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Abstract 

In this thesis, I used a multi-disciplinary approach to study both the spatial 

ecology of coastal sharks and human attitudes towards sharks at the Galapagos Marine 

Reserve (GMR). Benthic and pelagic baited remote underwater stereo-video systems 

recorded coastal shark assemblages that displayed high spatial variation, with the 

relative importance of environmental and biological drivers differing among shark 

species according to their mobility. Telemetry data (both acoustic and satellite) from 

tagged tiger sharks (Galeocerdo cuvier) showed a high degree of philopatry, with 

movements of adult tiger sharks concentrating at the most important nesting areas for 

sea turtles at the GMR. Using diver-operated stereo-video systems (DOVs) I 

demonstrated that non-instantaneous surveys yield estimates of shark densities that can 

almost double the ones obtained from instantaneous surveys. Furthermore, I proposed a 

new methodological approach to study attitudes towards sharks that proved to be 

reliable and informative, showing that attitudes were shaped by a range of psychological 

factors, such as aesthetics, and also by the socio-economic context of individual 

respondents. Strong correlations were found between attitudes and behavioural 

responses, such as tolerance or support for shark protection. 

In conclusion, I demonstrated that sharks at the GMR have species-specific and 

size-specific spatial requirements for particular habitats and food resources. Indeed, the 

presence of a predictable source of prey and suitable habitats at the GMR might reduce 

the spatial extent of the potential areas used by large and highly mobile shark species, 

such as tiger sharks, thereby enhancing the potential effectiveness of the GMR for their 

protection. I also propose the use of non-instantaneous DOV surveys to provide more 

accurate estimates of shark densities than underwater visual techniques. In addition, the 

multivariate methods used here for the first time to study human perspectives on sharks 
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allowed me to identify specific attitudes and associated factors having the greatest 

influence on human behaviours towards shark conservation. In summary, with 

mounting anthropogenic pressures on shark populations, this thesis provides timely and 

critical information for the global objective of identifying effective strategies for the 

management and conservation of sharks to ensure their long-term survival. 
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