
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

SKETCH RECOGNITION OF
DIGITAL INK DIAGRAMS

A thesis presented in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

at Massey University, Palmerston North,

New Zealand.

Amirhossein Ghodrati

2020

Contents

Abstract xiv

Acknowledgements xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 3
1.3 Background . 4
1.4 Thesis Objectives . 6
1.5 Thesis Outline . 7

2 Literature Review 9
2.1 Evaluation Metrics . 9
2.2 The Role of Grouping in Sketch Recognition 10

2.2.1 Simultaneous Grouping and Recognition 10
2.2.2 Sequential Grouping and Recognition 18
2.2.3 Other methods . 25
2.2.4 Summary . 26

2.3 Shape Recognisers . 28
2.3.1 Feature-based Methods . 29
2.3.2 Template Matching Methods . 30
2.3.3 Grammar-based Methods . 34
2.3.4 Summary . 34

2.4 Rejection . 34
2.5 Connector Recognition . 38
2.6 Summary . 41

3 System Design 42
3.1 System Design . 43
3.2 Training Phase . 43
3.3 Use Phase . 43

ii

3.4 Datasets . 45
3.4.1 FC Dataset . 46
3.4.2 FA Dataset . 47
3.4.3 Flowchart Dataset . 48
3.4.4 Class Diagram Dataset . 50
3.4.5 Digital Circuit Diagram Dataset 51

3.5 Summary . 52

4 Shape Grouper 53
4.1 Neighbourhood Search-based Grouping Algorithm 53

4.1.1 Walk Through of the Algorithm 55
4.2 Experiments . 60
4.3 Summary . 64

5 Shape Recognition and Rejection 66
5.1 Shape Recognition . 66

5.1.1 Normalisation . 67
5.1.2 Feature Representation . 67
5.1.3 Smoothing and Downsampling 68
5.1.4 Classification . 68
5.1.5 Experiments on Development Datasets with Different Feature Rep-

resentations . 69
5.2 Rejection . 75

5.2.1 Proximity-Based Rejection . 76
5.2.2 Outlier Detection within Clusters 82
5.2.3 Incomplete Shapes . 82

5.3 Experiments . 90
5.3.1 One-Class SVM for Rejection . 91
5.3.2 Classifier’s Confidence for Rejection 92
5.3.3 Rejection Evaluation in Isolation 92
5.3.4 Evaluation of the Grouping and Recognition Using Different Re-

jectors . 102
5.4 Summary . 107

6 Connector Localisation and Grouping 110
6.1 Training: Connector Head Localisation 111

6.1.1 Connector Head Detection . 111
6.1.2 Rotation of Connector Heads . 112
6.1.3 Forming the cluster . 113

iii

6.1.4 Summary of Connector Head Training Process 114
6.2 Connector Grouping . 114
6.3 Experiments . 118
6.4 Limitations . 119

6.4.1 Summary . 121

7 Evaluation and Comparison 123
7.1 Settings . 123
7.2 Full Comparative Evaluation . 123

7.2.1 The work of Stahovich et al. (2014) 124
7.2.2 Evaluation Datasets . 127
7.2.3 Results . 132
7.2.4 Summary . 137

7.3 Evaluation on Public Datasets . 137
7.3.1 Evaluation on FC dataset . 139
7.3.2 Evaluation on FA dataset . 141

7.4 Summary . 144

8 Conclusion and Future Work 145
8.1 Contributions . 145
8.2 Future Work . 146

A Rejection Evaluation Results on Original Features 148

B Rejection Evaluation Results on Merged Features 151

C Statement of Contribution 153

Bibliography 154

iv

List of Tables

2.1 Summary of work using negative examples. The accuracy column in this
table reports the statistics from each paper. 13

2.2 Summary of work using grammar and language. The accuracy column
in this table reports the statistics from each paper 15

2.3 Summary of groupers using optimisation. The accuracy column in this
table reports the statistics from each paper 17

2.4 Summary of other simultaneous techniques. The accuracy column in this
table reports the statistics from each paper 18

2.5 Summary of work using sequential optimisation. The accuracy column
in this table reports the statistics from each paper 21

2.6 Summary of work using hard clustering techniques. The accuracy column
in this table reports the statistics from each paper. 23

2.7 Summary of work using PGM-based techniques. The accuracy column
in this table reports the statistics from each paper 24

2.8 Summary of other grouping methods. The accuracy column in this table
reports the statistics from each paper . 26

2.9 Comparison of grouping approaches. 3= Exhibits the characteristic,
7=Does not exhibit the characteristic, ∼=Dependant on other factors . 27

3.1 The details of the FC dataset . 48
3.2 The details of the FA dataset . 48
3.3 The details of the flowchart dataset . 48
3.4 The details of the class diagram dataset 50
3.5 The details of the digital circuit diagram 51

4.1 The details of generated shape candidates using the grouper and a mock
recognizer with out without optimisation techniques 60

4.2 t-test results (with confidence level of 0.05) of the grouper’s computation
time with and without extendable shape list for different upper bound
values ranging from 8 to 14 . 63

v

5.1 The comparison of our implementation result with (Ouyang & Davis
2009b) on the HHReco dataset . 69

5.2 Comparison of recogniser accuracy with different feature modifications
on development datasets and HHReco dataset 71

5.3 The average and standard deviation of shape classification time in mil-
liseconds on different datasets . 73

5.4 Different distance metrics used for measuring the dissimilarity of two
vectors X and Y, both of size n . 78

5.5 The details of generated shape candidates using the grouper and a mock
recogniser . 94

5.6 The summary of the best results of proximity-based rejection methods
on the original feature space. 97

5.7 The results of the two methods Dice + Correlation and Hellinger + Cor-
relation on the merged features . 99

5.8 The proximity-based rejection output using Dice + Correlation (method
1) and Hellinger + Correlation (method 2) on merged feature images,
and for the case that a classifier is trained with incomplete shapes. . . . 100

5.9 The results of rejection using one-class SVM compared to that of Dice +
Correlation (in the original space) . 101

5.10 The results of rejection using classifier’s confidence level. 101
5.11 The summary of selected rejection methods for evaluation of grouping

and recognition. Correlation (C), Original space (O), Merged space (M) 102
5.12 The evaluation of grouping and recognition with the six different rejection

methods on the FC dataset . 103
5.13 The evaluation of grouping and recognition with the six different rejection

methods on the FA dataset . 104
5.14 The evaluation of grouping and recognition with the six different rejection

methods on the flowchart dataset . 104
5.15 The evaluation of grouping and recognition with the six different rejection

methods on the class diagram dataset 104
5.16 The evaluation of grouping and recognition with the six different rejection

methods on the digital circuit dataset 104
5.17 The result of different measurement metrics for accuracy on the develop-

ment datasets . 106

6.1 The details connectors in development datasets 118

7.1 Numerical parameters used for the grouper and the rejection system . . 124

vi

7.2 The details of the family tree diagrams reported by Stahovich et al. (2014)
for 27 sketches compared to the 30 sketches we experimented on 126

7.3 Comparison of our re-implementation of Stahovich et al. (2014) work
as compared to the reported results. Ours(text): Our implementation
results for the case that text is included. Ours(no text): Our implemen-
tation results for the case text is manually excluded. 126

7.4 The results of our implementation of Stahovich et al. (2014) work after
excluding three of the sketches compared to the reported results 127

7.5 The details of family tree dataset . 130
7.6 The details of process diagram dataset 131
7.7 Shape level accuracy on the evaluation datasets. 134
7.8 Diagram level accuracy on the evaluation datasets 134
7.9 The accuracy of each shape class in family tree dataset 135
7.10 Process . 135
7.11 The accuracy results for evaluation datasets with different metrics for

shapes. 136
7.12 The accuracy results for evaluation datasets with different metrics for

connectors. 136
7.13 The computation time (in seconds) of our approach compared to Sta-

hovich’s . 137
7.14 The details of the FC dataset . 138
7.15 The details of the FA dataset . 138
7.16 The shape level accuracy of our sketch recognition system on FC dataset. 140
7.17 The stroke level accuracy of our sketch recognition system on FC dataset. 140
7.18 The accuracy of our system on FC dataset for the case that text is man-

ually excluded. 1 = (Julca-Aguilar et al. 2017), 2 = (Bresler et al. 2013a) 140
7.19 The computation time (in second) of the our approach as compared to

other approaches on FC dataset. 141
7.20 The shape level accuracy of our sketch recognition system on FA dataset.

1 = (Bresler et al. 2014), 2 = (Delaye 2014), 3 = (Delaye & Lee 2015), 4
= (Wang et al. 2016), 5 = (Bresler et al. 2016a) 143

7.21 The stroke level accuracy of our sketch recognition system on FA dataset.
1 = (Bresler et al. 2014), 2 = (Delaye 2014), 3 = (Wang et al. 2016), 4
= (Bresler et al. 2016a) . 143

7.22 The computation time (in second) of the our approach as compared to
other approaches on FA dataset. 144

A.1 The evaluation result of proximity-based rejection method with different
proximity metrics on the original features. 148

vii

B.1 The evaluation result of proximity-based rejection method with different
proximity metrics on the merged features. 151

viii

List of Figures

1.1 An example of intelligent editing in SketchNode (Plimmer et al. 2010) . 2
1.2 An example of beautification in SketchNode (Plimmer et al. 2010) . . . 2
1.3 An example of auto translation . 2
1.4 An example of a drawn sketch with the numbers representing the order

of drawn strokes . 2
1.5 An example of a digital circuit diagram in (Stevens et al. 2013) 4
1.6 An example of some invalid shape candidates and a valid one 5
1.7 An example of a user interface . 7

2.1 Simultaneous grouping and recognition process 11
2.2 The description of the shape “arrow” in the family tree domain from

Alvarado & Davis (2004). 14
2.3 Sequential optimisation based and hard-clustering based grouping and

recognition process . 19
2.4 Sequential PGM-based grouping and recognition process 19
2.5 An ARG representation of a square (Lee et al. 2007) 32
2.6 The description of an arrow in LADDER (Hammond & Davis 2006) . . 35
2.7 Some examples of different arrow shafts in the flowchart diagram. 38
2.8 The description of the shape “arrow” in family tree domain Alvarado &

Davis (2004) . 39
2.9 An example of a drawn arrow with the five key points matched (Kara &

Stahovich 2007) . 39
2.10 An example of a drawn arrow with the five key points (Hammond &

Paulson 2011) . 40

3.1 Our sketch recognition scheme (training phase) 44
3.2 Our sketch recognition scheme (use phase) 45
3.3 Examples of the shapes in the FC dataset (Awal et al. 2011) 46
3.4 An example of a drawn sketch in the FC dataset (Awal et al. 2011) . . 47
3.5 An example of a drawn sketch in the FA dataset 49
3.6 An example of the shapes in the FA dataset 49

ix

3.7 An example of a drawn sketch in the flowchart dataset 49
3.8 An example of the shapes in the flowchart dataset 49
3.9 An example of a drawn sketch in the class diagram dataset 50
3.10 Examples of the shapes in the digital circuit dataset 51
3.11 A visual representation of the shape hierarchy in the digital circuit domain 52
3.12 An example of a drawn sketch in the digital circuit dataset 52

4.1 An example of the OR, XOR and XNOR gates that shows the XOR gate
is extendable to the XNOR gate. 54

4.2 Initial Grouper Flowchart . 55
4.3 A visual representation of the extendable shapes in the digital circuit

domain . 56
4.4 A Sample of Sketched shapes . 56
4.5 Steps 1 to 3 of the algorithm . 56
4.6 Steps 4 and 5 of the algorithm . 56
4.7 Steps 6 to 8 of the algorithm . 57
4.8 Steps 9 to 11 of the algorithm . 57
4.9 Grouper’s output . 57
4.10 Adjacency matrix (A) in different stages of the grouping process when

new shapes are recognised . 60
4.11 The average and standard deviation computation time (seconds) of the

grouper with different upper bound values for the development datsets. . 62
4.12 The average and standard deviation of accuracy for different upper bound

values for flowchart, class diagram, digital circuits, FC and FA datasets.
The accuracy is calculated by dividing the number of correctly grouped
and recognised shapes over the all shapes in the dataset. 64

5.1 Feature representation of a drawn shape before and after smoothing . . 67
5.2 The confusion matrix of the recogniser for FC dataset 72
5.3 The confusion matrix of the recogniser for flowchart dataset 72
5.4 The confusion matrix of the recogniser for digital circuit dataset 73
5.5 The confusion matrix of the recogniser for HHReco dataset 74
5.6 An example of a drawn decision and process shapes in a flowchart diagram

(Stevens et al. 2013) . 75
5.7 An example of two NAND gates drawn in a digital circuit diagram

(Stevens et al. 2013) . 75
5.8 The plot of flowchart dataset after mapping the data into 2D space using

MDS . 77

x

5.9 The drawn Process and Start/End shapes that their 2D plot are close to
each other in Figure 5.8 . 77

5.10 The cluster centres of the flowchart diagram 77
5.11 The fitted hyper-sphere and ellipse around each cluster for a visual com-

parison reference . 79
5.12 An ellipse with the foci points (F1 and F2), centre (C), major axis (a)

and the minor axis(b) . 80
5.13 An example of badly drawn decision symbol in a diagram (the one with

a circle around it) in the flowchart dataset 83
5.14 The plot of similarity of each cluster member to its cluster centre 83
5.15 The visualisation of the flowchart dataset before and after outlier de-

tection step with the fitted ellipses. (a): The fitted ellipse around each
cluster, (b): The fitted ellipse around each cluster after preprocessing
outlier detection. 84

5.16 An example of an arrow shaft (coloured with orange) that looks like an
incomplete process (rectangle) in the FC dataset 85

5.17 An example of an arrow head attached to the shape that improves the
similarity score from the flowchart dataset 85

5.18 The process of the training classifier with the incomplete shapes for rejection 87
5.19 An example of AND and NAND gates in the domain of a digital circuit

diagram . 87
5.20 An visual example of masking. The red line in the MO shows the missing

part of the input and its location with respect to the drawn parts (the
dashed lines). 88

5.21 Adding n to the shape to form New_S 89
5.22 Getting the ROI . 89
5.23 Decision boundaries of one-class SVM for different v values. Picture from

(Tan et al. 2018) . 91
5.24 The plot of the development datasets’ shapes after mapping the data into

2D space using MDS. All these plots are before the pre-processing outlier
detection step. 93

5.25 A visual representation of the extendable shapes in the digital circuit
domain . 94

5.26 A representation of XNOR gate with its possible sub-shapes (XOR, NOR
and OR gates) and an example of a drawn stroke. 95

5.27 An example of an ROC curve (Marsland 2015) 96
5.28 Comparison of the similarity score of each instance to its cluster centre

for the original space 5.28a and the merged one 5.28b. 98

xi

5.29 An example of a drawn arrow and process in the FC dataset 106
5.30 Some examples of touch-up strokes (shown in black) that are not recog-

nised as part of the shape. The strokes in orange are the ones that are
grouped together and are accepted as a single shape by the rejector. . . 107

5.31 Some examples of missing strokes (shown in black) that are not picked
in the image masking process. The strokes in orange are the ones that
are grouped together and are accepted as a single shape by the rejector. 107

5.32 Some examples of an extra stroke that is attached to the shape. The
strokes in orange are the ones that are grouped together and are accepted
as a single shape by the rejector. 108

5.33 Some examples of having more than one error. 108

6.1 An example of three drawn arrows with different shafts but similar heads. 110
6.2 An example of the two bounding boxes fitted around connector ends. . . 112
6.3 (a): The merged feature image of a drawn arrow, (b): The merged feature

image of the bounding box around the bottom-left endpoint, (c): The
merged feature image of the bounding box around the top-right endpoint 112

6.4 A head candidate merged image drawn in the flowchart diagram. 113
6.5 Examples of selected arrow heads (the first column) with the fitted line

in red (the second column) and the rotated head (the last column) . . . 114
6.6 An example of a drawn sketch . 116
6.7 Different steps of connector recognition algorithm. 117
6.8 An example of a digital circuit diagram with a connector that connects

multiple shapes (the strokes shown in orange) 118
6.9 The plot of similarities of each connector head to its cluster centre in the

flowchart dataset . 120
6.10 Some of the examples of incorrect connector heads 120
6.11 An example of a drawn sketch in the flowchart dataset with spatially

close arrows (shown in orange colour) 121

7.1 An example of a family tree diagram . 125
7.2 Computation time for feature computations as a function of points in the

sketch . 128
7.3 An example sketch from the family tree dataset 129
7.4 The plot of the family tree diagram’s regular shapes after mapping the

data into 2D space using MDS. 130
7.5 An example sketch from the process diagram dataset 131
7.6 The plot of the process diagram’s regular shapes after mapping the data

into 2D space using MDS. 132

xii

7.7 An example of a drawn sketch in the FA dataset (Bresler et al. 2014) . 142

xiii

Abstract

Sketch recognition of digital ink diagrams is the process of automatically identifying
hand-drawn elements in a diagram. This research focuses on the simultaneous grouping
and recognition of shapes in digital ink diagrams. In order to recognise a shape, we
need to group strokes belonging to a shape, however, strokes cannot be grouped until
the shape is identified. Therefore, we treat grouping and recognition as a simultaneous
task.

Our grouping technique uses spatial proximity to hypothesise shape candidates.
Many of the hypothesised shape candidates are invalid, therefore we need a way to
reject them. We present a novel rejection technique based on novelty detection. The
rejection method uses proximity measures to validate a shape candidate. In addition, we
investigate on improving the accuracy of the current shape recogniser by adding extra
features. We also present a novel connector recognition system that localises connector
heads around recognised shapes.

We perform a full comparative study on two datasets. The results show that our
approach is significantly more accurate in finding shapes and faster on process diagram
compared to Stahovich et al. (2014), which the results show the superiority of our
approach in terms of computation time and accuracy. Furthermore, we evaluate our
system on two public datasets and compare our results with other approaches reported
in the literature that have used these dataset. The results show that our approach is
more accurate in finding and recognising the shapes in the FC dataset (by finding and
recognising 91.7% of the shapes) compared to the reported results in the literature.

xiv

Acknowledgements

I would like to express my appreciation to my supervisors Dr. Rachel Blagojevic, Prof.
Hans Guesgen and Prof. Stephen Marsland for their constant guidance throughout my
PhD. I wish to acknowledge the support of my family and friends. I’m grateful for the
support of my parents and without their support I would not be where I am.

xv

Chapter 1

Introduction

1.1 Motivation

People often sketch when trying to solve a problem or express an idea. Sketching allows
people to visually represent their ideas (Johnson et al. 2009). Sketching plays a key
role in conceptual designs, enabling one to naturally express ideas and concepts (Delaye
2014). Hand-drawn diagrams, in particular, are frequently used for externalising ideas
and documenting existing phenomena. Pen and paper offers an unconstrained space for
drawing such diagrams, it is quick to use, and allows for ambiguity (Buxton 2007).

Often we seek to digitize diagrams for ease of replication, storage, and sharing.
However, using a mouse and keyboard to produce the digital diagrams is a cumbersome
and tedious task. Sketching on computers has become easier and more natural with the
use of a stylus (Sezgin et al. 2007). The availability of stylus input to the computer can
offer similar advantages to pen and paper alongside standard computational support.
The automatic recognition of these diagrams can allow for even greater advantages,
such as beautification, intelligent editing, automated translation to alternative forms,
and execution or animation of sketch models. For example, Figure 1.1 shows an example
of intelligent editing for a sketched graph diagram in SketchNode (Plimmer et al. 2010)
where the edges connected to a node are moved when a node is moved. Figure 1.2 shows
an example of a graph diagram that is beautified after recognition of the sketch, and
Figure 1.3 shows an example of auto-translation, where the web page of a sketched user
interface is automatically generated.

Sketched diagram recognition is the process of automatically identifying hand-drawn
elements of a diagram, not recognising the sketch itself. The automatic recognition
requires recognising the individual elements in the sketch. For example in Figure 1.4, a
sketched diagram recognition system could identify the three drawn shapes, i.e., square,
arrow and diamond.

When a sketch is drawn with a stylus on a Tablet PC, each stroke (from pen-down

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example of intelligent editing in SketchNode (Plimmer et al. 2010)

Figure 1.2: An example of beautification in SketchNode (Plimmer et al. 2010)

Figure 1.3: An example of auto translation

Figure 1.4: An example of a drawn sketch with the numbers representing the order of
drawn strokes

CHAPTER 1. INTRODUCTION 3

to pen-up) is recorded as a series of (x, y) coordinates. Each stroke is sampled at high
frequency with this point-level information, as well as pen pressure (if the screen is
pressure sensitive), and time stamps. A sketch recognition system that deals with the
drawn strokes on a Tablet PC is often referred to as “online”. On the other hand, an
“offline” sketch recognition system deals with the scanned image of a sketch. The offline
systems require some pre-processing steps to extract information about the location
of drawn strokes/primitives (Bresler et al. 2016c, Ray et al. 2019), while the online
systems have the advantage of providing information about the location of strokes and
their order of drawings.

Sketched diagram recognition systems can be categorised in three principal ap-
proaches: bottom-up, top-down and a combination of both (Patel et al. 2007). In
the bottom-up approach, the system begins the recognition at the stroke level, followed
by a progressive grouping of strokes into more complex shapes. The top-down approach
first analyses the sketch’s structure and then uses this information to aid recognition of
the composite parts. The hybrid approach combines the recognition of each individual
stroke with the layout information for recognition.

Bottom-up approaches are more widely-used (Deufemia et al. 2014). A bottom-up
recognition engine typically takes primitives (lines and curves), or strokes as input,
separates the writing from the drawing, groups the shape primitives together to form
distinct diagram elements, recognises shapes, and finally infers the semantics of the
diagram.

In this thesis we describe a bottom-up system that groups and recognises the shapes
in a sketched diagram. This requires a “grouper” to determine which strokes together
form a distinct shape, and a “recogniser” to identify what the shape is. For example, in
Figure 1.4 a grouper should determine that strokes 1,2,3 and 4 together form a single
shape, and the recogniser should determine it is a square.

1.2 Aims

We believe an ideal online sketch recognition system should have the following charac-
teristics:

• Accurate: Accurately find and recognise all the drawn shapes in a diagram.

• Computationally inexpensive: Find and recognise all the drawn shapes fast.

• Domain independent: The recognition should not be limited to a specific dia-
gram domain. This means that the underlying system should be general enough
to be trained for a variety of diagram domains. We expect labelled examples to

CHAPTER 1. INTRODUCTION 4

Figure 1.5: An example of a digital circuit diagram in (Stevens et al. 2013)

be provided for the system to learn from. Such information does not make the
system domain dependent.

• Supportive of a free sketch environment: This should allow the users to
draw the diagrams as freely as they do on pen and paper. The system should not
put any restriction on how users draw the diagrams, such as restricting the user
to draw each shape with a single stroke.

Reviewing the literature shows that a sketch recognition system with these charac-
teristics is missing. In this work we seek to move the field of sketch recognition closer
to the above ideals, particularly for grouping and shape recognition.

1.3 Background

Accurately grouping strokes into potential shapes is not a trivial problem. For a sys-
tematically drawn diagram, using spatial and/or temporal heuristics may be sufficient
to identify the individual groups, since objects are drawn sequentially and in clearly
delineated positions. However, this is often not the case, and there may not be clear
spatial or temporal boundaries between elements. One reason for this difficulty is that
users often have an interspersed drawing style, where they start drawing a new shape
before completing the previous one (Sezgin & Davis 2007b). Another reason is that
diagrams frequently contain highly connected components, e.g., the circuit diagram in
Figure 1.5, where shapes are in very close proximity to one another or even overlapping.
This issue is more evident in connected diagrams, in which connectors (e.g. arrows) are
in close proximity to the drawn shapes. The naïve approach to grouping, of examining
all possible combinations of strokes in the diagram, would require exponential time for
the number of strokes.

Some methods avoid the problem of grouping completely by placing constraints
on how objects should be drawn. For example, users have been restricted to drawing

CHAPTER 1. INTRODUCTION 5

Figure 1.6: An example of some invalid shape candidates and a valid one

each shape with a single stroke (Rubine 1991, Wobbrock et al. 2007, Reaver et al.
2011a, Herold & Stahovich 2012, Plimmer et al. 2012), or asked to provide cues such
as clicking a button, or pausing for a period of time, in order to show that the current
shape is finished (Hse & Newton 2005). Other systems require a temporally contiguous
sequence of strokes to be drawn for a shape (Gennari et al. 2005). Although such
constraints simplify the grouping process, they do little to preserve a flexible, free-
sketch environment that follows on from the user experience of sketching with pen and
paper.

There is a potential chicken-and-egg problem with grouping and shape recognition
(Arandjelović & Sezgin 2011, Peterson et al. 2010). Identifying a group of strokes
that form a shape requires recognition of the shape, while recognising a shape may
require that the correct group of strokes are presented to the recogniser. Therefore,
in this PhD we treat them as simultaneous tasks. The simultaneous grouping and
recognition involves a continuous interaction between grouper and recogniser. The
grouper we propose uses spatial information to hypothesise shape candidates and the
recogniser rejects a candidate if it is not a valid shape otherwise accepts the candidate
and determines what the shape is. For example, Figure 1.6, shows an example of some
hypothesised shape candidates where only one is valid.

Providing domain knowledge to the system can aid the recognition process, but at
the cost of making the system domain dependent. Domain knowledge can be provided
in various forms. A labelled dataset for training a sketch recognition system can be
considered domain knowledge. However, a system that only takes a labelled dataset as
domain knowledge can be flexible enough to be applied to different domains, without
the need to make domain-specific changes to the underlying system. In Chapter 2,
we review some systems that use specific domain information for recognition, and so
are not applicable to all domains. For example, some methods use hard-coded shape
description and shape relations (Alvarado & Davis 2006), while some perform structural
analysis for a specific domain, such as flowcharts (Bresler et al. 2013a, 2016a) or chemical
drawings (Ouyang & Davis 2007, Kang et al. 2014) to match the recognition with the

CHAPTER 1. INTRODUCTION 6

specifications of that domain. Such systems need to be redesigned for a new domain,
and are therefore not domain independent.

Sketched diagrams are usually comprised of three semantically distinct set of strokes:
text, shapes and connectors. The separation, grouping and recognition of text is an area
of research that has largely been investigated (Bishop et al. 2004, Bhat & Hammond
2009, Blagojevic et al. 2011, Qi et al. 2005, Delaye & Liu 2012, Van Phan & Nakagawa
2016). In our sketch recognition pipeline, the text separation process is carried out
before the shape recognition process and therefore is out of the scope of this PhD. We
assume the text strokes are accurately excluded using a divider such as that designed
by Blagojevic et al. (2011) and sent to a separate text recognition system. However,
in Chapter 7, we show that using such dividers would affect the results as the text
separation is not a completely solved problem.

The connectors are inherently different from the regular shapes. Their appearance
can vary markedly between examples, and they have requirements that are not true for
regular shapes, such as signifying relationships between shapes in a diagram. Therefore,
we treat them separately.

The connectors are usually in close spatial proximity of shapes, which makes it
difficult to use the spatial information to separate them from the shapes. For example,
Figure 1.5 shows an example of a connected diagram where shapes and connectors are
in a very close spatial proximity of each other. For non-connected diagrams, the process
of grouping and recognition can be simpler, as the shapes are already spatially far from
each other. For example, Figure 1.7 shows an example of a drawn user interface where
shapes are relatively far from each other. In this PhD, we have focused on connected
diagrams since they are more challenging, and unconnected ones are just a subset of
them.

1.4 Thesis Objectives

The goal of this thesis is to build a domain independent sketch recognition system
that supports a free sketching environment. We aim for the system to work quickly
(without having the user to wait long to see the results) with high accuracy rates.
Given the findings from our review of the existing methods of sketch recognition systems
(see Chapter 2), we believe that a simultaneous grouping and recognition system is a
promising way forward. To achieve this we have three sub-objectives:

• Design and implement a grouping algorithm that uses heuristics to hypothesise
shape candidates and simultaneously works with a recogniser.

• Design and implement a rejection system for invalid shape candidates, to work
with the shape recogniser.

CHAPTER 1. INTRODUCTION 7

Figure 1.7: An example of a user interface

• Design and implement a connector recognition system.

In our sketch recognition system, we first build a simultaneous grouping and recog-
nition system to find and recognise the shapes, followed by a connector recognition
process. The contributions of this work are:

• A deterministic grouping algorithm that uses heuristics to hypothesise shape can-
didates. The grouping algorithm works simultaneously with the recogniser.

• A shape rejection system based on novelty detection techniques (Marsland 2003,
Pimentel et al. 2014). In chapter 2, we review the different techniques used for
rejecting invalid shape candidates. This area has received little attention thus far,
particularly the use of novelty detection for rejection.

• A connector recognition system. The existing connector recognition systems ei-
ther put a lot of restrictions on how connectors should be drawn or are designed
specifically for a particular type of connector (e.g. designed for arrows). Our
connector recognition system does not have such limitations.

1.5 Thesis Outline

The remainder of this thesis is as the following:

CHAPTER 1. INTRODUCTION 8

Chapter 2 contains a review of existing sketch recognition systems, first with a
focus on grouping, followed by a review of existing shape recognisers. Next, methods
used for rejecting invalid shape candidates are summarised. Finally, existing connector
recognition systems are reviewed.

Chapter 3 describes the our system design, in which each component of the sketch
recognition system is described in more detail. Additionally, we describe the datasets
we used during the development of our sketch recognition system.

Chapter 4 provides details of the grouping algorithm. The performance of the
grouper is then evaluated in terms of accuracy and time on various datasets.

Chapter 5 describes the details of the recogniser we chose as the shape recogniser.
The experiments used to evaluate the performance of the recogniser on various datastes
are presented. This is followed by some experiments with modifications to the feature
representation for improving the recogniser’s accuracy. Next, we describe our proximity-
based rejection method with the different metrics used for measuring the proximity. We
also provide two solutions for dealing with incomplete shapes that are not rejected. This
is followed by a description of a pre-processing outlier detection method. Finally, we
perform various experiments to measure the accuracy of each proposed method.

Chapter 6 provides details of our approach to connector localisation and grouping.
We first describe how we learn about the common part of the connectors, followed by a
description of connector grouping algorithm.

Chapter 7 provides the results of the final evaluation of our sketch recognition system
on different datasets. We first perform a full comparative study, comparing our results
to that of an existing method from the literature. This is followed by comparing our
results with other approaches on two publicly available datasets. Finally, we provide
some discussion on the performance of the system.

We conclude in Chapter 8 and outline possible future work.

Chapter 2

Literature Review

Sketch recognition systems are designed to automatically interpret hand-drawn dia-
grams on a computer. Performing recognition often requires a pipeline consisting of
some or all of the following steps: separating the sketch into writing and drawing strokes;
grouping strokes and recognising shapes and identifying domain-specific components.

