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Abstract 

Image reconstruction by computerized tomography provides a nonintrusive 

method of imaging the internal structure of objects. From measurements of 

radiation (e.g. X-rays or gamma rays) passed through an object, it is possible to 

observe the internal structure. The reconstruction process is computationally 

intensive and requires imaginative parallel processing algorithms to attain 'real­

time' performance. The Inmos transputer makes parallel processing algorithms 

both feasible and relatively straight forward. In this thesis, a modification to the 

backprojection algorithm is introduced in order to improve the speed of the 

implementation. Work carried out has involved evaluating how these algorithms 

( convolution, backprojection and interpolation ) can be used in multiprocessor 

concurrent architecture to obtain rapid image reconstruction. Several suitable 

transputer network structures have been advanced to simulate the image 

reconstruction. The reconstruction time is decreased very greatly and the image 

reconstruction result is good. 
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CHAPTER 1. INTRODUCTION TO X-RAY COMPUTERIZED 
TOMOGRAPHY 

Tomography refers to the cross-sectional imaging of an object from either 

transmission or reflection data collected by illuminating the object from 

many different directions. The impact of this technique in diagnostic 

medicine has been revolutionary, since it has enabled doctors to view internal 

organs with unprecedented precision and with safety for the patient. The 

first medical application utilized x-rays for forming images of tissues based 

on their x-ray attenuation coefficient. More recently, however, medical 

imaging has also been successfully accomplished with radioisotopes, 

ultrasound, and magnetic resonance; the image parameter being different in 

each case. 

There are numerous nonmedical imaging applications which lend 

themselves to the methods of computerized tomography. Researchers have 

already applied this methodology to the mapping of underground resources 

via crossborehole imaging, some specialized cases of cross-sectional imaging 

for nondestructive testing, the determination of the brightness distribution 

over a celestial sphere, and three-dimensional imaging with electron 

microscopy. 

Fundamentally, tomographic imaging deals with reconstructing an image 

from its projections. It is an important part of Digital Image Processing. In 

this chapter, we firstly introduce some basic idea about Digital Image 

Processing. Then the fundamentals of computerized tomography will be 

discussed. 

1.1 Digital hnage Processing 

Interest in digital image processing techniques dates back to the early 1920s 

when digitized pictures of world news events were first transmitted by 

submarine cable between New York and London. Applications of digital 

image processing concepts, however, did not become widespread until the 

middle 1960s, when third-generation digital computers began to offer the 
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speed and storage capabilities required for practical implementation of 

image processing algorithms. Since then, this area has experienced vigorous 

growth, having been a subject of interdisciplinary study and research in 

such fields as engineering, computer science, information science, statistics, 

physics, chemistry, biology, and medicine. The results of these efforts have 

established the value of image processing techniques in a variety of problems 

ranging from restoration and enhancement of space-probe pictures to 

processing of fingerprints for commercial transactions. Several new 

technological trends promise to further promote digital image processing. 

These include parallel processing made practical by low-cost 

microprocessors, and the use of charge-coupled devices (CCDs) for digitizing, 

Storage arrays. Another impetus for development in this field stems from 

some exciting new applications on the horizon. Certain types of medical 

diagnosis, including differential blood cell counts and chromosome analysis, 

are a state of practicality by digital techniques. The remote sensing 

programs are well suited for digital image processing techniques. Thus, 

with increasing availability of reasonably inexpensive hardware and some 

very important applications on the horizon, one can expect digital image 

processing to continue its phenomenal growth and to play an important role 

in the future. 

1.1.1 The Elements of Digital hnage Processing 

Figure 1-1 shows a complete system for image processing. The digital image 

produced by the digitizer goes into temporary storage on a suitable device. In 

response to job control input, the computer calls up and executes image 

processing programs from a library. During execution, the input image is 

read into the computer line by line. Operating upon one or several lines, the 

computer generates the output data storage device line by line. During the 

processing, the pixels may be modified at the programmer's discretion in 

processing steps limited only by his imagination, patience, and computing 

budget. After processing, the final product is displayed by a process that is 

the reverse of digitization. The grey level of each pixel is used to determine 

the brightness (or darkness) of the corresponding point on a display screen. 

