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Abstract 

 
The onset of invasion is a key step towards the development of metastatic cancer.  For a 

cell to invade through interstitial spaces in the tissue requires a reduction in nuclear rigidity 

as the cell needs to deform to squeeze through small spaces. Heterochromatin Protein 1α 

(HP1α) is a protein that defines domains of heterochromatin, the highly compact regions 

of the genome, and is essential for maintaining the appropriate patterns of gene expression 

and genome stability.  Loss or reduction of HP1α has been correlated with an increase in 

invasive potential in human tumours. 

 

Using an established model of Drosophila melanogaster epithelial cell invasion, the 

causative role HP1α plays in suppressing cellular invasive is confirmed within an epithelial 

tissue microenvironment.  This model also demonstrates that loss of the Drosophila 

melanogaster HP1 homologue synergistically promotes cellular invasion in conjunction 

with an activated malignant signalling pathway.  Importantly, human HP1α is shown to 

rescue this highly invasive Drosophila phenotype and demonstrates the relevance of this 

model to human disease, and its use for exploring protein interactions in a cellular 

microenvironment. 

 

As loss of nuclear integrity has been linked to a reduction in peripheral heterochromatin, 

the biophysical mechanisms by which HP1α acts as a suppressor of invasive potential were 

explored in the poorly invasive MCF7 breast cancer cell line with constitutive HP1α knock-

down.  These cells with reduced HP1α expression had a significant loss of nuclear 

membrane integrity and stiffness.  The underlying nuclear lamina meshwork and associated 

peripheral heterochromatin was disrupted.  This was associated with an increased solubility 

of lamina proteins, particularly lamin A, as well as the altered localisation of a number of 

peripheral nuclear proteins.  In summary, this work established the important contribution 

of HP1α to the mechanical integrity of the nucleoskeleton and the role HP1α plays in 

suppressing malignant signalling pathways that promote cell invasion. 
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Chapter 1: Introduction 

 
1.1: Development of invasive cancer 
Fundamentally, cancer is the dysregulation of normal cell growth and survival mechanisms, 

which leads to uncontrolled cell division accumulation of mutations that would normally 

trigger programmed cell death.  As cell growth continues hyperplastic cells can begin to 

express increasingly aggressive characteristics, beyond an increased rate of cell division. 

These hallmarks of these now malignant cells include self-sufficiency in producing growth 

signals, resistance to growth inhibition signalling, lack of apoptotic response, and the ability 

to invade both local tissue and metastasise to distal sites. The progression of a benign non-

invasive lesion to metastatic malignant tumour is associated with a sharp rise in the rate of 

morbidity and mortality, as the cancer becomes increasingly drug-resistant and physically 

harmful to the patient  (Kitamura, Qian, & Pollard, 2015). As a result, metastatic cancer 

remains one of the most challenging medical problems we face today. 

 

For a cell to metastasise it must first undergo major physiological changes to enable it to gain 

invasive characteristics and migrate through the local tissue microenvironment to reach 

circulatory systems from which it can spread (Figure 1). Epithelial to mesenchymal transition 

is a normal cellular process by which differentiated cells lose functional polarity, and revert 

to a mesenchymal-like state, a migratory form that is key in many developmental processes, 

including generation of numerous tissues within the embryo. This biological mechanism can 

be exploited by oncogenic pathways in the onset of cancer, causing the loss of cell-cell 

adhesion to neighbouring cells, restructuring of the cytoskeleton, and large changes in nuclear 

morphology and heterochromatin organisation (Li & Li, 2015). 

 

 
Figure 1: Schematic diagram of stages in development of malignant cells 
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One of the key determinants of cancer cell migration is an increased ability of a malignant cell 

to deform and infiltrate through the surrounding tissue. Before migration can occur not only 

does the cytoskeleton undergo dynamic reorganization, but the nucleus, the largest and stiffest 

organelle, must become malleable to ensure a cell can squeeze through interstitial spaces 

(Denais et al., 2016). Thus, complex changes in nuclear shape, position and rigidity are a 

prerequisite for metastasis and is exemplified by the high-level of nuclear envelope 

pleomorphism associated with lymph node metastases in breast cancer (Bussolati, Marchiò, 

Gaetano, Lupo, & Sapino, 2008; Harada et al., 2014). 

 

1.2: The nucleus 
The nucleus is the largest organelle in the cell, consisting of a double-membrane lipid bilayer 

envelope, that encapsulates the genomic DNA that is organised into the nucleoprotein complex 

known as chromatin. Beneath the inner nuclear membrane lies a dense meshwork of lamina 

proteins that aid in the formation and support of the membrane. 

 

 The nucleus is a major component of cancer identification, as nuclear volume, shape and 

composition is a key indicator of many cancers, and visual inspection of nuclei is still a key 

diagnostic tool. Loss of nuclear membrane integrity is associated with increased invasive 

behaviour (Denais et al., 2016), and increased levels of nuclear pleomorphism and increased 

elastic properties of the nucleus are required to facilitate invasion in a three-dimensional 

microenvironment (Bussolati et al., 2008).  

1.3: The nuclear envelope 
The nuclear envelope partitions the nuclear material from the cytosolic compartment of a cell 

and is perforated by nuclear pore complexes and other channels to allow exchange between 

the cytoplasm and the nucleoplasm.  The outer nuclear membrane is contiguous with the 

ribosome rich endoplasmic reticulum and joined intermittently with the inner membrane at 

nuclear pore complexes (Figure 2). The nuclear pore complexes comprise a major group of 

proteins that interact with the membrane and occur at junctions between inner and outer 

nuclear membranes. They allow passive transport of small 30-60kDa proteins, as well the 

active transport of larger proteins assisted by nuclear transport receptor proteins. The inner 

membrane interacts with the underlying nuclear lamina network, which is a scaffold structure 

that plays a major role in nuclear conformation and regulates the association with the 

nucleoskeleton (Zhang et al., 2001). 
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 There are also a large number of transmembrane proteins embedded in both the inner and 

outer membranes. These carry out a myriad of signalling roles linking the cytoskeleton to the 

nucleoskeleton (Vlcek, Dechat, & Foisner, 2001). For example, these include the nesprin 

protein family that integrate with both inner and outer nuclear membranes and bind to the 

nucleoskeleton, thus providing a mechanical link between the cytoplasm and the nucleus 

(Zhang et al., 2001).  

 

 
Figure 2: Schematic diagram of the nuclear envelope and nucleoskeleton 
The inner and outer nuclear membranes join intermittently at nuclear pore complexes, while beneath 
the inner nuclear membrane the lamina filamentous network. Peripheral heterochromatin interacts 
with the lamina and the nuclear membrane through intermediary nuclear membrane proteins, with 
lamin B Receptor, nesprin and emerin, shown as examples.  
 

1.4: Nuclear lamina 
The lamin family of proteins are classed as V intermediate filaments. In humans, there are two 

A-type lamins, Lamin A and Lamin C which are derived via alternative splicing from the 

LMNA gene, as well as two B-type lamins, B1 and B2 that are transcribed from LMNA1 and 

LMNA2 respectively. Lamins (A, C, B1 and B2) have much stronger expression in highly 

differentiated cells compared to those that have earlier pluripotent characteristics, indeed 

lamin A and C tend not to be expressed in human cells until after birth,  although the expression 

ratio between the two types ratio is very dependent on the tissue type, as well as the 

developmental stage of the cell.   The expression of Lamin A and C are frequently altered in 

tumours, and have been shown to shown to effect malleability (Hutchison, Alvarez-Reyes, & 

Vaughan, 2001). 
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Lamins have an intermediate filament structure, characterised by a highly alpha-helical central 

rod domain flanked by a globular amino-terminal domain, and a long carboxy terminal tail. 

The tail domain contains a highly conserved s-type immunoglobin (Ig) fold, and a nuclear 

localisation signal motif between the Ig-fold and the rod domain. Lamins self-assemble into 

filaments beginning with a parallel coiled-coil dimer, then the dimers assemble into an 

antiparallel array to form apolar tetrameric filaments, which then associate to 10 nm filaments 

(Dechat, Adam, Taimen, Shimi, & Goldman, 2010). These filaments display remarkable 

resistance to fracture as the dimers are able to slide along one another when the filament 

undergoes intense stretching, up to 60 dyne/cm2 and 90% strain, compared to actin (∼35 

dyne/cm2 and 20% strain or tubulin (7 dyne/cm2 and 70% strain) (Janmey, Euteneuer, Traub, 

& Schliwa, 1991). This flexibility and tensile strength enable the nuclear membrane to endure 

the pressures it undergoes, from both interior changes as the nucleus expands during cell 

division as well as exterior tugging from cytoskeletal attachments as the cell migrates 

 

Lamins undergo significant post translational modifications in order to dynamically target and 

bind membranes and form filamentous networks or remain unpolymerized nucleoplasm 

proteins. In particular the cysteine residue of the carboxy-terminal –CAAX box of Lamin A, 

B1 and B2 is farnesylated. The attachment of these small chain hydrophobic isoprenyl groups 

enable lamin binding to the inner membrane. Lamin B1 and B2 remain permanently 

farnesylated, however Lamin A undergoes further secondary modification that remove the 

terminal 15 amino acid residues and the entirety of the carboxy-methyl modifications. Lamin 

C is 74 amino acids shorter than Lamin A, lacking the -CAAX box entirely, and is never 

farnesylated. This divergence of A-type lamins and the B type may indicate that B lamins 

would have a stronger and less variable interaction with the membrane due to the additional 

lipid anchors. The meshwork of lamina formed by the two types appear as distinct filamentous 

networks, each with their own separate- though interacting- regions (Shimi et al., 2008). In a 

typical cell, there is a very low degree of mobility of subunits within the filaments, however 

the mobility and organisation of the lamin network itself, particularly lamin A is influenced 

by the expression of lamin B1. Silencing of lamin B1results in the increased mobility of the 

nucleoplasmic lamin A as well as formation of lamin A/C blebs along the membrane that are 

strongly associated with gene rich chromatin domains that undergo promoter proximal stalling 

and are transcriptionally inert.  
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The nuclear envelope needs to be dismantled as the cell enters mitosis. This depolymerisation 

of the lamina is driven by Cyclin Dependent Kinase mediated phosphorylation. During 

telophase lamins are dephosphorylated to enable reassembly of the meshwork (Kuga, Nozaki, 

Matsushita, Nomura, & Tomonaga, 2010).  

 

1.5: Chromatin organisation 
Within the nucleus DNA undergoes several levels of compaction, with association of histones 

to form the chromatin fibre. At the primary level, DNA wraps around an octamer of core 

histones (H2A, H2B, H3 and H4) to form a nucleosome. With the binding of the linker histone 

H1 to the nucleosomal array, it is compacted to 30nm chromatin fibre. Beyond this, 

architectural proteins organise proteins into domains of transcriptionally active euchromatin 

and highly compacted transcriptionally silent heterochromatin.  The retention of 

heterochromatin at the nuclear periphery renders the nucleus less malleable in differentiated 

cells, whereas a more diffuse pattern of stem cell-like heterochromatin increases nuclear 

plasticity (Dahl, Engler, Pajerowski, & Discher, 2005).   

 

1.6: Heterochromatin 
Domains of heterochromatin are defined by trimethylation of histone H3 on lysine 9 and 

Heterochromatin Protein 1α (HP1α) and enriched with linker protein histone H1 and 

noncoding RNA. They are regions of little transcriptional activity and are broadly classed as 

either constitutive of facultative heterochromatin. Constitutive heterochromatin remains 

transcriptionally inactive throughout the cell cycle and is primarily composed of repeating 

sequences and is involved in maintaining chromatin structures such as the telomeres and 

centromeres. Facultative heterochromatin is more dynamic in shifting between 

transcriptionally active euchromatin to heterochromatin throughout the cell cycle, as 

transcriptionally active elements are silenced through development and cell differentiation 

(Haaf & Schmid, 2000). 

1.7: Heterochromatin Protein 1 
HP1 is a highly conserved protein family, with orthologues also present in Drosophila, 

Xenopus, chicken, Arabidopsis, yeast, and mammals. In mammals, the HP1 family has three 

members HP1α, HP1ß and HP1". HP1α and HP1ß are constitutively expressed throughout 

the body and are found associated with heterochromatin as previously described.  
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The formation and architecture of heterochromatin is largely directed and maintained by the 

Heterochromatin Protein 1 (HP1) family, also known as the Chromobox Homologue (CBX). 

HP1 was first observed as a non-histone protein associated with heterochromatin regions in 

Drosophila melanogaster (James & Elgin, 1986). Its role in modulating heterochromatin was 

established when exploring position-effect variegation (PEV), an effect of chimeric gene 

silencing in some cells as a result of rearrangement juxtaposing a gene within heterochromatin. 

This resulted in phenotypes that had a variegated expression of a gene, such as the eye colour 

determining white gene, that when inactivated in some cells by proximity to heterochromatin, 

resulting in a mixed red and white eye colour in fruit flies. Point mutation of the 

chromodomain of HP1 in these flies removed the PEV phenotype, as heterochromatin 

formation was inhibited and the silencing of juxtaposed genes did not occur (Eissenberg et al., 

1990). 

 

HP1 has a general tripartite structure containing an N-terminal chromodomain, a C-terminal 

chromoshadow domain, linked by an unstructured hinge region as shown in Figure 3. The 

chromodomain contains motifs that promote binding in response to nucleosome H3K9 

trimethylation, while the chromoshadow domain allows dimerization of HP1 molecules as 

well as a wide variety of other protein binding partners through the PxVxL motif. The 

unstructured hinge region binds nucleic acid sequences and histone H1 on chromatin. 

