as the Pearson chi-squared test of independent or the canmon 
log linear models discussed in Chapter II} treat all variables as 
naninal, i.e. the results are invariant to permutations of the 
categories of any of the variables. 

Since ordinal variables are inherently quantitative, Agresti (1984} 
argues that their descriptive measures should be more like those 
for interval variables than those for naninal variables. 

The advantages of using ordinal methods instead of the standard 
naninal procedure_s include: 

1. Ordinal methods have greater power for detecting particular 
kinds of association; 

2. Ordinal data description is based on measures that are 
similar to those (e.g. correlations, slopes} used in 
ordinary regression and analysis of variance for continuous 
variables; 

3. Ordinal analyses 
of which are 
interpretations 
variables. 

can use a greater variety of models, most 
more parsimonious and have simpler 

than the standard models for naninal 

4. Interesting ordinal models can be applied in settings where 
the standard naninal models are trivial or else have too many 

parameters to be tested for goodness of fit. 
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In Chapters IV to VII we will discuss particular classes of·models 
that can be used to model ordinal categorical data. These include 
ordinal lCXJlinear, lCXJ-multiplicative and lCXJit models, as well as 
models based on underlying distributions for the response. 

1.6.2 Odds Ratios for 2x2 Tables 

The odds ratio is a measure that describes the degree of 
association in a 2x2 table - it is especially important in the 
study of ordinal models. 

Consider the 2x2 population cross-classification with cell 
probabilities ,r ij• Within row 1 the odds that variable 2 is in 
column 2 instead of column 1 is 

Within row 2 the corresponding odds equals 

Each Qi is nonnegative, with value greater than 1.0 if column 2 is 
more likely than column 1. 

The ratio of these odds 

= ,r 22,lir 21 
,r 12,lir 11 

is the odds ratio. It is sanetimes called the cross product ratio, 
since it is the ratio of the products ,r 11 ,r 22 and ,r 12 ,r 21 of 
proportions fran cells that are diagonally opposite. 

Each odds S1 i can be expressed as 



so 

r2i = ,r i2/1r i+ 
ir n/ir i+ 

= 1T2(i) 

1r 1( i) 

e = ir 2 ( 2) /ir 1 ( 2) 

1T2(l)iirl(l) 

12. 

The row and column variables are independent if and only if Q 1 = Q 2 
(and so e = 1.0). If 1 < e < oo, then individuals in row 2 are more 
likely to be in column 2 than are individuals in row 1, i.e. 

1T2(2) > 1T2(1)• If O < e < 1, individuals in row 2 are less likely 
to be in column 2 than are individuals in row 1, i.e. 1T2(2) < 
1T2(1)· 

For sample cell frequencies {Xij}, a sample analCXJ of e is 

A 

e = nn n22 

n21 n12 

The value of e does not change if both cell frequencies within any 

row are multiplied by a nonzero constant, or if both cell 
A 

frequencies within any column are multiplied by a constant. So e 
estimates the same characteristic ( e) even if disproportionately 
large or small samples are selected fran the various marginal 
categories of a variable. In particular, it estimates the same 
characteristic regardless of whether sampling is full multinanial 
or independent multinanial. It also takes the same value if the 
orientation of the table is reversed so that the rows becane the 
columns and the columns becane the rows. 

If the order of the rows or the order of the columns is reversed, 
the new value of e is simply the inverse of the original value. So 

tv.D values of e that are the inverse of one another (such as 3 and 
1/3) represent the same degree of association, but in opposite 
directions. 

The odds ratio is a multiplicative function of the cell 

proportions. Its lCXJarithm is an additive function, i.e. 
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leg e = leg 1T ll - leg 1T 12 = leg 1T 21 + leg 1T 22 and may equal any 
real nunber. The leg odds ratio is symmetric about the 
independence value of 0.0 in the sense that a reversal of the tv.0 
rows or the two columns results in a change of its sign. 

1.6.2.1 Incidence of Colds Example 

Pauling ( 1971) describes a double-blioo study to evaluate the 
effect of ascorbic acid (vitamin C) on the camnon cold. One 
group of 140 skiers received a placebo, while a second of 139 
received 1 g of ascorbic acid per day. The incidence of colds 
was recorded and is shown in Table 1.5. 