The processed image is thereby made visible and hence amenable to human 

interpretation. 
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Fig. 1-1 A digital image processing system 

1.1.2 Basic Classes of Digital hnage Processing 

Digital image processing has a broad spectrum of applications, such as 

remote sensing via satellites and other spacecraft, image transmission and 

storage for business applications, medical processing, radar, sonar, and 

acoustic image processing, robotics, and automated inspection of industrial 

parts. 

Although there are many image processing applications, the basic classes of 

digital image processing are as follows: 

* Image representation and modelling 

In image representation one is concerned with characterization of the 

quantity that each picture-element (also called pixel) represents. An image 

could represent luminance of objects in a scene (such as pictures taken by 

ordinary camera), the absorption characteristics of the body tissue (X-ray 

imaging), the radar cross section. of a target (radar imaging), the 

temperature profile of a region (infrared imaging). In general, any two-
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dimensional function that bears information can be considered an image. 

Image models give a logical or quantitative description of the properties of 

this function. Figure 1-2 lists several image representation and modelling 

problems. 

Image representation and modeling 

Perception models 

visual perception of contrast, 
spatial frequencies and color. 

Image fidelity models 

Temporal perception. 

Scene perception. 

Local models 

Sampling and reconstruction. 

Image quantization. 

Deterministic models. 

Global models 

Scene analysis/artificial intelligence 
models 

Sequential and clustering models. 

Series expansions/unitary transforms. Image understanding models. 

Statistical models. 

Fig. 1-2 Image representation and modelling 

* Image enhancement 

In image enhancement, the goal is to accentuate certain image features for 

subsequent analysis or for image display. Examples includes contrast and 

edge enhancement, pseudocoloring, noise filtering, sharpening, and 

magnifying. Image enhancement is useful in feature extraction, image 

analysis, and visual information display. The enhancement process itself 

does not increase the inherent information content in the data. It simply 

emphasises certain specified image characteristics. Enhancement 

algorithms are generally interactive and application-dependent. 

* Image restoration 

Image restoration refers to removal or minimisation of known degradations 

in an image. This includes deblurring of images degraded by the limitations 
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of a sensor or its environment, noise filtering, and correction of geometric 

distortion or nonlinearities due to sensors. 

* Image analysis 

Image analysis is concerned with making quantitative measurements from 

an image to produce a description of it. In the simplest form, this task could 

be reading a label on a grocery item, sorting different parts on an assembly 

line, or measuring the size and orientation of blood cells in a medical image. 

More advanced image analysis systems measure quantitative information 

and use it to make a sophisticated decision, such as controlling the arm of a 

robot to move an object after identifying it or navigating an aircraft with the 

aid of images acquired along its trajectory. 

Image analysis techniques require extraction of certain features that aid in 

the identification of the object. Segmentation techniques are used to isolate 

the desired object from the scene so that measurements can be made on it 

subsequently. Quantitative measurements of object features allow 

classification and description of the image. 

* Image data compression 

The amount of data associated with visual information is so large (see Table 

l. la) that its storage would require enormous storage capacity. Although the 

capacities of several storage media (Table l. lb) are substantial, their access 

speeds are usually inversely proportional to their capacity. Typical television 

images generate data rates exceeding 10 million bytes per second. There are 

other image sources that generate even higher data rates. Storage and/or 

bandwidth, which could be very expansive. Image data compression 

techniques are concerned with reduction of the number of bits required to 

store or transmit images without any appreciable loss of information. Image 

transmission applications are in broadcast television; remote sensing via 

satellite, aircraft, radar, or sonar; teleconferencing; computer 

communications; and facsimile transmission. Image storage is required 

most commonly for educational and business documents, medical images 

used in patient monitoring systems, and the like. Because of their wide 
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applications, data compression 1s of great importance 1n digital image 

processing. 