The separation of text from the rest of the diagram is out of the scope of this
PhD. Grouping and recognition of the shapes usually requires two components: grouper
and recogniser. The grouper decides which strokes belong to the same shape and the
recogniser identifies the label for the group of strokes. In some sketch recognition
systems, the connectors are treated differently as they are inherently different from the
regular shapes.

This chapter presents a review of different components of a sketch recognition system
for digital ink diagrams. It begins by reviewing the sketch recognition systems with a
focus on the role of grouping. This is followed by existing shape recognisers, followed
with methods used for rejecting invalid shape candidates. Finally, in Section 2.5 we will
review existing connector recognition systems.

2.1 Evaluation Metrics

Different metrics for evaluating a sketch recognition system are used in the literature.
The most commonly used metric is the total shape accuracy, which is calculated by
dividing the number of correctly grouped and recognised shapes over the total number
of shapes in a dataset. Some approaches report the accuracy as the average of accuracies
of diagrams in a dataset (Stahovich et al. 2014). Some report stroke level accuracies,
which shows the portion of correctly recognised strokes regardless of their group (Bresler
et al. 2016b). In this chapter, we report the accuracies as the total shape accuracy, as
is the most commonly used method, unless otherwise is stated.

Without a full comparative study of each technique, it is difficult to judge the relative

9

CHAPTER 2. LITERATURE REVIEW 10

accuracy of different approaches, particularly when different datasets are used; here we
comment on them based on the reported results - which in many cases, indicates their
performance in the best case scenario.

2.2 The Role of Grouping in Sketch Recognition

There is a potential chicken-and-egg problem with grouping and shape recognition
(Arandjelović & Sezgin 2011, Peterson et al. 2010). Identifying a group of primitives
that form a shape requires recognition of the shape, while recognising a shape may
require that the correct group of primitives are presented to the recogniser. Therefore,
one of the two main approaches identified in the literature is to perform grouping and
recognition simultaneously. Techniques for simultaneous grouping and recognition are
described in Section 2.2.1. An alternative approach is to follow a sequence and perform
the grouping independently of the shape recognition. This is typically based on either
a clustering method that groups primitives together, or a sequential optimisation that
optimise a cost function; these methods are reviewed in Section 2.2.2.

2.2.1 Simultaneous Grouping and Recognition

Many groupers use a shape recogniser as a way of guiding the search process to only
group viable shape candidates. We have identified three conceptual approaches from
the literature, based on how they use the information from the recogniser. The first of
these are negative example methods that use the recogniser to reject potential shapes
that are not recognised. The second approach is based on grammars and languages.
These methods work by defining a logical grammar to describe acceptable shapes. The
third technique is based on optimisation, where usually the temporal order of shapes are
captured for grouping primitives. We have also included a section on other simultaneous
methods that do not fall into the previous categories. The general process of simulta-
neous grouping and recognition is shown in Figure 2.1. Domain knowledge (displayed
in dashed box) is mainly used in the grammar and language based approaches.

Negative Examples

The most common method of enabling a classifier to reject shape candidates is to include
the invalid shapes that should be ignored in the training set, as part of a ‘no-match’
class. Several sub-classes of shapes can be part of this class. The simultaneous grouping
and recognition process then becomes a method for selecting candidate shapes using a
classifier that returns either the class representing a shape, or ‘no-match’. The risk of
this approach is that it assumes that the ‘no-match’ class is complete.

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.1: Simultaneous grouping and recognition process

Ouyang & Davis (2007) produced early work using negative examples in the domain
of chemical structure diagrams. All the combinations of up to 7 sequential strokes were
generated and classified using a Support Vector Machine (SVM) classifier, either as a
valid or invalid shape. The training data included examples of both valid and invalid
candidates. Once the valid shape candidates were identified, the system ranked the
overlapping candidates using recognition and context scores, and iteratively selected
the best ones. Finally, domain knowledge was used to check whether the structure was
chemically sound for the domain of molecular compounds. Later in the work by Ouyang
& Davis (2009a), direction features were incorporated (Ouyang & Davis 2009b) for the
shape representation, and used a joint probability to select the final set of shapes.

Bresler et al. (2013b) selected candidate shapes using all possible sets of up to five
spatially proximal primitives for a flowchart dataset (Awal et al. 2011). Negative exam-
ples are included. However, as the number of negative examples is much higher than
the number of valid shapes, the negative examples are clustered into several clusters. A
multi-class Support Vector Machine (SVM) is used to accept valid candidates and reject
the invalid ones. Since training the classifier does not efficiently equip the classifier to
reject negative examples, Bresler et al. (2013a) select the final set of shape candidates
by solving an optimisation problem. The optimisation problem is formulated to model
the relations in a diagram. The model of relations is based on the connection points
of the shapes. For example, for the flowchart diagram domain, four connection points
are defined for the non-arrow shapes and two connection points for each arrow. Three

CHAPTER 2. LITERATURE REVIEW 12

shape relations are then defined:

• Conflict: Two candidates share one or more strokes, or two arrows are connected
to the same connection point of a shape.

• Overlap: Two shape candidates have overlapping bounding boxes.

• Endpoint: Each arrow requires existence of both shapes it connects.

All pairs of candidates get a score based on these relations and each shape candidate
gets a score based on the classifier’s confidence level. Selecting the best combination of
shape candidates is then formulated as a max-sum problem, in which the combination
with the highest score is sought. This optimisation technique is specifically designed for
arrow-connected diagrams with specific requirements such as two arrows not pointing
to the same connection point of a shape. Therefore, this approach is considered domain
dependent and would not be applicable to all domains.

Later Bresler et al. (2014) used the trajectory-based normalization and direction
features introduced by Liu & Zhou (2006) for shape representation, and improve their
approach by separating the arrow detection unit as a process after recognising the regu-
lar shapes. Having too many shape candidates makes the recogniser slow (Bresler et al.
2015b). To reduce the number of shape candidates, Bresler et al. (2015b, 2016a) use the
Single Linkage Agglomerative Clustering (SLAC) algorithm of Delaye & Lee (2015) for
grouping. Bresler et al. (2016a) use synthetically generated data to balance the valid and
negative classes and avoid performing clustering on the negative class. This approach
has achieved the best accuracy in grouping and recognition on the flowchart (Awal et al.
2011) (with 84.2% accuracy) and Finite Automata (FA) (with 98.5% accuracy) (Bresler
et al. 2014) datasets. The reported results also show that their approach is quite fast
(0.78 seconds and 0.69 seconds on the flowchart and FA datasets respectively). How-
ever, as mentioned earlier, this approach is domain dependent since the optimisation
problem is formulated for arrow-connected diagrams with specific requirements.

In these methods, the recognisers need to learn about very large invalid classes, which
requires a large amount of data, since there are many ways that negative examples can be
represented. Selecting the final set of shape candidates through optimization techniques
is also a computationally expensive task. Moreover, the optimisation and final checks
usually require domain knowledge, limiting these approaches to the specified domains.

A summary of work using negative examples can be found in Table 2.1. The accuracy
column in this table reports the statistics from each paper. We report the accuracy of
grouping and recognition of each approach, unless otherwise stated. All the approaches

CHAPTER 2. LITERATURE REVIEW 13

also support interspersed drawing1 and are domain independent 2, unless stated oth-
erwise in the limitations column. The proximity column shows what type of vicinity
between strokes are being considered (spatial, temporal or both).

Proximity Accuracy Limitations
Bresler
et al.
(2013b)

Spatial 91.9% on flowcharts
(Awal et al. 2011)

Limited size of
strokes per shape

Bresler
et al.
(2013a)

Spatial,
temporal

88.7% in grouping
on flowcharts (Awal
et al. 2011)

Domain depen-
dent

Bresler
et al.
(2014)

Spatial,
temporal

82.8% on flowcharts
(Awal et al. 2011),
94% for FA (Finite
Automata) dataset

Limited to arrow
connected dia-
grams; domain
dependent

Bresler
et al.
(2015b)

Spatial,
temporal

84.2% of flowcharts
(Awal et al. 2011),
95.5% for FA
(Bresler et al.
2014)

Requires shape
relations; domain
independent

Ouyang
& Davis
(2007)

Temporal 85% of molecular
compounds dia-
grams without do-
main knowledge and
89% with domain
knowledge

Does not allow in-
terspersed draw-
ing

Ouyang
& Davis
(2009a)

Spatial,
temporal

97% of the Molecu-
lar diagrams, 91% of
Electrical circuit dia-
grams

Computationally
expensive training
and recognition
process

Table 2.1: Summary of work using negative examples. The accuracy column in this
table reports the statistics from each paper.

Grammar and Language

Grammar and language techniques have been explored in wider sketch recognition tasks,
including grouping. These approaches typically define a language to describe shapes,
relationships, and their constraints. The language is then used as a key part of grouping
primitives and recognising the groups (see the summary in Table 2.2). Variations on
the form of languages exist, such as those described by Alvarado & Davis (2004) where

1Interspersed drawing refers to the drawing behaviour of starting a new shape before completing
the previous ones.

2An approach is domain dependent if it is only applicable to a specific diagram domain.

CHAPTER 2. LITERATURE REVIEW 14

Figure 2.2: The description of the shape “arrow” in the family tree domain from
Alvarado & Davis (2004).

a hierarchical shape language is used (see Figure 2.2 for the definition of an arrow in
the family tree domain), while in the work done by Julca-Aguilar et al. (2017) a set of
predefined graph grammars are used to generate potential shape candidates and their
possible relations. Groups are constructed based on how well they conform to the shape
descriptions, where the descriptions rely heavily on spatial and temporal proximity.

Groups are further evaluated in various ways. Costagliola et al. (2005) use a parser
to generate multiple parse trees, each providing a possible interpretation of the sketch.
Each tree is assigned a probability based on the fitting error of strokes and the accuracy
of shape relationships. The most likely tree is chosen as the output. In SketchREAD
(Alvarado & Davis 2004) a Bayesian Network evaluates the strongest interpretation
of the diagram. Given the descriptions and constraints, the system also tries to find
the missing parts from partially drawn shapes by looking into spatially and temporally
close strokes. Further improvements to SketchREAD have been made (Alvarado &
Davis 2006) using dynamically constructed Bayesian networks to determine how well
each shape candidates fits the data. Julca-Aguilar et al. (2017) use a classifier to prune
the search space by rejecting groups below some level of confidence; this may include
groups representing negative example classes. The remaining shape hypotheses are then
chosen by optimising a cost function that considers the likelihood score of shapes and
their relationships.

Computational time is still a significant issue for these approaches, particularly if

CHAPTER 2. LITERATURE REVIEW 15

Proximity Accuracy Limitations
Costagliola
et al. (2005)

Spatial,
temporal

Not tested Requires shape defini-
tion; hard to extend; do-
main dependent

Alvarado &
Davis (2004)

Spatial,
temporal

77% of family tree di-
agrams, 62% of digital
circuit diagrams

Requires structural def-
inition of shapes and
their relationships for a
specific domain; domain
dependent

Hammond &
Davis (2009)

Spatial,
temporal

100% accuracy for
Japanese Kanji, Mili-
tary course of action
and Biology diagrams

Requires shape defini-
tion; domain dependent

Julca-Aguilar
et al. (2017)

Spatial,
temporal

85.5% on flowcharts
(Awal et al. 2011) when
texts are manually
excluded

Relies on the grammar;
domain dependent

Table 2.2: Summary of work using grammar and language. The accuracy column in
this table reports the statistics from each paper

interspersed drawing is allowed. Hammond & Davis (2009) explore these issues by
proposing a grouping method that examines all possible shape combinations, but uses
an indexing technique to reduce computation time. Although they achieve 100% recog-
nition accuracy, the computation time in the worst case is exponential. Also, the recog-
nition is limited to the constraints defined by the language, making the system domain
dependent.

The main limitation of these methods are that the language must be defined by
an expert, for each domain. It is also difficult to encode the levels of ambiguity in
these languages that we know are present in sketched diagrams. The accuracy of these
approaches is therefore limited by the difficulties in defining a language.

Optimisation

In optimisation approaches, grouping and recognition are performed simultaneously,
and a model of the primitives is optimised to group and recognise shapes. The main
technique demonstrated in the literature is to use time-based models (Sezgin & Davis
2005, 2007a, 2008) to group and recognise shapes i.e. those that only consider temporal
information (see the summary in Table 2.3).

In the work by Sezgin & Davis (2005) the temporal order of shapes are modelled
with different Hidden Markov Models (HMMs). To interpret a diagram, a graph showing
the temporal order of primitives is produced, with the addition of edges that represent
possible shape candidates (weighted with the log-likelihood of it matching a known

CHAPTER 2. LITERATURE REVIEW 16

shape). The shortest path between the first and last primitive (node) of the diagram
is used to determine the optimal grouping and recognition of shapes, where each edge
in the shortest path represents a valid shape. In later work by Arandjelović & Sezgin
(2011), a similar approach was used to construct the graph. However in this work, the
optimal shape candidates are determined using dynamic programming, with information
combined from time-based and image-based recognisers. In addition, a one-class SVM
classifier is used to reject invalid shape candidates. Sezgin & Davis (2007a) also extended
their earlier work (Sezgin & Davis 2005), by using a dynamic Bayesian network where
object-level patterns (the sequence of drawn objects) are considered, as well as the
temporal ordering of primitives. An extra node is added for each primitive to denote if
the shape is complete. The model then tries to maximise the joint likelihood of stroke-
level and object-level patterns, resulting in an optimal grouping and recognition of the
sketch.

Since these approaches only rely on temporal order, interspersed drawing cannot be
supported. This issue has been resolved for grouping by Sezgin & Davis (2008) who
considered an additional “switching node” (MUX) for each observation that indicates
whether the user has interspersed any two objects, but drawing order is still considered
when recognising shapes. The optimisation techniques are generally computationally
expensive and the drawing order can affect the accuracy.

Other Simultaneous Methods

There are also other approaches that perform grouping and recognition simultaneously
(see Table 2.4). In the work of Hammond & Paulson (2011), all strokes are first given
to PaleoSketch (Hammond & Davis 2009), a low-level recogniser capable of recognising
nine primitives (such as lines, arcs and curves). From the recognised primitives, a
neighbourhood graph is constructed, and then used to search for connected components
using Tarjan’s algorithm (Tarjan 1972). To find valid shapes, all sub-graphs of each
connected component are recognised using the neural network version of PaleoSketch
(Paulson & Hammond 2008). The group must then pass a false-positive removal stage in
order to be deemed a correct grouping. The false-positive removal stage follows five rules
to determine if a group of strokes should be accepted. These rules are set empirically
through observations. This work is computationally expensive and has limitation in
supporting complex shape recognition.

Johnston & Alvarado (2013) explore grouping for the domain of digital circuit dia-
grams. In their approach, the strokes are first classified into gate, text or connector using
the method described by Peterson et al. (2010). To group the gate strokes, a neigh-
bourhood graph is constructed by placing a bounding box around each stroke to locate
spatially close strokes. Connected components of the graph are found by performing a

CHAPTER 2. LITERATURE REVIEW 17

Proximity Accuracy Limitations
Sezgin & Davis
(2005)

Temporal 96.5% recognition rate
on 88 objects from
different domains in-
cluding military course
of action, stick-figures,
and mechanical engi-
neering

Relies on temporal pat-
tern of how objects are
drawn; does not allow
interspersed drawing

Arandjelović &
Sezgin (2011)

Temporal 36.3% accuracy in
grouping and recog-
nition of full Course
of Action diagrams
(partial recognition of a
diagram is not counted)

Relies on temporal pat-
tern of how objects are
drawn; Limited tempo-
ral window; does not al-
low interspersed draw-
ing

Sezgin & Davis
(2007a)

Temporal Ranging from 77.4% to
93% for different users
on Circuit diagrams

Relies on temporal pat-
tern of how objects are
drawn; does not allow
interspersed drawing

Sezgin & Davis
(2008)

Temporal Ranging from 87.7% to
95.6% for different users
on circuit diagrams

Computationally ex-
pensive

Table 2.3: Summary of groupers using optimisation. The accuracy column in this
table reports the statistics from each paper

CHAPTER 2. LITERATURE REVIEW 18

Proximity Accuracy Limitations
Hammond &
Paulson (2011)

Spatial 89.7% weighted accu-
racy for Military course
of action, circuit dia-
grams, chemistry dia-
grams, mechanical engi-
neering diagrams

Computationally ex-
pensive

Johnston
& Alvarado
(2013)

Spatial,
temporal

94.2% accuracy on digi-
tal circuit diagrams

Limited to spatial
bounding box size; the
results are reported
for the case that text
and connectors are
manually excluded

Table 2.4: Summary of other simultaneous techniques. The accuracy column in this
table reports the statistics from each paper

series of breadth-first-searches. All possible subsets of each connected component (up
to size 5) are evaluated by calculating their Hausdorff distance to the template shapes.
Each shape is represented with the direction features introduced by Ouyang & Davis
(2009b). The subset that matches most closely to a known shape goes through a do-
main specific check using an encoding language before finalising a shape. Although this
approach has performed well in the experiments on digital circuit diagrams (producing
a recognition rate of 94%), all the text and connector strokes are excluded manually.
Having the connectors excluded greatly simplifies the grouping and recognition problem.
Moreover, domain knowledge needs to be given to the system, which makes it domain
dependent.

2.2.2 Sequential Grouping and Recognition

These approaches follow a pipeline of grouping and recognition as separate tasks occur-
ring sequentially and independently. We have further categorised these sequential ap-
proaches into optimisation and clustering techniques. The general processes of sequen-
tial grouping and recognition are shown in Figure 2.3 and Figure 2.4. Figure 2.3 shows
the pipeline of sequential optimisation and hard-clustering approaches. Hard-clustering
approaches do not have the optimisation task (showed in the dashed box). Figure 2.4
also shows the pipeline of Probabilistic Graphical Model (PGM) based recognition sys-
tems. The difference between these two pipelines is that in PGM-based approaches,
the grouping occurs after the recognition, whereas in the sequential optimisation and
hard-clustering approaches, the grouping task is performed before the recognition.

CHAPTER 2. LITERATURE REVIEW 19

Figure 2.3: Sequential optimisation based and hard-clustering based grouping and
recognition process

Figure 2.4: Sequential PGM-based grouping and recognition process

Sequential Optimisation

Sequential optimisation approaches generally follow a sequence of group-recognise-optimise.
Spatial/temporal information about the primitives are used to generate possible shape
candidates, each candidate is recognised, and finally the best set of shape candidates is
chosen by optimising a given cost function (see Table 2.5 for a summary of work using
sequential optimisation).

Shilman et al. (2004) approach the grouping and recognition of characters and shapes
as an optimisation problem. The spatial proximity is represented by constructing a
neighbourhood graph of strokes, with the strokes being nodes, and the edges between
them representing spatial contiguity (within some pre-defined threshold). All connected
components of the graph up to size k are found, where each component hypothesises a
shape candidate. The aim of the recognition framework is to find the best grouping and
recognition of strokes to optimise a global cost function. The cost function considers
the shape recognition cost, the combination cost of two subsets of the graph, and the
constraint cost that checks the connectivity of subgraphs. The rendered image of can-
didate strokes, along with some context images, are used as the input to the recognition
system. Context images are rendered from strokes connected to some of candidate’s
strokes in the neighbourhood graph, which are used to aid the identification of invalid
candidates. Each of these principal images is modified with four additional features
including curvature, orientation and end-point information. In order to avoid any re-
dundant computation, Dynamic Programming is employed to reuse already computed
cost functions. A multi-class variant of the confidence rated boosting algorithm is used

CHAPTER 2. LITERATURE REVIEW 20

for the classification. Shilman & Viola (2004) extended the work of (Shilman et al. 2004)
by using A* search to prune away parts of the search space that could not possibly lead
to a viable solution. The experimental results demonstrate that the proposed system
can achieve 97% grouping/recognition for 13 shape classes collected from 19 different
users, although these are isolated shapes rather than full diagrams. On full flowchart
diagrams, Shilman & Viola (2004) report a 85% grouping/recognition rate.

In a similar manner, Feng et al. (2009) generate shape candidates based on temporal
proximity and maximum size, but with two additional constraints. Temporal proximity
is considered by allowing a maximum number of time jumps between primitives within
a group, to account for the interspersed nature of sketching. Also, a maximum over-
lap ratio is used as an extra spatial constraint, where groups with a significant overlap
of primitives are merged, as they are considered part of the same shape. Each shape
candidate is first checked to see if it is a connector using Least Square Fitting Error
(LSFE). If the candidate is not a connector then a neural network (that is trained with
genuine and synthetic data) is used for the classification. Each candidate is assigned a
score based on the shape resemblance (based on the LSFE if is a connector, otherwise
the class probability distribution provided by the neural network) and the connectivity
requirements of the shape. The connectivity requirements are employed to aid eliminat-
ing the pseudo-shapes (either containing strokes from multiple shapes or an incomplete
shape) as the classifier has limited capability in rejecting outliers only based on the
produced class probabilities. A cost function based on the shape resemblance and the
connectivity requirements of the shape is then optimized. This approach is specifically
designed for circuit diagrams.

In the work by Ouyang & Davis (2011), candidate shapes are generated using tem-
poral and spatial proximity. Recognition and optimisation of the solution is performed
using a Conditional Random Field (CRF). The CRF model used here constructs a hi-
erarchical model that combines features measured from three levels: raw ink points,
primitives and candidate shapes. The joint model captures the relationship between
these levels. Each primitive has a shape candidate node that represents all possible
shape candidates that includes that primitive. The inference process selects the best
shape candidate (with the maximum likelihood) for each primitive. The results show
that the proposed algorithm is able to detect and classify 97.4% of shapes in a chemical
drawing dataset. However, the inference process is computationally expensive.

Although optimisation approaches have yielded reasonable recognition rates, the
search and optimisation process is still computationally expensive.

CHAPTER 2. LITERATURE REVIEW 21

Proximity Accuracy Limitations
Shilman
et al. (2004)

Spatial 94% of mathematical
expressions

Computationally ex-
pensive

Shilman
& Viola
(2004)

Spatial 97% of isolated shapes
of HHreco Hse & New-
ton (2004), 85% on syn-
thesized flowchart dia-
grams

Computationally ex-
pensive

Feng et al.
(2009)

Spatial,
temporal -
constrained
to max # of
time jumps

90.29% accuracy in
class-level recogni-
tion of digital circuit
diagrams

Fine tuned to circuit di-
agrams; domain depen-
dent

Ouyang
& Davis
(2011)

Temporal,
spatial

97.4% of molecular dia-
grams

Employs domain knowl-
edge about chemical
structures; Computa-
tionally expensive

Table 2.5: Summary of work using sequential optimisation. The accuracy column in
this table reports the statistics from each paper

Clustering-Based Groupers

Clustering-based groupers capture some pairwise features for each pair of strokes in the
diagram. Based on the pairwise features, they decide which strokes together form a
distinct object. We further separate this approach into hard clustering methods, and
those that use Probabilistic Graphical Models (PGMs).

Hard clustering Delaye & Lee (2015) propose a grouping method based on the Single
Linkage Agglomerative Clustering (SLAC) algorithm. The algorithm starts by defining
each stroke as its own cluster and successively merges the two closest clusters unless
the distance between the closest clusters is above a threshold. The merged strokes of
each cluster at the cutting threshold represent a symbol grouping. The proposed al-
gorithm learns to minimize the distance between strokes within the same shape while
maximizing the distance between strokes from different clusters, and adjusts the thresh-
old accordingly. The closeness of the clusters is calculated through a weighted distance
function that captures the pairwise stroke spatial and temporal distances. The weights
of the pairwise features and the cutting threshold are learned through an optimisation
process using the LBFGS second-order gradient descent method (Liu & Nocedal 1989).
The proposed algorithm is evaluated on various datasets including flowcharts, finite
automata, mathematical notation, synthesized diagram from these datasets and free-
form documents, with the grouping accuracy ranging from 75% to 95.55% for different
datasets.

CHAPTER 2. LITERATURE REVIEW 22

In order to solve the problem of exhaustive search in traditional methods, a grouping
technique has been designed with two levels of classification (Peterson et al. 2010). This
strategy reduces the problem of exhaustive search into a classification problem. The
initial step is the single stroke classification, which classifies strokes into coarse classes
depending on the context. For example, in the domain of digital circuit diagrams,
each stroke is classified as being part of a wire, gate, or text. Two methods are used
to perform the grouping on each coarse class. One uses a simple threshold based on
the spatial distance and the elapsed time between two strokes. The other approach
(IPC-MD) uses the AdaBoost classifier trained with 13 pairwise features to classify
each pair as: “don’t join”, “far join” or “near join”. Once all pairs are labelled, in an
iterative process, pairs of strokes with “far join” or “near join” are clustered together.
Stahovich et al. (2014) point out that the IPC-MD often confuses the “far join” class
with “near join” and “no join” classes. To achieve a higher accuracy, they propose a
new training approach (IPC-IR), which uses cluster accuracy to iteratively re-label the
training data. The iterative labelling uses the IPC-MD method to assign labels to pairs
of strokes and iteratively optimises the accuracy of the classifier. In the experiments,
in cases where the differences in accuracy were statistically significant, the IPC-IR and
IPC-MD methods outperformed the thresholding method, while achieving comparable
performance to each other.

Stevens et al. (2013) add 11 new pairwise features to the 13 features introduced by
Peterson et al. (2010) for the coarse level classification, which has led to an increase
in the grouping accuracy. However, Lee et al. (2012) found that only 6 features that
are introduced by Peterson et al. (2010) were useful for training a C4.5 decision tree to
determine if two strokes belong to the same character for equilibrium equation recog-
nition. This grouping approach is employed in a language and grammars based sketch
recognition system (Costagliola, Rosa & Fuccella 2014, Costagliola et al. 2015) that uses
local context for recognition.

In a similar manner to the two level classification, Alvarado (2007) first labels strokes
as wire or gate (in the digital circuit domain) using Conditional Random Fields (CRF).
A neighbourhood graph is then constructed on gate strokes where each connected com-
ponent of the graph represents a shape. This algorithm is tested on 51 circuit diagrams
with 5 different classes (wire, AND, OR, XOR and NOT gates), achieving 77% accuracy
in grouping. Although these approaches avoid the exhaustive search and are domain
independent, the accuracy of grouping is relatively low. The summary of these methods
can be seen in Table 2.6.

Probabilistic Graphical Model based The following work differs from the hard
clustering approaches as recognition of primitives as their corresponding shapes is per-
formed before clustering primitives into groups. These approaches use Probabilistic

CHAPTER 2. LITERATURE REVIEW 23

Proximity Accuracy Limitations
Delaye &
Lee (2015)

Spatial, tem-
poral features

88% in grouping for
flowchart dataset, 98%
for FA dataset

Relatively low accu-
racy for grouping of
flowcharts

Peterson
et al. (2010)

Spatial and
temporal
features

79% grouping accuracy
for circuit diagrams -
69% grouping accuracy
for family tree diagrams

Relatively low accuracy
for grouping

Stevens
et al. (2013)

Spatial and
temporal
features

Overall 80.96% accu-
racy in grouping for
class diagram, Digital
circuit diagram, Family
tree and Flowchart dia-
grams

Requires expensive
training process - low
accuracy

Stahovich
et al. (2014)

Spatial and
temporal
features

79% grouping accuracy
in digital circuits - 72%
grouping accuracy in
family tree diagrams

Requires expensive
training process -
Accuracy

Alvarado
(2007)

Spatial 77% in grouping of dig-
ital circuit diagrams

Low accuracy

Table 2.6: Summary of work using hard clustering techniques. The accuracy column
in this table reports the statistics from each paper.

Graphical Models (PGMs) for primitive recognition. Deufemia et al. (2014) propose a
sketch recognition system based on Latent-Dynamic Conditional Random Field (LD-
CRF) to model the sub-structure of a shape by learning relationships between shape
classes. In this approach, recognition and grouping is performed in two stages; first
classifying each primitive using the trained LDCRF, and then applying unsupervised
geometric distance-based clustering algorithm to group the primitives belonging to the
same shape. To build the model, for each stroke some feature points (endpoints, corners
or overlapping points) are calculated and for each feature point a set of features including
orientation, length, distance, direction and time are calculated. In this model, feature
points are considered to be the observations, while class membership is represented by
hidden states. The model determines the more appropriate hidden state (class) for each
observation, based on its features and the features of neighbouring observations. In
the training process, the model parameters are learned to maximize the likelihood of la-
belled observation sequence. The inference process is to estimate a sequence of labels for
the given observation sequence that maximizes the sum of marginal probabilities. Since
the loops in the graph make the exact inference intractable, loopy belief propagation
(Pearl 1988) is used to estimate the marginal probabilities. Once labels are predicted
for all feature points, an unsupervised geometric distance-based clustering algorithm is

CHAPTER 2. LITERATURE REVIEW 24

Proximity Accuracy Limitations
Delaye
(2014)

Spatial and
temporal
features

75.50% accuracy on
flowchart dataset,
75.50% accuracy on FA

Computationally ex-
pensive inference
process - Low accuracy
for flowchart dataset

Deufemia
et al. (2014)

Spatial, tem-
poral

Ranging between 81.3%
and 91% for electric cir-
cuit diagrams

Computationally ex-
pensive inference
process

Wang et al.
(2016)

Spatial, tem-
poral

84.3% accuracy for
flowchart dataset,
95.8% accuracy for FA

Computationally ex-
pensive inference
process

Table 2.7: Summary of work using PGM-based techniques. The accuracy column in
this table reports the statistics from each paper

applied to group the same symbol strokes. The algorithm is evaluated on the domain
of electric circuit diagrams, achieving accuracy values between 81.3% and 91%.

Wang et al. (2016) deployed a Markov Random Field (MRF) at the primitive level
to capture the local context (i.e., relationships between primitives). The stroke rela-
tionships are defined as ‘same symbol’ or ‘others’. Having the inferred primitive classes
and relationships from the model, grouping is done by merging neighbouring strokes
from the same class with the ‘same symbol’ relationship. In the work of Wang et al.
(2017) object relations are added to the system using grammatical descriptions of the
domain to ensure the global consistency of the recognition. The grammar also forces the
explanation of all available strokes; hence, if there are leftover strokes, a backtracking
process explores another solution that can explain all the strokes.

In the work by Delaye (2014) two tree-structured CRFs are compared for predict-
ing stroke classes; Minimum Spanning Tree (MST-CRF) and Hierarchical clustering
tree model (H-CRF). After determining the class for each stroke through the MST-
CRF, groupings of the sketch are obtained by cutting the tree where the weights of
the edges are higher than a threshold, and where connected nodes have different shape
interpretations. The structure used in the H-CRF is a dendrogram that is obtained by
applying the SLAC algorithm described by Delaye & Lee (2015) to the sketch. The
leaves of the dendrogram model the class of strokes and the nodes model the clusters of
strokes. Cutting the dendrogram on edges with a weight less than a threshold produce
the groupings of strokes. The experimental results show that the H-CRF outperforms
the MST-CRF. These approaches usually have a computationally expensive inference
process. The summary of these methods can be seen in Table 2.7.