Table 1.5: Incidence of camnon colds 

Treabnent 

Ascorbic acid 
Placebo 

No Cold 

122 
109 

Cold 

17 
31 

The odds of catching a cold for the ascorbic acid group are 
17/122 = .14, while the odds for the placebo group are 31/109 = 
0.28. The ratio of these odds is 0.28/0.14 = (122 x 31)/(109 x 
17) = 2. 04. This means that the odds of catching a cold were 
2. 04 times higher for the placebo group than for the ascorbic 
acid group. This odds ratio is significantly higher than 1.0, 
so it is plausible that administration of vitamin C helped to 
prevent the occurrence of colds. 

1.6.3 Odds Ratio for rxc Tables 

For the general rxc table odds ratios can be formed using each of 
(f) = r(r-1)/2 pairs of rows in canbination with each of the (i) = 
c(c-1)/2 pairs of columns. For rows a and band columns c and d, 
the odds ratio (1Tac lTbd)/(lTbc lTad) uses four cells occurring in a 
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rectangular pattern (see Figure 1), and there are (f) (~ cx:ids 
ratios of this type. The independence of the two variables is 
equivalent to the condition that all these population cx:ids ratios 
equal 1. O. 

However, there is much redundant information when the entire set of 
these cx:ids ratios is used to characterize the association in a 
table. 

1.6.3.1 LOcal CXlds Ratios 

A basic set of (r-1) (c-1) cx:ids ratios is 

e i j = 1r i j 1r i + 1 , j + 1 , i = 1 , • • • , r-1, 
1r irj+l 1r i+l,j j=l,. • • ,c-1 

Figure 1. 1: General CXlds Ratio 1r ac 1r 00/lT be 1r ad 

c d 

a 

b 
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Figure 1. 2: Local ()jds Ratio e ij 

·+1 

i 

i+l 

This basic set determines all (z) (S) odds ratios that can be 
formed fran pairs of rows and pairs of columns. Independence of 
the tv.D variables is therefore also equivalent to the condition 
that the odds ratios in the basic set are equal to one. 

These odds ratios are formed using cells in adjacent rows and 
adjacent columns, as illustrated in Figure 1.2. Their volumes 
describe the relative magnitude of "local" associations in the 
table, so they are called local odds ratios. 

1.6.3.2 Local-Global ()jds Ratios 

Another family of odds ratios is 

e 'ij = 0: 1r ib) 
lxj 

0: 1r ib) 
b>j 

i = 1, ... ,r-1, 
j = 1, ••• ,c-1 

(I 1Ti+l,b) 
b > j 
(I 1Ti+l,b) 
lxj 

These odds ratios are local in the row variable but "global" in 
the column variable, since all c categories of the column 
variable are used in each odds ratio (see Figure 1.3). They are 
particularly meaningful when a distinction is made between 
response and explanatory variables. 
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1.6.3.3 Global CX'!ds Ratios 

A third family of odds ratios is 

0 II ij = ( I I ,rab) ( I I 1T ab) 
a,;; j l:xj a>i b>j 

( I I 1T ab) ( I I 1T ab) 
a,;; i b> j a>i l:xj 

These measures are the regular odds ratios canputed for the 2x2 
tables corresponding to the ( r-1) ( c-1) ways of collapsing the 
row and column classification into dichotories. They treat row 
and colunn variables alike and describe associations that are 
global in both variables (see Figure 1.4). 

Figure 1.3: Local-Global CX'!ds Ratio 0'ij 
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Figure 1.4: Global o::ids Ratio e"ij 

i 

i+l 

For local, local-global and global odds ratios, independence is 
equivalent to all log odds ratios equalling zero. An 

association described by one of these measures is referred to as 
"positive" or "negative" according to the sign of the leg odds 
ratio. 

If all log 0ij;;,O, then all log e 'ij;;,O. If all loge' ij>O, then 
all log e" ij> O. The converse, of these statements are not 
true (Agresti, 1984). The condition that all local leg odds 
ratios be positive is therefore the most stringent of three 
possible definitions for "uniformly positive association". 

The less localized the odds ratio, the more precise its sample 
value tends to be as an estimation of its population value, 
since the standard error involves the inverses of larger sample 
totals. So if all the {0 ij} are approximately equal, if the 
{ e' ij} are approximately equal, and if the { e" ij} are 
approximately equal, the sample estimates of the third set will 
tend to be smoothest. 