Table l.la Data Volumes of Image Sources (in Millions of Bytes) 

National archives 

1 h of colour television 

Encyclopaedia Britannica 

Book (200 pages of text characters) 

One page viewed as an image 

Table 1.lb Storage Capacities (in Millions ofBytes) 

Human brain 

Magnetic cartridge 

Optical disc memory 

Magnetic disc 

2400-ft magnetic tape 

Floppy disc 

Solid-state memory modules 

* Image reconstruction from projections 

12.5x 109 

28x 103 

12.5x 103 

1.3 

0.13 

125,000,000 

250,000 

12,500 

760 
200 

1.25 

0.25 

Image reconstruction from projections is a special class of image restoration 

problems where a two (or higher) dimensional object is reconstructed from 

several one-dimensional projections. Each projection is obtained by 

projecting a parallel X ray (or other penetrating radiation) beam through the 

object (Figure 1-3). Planar projections are thus obtained by viewing the object 

from many different angles. Reconstruction algorithms derive an image of a 

thin axial slice of the object, giving an inside view otherwise unobtainable 

without performing extensive surgery. Such technique is referred to as 

computerized tomography; it has revolutionized diagnostic radiology over the 

past decade. The 1979 Nobel prize in medicine has been awarded for work on 

computerized tomography. The fundamentals of computerized tomography 

will be introduced in the next section. 
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Fig. 1-3 Image reconstruction using x-ray CT scanners. 

1.2. The Fundamentals of Computerized Tomography 

We know that x- rays, radioisotopes, ultrasound and magnetic resonance can 

be used to obtain a reconstructed image. Because x-rays are broadly used 

today, we will only discuss utilizing x-rays to form the images based on their 

attenuation coefficient. 

On November 1895, Professor Rontgen discovered the x-rays. The prospects 

for x-ray diagnosis were immediately recognised. In Great Britain, it has 

been estimated that there are 644 medical and dental radiography 

examinations per 1000 population per year, so that the technique is of major 

importance in medical imaging. 

The radiographic image is formed by the interaction of x-ray photons with a 

photon detector and is therefore a distribution of those photons which are 

transmitted through the patient and are recorded by the detector. These 

photons can either be primary photons, which have passed through the 

patient without interacting or secondary photons, which result from an 

interaction in the patient. The secondary photons will in general be deflected 

from their original direction and carry little useful information. The primary 

photons do carry useful information. They give a measure of the probability 

that a photon will pass through the patient without interacting and this 

probability will itself depend upon the sum of the x-ray attenuating properties 

of all the tissues the photon traverses. The image is therefore a projection of 

the attenuating properties of all the tissues along the paths of the x-rays. 
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When we look at a chest x-ray (see Figure 1-4), certain anatomical features 

are immediately apparent. The ribs, for example, show up as a light 

structure because they attenuate the x-ray beam more strongly than the 

surrounding soft tissue, so the film receives less exposure in the shadow of 

the bone. Correspondingly, the air-filled lungs show up as darker regions. 

Fig. 1-4 Typical chest x-ray radiograph 

X-ray films usually allow contrasts of the order of 2% to be seen easily, so a 1 

cm thick rib or a 1 cm diameter air-filled trachea can be visualised. However, 

the blood in the blood vessels and other soft-tissue details, such as details of 

the heart anatomy, cannot be seen on a conventional radiograph. In order to 

make the blood vessels visible, the blood has to be infiltrated with a liquid 

contrast medium containing iodine compounds; the iodine temporarily 

increases the linear attenuation coefficient of the fluid medium to the point 

where visual contrast is generated. Consideration of photon scatter further 

degrades contrast. 

Another problem with the conventional radiograph is the loss of depth 

information. The three-dimensional structure of the body has been collapsed, 

or projected, onto a two-dimensional film. 

It is apparent that conventional x-radiographs are inadequate in these two 

respects, namely the inability to distinguish soft tissue and the inability to 

resolve spatially structures along the direction of x-ray propagation. 

The announcement of a machine used to perform x-ray computerized 

tomography (CT) in a clinical environment, by Hounsfield at the 1972 British 
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Institute of Radiology annual conference, has been described as the greatest 

step forward in radiology since Rontgen's discovery. The relevant abstract 

(Ambrose and Hounsfield 1972) together with the announcement entitled 'X­

ray diagnosis peers inside the brain' in the New Scientist (27 April 1972) can 

be regarded as the foundation of clinical x-ray CT. Hounsfield shared the 

1979 Nobel Prize for Physiology and Medicine with Cormack. 

With computerized tomography, the two inabilities of conventional x­

radiographs can be solved. By combining "ordinary" x-ray technology with 

sophisticated computer signal processing, computerized tomography can 

generate a display of the tissues of the body which is unencumbered by the 

shadows of other organs. Computerized tomography also passes x-rays 

through the body of a patient, but the detection method is usually electronic in 

nature, and the data is then converted from an analogue signal to digital 

impulses in an analogue-to-digital (A/D) converter. This digital 

representation of the x-ray intensity is fed into a computer, which then 

reconstructs an image. 