 

HP1α mediates chromatin compaction by binding to trimethylation  of lysine 9  of histone H3 

and lysine 26 of histone 1.4 (Nishibuchi & Nakayama, 2014). Heterodimerisation and 

homodimerisation of multiple HP1 binding within the chromoshadow domain draws 

neighbouring nucleosomes together, compacting the DNA and excluding transcription factors 

and silencing gene expression (Norwood et al., 2006). Heterochromatic regions spread as 
HP1α associates with methyltransferases such as SUV39H1 via the chromoshadow domain, 
which lay down further epigenetic markers, such as  trimethylation  of histone 3, lysine 9 
(H3K9) and lysine 26 of histone 1.4 (H1.4K26)  that recruit additional HP1α molecules, 

resulting in an expanding region of compacted chromatin (Peters et al., 2001) (Nishibuchi & 

Nakayama, 2014).  

 

The unstructured hinge region of the HP1α molecule, binds both DNA and RNA for the 

purpose of targeting HP1α to specific regions of the chromosome (Meehan, Kao, & Pennings, 
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2003). An example of this is Telomere-Repeat-Encoding RNA (TERRA), which is non-coding 

RNA that is transcribed along the length of the telomere regions of DNA, interacting with 

HP1α and localising it to the telomeres (Deng, Campbell, & Lieberman, 2010; Deng, Norseen, 

Wiedmer, Riethman, & Lieberman, 2009). 

 

Recent work has demonstrated how the multivalent interactions of HP1α results in a shift from 
soluble HP1α to phase separated droplets of protein that nucleate and propagate across 
chromatin regions. This liquid property of HP1α, and the associated chromatin it is bound to, 

provides a model for heterochromatin domain formation, wherein free HP1α forms many 
multivalent interactions with histone components and other HP1α molecules forming foci of 
concentrated protein that grow larger following further recruitment of HP1α and a phase shift 

occurs as HP1α becomes insoluble. Heterochromatin domains mature as large foci of HP1α 

fuse like liquid droplets, bringing distal DNA regions into contact (Larson et al., 2017). 

 
Figure 3: Schematic of HP1 domain structure 
Shown is the chromodomain and the chromoshadow domain linked by the hinge region. Below are 
some binding partners for each domain. 
 
Mechanisms to reverse the condensing effect of HP1α and mediate the decompaction of 
chromatin to allow transcription are at play throughout development and cell life. Such 

agonists of HP1α binding include phosphorylation of histone proteins, such as  H3S10, which 

prevents H3K9 methylation, and phosphorylated STAT protein (Rea et al., 2000; Shi et al., 

2006). 

 

1.8: HP1 dysregulation in cancer 
There is strong evidence that HP1 has a role in tumour suppression. The loss of HP1 function 

enhances the oncogenic potential of JAK/STAT over-expression in a Drosophila model, while 

its reintroduction reduces the number of lesions (Shi et al., 2006). In humans, a causal role in 

tumour invasion has been demonstrated by the modulation of HP1α levels (Norwood et al., 
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2006). Knock-down (KD) of HP1α mRNA in poorly invasive/non-metastatic cells increased 

invasion, without changes in cell growth rate (Norwood et al., 2006). Conversely, over-

expression of HP1α can suppress the metastatic potential of invasive breast cancer cell lines, 

suggesting HP1 is a suppressor of metastasis (Norwood et al., 2006). This observation was 

supported by immunohistochemistry studies showing low levels of HP1α protein in seven of 

nine invasive breast tumours (Dawn A Kirschmann et al., 2000). In addition, cDNA 

microarray studies show correlation of decreased HP1α mRNA expression with tumour 

progression in advanced papillary thyroid carcinomas (Wasenius et al., 2003) and 

medulloblastomas (Pomeroy et al., 2002). In the latter case this down-regulation correlated 

with treatment failure. 

 

While generally ubiquitous in normal tissue, differential expression of the HP1 paralogs has 

been observed in both human tumour derived cells and tissues (Kirschmann, Seftor, Nieva, 

Mariano, & Hendrix, 1999; Ritou, Bai, & Georgatos, 2007) For example, while expression of 

the paralogs varies with the tumour context in solid tissue, generally increased expression is 

observed in tumours with poor outcome. For example, upregulation of HP1γ is associated with 

poorly differentiated colorectal tumours (M. Liu et al., 2015), upregulation of HP1β is 

associated with increasing grade in prostate cancers (Shiota et al., 2010), and upregulation of 

HP1α expression has been observed in non-metastatic breast carcinomas compared to normal 

tissue (De Koning et al., 2009) and glioma cells (Lai, Deng, Guo, Zhu, & Tu, 2017).  This 

increase in expression has been proposed to maintain genome stability in cells with a high 

proliferative demand and is therefore advantageous during the early stages of tumour 

development.  

 

Reduction of the heterochromatin-enriched paralogs has also been observed, with loss of HP1β 

reported in poorly differentiated colon cancers (Tell et al., 2011), invasive melanoma lesions 

(Nishimura, Hirokawa, Mizutani, & Shiraishi, 2006), thyroid carcinomas (Tretiakova et al., 

2014) and prostate cancer (Shapiro et al., 2008). HP1α levels are dramatically reduced in 

breast metastatic lesions from distant sites in the body (Dawn A Kirschmann et al., 2000), and 

its loss is correlated with metastatic potential and poor outcome in advanced papillary thyroid 

carcinomas (Tretiakova et al., 2014; Wasenius et al., 2003), in addition HP1α is suggested to 

reduce metastasis in colorectal cancer (Ruginis, Taglia, Matusiak, Lee, & Benya, 2006). This 

correlation of HP1α down-regulation with an invasive tumour phenotype and the 

demonstration that HP1α can regulate the invasive potential of breast cancer cell lines has led 
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to the proposal that HP1α is a suppressor of breast metastasis (Dawn A Kirschmann et al., 

2000; Norwood et al., 2006). 

 

Indeed, the onset of invasion correlates with the loss of HP1α in many solid tumours including 

those of the thyroid, kidney, colon and breast (Contreras, Gutierrez, & Hale, 2010; Dawn A 

Kirschmann et al., 2000; Tretiakova et al., 2014). Screening of a tissue microarray containing 

56 invasive breast carcinomas showed that 32 out of the 56 breast carcinomas had decreased 

expression of HP1α. That HP1α can suppress invasion is demonstrated by its modulation in 

malignant breast cells altering cellular adhesion and migration through a 3-D matrix (Hale, 

Wheeler, Stimpson, Tretiakova, & Contreras, 2016; Norwood et al., 2006). In the poorly 

invasive breast MCF7 cell line constitutive KD of HP1α was shown to increase the cells’ 

ability to invade through an extracellular matrix by 44%. Conversely, introduction of HP1 α 

in the highly invasive MDA-MB-231 breast cancer cell line (with low endogenous levels of 

HP1α) decreased their ability to invade by 40%. 

 

1.9: Object of this work is to establish whether HP1α plays causative role 
in increasing nuclear malleability 
The HP1α protein plays a vital role in the formation and maintenance of the heterochromatin, 

and its loss in both cell lines and in vivo is associated with increased invasive potential. In 

conjunction with the invasive model in Drosophila, investigations into the role that is played 

by the nuclear membrane itself in facilitating invasive characteristics, modulated by HP1α and 

nuclear envelope associated proteins such as lamin A, C, B2 and B1, as well as other candidate 

proteins, will provide valuable insight into the biophysical behaviour of invasive cancers. Loss 

of nuclear membrane integrity is a hallmark of many cancers and is closely linked to the 

disruption of the nuclear lamina. Loss of peripheral heterochromatin has been shown to 

destabilise the lamina layer, and so this study will explore if HP1α KD can direct a similar 

loss of nuclear membrane integrity, suggesting a structural mechanism by which HP1α 

modulates invasive development, beyond its role in gene regulation. This has the potential to 

characterise targets for future cancer markers, predictors and therapies.  
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Chapter 2: Materials and Methods 
2.1: Generation and maintenance of Drosophila melanogaster lines 
/Generation of ptc-driven GFP and RNAi KD Drosophila melanogaster 

Drosophila melanogaster were cultured on a standard medium (agar (1%, w/v), yeast (4% 
w/v), cornflour (11%, w/v), sugar (13%, w/v), molasses (2%, v/v), methylparaben (0.33%, 
w/v), ethanol (37 % v/v)) and raised at 22C, unless otherwise indicated, with a 12-hour light-
dark cycle. All fly stocks were obtained from the Bloomington Drosophila Stock Centre 
(BDSC), the Vienna Drosophila Resource Centre (VDRC), or generated in house, as 
indicated below. This work has ERMA approval for creation of genetic modified organisms 
that are necessary for this research - GMO09/MU003 and GMC00017. 

In order to visualise the A/P boundary of the imaginal disc, a fly line containing the Ptc-Gal4 

driver (BDSC# 2017) and UAS-GFP (BDSC #6874) was created. This fly line was then 

crossed with lines containing UAS-linked RNAi and/or transgenes to KD or overexpress genes 

of interest in the A/P epithelial stripe.  

 

The Ptc-GAL4 and UAS-GFP constructs are both inserted on chromosome two. In order to 

create lines that are homozygous for both Ptc-GAL4 and UAS-GFP, homozygous Ptc-GAL4 

males were firstly crossed to homozygous UAS-GFP homozygous females to produce 

heterozygous progeny carrying one copy of each gene (Figure 4A). Homologous 

recombination occurs only in female Drosophila, therefore female progeny resulting from this 

cross were selected and crossed to control (w-) males (Figure 4B). Both ptc-GAL4 and UAS-

GFP are linked to the mini-white gene (w+) which is a determinant of eye colour, and the eye 

colour (ranging from light yellow to red) is dependent on the level of expression of w+. Flies 

heterozygous for ptc-GAL4 or UAS-GFP have orange eyes, therefore most of the progeny 

from this cross will have orange eyes with a single copy of either Ptc-Gal4 (ptc-GAL4/+) or 

UAS-GFP (UAS-GFP/+), however in instances where recombination has occurred, flies will 

exhibit red eyes as both of the constructs have been recombined onto a single chromosome 

(UAS-GFP,UAS-GAL4/+) (Figure 4B). A comma between the two genetic elements indicates 

they are on the same chromosome, whereas a forward slash indicates they are on opposite 

copies of chromosome two. The “+” indicates a wild-type chromosome. 

 

To create a stable homozygous stock, male red-eyed progeny of Figure 2.1B were crossed 

with w- female flies containing the CyO second chromosome balancer. (Figure 4C). Balancer 

chromosomes contain a number of balanced chromosomal inversions which prevent 
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recombination, as well as carrying a dominant phenotypic marker to track the chromosome 

presence, in this case curly wings. The resulting progeny were selected for red eyes and curly 

wings, indicating the presence of Ptc-GAL4 and UAS-GFP over the balancer chromosome 

(Ptc-GAL4, UAS-GFP/CyO). 

 

To create the final fly stock that is homozygous for ptc-GAL4 and UAS-GFP (ptc-GAL4, 

UAS-GFP), red-eyed and curly winged male and female progeny were crossed together, and 

non-curly progeny were selected (Figure 2.1D). The balancer chromosome is homozygous 

lethal; therefore, no white-eyed non-curly progeny were produced. The presence of UAS-GFP 

and Ptc-GAL4 was confirmed by dissecting the imaginal discs and visualising GFP expression 

in the A/P boundary. 

 

A homozygous fly line harbouring both UAS-HP1 RNAi (VDRC #31994) and UAS-Csk 

RNAi (VDRC #32877) on chromosome two was generated using the same method as 

described above. Similarly, a UAS-HP1 overexpression fly line (UAS-HP1OE, as described 

in Section 3.1.2) was recombined with UAS-HP1 RNAi (VDRC #31994) to create a 

homozygous line carrying UAS-HP1 RNAi and UAS-HP1 OE.  The generation of all the 

above-mentioned fly lines was performed by Dr Helen Fitzsimons, 

 

To generate the experimental set of larvae of the required genotypes, five virgin Ptc-

Gal4,UAS-GFP females were crossed with five males of the appropriate transgenic lines (i.e. 

such as UAS-Csk RNAi) to produce progeny that contained one copy of each of UAS-GFP 

and ptc-GAL4 to visualise the A/P stripe, as well as one copy of the desired UAS-RNAi or 

UAS-OE construct(s), the expression of which was also driven by ptc-GAL4. 
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Figure 4: Genotype crossing to produce stable Ptc-Gal4/UAS-GFP Drosophila line 
Schematic of chromosome two genotypes of parental fly lines, and the genotypes and key phenotypes 
of their potential progeny. Phenotypes are identified as eye colours ranging from white to yellow to 
red depending on white gene dosage, imaginal disc fluorescence in response to Gal4 activation of UAS-
GFP, and either straight or curly wing shape. A) Cross of homozygous Ptc-Gal4 with homozygous 
UAS-GFP to produce heterozygous offspring. B) Female heterozygous Ptc-Gal4/UAS-GFP crossed 
with white eyed males (+/+). * indicates a homologous recombination event has occurred, combining 
both Ptc-Gal4 and UAS-GFP on a single chromosome, leaving no transgenes on one of the chromosome 
pair. C) Cross of heterozygous recombined progeny from B, with Ptc-Gal4, UAS-GFP on a single 
chromosome, crossed with a curly balancer to prevent further recombination. D) Cross of 
heterozygous (Ptc-Gal4, UAS-GFP/CyO) to produce homozygous (Ptc-Gal4, UAS-GFP/ Ptc-Gal4, 
UAS-GFP). 
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2.2: Dissection of third instar Drosophila melanogaster wing imaginal discs  
The isolation of wing imaginal discs was carried out following a dissection protocol 

established by(Spratford & Kumar, 2014). Imaginal discs were harvested at the third instar 

stage of Drosophila melanogaster development, at the point they are ‘wandering’ larvae, that 

have climbed out of the food media and are actively moving along the growth tube walls, prior 

to the pupation stage. Selected larvae were transferred from the growth tube and submerged 

in phosphate buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 

KH2HPO4) with 0.05% Triton X-100 to self-cleanse for five minutes. Larvae were then 

transferred to a drop of PBS on a microscope slide, under a dissection microscope. Using fine 

forceps to pinch the anterior and posterior outer layer of the larvae, gentle pressure is applied 

to tear the membrane and allow release of the interior organs. Careful manipulation of the 

tissue allows identification and removal of the two imaginal discs to another pool of PBS on 

the slide. After removing the remaining larval tissue, the collected discs were then fixed in a 

drop of 4% paraformaldehyde in PBS for 25 minutes at room temperature. The fixative 

solution was removed by blotting, and the discs washed twice by immersing in PBS, before 

mounting in 1.5 μg/ml VectaShield 4’,6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories Catalogue Number: H-1200), cover-slipped and stored at 4ºC before imaging. 

