Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Emissions Trading, Carbon Pricing, and the Impact on Carbon Producing Firms: A Study of Phase III of the European Union Emissions Trading Scheme

A thesis presented in partial fulfilment of the requirements of the degree of

Master of Business (Finance)

At Massey University, Palmerston North,

New Zealand

Grace Emily Maddox

June 2018

ABSTRACT

This thesis examines the firm level impact of the European Union Emissions Trading Scheme (EU ETS), the ability to hedge carbon price, and the determinants of carbon price. The analysis focuses on phase III of the EU ETS. The work of Koch and Bassen (2013) is extended by investigating whether carbon-adjusted expected returns differ post-2013, as the trading scheme shifted to full auctioning. The findings show a lack of significant exposure to carbon price for the majority of carbon producing European firms. For firms where significant exposure to the price of carbon was found, firms' returns required on equity were substantially higher after carbon exposure was considered. Whether carbon could be hedged effectively using conventional techniques was investigated, and a simple ordinary least squares hedge ratio was found to be the most effective. Further, the hedge ratio for carbon was found to be within the normal 0.5-1 range of typically hedged commodities. Finally, the carbon price determinants were investigated to determine whether energy prices and weather explain the carbon price in phase III, and how this relationship changed since full auctioning came into place in 2013. Energy prices were found to impact carbon price in phase III, however, the best model explained only 12% of carbon price variation. Weather variables were not found to impact carbon price except in one case of unanticipated temperature change. The results indicate that it is not the temperatures themselves that impact carbon price, rather unanticipated changes in temperature.

ACKNOWLEDGEMENTS

This thesis could not have been completed without the support of many.

Firstly, I owe a great deal of gratitude to my supervisor Dr Martin Young. I'm grateful for the freedom to pursue an area of my own interest, and the help given to turn my ideas into a real topic. I so appreciate the unwavering support, encouragement, and patience in the tough moments.

I would like to thank Hamish Anderson, without whom I would not have ended up studying finance. The continuous support and guidance I have received throughout my studies is not taken lightly.

I would also like to thank Fong Mee Chin for the support she gives each post-graduate student. I am grateful for the assistance in data collection and time she made available to me.

Finally, I would like to express my unending gratitude to my fiancé for his patience, encouragement and emotional support. I could not have completed this thesis without you at my side. To the rest of my family, and mum and dad, this is for you.

Table of Contents

A	bst	ract			ii				
A	ckr	10W	ledg	ements	iii				
L	ist	of T	able	8	vi				
L	List of Figures								
1		Introduction/Aim							
2		Literature Review							
	2.1	1	The	European Union Emissions Trading Scheme	4				
		2.1.	1	Getting here	4				
		2.1.2		The Scheme	6				
		2.1.	3	In practice					
		2.1.4 2.1.5 2.2 Ca		Success to date	11				
				Future of the scheme	12				
	2.2			bon Pricing	14				
	2.3	3	Eff	ciency and convenience yields in the EU ETS market	16				
	2.4	2.4 Imp		pact of EU ETS on firm competitiveness and value	18				
	2.5	5	Ris	k factors arising from EU ETS	19				
	2.6	2.6 Hea		lge ratios	20				
	2.7	7	Cor	porate decision making in response to EU ETS	22				
	2.8	3	Cor	nclusions from prior literature	24				
3		Hyp	othe	ses	26				
4	Data								
	4.1	1	Hy	oothesis 1:	27				
	4.2	<i>J</i> 1		pothesis 2:	28				
	4.3			oothesis 3:					
	4.4	4	Dat	a notes	29				
		4.4.	Intercontinental Exchange data:	29					
	4.4.2			Carbon price drop:	29				
5	Methodology				32				
	5.1	1	Hy	oothesis 1:	32				
	5.2	2	Hyp	oothesis 2:	35				
	5.3	3	Hyp	oothesis 3:	40				
6		Res	ults:		43				
	6.1	1	Hvı	oothesis 1:	43				

	6.1.1	Data:	43
	6.1.2	Regression results:	45
	6.1.3	Calculating the carbon-adjusted WACC	51
	6.1.4	Hypothesis 1 conclusions	53
6	5.2 Hy	pothesis 2	55
	6.2.1	Data	55
	6.2.2	Hedge ratios	55
	6.2.3	Variance reduction	56
	6.2.4	Utility improvement	57
	6.2.5	Hypothesis 2 conclusions:	60
6	5.3 Hy	pothesis 3	61
	6.3.1	Data	61
	6.3.2	Introduction of temperature variables	68
	6.3.3	Selection of the best model to explain the carbon price:	73
	6.3.4	Oil price collapse:	75
	6.3.5	Hypothesis 3 discussion and conclusions	77
7	Conclus	sions	80
8	Relevan	nce to New Zealand Scheme	82
9	Referen	ices:	85

List of Tables

Table 1: Key features of the EU ETS	8
Table 2: Allocation of allowances phase III of EU ETS	9
Table 3: Sample firms and their emissions details	34
Table 4: Correlation matrix of coefficients for hypothesis 1 explanatory variables	44
Table 5: Regression results hypothesis 1	47
Table 6: Comparison of 2013 and 2018 emission intensities	48
Table 7: Comparison of 2013 and 2018 carbon betas	49
Table 8: Emissions data for firms showing evidence of carbon exposure	50
Table 9: Portfolio regression results	50
Table 10: Carbon adjusted weighted average cost of capital for firms exhibiting carbon ris	sk52
Table 11: Johansen cointegration results	55
Table 12: Hedge ratios for phase III	56
Table 13: Variance reduction for each method of hedge ratio	56
Table 14: Utility of positions in spot and futures with risk aversion of 1	58
Table 15: Utility of positions in spot and futures with risk aversion of 2	58
Table 16: Utility of position in spot and futures with risk aversion of 3	59
Table 17: Comparison of hedge ratios as reproduced from Fan et al (2014)	60
Table 18: Tests for hypothesis 3	61
Table 19: Correlation matrix for hypothesis 3 variables.	62
Table 20: Correlation matrix temperature dummies	63
Table 21: Correlation matrix temperature cross products	64
Table 22: Hypothesis 3 regression results	66
Table 23: Hypothesis 3 regression refined	67
Table 24: Hypothesis 3 regression with temperature percentiles	69
Table 25: Hypothesis 3 regression with 90th and 10th percentiles	70
Table 26: Hypothesis 3 regression with temperature cross products	72
Table 27: Criteria for selection of best model	74
Table 28: Hypothesis 3 regression with subperiods	75
Table 29: Hypothesis 3 regression with temperature variables and subperiods	76

List of Figures

Figure 1: EU ETS timeline for submissions of allowances	10
Figure 2: Verified emissions, target path and projected emissions	12
Figure 3: Architecture of allowance allocation in phase IV	13
Figure 4: Spot and futures prices of carbon	17
Figure 5: Carbon prices in phase III of EU ETS	30
Figure 6: Commodity prices during phase III of EU ETS	30