1.6.3.4 Dumping Severity Example 

We will illustrate these three types of odds ratios for ordinal 
variables using the data in Table 1.6, fran Grizzle, Starmer and 
Koch (1%9). The data refer to a canparison of four different 
operations for treating duodenal ulcer patients. The operations 
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correspond to removal of various amounts of the stanach. 
Operation A is drainage and vagotcmy, B is 25% resection and 
vagotany, C is 50% resection and vagotany, and D is 75% 
resection. The categories of operation are ordered, with A 

being the least severe operation and D corresponding to the 
greatest removal of stanach. The variable "dumping severity" 
describes the extent of a possible undesirable side effect of 
the operation. The categories of this variable are also 
ordered, with the response "none" representing the most 
desirable result. 

Table 1.6: D.rrnping severity and operation 

D..unping Severity 

Operation None Slight Moderate Total 

A 61 28 7 96 
B 68 23 13 104 
C 58 40 12 110 
D 53 38 16 107 

TOTAL 240 129 48 417 

{
A {A A Table 1. 7 contains the sample values e ij}, e I ij} and {e II ij} of 

the ordinal odds ratios. 

To illustrate the calculation of the values in Table 1.7: 

" 8 12 = 2 8xl 3 = 2. 2 6 
23x7 

...... 

812 1 = (61+28)xl3 = 1. 82 
( 6 8+23) x7 

,._ 
e 12'' = ( 61+28) x(13xl2xl6) = 1. 86 

( 6 8+23+58+40+53+38)x7 



Table 1.7: Values of Ordinal Odds Ratios for DJmping 
Severity Data 

" 
,.. A e .. 8 I ij e II ij lJ 

j 1 2 1 2 1 

1 o. 74 2. 26 o. 92 1. 82 1. 38 
i 2 2. 04 o. 53 1. 69 o. 86 1. 74 

3 1. 04 1. 40 1.14 1. 44 1.55 

"' 

A 
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·' 

2 

1. 86 
1. 33 

1.53 

'Ihe value of 812 means that the estimated odds that dumping is 
moderate instead of slight is 2.26 times higher for operation B 
than for A. 

The value of 812' means that the estimate odds that dumping is 
moderate instead of none or slight is 1. 82 times higher for 

operation B than A. 

" 'Ihe value of 812'' means that the estimated odds that dumping is 
moderate instead of none or slight is 1. 86 times higher when 
sane stomach is removed (operations B, C, D) than when none is 
removed (A). 

All three sets of measures indicate a generally positive 

association, though the {e"ij} show the most consistency. 

1. 7 Estimation 

For all the models discussed in this thesis, the parameters and 
expected cell counts are estimated by the method of Maximum Likelihood 
(Lindgren, 1976, p.269). 

'Ihis well-known statistical principle gives parameter estimates with 

certain known properties (e.g. asymptotic efficiency, consistency, 
asymptotic normality with known parameters, etc.) as well as giving 
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rise to powerful likelihood-ratio tests which can be used to test 
whether specific models fitted are feasible. 

1. 8 Model Testing 

To test the goodness-of-fit of the various models, we can use either 
of the following tv.D statistics: 

x2 = I 
i 

i m. 
1 

which are asymptotically equivalent. Under the null hypothesis, both 
x2 and G2 are asymptotically distributed as chi-square. x2 is the 
Pearson chi-square statistic (Pearson, 1900), and G2 is a 
likelihood-ratio (LR) statistic, known as the "deviance" in the 
terminolo;iy of generalized linear models. Although both tests usually 
lead to very similar conclusions, we will use G2 as the LR statistic 
is much more useful in testing significance of model terms. 

1. 9 Structural and Sampling Zones 

Zero entries in contingency tables are of tv.D types - structural and 
sampling zeroes. Structural (fixed) zeros occur when it is impossible 
to observe values for certain canbinations of the variables, e.g. 
males who have had a hysterectany. Sampling (randan) zeroes are due 
to sampling variation and the relatively small size of the sample when 
canpared with the large nunber of cells; they disappear when the 
sample size is increased sufficiently. 

When structural zeros occur in a table, it is still possible to 
analyse the data using models which will be discussed in Section 8.2. 

When sampling zeroes are scattered haphazardly throughout the table, 
there are usually no problems - the appropriate models are fitted in 
the normal manner. 