 

2.3: Immunohistochemistry Drosophila melanogaster wing imaginal discs 
Wandering third instar larvae of the appropriate genotypes were dissected to collect the wing 

imaginal discs, which were immediately transferred to a cold fixative solution (2% 

Paraformaldehyde, 15µM Sodium Periodate, 140µM Lysine in PBS) for 45 minutes at room 

temperature. The imaginal discs were then incubated in a permeabilization buffer (0.1M 

Sodium Phosphate, 0.5% Triton TX100) for 45 minutes at room temperature, then blocked in 

10% Normal Goat Serum (NGS) for ten minutes before being incubated overnight at 4ºC in a 

primary antibody diluted in 10% NGS. Following primary staining, the discs were rinsed in 

wash buffer (0.1M Sodium Phosphate, 0.2% Triton TX100), before the secondary antibody 

was applied for four hours. The imaginal discs were then further washed and mounted in 

VectaShield DAPI (Vector Laboratories: #H-1200).  

 

2.4: Table of Drosophila melanogaster genotypes 
Integrated DNA Chromosomal 

Linkage Genotype Phenotype 
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Table 2.1: Table of Drosophila melanogaster genotypes 

2.5: Confocal microscopy 
Confocal microscopy was carried out on a Leica SP5 DM6000B Confocal microscope. When 

UAS-Red Stinger 
(nls.dsRED2) 

3 w[1118];P{UAS-RedStinger}6 Red eyes 

UAS-GFP 2 w[*]; P{w+mC=UAS-2xEGFP}AH2 Orange eyes 

Csk RNAi 2 y,w[1118];P{attP,y[+],w[3`]},P{w[+mC]=CG42317} Orange eyes  

Csk RNAi 3 w[1118];P{w[+mC]=CG42317 Orange eyes  

HP1 RNAi 2 y,w[1118];P{attP,y[+],w[3`]},P{w[+mC]=CG8409} Orange eyes  

HP1 RNAi 3 w[1118];P{w[+mC]=CG8409 Orange eyes  

ptc-GAL4 2 w[*]; P{w[+mW.hs]=GawB}ptc[559.1] Orange eyes  

HP1RNAi, Csk RNAi 3 w[1118];P{w[+mC]=CG42317,P{w[+mC]=CG8409 Red eyes 

ptc-GAL4, UAS-GFP 2,2 w[*]; P{w[+mW.hs]=GawB}ptc[559.1], 
P{w+mC=UAS-2xEGFP}AH2 

Red eyes 

DmHP1 (OE) 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2,HP1(OE). 
Insert into P2(3L) 68A4 

Red eyes 

kd, DmHP1OE 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, HP1 
(OE). Insert into P2:(3L) 68A4, Csk RNAi 
P{w[+mC]=CG42317 

Red eyes 

HP1kd,DmHP1OE 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, HP1 
(OE). Insert into P2:(3L) 68A4; HP1 RNAi 
P{w[+mC]=CG8409 

Red eyes 

Csk1 kd, HP1 kd, 
DmHP1OE 

3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, HP1 
(OE). Insert into P2:(3L) 68A4, HP1 RNAi 
P{w[+mC]=CG8409, Csk RNAi 
P{w[+mC]=CG42317 

Red eyes 

hHP1α 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, 
w[m+C]=UAS-hHP1α-FLAG 

Red eyes 

hHP1α, dmHP1 KD 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, 
w[m+C]=UAS-hHP1α-FLAG, CG*409 

Red eyes 

hHP1α, Csk KD 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, 
w[m+C]=UAS-hHP1α-FLAG, CG*409, Csk 
RNAi P{w[+mC]=CG42317 

Red eyes 
 
  

hHP1α, Csk KD, dmHP1 KD 3 y[1] w[67c23]; P{y[+t7.7]=CaryP}attP2, 
w[m+C]=UAS-hHP1α-FLAG, CG*409, Csk 
RNAi P{w[+mC]=CG42317, dmHP1 RNAi 
P{w[+mC]=CG8409 

Red eyes 
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imaging wing imaginal discs, images requiring the entire disc were acquired using a 20x (NA 

0.5) objective lens, while immunohistochemistry and invasion assay samples requiring focus 

on the A/P boundary compartment used an oil immersion 63x objective lens (NA 1.4) to 

visualise the boundary cells. Z-stack projections to capture cell location through the depth of 

the tissue were acquired by sequential imaging with 0.67µm offsets of the focal plane between 

the top and bottom of the imaginal disc. 

 

Imaging of immunofluorescent cultured mammalian cells on coverslips used oil-immersion 

63x objective lens (NA 1.4), with an additional 3x magnification to achieve an 82nm/pixel 

resolution. Cross-sectional images across the field of cells were collected with 0.35µm vertical 

offsets from the base to the apical region and used to generate a Z-stacks using maximum 

intensity projection. 

 

Laser excitation wavelength, and collection ranges appropriate to the fluorophores of each 

sample were used to detect the emission spectra of the specific combination of DAPI (ex405n, 

em410-530nm), green fluorescent protein (GFP) (ex 408nm, em500-550nm) and the 

secondary antibody Alexa fluorophores; 488 (ex588nm, em520-555nm), 555 (ex555nm, 

em565-600nm) or 647 (ex647, em670- 720nm).  

 

2.6: Quantification of cellular invasive potential in imaginal discs 
Following dissection and mounting of imaginal discs of fly larvae for a particular genotype, a 

maximum Z-projection of the ptc-driven GFP fluorescence in the upper region of the A/P 

boundary was collected. The main stripe of fluorescent epithelial cells of the boundary 

compartment, and the smaller regions of invasion were then traced with selection tools in 

ImageJ (Abràmoff, Magalhães, & Ram, 2004), and saved to separate region of interest (RoI) 

layers. Tracing the outline of each region of cells was performed with reference to the 

individual image slices to increase accuracy and consistent differentiation of invasive and non-

invasive cells along the A/P boundary. The total area of the boundary compartment and 

cumulative invasive area was then calculated by the ImageJ software, along with the Z-depth 

for each sample, and then exported to Microsoft Excel for further analysis and graphing. A p 

value  <0.05 is considered to represent statistical significance. 
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2.7: Cloning the Human HP1α cDNA into the pUASTattB Plasmid 
PCR was used to amplify Human HP1α from MCF7 cell cDNA previously collected in the 

laboratory, before it was ligated in the pUASTattB plasmid, from which it was used for 

PhiC31-mediated recombination into the genome of Drosophila embryos. 

 
The KAPA HiFi HotStart PCR Kit (KK2601) was used to amplify human HP1α with 

additional 3’ EcoRI restriction site, 5’ FLAG tag and 5’ XhoI restriction site. Each primer was 

used at a concentration of 0.3µM. 

 

Forward Primer: 

FhHP1a EcoRI For: A TAA GAA TTC ATG GGA AAG AAA ACC AAG CG (30 bp) 

Reverse Primer: 

RhHP1a XhoI FLAG Rev: A TCC CTC GAG TTA CTT GTC GTC ATC  GTC TTT GTA 

GTC GCT CTT TGC TGT TTC TTT CTC (58 bp)  

Insert Map: EcoRI – human HP1α – FLAG – XhoI 

Product: 620 bp  

 

Optimisation of the PCR protocol was required as annealing temperatures over a 20ºC range 

showed very little product produced, at the correct 620bp size at 58.5ºC. This was due to the 

larger reverse primer containing the additional FLAG tag, requiring a much higher annealing 

temperature. A two-step PCR protocol was optimised to allow a low temperature annealing of 

primers to DNA for five cycles, before a further 25 cycles, annealing at 60-70ºC (Figure 5B). 

The two-step PCR protocol, with 70ºC annealing step following an initial five cycles to allow 

partial binding of primers to cDNA was used to generate the hHP1α-FLAG insert. 

PCR Program 

•  95°C  3 minutes 

•  98°C  20 seconds 

•  53ºC  15 seconds 

•  72°C  30 seconds 

•  98°C  20 seconds 

•  70ºC  15 seconds 

•  72°C  30 seconds 

•  72°C  1 minute 

•  4°C  HOLD  

10 cycles 

20 cycles 
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Six replicates of this PCR reaction were produced, purified using ChargeSwitch Pro PCR 

Clean-up Kit, and run on a 1% Agarose Gel. Under UV light, the 620bp hHP1α-FLAG band 

was cut from the gel to separate it from primers and purified using a PureLink Quick Gel 

Extraction Kit. 

 

The pUASTattB plasmid stock available in the laboratory already contained the dmHP1FLAG 

gene at the same restriction site required for the new insert, which required cutting out the 

~660bp band and gel purifying the remaining plasmid. The vector double digests were run on 

1% agarose, and gel purified, cutting out the 660bp insert and saving the 8489bp plasmid band.  

 

The pUASTattB- DmHP1FLAG vector and hHP1α-FLAG DNA were simultaneously double-

digested with both EcoRI and XhoI to prepare for insertion of hHP1α-FLAG PCR product. 

Single digest controls of the pUASTattB-DmHP1FLAG plasmid were performed to check 

both enzymes cut as expected and run on a 1% agar gel (Figure 13A). Equivalent of 5U of 

each enzyme was used in each digest. Double digest of the pUASTattB-DmHP1FLAG shows 

the 660bp band associated with the Drosophila HP1-FLAG DNA, while the double digests of 

the insert DNA show the correct 620bp position for the human HP1α-FLAG insert. The vector 

band shows a concentration of 80ng/µl, while insert is estimated to be 8ng/µl. 

 

Purified pUASTattB plasmid vector was treated with Rapid alkaline phosphatase (Roche; 

04898133001) following manufacturer’s directions, before a ligation series was set up with 

increasing ratios of insert to vector DNA from 1:1, 1:3 and 1:5. Plasmids were ligated using 

1U NEB T4 DNA Ligase per 20µl reaction. 

 

DH5α competent cells (Invitrogen) were used for optimum transformation efficiency. The 

cells were resuspended in 50ul aliquots with 4ul of each ligation and incubated on ice for 30 

minutes, before being incubated at 42ºC for 45 seconds. 500µl of SOC medium (Sigma-

Aldrich) was added to each tube, and samples were incubated for one hour at 37ºC. Cells were 

centrifuged and resuspended before being plated on LB agar + Ampicillin (100µg/mL) plates 

overnight at 37ºC. 

 

Using an Intron Mini prep kit, following manufacturer’s directions, DNA was isolated from 
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transformed DH5α colonies that exhibited ampicillin resistance due to the pUASTattB 

plasmid, and quantified on a NanoDrop. A double digest with EcoRI and XhoI was set up to 

identify any colonies successfully transformed with the insert, which were identifiable as the 

~620 bp band observed in colonies one and two exhibited the insert. 

 

2.8: Maintenance of MCF7 Cell lines 
MCF7 (ATCC) cell lines, both control and constitutive HP1α KD, were maintained in DMEM 

(Gibco) with 1% penicillin/streptomycin (Gibco), 10% fetal bovine serum (FBS) (Gibco), ten 

g/mL insulin (Sigma-Aldrich) and 35 g/mL hygromycin B (Gibco) at 37C with 5% CO2 in a 

humidified incubator. 

 

Cells were passaged every three days as they reached confluent growth in 75 cm2 corning 

flasks in 20 mL of supplemented DMEM media, up to a maximum of 25 passages, after which 

fresh cells were grown from -80ºC frozen stocks. To passage, old growth media was removed, 

and cells washed twice in a phosphate buffered saline (PBS) (Gibco), before adding 1.5mL of 

0.25% Trypsin-EDTA (Gibco) for 4-5 minutes to allow detachment of cells from the surface 

of the flask. DMEM was added to bring the volume of 10mL to inactivate the trypsin and 

resuspended vigorously to achieve a single cell suspension. An appropriate percentage of total 

cells- typically 30% for control and 40% for HP1α KD were made up to 20mL volume in 

DMEM in a fresh flask to continue the culture, while the remaining cells were used in 

experiments. 

 

2.9: Applying mechanical shear force to MCF7 Cells 
MCF7 cells of both control and HP1α KD at confluence were harvested via trypsin treatment 

and resuspended in 1x PBS to a final concentration of 1x106 cells/mL. 1mL of suspension was 

immediately aliquoted into a 1.5mL centrifuge tube, with 10µl removed and loaded on to a 

prepared haemocytometer for imaging. Using a 1mL syringe, cells were passed through a 26G 

(0.26mm inner diameter) needle at a rate of five passages per minute, and every specified 

passage number an aliquot was taken for counting and the control and HP1α KD tubes for 

passaging alternated. 

 

The haemocytometers were imaged on a light microscope at 100x magnification with fine 

focus on the gridlines, and four fields of view were captured. Whole cells and free nuclei were 
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visually distinguished, as were nuclei from cellular debris as shown in Figure 5. Manual counts 

of whole nuclei were made and averaged across the number of passage cycles. Whole cells 

were counted as intact nuclei in the 0x samples, and very few whole cells remained following 

10x passages, indicating an equivalent of rate breakdown of the outer membrane and release 

of nuclei for both cell types, which is consistent with rates of breakdown in the literature, 

which show loss of cellular membrane after as few as two passages (Furusawa et al., 2015). 