CHAPTER 2. LITERATURE REVIEW 25

2.2.3 Other methods

In addition to the methods in these categories, there are techniques that perform sketch
recognition from a different perspective (see Table 2.8 for a summary of these methods).
For example, there are techniques that perform grouping from a top-down perspective,
where the entire diagram is considered as a whole and then broken down into pieces
sequentially. Kara & Stahovich (2007) propose a mark-group recognition technique.
This technique relies on “marker symbols” that can be accurately and inexpensively
extracted from the input data. The set of strokes coming before the ends of the marker
are considered to be shapes. These techniques rely on the existence of markers, and
so cannot be applied to the domains that do not contain a marker. Saund & Lank
(2003) decompose a sketch into sequences of contiguous line segments corresponding to
line art, and “blobs” of dense ink corresponding to text. They use Gestalt principles
(Goldmeier 1972) to group these objects into larger structures. The approach is compu-
tationally expensive for dense diagrams, and is intended to produce groupings suitable
for interactive manipulation rather than object recognition (Lin 2014).

Chao et al. (2017) present a novel gaze-aided grouping method for flowchart dia-
grams. Gaze data is collected during the drawing of diagrams and is used to assign a
heat value to every pixel in the sketching canvas. Since the heat values of arrow regions
are low, as the eye spends less time there, the regions with high heat values are the
potential parts to be searched for closed shapes.

Julca-Aguilar & Hirata (2018) propose a symbol detection and recognition system
using a deep neural network. In this research Faster Region-based Convolutional Neural
Network (Faster R-CNN) (Ren et al. 2017) is used to to find the object regions. First,
each sketch is scaled so the largest dimension of its bounding box is equal to a fixed pa-
rameter, resulting in gray-scale images. The bounding boxes around each object is also
determined and labelled accordingly. These images are then fed into a Faster R-CNN,
which is composed of three components: feature extractor, regional proposal network
(which generates bounding box coordinates), and a region classifier (for recognising
each region). For the feature extractor they have considered different networks, such as
Inception V2 (Ioffe & Szegedy 2015), Resnet 50 (He et al. 2016), Resnet 101 (He et al.
2016), and Inception Resnet V2 (Szegedy et al. 2017), resulting in different training
and inference times and accuracy. They have evaluated their approach on two public
datasets of mathematical expression (Mouchère et al. 2016) and flowchart (Awal et al.
2011). However, since they evaluate their method at the bounding box level (mean av-
erage precision (Everingham et al. 2010)), the results are not directly comparable with
other methods.

CHAPTER 2. LITERATURE REVIEW 26

Proximity Accuracy Limitations
Kara & Sta-
hovich (2007)

Spatial 70% in recognising ar-
rows for modelling Mat-
lab’s Simulink package

Limited to arrow con-
nected diagrams; do-
main dependent

Chao et al.
(2017)

Spatial 71.15% in grouping of
shapes (excluding ar-
rows) in flowchart dia-
grams

Requires peripheral de-
vices, low accuracy, lim-
ited to closed shapes

Julca-Aguilar
& Hirata
(2018)

- - Requires a large dataset
for training; The train-
ing and inference pro-
cess are computation-
ally expensive

Schäfer &
Stucken-
schmidt (2019)

- 93.5% in grouping and
recognition of flowchart
diagrams

Designed specifically for
flowchart diagram; do-
main dependent

Table 2.8: Summary of other grouping methods. The accuracy column in this table
reports the statistics from each paper

(Schäfer & Stuckenschmidt 2019) propose an extension of Faster R-CNN for flowchart
diagram recognition. The object detector in this approach is extended with an addi-
tional arrow keypoint predictor that predicts the arrow heads and tails locations. The
network architecture is designed to take the arrow keypoints information into consider-
ation, which restricts this approach to the flowchart domain. They have also proposed
an extension of their work to support recognition of online flowchart diagrams that
matches strokes with detected objects. This process is also done in a specific order that
takes the flowchart diagram structure into account. Since this approach is designed for
flowchart diagrams, the grouping and recognition rate is relatively high (93.5%) on the
flowchart dataset.

2.2.4 Summary

We believe an ideal grouping strategy should have the following characteristics:

• High accuracy

• Computationally inexpensive (for training and testing)

• Domain independent

• Supportive of a free sketch environment

In fact, these characteristics extend to all parts of a sketch recognition engine. Using
our analysis of grouping approaches presented in this section, we have summarised the

CHAPTER 2. LITERATURE REVIEW 27

Accuracy Computationally
Inexpensive

Domain
Independent

Support Free
Sketching
Environment

Simultaneous
Negative Examples ∼ ∼ 3 ∼
Grammar & Language 7 7 7 ∼
Optimisation 7 7 3 7

Sequential
Sequential Optimisation 3 7 3 ∼
Clustering: Hard Clustering 7 3 3 3

Clustering: PGM-based 7 7 3 3

Table 2.9: Comparison of grouping approaches. 3= Exhibits the characteristic,
7=Does not exhibit the characteristic, ∼=Dependant on other factors

success each approach has had in exhibiting these characteristics (see Table 2.9). Of
course, without a full comparative study of each grouping technique, it is difficult to
judge the relative accuracy of different approaches, particularly when different datasets
are used; here we comment on them based on the reported results - which in many
cases, indicates their performance in the best case scenario.

The characteristics for approaches that use negative examples is largely dependent
on the number of primitives allowed per shape. Generally, a limit is chosen that is opti-
mal for the size of valid shapes in the training set. Increasing this limit would increase
the number of negative examples that should be included in training exponentially.
Therefore, the number of shape candidates (both for training and testing) grows when
a larger number of primitives per shape is allowed. A very large training set with a
very large invalid shape class has the potential to affect the accuracy of the classifier. A
greater number of shape candidates would result in computationally expensive training
and testing phases. Although Bresler et al. (2015b) reduce the number of shape candi-
dates by using the method of Delaye & Lee (2015), the recogniser still does not perform
well in rejection and a final structural analysis step is carried out.

Grammar and language based approaches have reported low accuracy, except the
approach taken by Hammond & Davis (2009) which is highly constrained and has an
exponential time computational complexity. These approaches are usually computa-
tionally expensive, as an exhaustive search is required to match the drawn strokes with
the shape definitions of a language. They are also domain dependent, as the description
and constraints are specifically defined by an expert for a particular domain. In addi-
tion, the sketching environment is limited by the drawing constraints imposed by the
language, where any shape that does not conform to the language cannot be recognised.
Defining a language that is robust enough to handle the ambiguities of sketch recog-
nition is a difficult task. Overall, this approach has not been as successful as others
in meeting the goals of sketch recognition. However, for domain specific solutions, this
may be a suitable approach.

The accuracy of simultaneous optimisation approaches varies (see Table 2.3)We

CHAPTER 2. LITERATURE REVIEW 28

believe the accuracy is limited because these approaches rely on the temporal ordering
of primitives. They typically have a high computation time, as they need to maximise a
joint probability for the entire diagram. Although Sezgin & Davis (2008) have attempted
to allow interspersed drawing, these approaches have limited support for a free-sketch
environment, as users need to follow a similar order of drawing to that represented in
the dataset.

The sequential optimisation approaches have achieved a reasonable accuracy, and are
generally domain independent. However, these approaches are usually computationally
expensive as they carry out an optimisation process. In addition, given that these
techniques typically limit the number of primitives allowed per shape, their support for
a completely free sketch environment is questionable.

The sequential approaches that use hard clustering for the task of grouping have
reported relatively low accuracy rates. It is possible that the accuracy could be im-
proved by designing more discriminating feature sets. The computation time of these
approaches is polynomial, although during the classification process, the calculation of
pairwise features for each pair of primitives can take some time in practice. However,
one advantage is that they avoid generating too many shape candidates in the grouping
phase, which maintains low computation time for the recognition step. Given that these
methods are trainable, they can be applied to multiple domains. They also support a
free sketch environment.

The sequential PGM-based approaches are also domain independent and allow for a
free sketching environment, like the hard-clustering methods. However, they have a high
computation time as the maximisation of joint probability (in the inference process) is
computationally expensive. The reported accuracy of these approaches are relatively
low.

None of the mentioned grouping techniques satisfies all the required characteristics.
We believe in the case of over-segmentation (producing large number of shape candi-
dates), a more intelligent grouping algorithm that is capable of pruning the search space
is needed. We also believe that a domain independent recogniser is needed to accurately
reject the invalid shape candidates.

2.3 Shape Recognisers

One of the core components of a sketch recognition system is the shape recogniser
responsible for identifying sketched shapes. Different shape representation and classifi-
cation methods used in the literature will be discussed in this section.

Shape recognition techniques can be categorised in several ways. One way is based on
the type of shapes they recognise, which is single stroke or multi-stroke shapes. Single-
stroke recognisers are more suitable for the task of gesture recognition or shapes that

CHAPTER 2. LITERATURE REVIEW 29

are drawn with a single stroke. Diagrams, on the other hand, can include more complex
shapes requiring users to draw components using multiple strokes. In addition, allowing
multi-stroke shapes is essential to supporting a free sketching environment. Therefore,
we have focused on reviewing multi-stroke shape recognisers, although we have included
seminal work on single stroke recognisers.

In this section, in order to capture the variety of approaches used for shape recogni-
tion, we have categorised existing recognisers into three categories based on the choice of
classification: feature-based approaches, template matching, and grammar-based recog-
nisers. There is also a group of sketch recognition systems that use Probabilistic Graphi-
cal Models (PGMs), which identify shapes by modelling the relationship between shapes
and strokes. Although these methods perform stroke-level labelling, they do not have
a separate shape recogniser component that could be covered in this section. These
sketch recognition systems were reviewed in Section 2.2.2

2.3.1 Feature-based Methods

Feature-based approaches are based on calculating various ink features to train a clas-
sifier for recognition. These methods require a suitable set of features that can describe
different aspects of strokes to be computed and used as input to a machine learn-
ing algorithm for classification. In early research, Rubine (1991) proposed a trainable
single-stroke gesture recogniser that used 13 features to capture different aspects of a
gesture. Training samples are used to calculate weights for each feature. For a given
undefined gesture, the stroke’s features with their corresponding weights are given to
a linear classifier that generates a probability score for each class. The class with the
highest probability score is selected as the classification result. Rubine’s classifier was
later used in many sketch recognition systems (Landay & Myers 1995, 1996, Damm
et al. 2000, Chen et al. 2003, Plimmer & Apperley 2003, Pereira et al. 2004).

Other early work in this domain includes CALI (Fonseca et al. 2002), a multi-stroke
recognition algorithm that finds geometric properties of the strokes and uses Fuzzy rules
to classify geometric shapes. A trainable variant of CALI was tested with K-Nearest
Neighbour, Naïve Bayes and a decision tree. The results show that the Naïve Bayesian
Network was the easiest to implement and provided the highest recognition rate.

RATA.Gesture (Chang et al. 2012) is another single stroke recogniser that com-
putes 114 ink features (Blagojevic et al. 2010) for each stroke. The features are chosen
to measure different aspects of a stroke such as curvature, size, density, spatial and
temporal relationships to other strokes. This is followed with a feature selection process
to discard the misleading and duplicate information. A wide range of machine learning
algorithms provided in Weka (Hall et al. 2009) were tested, and an ensemble of four of
the best performing algorithms was chosen for classification.

CHAPTER 2. LITERATURE REVIEW 30

PaleoSketch (Paulson & Hammond 2008) is capable of recognising 8 low-level single
stroke primitives including line, polyline, circle, ellipse, arc, curve, spiral, and helix.
PaleoSketch was first introduced as a geometric-based recognizer (Paulson & Ham-
mond 2008) that heuristically checks rules and conditions for each primitive. Later on,
PaleoSketch was extended in the research by Paulson et al. (2008) to combines 31 geo-
metric features with the 13 features introduced in the work of Rubine (1991) to train
a quadratic classifier that returns multiple ranked interpretations with normalised con-
fidence values. A Multi-Layer Perception (MLP) version of PaleoSketch that produces
normalised confidence values was also introduced in a paper by Paulson (2010).

Fahmy et al. (2018) propose a two step classification method for symbol recognition.
In the classification pre-processing the input is classified as one of closed shape, open
shape, or incomplete shape classes. A separate classifier is trained for open shapes and
a separate one is trained for the closed shapes. Each input shape is represented with
some geometric features, while SVM and K-NN were the choice of classifiers, with the
SVM achieving better results. The choice of geometric features used in this research
make this approach domain dependent. The proposed method can only recognise lines,
triangles, rectangles, squares, circles, ellipses, diamonds, arrows, arcs, and zigzag lines,
which needs to be further extended for other shapes.

The majority of the feature-based methods only support single stroke shapes or
gestures. Although the neural network version of PaleoSketch (Paulson 2010) is capable
of recognising multi-stroke shapes, it still cannot recognise complex shapes. Although
most of these methods have performed well, yielding accuracies in a range of 90-98%,
they cannot easily be extended for complex shapes (where a subset of a shape is also a
valid shape).

2.3.2 Template Matching Methods

These techniques perform the classification by matching the given input to a set of
training templates and choosing the best match as the classification result. The choice
of shape representation and matching techniques varies in different approaches. We
have categorised these methods based on the representation method.

$ Family Recognisers

The $ family recognisers were designed to be easy to implement and fast in terms of
computation time. The first of these is the $1 recogniser (Wobbrock et al. 2007), a
single stroke recogniser that performs classification in 4 steps. First, depending on the
speed of drawing and the sampling rate of the hardware, gestures are resampled into N
equidistantly spaced points. After the resampling process, the gesture is rotated so that
the angle between the centroid of the gesture and the gesture’s first point is 0°. Next,

CHAPTER 2. LITERATURE REVIEW 31

the gesture is non-uniformly scaled to fit into a reference square. Lastly, the recognition
is carried out by calculating the average Euclidean distance between the gesture’s points
with that of the template shape in the dataset. The template with the least distance is
chosen as the result of recognition.

Protractor (Li 2010) builds on $1 by supporting both orientation-variant and orientation-
sensitive shapes. For the orientation sensitive version, eight rotation variations of the
gesture are considered for recognition. In the classification process, the distance is mea-
sured by calculating the inverse cosine distance between the input gesture vector and
template gesture vectors. Since the rotation in the pre-processing step might not re-
move the orientation noise, the templates are also rotated by an extra amount when
calculating the distances. The gesture template’s label with the highest similarity (the
inverse cosine) is then selected as the recognition result.

$N (Anthony & Wobbrock 2010) adds support of multi-stroke recognition to $1 al-
gorithm. This algorithm generates all permutations of a multi-stroke gesture and stores
them as a single stroke. Each permutation represents one possible combination of stroke
order and direction. By connecting the endpoints of gesture strokes, a multi-stroke ges-
ture is treated as a single stroke. Henceforth, the recogniser treats the multi-stroke
gestures as single-stroke ones. The $N algorithm was extended to $N-Protractor (An-
thony & Wobbrock 2012) that uses the same matching method as Protractor, resulting
in more accurate recognition than the $N recogniser. Vatavu et al. (2012) introduced
$P to overcome the problem of memory and computation cost in $N and $N-Protractor.
The $P recogniser disregards the gesture timeline and treats gestures as an unordered
list of points. The task of the recogniser is to match the points of a gesture to that of
all templates by calculating the sum of Euclidean distances for all pairs of points. The
template’s label with the smallest distance is then selected as the classification result.
Searching for the minimum matching distance is a computationally expensive task in
these methods. $Q was introduced by Vatavu et al. (2018). It is slightly more accurate
than $P, and is on average 46 times faster. $Q was designed on top of $P with some
computation optimisation during the template distance calculation. This algorithm has
only been tested on a dataset they collected.

ARG-Based Recognisers

Another approach to template matching is through representing shapes as an Attributed
Relation Graph (ARG) describing the geometry and topology of a shape (Yin & Sun
2005, Lee et al. 2007). The recognition is carried out by matching the input shape’s
graph to that of each shape definition in the dataset. In the work of Lee et al. (2007) a set
of attributes including the relative length of primitive to the total length of primitives
constructing the shape, number of intersections between primitives, relative location

CHAPTER 2. LITERATURE REVIEW 32

Figure 2.5: An ARG representation of a square (Lee et al. 2007)

of intersections and the angle of intersections are encoded into the ARG. Since graph
matching is an NP-Complete problem, they propose five approximate matching tech-
niques to find the best match between two ARGs. An example of an ARG representation
of a square can be seen in Figure 2.5.

Costagliola, De Rosa & Fuccella (2014) present an ARG-based recognition system
for partially drawn shapes. To estimate the similarity between partially drawn shapes
and a template shape, they consider a number of possible subgraph isomorphisms. The
mapping cost of each subgraph isomorphism is calculated and the minimum cost is
selected as the matching distance between two shapes. Since the exact graph matching
is computationally expensive, approximate graph matching procedure is used.

Although some techniques are proposed to speed up template matching for $-family
(Reaver et al. 2011b, Taranta & LaViola 2015) and ARG-based recognisers (Lee et al.
2007), the recognition process still remains computationally expensive. The template
matching recognisers can be used for complex shapes, however, these approaches are
computationally expensive in the classification process. Recognisers with high compu-
tation time are not suitable for sketch recognition systems that generate several shape
candidates. In addition, the ARG-based approaches require an expert to define the
ARGs for each shape in the domain.

CHAPTER 2. LITERATURE REVIEW 33

Appearance-Based Recognisers

Appearance-based approaches only consider the visual appearance of shapes, rather than
the properties of each individual stroke or their relationships with each other. Although
the choice of classification for these approaches can be both template matching and
discriminative classifiers, for simplicity we have categorised them as template matching
approaches.

Visual appearance, as a choice of shape representation, has been investigated in
different ways (Shilman & Viola 2004, Shilman et al. 2004, Oltmans 2007, Deng et al.
2013). For example, Hse & Newton (2004) calculate Zernike moments (a form of rota-
tion invariant image representation) as features for training three different classification
algorithms: Support Vector Machine (SVM), Minimum Mean Distance (MMD) and
Nearest Neighbour (NN), having SVM achieving the highest recognition rate. In the
work of Kara & Stahovich (2005), shapes are represented as 48× 48 down-sampled bi-
nary images and recognition is carried out in two steps. As a pre-recognition step, the
input is incrementally rotated and compared to the shapes in the dataset to determine
the best alignment angle. Next, as a recognition process, four algorithms calculate the
spatial distance between the aligned input and the shapes in the dataset. The result of
the four classifiers are then combined to produce a single recognition value describing
the similarity of the input and shapes in the dataset.

Ouyang & Davis (2009b) present a shape recogniser that focuses on the visual prop-
erties of shapes while exploiting the temporal information of strokes. As a pre-processing
step, strokes are first resampled to a constant spatial frequency and then each shape is
normalised by translating its centre of mass to the origin, and scaling it horizontally and
vertically. The on-line stroke sequences are then converted into a set of low resolution
feature images by calculating four orientation features and one endpoint feature. The
classification is performed by computing an image deformation model (IDM) (measur-
ing the distance of the input to all the templates in the training set), resulting in a high
recognition rate on three different datasets (ranging from 96.2% to 99.2%). They also
use discriminative classifiers (i.e., SVM with linear and RBF kernel functions) result-
ing in a high accuracy. This work has been extended by Johnston & Alvarado (2013)
to include velocity information of drawing for digital circuit domain, which improved
the results. A similar shape representation was used by Liu & Zhou (2006) for online
Japanese character recognition, but with a different pre-processing steps.

It has been shown that the choice of features and classifiers can affect the recognition
accuracy in appearance-based recognisers (Tumen et al. 2010). The classification of the
input can either be performed using template matching techniques or discriminative
classifiers, which the latter has the advantage of lower computation time in classifica-
tion. Overall, appearance-based approaches have shown to be robust against drawing

CHAPTER 2. LITERATURE REVIEW 34

variations as compared to other recognisers.

2.3.3 Grammar-based Methods

These approaches exploit geometric relationships between parts of a shape to perform
the classification. Some grammar-based approaches (Costagliola et al. 2003, 2005) allow
shapes to be defined hierarchically by textually describing shapes in the form of a
programming language. A popular multi-stroke recogniser that uses a shape description
language is LADDER (Hammond & Davis 2006). The language consists of predefined
shapes, constraints and some high level semantics for each domain. In the recognition
process, if the rules and constraints of a shape definition meet for the given input,
the recogniser returns the shape label as the classification result. LADDER has been
incorporated into SketchREAD (Alvarado & Davis 2004), which uses a dynamically
constructed Bayesian Network to determine how well the given input fits the shapes in
the dataset. An example of a description for an open arrow with LADDER can be seen
in Figure 2.6.

Grammar-based approaches are shown to be powerful for recognition of shapes by
checking a number of rules and constraints. However, using these approaches slows down
the sketch recognition system when the sketch contains large number of strokes (Cheema
2014). Moreover, these approaches require experts to describe diagram components,
which makes them domain dependent.

2.3.4 Summary

In this section we reviewed existing shape recognisers; their shape representation and
classification techniques. Feature-based methods are more suitable for single stroke
recognition, as they capture a wide variety of different aspects of a stroke. The main
computation time of these methods is the feature calculation, while the classification us-
ing discriminative classifiers can be computed quickly. On the other hand, the template
matching systems support multi-stroke and complex shapes, although the computation
time for the classification is high since they need to match the input with the templates.
The appearance-based approaches that only consider the visual appearance of shapes
have shown to have a high recognition rate while being insensitive to drawing variations.

2.4 Rejection

One of the challenges in sketch recognition is determining which set of strokes together
form a shape candidate, which is referred as the grouping process. The majority of
the work in the literature (except the clustering approaches, Section 2.2.2), perform

CHAPTER 2. LITERATURE REVIEW 35

Figure 2.6: The description of an arrow in LADDER (Hammond & Davis 2006)

CHAPTER 2. LITERATURE REVIEW 36

grouping by producing several shape candidates, among which the majority are in-
valid. The invalid shape candidates either contain strokes from multiple shapes or are
incomplete forms of a shape. To reject such shape candidates, different methods are
adopted. For example, in grammar or rule-based approaches, the shape candidates that
do not conform to the defined language/rules are rejected (Alvarado & Davis 2004, 2006,
Julca-Aguilar et al. 2017, Hammond & Paulson 2011). In the sequential optimisation
approaches (Section 2.2.2) a combination of shape candidates that optimise a cost func-
tion are selected and the rest are rejected (Shilman et al. 2004, Shilman & Viola 2004,
Feng et al. 2009). Defining rules and domain patterns requires an expert’s input for
each domain, and optimising a cost function can be a computationally expensive task.

The use of negative examples is a common method used for rejection (Section 2.2.1),
where a classifier is trained with invalid shapes. These approaches produce a large num-
ber of shape candidates and train the recogniser with both the negative and positive
examples. Since the number of negative examples is very large and there is a large
variation within this negative class, these approaches cannot be used for accurate re-
jection of negative examples. Therefore, a final step of optimisation for selecting the
final candidates is carried out. The classifier needs to learn about a very large class of
negative examples, which can affect the accuracy of the classifier for the regular shapes.
Due to this dataset imbalance (the very large negative examples class), either synthetic
data should be generated for the positive classes (Bresler et al. 2016a) or the negative
class needs to be separated into multiple sub-classes (Bresler et al. 2015b). The num-
ber of sub-classes depends on the domain and needs to be defined by experiments (for
example Bresler et al. (2015b) used 30 and 20 classes for FC and FA datasets, respec-
tively), which is another downside for these approaches by making them more domain
dependent.

An alternative approach for rejecting negative examples is through novelty detection,
where the goal is to identify objects that are not similar to the training set (Marsland
2003, Pimentel et al. 2014). To the best of our knowledge, three papers have used
novelty detection in the context of sketch recognition (Arandjelović & Sezgin 2011,
Tirkaz et al. 2012, Yesilbek & Sezgin 2017). As described in Section 2.2.1, Arandjelović
& Sezgin (2011) use a one-class SVM classifier to reject invalid shape candidates that are
generated using HMM, while Yesilbek & Sezgin (2017) explore the use of few examples
for labelling sketch datasets.

Yesilbek & Sezgin (2017) have looked at ways to build recognisers with small number
of examples, which include novelty detection techniques. They automatically extend a
very small set of labelled examples (1-3 examples) with new examples extracted from un-
labelled sketches. Since this work considers labelling the full sketch (instead of isolated
shapes), it produces possible shape candidates for labelling, among which the majority

CHAPTER 2. LITERATURE REVIEW 37

are invalid. To reject invalid shape candidates in a sketch, two steps are carried out.
The first step is a conservative rejection that allows confidently discarding some of the
negative examples. For this, a linear kernel SVM is trained with some positive and
some negative examples of 1-3 randomly chosen sketches. The trained classifier is then
used to reject those unlabelled shape candidates that are predicted as negative with a
high confidence. In the second step, four methods are proposed to label some of the
shape candidates to be used for training the shape classifier. Two of these approaches
use the nearest neighbour classifier while one generates artificial instances instead of se-
lecting the candidates. They also propose a context-based system that selects the shape
candidates based on their appearance and their context. The context-based approach
achieved the best results in the experiments.

Tirkaz et al. (2012) propose an auto-completion system while performing rejection
when enough information is not provided. In this research the training dataset is ex-
tended by adding all the partial shapes that occur during drawing to be able to learn
the visual appearance of partial shapes. Based on the feature representation of shapes,
Constraint K-Means (CKMeans) clustering algorithm is used to enforce the separation
of full shapes into different clusters. Based on the calculated posterior class probabilities
for a shape candidate, the system either infers a class label or delays the classification
decision until further strokes are added to the input. The experiments on Course of
Action Diagrams (COAD) (Manual 1997) dataset show that when 100% accuracy for
full symbol recognition is achieved, about 23% of symbols were incorrectly rejected. The
results on NicIcon (Niels et al. 2008) shows 99.40% accuracy for full symbol recognition
and 2.36% is the rejection rate. This should be noted this approach is only tested on
isolated shapes, not on connected diagrams. In connected diagrams, apart from the
valid and incomplete shapes, depending on the grouping strategy, some invalid shape
candidates might also be hypothesised that need to be rejected.

Sketch recognition systems often produce many shape candidates among which, only
a small portion is valid. In this section, we reviewed different methods used for rejecting
invalid shape candidates. The most dominant work is training a SVM classifier with
negative examples and using this to recognise invalid shape candidates, as a negative
class. This method has not been efficient in rejecting the invalid shape candidates and
have required further steps for selecting the valid shape candidates. We also reviewed
work towards using novelty detection techniques for other applications in sketch recog-
nition. The possibility of using novelty detection techniques for rejecting invalid shape
candidates has not been well explored and seems to be a promising way forward.

CHAPTER 2. LITERATURE REVIEW 38

Figure 2.7: Some examples of different arrow shafts in the flowchart diagram.

2.5 Connector Recognition

The connectors are inherently different from regular shapes by their appearance. Aside
from un-directed connectors (without a head), most of the connectors in diagrams are
composed of two main parts, the shaft and the head. The shaft can be drawn with any
arbitrary shape, which make them difficult to recognise. For example, Figure 2.7 shows a
few examples of different drawn arrow shafts in the flowchart dataset. Connector heads
can also be drawn with different shapes. For example, in the work of Awal et al. (2011),
the connector heads are drawn with filled circles, circles, triangles, and arrow heads.
This uncertain shape of the shaft and heads makes the task of connector recognition
difficult. Moreover, the connectors are spatially close to the shapes, which makes them
difficult to differentiate from the regular shapes.

In this section we will cover the approaches designed specifically for connectors.
Note that the clustering approaches in Section 2.2.2 perform the grouping of connectors
without a separate connector grouping/recognition component. Similarly, the optimi-
sation methods that use time-based models (Section 2.2.1) also perform grouping and
recognition of connectors within the same model.

Some work treats the connectors in the same as way as regular shapes and do not
have a separate connector recognition component (Bresler et al. 2013b, Awal et al.
2011), although these approaches have performed poorly on connectors. Shilman &
Viola (2004) use the same feature representation as for regular shapes to represent syn-
thetically generated arrows, and achieve a good recognition rate, however, the generated
arrows only have a short straight line. They also point out that their system would not
work with real arrows with different arrow shafts.

A series of work on connector recognition is specifically devoted to arrows using
grammar and language (Costagliola et al. 2006, Brieler & Minas 2010). In these meth-
ods, a visual language is used to describe the the arrow and other shapes in a particular
domain. For example, Figure 2.8 shows the description of an arrow in the family tree
domain. These approaches require an expert to define the connectors and the rest of
the shapes in a diagram.

In a similar manner, some rely on a geometric definition for connectors (arrows in
particular). For example in the work of Kara & Stahovich (2007), arrows are required to

CHAPTER 2. LITERATURE REVIEW 39

Figure 2.8: The description of the shape “arrow” in family tree domain Alvarado &
Davis (2004)

Figure 2.9: An example of a drawn arrow with the five key points matched (Kara &
Stahovich 2007)

be drawn either with a single or two strokes, from tail to head. Five key points (shown
in Figure 2.9) are identified based on the pen speed minima. A series of geometric tests,
such as calculating the angle between points, or the length of line segments, are carried
out to determine whether the input is an arrow. The work of Kara & Stahovich (2007)
was extended by Stoffel et al. (2009) who used a different classification method. In this
research, first the arrows are rotated to point to a specific direction, after scaling all the
points, the point coordinates, angles and lengths of the segments between points are
calculated and fed into a neural network to determine whether they belong to a shape
or a connector. These approaches put a restriction on how the arrows should be drawn
and would need further expansion to support other connector heads.

Hammond & Paulson (2011) found only four types of drawing for arrows in their
testing dataset (a collection of 29 shapes or partial diagrams from different domains

CHAPTER 2. LITERATURE REVIEW 40

Figure 2.10: An example of a drawn arrow with the five key points (Hammond &
Paulson 2011)

collected in isolation). The first case is when the whole arrow is drawn with a single
stroke, and the second one is when the shaft is drawn with a single stroke and the head
is drawn with two strokes (see Figure 2.10a and b). These two cases are recognised with
the same approach they use for recognising regular shapes (the classifier’s confidence
must be above 75% for the connector to be accepted). For the other two cases, before
the classification a pre-processing step is required. The third case is when the shaft is
drawn with a single stroke and the head is drawn with a separate single stroke. For this
case, they split the head at the corner and then recognise it in the same way as regular
shapes. The fourth case is when the user draws the shaft and one half of the arrow
head with a single stroke, and the second half of the arrow head with another stroke.
This case is handled by separating the head part from the shaft and then performing
the recognition. Although 96.3% of the arrows are recognised correctly, this work is
designed for arrows that are drawn in a specific way and is not applicable for other
types of connectors or other variations of arrow drawings.