Since Hounsfield's invention of the computerized tomography (CT) scanner 

in 1972, great improvements have been made in x-ray tomography, with the 

result that the patient scan time has been reduced to less than 10s from over 4 

m1ns. 

1.2.1. Theoretical Background for Image Reconstruction 

1.2.1.1. The N-Dimensional Continuous Fourier Transform (CFT) 

We consider here a function f(xpx2, ... ,xN) of N continuous variables 
Xi,X2 , ••• ,xN. We will generally find it convenient to express the N-tuple 

(xi,x2, ... ,xN) as a vector x and refer to the function as /(x). The N-dimensional 

Fourier transform of f(x) is denoted by F(OJpOJ2, ••. ,0JN) or F(w). The domain of 

f(x) will be referred to as signal space and the domain of F(w) as Fourier 

space. The N-dimensional function /Ci) and its Fourier transform are 

related by: 
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+oo +oo 

F(mpm2, ... , mN) = J ... J f(xi,x2, ... ,xN )exp[- j(m1x1 + m2x2+ ... +mNxN )]dx1dx2 ... dxN 

or, expressed in vector notation, 

and 

+oo 

F(iiJ)= f J(x)exp[-J(.x•w)]dx 

f(x) = l NT F(m)exp[j(.x · w)]dm 
(2n) 

-oo 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

where .x • iiJ denotes the dot product of the vectors x and w or equivalently with 

.x and m interpreted as row matrices .x · m = .xw'. 

A useful property of the N-dimensional Fourier transform pair which we 
will want to use later is that if f(x) and F(m) form a Fourier transform pair, 

then f(xA) and F(wA) form a Fourier transform pair if A is an orthogonal 

t . . A-I A--1 ma nx, 1.e., = . 

This property is easily verified by direct substitution into (1.3). Thus an 

orthogonal transformation or equivalently an orthogonal change of 

coordinates in signal space results in the same change of coordinates in 

Fourier space. For example, for N=2, if 

[
cose sine] 

A= -sine cose 
(1.5) 

1 0 



so that JCi) is rotated by an angle 0, then its Fourier transform will be 

rotated by the same angle 0. 

1.2.1.2. The N-Dimensional Discrete Fornier Transform (DFT) 

We are here interested in functions which can be processed by a digital 

computer and consequently can be represented by their samples. Thus we 

consider the class of band-limited functions. Specifically, JCi) is said to be 
band-limited if there exists an N-tuple (Wi,W2 , ••• ,WN) such that F(m) is zero 

for lm;I > Wi> i = 1,2, ... ,N. In some cases it is convenient to set 

W = max(Wi, W2 , ••• , WN) and refer to the scalar Was the bandwidth of f(x). 

The N-dimensional sampling theorem states that if f(x) is sampled in signal 

space on a rectangular lattice with the sample spacing in dimension X; less 

than TC I Wi, then f (x) can be recovered from its samples. Sampling on a 

rectangular lattice will be referred to as periodic Cartesian sampling. 

Let us denote by g(n) the N-dimensional sequence corresponding to sampling 

f (x) with a sample spacing of TC I Vi in the dimension xi where Vi > Wi so that 

(1.6) 

from the sampling theorem the Fourier transform F(m) of f(x) can be 

obtained from g(n) by the relation 

(1.7) 

h - d h ( co1 CO2 wN ) d w ere COv enotes t e vector -,-, ... ,- an 
v1 v2 vN 

b 
-{ 1, lmil<Vi, i=l,2, ... ,N 

y(CO) -
0, otherwise 

likewise, the sequence g(n) can be obtained from F(m) by the relation 

1 1 



+V 

g(n) = l N f F(w)exp{jn(n · Q)y )}dw 
(27r) -V 

(1.8) 

The original N-dimensional function f(x) can be obtained from the sequence 

g(n) by means of the interpolation formula 

where 

+oo 

f(x) = I:gCn)</JCn,x) 
n=-oo 

sin V. (x. - nin) 

</J(n,x) = IT . . vi 
i=l V.(x.-nin) 

l l v. 
l 

(1.9) 

(1.10) 

When only a finite number of the samples of f(x) are nonzero, the Fourier 

transform F(w) can be represented by a finite set of Cartesian samples. The 

relationship between the Cartesian samples of F(w) and the Cartesian 

samples of f(x) is the N-dimensional DFT. Specifically, let us assume that 

g(n) = 0, if ni ~ Mi or ni < 0, i = 1,2, ... ,N. 