 
Figure 5: Representative image of MCF7 control cells before and after exposure to 
mechanical shear force, showing release of nuclei from whole cells.  
1) Whole intact cell. 2) Released whole nuclei. 3) Cellular debris. Grid square corresponds to 
250x250µm. 
 

During the optimisation of this assay, the experiment was initially performed by two people, 

so that the nuclei could be counted in real time as haemocytometers were loaded with fresh 

aliquots following a passage set. However, this method proved impractical due to the large 

number of samples involved. Imaging all the prepared haemocytometers after the syringing 

was finished proved far more consistent and accurate. To ensure results would not be impacted 

by degradation or drying of cells, test samples were imaged and compared over a 40-minute 

timeframe- well in excess of the time required for sample preparation- and no changes were 

observed. 

 

2.10: MCF7 cell fractionation 
Asynchronously growing MCF7 control and HP1α KD cells were harvested at confluence via 

trypsin treatment. The cell suspension was diluted to approximately 1x106 cells/mL to enable 
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accurate cell counting on haemocytometer to calculate actual concentration.  Equal numbers 

of cell type were removed, with a minimum of 5x106 cells. The cells were then washed in 

PBS, and resuspended in Kapoor Buffer A (20 mM Tris-HCl pH 7.5, 75 mM KCl, 30 mM 

MgCl2, 1 mM DTT, 0.5 mM EDTA, 0.5% NP40, cOmplete EDTA-free protease inhibitor) to 

a concentration of 0.5 x 106 cells/100 µl, and incubated on ice for ten minutes with intermittent 

vortexing. Half of the sample volume was removed and retained as the whole cell lysate 

fraction. The remaining sample was centrifuged at 7000 x g for ten minutes at 4°C, before 

removing supernatant and retaining as the cytoplasmic fraction. The remaining pellet was 

resuspended in Kapoor Buffer A in same volume of removed supernatant, to provide the 

nuclear fraction. Lysates were stored at -80ºC, and heat treated with SDS laemmli dye prior 

to loading on SDS-PAGE gel. 

2.11: Nuclear envelope isolation 
A minimum of 20 x106 asynchronously growing MCF7 control and HP1α KD cells were 

harvested at confluence, diluted appropriately for accurate cell counting on the 

haemocytometer, washed in PBS and resuspended to a concentration of 1x106 cells/mL. The 

cells were counted again before, removing equal cell numbers of at least 20 x 106 cells and 

centrifuged at 200x g for 5min, before removing PBS. 

 

The Nuclear Envelope Protein Extraction Kit (101Bio; P513L) was used, following 

manufacturer’s instructions. Cells were resuspended in 1mL cold PBS and pellet in a 

centrifuge tube at 200 x g for five minutes at 4ºC. The supernatant was removed, and the pellet 

resuspended in 500µl of the Buffer A lysis solution supplied with the extraction kit. The cells 

were incubated on ice for ten minutes before being vortexed vigorously. The solution was 

transferred to a precooled filter cartridge and centrifuged at 18,000 x g for one minute. The 

filter was discarded, and the supernatant removed. The pellet was washed in cold PBS, then 

300µl of the nuclear lysis Buffer B- supplied with the extraction kit- was added and incubated 

on ice for ten minutes with intermittent vigorous vortexing. The samples were centrifuged at 

6,200 x g and the supernatant transferred to a fresh tube, adding 800µl cold PBS and inverting 

repeatedly to precipitate nuclear envelope. The envelope was pelleted at 18,800 x g for 15 

minutes at 4ºC, before the supernatant was removed and the remaining isolated nuclear 

envelope pellet was resuspended in 1x SDS PAGE dye, and heat. Samples were stored at -

80ºC prior to loading on an SDS-PAGE gel. 
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2.12: Immunoblotting 
Protein samples were pre-treated by reducing and denaturation agents in 1x laemmli buffer 

and heated to 99ºC for 5-10 minutes. An SDS-PAGE gel was poured and set in a Bio-Rad 

SDS-PAGE apparatus following manufacturer’s instructions. The acrylamide concentration 

was determined by the molecular weight of intended protein target, a 10% acrylamide gel was 

used for A-type lamins which have molecular weights between 65 and 73 kDa, and 12% was 

used when blotting for core histone proteins, to provide better resolution of much smaller 

molecular weights. Once the gel was set and apparatus filled with running buffer (25 mM Tris, 

192 mM Glycine, 1% SDS) the protein samples were loaded along with PageRuler size 

markers. The gel was run at 30V for 30 minutes to allow samples to enter the stacking gel, 

before voltage was increased to 130V and run until the dye front reached bottom of the gel. 

Once finished, the gel was removed from the apparatus and glass plates, and the stacking gel 

and dye front were removed. The gel was transferred onto a 0.1µm nitrocellulose membrane 

that had been soaked in pre-chilled transfer buffer and sandwiched between three sheets of 

cartridge paper on either side inside the transfer cassette. The cassette was then loaded into a 

Bio-Rad transfer apparatus and the transfer run at 100V for 60 minutes at 4ºC with constant 

stirring. Once complete the membrane was removed from the gel and cassette, then trimmed 

to a convenient size for staining. When optimising a western blot protocol, reversible Ponceau 

staining (Sigma Aldrich #78376) of the membranes was used to check the transfer was 

successful, as well as to visually compare total protein bands present on the membrane.  

 

The membrane was then blocked in 5% skim milk in wash buffer (20 mM Tris, 150 mM NaCl, 

0.1% Tween 20) for one hour, before being incubated in the appropriate primary antibody, 

diluted in blocking buffer, overnight. Following primary incubation, the membrane was rinsed 

in in wash buffer, then washed twice for five minutes and then twice for 10 minutes in the 

same buffer. The membrane was then incubated with the secondary HRP antibody for one 

hour, before the washing steps were repeated and the blot was developed using ECL reagent 

(GE healthcare) following manufacturer’s instructions and visualised using an Azure 

Biosystems cSeries Gel doc. 

 

2.13: Isolation of whole nuclei from MCF7 Control and HP1α KD cells 
Asynchronously growing MCF7 control and HP1α KD cells were harvested at confluence as 

described in Section 2.8 and counted. Equal numbers of at least 6x106 cells for each cell type 
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were removed for nuclei extraction and washed with cold PBS so cells are at a concentration 

of 1 x 106/mL. The cell suspension was then recounted, and after a second wash, 5x106 cells 

were removed. The cells were resuspended in cold nuclei extraction buffer (320 mM sucrose, 

10 mM HEPES, 5mM MgCl2, 1% Triton X-100) at a concentration of 1 x 106 cells/mL, and 

vortexed gently for 10 seconds. The cells were incubated on ice for 15 minutes to allow lysis 

of the cytoplasmic membrane, vortex mixing every five minutes, before the nuclei were 

pelleted at 2000 x g for five minutes. The nuclei were washed with nuclear wash buffer (320 

mM sucrose, 10 mM HEPES, 5mM MgCl2), and stored on ice. 

2.14: Immunostaining of whole of MCF7 cells 
Acid-etched Poly-D-Lysine coverslips were prepared by incubating five mm glass coverslips 

in 1M HCl overnight at 60ºC, before washing and treating with Poly-D-Lysine for one hour. 

Slides were washed in ddH20, dried and UV-treated before being stored. Acid etching of the 

coverslips roughens the glass to enable better attachment of cells as well as the poly-amino 

acids, which themselves aid cell attachment to the surface. 

 

Asynchronously growing MCF7 control and HP1α KD cells were harvested and were used to 

seed two coverslips in each well of a 24 well plate (SIGMA #CLS3527), one well for each 

antibody condition to be tested. Wells were seeded at a concentration of ~3x105 

cells/well/2mL and incubated at 37ºC with 5% CO2 for three days. The coverslips were washed 

twice with PBS with MgCl2 and CaCl2 and fixed in 4% paraformaldehyde for 15 minutes at 

room temperature, followed by permeabilization in PBS + 0.2% Triton X-100 for five minutes 

at room temperature. The coverslips were then blocked for 30 minutes in PBS+5% bovine 

serum albumin (BSA) + 0.5% Tween-20 for 30 minutes, rocking at room temperature. 

 

Primary antibodies (See Table 2.2) were diluted in PBS+5% BSA + 0.5% Tween-20, and 

cover slips in the wells were incubated overnight while rocking in their respective antibody at 

4ºC. Samples were washed three times for five minutes on an orbital shaker, and then 

incubated with the appropriate Alexa fluorophore secondary antibody, rocking for one hour at 

room temperature. 

 

The coverslips were washed again, then post fixed in 2% paraformaldehyde for 15 minutes at 

room temperature, before being counterstained with 300 µl of DAPI (300 mM) per well. The 

coverslips were then removed from the wells, rinsed in ddH2O, and mounted in SlowFade 
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(Thermo Fisher #S36937). Samples were imaged on a confocal microscope as described in 

Section: Confocal Microscopy. 

 

2.15: Protein solubility assay from whole nuclei 
Whole nuclei were isolated from MCF7 control or HP1α cells as described in Section 2.8. The 

clean nuclei pellet was then resuspended in 300µl of ice-cold salt extraction buffer (10 mM 

Tris pH 7.4, 2mM MgCl2, 0.1%Triton X-100, 1mM DTT, cOmplete EDTA-free protease 

inhibitor, and NaCl concentrations: 50 mM, 150 mM, 250 mM, 500 mM) starting with lowest 

NaCl concentration (50 mM). The resuspended pellet was incubated for 15 minutes at 4ºC 

with gentle nutating. The insoluble material was pelleted for 10 minutes at 2000 x g at 4˚C. 

The supernatant was completely removed and labelled as the 50 mM NaCl sample. The 

extractions were repeated with increasing NaCl concentration for both control and HP1α KD 

cells, for a complete set of 50 mM, 150 mM, 250 mM and 500 mM salt extracts.  The protein 

extracts were denatured, and heat treated with 1x laemmli buffer, and stored at -80ºC. 

 

 

 

2.16: Preparation of MCF7 cells for electron microscopy 
Processing of samples was performed by the Manawatu Microscopy and Imaging Centre. 

 

Samples trimmed to the correct size and shape were fixed in Modified Karnovsky’s Fixative 

(3% Gluteraldehyde (Merck) (v/v) 2% Formaldehyde (w/v) in 0.1M Phosphate Buffer 

(pH7.2)) for at least two hours. The samples were  washed in 0.1M phosphate buffer (pH7.2) 

three times for 10 minutes each, followed by post-fixing in 1% Osmium Tetroxide in 0.1M 

phosphate buffer for one hour maximum. The sample was then buffer washed as above  three 

times for 10 minutes each, followed by dehydration through a graded acetone series (25%, 

50%, 75%, 95%, 100%) for 10-15 minutes each followed by two changes of 100% acetone 

for one hour each. 

 

Samples were then put into 50:50 resin:acetone and placed on the stirrer overnight 

This was replaced by fresh 100% resin (Procure 812, ProSciTech Australia) for 8 hours on the 

stirrer. This step was repeated twice more (overnight in 100% resin, 8 hours in 100% resin) 

Samples were embedded in moulds with fresh resin and cured in a 60˚C oven for 48 hours. 
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Light microscope sections were cut at one micron using a glass knife on the ultramicrotome 

(Leica EM UC7, Germany) and heat fixed onto glass slides. These were stained with 0.05% 

Toluidine Blue for approximately 12 seconds and viewed under the light microscope 

The block was then trimmed down to the selected area and cut using a Diamond Knife 

(Diatome, Switzerland) at 100nm (light gold sections). These were stretched with chloroform 

vapour and mounted on a grid using a Quick Coat G pen (Daido Sangyo, Japan). 

 

The grids were stained in Saturated Uranyl Acetate in 50% Ethanol for four minutes, washed 

with 50% ethanol and MilliQ water and then stained in Lead Citrate (Venable and Coggeshall, 

1965) for a further four minutes. This was followed by a wash in MilliQ water 

Samples were viewed using a an FEI Tecnai G2 Spirit BioTWIN (Czech Republic). 

 

2.17: Sample preparation for mass spectroscopy 
For identification of discrete protein bands by mass spectrometry, the protein samples were 

first resolved by SDS PAGE. The acrylamide gel was incubated for 30 minutes in fixative 

(40% MeOH, 10% acetic acid, in deionised water), and washed twice in deionised water for 

10 minutes. The gel was stained with colloidal Coomassie blue G-250 (Thermofisher) 

overnight, and de-stained in deionised water. 

 

Protein bands of interest were excised from the gel inside a HEPA filtered laminar flow hood, 

diced very fine, and transferred to 1.5mL Eppendorf LoBind tubes. The gel fragments were 

de-stained in ammonium bicarbonate solution (50mM ammonium bicarbonate pH 7.9) (ABC), 

and the solution was refreshed regularly over two hours until colourless. The gel fragments 

were then dehydrated in 80% acetonitrile for one minute and dried completely using a 

centrifugal evaporator. 

 

The fragments were then incubated in a reducing buffer (10mM DTT in ABC) for one hour at 

37ºC and washed in ABC before dehydration in 80% acetonitrile. In the dark, the samples 

were incubated at room temperature for 30 minutes in an alkylation buffer (20mM 

iodoacetamide in ABC), before they were washed and dehydrated twice with ABC and 80% 

acetonitrile, then dried with centrifugal evaporation. The gel pieces were then incubated in a 

digestion solution (20ng/µl trypsin in ABC) overnight at 37ºC, before sonicating for two 
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minutes in an ultrasonic bath, and the supernatant was collected. For each sample, the 

supernatant was pooled with subsequent washes and sonication of the gel fragments, firstly 

with 5% formic acid in 50% acetonitrile, then 0.1% formic acid in 80% acetonitrile. The total 

volume of the extracted protein for each of the band samples was reduced to ~30µl by 

centrifugal evaporation, and mass spectroscopy was carried out by Trevor Loo, School of 

Fundamental Sciences, Massey University. 