Bresler et al. (2014) propose an arrow detection system that is carried out after
finding all the regular shapes. The arrow detector in this system tries to find connectors
between all the pairs of recognised shapes. The connector’s shaft between shapes are
created incrementally, by finding a stroke in the vicinity of a recognized shape and
iteratively finding the strokes in the vicinity of the connector stroke and so on. This
continues until the number of strokes reaches 5 and get discarded or the continuation of
strokes reach another shape. For an identified arrow shaft, multiple head candidates in
the vicinity of the shaft stroke’s endpoints are hypothesised and the one with the highest
score is selected. The score of a head is calculated by considering the confidence of the
head’s bounding box shape and distance of the head centroid from the corresponding
endpoint of the shaft. This arrow detection approach is incorporated in their sketch
recognition system and achieves 74.4% and 89.3% accuracy in correctly grouping and
recognizing the arrows in the flowchart and finite automata datasets, respectively. It
should be noted that for the domain of finite automata, the arrows entering the initial

CHAPTER 2. LITERATURE REVIEW 41

state are considered as a regular shape, not a connector, since they all have a similar
shape.

Bresler et al. (2015a) proposed an arrow head detection using relative stroke posi-
tioning. Similar to their previous work (Bresler et al. 2014), the detection of an arrow’s
shaft is done iteratively by simply adding strokes to a sequence such that the first stroke
starts in a vicinity of the first shape and the last stroke ends in a vicinity of the second
shape. Both endpoints of the shaft are considered to find the arrow head. For an arrow
shaft, first a reference stroke (a sub-stroke of the shaft) and a reference point (end-point
of the shaft) are identified. These points are used to express the relative positioning
of the query strokes. The query strokes are all strokes in the vicinity of a given end-
point of the shaft’s endpoint, which are not a part of the shaft itself nor the two given
shapes. The information about the relative positioning and each query stroke are given
to a Bidirectional Long Short-Term Memory (BLSTM) classifier which returns the class
label (‘shape’ or ‘no-shape’) and its confidence level. The sum of confidences of each
arrow head candidate is calculated and the one with the highest value is selected as the
arrow head. This approach has not been evaluated on connectors in isolation and has
only been incorporated with their whole sketch recognition system, which carries out
a final candidate selection using the optimisation technique. In the experiments, their
system found 78.1% and 92.8% of the connectors in the flowchart and finite automata
datasets, respectively.

In this section, we reviewed different approaches for connector grouping and recog-
nition. We showed that the majority of the work is designed for a specific type of
connector that should be drawn in a particular way. In the work of Bresler et al. (2014,
2015a) some possible connector candidates are generated and the best suitable ones are
selected in the final optimisation process.

2.6 Summary

In this chapter we reviewed sketch recognition systems, focusing on grouping and shape
recognition, rejection and connector recognition. One challenge is to determine which
strokes together form a single shape. Different methods are adopted for this grouping,
that either work simultaneously with a recogniser or perform the grouping indepen-
dently. We reviewed the existing methods used for recognising a shape candidate. We
also reviewed the different techniques used for rejecting invalid shape candidates. This
area has received little attention thus far, particularly the use of novelty detection for
rejection. Finally, we reviewed various work towards connector recognition and showed
that the work in this area is very limited.

Chapter 3

System Design

This chapter describes the architecture of our sketch recognition system, followed by
full details of the sketched diagram datasets used throughout this thesis for system
development.

A sketch diagram can be composed of text, shapes and connectors. The separation
of text from the rest of strokes is out of the scope of this PhD. Therefore, for our
experiments throughout the development, we manually deleted the text strokes from
the diagrams. For the final evaluations, we either removed the text for full comparative
study or used the same divider other approaches used for a fair comparison.

The process of grouping and recognition of shapes in a diagram are tied together.
Therefore, we decided to treat them as a simultaneous task. Later, this became more
clear that rejection is going to be an essential part of the process. Despite the simulta-
neous nature of our work, we chose to design, implement and test each part separately
and then combine them all together and test the whole system.

One important example of developing a part of the system in isolation that will be
described shortly (in Chapter 4) is the grouper. Since the grouper relies on having a
recogniser with recognition and rejection capability, we built a mock recogniser that
gives 100% accuracy to be able to check the grouper’s performance.

The design of each part was initially informed by the literature review. We identified
areas that could be improved upon and devised and implemented methods to address
these areas accordingly. We made each part of the system as good as we can by an
iterative process of design, implementation, analysis, and evaluation. Each part of the
system was evaluated with the development datasets (which will be described in Section
3.4) in isolation. The analysis of the results could lead to further design, development
and evaluation.

Once all the parts of the system were finalised and had been evaluated in isolation,
we combined them together to form the whole sketch recognition system. The whole
system was then evaluated on fresh datasets for further evaluation and comparison to

42

CHAPTER 3. SYSTEM DESIGN 43

other approaches in the literature. In the following, we will provide details of the system
design.

3.1 System Design

In this section we illustrate the architecture of our sketch recognition system. The
sketched diagrams are usually comprised of three semantically distinct strokes, which
are text, shape and connector. In our sketch recognition pipeline, we assume a text
divider such as that designed by Blagojevic et al. (2011) is used to separate the text
strokes from the rest. Therefore, the text stroke separation, grouping and recognition
is out of the scope of this PhD. Our system is comprised of two phases, the use and
training phases, which is described in this section.

3.2 Training Phase

The training process shown in Figure 3.1 takes a set of labelled diagrams as input
and produces the shape recogniser and the connector recogniser. The grouper is a
deterministic algorithm without any trainable part; therefore, it is not included in this
section. The shape recogniser is composed of two main components: the shape rejector
and the shape classifier. The shape rejector is a component that only learns about
valid shapes and rejects any other shape, whereas the classifier identifies which class
the shape belongs to.

The connectors are also shapes. However, their appearance can vary markedly
between examples, and they have requirements that are not true of general shapes,
such as the need to connect shapes. We therefore treat them separately. The connector
recogniser only learns about the common part of connectors, which is the head. For
connectors, we only need a rejector, and not a classifier, since the class is already known.
Training a classifier or a rejector requires a training set, which is obtained through a
feature extractor component.

3.3 Use Phase

As shown in Figure 3.2, the use phase is comprised of two main steps: grouping and
recognition of shapes, and connector recognition. The input to the system is a list of
strokes drawn in a diagram. The output of the system will be a list of recognised shapes,
connectors and a list of unrecognised strokes.

The shape grouper and recogniser work simultaneously to find and recognise shapes
in the given diagram. The grouper is a deterministic algorithm that hypothesises shape

CHAPTER 3. SYSTEM DESIGN 44

F
ig
ur
e
3.
1:

O
ur

sk
et
ch

re
co
gn

it
io
n
sc
he

m
e
(t
ra
in
in
g
ph

as
e)

CHAPTER 3. SYSTEM DESIGN 45

Figure 3.2: Our sketch recognition scheme (use phase)

candidates based on some heuristics. The design of such a grouping algorithm is one of
our contributions in this PhD.

The shape recogniser has an embedded rejector that determines if a shape candidate
is valid. The rejector uses novelty detection methods for rejection. The output of the
shape grouping and recognition process is a list of recognised shapes and unrecognised
strokes that are given to the connector recognition system.

The connector recognition process is to find the connectors among unrecognised
strokes as elements connecting the shapes. The connector localiser hypothesises pos-
sible connector head candidates around recognised shapes and the connector rejector
determines the validity of the candidates.

Diagrams often include shapes that are made of more than one shape. These shapes
can be extended to other shapes in that domain. Having knowledge about which shapes
are extendable is helpful information that can reduce the computation time of the
grouping (this is discussed further in Chapter 4). We give this information to the
system explicitly by defining a list of extendable shapes for that domain.

3.4 Datasets

We gathered different datasets, including publicly available and some from other re-
search groups. We divided these datasets into development and evaluation datasets.
The development datasets were used for training and analysis of each component dur-
ing the development process; their details are provided in this section. It should be
noted that the temporal order of drawing for all datasets is provided. These datasets
are as the following:

• FC (Awal et al. 2011).

• FA (Bresler et al. 2014).

• Flowchart diagrams (Stevens et al. 2013).

CHAPTER 3. SYSTEM DESIGN 46

Figure 3.3: Examples of the shapes in the FC dataset (Awal et al. 2011)

• Class diagrams (Stevens et al. 2013).

• Digital circuit diagrams (Stevens et al. 2013).

Fresh datasets are used for evaluation of the whole system (referred to as the evaluation
datasets); their details are provided in Chapter 7.

All the experiments for this thesis are carried out on a Surface Pro 4 (Core i7-6650U,
16GB RAM). All the code is written in C# using Visual Studio 2017.

3.4.1 FC Dataset

This dataset includes 419 sketches of flowcharts collected from 38 participants using
digital pen enabled devices. This dataset is publicly available 1 2 and is the largest
dataset we have used. Participants were shown a template diagram and were asked to
copy the diagram. In total there are more than 9000 shapes from 6 classes (text, arrow,
data, connection, terminator, process, decision). The ground truth for the dataset is
provided as well. The dataset is split into a training set (248 sketches) and test set
(171 sketches). Figures 3.3 and 3.4 show an example of each class and an example of a
sketch in this dataset, respectively.

After checking the test set, we realised two of the shapes are mislabelled; in one
sketch a connection is mislabelled as a decision and in another sketch, an arrow is
labelled as a process. The details of this dataset after changing the label for these two
shapes can be seen in Table 3.1. It should be noted that the details of the dataset in the
paper introducing this dataset (Awal et al. 2011) is different from their website, as the
published paper has lower number of diagrams. We assume that they have expanded
this dataset since the paper (Awal et al. 2011) was published.

This dataset includes text strokes as well as the shape and connector strokes. In
the pipeline of our sketch recognition, before the grouping and recognition of shapes, a
divider separates the text strokes from the rest. For our experiments, we have assumed
a perfect divider that can accurately separate the text strokes by excluding all the text
strokes from the diagrams.

1http://ivc.univ-nantes.fr/en/databases/Flowchart/
2We are using FC dataset v1.7

CHAPTER 3. SYSTEM DESIGN 47

Figure 3.4: An example of a drawn sketch in the FC dataset (Awal et al. 2011)

3.4.2 FA Dataset

Another publicly available dataset is the finite automata (FA) dataset (Bresler et al.
2014)3. This dataset contains samples of 12 diagram patterns drawn by 25 participants,
which results in 300 diagrams. The dataset is collected on a Tablet PC. The dataset
is divided into training, validation and test sets. The validation set is usually used for
training neural networks to keep track of how well the algorithm is doing as it learns. For
our experiments, since no validation process is required during training, we combined
the training and validation set to be closer to the 20/80 rule (where 80% of the data is
used for training and the other 20% is used for testing). This resulted in 216 diagrams
for training and 84 diagrams for testing.

This dataset is composed of two classes for regular shapes (state and final state),
arrow and text. Table 3.2 shows the details of this dataset and Figures 3.5 and 3.6 show
an example of a drawn sketch and an example of each class in this dataset, respectively.
This dataset contains a shape hierarchy because state can be extendable to final state,
which can be a challenge for the grouping and recognition process.

Similar to the FC dataset, this dataset also includes text strokes. For our experi-
ments, we manually exclude the text strokes as we assume a perfect divider is used.

3We are using FA dataset v1.1

CHAPTER 3. SYSTEM DESIGN 48

Training set Test set
#Shapes #Strokes #Shapes #Strokes

Terminator 299 458 203 446
Data 416 1382 294 924
Decision 310 1055 211 695
Process 598 1828 407 1130
Connection 177 190 125 136
Arrow 1829 3882 1260 2736
Text 1911 14560 1291 9629
Total 5540 23355 3791 15696

Table 3.1: The details of the FC dataset

Training set Test set
#Shapes #Strokes #Shapes #Strokes

State 720 733 284 287
Final State 342 688 129 260
Text 2833 5448 1114 2077
Arrow 2043 3980 796 1501
Total 5938 10849 2323 4125

Table 3.2: The details of the FA dataset

3.4.3 Flowchart Dataset

This second dataset of flowcharts (Stevens et al. 2013) were drawn by 20 participants on
a Tablet PC. This dataset is simpler and much smaller than the FC dataset. We picked
this dataset for our development due to its simplicity, which made it easier to trace and
track each process of the development. Each diagram is a sketch of a flowchart diagram,
comprised of three different regular shapes (start/end, process and decision) and arrows
as connectors. This dataset does not include any text. Figures 3.7 and 3.8 show an
example of this diagram and an example of each class, respectively. The details of this
dataset can be see in Table 3.3.

#Shapes #Strokes
Start_end 39 47
Process 108 198
Decision 62 122
Connectors 249 512
Total Shapes 209 367
Total 458 879

Table 3.3: The details of the flowchart dataset

CHAPTER 3. SYSTEM DESIGN 49

Figure 3.5: An example of a drawn sketch in the FA dataset

Figure 3.6: An example of the shapes in the FA dataset

Figure 3.7: An example of a drawn sketch in the flowchart dataset

Figure 3.8: An example of the shapes in the flowchart dataset

CHAPTER 3. SYSTEM DESIGN 50

Figure 3.9: An example of a drawn sketch in the class diagram dataset

#Shapes #Strokes
Class 174 751
Connector 190 477
Total 364 1228

Table 3.4: The details of the class diagram dataset

3.4.4 Class Diagram Dataset

This dataset was collected by 20 participants each drawing a class diagram on a tablet
PC (Stevens et al. 2013). This dataset is different from other datasets as there is only
a single regular shape (the class) with arrows connecting them. Figure 3.9 shows an
example of a class diagram drawn in this dataset. The details of the class diagram
dataset can be see in Table 3.4. The ground truth for this dataset was already provided
for the class shape and the connectors.

CHAPTER 3. SYSTEM DESIGN 51

3.4.5 Digital Circuit Diagram Dataset

The digital circuit dataset comprises 20 sketches drawn by 20 participants on a Tablet
PC (Stevens et al. 2013). The dataset includes 8 distinct shapes, which are AND,
NAND, OR, NOR, XOR, XNOR, Start and NOT. One of the challenges in this domain
is that some of the shapes from different classes have a high similarity to each other.
For example, Figure 3.10 shows an example of each class in this diagram, where OR
and AND classes are visually similar. In addition, this domain contains complex shapes
(i.e. shapes that are built from other shapes). Therefore, there is a hierarchy of shapes
in this domain, which is shown in Figure 3.11. For example, in Figure 3.11 it can be
seen that OR gate is extendable to both NOR and XOR gates. The details of this
dataset can be seen in Table 3.5. Figure 3.12 shows an example of a drawn digital
circuit diagram.

Figure 3.10: Examples of the shapes in the digital circuit dataset

#Shapes #Strokes
AND 21 48
NAND 21 66
OR 19 43
NOT 20 58
XOR 21 75
XNOR 18 79
NOR 22 72
Start 77 223
Connectors 207 444
Total 426 1108

Table 3.5: The details of the digital circuit diagram

CHAPTER 3. SYSTEM DESIGN 52

Figure 3.11: A visual representation of the shape hierarchy in the digital circuit
domain

3.5 Summary

In this chapter we described the system design and the required components of our
sketch recognition system. We also provided a description of the datasets we used
during the development.

Figure 3.12: An example of a drawn sketch in the digital circuit dataset

Chapter 4

Shape Grouper

For a sketch recognition system, it is crucial to group strokes that belong to individual
shapes, so that those shapes can then be recognised. Particularly in free-sketch environ-
ments, grouping of strokes is necessary to deal with multi-stroke shapes and intersper-
sion of strokes. This chapter describes our approach towards grouping. In our system,
the grouping process occurs after separating text strokes. It uses a search algorithm
that uses spatial heuristics to form shape candidates from neighbouring strokes. The
grouper works simultaneously with the recogniser (which will be described in detail in
Chapter 5) to check the viability of the shape candidates. In this chapter we describe our
grouping algorithm followed by experiments showing the performance of the grouping
algorithm under different circumstances.

4.1 Neighbourhood Search-based Grouping Algorithm

Our grouping algorithm takes a bottom-up approach. The algorithm picks a single
drawn stroke and incrementally explores its spatial neighbours to hypothesise different
shape candidates. The algorithm starts with a small scale search to pick up shapes
with a small number of strokes and increases the scale to find the shapes with a larger
number of strokes. Once a shape candidate is hypothesised, it is given to a recogniser.
The recogniser should classify the candidate shape if it is a valid shape and reject it
otherwise, returning it to the search space. The spatial proximity of two strokes is
measured by calculating the minimum Euclidean distance between all point pairs of the
two strokes.

The input to the algorithm (I) is a list of strokes in temporal order of drawing
and a list of extendable shapes in the domain (E, which is given to the system by the
user). E contains the list of shapes in the domain that are further extendable to other
shapes (e.g. OR is extendable to XOR and XNOR gates, and XOR is extendable to
XNOR in the digital circuit domain, hence, OR and XOR are included in E; see Figure

53

CHAPTER 4. SHAPE GROUPER 54

(a) OR gate (b) XOR gate (c) XNOR gate

Figure 4.1: An example of the OR, XOR and XNOR gates that shows the XOR gate
is extendable to the XNOR gate.

4.1). The output is a list of recognised shapes (S) and unrecognised strokes (U). The
algorithm starts with the head of I as the primary stroke (P) and incrementally builds
a candidate shape list (C) by exploring the neighbours of P . The candidate shape
list is built by first exploring the immediate neighbours of P , and then exploring the
neighbours of neighbours, and so on. The candidate shape list is expanded up to Maxs

size, a threshold that determines the maximum number of elements in C. The algorithm
starts with a small value for Maxs to pick up shapes with a small number of strokes
and increases it when there are leftover strokes. The initial value of Maxs is set to 5
based on experiments.

Every time a new element is added, the subsets of C are checked to see if a new
shape can be recognised. Expanding C up to size Maxs and not finding a shape in the
subsets of C implies that starting with that P and exploring itsMaxs neighbours could
not result in recognising any shape, hence, the algorithm picks the next available item
in I as a new P . The same process of building a candidate shape list is repeated for
the new P . If a new shape is recognised in the subsets of C, based on the information
about extendable shapes (E), the algorithm decides if the shape should remain in the
search space or it should be moved to a list of recognised shapes (S). If the recognised
shape is extendable, we keep the shape in the search space to see if it is a sub-shape of
a bigger shape; otherwise, the shape is moved to S to reduce the search space.

The search process continues with selecting new primary strokes and building can-
didate shape lists. Once all the items in I have been used as P , the algorithm scales
up the search by increasing Maxs to check larger candidate shape lists. This process
continues until Maxs either reaches an Upper Bound (UB) threshold or is equal to
the size of I, which ensures that all possible combinations of items in I are checked if
required. Another stopping condition for the algorithm is that I is empty, meaning that
all the drawn shapes are unextendable and have been moved to S. The pseudocode of
the grouping algorithm can be seen in Algorithm 1, and Figure 4.2 shows the flowchart
of the grouping process.

Figure 4.4 shows an example of a sketch with two shapes connected with a line; and
the initial values of I, S, P and C. The numbers show the order of drawing of the strokes
for these shapes. In this example it is assumed that the recogniser can classify strokes

CHAPTER 4. SHAPE GROUPER 55

Figure 4.2: Initial Grouper Flowchart

2,3 as an OR gate, strokes 1,2,3 as an XOR gate, strokes 2,3,4 as a NOR gate, strokes
1,2,3,4 as an XNOR gate and strokes 6,7 as an AND gate; all other combinations are
assumed to be rejected by the recogniser. Therefore, the list of extendable shapes are
{AND, OR, XOR, NOR}. Figure 4.3 shows a visual representation of the extendable
shapes in the digital circuit domain, where edges show which shapes are extendable to
which (e.g. on the right it shows that AND is extendable to NAND).

4.1.1 Walk Through of the Algorithm

Figure 4.5 shows the first three steps of the algorithm when stroke 1 is selected as P
and strokes 2,3 are added to C as the neighbouring strokes. Every time a new stroke
is added to C all subsets are checked in descending order of size to see if a shape can
be recognised. In step 3, when the subsets of C are being checked, strokes 1,2,3 are
recognised as XOR gate. Since an XOR gate is an extendable shape, it is kept in the
candidate list C. The strokes of the XOR gate are merged and treated as a single
element from here on.

CHAPTER 4. SHAPE GROUPER 56

Figure 4.3: A visual representation of the extendable shapes in the digital circuit
domain

Figure 4.4: A Sample of Sketched shapes

Figure 4.5: Steps 1 to 3 of the algorithm

Figure 4.6: Steps 4 and 5 of the algorithm

In step 4 shown in Figure 4.6, since stroke 1 (the current P) is part of element
{1,2,3}, P and C are updated to reflect the recognised shape. In step 5, stroke 4 is
added to C as the neighbour of {1,2,3}. When checking the subsets of C, an XNOR

CHAPTER 4. SHAPE GROUPER 57

gate with strokes 1,2,3,4 is recognised. XNOR gates are not extendable shapes, therefore
we have successfully grouped and recognised a complete shape. The recognised shape
strokes are moved to S; these strokes are no longer part of the search space.

Next, in Step 6 (shown in Figure 4.7), stroke 5 is picked as the primary stroke.
In step 7, stroke 6 is added to C as the neighbour of P and since no shape can be
recognised in the subsets of C, in step 8, stroke 7 is added to C as the neighbour of
stroke 6. The AND gate with strokes 6, 7 is recognised in the subsets of C and since it
is an extendable shape, it is kept in the search space.

Figure 4.7: Steps 6 to 8 of the algorithm

In step 9 (shown in Figure 4.8), the I and C lists are updated with the recognised
shape. Next, in step 10 (Figure 4.8), element {6,7} is picked as the primary element
and in step 11, stroke 5 is added to C as a neighbour. At this point, all the elements in
I have been picked as the primary element and all the combinations of items in I have
been checked; hence, the algorithm stops here and adds the {6,7} to S. The grouper’s
output (Figure 4.9), which is a list of unrecognised strokes (I) and recognised shapes
(S) (i.e. the XNOR and the AND gates) is given to the connector recogniser.

Figure 4.8: Steps 9 to 11 of the algorithm

Figure 4.9: Grouper’s output

CHAPTER 4. SHAPE GROUPER 58

Algorithm 1 Neighbourhood Search-based Grouping Algorithm(NS_Grouper)
Input: I , E {I: List of strokes in temporal order of drawing, E: List of extendable
shapes in the domain}
Maxs = 5 . {Maximum number of strokes in a shape},
Maxdist . {Maximum distance threshold between points},
UB = 14 . {UB : Upper Bound value for Maxs}
Output: U , S {S: List of shapes, U : List of unrecognized strokes}
1: S = ∅ , C = ∅ . {C : Candidate shape list}
2: while ((Maxs ≤ |I|) && (Maxs < UB)) do
3: J = I

4: loop over elements of J

5: C = J [0]

6: J = J \ C
7: foundUnextendable = false . {foundUnextendable : flag for unextendable

shapes}
8: while ((|C| < Maxs) && (elements of C have neighbours in I) &&

(!foundUnextendable)) do
9: N = neighbours of C in I

10: n = N [0]

11: N = N \ n
12: C = {C}

⋃
n

13: while (all subsets of C are not checked) do
14: get next subset {c} of C containing n in descending order of size
15: if ({c} is a shape) then
16: if ({c} is extendable) then
17: s = {c} as a single element
18: I = I \ {c}

⋃
s

19: J = J \ {c}
⋃
s

20: C = C \ {c}
⋃
s

21: else
22: I = I \ {c}
23: S = {S}

⋃
{c}

24: foundUnextendable = true

25: end if
26: end if
27: end while
28: end while
29: end loop
30: if (no new shape is found) then
31: Maxs = Maxs + 1
32: end if
33: end while
34: R = {recognized shapes in I}
35: U = I \R
36: S = S

⋃
R

37: Return S , U

CHAPTER 4. SHAPE GROUPER 59

Computation optimisations

In this algorithm, in order to avoid re-computing the proximity of strokes, we use an
adjacency bit matrix(A) that is initialised as a pre-processing step. The size of the
matrix is n × n, where n is the number of strokes. This matrix stores the information
about the proximity of strokes; each pair of strokes is represented either by 0 or 1. If
two strokes are neighbours (based on the proximity of points of the two strokes), the
corresponding cell in the matrix is set to 1 otherwise it is 0. The diagonal entries of the
matrix represent whether the item is a recognised shape. If a diagonal entry is set to 1,
it implies that it is a recognised shape. Since the matrix is symmetric we only need the
upper triangle of the matrix. In the grouping process, when a new shape is recognised,
we update the matrix by performing a bitwise OR operation on the corresponding rows
and columns to merge them together. In the updated A matrix, a stroke is neighbour to
a shape if it is neighbour to at least one of the strokes constructing that shape. When
a new shape is recognised, in addition to merging corresponding rows and columns,
we update the diagonal value to indicate that this shape is recognised. The same idea
applies to single stroke shapes. If a shape is drawn with a single stroke, as no bitwise
operation is needed, only the corresponding diagonal value in the matrix is updated.
Figure 4.10a shows the initial value of the A matrix for the previous example, and
Figure 4.10b shows the A matrix when the XOR gate is recognised. Figures 4.10c and
4.10d show the A matrix when the XNOR and AND gates are recognised, respectively.

In this algorithm, when a new item is added to the candidate shape list(C), in order
to speed up the process, we avoid checking the combinations that have already been
checked and only check the combinations that include the new item. As an example, in
step 2 in Figure 4.5, C contains strokes 1 and 2. In step 3, when stroke 3 is added to
C, the algorithm only checks the subsets of C that contain stroke 3: {3}, {1,3}, {2,3},
{1,2,3}. We also use memoization to avoid checking entire candidate shape lists that
have been checked before. As an example, the candidate shape list in step 11 is the
same as the candidate shape list in step 9. Therefore, in step 11 we do not check the
subsets of C. In addition, we also store all the inputs given to the recogniser with the
result that the recogniser gives back for that input. Next time, if the recogniser is being
called with the same input, in order to reduce the recogniser calls, we get the results of
that input from memory.

The aim of the mentioned optimisation techniques (using memoization, avoid check-
ing previously examined C and using memory to store the recogniser calls) is to reduce
the number of times the grouper needs to consult with the recogniser. Table 4.1 shows
the number of valid shapes as well as the number of generated shape candidates with
and without these optimisation techniques. As can be seen in Table 4.1, using such

CHAPTER 4. SHAPE GROUPER 60

(a)

(b) (c) (d)

Figure 4.10: Adjacency matrix (A) in different stages of the grouping process when
new shapes are recognised

#Valid #Invalid #Invalid
(optimised)

Flowchart 210 1259 1236
Class 171 6707 5909
Digital 247 17745 15445
FC 1225 40693 34747
FA 671 65911 54997

Table 4.1: The details of generated shape candidates using the grouper and a mock
recognizer with out without optimisation techniques

optimisation techniques reduce the number of generated shape candidates.

4.2 Experiments

In this section we evaluate the performance of the proposed grouping algorithm on the
five development datasets. The aim of these experiments is to measure the grouper’s
performance in isolation, without the recogniser affecting the results. To achieve this,
we use a mock recogniser that works perfectly, i.e. can recognise and reject shape can-
didates with 100% accuracy based on the ground truth. We will perform the evaluation
and comparison of our full system with a real recogniser in the Evaluation chapter
(Chapter 7). We should also note that the connectors are also being rejected by the

CHAPTER 4. SHAPE GROUPER 61

mock recogniser, as this part of the system deals with shapes only. We deal with the
connectors after the regular shapes are recognised, which will be described in Chapter
6.

There are two main parameters that can affect the grouper’s performance in terms
of computation time and accuracy. One is the Upper Bound (UB) and the other is the
information about extendable shapes (which we refer to as the shape hierarchy in the
experiments). The UB is a threshold for Maxs that stops the algorithm after some
iterations. A value for this parameter that is too high can lead to a higher run time,
whereas selecting a value that is too low would reduce the accuracy of the grouper.
The information on extendable shapes helps the grouper to reduce the search space
by removing the unextendable shapes once they are recognised, which leads to a lower
computation time.

We measured the computation time from the moment the diagram is given to the
grouper until it returns the output. We ran each experiment 10 times and reported the
average of computation time. The distance threshold between the points of two strokes
is set to 600 himetric units 1. We chose the threshold value empirically.

In order to evaluate the performance of the grouper, we used different Upper Bound
(UB) values to see its effect on the computation time and accuracy. We also checked the
grouper’s performance for two cases, when an extendable shape list is provided (with
hierarchy) and when this information is not provided (without hierarchy). In the case
of “without hierarchy” all shapes are assumed to be extendable and remain in the search
space once recognised.

Figures 4.11a to 4.11e show how different values of UB affect the grouper’s compu-
tation time, with and without shape hierarchy information. As can be seen in Figures
4.11a, 4.11b and 4.11d, the computation time of the grouper is almost constant for
flowchart, class diagram and FC when the shape hierarchy (the extendable shape list)
information is provided. However, as can be seen in Figures 4.11c and 4.11e, the com-
putation time of the grouper for digital circuit diagram and FA increases when a higher
value of the UB is selected. This is due to the fact that about 40% of the drawn shapes
in digital circuit diagram and 52% of the drawn shapes in FA dataset are extendable
and remain in the search space when they are recognised.

Table 4.2 shows the results of paired t-tests with and without shape hierarchy for
different UB values. The results show that when higher values of UB are selected
(11 or higher for flowchart, class and FA, 12 or higher for FC and digital circuit) and
information about extendable shapes is provided, the computation time is significantly
lower than the case that information about extendable shapes is not provided.

1Himetric units are a measure of length, where one himetric is equal to 10 µm

CHAPTER 4. SHAPE GROUPER 62

(a) Flowchart diagram (b) Class diagram

(c) Digital circuit diagram (d) FC diagram

(e) FA diagram

Figure 4.11: The average and standard deviation computation time (seconds) of the
grouper with different upper bound values for the development datsets.