21. 

However, sanetimes the zero entries are placed in such a way that when 
canputing estimated values to satisfy the constraints, if one zero 
entry is given a positive value, then another must be given a negative 
value. If the extra constraint that all estimated values must be 
non-negative is applied, then these entries will have estimated values 
of zero. Table 1.9 gives an example of such a case: 

Table 1. 9: A table with tw::r-dimensional marginal total equal to 
zero 

Xl 
X2 

Yl 

0 

0 

Y2 

5 

12 

I Yl 

6 

5 

Y2 

10 
8 

The n+11 marginal total is zero. Thus, any model which requires this 
marginal total to be fitted must necessarily estimate the (1,1,1) and 
(2,1,1) cells as zero. 

It is this circumstance which has given risen to much debate about the 
"correct" degrees of freedan applying to the deviance in such a case. 

There are three views stated in the literature. The first and most 
widely stated view is that in order to test the goodness-of-fit of a 
model that uses a set of observed marginal totals with at least one 
zero entry, the degrees of freedan associated with the test statistic 
must be reduced (Bishop et al, 1975; Fienberg, 1980; Brown and Fuchs, 
1983 and 1984; Aston and Wilson, 1984). This means that if an 
observed marginal entry is zero, then both the observed and estimated 
entries for all cells included in that total must be zero, and so the 
fit of the model for those cells is known to be perfect. As a result, 
the degrees of freedan associated with the fit of the zero cell values 
must be deleted. The formula for the degrees of freedan is given as 

where 



nc = nunber of cells in the table, 

nz = nl.Illlber of cells with estimated values equal to zero, 

np = nl.Illlber of parameters specified in the model, 

nn = nl.Illlber of parameters that cannot be estimted because of zero 
marginal totals. 
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However, in a recent paper, Baker et al (1985) have asserted that such 
a treatment is incorrect. They state that if a zero occurs in a 
margin that was fixed prior to the experiment, then by definition the 
cells in the table contributing to that margin are structural zeros 
(and are weighted out of all analyses of the table). Therefore, by 
extension, if a table is analysed "conditional on a margin that was 
not actually fixed in the experiment, then cells in the table that 
were not structural zeroes in the experiment will becane structural 
zeroes in the analysis if they contribute to a zero cell in the 
conditioning margin". However, after having dealt with these 
"structural" zeroes, if any other zero cells remain which contribute 
to a margin which is not conditioned on, then no adjustment whatsoever 
is to be made to the degrees of freedan. 

The third view is that of Stirling (1986) who asserts that both the 
previous two methods are incorrect. He states that to obtain the 
correct degrees of freedan for any model, one should always use the 
fonnula 

df = difference between the nunber of estimable parameters for 
the model in question and for the saturated model. 

He explains that if this fonnula is used, then "it makes no difference 
whether or not structural zeroes are kept in the data, whether the 
margins are classified as responses or explanatory variables, or 
whether log-linear or logistic models are used when there is a single 
binary response". However, to correctly apply the fonnula, "we must 
correctly identify all estimable parameters. This has been 
incorrectly done by sane previous authors". 

It can therefore be seen that the literature on methods for sparse 
contingency tables is still controversial. 
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1.9.1 Monkey Example 

An example of a table containing both sampling and structural 
zeroes is Table 1. 8, which is taken in a slightly modified fonn 
fran Fienberg (1980, p.146). The table gives the distribution of 
genital display among six squirrel monkeys (labelled R to W). For 
each display there is an active and passive participant, but a 
monkey never displays towards himself. Thus the dashes in the 
table indicate structural zeroes. There are also several sampling 
zeroes such as in cell (1,6) where there is no a priori reason to 
suppose that the event is impossible. We will assume that the 
opportunity was not available to observe monkey T as an active 
participant. 

Table 1. 8: Genital display in a colony of squirrel monkeys 

Active Participant 

R 

s 
u 
V 

w 

1.10 Loglinear Models 

R 

29 
2 

0 

9 

Passive Participant 
S T U V 

1 

3 

0 

25 

5 

14 
1 

0 

4 

8 

46 

0 

6 

9 

4 
38 

13 

w 

0 

0 

2 

1 

Let~• = (n1, ••• , nr) and~• = (m1, ••• , mr) denote the observed and 
expected counts for the I cells in the table. For simplicity, we will 
use a single index, though the table may be multi-dimensional. 