 

2.18: Table of antibodies 

Name Target Host 
Mono/ 

Polyclonal 
Company 

Catalogue 

# 

Dilution 

used 

Primary Antibodies      

Anti- dmHP1 
Drosophila 

Su(var)205 
Mouse Monoclonal 

Developmental Studies 

Hybridoma Bank 
C1A9 1:50 

Anti-FLAG FLAG Rabbit Monoclonal Sigma-Aldrich F7425 1:50 

Anti-Lamin A + C Human Rabbit Monoclonal Abcam ab108595 1:500 

Anti-Histone H3 

[phosSer10] 
H3 pS10 Rabbit Polyclonal ROCKLAND 

600-401-

I74 
1:500 

Anti-Lamin B Receptor Human 
Rabbit 

 
Polyclonal Thermo Fisher 

PA5-66473 

 
1:1000 

Anti-Lamin B2 Mouse, Rat, Human Rabbit Monoclonal Abcam 
ab151735 

 
1:1000 

Anti-Lamin B1 Mouse, Rat, Human Rabbit Monoclonal Abcam ab133741 1µg/mL 

Anti-Emerin Mouse, Rat, Human Rabbit Monoclonal Abcam Ab156871 1:250 

Anti-HP1α 
Human, Mouse, Rat, 

Monkey 
Rabbit Polyclonal Cell Signal 2616S 1:1000 

Anti-PRR14 Mouse, Rat, Human Rabbit Polyclonal Abcam abb174532 1:200 

Anti-BAF Mouse, Rat, Human Rabbit Monoclonal Abcam ab129184 1:200 

Secondary Antibodies     

Alexa 555 All Rabbit Ig’s Goat Polyclonal Invitrogen A-21428 1:500 

Alexa 647 All Rabbit Ig’s Goat Polyclonal Invitrogen A-21236 1:500 

Anti-Rabbit IgG-10nm 

Gold bead 
All Rabbit Ig’s Goat Polyclonal Merck/Sigma Aldrich G7402 1:100 

Table 2.2: Table of antibodies for western blotting and immunofluorescence of cultured 
mammalian cells. 
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Chapter 3: Heterochromatin Protein 1 supresses 
malignant cell invasion in vivo 

3.1: Introduction 

3.1.1: Drosophila melanogaster model of epithelial cell invasion 
Prior research in the laboratory indicates that loss of human HP1α is correlated with increased 

invasive potential in cultured cells with existing malignant pathways activated. However, in 

tumours, malignant cell invasion takes place in a complex tissue microenvironment where 

cancerous cells abut and infiltrate neighbouring cells in all directions in a manner that cannot 

be replicated in a cell culture environment.  

In order to visualise and quantify invasive behaviour in response to HP1α modulation in a 

more applicable environment, a Drosophila melanogaster model was established previously 

in the laboratory (Solomon, 2016), based on the work by Vidal, Larson, and Cagan (2006). 

This assay measures the degree of epithelial cell invasion in the fruit fly larvae containing 

knocked-down expression of the fly HP1α homologue. The genomic structure of the HP1 

family is conserved between Drosophila and humans. Drosophila contain the Su(var)205 gene 

that is homologous to the human CBX5 gene that encodes the HP1α protein. These genes 

share the same five exons and four intron structure, and the Su(var)205 translated protein, 

referred henceforth as dmHP1, has been shown to have functional similarity with the human 

homologue. Human HP1α is able to rescue lethality of homozygous mutants of dmHP1 

(Norwood et al., 2004) providing evidence of a high degree of biological similarity between 

fly and human HP1α  proteins, and that this model is of relevance to exploring human 

biochemistry. 

 

This cellular invasion assay was first developed by Vidal et al. (2006) to measure the effect of 

selectively expressed and knocked-down genes of interest within a stripe of epithelial cells 

within the Anterior/Posterior boundary compartment of the wing imaginal disc of third instar 

larvae. This enables fluorescent visualisation of a discrete region of epithelial cells with 

specific gene modulation, within a field of wild-type cells. Any invasive characteristics these 

cells exhibit during larval growth, up to the point of dissection, can be observed (Figure 6). 

This technique utilises the GAL4/UAS gene expression system developed by Ornitz, 

Moreadith, and Leder (1991), which fuses the yeast transcriptional factor GAL4 downstream 

of a tissue-specific promoter, in this case Patched (Ptc). Ptc is a developmental gene that has 
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highly specific expression along the A/P boundary in Drosophila larvae. In order to regulate 

gene expression via Ptc promoter activation, the gene or RNAi of interest is fused downstream 

of the GAL4 Upstream Activating Sequence (UAS), which upon binding GAL4 induces 

transcription. In this manner, in tissues where the Ptc promoter is active, GAL4 is expressed, 

which in turn binds UAS and induces transcription of the linked gene in the same cell (Figure 

7). 

 

 

Figure 6: Illustration of third-instar larvae imaginal discs, visualising invasion of 
epithelial cells away from the A/P boundary during an invasion assay.  
 

 
Figure 7: Diagram of GAL4/UAS controlled tissue-specific gene expression. 
Activation of a tissue specific promoter allows transcription and translation of the downstream GAL4 
gene, which as a protein can transcriptionally activate an Upstream Activating Sequence (UAS) not 
found natively in Drosophila. Activation of this region allows transcription of the downstream gene 
and enables co-localisation with the tissue specific promoter.  
 

Vidal et al. (2006) used a KD of the C-terminal Src Kinase (Csk) protein, an inhibitor of the 

Src signalling pathway, to promote invasion. Src is a proto-oncoprotein that activates a 

cascade of pro-growth factors and is inactivated by phosphorylation by Csk (Figure 8).  
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Figure 8: Activation of the Src malignant pathway following KD of the Csk protein 
The Csk protein phosphorylates the Src oncoprotein, inhibiting its activity and promotion malignant 
pathways. When Csk interfering, RNA is expressed it binds to Csk mRNA, preventing translation and 
reducing Csk expression. This KD of Csk effectively activates the Src protein, as the inhibitory 
phosphorylation is not maintained, and malignant pathways are activated. 
 

3.1.2: dmHP1 over-expression supresses Src pathway driven cell invasion  
Previous work in the laboratory (unpublished) established a synergistic relationship between 

dmHP1 KD and Src activation driving cellular invasion, by coupling a Csk-KD genotype with 

a dmHP1 KD, and showing a significant increase in the degree of epithelial invasion beyond 

the anterior/posterior boundary of the GFP demarcated imaginal disk, compared to Src 

pathway activation alone (Figure 9).  

Invasiveness was compared between the control line containing only Ptc-GAL4 driven GFP 

fluorescence, the Csk KD line as cells containing a malignant pathway, dmHP1 KD line as 

non-malignant cells with reduced dmHP1 expression, and a double KD of dmHP1 and Csk as 

a model of dmHP1 loss in cells with existing malignancy activation. 
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Figure 9: Representative confocal Z-projections imaginal disks demonstrating activation 
of Src synergistically enhances cell invasion of A/P epithelial cells. 
Dotted line represents posterior edge of A/P boundary, and arrows indicate regions of cellular 
invasion. Images taken at 630x magnification with 0.67µm increments, with 8-15 samples per construct. 
Scale bar = 50µm. Figure adapted from my Honours Research Report (Solomon, 2016).  
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3.2: Results 

3.2.1: DmHP1 overexpression rescues Src activated invasive phenotypes in 
vivo 
To confirm that it is dmHP1 KD that promotes invasion rather than an off-target effect, dmHP1 

was reintroduced to determine whether it could rescue the invasive phenotype. Dr Helen 

Fitzsimons (School of Fundamental Sciences, Massey University, New Zealand) provided a 

Drosophila line (DmHP1 OE) with a UAS-linked Drosophila FLAG-tagged dmHP1 gene. 

Firstly, this line was crossed with the Ptc-GAL4/UAS-GFP flies to confirm that DmHP1 was 

expressed. Third instar larvae of the progeny were dissected to collect the imaginal discs, and 

immunohistochemistry (Section 2.3) was performed using FLAG antibody to detect FLAG-

HP1 expression. No FLAG protein was detected in negative control discs (Figure 10A) 

containing only the Ptc-GAL4/UAS-GFP gene, and successful expression of the dmHP1-

FLAG protein was detected along the A/P boundary line (Figure 10B). There was a punctate 

sub-cellular distribution of dmHP1-FLAG in the nucleus as expected. As the staining 

procedure for the imaginal disks requires rotating the tissue in an antibody solution overnight, 

the delicate imaginal disc organelles are easily damaged and torn. This means that samples 

following the staining procedure are often stretched or disfigured and are not representative 

of the larvae used for the assessment of invasion (Figure 10). 

 

To assess whether expression of dmHP1 rescued the dmHP1 KD phenotype. The UAS-

dmHP1-FLAG line was crossed with fly lines containing either the CSK KD RNAi line to 

provide an active Src pathway, dmHP1 KD RNAi, or both dmHP1 KD and the CSK RNAi.  

The imaginal discs were dissected from progeny of these crosses at the third instar larval stage 

and immunohistochemistry performed with a FLAG antibody to visualise dmHP1-FLAG 

expression and localisation (Figure 10C-E).  Imaginal discs of larvae with the dmHP1 

KD/dmHP1 OE genotype showed decreased expression compared to the control larvae, as the 

RNAi also targets the dmHP1-FLAG mRNA. While the Csk KD/dmHP1 OE and Csk 

KD/dmHP1 KD/dmHP1 OE genotypes display increased levels of dmHP1 along the A/P 

boundary when compared to the control, indicating successful over-expression. 
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Figure 10: Immunohistochemistry staining for the presence of FLAG-tagged HP1 over-
expression along the A/P boundary.  
Maximum intensity z-stack projections of third instar Drosophila larvae that were processed for 
immunohistochemistry, using Rabbit anti-FLAG (Sigma F7425) primary antibody to detect FLAG-
tagged dHP1. Alexa Fluor® 647-conjugated goat anti-rabbit IgG was used as the secondary antibody 
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at 1/500 dilution. Confocal z-stack was collected over the height of the disc at 630x magnification. Scale 
bar = 50µm. 
 

To identify the effect of over-expression on invasion, third instar larvae of the genotypes 

shown in Figure 10 were harvested (Section 2.6) in order to quantify the total area of invasive 

cells that invade beyond the distinct boundary on the posterior side of the A/P boundary line 

in the imaginal disc. The z-stack image data was quantified for each genotype construct across 

multiple biological replicates and graphed in Figure 12. The control line contains only the Ptc 

regulated GFP expression, which causes fluorescence along the A/P boundary of the imaginal 

discs. These control larvae showed consistent and well-defined posterior edge boundaries, 

with no indication of cell migration beyond the discrete posterior boundary (Figure 11A). 

Knock down of the dmHP1 over-expression larvae (Figure 11C) exhibits a small increase in 

cell migration, to roughly the same extent as the KD of dmHP1 in addition to the dmHP1 over-

expression in Figure 11D. The degree of invasion following over-expression of dmHP1 for 

both 11C and 11D is less than 11B, indicating the presence of the additional dmHP1 gene is 

able to compensate for the KD, and restrains invasive activity to a level close to the control 

flies (Figure 11A). 

 

The effect of dmHP1 over-expression was then tested in flies with a malignant pathway 

activation, due to Csk KD. Previous work had shown a strong synergistic interaction between 

loss of dmHP1 and activation of Src, which resulted in a seven-fold increase in invasive 

behaviour, compared to Csk KD alone (Figure 11G and I). Over-expression of dmHP1 in 

addition to the double KD, rescued the invasive phenotype of the flies, reducing invasive 

behaviour to near the equivalent level of the Csk KD genotype flies (Figure 11J). The 

significant increase in invasive behaviour was not observed in response to restored dmHP1, 

demonstrating dmHP1 is specifically required to modulate the effect. Excess dmHP1 further 

reduced the invasive phenotype of flies with reduced Csk expression (Figure 11I). 
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Figure 11: Representative images of the imaginal disc invasion assay 
Representative confocal Z-projections of Ptc-driven GFP fluorescence along the A/P boundary of 
imaginal discs dissected from third instar larvae. Activated cancerous pathway indicates the presence 
of the Csk KD, which activates the Src onco-pathway. Larvae genotypes have either endogenous 
Drosophila HP1 (dHP1) or human HP1α (hHP1α), knocked down or over-expressed. The dotted line 
represents the posterior edge of A/P boundary, and arrows indicate regions of cellular invasion.  
Images taken at 630x magnification with 0.67µm z-height increments. Scale bar = 50µm. Samples A, B, 
G and H are sourced from data initially published  as part of an honours report (Solomon, 2016). 
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Figure 12:  Graph of HP1 modulating of cellular invasiveness in Drosophila larval 
imaginal disks in conjunction with cancer pathway activation 
Quantified levels of invasive phenotypes calculated by average area of invasion beyond the posterior 
edge of the imaginal disk A/P boundary. All lines contain the Ptc-GAL4/UAS-GFP genes to drive 
GFP fluorescence along the A/P boundary, in addition to labelled genotypes A) n= 11. B)  n= 8. C)  n= 
11. D) n= 8. E) n= 11. F) n= 8. G) n= 14. H) n= 18. I) n= 16. J) n= 14. K) n= 14. L) n= 13. Samples A, B, G 
and H are sourced from data initially published in (Solomon, 2016).   
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3.2.2: Preventing invasion with expression of hHP1α 
To determine whether Drosophila and human HP1α are of sufficient functional similarity to 

enable human HP1α (hHP1α) to rescue the invasive phenotype resulting from dmHP1 KD 

(Figure 11H), the human HP1α CBX5 gene was inserted into a Drosophila line, downstream 

of the UAS- containing promoter. 