CHAPTER 4. SHAPE GROUPER 63

8 9 10 11 12 13 14

Flowchart
Diagram

t-value 0 0 0 1 1 1 1
p-value 0.63 0.33 0.24 <0.05 <0.05 <0.05 <0.05

Class
Diagram

t-value 0 0 0 1 1 1 1
p-value 0.7 0.39 0.25 <0.05 <0.05 <0.05 <0.05

Digital
Circuits

t-value 0 0 0 0 1 1 1
p-value 0.7 0.31 0.38 0.08 <0.05 <0.05 <0.05

FC
t-value 0 0 0 0 1 1 1
p-value 0.74 0.4 0.31 0.11 <0.05 <0.05 <0.05

FA
t-value 0 0 0 1 1 1 1
p-value 0.63 0.16 0.11 <0.05 0.06 <0.05 <0.05

Table 4.2: t-test results (with confidence level of 0.05) of the grouper’s computation
time with and without extendable shape list for different upper bound values ranging

from 8 to 14

Figure 4.12 shows how the accuracy is affected by different UB values. We measure
the accuracy by dividing the number of correctly recognised shapes over the all shapes
in that sketch. The reason that the results in Figure 4.12 are very good (almost 100%)
is that a perfect mock recogniser is used for recognition and rejection to demonstrate
the grouper’s performance only. In Chapter 7 we will report the results with a real
recogniser. As can be seen in Figure 4.12, there is a trade-off between the accuracy
and computation time of the grouper. If a higher value of the UB is selected, the
computation time increases and so does the accuracy because the algorithm checks for
more combinations of strokes to find shapes. This is a sensitive parameter that needs to
be chosen carefully. It should be noted that the information about extendable shapes
only affects the computation time and does not affect the accuracy. This is because
removing recognised unextendable shapes from the search space helps the grouper reach
the stopping condition faster, but does not change the recognition results.

The results show that for the domains that only include unextendable shapes (flowchart,
FC and class diagram), the grouper has a constant computation time when this infor-
mation is provided to the system. In the case of the domains with extendable shapes
(e.g. digital circuits or FA), the information about extendable shapes can reduce the
computation time. For such domains, the UB becomes a sensitive parameter that con-
trols the trade-off between the computation time and the accuracy. A higher value of
UB can lead to a higher accuracy but at the cost of higher computation time. In all
cases, if the value of UB is not too low, the grouper can find and group all the shapes
with a mock recogniser. For example, for flowchart, class diagram, digital circuit, FC
and FA the UB value of 8, 11, 9, 11 and 9 respectively, allows the grouper to find

CHAPTER 4. SHAPE GROUPER 64

and group all the shapes in the diagram. Based on the aforementioned results of the
development datasets, we choose an UB value of 11 for the evaluation datasets, which
is the value that we will be using for new datasets.

Setting the UB threshold for a new dataset is not simple. If the value is too low,
some shapes might be missed and if is selected too high, the computation time would
increase. There is always a trade-off between the accuracy and computation time for
selecting the value of UB. Since on the development datasets the value 11 was sufficient
to find and recognise all the shapes, we will use the same value for new datasets as well.
However, it would not guarantee to find all the shapes for a new dataset. Therefore, for
a new dataset, the same experiments should be carried out to find a reliable UB value.

Figure 4.12: The average and standard deviation of accuracy for different upper
bound values for flowchart, class diagram, digital circuits, FC and FA datasets. The
accuracy is calculated by dividing the number of correctly grouped and recognised

shapes over the all shapes in the dataset.

4.3 Summary

In this chapter we described our grouping algorithm, which is responsible for putting
the strokes of a shape together. The grouper is a neighbourhood search-based algorithm
that uses spatial information to hypothesise multiple shape candidates. We used mem-
oization to minimise the number of times the grouper needs to consult the recogniser.
The shape candidates are given to a recogniser capable of rejecting invalid ones and

CHAPTER 4. SHAPE GROUPER 65

accepting the valid ones. In the experiments we used a mock recogniser that can per-
fectly reject and recognise the shape candidates. The results of the experiments show
that if the parameters of the grouper are selected carefully, the grouper can accurately
group all the shapes in a diagram. We also illustrated that the information about ex-
tendable shapes can reduce the computation time of the algorithm. In the next chapter
we will describe the recogniser we chose for recognition and how we equipped that with
rejection capability.

Chapter 5

Shape Recognition and Rejection

In our sketch recognition system, the grouper hypothesises several shape candidates,
among which the majority are invalid; i.e. either incomplete shapes or a combination of
different shapes. The grouper is designed to work together with a recogniser, to identify
valid shapes, and reject invalid shapes. Accurate rejection of invalid shape candidates
is an essential component of our sketch recognition system. Existing recognisers e.g.
(Chang et al. 2012, Lee et al. 2007, Alvarado & Davis 2004, Anthony & Wobbrock 2012,
Ouyang & Davis 2009b) do not have the capability to accurately reject invalid shape
candidates. In this chapter, we provide details of the shape recogniser we used, describe
how we added rejection capability to this recogniser, and present experiments showing
the performance of our rejection methods.

5.1 Shape Recognition

Our review of existing recognisers, in Section 2.3, found that appearance-based tech-
niques were better in handling drawing variations, than other shape recognition ap-
proaches, while achieving high accuracy in recognition. In addition, these recognisers
support multi-stroke shapes, which is essential to providing a free-sketch environment.
One such recogniser is proposed by Ouyang & Davis (2009b). We chose to use this
recogniser in our system for three main reasons: it is domain independent, it achieved
high accuracy on the tested datasets, and it supports recognition of multi-stroke shapes.

The Ouyang & Davis (2009b) recogniser uses directional features to represent the
visual appearance of the shapes. It is relatively simple to implement, and has the benefit
of being able to visualise shape candidate features. The feature representation of an
input shape is done in multiple steps: normalisation, feature representation, smoothing
and downsampling. In this section, we describe the recognizer in detail and present
experiments testing it’s performance with other feature sets.

66

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 67

(a) Feature representation of a drawn shape and the corresponding feature images of
different reference angles

(b) Feature representation after smoothing

Figure 5.1: Feature representation of a drawn shape before and after smoothing

5.1.1 Normalisation

A pre-processing normalisation step is carried out to make the recogniser invariant to
sampling rate, scale and translation. In pen-enabled devices, strokes are sampled at a
constant temporal frequency, which results in a higher density of points at corners or any
part of the stroke where the pen speed is low. To make feature extraction independent
of drawing speed, strokes are resampled to a constant spatial frequency. The paper
(Ouyang & Davis 2009b) does not mention the sampling frequency used. We used the
method introduced by Vatavu et al. (2012), which equalises the distance between stroke
points. After the resampling process, the centre of the shape’s mass is translated to the
origin and then scaled horizontally and vertically.

5.1.2 Feature Representation

In this approach, each sequence of strokes (making a shape candidate) are converted
into five low resolution feature images; four for the stroke orientations and one for stroke
endpoints. The four orientation features correspond to the four reference angles 0, 45,
90 and 135 which measures how horizontal, vertical and diagonal the stroke is. The
feature values are calculated by measuring how different the stroke points are from
the reference vector, varying linearly between 0 (being different by more than 45°) and
1 (being exactly the same). The endpoint feature identifies strokes’ endpoints. The
feature values of the endpoint image are set to 1 at strokes’ endpoints and 0 elsewhere.
Each of these sequences of features for each angle are then converted into 24×24 feature
grids. These grids can be considered as feature images in which the intensity of a pixel
is determined by the maximum feature value of the sample points that fall within its
cell. In Figure 5.1a we show the five feature representation of a drawn shape (the shape
is S, which is drawn with a single stroke, shown on the left).

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 68

5.1.3 Smoothing and Downsampling

In this stage each feature image is smoothed and downsampled to increase the toler-
ance to local shifts and distortions. First a Gaussian smoothing function is applied to
each image to spread the feature values to the neighbouring pixels. In the paper it
is not mentioned what parameters are used for the Gaussian smoothing function. In
our experiments, a kernel size of 3 with σ = 1 yielded the best accuracy on the tested
datasets. Each smoothed feature image is then downsampled by the factor of 2 using
a MAX filter, where each pixel in the downsized image is the maximum of the four
corresponding pixels in the original. The downsampling process results in five 12 × 12

feature images, which are turned into a feature vector with 720 dimensions by rasteri-
sation. Figure 5.1b shows the five feature representation images of the shape in Figure
5.1a after the smoothing process.

5.1.4 Classification

Ouyang and Davis also propose a novel Image Deformation Model (IDM) for classifica-
tion. IDM measures the distance of the input shape to all the templates in the training
set. It allows a shift in a 3×3 window for each point in the input image to form the best
match to the template image to make it more robust to local shifts and distortions. The
IDM distance between the shape candidate I1 and the template shape I2 is calculated
as the following:

D2 =
∑
x,y

min
dx,dy

||I1(x+ dx, y + dy)− I2(x+ y)||2 (5.1)

Where Ii represents the 3 × 3 × 5 feature values in Ii centred at x, y, and dx and dy

represent the pixel shifts.
Since matching the input with all the templates in the training set is an expensive

task, a coarse candidate pruning method is used to speed up the process of classifica-
tion. The idea is to be able to find the K-Nearest Neighbours (K-NN) of the input using
Euclidean distance and then perform the IDM matching with the selected K-NNs. To
find the K-NNs efficiently, an agglomerative hierarchical clustering algorithm is applied
to each class to form a tree structure having the largest cluster at the top and progres-
sively smaller sub-clusters below. Each cluster is then represented by the cluster centre
and a radius which is determined by the farthest instance to the cluster centre. During
the inference process, the algorithm starts with the top level of the hierarchy, keeping
track of the best K matching scores and discarding clusters that cannot improve these
scores. The IDM matching is then carried out on these K-NNs having the best match
as the result of the classification. It should also be noted that the Euclidean distances
are calculated on the first 128 principal components to improve the speed.

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 69

SVM RBF SVM Linear IDM Hausdorff
Theirs 95.0% 92.3% 95.2% 93.0%

Our implementation 97.9% 99.0% 95.6% 96.6%

Table 5.1: The comparison of our implementation result with (Ouyang & Davis 2009b)
on the HHReco dataset

In their experiments, they have used other classification methods such as L2 dis-
tance between the raw intensity images, L2 distance between the five feature images, a
modified Hausdorff distance (Kara & Stahovich 2005) and SVM classifier with Linear
or Radial Basis Function (RBF) kernels. In their experiments, SVM RBF and IDM
achieved the best results.

We evaluated our implementation of Ouyang & Davis (2009b) recogniser on HHReco
(Hse & Newton 2004) (the only publicly available dataset we could access) and compared
our results with the reported results in the paper (see Table 5.1). We performed this
comparison to verify our implementation of Ouyang & Davis (2009b) recogniser. In our
implementation, the optimised version of IDM that uses the pruning technique did not
work well. We assume the reported results for IDM are on the non-optimised version
of the IDM. In the paper, neither the implantation of the SVM nor the parameters of
the kernel functions (either for linear or RBF kernel) are reported. In our experiments,
we used the LibSVMsharp implementation of the SVM (LibSVMsharp 2019) (a .NET
Wrapper for LibSVM (Chang & Lin 2011)), and achieved the best results with a linear
kernel with C = 3 and for an RBF kernel with C = 3 and γ = 0.5. Our results with
Hausdorff distance are slightly better than the reported results in the paper. We assume
this is because we might have used different parameters in different steps such as the
Gaussian smoothing function.

5.1.5 Experiments on Development Datasets with Different Feature
Representations

We evaluated the recogniser’s performance on the development datasets (except for the
class diagram which only has one shape class) to examine the performance of the recog-
niser for different domains. As can be seen in Table 5.2 (the first row), the recogniser
correctly classifies 98.4% to 100% of the shapes for FC, FA and flowchart datasets.
However, the results for the digital circuit is lower compared to the rest (90.4%). This
is because the appearance of the different shapes in the digital circuit domain are very
similar. We also modified the feature representation in different ways for possible accu-
racy improvement, which will be discussed shortly.

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 70

Experiments with Different Feature Representations

We also carried out experiments with different feature representations. We carried out
these experiments on the development datasets as well as the HHReco dataset that was
used earlier. The different feature combinations we experimented with are listed below,
and will be discussed in more details in the following:

• Adding speed feature image

• Removing the endpoint feature image

• Merging all the feature images

• Adding stroke level features

Johnston & Alvarado (2013) added a sixth feature image, which captures the speed
of drawing. In their experiments, it shows that for the domain of digital circuit dia-
grams, the accuracy of classification increased from 90.58% to 92.02%. However, in our
experiments, adding this feature image did not improve the classification accuracy (see
the second row in Table 5.2). It should also be noted that for the FC dataset, speed
information is not provided, hence, we could not report the results for this dataset.

The four feature images corresponding to the four reference angles provide a visual
representation of the drawn shape. However, the endpoint feature image only provides
the information about the endpoints of the drawn shape. This information can vary
for different instances of the same shape. For example, a square that is drawn with
four strokes has different endpoint information than the one that is drawn with a single
stroke. The location of pen down and pen up can also vary for the instances of the
same shape, resulting in different endpoint feature images. Therefore, we carried out
another experiment to exclude this endpoint feature image to evaluate its affect on the
classification result. As can be seen in the third row of Table 5.2, the exclusion of
endpoint feature image did not improve the classification accuracy.

In another experiment we merged all the feature images (to reduce the feature
dimensions to see if we achieve better results) by capturing the maximum value of
the five feature images for each pixel, resulting in a 12× 12 feature image. Since some
information is being lost during this merging, we also captured the average of each
feature image and the number of non-zero pixels. This resulted in a feature vector
of length 154 (as opposed to the original 720 feature vector). As can be seen in the
forth row of Table 5.2, this feature representation also did not improve the classification
accuracy.

For all the aforementioned experiments, we achieved the best results using an SVM
with a linear kernel function with C = 3. However, for the merged feature image

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 71

FC FA Flowchart Digital
Circuit HHReco

Original 98.4% 100% 99.5% 90.4% 99.0%
Speed - 100% 99.0% 90.0% 98.9%
Without endpoint 97.7% 100% 99.0% 90.4% 98.5%
Merged 95.8% 100% 99.0% 86.8% 98.4%
Ink features 99.2% 100% 100% 92.7% 99.1%

Table 5.2: Comparison of recogniser accuracy with different feature modifications on
development datasets and HHReco dataset

representation, an SVM with an RBF kernel function with C = 3 and γ = 0.5 achieved
the best results. We identified these parameter values by performing a grid search.

In addition to the aforementioned modifications to the feature images, we added
three features in a stroke level that increased the classification accuracy (see the last
row in Table 5.2 for the accuracy results). These features that are chosen by trial and
error are as the following:

• Group ink density (Ouyang & Davis 2009a): The total length of the strokes
in the group divided by the diagonal length.

• Perimeter efficiency (Leung & Chen 2002): Strokes’ convex hull area divided
by strokes’ convex hull perimeter.

• Thinness Ratio (Fonseca et al. 2002): Perimeter of strokes’ convex hull
divided by area of strokes’ convex hull

The confusion matrix is a common method to check how well a classifier performs
for each class of the test set (Marsland 2015). Figures 5.2 to 5.5 show the confusion
matrix of the recogniser with the original feature set, compared to the case that ink
features are added for the FC, flowchart, digital circuit and HHReco datasets. Since
the FA dataset has 100% accuracy in all cases, we did not include its confusion matrix.
Figure 5.2 shows that for the FC dataset, adding stroke level features reduces the mis-
classification of the connection class. Except for the one extra mis-classification for the
terminator class, the accuracy of the recogniser for the rest of the shapes remains the
same for this dataset. Figure 5.3 shows that adding the stroke level features, corrects
the one miss-classification that occurs in the flowchart dataset. For the digital circuit
diagram, the AND and Start classes are improved while the XNOR and NOR classes
are slightly degraded (see Figure 5.4). For the HHReco, except the one extra mis-
classification for the pentagon and triangle classes, the accuracy of the recogniser either
remained the same or improves for the rest of the shapes (shown in Figure 5.5).

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 72

(a) Confusion matrix of FC dataset with
original feature set

(b) Confusion matrix of FC dataset with
added ink features

Figure 5.2: The confusion matrix of the recogniser for FC dataset

(a) Confusion matrix of flowchart dataset
with original feature set

(b) Confusion matrix of flowchart dataset
with added ink features

Figure 5.3: The confusion matrix of the recogniser for flowchart dataset

We also measured the computation time of the recogniser. The time that takes to
calculate the direction features for a shape candidate on average is less than a mil-
lisecond for all datasets. The classification time depends on the training algorithm, its
parameters, the feature set used and the complexity of the training data (e.g. number
of classes). Table 5.3 shows the classification time for different datasets when the stroke
level features are added. For these experiments we used SVM classifier with linear kernel
function and C = 3. The results show that the classification is not a computationally
expensive task.

Recogniser’s Characteristics We believe that some of the important characteristics
of a recogniser, apart from accuracy and low computation time, should also be invariant
to scale, translation, number of strokes, order of drawing and speed of drawing. The
described recogniser is invariant to number of strokes and order of drawing as it does not

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 73

(a) Confusion matrix of digital circuit
dataset with original feature set

(b) Confusion matrix of digital circuit
dataset with added ink features

Figure 5.4: The confusion matrix of the recogniser for digital circuit dataset

FC FA Flowchart Digital
Circuit HHReco

Time 30 ±4 12 ±2 12 ±2 24 ±3.5 123 ±10

Table 5.3: The average and standard deviation of shape classification time in
milliseconds on different datasets

take these information into consideration for feature representation. The recogniser is
also invariant to speed of drawing because of the resampling pre-processing. In addition,
the recogniser is invariant to scale and translation as the centre of the shape’s mass is
translated to the origin and then scaled horizontally and vertically in the pre-processing
step.

A controversial characteristic for a recogniser is rotational invariance. The described
recogniser is inherently rotation variant. This could be an advantage for some domains,
such as flowcharts, where some shapes are the rotated form of other one. For example,
Figure 5.6 shows a process box is a 45◦ rotation of the decision shape in flowchart
diagram (Stevens et al. 2013) and should be recognised as two different shapes. On the
other hand, for some domains such as digital circuits, where the same shapes can be
drawn in different rotations, it could be a disadvantage. Figure 5.7 shows an example
of two drawn NAND gates in a digital circuit diagram (Stevens et al. 2013) that are
drawn in different orientations, but should be recognised as the same shape.

Ouyang and Davis proposed to make the recogniser rotation invariant by rotating
the input into 32 evenly spaced orientations from 0 to 360 degrees. As described before,
each class is represented as a tree after hierarchical clustering is applied to them. In the
process of matching, the rotations of the input is compared against the top 64 clusters

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 74

(a) Confusion matrix of HHReco dataset with original
feature set

(b) Confusion matrix of HHReco dataset with added ink
features

Figure 5.5: The confusion matrix of the recogniser for HHReco dataset

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 75

Figure 5.6: An example of a drawn decision and process shapes in a flowchart diagram
(Stevens et al. 2013)

Figure 5.7: An example of two NAND gates drawn in a digital circuit diagram
(Stevens et al. 2013)

of each class. This method of rotation invariant can be used only when a template
matching technique is being used, which in our experiments were less accurate and
more computationally expensive than a discriminative classifier such as SVM. Another
possible solution to make the recogniser rotation invariant is to use Hu moments (Hu
1962).

5.2 Rejection

The grouping algorithm described in Chapter 4 requires a recogniser capable of rejecting
invalid shape candidates. Invalid shapes are those that either contain strokes from
multiple shapes or are incomplete. The majority of existing recognisers take a set of
strokes as input and return their best guess to classify the input; typically they are not
able to reject an invalid shape. We consider these invalid shapes as outliers that need
to be rejected. In machine learning, outlier detection refers to the task of identifying
objects that are not similar to the training set. In the following we will describe the
approaches we investigated for the task of outlier detection.

In this section, we first describe the method we use for visualising the data. This is
followed by describing the proximity-based method we use for rejection. This includes
the description of how clusters are formed, and how the validity of a shape candidate
is being examined for each cluster. Next, we describe a pre-processing outlier detection
method for identifying outliers in a training set. The proximity-based rejection method
has a limitation of rejecting incomplete shapes; we propose two solutions for dealing with
such shape candidates. In the experiments, we evaluate the performance of the proposed

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 76

proximity-based rejection method in isolation and compare the results with two other
rejection techniques, using the classifier’s confidence, and using a one-class SVM for
rejection. Finally, we combine the grouper (introduced in Chapter 4) with the recogniser
capable of rejection and evaluate the system’s performance on the development datasets.

Visualisation At this stage all the training set instances are represented by a 720
feature vector and all the operations in this chapter will be carried out in 720 dimensions,
unless otherwise is stated. However, in order to be able to visualise the distances
of the training set instances to each other, we use Multi-Dimensional Scaling (MDS)
(Torgerson 1952) to reduce the dimensions to 2 for plotting. Given a distance matrix
and the number of desired dimensions, N (i.e. 2 for our visualisation purpose), the
MDS algorithm moves the instances around in N dimensional space and checks how
well the distances between instances can be reproduced in the new configuration. Two
data points that are close together in high-dimensional space will also be close together
in the low-dimensional space.

In the remainder of this chapter, for each step of rejection we provide a visualisation.
MDS is used where the distances of instances need to be visualised. Using MDS might
lead to loss of accuracy but it serves the purpose of visualising the distances. The choice
of dataset for this purpose is the flowchart diagram described in Chapter 3. This dataset
is relatively small and serves the purpose of illustration. The plot of the dataset in the
2D space after applying MDS to the 720D feature vector can be seen in Figure 5.8. As
can be seen in Figure 5.8 there is an instance of the process class that is very close to
an instance of Stat/End class. Figure 5.9 shows these two drawn shapes in the dataset.

5.2.1 Proximity-Based Rejection

The simplest approach for the task of outlier detection would be to use proximity-based
approaches, where the distance from the input to all the instances of the training set
is calculated, and the input is rejected if it is too far from the training set based on
some threshold. However, this approach scales poorly with training set size since the
proximity of the input needs to be checked with the entire training set. Instead we use
a clustering method where a cluster centre represents a group of similar shapes.

In order to group similar instances of the training set into a single cluster, we use
the ground truth to put all the instances of the same class into a single cluster. We then
consider the average of all the instances of each cluster as the cluster centre. Figure
5.10 shows the images of the cluster centres of the flowchart diagram.

After dividing the training set into clusters, we need some criteria to assess how well
a candidate shape fits with each cluster; or in other words, how similar or dissimilar the
shape is to each cluster. Here we use various distance metrics for measuring dissimilarity

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 77

Figure 5.8: The plot of flowchart dataset after mapping the data into 2D space using
MDS

Figure 5.9: The drawn Process and Start/End shapes that their 2D plot are close to
each other in Figure 5.8

Figure 5.10: The cluster centres of the flowchart diagram

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 78

Name Distance

Euclidean
√∑n

i=1(Xi − Yi)2

Hamming
∑n

i=1 δ(Xi, Yi)/n ; δ(Xi, Yi) =

{
0 Xi = Yi

1 Xi 6= Yi

Bray Curtis
∑n

i=1 |Xi − Yi|/
∑n

i=1 |Xi + Yi|

Dice
∑n

i=1 |Xi − Yi|∑n
i=1X

2
i +

∑n
i=1 Y

2
i

Hellinger
1√
2

√∑n
i=1(
√
Xi −

√
Yi)2

Kulczynski
∑n

i=1 |Xi − Yi|/
∑n

i=1min{Xi, Yi}

Manhattan
∑n

i=1 |Xi − Yi|
n

Table 5.4: Different distance metrics used for measuring the dissimilarity of two
vectors X and Y, both of size n

and some metrics to measure the similarities. We reject a shape candidate if is distant
from all clusters and/or not similar enough to any of the clusters. In the following,
we will describe how we measure the dissimilarity and similarity of the input shape
candidate to each of the clusters and how they are being used for rejection.

Forming Hyper-spheres Around Clusters

Each cluster is represented by the cluster centre, which is calculated by averaging the
values of all the cluster members. We form a hyper-sphere around each cluster centre
in the 720 dimension and accept the input shape candidate if it falls within any of
the cluster spheres, and reject otherwise. A sphere is effectively a statement that the
distribution is the same in all directions (a spherical distribution). We make the sphere
around each cluster centre by setting the radius to be the distance to the farthest cluster
member to the cluster centre. We measure the distance using various distance metrics
between the two 720 dimension feature vectors. The list of distance metrics that we
used, which are available in Accord.NET framework (Accord.NET 2019) can be seen in
Table 5.4.

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 79

Figure 5.11: The fitted hyper-sphere and ellipse around each cluster for a visual
comparison reference

Forming Ellipses Around Clusters

Fitting a hyper-sphere around each cluster can result in allocating some empty space
to a cluster (not occupied by any shapes within the cluster). This led us to experiment
with fitting an ellipse around each cluster (instead of a hyper-sphere) to avoid extra
space being allocated to a cluster. An ellipse is a statement that the distribution varies
in different directions. See Figure 5.11 for a visual comparison between fitting a hyper-
sphere and an ellipse around each cluster.

An ellipse can be represented in different ways, one is the Foci/String way. Figure
5.12 shows an ellipse with the foci points (F1 and F2), the centre (C), major axis (a) and
minor axis (b). For any given point on the ellipse boundary (Pi), the sum of distances
of Pi to F1 and F2 would be the length of string (S) (||F1−pi||+ ||F2−pi|| = S). Fitting
an ellipse around a set of data points requires knowing the values of F1, F2 and S. It
should be noted that different values for S gives different ellipses with different sizes,
but we are looking for the smallest one that can enclose all the data points.

To find the foci points and the length of the ellipse around each cluster, we perform
the following steps:

1. Find the cluster centre (C).

2. Find the farthest data point to the centre (major semi-axis), and consider it as

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 80

Figure 5.12: An ellipse with the foci points (F1 and F2), centre (C), major axis (a)
and the minor axis(b)

F1.

3. Find the location of the other end of the semi-major axis and consider it as F2.

4. For each data point in the cluster (Pc) calculate the sum of absolute distances to
F1 and F2, and take the maximum as the value of S for the ellipse (see Equation
5.2).

Sc = max
Pc∈cluster

{||F1 − Pc||+ ||F2 − Pc||} (5.2)

To find the location of the other ending of the major semi-axis, considering that the
ellipse might be rotated, we do the following:

1. Move the centre to the origin (0,0).

2. Move the farthest point (F1) accordingly (F ′
1).

3. Reflect F ′
1 (F ′′

1 = −F ′
1).

4. Move the centre and the farthest point (F1) back to their locations.

5. Move F ′′
1 accordingly (F ′′′

1). This point is the other end of the major axis.

Rejection using Ellipse After finding the F1, F2, S and fitting the ellipse around
each cluster, we can check if a given shape candidate fits within any of the ellipses.
When a new input feature vector (I) is given, to check if it fits within a cluster’s ellipse,
we calculate its sum of distances to the cluster’s F1 and F2 and check if it is less than

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 81

the S for that cluster (Sc) (||I − F1|| + ||I − F2|| 6 Sc). The input gets rejected if it
does not fall within the ellipse of any of the clusters. If it fits within more than one
cluster, the recogniser then determines the class of the shape. It should be noted that
all the aforementioned operations are performed in 720 dimensions. The results of this
method compared to other rejection methods will be reported in Section 5.3.3.

Similarity Metrics for Rejection

The aforementioned distance metrics measure the dissimilarity of the input to the cluster
centres. The dissimilarity between two objects represents the degree to which the two
objects are different. On the other hand, similarity metrics measure how the two objects
are alike. We use two well-known similarity metrics; Pearson’s correlation and the
Cosine similarity to measure how similar an input is to a cluster centre.

Pearson’s correlation is a similarity metric that measures the linear relationship
between two feature vectors (Tan et al. 2018). The correlation value is between -1 and
1, where correlation 1 refers to a perfect linear relationship between the two objects.
The correlation of two feature vectors x and y of size n is defined by the following
equation:

corr(X,Y) =
covariance(x,y)

standard_deviation(x) * standard_deviation(y)

covariance(x,y) =
1

n− 1

n∑
k=1

(xk − x̄)(yk − ȳ)

standard_deviation(x) =
√

1

n− 1

∑n
k=1(xk − x̄)2

standard_deviation(y) =
√

1

n− 1

∑n
k=1(yk − ȳ)2

x̄ =
1

n− 1

n∑
k=1

xk

ȳ =
1

n− 1

n∑
k=1

yk

(5.3)

The cosine metric is a similarity measure that calculates the cosine of the angle
between two vectors. Therefore, if the cosine similarity is 1, the angle between the two
vectors is 0°(i.e. the two vectors are the same), and if the similarity is 0, the angle

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 82

between the two vectors is 90°(i.e. the two vectors are not similar) (Tan et al. 2018).
The cosine of two feature vectors X and Y is calculated using the following equation:

cos(X,Y) =
〈X,Y 〉
||X|| ||Y ||

(5.4)

where the 〈X,Y 〉 indicates the inner product of the two vectors and ||X|| is the length
of vector X.

Rejection For rejection using similarity, for each cluster we choose a threshold (Tsimilarity)
determined by the least similar instance of the cluster to its centre. For a given input,
we calculate its similarity (either using Equation (5.3) or (5.4)) with all the cluster
centres. If the input is similar enough to one of the cluster centres (less than Tsimilarity

for that cluster), the shape gets accepted. If the rejection method is the combination
of multiple metrics, the shape candidate gets rejected if any of the metrics reject it.

5.2.2 Outlier Detection within Clusters

Due to human errors we often see mislabelled shapes in a dataset, or sometimes badly
drawn shapes (see an example of a badly drawn decision shape in Figure 5.13). Such
instances would lead to a larger ellipse and lower similarity threshold for that cluster,
resulting in lower rejection accuracy. We treat these instances as outliers and remove
them as a pre-processing step. This process is carried out before fitting an ellipse and
finding the similarity threshold for each cluster.

After forming the clusters, we check the similarity score of each cluster member with
its cluster centre. If the similarity of an instance with its cluster centre is less than a
threshold1 (TOD), we remove that instance from that cluster. Figure 5.14 shows the
plot of the similarity of each cluster member to its centre. As can be seen in this figure,
the decision instance that is badly drawn (shown in Figure 5.13), has a lower similarity
to the centre as compare to the rest of the instances in that cluster. Figure 5.15 shows
the ellipse around data before and after outlier detection preprocessing.

5.2.3 Incomplete Shapes

In our experiments (in Section 5.3) we observed that some of the false positives (shapes
that were supposed to get rejected but did not) are the incomplete shapes. After
analysing these incomplete shapes, we realised that most of them are the shapes that
have one missing side. We also realised that some of the invalid candidates or some of
the arrow shafts are similar to an incomplete shape in that domain (see Figure 5.16 for

1We empirically used a value of 0.65 for TOD

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 83

Figure 5.13: An example of badly drawn decision symbol in a diagram (the one with a
circle around it) in the flowchart dataset

Figure 5.14: The plot of similarity of each cluster member to its cluster centre

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 84

(a) (b)

Figure 5.15: The visualisation of the flowchart dataset before and after outlier
detection step with the fitted ellipses. (a): The fitted ellipse around each cluster, (b):

The fitted ellipse around each cluster after preprocessing outlier detection.

an example of an arrow shaft that looks like an incomplete process (a rectangle) in the
flowchart diagram).