We now consider the Cartesian samples of F(w), which we denote by G(k) 

given by 

where k; is an integer such that 

M. M. 
--

1 + 1 ~ ki ~ - 1 
, if M; is even 

2 2 

- Mi - l < k. < Mi - l if M
1
. is odd 

2 - l - 2 ' 

I 2 



Then 

and 

( ) - 1 ~ ~Gk~ . ~~ ~~ 4~ g n,,,~, ... ,nN ------L.,;···L.,; ( i,"'2,···,kN)•exp[J2n(-+-+ ... +--)] 
M1 ·Mz · ... ·MN k1 k2 M1 Mz MN 

(1.12) 

Since G(ki,k2 , ••• ,kN) as defined in (1.11) is periodic in k; it is frequently 

convenient to use the values of k; in the range given above. Adopting this 

convention and defining the vector kM as the N-tuple 

we can express (1.11) and (1.12) as 

M-1 

G(k) = L g(n) · exp[- j2n(n · kM )] (1.13) 
n=O 

and 

(1.14) 

Equation (1.13) and (1.14) are referred to as the N-dimensional DFT pair. The 

N-dimensional DFT can be computed efficiently by using the one­

dimensional fast Fourier transform (FFT) algorithm, since the summations 

in (1.13) and (1.14) can each be decomposed as a cascade of one-dimensional 

transforms. 

1 3 



The class of functions f (x) which can be represented by a finite number of 

samples will be referred to as band-limited functions of finite order M where 

1.2.1.3. Projections 

A projection is a mapping of an N-dimensional function to an (N-1)­

dimensional function obtained by integrating the function in a particular 
direction. For example, Px

2 
(x1) given by 

+= 

px
2 
(x,) = f f(Xi,X2)dx2 (1.15) 

is an example of a projection of the two-dimensional function f(xi,x2) onto 

one dimension. 

For the general case, we define a projection as follows: Let f(x) denote an N­

dimensional function and let i1 denote a new set of coordinates where 

x=ilA 

and A is an orthogonal transformation. Then a projection onto the 
hyperplane (upu2, ... ,u;_pu;+i,···,uN) is defined as 

+= 

Pu; (llpU2,···,Ll;_pU;+i, ... ,uN) = I f(uA)du; (1.16) 

The coordinate axis u;, which is normal to the hyperplane onto which f(x) is 

projected, will be referred to as the projection axis. 

For N =2, the matrix A is given by 

[ 
cos e sine] 

A= 
-sin 0 cos0 
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In this case, the Ui, Uz coordinate axes are offset from the (x1,x2 ) axes by an 

angle of 0. For two-dimensional functions it will generally be convenient to 

refer to a projection by its angle 0. A projection at angle 0 will be interpreted 
to mean a projection onto the coordinate ½, which is at an angle 0 with x1 • 

Equivalently, then, the projection axis Uz is at an angle 0 to the coordinate 

axis x2 • Equation (1.15) corresponds to a projection at an angle 0 = 0 or 

equivalently with x2 as the projection axis. 

1.2.1.4. The Projection-Slice Theorem 

The projection-slice theorem relates the (N-1)-dimensional Fourier 

transforms of the projections to the N-dimensional Fourier transform of the 

original function. Basically, the theorem states that the (N-1)-dimensional 

Fourier transform of a projection is a "slice" through the N-dimensional 
Fourier transform of f (x). 

First, let us consider a projection for which the projection axis is one of the 
coordinate axes of f(x), for example, x 1 • Then px

1 
(x2 , ••• ,xN) is given by 

+= 

Pxl (Xz,···,XN) = f f(x)dx1 (1.17) 

and its (N-1)-dimensional Fourier transform is given by 

+oo +oo 

Px, (OJz,···, (J)N) = J ... f Px, (Xz,···,XN). exp[- j(OJ2X2+ ... +WNXN )] (1.18) 

Comparing (1.18) and (1.1), we see that 

(1.19) 

In other words, Px
1 

(OJ2 , ... ,0JN) is a "slice" of F(wpw2, ... ,wN) defined by OJ1 =0. 