 

Firstly, the generation of this transgenic construct required cloning the hHP1α cDNA into the 

pUASTattB insertion vector. pUASTattB contains a multiple cloning site downstream of a 

UAS, an attB site for generation of transgenic flies via PhiC31-mediated recombination and 

the white (w) gene for eye colour based selection of transgenic progeny (Groth, Fish, Nusse, 

& Calos, 2004). The cloning to create the pUASTattB plasmid containing a FLAG-tagged 

hHP1α cDNA is described Section 2.1. The pUASTattB plasmid containing a dmHP1-FLAG 

had already been constructed. Digestion of this plasmid with XhoI and EcoRI released the 

DmHP1-FLAG, and FLAG-hHP1α was inserted into these sites (Figure 13A). Correct 

insertion of the FLAG-hHP1α cDNA was confirmed by restriction digest of purified DNA 

clones (Figure 13B). 

 

Creation of the transgenic flies with hHP1α-FLAG required microinjection of the pUASTattb 

hHP1Α-FLAG plasmid into Drosophila embryos that harbour an attP site and express PhiC31 

integrase, for PhiC31-mediated integration into the genome. In this system, plasmid 

containing an attB site is integrated into the genome at attP, by homologous recombination 

mediated via PhiC31 integrase. This process was trialled several times, by injecting freshly 

laid, dechorionated and dehydrated Drosophila embryos with the pUASTattB-hHP1α-FLAG 

plasmid using a microinjector. The eggs were then incubated overnight at 18°C with 

pressurised oxygen, before moving to 21°C for a further 24 hours. Surviving larvae were then 

gathered and grown in a standard vial to maturity at 25ºC. Unfortunately, although dozens of 

embryos were injected, none survived. The failure to obtain living larvae is likely due to excess 

dehydration of the embryos due to fluctuating temperatures in the laboratory, as faulty air-

conditioning was unable to maintain the constant temperature that is critical for successful 

injections. Therefore, the prepared plasmid was sent to GenetiVision (Houston, TX) to 

commercially generate the transgenic fly line.  Dr Helen Fitzsimons then carried out the 

required crossing with existing stocks to achieve the necessary genotypes, as described in 

Section 2.1. 
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Figure 13: Cloning of human HP1α gene into pUASTattB plasmid.  
A) 1% Agarose gel showing digestion of pUASTattB-DmHP1FLAG plasmid. Single digest (SD) of both 
XhoI and EcoRI cut once within the plasmid. Double digest (DD) of both EcoRI and XhoI cuts out the 
Flag-tagged dmHP1 insert at 660bp. Double digest of the gel-purified pUASTattB vector show removal 
of dmHP1-FLAG, and the PCR-amplified hHP1α insert show single band at 620bp B) Agarose gel 
showing double digest of DNA purified from DH5α colonies transformed with pUASTattb-
hHP1FLAG plasmid. Colonies one and two show successful plasmid transformation. 
 

The set of hHP1α expressing fly lines: hHP1α OE, hHP1α OE/dmHP1 KD, hHP1α OE/Csk 

KD and hHP1α OE/Csk KD/dmHP1 OE, were processed for immunohistochemistry using a 

FLAG antibody (Figure 14). The human HP1α transgene line in Figure 14A demonstrates cells 

with a strong FLAG signal co-localising with GFP fluorescence. The imaginal processing of 

discs for immunohistochemistry resulted in the distorted boundary line.  

 

In flies with hHP1α and dmHP1 KD, the correct expression and localisation of human HP1α 

was observed, in conjunction with a strong, specific KD of endogenous dmHP1 along the A/P 

boundary (Figure 14B). The dmHP1 RNAi used to reduce the endogenous dmHP1 did not 

decrease the expression level of the hHP1α protein, unlike the reduced expression observed 

when over-expressing dmHP1 as the RNAi targets an mRNA sequence not found in hHP1α 

(Figure 14C). The hHP1α over-expression in conjunction with the malignant pathway 

activation resulting from Csk KD (Figure 14C) again showed correct A/P boundary 

localisation of hHP1α and constitutive expression of dmHP1 throughout the imaginal disc. 
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Unfortunately, there was contamination of the parental flies crossed to generate progeny larvae 

for immunofluorescence of the Csk KD/ dmHP1 KD/ hHP1α, and so the immunofluorescence 

data for this fly genotype will be collected as part of future work. As the larvae bred for the 

invasion assay were prepared separately from those used in the immunofluorescence 

experiments, this contamination had no bearing on the data collected for the invasion assay. 

 

 
Figure 14: Immunohistochemistry of human HP1α transgenic fly larvae imaginal disc 
A/P boundaries 
Maximum intensity z-stack projections of third instar Drosophila larvae that were processed for 
immunohistochemistry, using Rabbit anti-FLAG (Sigma F7425) primary antibody to detect FLAG-
tagged dHP1. Alexa Fluor® 647-conjugated goat anti-rabbit IgG was used as the secondary antibody 
at 1/500 dilution. Confocal z-stack was collected over the height of the disc at 630x magnification. Scale 
bar = 50µm. 
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Figure 11 shows representative images of the invasive potential of the hHP1α expressing 

transgenic fly lines, and Figure 12 shows average invasive potential across biological 

replicates. In larvae without activation of the Src malignant pathway (no Csk KD), the levels 

of invasion resulting from expression of hHP1α either alone or in concert with dHP1 

knockdown, appear to have increased in a manner similar to over expression of dmHP1 (17C 

and D), although there is a small increase in invasive potential. In Figure 11K, hHP1α over-

expression results in an increase in invasion, over the Csk KD, and is more invasive than the 

phenotype resulting from over-expression of dmHP1 (Figure 11I). Expression of hHP1α in 

addition to KD of dmHP1 in a Csk KD background (Figure 11L) rescues the severely invasive 

phenotype of dmHP1 KD in a Csk KD background (Figure 11H). However, this phenotype 

displays more invasive characteristics than Csk KD alone (Figure 11G).  
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3.3: Discussion 
 

Our previously established model of Drosophila cell invasion demonstrated the loss of dmHP1 
had a synergistic effect with activation of the Src pathway to promote epithelial cell invasion.  

Importantly, overexpression of Drosophila HP1a and human HP1α could rescue the invasive 
phenotype resulting from knock down of CSK and dmHP1, demonstrating that it is a gene-
specific effect.  This confirms in the context of a tissue microenvironment that HP1α has a 
causal role in supressing cell invasion, in agreement with the work performed in breast cancer 
cells lines (D. A. Kirschmann et al., 2000). 

 

Reflecting the correlation of HP1α loss in invasive thyroid tumours (Tretiakova et al., 2014), 

these findings indicate that a reduction in dmHP1 alone does not trigger cellular invasion, but 

when lost in conjunction with activation of a malignant pathway, it promotes invasive 

behaviour. However, the demonstration that overexpression of human HP1α can increase 
invasive potential in CSK KD cells suggests gene-dosage may also play a role in regulating 
HP1 function.  It is possible that excessive hHP1α is dimerising with endogenous dmHP1 and 

preventing it from accessing the chromatin, importantly when dmHP1 is also lost expression 

of human HP1α does suppress invasion. 

 

Since loss of HP1α is observed in invasive cells of many tumour types it will be of interest to 

test if HP1α is a general suppressor of malignant signalling pathways by activating other 

pathways known to promote tumorigenesis in our Drosophila epithelial cell model.  In 

addition, this assay can now be used to explore the role of other genes identified as 

contributing to HP1α mediated suppression of metastasis. 
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Chapter 4: Impact of HP1α KD on the integrity of 
cancer cell nuclei 

4.1: Introduction 
MCF7 is a cell line dating back to the 1970’s and derived from an invasive breast ductal 

carcinoma, which has a poorly invasive phenotype.  Previous work in the laboratory 

established constitutive short hair-hairpin RNAi-mediated KD of HP1α and HP1ß in MCF7, 

as well as a scrambled shRNA control using Qiagen SureSilencing shRNA plasmids, and 

achieved a high level of KD efficiency as shown in Figure 15. These polyclonal cell culture 

populations were used to perform invasion assays through extra cellular matrix-like 

membranes, demonstrating that KD of HP1α resulted in a significant increase in invasive 

behaviour, as well as the lesser non-significant extent to which HP1ß did likewise.  

 
Figure 15: Protein level of HP1α in MCF7 cells with HP1 KD.  
 
Reduced expression of the HP1 proteins was further explored using RNA-seq analysis to 

compare transcript levels of genes between KD and control MCF7 cells. HP1α KD resulted in 

14.5% of 62,757 tested genes exhibiting differential expression. Genes were classified by 

Gene Ontology terms, which were used to identify the most prevalent groupings of 

differentially expressed genes; those involved with cell adhesion, migration and the actin 

cytoskeleton. By contrast, KD of HP1ß led to only 4.8% of genes being significantly (p < 

0.05) differentially expressed, with the predominant GO term indicating genes involved with 

cell adhesion. Given the evidence indicating the greater cellular impact of HP1α loss, and 

increased invasion occurring in cells following it, this project will focus on the mechanics of 

HP1α in invasive cells, in favour of its less influential family member HP1ß.  
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4.2: Results 

4.2.1: Changes in mechanical integrity of MCF7 cells with reduced 
HP1α  

4.2.1.1: HP1α KD increases susceptibility to shear forces of MCF7 nuclei 
To explore whether reduced HP1α KD alters the biophysical characteristics of the nuclear 

membrane the relative integrity of the nucleus of MCF7 control and HP1α KD cells following 

exposure to high mechanical shear forces by passaging a cell suspension through a fine gauge 

needle was tested. The experiment was performed using 1 mL of either MCF7 control of HP1α 

KD cells at a concentration of 1x102 cells and passing the cell suspension through a 26G needle 

at constant rate of one cycle every 30 seconds, for a total of 70 passes. Aliquots of the cell 

suspensions were taken at intervals to count intact nuclei on a haemocytometer. Precedence 

in the literature has showed that the cell membrane of whole cells is fully disrupted and the 

nuclei released following the first two passages, and therefore subsequent counts and 

differences between the cell lines is due to  differing nuclear characteristics alone, rather than 

a result of slower nuclei release from whole cells (Furusawa et al., 2015). This is consistent 

with results observed here, as no intact cells remain after 20 cycles. Figure 16 demonstrates 

that following exposure to shear forces, the MCF7 HP1α KD cells had fewer remaining whole 

nuclei after each cycle than control cells. The final count of intact nuclei following 70 passages 

through the needle resulted in HP1α KD cells having 35% the number of remaining nuclei in 

the MCF7 control. This suggests that HP1α KD makes the nuclear membrane more vulnerable 

to disruption by shear forces, reinforcing its role in the maintenance of peripheral 

heterochromatin, and provides evidence to pursue other methods such as atomic force 

microscopy to obtain quantifiable data. These results indicate that cells with HP1α KD have a 

nuclear periphery of altered integrity. 
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Figure 16: Graph of relative whole nuclei counts for MCF7 control or HP1α KD nuclei 
following passaging through a 26G needle.  
Relative intact nuclei count for MCF7 control and HP1α KD cells following exposure to shear forces. 
Relative nuclei count calculated from mean numbers of intact nuclei from four fields of view at 100x 
magnification for each sample. * indicates p value <0.05. 
 

4.2.1.2: KD of HP1α reduces the stiffness of the nuclear membrane 
To further investigate the biophysical properties such as cellular elasticity and stiffness, 

resulting from loss of HP1α, atomic force microscopy (AFM) was used to physically probe 

cells for physical characteristics. Initially in collaboration with A/P Mark Waterland and Sam 

Brooke (School of Fundamental Sciences, Massey University), a Nanosurf FlexAFM system 

was tested for use in gathering mechanical property data of MCF7 whole cells settled on poly-

D-lysine coated microscope slides, in a PBS solution. Following optimisation of the AFM to 

enable liquid immersion scanning, as well as several tests of dry scanning, liquid immersion 

and optimising the substrate for growing cells, the equipment did not meet the requirements 

for the experiment. The primary issue stemmed from the Z-depth rating of the Nanosurf 

FlexAFM, which allows for 5µm deflection of the cantilever above the surface of the imaged 

material, this was a major drawback as the Z-depth of an average MCF7 cell, depending on 

how it affixed the surface, can be upwards of 20µm. A topological scan could not be 

completed, positioning of the sampling grid correctly was impractical and unreliable with the 

particular equipment. 
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Therefore, a collaboration with Prof Bill Williams, Susav Pradhan (School of Fundamental 

Sciences and Dr Gleb Yakubov of the (University of Queensland) was undertaken to perform 

the measurements at the University of Queensland a JPK NanoWizard 3 Bioscience AFM. 

This AFM is specialised for cell-scale work, with integrated inverted microscope optics and 

fluorescent capabilities for fine positioning of the cantilever, and large Z-axis range. The 

MCF7 control and HP1α KD cells were transported to Dr Yakubov’s laboratory. To ensure 

that the biophysical properties detected were those of the nuclei themselves, without the cell 

membrane and cytoplasmic components adding additional layers of confounding data, AFM 

data was collected on isolated nuclei (Figure 18). 