We considered various options to deal with this issue. One option is to perform a final
check before accepting a shape candidate using heuristics. For example a naïve approach
would be to only accept closed shapes. However, this would restrict the approach to
particular domains. Another approach would be to do a local search around the accepted
shape candidate by adding the neighbouring strokes and checking if the similarity to
the cluster centre would improve. We observed that sometimes adding an arrow head
to the shape would increase its similarity to the cluster centre (for example see Figure
5.17 when the arrow head is added to the square, the similarity score increases). Hence,
this approach did not work very well either. In the following we will describe the two
approaches we used to deal with the incomplete shapes.

Training A Classifier with Incomplete Shapes

Since the rejection system has limitations in rejecting the incomplete shapes (the ones
with a missing side), we decided to train a classifier to learn about such instances. The
classifier is therefore trained with the incomplete shapes as well as the complete ones.
This is inspired by the work of negative examples described in Section 2.2.1, in which
a classifier is trained with a very large number of negative examples. However, we only
train the classifier to learn about the shapes that the proximity-based rejection method
is not able to reject.

The process of training the classifier with the incomplete shapes can be seen in Fig-
ure 5.18. The grouper and a mock recogniser work simultaneously together to group
and recognise the shapes in diagrams of the training set. All the hypothesised shape

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 85

Figure 5.16: An example of an arrow shaft (coloured with orange) that looks like an
incomplete process (rectangle) in the FC dataset

Figure 5.17: An example of an arrow head attached to the shape that improves the
similarity score from the flowchart dataset

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 86

candidates during grouping and recognition are captured. These shape candidates are
then labelled automatically. The labels can be “incomplete-shape name” (if it has miss-
ing strokes of a complete shape), “invalid” (if it consists of strokes from multiple shapes
or is a connector) or the actual “shape name” if it is valid. All the hypothesised shape
candidates are then given to the rejector and the incomplete shapes that are not being
rejected are captured. These incomplete shapes with the complete ones are then used
to train the classifier.

In our experiments, we found that training the SVM with the merged feature images
works better than training with the original 720 dimension features (see Section 5.3 for
the results). As described in Section 5.1, we get the merged feature vector by capturing
the max value of the five feature images for each pixel, resulting in a 12 × 12 feature
image, which is a vector of size 144 if stored row by row. We also capture the average of
each feature image and the number of non-zero pixels. This results in a feature vector
of size 154.

The merged feature vectors of the complete shapes and the incomplete shapes are
used to train an SVM classifier. This classifier acts as the second tier of rejection in
the use phase, i.e., if a shape candidate is not rejected by the rejector, this classifier
determines whether it is a complete shape or not. If a shape candidate is classified as
any of the incomplete shapes, it gets rejected. To determine the parameters for the
SVM, we performed a grid search. The best results were achieved by the RBF kernel,
using C = 3 and γ = 0.5.

It should be noted that in some domains (in particular the ones with extendable
shapes), an incomplete form of a shape might represent a complete form of another
shape in that domain. For example, as shown in Figure 5.19 in the domain of a digital
circuit diagram, an incomplete NAND gate (without the circle at the end of the gate)
represents a complete AND gate. Therefore, for such domains we train the classifier only
with the incomplete shapes that cannot represent a complete shape. This information
is explicitly given to the system.

Using Image Masking for Incomplete Shapes

Another approach we used in our system to deal with the incomplete shapes is an
image-based approach to first observe which part of the incomplete shape is missing,
and then find a match for the missing piece/s among the available neighbouring strokes.
To determine which part of the shape is missing we mask the image of the input shape
(the incomplete shape) with the cluster centre that it has best fitted in. To find a match
for the missing piece/s we use the same masking technique. For this approach we need
to work with the images of the input and the cluster centre. If the shape is similar or
close to more than one cluster, we pick the most similar or the closest one. We assume

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 87

Figure 5.18: The process of the training classifier with the incomplete shapes for
rejection

Figure 5.19: An example of AND and NAND gates in the domain of a digital circuit
diagram

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 88

the incomplete shape is closest to the cluster representing the shape if it was complete.
In the following we describe this approach step-by-step:

1. Convert the shape candidate and the cluster centre to images. In Figure 5.1a we
displayed each of the five feature images for a shape. To have a single image rep-
resenting the shape candidate (or the cluster centre), we merge these five feature
images by taking the maximum value for each pixel.

2. Masking (⊕) the cluster centre (C) with the input image (I), which results in
the masking output (MO) (see Figure 5.20 for a visual example of this step). In
the process of masking, we also check if the pixel values of the cluster centre are
above a threshold (Tm)2; this is because the cluster members might have some
variations in drawing and therefore, the cluster centre (which is the average of all
the members) may have values that are not really representative of the cluster
shape:

MO(x,y) =

C(x, y) I(x,y) == 0, C(x,y) > Tm

0 otherwise
(5.5)

Figure 5.20: An visual example of masking. The red line in the MO shows the missing
part of the input and its location with respect to the drawn parts (the dashed lines).

3. Add an immediate neighbouring stroke (n) to the shape (I) to form the new shape
candidate (New_S) (see Figure 5.21):

New_S = S
⋃
n (5.6)

2We used a value of 0.2 for Tm

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 89

Figure 5.21: Adding n to the shape to form New_S

4. Masking the New_S with the MO to see how closely they match to find the
Region of Interest (ROI) (note that the MO has 0 in all the pixels except for the
missing parts of the shape). The ROI is the missing part of the shape. See Figure
5.22 for a visual example of this step:

ROI(x,y) =

MO(x,y) MO(x,y) > 0

0 otherwise
(5.7)

Figure 5.22: Getting the ROI

5. Checking if the similarity (Pearson’s correlation) of the added stroke (ROI) with
the masking output (MO) is above a threshold (Ts1)3:

Similarity(ROI,MO) > Ts1 (5.8)

6. If the similarity from the previous step is greater than the threshold, it means that
the added stroke covers at least some of the missing part of the shape. However,
we still need to make sure that the added stroke does not have other parts. For
example, in the experiments we saw that sometimes a part of an arrow head can
cover the missing part of the shape, but that was not the whole drawn stroke.
Hence, we need to check if the similarity (Pearson’s correlation) of the added

3We empirically selected a value of 0.6 for Ts1

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 90

stroke (n) with the ROI is above a threshold (Ts2)4.

Similarity(n,ROI) > Ts2 (5.9)

Since the missing part might be drawn with multiple strokes, we iterate through
steps 3 to 6 to find the matching strokes. The pseudo code for this process can be seen
in Algorithm 2.

Algorithm 2 The algorithm for finding the missing strokes of an incomplete shape
Input:
{S},{C},{U} . {S: shape candidate, C: List of cluster centres, U : List of
unrecognized strokes}
Output: {S} . {(S: The updates shape candidate)}
1: improved = true

2: while (improved) do
3: improved = false

4: for all neighbours {n} of S:

5: New_S = S
⋃
n

6: ROI = New_S ⊕MO (based on equation 5.5)
7: if (similarity(MO,ROI) < Ts1 and similarity(n,ROI) < Ts2) then
8: S = New_S
9: improved = true

10: end if
11: end while
12: return S

5.3 Experiments

In this section we first evaluate the performance of the proposed proximity-based re-
jection method in isolation. We compare the results with two other rejection methods,
i.e., one-class classification and the use of classifier’s confidence for rejection which will
be described in the following. Next, we incorporate different rejection methods with
the grouper and evaluate the performance of the system, thus far, with these rejection
methods. Finally, we discuss the performance of the system and provide some analysis.

As mentioned in Section 3.4, the FC and FA datasets are divided into the training
and test sets. For the following experiments for FC and FA datasets, we use the specified
training set to train the system. However, this is not the same for the flowchart, class,
and digital circuit datasets. Therefore, for these datasets, we perform a 5-fold cross
validation.

4We used a value of 0.5 for Ts2

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 91

Figure 5.23: Decision boundaries of one-class SVM for different v values. Picture from
(Tan et al. 2018)

5.3.1 One-Class SVM for Rejection

Traditional classification algorithms focus on the classification of two or more classes.
The multi-class classification problems are usually decomposed into multiple two-class
classification problems. The two-class classification problem is then considered as the
basic classification task (Pimentel et al. 2014) in which the classifier learns to distinguish
between the two classes. On the other hand, in a one-class classification problem, one
class (i.e. the normal class) needs to be distinguished from all other possibilities.

In a One-class classification problem a decision boundary that encloses all the normal
classes is learned. The SVM is a popular technique for forming decision boundaries
that separates data into different classes. SVM-based one-class classification (known
as one-class SVM) is a popular approach for the one-class classification problem. A
conventional SVM classifier separates two classes by transforming all the data to a
high-dimensional space, then separating the two classes using a linear hyperplane. In
a one-class classification problem, since we only have one class, the algorithm tries to
separate the instances in high-dimensional space from the origin. In the original space,
this corresponds to finding a small region that encloses all the training instances. If
a given input falls into this region, it is considered as a normal class, otherwise is
identified as an outlier (Géron 2019). Apart from the usual kernel parameters for the
SVM, a margin hyperparameter (v) needs to be tuned. The v parameter represents the
upper bound on the fraction of training instances that can be mistakenly considered
as anomalies while learning the hyperplane (Tan et al. 2018). Figure 5.23 shows the
decision boundary of one-class SVM for different values of v. The class of the accepted
shapes are determined by the trained recogniser.

In order to use one-class SVM for rejection in our system, for each class in the
training set, we train a one-class SVM. Therefore, for a training set with n classes, we
end up with n SVM models. When a new shape candidates is given to this rejector, if

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 92

all the SVM models reject the input, it gets rejected. Otherwise, if one or more of the
SVM models accept the input, it gets accepted.

5.3.2 Classifier’s Confidence for Rejection

The SVM classifier used for the shape classification can output the distance from the
input to the closest point on the decision boundary, and be used as a confidence score.
This score cannot directly be used to estimate the class probabilities. However, there
are techniques for converting scores into class probability. Different implementations of
SVM use different techniques for estimating the probability. In our experiments, we use
the LibSVM Sharp (LibSVMsharp 2019) which is a .Net Wrapper for the LibSVM. In
LibSVM, after training the classifier, it calibrates probabilities using Logistic Regression
on the SVMs scores, fitted by an additional five-fold cross-validation on the training
data. The details of how LibSVM is extended to provide probability estimates are
described by Chang & Lin (2011) and Wu et al. (2004).

Having the probability estimate of each class, we need to set a threshold for rejecting
shape candidates. We choose a threshold for each class separately. After the training
set is used to train the classifier, we use them to determine the threshold for each
class as well. Each shape in a class is given to the classifier, and the lowest predicted
probability for the class is captured as the threshold for that class. We obtain the
thresholds after the pre-processing outlier detection to make sure the outliers do not
affect the determination of the thresholds.

5.3.3 Rejection Evaluation in Isolation

We evaluate the rejection system’s performance on the five development datasets. In
order to have a visual insight of these datasets, the plot of these datasets after mapping
their data into 2D space using MDS (without the preprocessing outlier detection) is
shown in Figure 5.24.

In order to be able to evaluate the rejector’s performance in isolation, besides the
valid shapes, we need some invalid shape candidates to check how well they get rejected
while the valid ones are being accepted. Similar to the process described in Section
5.2.3, we generate these shape candidates by incorporating a mock recogniser with the
grouper and capturing all the hypothesised shape candidates. This process assures that
all the valid shape candidates are hypothesised and also there would be a large number
of invalid shape candidates to evaluate the rejection methods with. Table 5.5 shows the
details of generated shape candidates for the development datasets.

For the domains with extendable shapes (i.e. digital circuit and FA datasets), the
sub-shapes of a shape might represent another shape in that domain. For example, as
shown in Figure 5.25, an XNOR gate has sub-shapes of XOR, NOR and OR gates. If

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 93

(a) Flowchart diagram (b) Class diagram

(c) Digital Circuit diagram

(d) FC Training set (e) FC Testing set

(f) FA Training set (g) FA Testing set

Figure 5.24: The plot of the development datasets’ shapes after mapping the data into
2D space using MDS. All these plots are before the pre-processing outlier detection

step.

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 94

Valid Invalid Incomplete
Flowchart 210 874 362

Class 171 1724 4185
Digital 247 14390 1055
FC 1225 26346 8401
FA 671 54982 15

Table 5.5: The details of generated shape candidates using the grouper and a mock
recogniser

Figure 5.25: A visual representation of the extendable shapes in the digital circuit
domain

any of these valid sub-shapes are labelled as “incomplete-XNOR” and get accepted by
the rejector (since they represent a valid shape), it counts as a false positive which would
affect the evaluation results. In addition, if we train a classifier with the incomplete
shapes, having two shapes from the same class being labelled differently (e.g. one as OR
and one as “incomplete-XNOR”) would affect the classifier’s performance. Therefore,
we relabel such datasets to provide label for the sub-shapes that represent a valid
shape. While generating the shape candidates and labelling them, if a candidate can
be considered as the incomplete of multiple shapes, we label it as an incomplete of the
shape that has no further sub-shapes. This would also provide a consistency in the labels
for training a classifier with incomplete shapes. For example, a drawn stroke shown in
Figure 5.26 can be labelled as “incomplete-XNOR”, “incomplete-XOR”, “incomplete-
NOR;” or “incomplete-OR”; however, we label it as “incomplete-OR” since the OR gate
has no further valid shape.

We evaluate the performance of a rejection system using True Positive Rate (TPR),
True Negative Rate (TNR) and Area Under Curve (AUC). The TPR (Equation 5.10)
measures how well the positive examples are being accepted. The TNR (Equation 5.11)

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 95

Figure 5.26: A representation of XNOR gate with its possible sub-shapes (XOR, NOR
and OR gates) and an example of a drawn stroke.

measures how well the negative candidates (the invalid and incompletes) are being
rejected. In the following equations True Positive (TP) refers to the valid shapes that
are correctly accepted, False Positive (FP) refers to the invalid shape candidates that
are incorrectly accepted, True Negative (TN) refers to the invalid shape candidates that
are correctly rejected and the False Negative (FN) refers to the valid shapes that are
incorrectly rejected.

TPR =
#TP

#TP + #FN
(5.10)

TNR =
#TN

#TN + #FP
(5.11)

It is common to compare different learning algorithms using the Receiver Operating
Characteristic (ROC) curve. The ROC curve is a plot of TPR (Equation 5.10) on
the y axis and against false positive rate (1 - TNR) on the x axis. A perfect rejection
method would be at (0,100) where has achieved 100% true positive and 0% false positive,
while the worst rejection that gets everything wrong would be at (100,0); so the closer
to the top-left-hand corner the result of a rejection method, the better the classifier
has performed. Figure 5.27 shows an example of a ROC curve, where the diagonal
line represents a system that behaves at a chance level and the other two lines above
that are better (the farther above the diagonal line, the better the performance of the
system) (Marsland 2015). The Area Under Curve (AUC) is an integrated quantitative
representation of ROC curve, which is commonly used to measure the performance of
outlier detection systems (Ding et al. 2014). The AUC can summarise the ROC curve
as the higher the AUC value, the better the system is performing.

In our experiments, we count a shape candidate as a true positive if is a valid
shape that is accepted by the rejector. For the evaluations in this chapter, we do not
consider the shape label, which allows us to measure the rejector’s accuracy without
having the classifier affect the results. In the following we first report the results of
different proximity-based rejection methods with the original feature space (720D) on
the development datasets. Next, we perform the same experiments with the merged
feature representation. Finally, we train a classifier with the incomplete shapes and

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 96

Figure 5.27: An example of an ROC curve (Marsland 2015)

carry out the same experiments.

Results on the Original Space

We evaluated the proximity-based rejection method (fitting the hyper-sphere) with dif-
ferent distance metrics, the similarity metrics and the method of fitting an ellipse around
each cluster. We also combined each of the distance metrics with a similarity metric
and measured the performance. For such cases that a combination of two metrics are
used, a shape candidate gets rejected if at least one metric (either the similarity or the
distance) rejects the candidate. The distance metrics, similarities and their combina-
tions results in 26 different rejection methods. The full results table of the 26 methods
can be seen in Appendix A.

The results showed that no single approach outperforms others in terms of TPR,
TNR and AUC. Some metrics achieve a higher TPR than others while having a lower
TNR, which makes it difficult to decide which approach performs better. Therefore, we
use AUC metric when comparing the results of different approaches. A summary of the
best performing methods based on the average of their AUC on different datasets can
be seen in Table 5.6.

Fitting a linear mixed effects model shows that there is a significant difference in the
26 methods of rejection (p < 0.05). In order to obtain pairwise mean comparison, we fit
Analysis of Variance (ANOVA) model and perform TukeyHSD test. The results show

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 97

FC FA Flowchart Class Digital

Dice +
Correlation

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 89.4% 95.3% 95.0% 87.6% 94.0%
AUC 94.5% 97.6% 95.1% 93.2% 92.8%

Dice +
Cosine

TPR 99.6% 100.0% 95.7% 99.4% 97.2%
TNR 87.0% 93.4% 93.9% 86.3% 91.1%
AUC 93.3% 96.7% 94.8% 92.9% 94.1%

Hellinger
TPR 99.5% 100.0% 95.2% 99.4% 94.7%
TNR 89.1% 96.8% 93.9% 84.7% 92.5%
AUC 94.3% 98.4% 94.5% 92.1% 93.6%

Hellinger +
Correlation

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 90.2% 96.9% 94.2% 86.0% 93.2%
AUC 94.8% 98.4% 94.7% 92.9% 92.4%

Hellinger +
Cosine

TPR 99.5% 100.0% 95.2% 98.8% 94.3%
TNR 89.5% 96.8% 93.9% 84.7% 92.5%
AUC 94.5% 98.4% 94.5% 91.7% 93.4%

Table 5.6: The summary of the best results of proximity-based rejection methods on
the original feature space.

that the Kulczynski method is significantly worse (p < 0.05) than all other methods
except the Dice, Manhattan and Euclidean. The Dice method is also significantly
different from all others except the Euclidean and Manhattan. The rest of methods are
not statistically different from each other.

The results show that any distance metric that is combined with a similarity metric
has resulted in a better AUC. The idea of combining two metrics is to achieve a better
TNR, since we reject a shape candidate if any of the two metrics reject it. We also
carried out an experiment by combining the correlation and cosine similarity metrics,
which the results were exactly the same as the correlation metric. This implies that
combining a distance metric with both of the correlation and cosine metrics would
achieve the same results as the combination of the distance metric with the correlation
metric. We also fit a linear mixed effects model on the result of the combined methods
only (combination of a distance with a similarity metric) and the results show that there
is no significant difference among combined methods.

The results show that for the FC and FA datasets, the best results are achieved
through the combination of Hellinger distance and correlation similarity metric (having
TPR 99.5%, 100% and TNR 90.2%, 96.9% and AUC 94.8%, 98.4% for the FC and FA,
respectively). For the Flowchart and Class diagram datasets, the Dice + Correlation
achieves the best results, while for the digital circuit dataset the Dice + Cosine achieves
the best results (having TPR 95.2%, 98.8%, 97.2% and TNR 95.0%, 87.6%, 91.1% and
AUC 95.1%, 93.2%, 94.1% for the flowchart, class and digital circuits, respectively).
The results in Table 5.6 seem promising (having AUC in the range 93.2% to 98.4%),

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 98

(a) Original space (b) Merged images

Figure 5.28: Comparison of the similarity score of each instance to its cluster centre
for the original space 5.28a and the merged one 5.28b.

however, we will carry out the same experiments on the merged features for possible
improvements on the results.

Results on the Merged Features

We carried out the same experiments of using different metrics for rejection on the
merged feature representation. As mentioned before, we get the merged features by
capturing the max value of the five feature images for each pixel, as well as the average
of each feature image and the number of non-zero pixels, which results in a feature vector
of size 154. It should be noted that when merged features are used, the threshold for the
pre-processing outlier detection method is changed to 0.7 (from 0.65) as the similarity
of cluster instances to the centre are higher (see Figure 5.28 for a comparison of the
similarity metrics of each instance to its cluster centre for the FC dataset).

In our experiments, Hellinger + Correlation achieves the best results for FC and
FA datasets, and Dice + Correlation achieves the best results for the flowchart, class
and digital circuit diagrams. The summary of these two methods can be seen in Table
5.7. The full table of the combined methods on the merged features can be seen in the
Appendix B.

Fitting linear mixed effects model on the combined methods shows that there is a sig-
nificant difference in the method of rejection when merged features are used (p < 0.05).
The TukeyHSD test results show that the Hamming + Cosine is significantly worse
than seven methods of Hamming + Correlation, Dice + Correlation, Hellinger + Co-
sine, Hellinger + Correlation, Kulczynski + Correlation, Ellipse + Cosine, Ellipse +
Correlation. The TukeyHSD test shows that there is no significant difference between
other methods. In addition, we fit a linear mixed effects model on the combined methods

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 99

Dataset Method TPR TNR AUC
Dice + Correlation 99.5% 89.4% 94.5%FC Hellinger + Correlation 99.5% 90.2% 94.8%
Dice + Correlation 100.0% 95.3% 97.6%FA Hellinger + Correlation 100.0% 96.9% 98.4%
Dice + Correlation 95.2% 95.0% 95.1%Flowchart Hellinger + Correlation 95.2% 94.2% 94.7%
Dice + Correlation 98.8% 87.6% 93.2%Class Hellinger + Correlation 98.8% 85.0% 91.9%
Dice + Correlation 91.5% 94.0% 92.8%Digital Hellinger + Correlation 91.5% 93.2% 92.4%

Table 5.7: The results of the two methods Dice + Correlation and Hellinger +
Correlation on the merged features

of the original space and the merged ones. The results show that there is no signifi-
cant difference among all these approaches when all considered together. Therefore,
between the merged and the original features, the latter is preferred to avoid the extra
computation of merging the features.

Results for Incomplete Rejection

In Section 5.2.3, we proposed two approaches to deal with the incomplete shape candi-
dates that have a missing side and are being accepted by the proximity-based rejector.
One approach is to train a classifier with the incomplete shapes to discriminate them
from the complete ones, and the other approach is to use image masking to find the
missing part of an incomplete shape. Using the image masking can be done in the
process of grouping and recognition and cannot be used for evaluation of rejector in
isolation (however, we will evaluate this approach later in this chapter when grouper
and recogniser are incorporated). Therefore, we report our results for the case that a
classifier is trained with the incomplete shapes.

Each shape candidate is first checked with the proximity-based rejector, and if gets
accepted by that, then we use the trained classifier to check if the shape is complete.
If the classifier classifies the shape candidate as an incomplete shape, the shape can-
didate is rejected. In our experiments, training a classifier with the incomplete shapes
performed better on the merged features than the original space. We believe this is
because of the high dimension of the original space (720D), the classifier fails to dis-
criminate between the incomplete and complete shapes. The parameter of the SVM
classifier for RBF kernel are C = 3 and γ = 0.5, which are determined by a grid search.
We used the rejection methods that achieved the best results on the merged features,
(i.e., Hellinger + correlation and Dice + Correlation), and incorporated the classifier

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 100

Merged Features Merged and Trained
with Incompletes

Method TPR TNR AUC TPR TNR AUC

FC 1 99.7% 86.8% 93.2% 99.5% 96.8% 98.1%
2 99.7% 88.2% 93.9% 99.5% 96.7% 98.1%

FA 1 99.8% 88.3% 94.0% 99.5% 98.5% 99.1%
2 100.0% 90.0% 95.0% 99.7% 98.5% 99.1%

Flowchart 1 98.6% 97.1% 97.8% 98.6% 99.4% 99.0%
2 98.1% 96.1% 97.1% 97.6% 99.5% 98.5%

Class 1 99.4% 91.3% 95.3% 91.2% 98.8% 95.0%
2 98.8% 91.0% 94.9% 90.6% 98.7% 94.7%

Digital 1 98.0% 91.9% 94.9% 91.0% 93.0% 92.2%
2 96.8% 91.0% 93.9% 90.3% 94.0% 92.1%

Table 5.8: The proximity-based rejection output using Dice + Correlation (method 1)
and Hellinger + Correlation (method 2) on merged feature images, and for the case

that a classifier is trained with incomplete shapes.

with incomplete rejection capability.
As can be seen in Table 5.8, having a classifier to reject incomplete shapes has

improved the TNR for all datasets, although the TPR has decreased. The decrease in
TPR for FC, FA and flowchart dataset is negligible, which with the increase in TNR
has eventually resulted in a better AUC. For the class diagram dataset, there is a
large decrease in TPR (about 8%) and a large increase in TNR (about 7%), which has
resulted in a slightly lower AUC. For the digital circuit dataset, although the TPR has
a large decrease (about 6%), the TNR has a slight increase, which has resulted in a
lower AUC. The results also show that when incomplete shape rejection is used, the
Dice + Correlation method achieves comparable or better results than the Hellinger +
Correlation method (see Table 5.8).

We fit a linear mixed effects model on the combined methods on the original features,
merged ones and the method of Dice + Correlation on the merged features that is also
using a classifier for rejection. The results show that there is a significant difference
in the chosen methods (p < 0.05). We fit ANOVA model and perform TukeyHSD test
for pairwise mean comparison. The results show that the Hamming + Cosine on the
merged features is worse than the Dice + Correlation on merged that uses a classifier
for incomplete rejection. Removing the Hamming + Cosine results and refitting linear
mixed effects model shows that there is no significant difference among the rest of
methods.

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 101

FC FA Flowchart Class Digital

One-class
SVM

TPR 91.4% 96.1% 82.4% 87.1% 79.4%
TNR 67.3% 91.6% 98.9% 96.7% 94.4%
AUC 79.4% 93.8% 90.7% 91.9% 86.9%

Dice +
Correlation

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 89.4% 95.3% 95.0% 87.6% 94.0%
AUC 94.5% 97.6% 95.1% 93.2% 92.8%

Table 5.9: The results of rejection using one-class SVM compared to that of Dice +
Correlation (in the original space)

FC FA Flowchart Class Digital
TPR 97.1% 99.2% 85.2% - 57.5%
TNR 91.0% 96.7% 88.3% - 96.4%
AUC 94.0% 98.0% 86.8% - 76.9%

Table 5.10: The results of rejection using classifier’s confidence level.

Results of the One-Class SVM rejection

We evaluated the use of one-class SVM for rejection. This requires training a one-class
SVM for each class in the domain. For a shape candidate, if all the classifiers reject
the candidate, it gets rejected. In our experiments, we achieved the best results on the
original space (720 dimensions) with Linear function with Nu = 0.01, C = 3. As can
be seen in Table 5.9, one-class SVM achieves a lower TPR and AUC for all domains
compared to the proximity-based rejection method (for example compared to the Dice +
Correlation in the original space). The TukeyHSD test results show that the one-class
SVM rejection method is significantly worse than other methods (i.e., the combined
methods of original space, merged ones and using incomplete rejection).

Results of the Rejection with Classifier’s Confidence

In the next experiments, we used the classifier’s confidence for rejection. It should also
be noted that this approach cannot be used for domains with a single class (such as class
diagram), as the classifier needs to have multiple classes to learn about. The results of
this method can be seen in Table 5.10. The results are obtained on the original features
(720 dimensions) with Linear kernel and C = 3. The TukeyHSD test results show that
this method is significantly worse than other approaches.

Summary

In this section, we evaluated various rejection methods (with different metrics) in isola-
tion on the original features and the merged feature representation. The results showed
that no single approach has outperforms all other approaches in all evaluation metrics

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 102

FC FA Flowchart Class Digital

Hellinger +
C + O

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 90.2% 96.9% 94.2% 85.0% 93.2%
AUC 94.8% 98.4% 94.7% 91.9% 92.4%

Dice +
C + M

TPR 99.7% 99.8% 98.6% 99.4% 98.0%
TNR 86.8% 88.3% 97.1% 91.3% 91.9%
AUC 93.2% 94.0% 97.8% 95.3% 94.9%

Dice + C +
incomplete
rejection + M

TPR 99.5% 99.5% 98.6% 91.2% 91.0%
TNR 96.8% 98.5% 99.4% 98.8% 93.0%
AUC 98.1% 99.1% 99.0% 95.0% 92.2%

Table 5.11: The summary of selected rejection methods for evaluation of grouping and
recognition. Correlation (C), Original space (O), Merged space (M)

(TPR, TNR and AUC) on all datasets. The TukeyHSD test results also show that there
is no significant difference in the majority of the rejection methods. In the next section,
we pick some of the rejection methods and incorporate them in the whole grouping and
recognition system.

5.3.4 Evaluation of the Grouping and Recognition Using Different
Rejectors

In this section we evaluate the grouping and recognition with different rejection methods
on the development datasets. From the methods on the original features and the merged
ones, we picked the ones that achieved the best average AUC on the five datasets. We
also picked the method of using classifier for rejecting incompletes, as it achieved best
overall AUC. The summary of these methods with their evaluation results in isolation
can be seen in Table 5.11. The one-class SVM and the classifier’s confidence for rejection
methods performed significantly worse results, therefore, we do not include them in the
experiments of this section.

One of the techniques we used to deal with the incomplete shapes is to use image
masking during grouping and recognition to find the missing part of an incomplete shape
candidate (described in Section 5.2.3). This method looks for the neighbouring strokes
of the accepted shape to find the missing part of the incomplete shape; hence, this
method could not be evaluated in isolation. In this section, we evaluate each method
by excluding this functionality to see its affect on the final results. Therefore, we report
the results for six different cases, which are listed in the following:

• Method 1: Hellinger + Correlation on the original space, with image masking
process.

• Method 2: Hellinger + Correlation on the original space without the masking

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 103

1 2 3 4 5 6
Terminator 94.6% 88.7% 89.7% 83.3% 92.6% 87.7%
Data 94.9% 87.4% 93.5% 85.7% 90.8% 89.8%
Decision 76.3% 74.4% 70.1% 61.6% 73.9% 75.4%
Process 97.8% 89.7% 96.6% 87.2% 95.1% 92.6%
Connection 97.6% 97.6% 98.4% 98.4% 98.4% 98.4%
Overall 92.9% 87.2% 90.4% 83.0% 90.4% 88.8%

Table 5.12: The evaluation of grouping and recognition with the six different rejection
methods on the FC dataset

process.

• Method 3: Dice + Correlation on the merged features, with image masking
process.

• Method 4: Dice + Correlation on the merged features without the masking
process.

• Method 5: Dice + Correlation with a classifier trained with incomplete rejection,
and with image masking process.

• Method 6: Dice + Correlation with a classifier trained with incomplete rejection,
and without the masking process.

Tables 5.12 - 5.16 show the evaluation result of the grouping and recognition of
the above methods on the development datasets. We calculate the accuracy of each
class by dividing the number of correctly grouped and accepted shapes by the total
number of shapes of that class. Similarly, the overall accuracy shows the portion of
correctly grouped and accepted shapes in that dataset. Based on the overall accuracy,
the results show that the Hellinger + Correlation with the original features (method
1) has outperformed the other approaches for the FC and FA datasets. For the class,
flowchart and digital circuit datasets, the Dice + Correlation with the merged features
has outperformed other approaches.