Loglinear models have the form 

log mi = XI i s 
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where S is a pxl vector of parameters and x'i is a row vector of known 
~ -

constants, the choice of which depends on what kind of association one 
wishes to model. In the nanenclature of analysis of variance ~•i is 
the ith row of the Ixp design matrix X, i.e. 

log m =XS -- -
Many of the models discussed in this thesis are simply special cases 
of the more general category of loglinear models. They can be used to 
model many kinds of association, and so are probably the most canrnon 
models used in practice for contingency tables. 

1.10.1 Fitting I.oglinear Models 

I.oglinear models can be fitted quite easily using either the 
Newton-Raphson algorithm or the Iterative Proportional Fitting 
algorithm. These are discussed in Appendix 2. 

1.11 Linear Models 

Linear models relate the expected cell count to a linear function of 
parameters. The tw::> camnon methods of specifying these models are: 

(i) directly, in a fonn such as A!=~, or 
(ii) indirectly, in tenns of constraints. 

They are not as canrnonly used as loglinear models, as they usually 
specify fairly unusual kinds of relationships between the variables of 
a contingency table. Nevertheless, they fonn a powerful and useful 
class of models which can be used to test specific hypotheses that 
could not normally be tested using loglinear models. 

1.11.1 Linear models specified as A~= X.§. 

Consider the cell counts in a contingency table as making up an Ixl 
vector m• The cell probabilities corresponding to these counts 
make up an Ixl vector~- The vector~ may correspond to 



(i) a Poisson or single multinanial distribution, or to 
(ii) a product-multinanial distribution. 
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In the former case I~i = 1, while in the product-multinanial case 
the set of I cells is canprised of several subsets, each of which 
corresponds to a separate mul tinanial sample, and the sum of the 
elements of~ over each subset is unity. 

If§ is a Kxl vector of unknown parameters, A is a known JxI matrix 
with linearly independent rows, and Xis a known JxK matrix, with 
linearly independent columns, with I>J>K, then we can write the 
expected cell probabilities in terms of a linear function of the 
model parameters as 

Al,!_ = X$. 

Haber (1985) discusses linear models which are formulated in this 
way. 

1.11.2 Linear models specified in terms of constraints 

Suppose we have sane hypothesis about the cell counts which can be 
specified in terms of E constraints. We can write the constraints 
as 

Fm = 0 

where Fis an ExI matrix with E linearly independent rows. Further 
constraints are imposed by the sampling design. These constraints 
guarantee that the sum of the probabilities within each sample will 
be equal to one (or equivalently that the sum of the counts within 
each sample will be equal to the correct marginal total). They can 
be written 

D'E = ls 

where s is the number of samples (S > 1) and D = { dis} is the IxS 

matrix defined by 

dis= {l if cell i belongs to samples 
O otherwise 
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In terms of the cell counts the constraints can be written 

D' Rm= ls 

where 
1/mi+ 
( i=l, 

R is the Ix! diagonal matrix with diagonal elements rii = 
, where mi+ is the marginal total of the ith sample 

••• , S), and off-diagonal elements zero. 

Thus, the constraints on the cell counts can be written as 

where L' is the Ix (E+S) matrix L' = (F' : R'D) and c' is the 
lx(E+S) vector consisting of E zeroes and Sones, i.e. 
c, = ( oE' : ls' ) • 
r- - ......... 

A vector a which satisfies these constraints is 

a = R-1 a* 

where R-1 is the Ix! diagonal matrix with diagonal elements rii = 
mi+, and~* is the Ixl vector with ith element ai = 1/Bi where Bi 
is the nunber of cells in the ith sample. 

1.11.3 Fitting Linear Models 

Linear models specified in terms of constraints can be easily 
fitted using the algorithm of Wedderburn (1974). Details of this 
are given in Appendix 3. 

Linear models specified 
reformulating in terms 
Wedderburn's algorithm. 

' 1.12 Other Models 

as A !, = ~ can be most easily fitted by 
of constraints so that we can then apply 
Appendix 3 gives further details. 

As mentioned previously, most models discussed in this thesis are 
either linear or loglinear, and so can be fitted using the general 
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algorithms appropriate for these. Where a model does not fall into 
one of these two classes, details of estimation methods will be given 
separately. 