Clearly, a projection whose axis is any coordinate axis xi has a Fourier 

transform that is a slice of F( OJ1> OJ2 , ••• , OJ N) defined by OJi = 0. 
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A general projection was defined in (1.16) where A is an orthogonal 
transformation. It was argued previously that if F(w) is the Fourier 

transform of f(x) then F(Q) is the Fourier transform of /(u) where 

(1.20) 

From this, (19) is easily generalized to state that a projection for which the 
projection axis is the transformed coordinate ui has an (N-1)-dimensional 

Fourier transform which is a slice of F(Q) for Qi = 0 where the coordinate 

systems u and Q are related to the coordinate systems x and m by the same 

orthogonal transformation. In two dimensions, for example, the projection­

slice theorem states that the one-dimensional Fourier transform of a 

projection at an angle 0 is a slice at the same angle of the two-dimensional 

Fourier transform of the original object. This relationship is depicted in 

Figure 1-5. 

X2 
U2 

Projection axis 

UI 
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(I) 2 

Fig. 1-5 The relationship between the projection of a two-dimensional 

function and slice of its Fourier transform. 

1.2.1.5. The Basis for Reconstruction from Projections 

From the projection-slice theorem, we see that specification of a projection in 

signal space corresponds to the specification of a slice in Fourier space and 

thus represents a partial specification of the signal itself. In principle, then, 

if an unlimited number of projections at different orientations are available, 
the Fourier transform of f(x) can be obtained and therefore so can f(x) itself. 

Generally, in any practical context, we are restricted to a finite number of 

projections. 

Under certain assumptions, it is possible to carry out an exact reconstruction 

from a finite number of projections. If the structure is highly symmetrical, a 

finite number of projections might suffice for exact reconstruction. For 

example, for a two-dimensional circularly symmetric function all of its 

projections are identical and consequently such a function can be 

represented exactly by a single projection. Similarly, in three dimensions, for 

an object which is cylindrically symmetric all of the projections for which the 

axis is normal to the longitudinal axis are identical and consequently, in this 

case also, a single projection is sufficient. 

In uitilizing projections for reconstruction, many of the algorithms involve 

computing the Fourier transforms of the projections. The Fourier transform 
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of each projection is a function of a set of continuous variables, but only a 

finite number of points from each Fourier transform can be computed and 

stored. Thus from the projections, only samples in the Fourier domain are 

available, in part because of the limited number of projections and in part 

because only samples of the Fourier transform on each slice can be obtained. 

The essence of the reconstruction problem, then, is to approximate all of 

Fourier space from its values on a discrete point set. 

1.2.1.6. Reduction of the Dimensionality of the Reconstruction Problem 

As we saw in Section 4, the underlying basis for reconstruction is to obtain 

samples in the Fourier plane by transforming projections. Intuitively it 

seems reasonable that projections need not be taken in all orientations. For 

three-dimensional objects, for example, we could imagine using only 

projections in the spatial domain on planes parallel to one of the coordinates 
axis, say x1 • Slices of these projections at x1 = A are then projections of the 
two-dimensional function f(A,x2,xJ and, consequently, a two-dimensional 

reconstruction algorithm can be applied to reconstructing this two­

dimensional slice of the three-dimensional object. In this way, the three­

dimensional object can be built up slice by slice and, consequently, the three­

dimensional problem can be reduced to a series of two-dimensional 

problems. In the general case, we can apply a similar argument to reduce an 

N-dimensional problem to a set of (N-1)-dimensional problems each of which 

can in principle be reduced to an (N-2)-dimensional problem, etc. 

Thus in principle, an N-dimensional problem can be reduced to a set of two­

dimensional problems. Often this procedure requires considerably less 

storage and is simpler computationally than solving the N-dimensional 

problem directly. Furthermore, in many cases, we may be content with very 

coarse sampling in one or several dimensions. For the three-dimensional 

problem, for example, reconstruction of only a few slices may be sufficient. 
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