The results also show that using image masking for finding missing part of the shape
always improves the results, even for the case that a classifier with incomplete shapes
is trained (see method 5 and 6 in Tables 5.12 - 5.16). Using a classifier for rejecting
incomplete shapes always improves the results compared to the case that it is not being
used. This can be seen by comparison of methods 4 and 6 in Tables 5.12 - 5.16, in which
method 6 uses the same feature and metrics as 4, but with addition of incomplete shape
rejection.

We carried out t-test for the three different methods (method 1,3 and 5), and the
results showed that there is no significant difference among the three different methods

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 104

1 2 3 4 5 6
State 98.2% 98.2% 94.7% 93.7% 95.8% 94.7%
Final State 97.7% 96.1% 93.0% 92.2% 96.1% 95.3%
Overall 98.1% 97.6% 94.2% 93.2% 95.9% 94.9%

Table 5.13: The evaluation of grouping and recognition with the six different rejection
methods on the FA dataset

1 2 3 4 5 6
Start End 92.1% 92.1% 89.5% 89.5% 89.5% 89.5%
Process 98.1% 65.7% 96.3% 92.6% 96.3% 92.6%
Decision 80.6% 53.2% 93.5% 67.7% 91.9% 88.7%
Overall 91.8% 66.8% 94.2% 84.6% 93.8% 90.9%

Table 5.14: The evaluation of grouping and recognition with the six different rejection
methods on the flowchart dataset

1 2 3 4 5 6
Class 80.5% 2.9% 83.3% 8.0% 82.2% 79.3%

Table 5.15: The evaluation of grouping and recognition with the six different rejection
methods on the class diagram dataset

1 2 3 4 5 6
Start 87.3% 87.3% 84.8% 82.3% 83.5% 82.5%
NOT 55.0% 65.0% 70.0% 75.0% 65.0% 65.0%
XOR 23.8% 28.6% 42.9% 9.5% 33.3% 33.3%
NOR 68.2% 45.9% 50.0% 45.5% 45.5% 45.0%
AND 57.1% 47.6% 52.4% 42.9% 47.6% 47.6%
OR 55.0% 20.0% 35.0% 20.0% 30.0% 25.0%
XNOR 33.3% 27.8% 44.4% 38.9% 44.4% 44.4%
NAND 61.9% 52.4% 76.2% 61.9% 76.2% 76.2%
Overall 64.0% 58.1% 64.4% 56.3% 61.3% 60.8%

Table 5.16: The evaluation of grouping and recognition with the six different rejection
methods on the digital circuit dataset

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 105

for flowchart, class and digital circuit datasets. However, for the FC dataset, method
1 is statistically significantly better than method 5 (p < 0.05), and for FA dataset,
method 1 is statistically significantly better than method 3 (p < 0.05).

Overall, since using incomplete shape rejection method did not achieve the best
results on any of the development datasets, we will not be using this approach in the
evaluation chapter. In addition, since using the merged features (with Dice + Corre-
lation metrics, i.e. method 3) has achieved significantly lower results than the original
features (with Hellinger + Correlation metrics, i.e. method 1) on FA dataset, we will not
use this approach in the evaluation chapter. Therefore, we will be using the Hellinger
+ Correlation metrics on the original features in the evaluation chapter.

Discussion

Although using a classifier for rejecting incomplete shapes usually achieves better results
in isolation (due to higher TNR), it does not achieve the best results when combined
with the grouper. One reason is that other approaches deal with the incomplete shapes
during grouping and recognition using image masking, which could not be used for
evaluation of the rejector in isolation. In addition, we observed that when incomplete
shape rejection is being used, some false positives are occurring, which would not happen
in other cases.

Figure 5.29 shows an example of a drawn arrow and a data (the parallelogram) in the
FC dataset. The grouping algorithm starts with stroke 1 in the shape candidate list (C)
and continues expanding that by adding the neighbouring strokes (i.e. strokes 2,3 and 4
one at a time). Everytime a stroke is added to the C, its subsets are checked for a shape,
which no shape can be found. When stroke 5 is added to the C and the subsets are
checked, an incomplete shape of {3,4,5} gets accepted by the rejector when a classifier
for the incomplete shape rejection is not used. Next, stroke 6 is found as a missing part
of the shape using the image masking technique and the whole shape gets grouped and
accepted correctly. On the other hand, when a classifier for rejecting incomplete shapes
is being used, the shape candidate {3,4,5} gets rejected by the classifier as an incomplete
shape. When stroke 6 is added, the subsets of C are checked. The shape candidate
{2,4,5,6} is hypothesised before the actual shape (i.e. strokes {3,4,5,6}) and incorrectly
is being accepted by the rejector. The shape candidate {2,4,5,6} gets accepted because
the arrow head (i.e. stroke 2) covers some part of the missing stroke (i.e. stroke 3)
due to the blurring process of feature calculation. The blurring of the strokes is carried
out on the direction feature images using Gaussian smoothing function (as described
in Section 5.1). We also carried out an experiment by reducing the σ of the Gaussian
smoothing function to reduce the blurring, but this did not resolve this issue. This
issue highlights a limitation of this feature representation. We believe such cases can

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 106

Figure 5.29: An example of a drawn arrow and process in the FC dataset

Accuracy Missing
Stroke

Extra
Stroke 1 Error Rejector

TPR
FC 92.9% 95.0% 95.0% 97.1% 99.5%
FA 98.1% 98.8% 98.8% 99.5% 100%
Flowchart 91.8% 92.8% 92.8% 93.8% 95.2%
Class 80.5% 83.9% 88.5% 92.0% 98.8%
Digital 64.0% 73.0% 73.0% 82.0% 91.5%

Table 5.17: The result of different measurement metrics for accuracy on the
development datasets

be solved in the future by a backtracking strategy that will be discussed in Chapter 8.
The reported accuracies in Tables 5.12 - 5.16 are based on a strict method of perfect

grouping and acceptance of the shapes. This means that if an accepted shape has even
one missing or extra stroke, it is counted as a false positive. We use three other metrics
to measure the performance of our grouping and recognition system. ExtraStroke is
the percentage of the shapes that are correctly grouped and accepted as well as the
shapes that erroneously have one extra stroke. MissingStroke is the percentage of the
correctly accepted shapes and the ones that have one missing stroke. 1Error shows the
percentage of the correctly accepted shapes and the ones that have either a missing
stroke or an extra stroke (not both at the same time). In Table 5.17 we report the
result of the accuracies of the strict perfect grouping and recognition, the ExtraStroke,
MissingStroke, 1Error and the TPR of that approach. The reported results in Table
5.17 are with the Hellinger + Correlation metrics on the original features (method 1),
as this is our choice of evaluation for Chapter 7.

The results show that if we allow one error (either missing or extra stroke), 92.0%
to 99.5% of the shapes in FC, FA, flowchart and class diagrams are being found, which
are close their rejector’s TPR. This implies that the majority of the shapes are being
correctly located; however, a missing or extra stroke affects the perfect grouping and
recognition results. We realised some of the missing strokes are touch up strokes that
the image masking process cannot pick them as a missing part (see Figure 5.30 for

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 107

Figure 5.30: Some examples of touch-up strokes (shown in black) that are not
recognised as part of the shape. The strokes in orange are the ones that are grouped

together and are accepted as a single shape by the rejector.

Figure 5.31: Some examples of missing strokes (shown in black) that are not picked in
the image masking process. The strokes in orange are the ones that are grouped

together and are accepted as a single shape by the rejector.

some examples of this case in different diagrams). There are also cases that the image
masking does not find all the missing strokes (see Figure 5.31 for examples of this case).
We also realised that in many cases part of a connector is attached to a shape and all
strokes together get accepted (see Figure 5.32 for some examples of this case).

Allowing one error for the digital circuit dataset, increases the accuracy by 18%,
however, it is still relatively low compared with the rejector’s TPR. After observing the
results, we realised that there are some cases with more than one error. See Figure 5.33
for some examples of more than one error. For these cases, the shape is being correctly
located, however, some small strokes are attached to the shape, which does not make it
different enough to be rejected.

5.4 Summary

In this chapter we first described the details of the recogniser that we used, followed
by some modifications to the feature representation that lead to better results. Next,
we introduced a novel proximity-based rejection method that performs rejection using
novelty detection methods. This is done by forming a cluster around each class and
using different distance and similarity metrics to measure the proximity of an input
to a cluster centre. We also introduced two different techniques for dealing with the

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 108

Figure 5.32: Some examples of an extra stroke that is attached to the shape. The
strokes in orange are the ones that are grouped together and are accepted as a single

shape by the rejector.

Figure 5.33: Some examples of having more than one error.

CHAPTER 5. SHAPE RECOGNITION AND REJECTION 109

incomplete shapes. In the experiments, we evaluated each rejection method in isolation
with different feature representation using different similarity and distance metrics.
We also compared the results with two other techniques for rejection, which are using
classifier’s confidence and using one-class SVM. The rejector’s evaluation results show
a high accuracy in rejecting invalid shape candidates and accepting the valid ones.
Finally, we incorporated some of the best performing rejection methods of different
feature representations with the grouper followed by a discussion on the performance of
the system. The results showed that the Hellinger + Correlation metric on the original
feature space that uses image masking performs better.

Chapter 6

Connector Localisation and
Grouping

In our sketch recognition system, the connector recognition is carried out after the shape
recognition. So the input is a set of recognised shapes, and the leftover strokes, which
are connectors and errors. In this step, the connectors need to be detected and their
strokes grouped together. In this chapter we describe our approach towards localising
connectors and grouping their strokes together. The connector recognition is not a
trivial task since the appearance of the connector shaft can vary markedly. Regardless
of how shafts are drawn, all the directed connectors (the type of connector that has a
head at one end only) have one part in common, the connector head. Figure 6.1 shows
an example of three drawn arrows with different shafts, but similar heads (the heads
are highlighted with a red box around them).

Our approach towards connector recognition is to learn about the connector heads,
not the whole connector since the common part is the head. In this chapter we will
describe how we learn about the connector heads, followed by a description of a grouping
algorithm that groups the shaft strokes. We have used flowcharts (Stevens et al. 2013)
as a choice of dataset for illustration of each step of connector grouping and recognition
due to its simplicity. We will show the experimental results on the development datasets
(see details on these set of data in Section 3.4), followed by a discussion of the limitations
of our approach.

Figure 6.1: An example of three drawn arrows with different shafts but similar heads.

110

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 111

6.1 Training: Connector Head Localisation

Our aim of training a connector recogniser is to learn only about the connector heads
and to be able to reject any other candidate. The classification of the heads is not
necessary for our purpose of sketch recognition, as we only require to localise them. If
there are different connector heads with different semantics, we could use a classifier to
distinguish them from each other, however, this is not the case for the datasets we use in
this thesis. In this chapter, when we refer to the connector recogniser, we are referring
to the connector head localisation, which is the process of finding a valid connector
head. In the following, we describe how we train the connector recogniser.

We use the same feature representation and same steps of forming clusters and
finding thresholds as described in Chapter 5. The described feature representation
is rotation variant, but the connector heads could be drawn in any orientation. We
therefore rotate the connector heads to point to a predefined direction. Training the
connector recogniser requires several steps: finding the connector heads of the training
set, rotating them, and forming the cluster. In the following, we describe how we detect
the location of the head, followed by a description of the rotation process.

6.1.1 Connector Head Detection

To form the cluster for the connector heads, we need some training samples. Usually
a labelled dataset only contains labels for the whole connector, not the head area. It
is difficult to only label the connector head area that we want to learn about (the
highlighted one with a red box on the right in Figure 6.1). Therefore, we need an
automated system to identify these heads to be used for training.

Each connector might be drawn with single or multiple strokes. We assume the head
is located around one of the endpoints of the shaft strokes. We put a bounding box
centred at the connector strokes’ endpoints and capture all the connector stroke points
that would fall within that bounding box; each representing a head candidate. For each
connector, we would have 2N connector head candidates (where N is the number of
drawn strokes for that connector). Figure 6.2 shows an example of a connector in the
flowchart dataset drawn with two strokes, one for the shaft and one for the arrow head.
In this figure, the two bounding boxes fitted around the two endpoints of the shaft
stroke are shown in red.

Each arrow head candidate is turned into its five feature images as described in
Section 5.1 (without the smoothing and downsampling steps to have a clearer repre-
sentation of the candidate). We then merge these five images representing the head
candidate and pick the head candidate image with the highest number of pixels in it.
An alternative would be to count the number of stroke points in the bounding box but

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 112

Figure 6.2: An example of the two bounding boxes fitted around connector ends.

(a) Drawn arrow
(b) Arrow Head
Candidate 1

(c) Arrow Head
Candidate 2

Figure 6.3: (a): The merged feature image of a drawn arrow, (b): The merged feature
image of the bounding box around the bottom-left endpoint, (c): The merged feature

image of the bounding box around the top-right endpoint

this would not always identify the correct head candidate because some touch-up strokes
might occur. Figure 6.3a shows the merged image of an example of a drawn arrow with
a single stroke in the flowchart dataset, and the merged images of the two endpoints of
the arrow are shown in Figures 6.3b and 6.3c. In this example, the second arrow head
candidate (Figure 6.3c) has the higher number of pixels, so is chosen as representing
the head candidate.

The size of the bounding box is a sensitive parameter. If it is too large we might
have some parts of the shaft that is not needed for training, and if it is chosen too small,
the whole head would not fit in the box. We chose this parameter experimentally for
the development datasets.

6.1.2 Rotation of Connector Heads

The identified connector heads can point to any direction. Therefore, we need to rotate
all the selected connector heads to point to the same direction; e.g. all pointing to the
right (for example, the selected arrow head in Figure 6.3c needs to be rotated about
90◦ clockwise). For this we need to find the shaft line and the location of the head to
identify its direction. Once we know the direction of the connector head, we can rotate
it to point in the pre-defined direction. This requires three steps: (i) finding the shaft
line, (ii) identifying the direction and (iii) rotation.

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 113

(a) The head
candidate

(b) A line on the
shaft

(c) Vector
direction from

point 1 to point 2

(d) Vector
direction from

point 2 to point 1

Figure 6.4: A head candidate merged image drawn in the flowchart diagram.

Finding the Shaft Line The Hough transform is a widely used line detection al-
gorithm (Duda & Hart 1972, Illingworth & Kittler 1988) in the computer vision and
image processing community. We find the lines using the Hough transform algorithm
provided in EmguCV library (EmguCV 2019) (a .NET wrapper to the OpenCV library
(OpenCV 2019)). We consider the longest detected line as the arrow shaft.

Identifying the Direction If we think of the shaft as a vector, identifying its direc-
tion allows us to determine the angle we need to rotate to point to the desired direction.
For example, Figure 6.4a shows the merged image of a connector head from the flowchart
dataset. Figure 6.4b shows a line that could fit on the shaft with its two ends (1 and
2). If we think of the line as a vector, Figure 6.4c shows if point 1 is picked as the tail
of the vector and Figure 6.4d shows if point 1 is picked as the head of the vector. We
assume from the two endpoints of the shaft line that the one that has a higher density
of pixels around it is where the head is located. We put a 5 × 5 window around the
two endpoints and pick the one that has a higher number of pixels in it. We count the
number of pixels by binarising the image with an intensity threshold value more than
0, regardless of what the intensity value is.

Rotation Once we know the direction of the connector, we can calculate how much
it should be rotated to point in the desired direction. We rotate the head in the point
level (not its image representation) to make sure no information is lost. Figure 6.5
shows some of the arrow heads, the fitted line of the shaft using the Hough Transform
algorithm and the rotated heads in the flowchart dataset.

6.1.3 Forming the cluster

In this stage, we have all the connector head candidates pointing in the same direction
that we need to learn about. We use the method described in Section 5.2.1 to form
the cluster and find thresholds. In addition, similarly to regular shapes, we perform a

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 114

Figure 6.5: Examples of selected arrow heads (the first column) with the fitted line in
red (the second column) and the rotated head (the last column)

pre-processing outlier detection within a cluster before finding the cluster thresholds.

6.1.4 Summary of Connector Head Training Process

To summarise, we perform the following to train a recogniser that can accept or reject
the head candidates:

1. Find the connector heads in a labelled dataset.

2. Rotate all connector heads to point to the same direction.

3. Form clusters around connector heads.

4. Perform outlier detection.

5. Find the thresholds for clusters.

6.2 Connector Grouping

The connector grouper is responsible for finding the connectors in a diagram and putting
the strokes of each connector together. The connector grouper works simultaneously
with a recogniser (described in the previous section) for validation of a connector can-
didate. Our approach is to find connector heads around a shape and then find the
remainder of the shaft strokes. The input to the connector grouper is a list of unrecog-
nised strokes (U) and recognised shapes (S).

We assume the unrecognised neighbouring strokes (N) of a shape belong to a con-
nector, hence, we perform a search around each recognised shape. For each recognised

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 115

shape, we put a Bounding Box (BB) centred at the endpoints of each stroke in N and
capture any point from strokes in U that would fall within the bounding box. In this
step, we only include the points from the strokes that have at least one endpoint in the
bounding box. We treat the BB around each endpoint as a connector head candidate,
therefore, each BB is turned into its merged feature image and rotated to point in a
predefined direction (same direction used in the training process). The head candidate
is then given to the connector recogniser for validation. If a head candidate is accepted
by the recogniser, we then look for the rest of the shaft strokes. The pseudocode for
the connector grouping and recognition can be seen in Algorithm 3.

We assume the connector strokes (CS) that fall within the bounding box include
the head stroke(s) and part of the shaft (if not all of the shaft). We look for the rest of
the shaft strokes in U that have an endpoint close to an endpoint of strokes in CS. If a
stroke (u) in U has an endpoint close to any of the strokes’ endpoints in CS, we add it
to CS. We can continue this process until we reach another shape. However, since the
other end of the connector might be a shape that is not recognised (a false negative),
we stop when we cannot add any more strokes to the CS. The pseudocode for finding
the shaft strokes can be seen in Algorithm 4.

Algorithm 3 Connector Grouping and Recognition
Input:
S = {List of recognised shapes},
U = {List of unrecognised strokes},
Output: S, U , C {S: List of shapes, U : List of unrecognised strokes, C: List of
recognised connectors}
1: loop over elements of S: si
2: N = Spatial neighbours of si in U
3: loop over elements of N : n

4: Put a bounding box around both endpoints of n and pick the more dense one. Label
it e.

5: if (e is a valid connector head) then
6: CS = Find the shaft strokes (see Algorithm 4)
7: C = C

⋃
{CS}

8: U = U \ {CS}
9: end if

10: end loop

11: end loop
12: Return S , U , C

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 116

Algorithm 4 Find Shaft Strokes
Input:
CS = {The list of connector head strokes},
U = {List of unrecognised strokes},
Output: CS {CS: The list of connector strokes}
1: while (new stroke is added to CS) do
2: loop over elements of CS: c

3: loop over elements of U : u

4: if (c has an endpoint near either of u’s endpoints) then
5: CS = CS

⋃
{u}

6: U = U \ {u}
7: end if
8: end loop

9: end loop
10: end while
11: Return CS, U

Figure 6.6 shows an example of a drawn ellipse connected to a square. The ellipse
and the square are drawn with a single stroke, while the connector is drawn with 4
strokes. Assuming the shapes (i.e. the ellipse and the square) are already recognised
from the previous step, the connector recogniser tries to find the connectors around
these shapes. The algorithm starts by checking for connector head around the first
recognised shape (i.e. the ellipse). In step 1, shown in Figure 6.7a, stroke 2 is picked as
the neighbouring stroke of the ellipse. In step 2, a Bounding Box (BB) is put around
both endpoints of stroke 2. Step 3, in Figure 6.7a shows the BB with higher number of
points (from unrecognised strokes) is picked and is given to the recogniser as a connector
head candidate. Since this head candidate is not a valid connector head, the recogniser
rejects it. Since there are no more strokes in the neighbouring list, N , the algorithm
picks the next recognised shape and checks for a head close to it (see step 4 in Figure
6.7b).

Figure 6.6: An example of a drawn sketch

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 117

(a) Steps 1 to 3 of the connector recognition algorithm

(b) Steps 4 to 8 connector recognition algorithm

(c) Steps 9 to 11 connector recognition algorithm

Figure 6.7: Different steps of connector recognition algorithm.

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 118

Figure 6.8: An example of a digital circuit diagram with a connector that connects
multiple shapes (the strokes shown in orange)

FC FA Class Flowchart
#Strokes 2736 1501 477 512
#Connectors 1260 796 190 249

Table 6.1: The details connectors in development datasets

In step 5, shown in Figure 6.7b, the neighbouring strokes of the square are picked
N = {4, 5}. In step 6, stroke 4 is picked as the head of the list and a BB is put around
both endpoints. Step 7 shows the selected BB with the higher number of points. Since
this is a valid head candidate, this should be accepted by the recogniser. The strokes
that have fallen in the BB are 4 and 5, which are moved to the Connector Stroke (CS)
list from U in step 8. The algorithm tries to find the rest of the shaft strokes.

In step 9 shown in Figure 6.7c, stroke 3 is added to the CS since it has an endpoint
close to an endpoint of stroke 4, and consequently is removed from U . In step 10, stroke
2 is moved from U to the CS as it has an endpoint to that of stroke 3. At this point
no more strokes can be added to the CS. Hence, in step 11, the {2,3,4,5} connector is
added to the connector list (C) and all its strokes are removed from U . At this point
all the strokes are recognised and the algorithm stops.

6.3 Experiments

In this section we evaluate the performance of our connector recognition system on the
development datasets. We exclude the digital circuit dataset from the experiments of
this section since our connector recogniser does not support this diagram’s connectors.
This is because the connectors in digital circuit diagram are undirected (no head) and
also a connector in this domain will often connect multiple shapes together. For ex-
ample, Figure 6.8 shows an example of a digital circuit diagram where a connector is
connecting multiple shapes together. The details of connectors in the remaining devel-
opment datasets can be seen in Table 6.1.

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 119

For the experiments of this section, we carried out 5-fold user holdout cross vali-
dation. Similar to the regular shapes, we use the original feature representation (the
720 dimensions), with the Hellinger + Correlation as the choice of proximity metrics.
The size of bounding box is set to 700 × 700 himetric units. The distance threshold
between the endpoints of the connector strokes is also set to 300 himetric units. These
parameters are chosen empirically. For these experiments, we evaluated the connector
localisation and grouping system in isolation. For that, we have perfectly grouped and
recognised all the shapes, and only evaluate the connector recognition system’s per-
formance. Our connector recogniser system can correctly identify (localise and group)
88.8%, 86.6%, 82.6% and 84.3% of the connectors in the FC, FA, class and flowchart
datasets, respectively. Since there is no reported results for only connectors on these
datasets, we cannot make a direct comparison with other approaches.

6.4 Limitations

During the experiments we observed that the connector rejection is not robust enough
in rejecting invalid head candidates. This can also be seen in Figure 6.9, which shows
the similarity score of each connector head to its cluster centre in the flowchart dataset.
Unlike regular shapes, the similarity of the heads to the cluster centre are in a wider
range. This is because forming a connector head candidate has different steps and
each step can cause an error which results in an unwanted connector head that the
recogniser learns about. Figure 6.10 shows some of the examples of incorrect connector
heads. Figure 6.10a shows when an incorrect side of a connector is picked as a connector
head (see Section 6.1.1). Figure 6.10b shows a case where the fitted line on the arrow
head is longer than the shaft, and is incorrectly picked as the shaft, which results in
an incorrect direction for the arrow head. Figure 6.10c shows the case where the shaft
is drawn with a little bit of angle towards the head. This also results in an incorrect
direction for the arrow head after rotation. Figure 6.10d also shows that sometimes the
shaft part that is fitted in the bounding box is not just a straight line. In such cases,
even though the shaft line is picked correctly, the rotated arrow head is not similar to
the rest of the arrow heads in the training set. All the aforementioned errors cause the
recogniser to be less robust at rejection.

In addition to the recogniser, the connector grouper has some limitations. For exam-
ple, when trying to put a bounding box around the connector head, another connector
head which is spatially close might fit in the bounding box. Since the rejector is not
robust enough, the connector head candidate might not get rejected. Figure 6.11 shows
an example of this situation where the two connectors pointing to the same shape and
are spatially close and putting a bounding box around one would include the stroke
from the other one as well. In such cases two connectors would be missed to be grouped

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 120

Figure 6.9: The plot of similarities of each connector head to its cluster centre in the
flowchart dataset

(a)

(b)

(c)

(d)

Figure 6.10: Some of the examples of incorrect connector heads

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 121

and recognised correctly.

Figure 6.11: An example of a drawn sketch in the flowchart dataset with spatially
close arrows (shown in orange colour)

Furthermore, as mentioned earlier, the proposed grouper only works for domains
where a connector connects two shapes. For example, in the digital circuit diagram
(see Figure 6.8), a connector might connect multiple shapes. In such cases, the grouper
would fail to group the connector strokes. Moreover, the proposed connector recognition
system works only for directed connectors (having a connector head only at one end).
In addition, if two shapes are rejected by the shape rejector, and there is a connector
between them, the grouper would not be able to find and recognise the connector.

6.4.1 Summary

In this chapter we introduced a connector recognition system using the direction fea-
tures introduced in Chapter 5. Our system focuses on learning about the connector
heads and grouping the shaft based on the head localisation. Since the choice of feature
representation is rotation variant, while connector heads can be drawn in any orienta-
tion, we rotate them to point to the same direction. We also introduced our connector

CHAPTER 6. CONNECTOR LOCALISATION AND GROUPING 122

grouping algorithm that tries to find the connectors around the recognised shapes. In
the experiments, we showed that the connector recognition is able to correctly find
85.7% of connectors on average in the development dataset.

Chapter 7

Evaluation and Comparison

In the previous chapters we evaluated each component of our recognition system on
the development datasets. In this chapter, we evaluate our entire sketch recognition
system on new evaluation datasets, that our system has not been tested on before.
The goal of our evaluation is to make sure our approach achieves comparable results
to other approaches on datasets that have not been used during development. We
measure the performance of our system in terms of computation time and accuracy.
We first summarise the settings for the different components of our sketch recognition
system. Next, we describe a full comparative evaluation of our method against the
work of Stahovich et al. (2014). We also report our results for the two publicly available
datasets used during development (FC and FA) and compare results from our work with
the reported results in the literature.

7.1 Settings

Our approach has several parameters to be set. Table 7.1 shows the numerical values
used for these parameters in our system. The settings in Table 7.1 are the same for
all the experiments in this chapter. In terms of rejection method, we use the Hellinger
+ Correlation on the original feature space, since this achieved the best results (see
Chapter 5 for the details of this method).

7.2 Full Comparative Evaluation

In Chapter 2, we categorised the existing grouping and recognition methods into two
broad categories of simultaneous and sequential. We also highlighted the four impor-
tant characteristics of a sketch recognition system for each approach. Among the sub-
categories of these approaches, the hard-clustering approaches (see Section 2.2.2 for the
details) have the three important characteristics of a sketch recognition system: being

123

CHAPTER 7. EVALUATION AND COMPARISON 124

Parameter Purpose Value

Grouper
DT Distance threshold between the points

of strokes for spatial proximity

600
himetric
unit

Max_s The initial value for the Max_s 5
UB Upper bound threshold for the Max_s 12

Rejection OD_T Outlier detection threshold for each
cluster 0.65

Connector DT Distance threshold between the
endpoints of the connector strokes

300
himetric
unit

BB The size of the bounding box
around a connector head

700× 700
himetric
unit

Table 7.1: Numerical parameters used for the grouper and the rejection system

domain independent, supporting free sketching environment and being computationally
inexpensive. One of the hard-clustering methods with these characteristics is the work
done by Stahovich et al. (2014), which is our choice of comparison since it has the men-
tioned characteristics and is simpler to implement compared to other hard-clustering
methods. We compare our results with the work of Stahovich et al. (2014) on new eval-
uation datasets. In this section, we first describe the work of Stahovich et al. (2014),
then the evaluation datasets, followed by the results of the comparative evaluation.

7.2.1 The work of Stahovich et al. (2014)

Stahovich et al. (2014) propose a grouping technique that uses two levels of classification.
In the first level each stroke is classified into a coarse class. For example, for family
tree diagrams (see Figure 7.1), each stroke is classified as shape, connector or text.
For this first level of classification, an AdaboostM1 classifier is trained with 27 features
characterising the stroke’s shape, location, drawing kinematic, size and the relationship
between the stroke and other strokes in the sketch.

Once each stroke is classified into one of the coarse classes, the second level classifica-
tion is performed on each pair of strokes from the same class to determine whether they
should be joined to be part of the same shape. They have proposed two techniques for
this: threshold pairwise classifier and Inductive Pairwise Classifier (IPC). The threshold
pairwise classifier is simple, and only uses distance and time thresholds for the classifi-
cation. The IPC method uses 13 pairwise features to train an AdaboostM1 classifier to
classify each pair either as “No Join”, “Near Join” or “Far Join”. The Near Join label is
assigned to the pairs that belong to the same shape and are close to each other. The
Far Join label is assigned to the pairs that are part of the same shape, but are far from

CHAPTER 7. EVALUATION AND COMPARISON 125

Figure 7.1: An example of a family tree diagram

each other. All other pairs are assigned No Join label. Two techniques are proposed to
label the pairs in the training set: Minimum Distance (MD), and Iterative Relabelling
(IR). The MD method uses a set of thresholds to assign a label to a pair, while the
IR method initially uses the MD method to assign a label to the pairs and iteratively
modifies the labels to optimise the accuracy of the classifier. Once each pair is classified
through the classifier, the pairs with the Near Join label are chained together. If a
stroke is joined with another stroke that already belongs to a shape, all those strokes
are chained to form a single shape.

The experimental results show that in cases where the differences in accuracy were
statistically significant, the IPC-IR and IPC-MD methods outperformed the threshold-
ing method while both the IPC-IR and IPC-MD methods achieve comparable perfor-
mance. For the experiments in this section, we re-implemented the IPC-MD method
since is easier to implement and achieved comparable results to the IPC-IR method.