 

A full force mapping procedure was performed on a single nucleus from MCF7 control or 

HP1α KD cells, where the pressure measurements with a cantilever force of 0.3nN was applied 

at each point in a 34x34 grid across the entire surface of the nucleus (Figure 17). This data 

shows a topological surface map of the nuclei, as well as regional variation in biophysical 

properties. The slope map of the MCF7 control nucleus, which indicates relative surface 

stiffness, shows a greater degree of heterogeneity when compared to the HP1α KD nucleus, 

as well as increased average stiffness. The patterning of the slope map for the MCF7 control 

nucleus also indicates underlying regions of denser material within the nucleus, compared to 

the more uniform and flexible HP1α KD control sample. Figure 17 also shows that the HP1α 

KD nucleus has a greater degree of tip adhesion across the surface, compared to the control 

nucleus, although it is more uniform in its pattern. This could indicate changes in expressed 

surface proteins following HP1α KD, that alter the probe adhesion. Scanning electron 

microscopy of the surface of these nuclei confirm a loss in exterior membrane complexity, 

and a decrease in surface pore complexes (Figure 18) while also appearing less structurally 

cohesive, with greater amounts of loose membrane material that can account for increased tip 

adhesion during atomic force microscopy. 

 
 

To determine the elastic characteristics of the membrane, 17 individual nuclei from MCF7 

control and HP1α KD cells were probed at three different points across their surface, and at 

each point tested with 0.3nN, 0.5nN and 1nN of applied force from the cantilever. These 

applied forces range over the lower and upper limits of force able to be applied by optical 

tweezers in a parallel experiment, to enable comparison of measurements between the two 

techniques. Figure 19 quantifies the distinct difference in both average stiffness and variation 
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between individual MCF7 control or HP1α KD nuclei. MCF7 control nuclei have a 

consistently higher Youngs modulus, a measure of elasticity, of around 15-25kPa over the 

range of applied forces, compared to 1-2kPa for HP1α KD nuclei. Moreover, HP1α KD nuclei 

are significantly more homogenous, with all samples displaying a similar level of low stiffness 

and increased elasticity.  This data demonstrates s a ~20kPa decrease of the Youngs modulus, 

increasing the elasticity of the nuclear membrane of HP1α KD cells. 

 

 
Figure 17: AFM Force Mapping of MCF7 control and HP1α KD nuclei 
A) AFM map scan measuring height of first contact with the AFM tip, to map the surface topology of 
the nuclei. B) Map of slope readings, indicating resistance to the tip, stiffer areas are displayed as white, 
easily deformed areas as black. C) Adhesion map of nuclei, indicating degree of retention of the tip to 
the surface of the nuclei, ’stickier’ areas displayed as white, reduced adhesion displayed as black. All 
data was collected from nuclei settled in a glass dish, submerged in a wash buffer. 
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Figure 18: Scanning electron microscopy of isolated MCF7 control and HP1α KD nuclei 
MCF7 control and HP1α KD nuclei on 0.4µm pore membrane filter, imaged on a scanning electron 
microscope with 15kV accelerating voltage. 
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Figure 19: Youngs elastic modulus of MCF7 control and HP1α KD nuclei  
A) Representative bright-field microscopy images of the isolated nuclei selected for AFM analysis.  
Field of view is 25x25µm. B) Calculated Youngs elastic modulus from AFM slope data (performed by 
Susav Pradhan) from 17 individual isolated nuclei from both MCF7 Control and HP1α KD cells, 
measured at an approach force of 0.3nN, 0.5nN or 1nN.  
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4.2.2: Characterisation of the nuclear periphery upon reduction of 
HP1α expression  

4.2.2.1: Disrupted lamina in MCF7 HP1α KD cells 
Due to the observed changes in the mechanical integrity of the nuclei of MCF7 HP1 KD cells, 

alterations to the nuclear lamina were examined. Changes in Lamin A/C and lamin B1/2 

expression and localisation were examined using immunofluorescent confocal microscopy. 

 

As shown in Figure 20 lamin A and C reveal consistent morphological differences between 

asynchronously growing MCF77 control and HP1α ΚΔ cells. These images reveal consistent 

morphological differences between asynchronously growing MCF7 control and HP1α KD 

cells. Maximum projections of the confocal Z-stacks show the MCF7 control cells exhibit a 

smooth lamin A/C layer (Figure 20A), with sporadic foci of lamin A/C invaginations within 

the nucleus identified in single layer slices (Figure 20B). By contrast, MCF7 HP1α KD cells 

have a highly crinkled and rumpled lamin A/C layer (Figure 20A) with an increase in punctate 

foci visible in the cross section (Figure 20B).   

 

Immunofluorescence of lamin B2 (Figure 21) showed the MCF7 control cells displayed a 

smooth lamin B2 layer (Figure 21A), while HP1α KD cells had slightly increased crinkling 

visible at the peripheries of the nucleus. However, HP1α KD cells did display more frequent 

occurrences of lamin B2 invaginations and creasing (when compared to the MCF7 control 

cells), particularly visible when observing the cross section of the nuclei (Figure 21B). 



 48 

 
Figure 20: KD of HP1α results in crumpling and distortion of Lamin A/C meshwork  
MCF7 control or HP1α KD were processed for immunofluorescence microscopy using a primary 
antibody against lamin A/C.  Alexa Fluor® 647-conjugated goat anti-rabbit IgG was used as the 
secondary antibody. Scale bar: 10µm. A) Maximum intensity projection of confocal z-stack. B) Medial 
confocal slice of nuclei projection. Representative images of two biological replicates. Arrows indicate 
lamin A/C invaginations. 
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Figure 21: KD of HP1α results in increased punctuate foci of lamin B2 protein within the 
nucleus.  
MCF7 control or HP1α KD cells were processed for immunofluorescence microscopy using a primary 
antibody against lamin B2.  Alexa Fluor® 647-conjugated goat anti-rabbit IgG was used as the 
secondary antibody. Scale bar: 10µm. A) Maximum intensity projection of confocal z-stack. B) Medial 
confocal slice of nuclei projection. Representative images of two biological replicates. 
 

Unfortunately, the lamin B1 antibody used in this study has proved unsatisfactory for 

immunofluorescence staining, with neither fixation in 4% paraformaldehyde nor methanol 

providing sufficient epitope specificity. Both fixation methods were tested as fixation is 

known to have different effects on epitope recognition (Figure 22A and 22B). 
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Figure 22: Different fixation methods did not improve lamin B 1 antibody epitope 
specificity 
MCF7 control or HP1α KD cells were processed for immunofluorescence microscopy using a primary 
antibody against lamin B1.  A) Fixation of cells in 4% PFA B) Fixation of cells in -20ºC methanol. 
Alexa Fluor® 647-conjugated goat anti-rabbit IgG was used as the secondary antibody. Maximum 
intensity z-stack projections, with scale bar: at 10µm.  

 
 

4.2.2.2: Increasing solubility of lamins upon HP1α KD 
To investigate if the altered lamina morphology observed in Figure 21 and 26 is due to 

disruption of lamin localisation, MCF7 control and HP1α KD cells were fractionated into 

whole, cytoplasmic and nuclear fractions. In addition, a nuclear envelope fraction was also 

isolated using a commercial isolation kit (Section 2.11). To ensure the fractionation of cellular 
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components was successful, a western blot was performed with antibodies directed against the 

cytoskeletal protein tubulin and the nuclear-localised histone H3. Figure 23A shows the 

presence of tubulin in the whole cell lysate and cytoplasmic fraction as expected. Figure 23B 

shows histone H3 present in the nuclear fraction. While lamin B2 is usually used as a loading 

the control for nuclear envelope extracts, its localisation may be disrupted in response to HP1α 

KD, so loading of equal total protein for the nuclear isolates was demonstrated using 

Coomassie staining, after separation on a 10% SDS PAGE (Figure 23C). This gel showed 

equivalent amounts of total protein present in each sample, although there were some distinct 

changes in some protein band intensities. 

 

 
Figure 23: Western blot fractionation and loading controls for MCF7 cell fractions and 
nuclear envelope protein isolation 
A) Western blot of cell lysate fractionation and nuclear envelope protein probed for α-Tubulin. 50kDa 
Tubulin is observed only in whole cell and cytoplasmic fractions, in equal amounts for control and 
HP1α KD. B) Western blot probing for Histone H3, shows a successful fractionation of nuclear core 
histones from the cytoplasmic lysate. C) Coomassie staining of 10% SDS PAGE separating 25µl of 
nuclear envelope samples of MCF7 control and HP1α KD cells. 
 
Figure 24A shows that there is a marked reduction in the level of lamin A/C in the nuclear 

envelope in the MCF7 HP1α KD cells. Despite this, similar levels of lamin A/C are observed 

in the whole cell lysates, as well as in the nuclear fractions of both cell lines. Therefore, it does 

not appear that the total nuclear level of A/C-type lamins has been altered in the nucleus when 
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HP1α has been knocked down.  

 

These MCF7 control and HP1α KD cell fractions were also probed for lamin B2. Figure 24B 

shows similar levels between the control and HP1α KD of lamin B2 levels in the whole cell 

and nuclear fraction, at the expected molecular weight of 72kDa. Similar to the pattern 

observed with lamin A/C (Figure 24A) there is a substantial decrease in the amount of lamin 

B2 in the nuclear envelope fraction of HP1α KD cells compared to the MCF7 controls.  

 

The notable reduction of lamin A/C and B2 in the nuclear envelope of the HP1α KD suggests 

this network of lamins is more loosely attached to the nuclear membrane. 

 

 
Figure 24: MCF7 cells have reduced retention of lamina proteins A/C and B2 to the 
isolated nuclear membrane following KD of HP1α 
A) Western blot of cell lysate fractionation and isolated nuclear envelope protein probed for lamin 
A/C, demonstrating equal levels of lamin A/C in whole cells, and successful fractionation of nuclear 
components, yet significantly decreased levels of lamin A (~74kDa) and lamin C (~63kDa) in the HP1α 
KD cells. B) Western blot as for A, probing for lamin B2 showing a decrease in lamin B2 (~68kDa) 
isolated with the nuclear membrane material in HP1α KD cells. 
 

To this end, a salt solubility assay (Section 2.15) was used to detect how soluble the lamin 

proteins were. Isolated nuclei of asynchronously grown MCF7 control and HP1α KD cells 



 53 

were incubated with increasing salt concentrations (from 50-500mM NaCl). Aliquots of the 

supernatant for each salt concentration were separated by 10% SDS PAGE and probed via 

western blot for lamin A/C or lamin B2.  The 150mM NaCl fraction from HP1α KD shows 

lamin C and a higher proportion of lamin A present compared to the control (Figure 25A). 

While lamin B2 is detected in the lower salt fractions in HP1α KD nuclei, it is present in the 

250mM NaCl and above in the control nuclei (Figure 25B). This result indicates that the KD 

of HP1α is associated with increased solubility of lamin A/C and B2 in increased salt 

concentrations. 

 

 
Figure 25: Lamin protein solubility increases in whole nuclei with HP1α in response to 
titrated salt concentrations. 
Western blot of salt supernatants following incubation of isolated whole nuclei, to detect relative 
degrees of detachment of the nuclear lamina between MCF7 control cells and those with HP1α KD. A) 
Western blot probed for lamin A/C. B) Western blot probed for lamin B2. 
 

4.2.2.3: Visualising the nuclear lamina 
To further probe the differences in chromatin and nuclear envelope architecture in MCF7 

control and HP1α KD cells, transmission electron microscopy was used. These cells were 

mixed in 3% agar and centrifuged to form a pellet, which was then processed for transmission 

electron microscopy (Section 2.16). Figure 26 compares the chromatin formation at the 
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nuclear membrane periphery, with darker regions indicating denser regions of chromatin. The 

MCF7 control cells exhibit distinctly denser chromatin clusters at, and extending away from, 

the nuclear periphery. By contrast, HP1α KD cells lack distinct heterochromatin regions 

abutting the membrane, with a more homogenous staining pattern. 

 

 
Figure 26: Transmission electron microscopy of the nuclear membrane 
A) Representative transmission electron microscopy image of MCF7 control and HP1α KD cells. 
Arrows indicate dense regions of heterochromatin. 34000x magnification. 
 

To visualise the disruption of the lamina at higher resolution a procedure for immuno-labelled 

transmission electron microscopy was developed. Several approaches were taken to prepare 

the material for imaging. Asynchronously growing MCF7 control and HP1α KD cells were 

harvested and embedded in an agar pellet. This pellet was then sectioned into 15-20µm slices 

using a cryotome, with the assistance of Dr Matthew Perrot and Saritha Gils (Massey 

University, School of Veterinary Science). These sections were then stained with the antibody 

raised against lamin B2 before staining with an IgG secondary antibody with conjugated 10 

nm gold beads. These slices were then embedded in resin and sectioned to 90nm on the 

ultramicrotome. Alternately the cells were grown directly on glass slides, which were then 

stained and embedded directly on the surface. 

 

The gold beads provide extremely dense consistently sized 10nm dots to identify protein 

localisation when viewed with a transmission electron microscope. As the beads are so small 

in comparison to the scale of a mammalian cell (Figure 27A), multiple high magnification 
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images scanning across the area of the cell are required to map the bead locations (Figure 27A 

and B). These separate images and plotted bead locations can then be digitally stitched 

together and overlayed on a lower magnification image (Figure 27C). 

 

 
Figure 27: Process to analyse immune-EM sample 
A-B) Digitally magnified image of MCF7 control cell stained with lamin B2 antibody, with 10nm gold 
colloidal bead-conjugated secondary antibody. 43000x magnification C) High magnification images 
overlayed on a 11500x magnification image with 10nm beads highlighted. D) Overview of the whole 
cell with protein target locations visible 
 

Unfortunately, time and resources did not allow the full collection of comparable samples, 

owing to further cell permeation optimisation required for the secondary gold-conjugated 

antibody. This technique would also be improved by serial sectioning of the embedded cells 

to prevent inappropriate comparison between samples taken at very different heights of the 

cell monolayer, where the tip of the nuclei may be all that is visible, depending on the section. 

Serial sectioning would provide a sequencing of slices moving from the outside to towards the 

centre of the cell layer. 
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4.2.2.4: HP1α KD Alters the Association of Proteins to the Nuclear 
Membrane 
While the nuclear lamina is adjacent to the nuclear membrane, many proteins are integrated 

into the membrane itself and also interact with the lamina meshwork.  

 

The lamin B receptor (LBR), is integrated into the nuclear membrane and interacts with both 

the lamin B proteins and chromatin proteins, including HP1α. Localisation of LBR was 

determined by cellular fractionation of MCF7 control and KD cells, and immunoblotting with 

an LBR antibody. During the fractionation process the whole nuclei were exposed to a high 

salt concentration to collect soluble protein, before final lysis (Figure 28A). Similarly, to the 

lamin A/C and B2 proteins (Figure 24), LBR showed a marked loss in retention by the nuclear 

membrane through the isolation process, as well as indicating increased solubility following 

HP1α KD (Figure 28A). When MCF7 control and HP1α KD cells were stained for LBR and 

observed as a maximum projection confocal z-stack, there is a reduction in cytoplasm 

associated LBR following HP1α KD (Figure 28B). 
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Figure 28: Lamin B receptor protein has decreased nuclear membrane retention and 
endoplasmic reticulum presence in MCF7 cells following HP1α KD 
A) Western blot of MCF7 control or HP1α KD cell fractionation and isolated nuclear envelope protein 
probed for lamin B receptor demonstrating reduced retention of lamin B receptor to the nuclear 
membrane. B) MCF7 control or HP1α KD cells were prepared for immunofluorescence microscopy 
using a primary antibody against the lamin B receptor protein.  Alexa Fluor® 647-conjugated goat anti-
rabbit IgG was used as the secondary antibody at Scale bar: 10µm. Maximum intensity z-stack 
projection. Lamin B receptor shows reduced endoplasmic reticulum presence following reduction of 
HP1α (arrows indicate endoplasmic reticulum localisation). 
To identify changes in proteins in the nuclear membrane in MCF7 control and HP1α KD cells, 
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and in particular, the nuclear envelope lysates that showed a decrease in retention of many 

membrane-associated proteins (Figure 24 and 28). Coomassie staining of these nuclear 

membrane samples showed distinct changes in intensity of several bands between the MCF7 

control and HP1α KD cells, and so a selection of these bands was excised and prepared for 

protein identification via mass spectroscopy as described in section 2.17 (Figure 29).  

 

This data will inform future research on the major differences in protein retention during 

membrane isolation and provide specific candidate proteins for an investigation into 

modulators of nuclear membrane stability. 

 

 
Figure 29: Nuclear envelope proteins for identification by mass spectroscopy 
 Coomassie staining of 10% acrylamide gel separating 25µl of nuclear envelope samples of MCF7 
control and HP1α KD cells. Labelled with bands that were excised for mass spectroscopy analysis. 
 

In a candidate approach, other membrane associated proteins that interact with the lamina were 

visualised with immunofluorescence to observe changes in localisation following HP1α KD 

in MCF7 cells. 

Emerin is an integral membrane protein that associates with A-type lamins and facilitates their 

interaction with the membrane (Sullivan et al., 1999). Comparison of the MCF7 control and 

HP1α KD cells immuno-stained for emerin in Figure 30A show a similar localisation, however 

KD of HP1α increases the number of cytoplasmic foci resulting from blebbing of the nuclear 
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membrane, indicating loss of localisation following reduction of HP1α. 

 

Additional proteins of interest included BAF (barrier-to-autointegration factor) which 

interacts with many nuclear membrane-associated proteins including emerin (Vlcek et al., 

2001), and bind directly to DNA, linking chromatin to the nuclear periphery (Figure 30B). By 

contrast the HGMN5 (Figure 30C) protein is associated with chromatin decompaction and has 

been associated with loss of nuclear membrane sturdiness (Furusawa et al., 2015), making it 

a key candidate for involvement in destabilising the nuclear membrane. Another protein that 

interacts with both the lamina and HP1α is PRR14, making it a key candidate intermediary 

transmitting change in HP1α expression to the lamina that results in changes of biophysical 

properties (Figure 30D). Unfortunately, these antibodies lacked epitope specificity for reliable 

comparison using immunocytochemistry and require further optimisation. 
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Figure 30: Immunofluorescence confocal microscopy of nuclear membrane-associated 
candidate proteins 
MCF7 control or HP1α KD were processed for immunofluorescence microscopy and probed for 
candidate nuclear membrane-associated proteins. Alexa Fluor 647-conjugated goat anti-rabbit IgG was 
used as the secondary antibody at 1/500. Scale bar: 10µm. A) Maximum projection Z stack of cells 
stained for integral nuclear membrane protein emerin. Loss of HP1α is associated with an increase in 
extra-nuclear emerin foci. B) Cross section slice of MCF7 control and HP1α KD cells probed for barrier-
to-autointegration factor (BAF), showing similar localisation and morphology between samples. C) 
Cross section slice of MCF7 control and HP1α KD stained for HGMN5, with poor epitope specificity. 
D) Cross section slice of MCF7 control and HP1α KD cells stained for PRR14. 
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4.3: Discussion 

 
Invasive breast cancer cells must deform their nuclei to squeeze through interstitial spaces, 

this reduction nuclear envelope integrity is a characteristic that enables cell migration (Olins 

et al., 2008). Since loss of HP1α expression has been associated with invasive tumour cells, 

this chapter explored how the reduction of HP1α may destabilise the nuclear membrane via 

loss of heterochromatin integrity to assist invasion.  Reducing HP1α expression in poorly 

invasive MCF7 breast cancer cells significantly increased their nuclear membrane flexibility 

and decreased the interior nuclear complexity and heterogeneity by atomic force microscopy.  

This decrease the complexity of nuclear interior is associated with changes in heterochromatin 

patterning that includes a decrease in peripheral heterochromatin.  Unlike the Furusawa et al. 

(2015) study, loss of heterochromatin also influences the morphology of the nuclear lamina. 

While the expression of the proteins that make up the lamina, Lamin A, C and B2, is 

unchanged with HP1α KD they have increased solubility from the meshwork and weakened 

interactions with the nuclear membrane, as shown by immunoblot comparing co-extraction of 

membrane associated proteins in isolated membrane fragments (Dahl, Kahn, Wilson, & 

Discher, 2004). Lamins A/C in particular display significant disorganisation following KD of 

HP1α by immunofluorescent staining. Other membrane proteins that act as intermediaries 

between HP1α, chromatin, and the lamina display changes in localisation if not expression 

levels, such as LBR and emerin, which both act to target and maintain the lamina meshwork 

and peripheral heterochromatin interactions.  

These findings demonstrate how HP1α can suppress cell migration through maintaining the 

integrity of peripheral heterochromatin and thus the stability of the nucleoskeleton. 
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Chapter 5: Discussion 
 

In agreement with immunohistochemical screening of tumour arrays, reduction of HP1a 

expression is associated with an increase invasion.  Modulating of the level of the 

heterochromatin enriched HP1α protein in cancer cell lines (D. A. Kirschmann et al., 2000) 

and a Drosophila model of cell invasion, has clearly demonstrated that HP1α suppresses 

malignant cell invasion, presumably in part by creating a more permissive chromatin 

environment and dysregulating gene expression.  However, invasive cells also require a more 

malleable nucleus, and exploring the pathways that bring about this structural change to the 

nuclear periphery represent potential targets for intervention to destroy the cell. 

 

The MCF7 cell line is derived from a poorly invasive carcinoma (Z. Liu, Brattain, & Appert, 

1997) and provides a background of malignant pathway activation against which phenotypic 

nuclear changes resulting from HP1α loss were observed. Reduction of HP1α expression 

reduced the mechanical integrity of the MCF7 cell nucleus, decreasing resistance to shear 

forces by over 60% (Figure 16) and greatly increased nuclear elasticity, decreasing the 

stiffness of the control cell nuclei Youngs modulus of 19kPa to 2.5kPa, at 0.5nN applied 

pressure by atomic force microscopy (Figure 19). The Youngs modulus was calculated over a 

range of applied forces, in order to gather representative date over a force scale such that it 

may be compared with data collected with alternate techniques. Additionally, loss of HP1α 

reduced the internal complexity of the nuclei, observed as a loss of heterogeneity of cell 

elasticity across multiple points across the surface of the sampled cells (Figure B). This 

variation in resistance to pressure can be inferred as changes to the underlying nuclear lamina 

and peripheral heterochromatin that provide support to the nuclear membrane.  Using the 

atomic force microscopy data as a baseline, there are ongoing collaborations from this project 

to calibrate additional techniques, micro-aspiration or optical tweezer manipulation, for 

measuring nuclear elasticity. Micro-aspiration involves using fixed pressure through a micro-

pipette held directly against a membrane, and the physical degree to which the membrane is 

drawn into the  pipette can be used to compare and quantify the elastic properties of the 

membrane between cell types or isolated nuclei (Dahl et al., 2005).  

 

The main determinant of nuclear envelope rigidity is the underlying nuclear lamina meshwork 

which abuts peripheral heterochromatin. Asynchronous MCF7 cells demonstrated clear 
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morphological changes to the lamin A/C network following HP1α reduction, with this network 

beneath the nuclear membrane markedly crumpled and distorted, indicating detachment and 

disorganization of this lamina layer (Figure 20).  Lamin B2 did not exhibit the same degree of 

disruption to the meshwork as lamins A/C although an increase in punctate foci within the 

nucleus was observed in HP1α KD cells.  Lamin B2 may be less prone to detachment from 

the inner nuclear membrane than the type A lamin family, as B-type lamins undergo 

permanent farnesylation, a binding moiety that targets and binds them to the interior of the 

membrane.  A-type lamins are only transiently farnesylated (Vorburger, Kitten, & Nigg, 

1989).  

 

As the total protein and total nuclear protein for lamin A/C, and B2 are equivalent between 

MCF7 cells with HP1α, this demonstrates both lamin families are still targeted to the nuclear 

membrane in cells with reduced HP1α, but the lamina is less stable.  To further explore this 

relationship, the lamins A, C, and B2 were tested for their comparative solubility from isolated 

whole nuclei following HP1α KD.  In particular, lamin A and C were more soluble at low salt 

concentrations, with lamin A increased solubility in 250mM NaCl compared to the MCF7 

nuclei.  Lamin A is known to interact directly with DNA, so disruption of the peripheral 

heterochromatin structures maintained by HP1α polymerization is a possible mechanism by 

which this disruption occurs.  Imaging of the nuclear periphery to identify co-localization of 

lamin A/C with peripheral heterochromatin, was explored using immuno-labelled 

transmission electron microscopy, however optimization of this technique is ongoing. 

Transmission electron microscopy of agar-embedded asynchronous MCF7 control and HP1α 

KD cells demonstrated broad rearrangement of the peripheral heterochromatin, with large 

well-defined regions of dense chromatin visible around the nuclear periphery of control cells. 

By contrast, the chromatin of the HP1α KD cells is far more heterogenous, with few 

distinguishable regions of grouped heterochromatin. This data reflects the results of the atomic 

force microscopy maps of cell, illustrating the major rearrangement of nuclear material, both 

chromatin and lamina, and reducing mechanical rigidity of the nucleus. 

 

An increase in the solubility lamin B2, although not to the same extent as that of lamin A/C 

(Figure 25B) is also observed in cells with reduced HP1α expression. The lamin B family is 

more firmly associated with the nuclear membrane, having a secondary N-terminal binding 

domain that interacts with LBR, and results in lamin B proteins being anchored at either end 

leading to a more stable interaction. In MCF7 nuclei, LBR was observed to be localized to the 
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inner nuclear membrane, in addition to a faint presence in the cytoplasm, as previously 

observed in MCF7 cells (Figure 28B) (Zwerger, Kolb, Richter, Karakesisoglou, & Herrmann, 

2010).  However, in cells with reduced HP1α there is no observable cytoplasmic LBR, and an 

increase in nuclear localization, although total protein expression is unchanged (Figure 23C). 

As LBR is recruited to the nuclear membrane during nuclear envelope formation, mediated by 

importin β, disruption to the correct formation of the membrane and underlying lamina caused 

by chromatin lacking HP1α could promote increased nuclear import of LBR (Pajerowski, 

Dahl, Zhong, Sammak, & Discher, 2007).  

 

In general, HP1α reduction has a marked effect on the ability of the nuclear membrane to 

retain associated proteins, including the lamins, LBR and nesprin.  There is evidence from co-

immunoprecipitation and immunofluorescence trials that lamin C and emerin are dependent 

on lamin A for organization at the membrane, and so loss of correct lamin A function, as 

observed in the MCF7 HP1α KD cells would result in a cascading disruption the nuclear 

lamina and its associated proteins (Vaughan et al., 2001).  (Vaughan et al., 2001) also describe 

that loss of functional lamin A resulted in the formation of formation emerin aggregates within 

the endoplasmic reticulum, which was observed here following HP1α KD (Figure 30A).   

Mass spectroscopy was used to identify proteins that showed clear changes in protein 

concentration in the enriched nuclear membrane lysate from MCF7 cells without HP1α. In 

addition to loss of lamin B1 following HP1α KD, there was increased detection of VDAC1 

protein in the membrane (Figure 29). VDAC1 is a voltage dependent nuclear membrane 

channel required for the nuclear import of acidic fibroblast growth factor, which is a mitogenic 

cell growth factor that can encourage endothelial cell migration and proliferation (Yamanaka 

et al., 1993). Further investigation of whether functional aFGF is present in the nucleus 

following HP1α will be carried out in future work.  

 

In summary, reduction of HP1α results in a significant reduction in nuclear membrane stiffness 

and integrity, a key determining factor in the onset of malignant behaviour, as demonstrated 

in the Drosophila model. It is shown here that loss of HP1α results in wide disorganisation of 

the nuclear lamina and peripheral heterochromatin, which directly influence membrane 

stability. In particular, targeting and retention of lamin A to the nuclear membrane is greatly 

reduced, which presumably has cascading disruptive effects on other nuclear membrane 

associated proteins.  
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