Validation of our implementation of Stahovich et al. (2014)

Since we were not able to obtain the code from the authors, we re-implemented the
work of Stahovich et al. (2014) for a full comparative evaluation. In order to confirm
the validity of our re-implementation, we aimed to reproduce results in the original
paper. The work of Stahovich et al. (2014) has been evaluated on three datasets:
family tree diagrams from the EtchaSketches corpus 1, digital circuit diagrams, and
static solution sketches. We only have access to the family tree diagrams, which we
used for validation of our re-implementation. For their evaluation on the family tree
dataset, they excluded sketches with less than five strokes, and sketches that are subsets
of other sketches, which results in 27 sketches. We excluded the sketches with fewer than
5 strokes, which resulted in 30 sketches. After observing these 30 remaining sketches,
it was not clear which sketches were considered subset of the others in the original

1http://rationale.csail.mit.edu/ETCHASketches/

CHAPTER 7. EVALUATION AND COMPARISON 126

research, hence we included all 30 sketches for the experiments. Table 7.2 shows the
details of the 27 sketches that are reported in the paper and the 30 sketches that we
used in our experiments.

Paper
(27 sketches)

The 30 Sketches

Strokes Shape Count Strokes Shape Count
Shape 407 293 477 332
Arrow 636 397 743 453
Text 617 107 686 126

Table 7.2: The details of the family tree diagrams reported by Stahovich et al. (2014)
for 27 sketches compared to the 30 sketches we experimented on

Stahovich et al. (2014) reported the results on the first level of classification as
well as the correctly grouped shapes in the family tree diagrams. In the paper it is
mentioned that user holdout cross validation is used, however, the number of folds is
not mentioned. User holdout cross validation is a widely used model evaluation method
in which data from one user is used for testing and the data from the other users are
used for training (Stahovich et al. 2014). We follow the common 80/20 rule (where 80%
of the data is used for training and 20% for testing) and perform a 5-fold user holdout
cross validation. Since text is out of the scope of our research, we also performed the
experiments for the case that the text is manually excluded. The results are reported
in Table 7.3.

Multiway Classification
(first level)

Grouper
(both levels)

Original
Ours
(text)

Ours
(no text)

Original
Ours
(text)

Ours
(no text)

Shape 83.0% 79.9% 81.7% 85.3% 81.0% 87.6%
Arrow 86.8% 83.9% 94.3% 68.3% 51.0% 46.2%
Text 92.1% 85.5% - 51.4% 31.7% -

Table 7.3: Comparison of our re-implementation of Stahovich et al. (2014) work as
compared to the reported results. Ours(text): Our implementation results for the case
that text is included. Ours(no text): Our implementation results for the case text is

manually excluded.

The results in Table 7.3 show that the re-implementation results differ from the
original results reported in the paper. We believe this is due to the three additional
diagrams in our experiments. In particular, the results from our re-implementation

CHAPTER 7. EVALUATION AND COMPARISON 127

produces lower rates of classification than the reported results, for all classes. All
the experiments using our re-implementation were carried out on 30 sketches, while
Stahovich et al. reported their results on 27 sketches. To account for this discrepancy
in the datasets used, we re-calculated the results by excluding the three diagrams that
had the lowest rates of classification (see Table 7.4). These results are comparable to
the reported results in the paper (about 2% higher for shapes, 4% lower for arrows and
1% lower for texts). Since we do not have the details about the results reported in the
paper such as average and standard deviations, we are not able to perform paired t-tests
for significant testing.

Paper 27 best
Shape 85.3% 87.6%
Arrow 68.3% 64.2%
Text 51.4% 50.4%

Table 7.4: The results of our implementation of Stahovich et al. (2014) work after
excluding three of the sketches compared to the reported results

The computationally expensive part of Stahovich et al.’s approach is where the
pairwise features are being calculated. Since the cost of computing pairwise features is
determined by pointwise distance calculations on each stroke, the cost of this approach
is O(n2), where n is the number of points in the sketch. In order to reduce this time, the
pairwise features are only computed for the pairs of strokes where their bounding boxes
are less than 5000 himetric units apart. Figure 7.2a shows the reported computation
time of feature computation vs. the number of points in a sketch. The choice of datasets
for the plot in Figure 7.2a is not known. Figure 7.2b shows the same computation time
plot achieved from our implementation of their work. It should be noted that the
number of points in the diagrams we have access to are up to 8000, therefore, only the
plot for the range of 0 to 8 on the x axis of Figure 7.2a should be compared with the
plot in Figure 7.2b. The plot in Figure 7.2b shows that using the bounding box distance
reduces the computation time in our implementation.

7.2.2 Evaluation Datasets

During the development of our system, we used the five development datasets (described
in Chapter 3) to perform initial testing of each component. In this chapter, we use new
datasets that have not been used during development. We use these datasets to compare
the results of our approach with that of reported by Stahovich et al. (2014).

We chose two connected diagrams for the choice of evaluation dataset: family tree
and process diagrams. Connected diagrams are generally more challenging than those

CHAPTER 7. EVALUATION AND COMPARISON 128

(a) Reported by Stahovich et al. (2014)

(b) Our implementation

Figure 7.2: Computation time for feature computations as a function of points in the
sketch

CHAPTER 7. EVALUATION AND COMPARISON 129

Figure 7.3: An example sketch from the family tree dataset

that are not connected (e.g. user interface sketches), as connectors are spatially close
to shapes. In the following we provide details about the evaluation datasets.

Family Tree Diagrams

The family tree diagram is the same that we used for validation of our re-implementation
of Stahovich et al. (2014) work. Similar to the work of Stahovich et al. (2014), we exclude
all the sketches with less than five strokes, which remains with 30 sketches, collected
from 30 participants on a Tablet PC. The dataset is composed of two regular shapes
(ellipse and rectangle), text and arrows. Figure 7.3 shows an example diagram from
this dataset.

The ground truth for the dataset is provided for three broad classes of shape, con-
nector and text. This information is sufficient for the work of Stahovich et al. (2014).
However, in order to evaluate our approach on this dataset, we re-labelled it to provide
labels for each of the regular shapes (i.e. ellipse or rectangle). This is because our
approach uses the ground truth to form the clusters. We will perform the comparison
on shapes, connectors and overall, regardless of their shape class. For the experiments
on this dataset, we manually excluded text strokes, since text division is out of the
scope of this research. The details of the dataset after relabelling and exclusion of text
strokes can be seen in Table 7.5.

One of the main challenges of this dataset is the connectors. As can be seen in
Figure 7.3, the diagram is highly connected, and the arrow heads are spatially very
close to each other. Figure 7.4 shows the plot of the regular shapes in the dataset in
2D space after applying MDS.

CHAPTER 7. EVALUATION AND COMPARISON 130

#Shapes #Strokes
Rectangle 185 329
Ellipse 154 156
Arrow 452 742
Overall 791 1227

Table 7.5: The details of family tree dataset

Figure 7.4: The plot of the family tree diagram’s regular shapes after mapping the
data into 2D space using MDS.

CHAPTER 7. EVALUATION AND COMPARISON 131

Figure 7.5: An example sketch from the process diagram dataset

#Shapes #Strokes
Rectangle 158 352
Ellipse 67 76
Diamond 65 153
Arrow 294 594
Overall 584 1175

Table 7.6: The details of process diagram dataset

Process Diagrams

The process diagram dataset (Schmieder 2009) comprises 33 sketches collected by 33
participants on a Tablet PC. The dataset includes three regular shapes (rectangle, ellipse
and diamond) connected by arrows. Similar to the family tree diagram, this dataset
contains text strokes, which we have manually excluded for our evaluations. Figure 7.5
shows an example diagram from this dataset.

The ground truth for the dataset is provided to discriminate shapes vs text vs
connectors, which is sufficient for evaluation of the work of Stahovich et al. (2014). For
the evaluation of our approach, similar to the family tree diagrams, we re-labelled the
dataset to include the label for each of the three regular shapes (i.e., rectangle, ellipse
and diamond). The details of the dataset can be seen in Table 7.6, and the plot of the
regular shapes in the dataset in 2D space after applying MDS can be seen in Figure 7.6.

CHAPTER 7. EVALUATION AND COMPARISON 132

Figure 7.6: The plot of the process diagram’s regular shapes after mapping the data
into 2D space using MDS.

7.2.3 Results

We perform 5-fold user holdout cross validation, where four folds are used for training
and one for testing. For the evaluations in this section, we disregard the shape classifi-
cation results to make sure the shape classification accuracy does not affect the results.
Therefore, we only check if a shape is correctly grouped and accepted by a rejector.
Similarly, for the work of Stahovich, we only check if the shape is correctly grouped,
regardless of what class the shape belongs to. This allow us to evaluate the systems in
how accurately shapes are correctly being found. We use several metrics to evaluate our
system and compare the results with Stahovich’s, which are described in the following.

We first evaluate our system in terms of shape level accuracy, which measures the
portion of shapes that are correctly grouped in the whole dataset. It is calculated
by dividing the total number of correctly grouped (and accepted) shapes divided by
the total number of shapes in the dataset (without any missing or extra strokes - see
Equation 7.1). We have reported the results for regular shapes, connectors and overall
(the shapes and the connectors together) for each dataset. We also report the overall
accuracy across the two datasets for shapes, connectors and overall, which is calculated
based on Equation 7.2. Table 7.7 shows the results of shape level accuracy.

Shape Level Accuracy =
#Correctly grouped and accepted shapes in the dataset

#Shapes in the dataset

CHAPTER 7. EVALUATION AND COMPARISON 133

(7.1)

Datasets Overall Accuracy =
#Correctly grouped and accepted shapes in all datasets

#Shapes in all datasets
(7.2)

The shape level accuracy is based on a strict method of perfect grouping without
any errors. This means that if a grouped shape has even one missing or extra stroke,
it is counted as an error. Similar to the evaluations in Section 5.3.4, we use three
other metrics to measure the performance of our sketch recognition system, including
MissingStroke, ExtraStroke and 1Error. The MissingStroke counts a shape as correctly
grouped if has one missing stroke, whereas the ExtraStroke allows one extra stroke.
1Error shows the percentage of the correctly grouped and accepted shapes and the
ones that have either a missing stroke or an extra stroke (not both at the same time).
The evaluation results using these metrics for the shapes and connectors can be seen in
Tables 7.11 and 7.12, respectively. In these tables the accuracy column represents the
shape-level accuracies that are reported in Table 7.7.

In addition, we report the results for diagram level accuracy, which is a common
method of evaluation (Stahovich et al. 2014, Arandjelović & Sezgin 2011, Sezgin & Davis
2008). This metric measures the accuracy of the system across diagrams. We measure
the accuracy of each drawn diagram by dividing the number of correctly grouped shapes
in a diagram by the total number of shapes in that diagram. We report the average
and standard deviation of diagram level accuracies in Table 7.8 for regular shapes,
connectors and overall (the shapes and the connectors together). See Equation 7.3 for
calculation of the average of diagram level accuracy for n diagrams. We also report the
results of paired t-tests in this table. In the following, we will provide more detailed
discussion of the results for each dataset.

Diagram Level Accuracy =
1

n

n∑
k=1

Diagram Accuracy(k)

Diagram Accuracy(k) =
#Correctly grouped and accepted shapes in diagram k

#Shapes in diagram k
(7.3)

Family Tree Diagram

As can be seen in Table 7.7, our approach finds 86.7% of the shapes in the family tree
dataset, which is higher than the 81.9% of Stahovich et al. (2014). Table 7.9 shows the
accuracy for each shape class in the dataset. For the work of Stahovich, we check the
label of the correctly grouped shape and report the results. As can be seen in Table 7.9,
our approach finds 94.0% of ellipses (compared to the 91% in Stahovich’s) and 80% of

CHAPTER 7. EVALUATION AND COMPARISON 134

Ours Stahovich

Family Tree
Shape 86.7% 81.9%
Connector 42.9% 55.8%
Overall 61.7% 66.8%

Process
Shape 90.1% 81.7%
Connector 77.9% 77.6%
Overall 83.8% 79.6%

Overall
Shape 88.2% 81.8%
Connector 56.5% 64.3%
Overall 71.0% 72.2%

Table 7.7: Shape level accuracy on the evaluation datasets.

Ours Stahovich t-value p-value

Family
Tree

Shape 84.3% ±15% 88.2%± 15% 0 0.33
Connector 57.4% ±32% 64.2%± 29% 0 0.4
Overall 68.3% ±19% 76.2%± 19% 0 0.11

Process
Shape 89.0% ±11% 82.7% ±16% 1 < 0.5
Connector 77.4%± 17% 77.2% ±17% 0 0.97
Overall 83.4%± 12% 80.0% ±12% 0 0.26

Table 7.8: Diagram level accuracy on the evaluation datasets

the rectangles (compared to 61% in Stahovich’s) in the family tree diagram. Although
our approach achieves 84.3% accuracy on shapes compared to the 88.2% for Stahovich,
for diagram level accuracy (Table 7.8), a paired t-test shows that this is not a significant
difference.

However, our approach only groups 42.9% of the connectors in the family tree
dataset, which is lower than Stahovich’s results (55.8%). The connector heads in this
diagram are in very close spatial proximity to each other (as can be seen in Figure
7.3), and often the connector heads from different connectors are grouped together.
Since the number of connectors in this dataset is higher than the regular shapes (see
Table 7.2), the overall accuracy of Stahovich’s work is higher than ours for the family
tree dataset (66.8% of Stahovich’s compared to 61.7% achieved using our approach for
shape level). Table 7.8 shows that when the diagram accuracy is considered, there is
no significant difference between our approach and Stahovich’s for the connectors and
the overall accuracies on the family tree diagrams.

Table 7.11 shows that when 1 error is allowed, 92.6% of the shapes are found in
the family tree dataset, which is higher than 86.7% of the strict method of the perfect
grouping without any error. For the connectors, allowing 1 error increases the accuracy
to 86.1% from 42.5% of the strict method (see Table 7.12). As mentioned earlier, the
connectors are spatially close in this dataset and often parts of a head of a connector

CHAPTER 7. EVALUATION AND COMPARISON 135

Ours Stahovich
Ellipse 94.1% 91.1%
Rectangle 80.5% 61.3%

Table 7.9: The accuracy of each shape class in family tree dataset

gets grouped with the strokes of another connector. Tables 7.11 and 7.12 also show that
errors due to a missing stroke is higher than the ones caused by an extra stroke.

Overall, our approach is more accurate in finding the shapes than Stahovich’s, how-
ever, the difference is not significant. For the connectors, Stahovich’s work is more
accurate than our approach, but not significantly better. It should be noted that this
dataset is used in Stahovich’s paper, whereas for our approach this dataset was new.
We will also report the computation times later in this section.

Process Diagram

As can be seen in Table 7.7 our approach is more accurate than the work of Stahovich
for shapes, connectors and the overall accuracy for the Process diagram dataset. Table
7.8 also shows that our approach achieves significantly better results for shapes when
diagram level accuracy is considered. In addition, Table 7.10 shows that our approach
achieves better results on all of the shape classes in the process diagram dataset. Similar
to the family tree dataset, allowing a missing stroke increases the reported accuracy
more than allowing an extra stroke (see Tables 7.11 and 7.12). Allowing one error in
the grouping, increases the shape accuracy to 94.9% from 90.2% and for connectors it
increases the accuracy to 92.9% from 78.0%.

Overall, our approach is significantly more accurate than Stahovich’s in finding the
shapes in the process diagram dataset. Our approach is also more accurate in finding
the connectors, however the difference is not significant. This dataset was new for both
our approach and Stahovich’s.

Ours Stahovich
Ellipse 96.8% 93.6%
Rectangle 87.8% 74.6%
Diamond 88.8% 86.1%

Table 7.10: Process

CHAPTER 7. EVALUATION AND COMPARISON 136

Accuracy
Missing
Stroke

Extra
Stroke

1 Error

Family
Tree

Ours 86.7% 91.7% 87.6% 92.6%
Stahovich 81.9% 89.4% 84.3% 91.8%

Process
Ours 90.2% 93.8% 91.3% 94.9%
Stahovich 81.8% 86.2% 81.8% 86.2%

Overall
Ours 88.2% 92.68% 89.3% 92.7%
Stahovich 81.8% 87.9% 83.1% 89.1%

Table 7.11: The accuracy results for evaluation datasets with different metrics for
shapes.

Accuracy
Missing
Stroke

Extra
Stroke

1 Error

Family
Tree

Ours 42.5% 75.2% 53.3% 86.1%
Stahovich 55.8% 91.3% 60.9% 96.4%

Process
Ours 78.0% 85.4% 85.4% 92.9%
Stahovich 77.6% 89.8% 77.6% 89.8%

Overall
Ours 59.2% 80.0% 68.4% 89.3%
Stahovich 66.0% 90.5% 68.7% 93.2%

Table 7.12: The accuracy results for evaluation datasets with different metrics for
connectors.

Computation Time

We also evaluate the performance of our approach in terms of computation time. As
mentioned in Section 3.4, all the experiments for this thesis are carried out on a Surface
Pro 4 (Core i7-6650U, 16GB RAM). All the code is written in C# using Visual Studio
2017. We measure the computation time for each diagram from the time the input
strokes are given to the system, to the time the system returns the results for all the
shapes and connectors using the Stopwatch class in C#. We ran each experiment 10
times and reported the average of computation time in Table 7.13. The results in Table
7.13 shows that our approach is significantly faster than Stahovich’s on the process
diagram dataset. For the family tree dataset, our approach is faster, however, the
difference is not significant.

CHAPTER 7. EVALUATION AND COMPARISON 137

ours Stahovich t-value p-value
Family 3.5 ±6 5.2 ±11 0 0.5
Process 1.5 ±0.8 7.3 ±6 1 <0.05

Table 7.13: The computation time (in seconds) of our approach compared to
Stahovich’s

7.2.4 Summary

In this section we first described the details of Stahovich et al. (2014) work, followed
by a description of the evaluation datasets. As mentioned in Section 7.2, we chose the
work of Stahovich et al. (2014) as a choice of comparison because of its characteris-
tics of being domain independent, having a low computation time, and allowing free
sketching environment. The downside of this approach was the accuracy. We compared
our approach on the two evaluation datasets (family tree and process diagrams), and
the results show that our approach finds 88.2% of the regular shapes across the two
datasets, which is higher than the 81.8% for Stahovich’s. The results also show that
our approach is significantly more accurate at finding shapes in the process diagram
datasets. Moreover, our approach is faster than the work of Stahovich et al. (2014). In
the next section, we will compare our approach with the reported results on two public
datasets.

7.3 Evaluation on Public Datasets

Two of the datasets we used during development are the FC and FA datasets (described
in Chapter 3), which are publicly available. Various approaches in the literature have
reported their results on these two datasets. We also evaluate our approach in terms of
accuracy and computation time on these two datasets to be able to compare our results
with that of the reported in the literature. Tables 7.14 and 7.15 show the details of FC
and FA datasets, respectively.

As described in Chapter 3, the precursor to our sketch recognition system is a divider
that separates the text strokes from shape strokes. The FC and FA datasets include
text strokes and the majority of the reported results on the FC and FA datasets in the
literature include the text results as well. In order to have a fair comparison with the
reported results in the literature, we obtained the divider’s executable code of Bresler
et al. (2016a) work, one of the best reported results on these public datasets in the
literature to separate the text strokes from the shape ones. The work of Bresler et al.
(2016a) has been compared against other approaches on these datasets, which will be
used to make a comparison to our work.

For the evaluation of our approach on these two datasets, the class of the accepted

CHAPTER 7. EVALUATION AND COMPARISON 138

Training set Test set
Count Strokes Count Strokes

Terminator 299 458 203 446
Data 416 1382 294 924
Decision 310 1055 211 695
Process 598 1828 407 1130
Connection 177 190 125 136
Arrow 1829 3882 1260 2736
Text 1911 14560 1291 9629
Overall 5540 23355 3791 15696

Table 7.14: The details of the FC dataset

Training set Test set
Count Strokes Count Strokes

State 720 733 284 287
Final State 342 688 129 260
Text 2833 5448 1114 2077
Arrow 2043 3980 796 1501
overall 5938 10849 2323 4125

Table 7.15: The details of the FA dataset

shapes are determined by a trained SVM classifier that uses the original space with
the three added stroke level features (described in Section 5.1). The SVM uses a linear
kernel function with C = 3.

We calculate the accuracy of our system at the shape level and stroke level. The
shape level accuracy is measured for each shape by dividing the number of correctly
grouped and labelled shapes (without any missing or extra stroke) by the total number
of shapes of that class. The overall accuracy is measured by dividing the number of
correctly grouped, accepted and classified shapes by the total number of shapes in
the dataset. In Section 7.2.3 we disregarded the shape classification results to only
consider the grouping and acceptance of shapes. However, in this section, we consider
the shape class that the classifier assigns to an accepted shape, since other approaches
have reported their results in the same way. In these datasets the number of text strokes
are very large compared to the regular shapes or the connectors, and its results are not
our contribution, we also report the overall accuracy by excluding the text results. In
addition, we report the overall shape-only accuracy as well.

During drawing of the sketches, sometimes users try to correct or beautify a drawn
shape, which leads to some redundant strokes. These strokes may not get grouped
with the rest of the shape’s strokes. On the other hand, our system sometimes accepts
an incomplete shape, where the incomplete shape is classified correctly. Hence, we

CHAPTER 7. EVALUATION AND COMPARISON 139

measure the accuracy of the system at the stroke level as well, which is a common
way of evaluation in the literature. The stroke level accuracy is measured by dividing
the number of strokes that are correctly classified by the total number of strokes in
that class (see Equation 7.4 for calculating the stroke level accuracy for a shape class).
Similar to the shape level, we report the results on the shapes only as well.

Stroke Level Accuracy =
#Correctly classified strokes in a shape class

#strokes of a shape class
(7.4)

7.3.1 Evaluation on FC dataset

The FC dataset (flowcharts) is divided into a training set (248 sketches) and test set
(171 sketches). In total there are more than 9000 shapes from 6 classes (text, arrow,
data, connection, terminator, process, decision). The ground truth for the dataset is
provided as well (see Section 3.4 for the full details of the dataset). For our experiments
on this dataset, the settings for the grouper and the rejection are the same as mentioned
in Table 7.1. Since there is no hierarchy of shapes in this domain (no shape is extendable
to another shape), we set the list of extendable shapes (E) to empty.

Table 7.16 shows the results of our approach on the FC dataset in the shape level
compared to other reported results (we have only reported the results from the literature
that achieved the overall accuracy of 80% or higher).

As can be seen in Table 7.16, overall our system achieves the best results by correctly
grouping and recognising 86.8% of the shapes/connectors in the dataset. This is better
than the best reported results of Bresler et al. (2016a) and Wang et al. (2016) work,
achieving 84.2% and 84.3%, respectively. We also achieve better results on terminator,
data, process and connection classes. The last row in Table 7.16 shows that our approach
correctly groups and recognises 91.7% of the shapes in the FC dataset, which is higher
than all other approaches. Since the division of text is not our contribution, we have
reported the accuracy by excluding the accuracy of text division (the second to last row
in Table 7.16), which includes shapes and arrows. The results show that our approach
successfully groups and recognises 85.3% of the shapes and arrows in the FC dataset,
which is higher than other approaches.

Table 7.17 shows the accuracy of our approach in the stroke level compared to other
approaches. As can be seen in Table 7.17, our approach achieves overall 97.53% accuracy
in the stroke level, outperforming all other approaches. We also achieve better results
in the stroke level on all classes. The results of Delaye (2014) work in Table 7.17 is
available only for the overall accuracy and not per class, therefore, we could not report
the other results for this approach.

In addition, Julca-Aguilar et al. (2017) and Bresler et al. (2013a) have reported
their results on the FC dataset for the case that text strokes are manually excluded.
We carried out the same experiments and reported the results in Table 7.18. As can

CHAPTER 7. EVALUATION AND COMPARISON 140

Bresler et al. (2014) Wang et al. (2016) Wu et al. (2015) Bresler et al. (2016a) Ours
Terminator 88.1% 80.8% 90.6% 89.0% 93.1%
Data 88.8% 84.4% 78.5% 90.5% 93.5%
Decision 74.1% 76.9% 78.9% 72.9% 75.4%
Process 87.2% 89.2% 88.3% 88.6% 96.6%
Connection 93.6% 79.8% 73.4% 95.1% 96.8%
Arrow 74.4% 83.4% 80.3% 76.6% 79.0%
Text 87.9% 85.8% 86.0% 89.7% 89.7%
Overall 82.8% 84.3% 83.2% 84.2% 86.8%
Overall without text 80.2% 83.5% 81.7% 81.8% 85.3%
Overall shapes 86.1% 83.6% 83.2% 87.1% 91.7%

Table 7.16: The shape level accuracy of our sketch recognition system on FC dataset.

Bresler et al. (2014) Wang et al. (2016) Wu et al. (2015) Bresler et al. (2016a) Ours
Terminator 85.5% - 91.6% 90.7% 95.29%
Data 95.6% - 87.6% 95.3% 98.05%
Decision 90.8% - 89.7% 88.2% 97.70%
Process 93.7% - 91.8% 96.3% 97.88%
Connection 93.3% - 73.3% 94.1% 97.79%
Arrow 85.3% - 87.6% 87.5% 93.09%
Text 99.0% - 98.8% 99.2% 99.2%
Overall 95.2% 95.8% 94.9% 96.3% 98.30%
Overall without text 89.2% - 88.6% 90.7% 95.53%
Overall without text
and arrow 92.5% - 89.4% 93.4% 97.53%

Table 7.17: The stroke level accuracy of our sketch recognition system on FC dataset.

be seen in Table 7.18, our approach can correctly group and recognise 88.1% of the
shapes/connectors in the FC dataset, outperforming the other two reported results for
the case that text strokes are manually excluded.

Stroke Level Shape Level
1 2 Ours 1 2 Ours

Terminator - - 95.5% - - 93.6%
Data - - 98.0% - - 94.6%
Decision - - 97.8% - - 76.3%
Process - - 97.9% - - 97.1%
Connection - - 97.8% - - 96.8%
Arrow - - 93.3% - - 82.1%
Overall 91.1% - 95.7% 85.5% 74.3% 88.1%

Table 7.18: The accuracy of our system on FC dataset for the case that text is
manually excluded. 1 = (Julca-Aguilar et al. 2017), 2 = (Bresler et al. 2013a)

We also evaluated our system’s performance in terms of computation time and
reported the results in Table 7.19 (we have reported the available results from the papers
in the literature). All the papers that reported their accuracies on the FC dataset have
not reported their computation time. We measure the computation time for each sketch
from the time the input strokes of the sketch are given to the system, to the time the

CHAPTER 7. EVALUATION AND COMPARISON 141

system returns the results for grouping and recognition. As can be seen in Table 7.19,
our approach is slower than Wu et al. (2015) and Bresler et al. (2016a) work, similar
to Bresler et al. (2014) work and faster than Carton et al. (2013) work. The average
running time for our approach is 1.55 seconds, which is not long enough for the user to
wait to see the results.

Minimum Maximum Average Median
(Bresler et al. 2014) 0.23 8.83 1.39 1.02
(Wu et al. 2015) - - 0.53 -
(Carton et al. 2013) - - 1.94 -
(Bresler et al. 2016a) 0.19 4.61 0.78 0.71
Ours 0.27 7.28 1.55 1.25

Table 7.19: The computation time (in second) of the our approach as compared to
other approaches on FC dataset.

Overall, our approach achieves the best results for the shapes on the FC dataset,
with correctly finding and recognising 91.7% of the shapes. Similarly, on a stroke level,
our approach achieves the best results on each class and overall. Each diagram takes
1.55 seconds in average to be recognised.

7.3.2 Evaluation on FA dataset

Another publicly available dataset that was introduced in Section 3.4 is the finite au-
tomata (FA) dataset. This dataset contains 300 diagrams composed of two classes for
regular shapes (state and final state), arrow and text. In this domain, a state (with a
circle shape, e.g. state A in Figure 7.7) can be extended to a final state (a circle within
another circle, e.g. state F2 in Figure 7.7), hence, the list of extendable shapes (E)
includes the state. The settings for the grouper and rejector are the same as given in
Table 7.1. Similar to our experiments for the FC dataset, we use the same divider used
by Bresler et al. (2016a), and compare our results against their approach. The work of
Bresler et al. (2016a) has been compared to other approaches, we will compare against
those approaches as well.

Bresler et al. (2014) mention that the arrows entering the initial state in a finite
automata diagram look similar, hence, they have labelled such arrows as “arrow in”.
The labelling of these arrows did not make any difference to our results, hence, we treat
these arrows same as other arrows. There is another type of arrow in this dataset that
starts and ends with the same state, making a circular shape. For example, in Figure
7.7, states C and D have a circular arrow with label 1, and state B has a circular arrow
that has a “0 + 1” label. During our experiments, we realised the arrows that start and

CHAPTER 7. EVALUATION AND COMPARISON 142

Figure 7.7: An example of a drawn sketch in the FA dataset (Bresler et al. 2014)

end with the same state have a circular shape and often get confused with a state class.
We labelled such instances as "circular arrow". During the shape grouping process, if
an input is classified as a circular arrow we treat it as a negative input and reject it.
Later, in the connector grouping process, all the connectors are treated the same and
no distinction is made between the circular ones and the rest.

Table 7.20 shows the results we achieved on the FA dataset compared to other
approaches in the shape level. Since others have not reported their results for the case
that text strokes are manually excluded, we have included the results of this experiment
in the same table (last column). We have also reported the accuracy of our approach
in the stroke level, in Table 7.21. We have also reported our results for the case that
text strokes are manually excluded.

As can be seen in Table 7.20, if the text strokes are excluded, our approach can
find and recognise 98.2% of state shapes and 97.7%% of the final state shapes. Using
the divider used by Bresler et al. (2016a) has some errors, which affect the results. As
can be seen in Tables 7.20 and 7.21, including the text strokes is affecting the overall
accuracy of our system at both the shape level and the stroke level. This is because the
text strokes are in the neighbourhood of the shapes, and therefore are often grouped
with shapes, rather than rejected.

The results show that the work of Bresler et al. (2016a), outperforms ours and other
approaches. It is worth mentioning that this dataset is collected by the authors of this
paper. In addition, the work of Bresler et al. (2016a) is designed for arrow connected
diagrams and performs optimisations based on some domain relations. This makes this
approach domain dependent. Although we do not use such specific domain information,
our approach can still find and recognise 90.6% of the shapes, connectors and texts in
this domain.

CHAPTER 7. EVALUATION AND COMPARISON 143

1 2 3 4 5 Ours
Ours
no
text

State 94.5% - - 91.2% 98.2% 93.7% 98.2%
Final State 93.8% - - 89.1% 99.2% 96.1% 97.7%
Text 96.0% - - 98.1% 99.2% 99.2% -
Arrow 84.4% - - 95.3% 97.5% 76.3% 78.8%
Arrow
Initial 80.0% - - - 97.3% - -

Overall 91.5% 97.1% 97.2% 95.8% 98.5% 90.4% 84.6%
Overall without
text and arrow 87.7% - - 93.6% 97.7% 82.5% 85.3%

Overall without
text 94.2% - - 90.5% 98.5% 94.4% 98.0%

Table 7.20: The shape level accuracy of our sketch recognition system on FA dataset.
1 = (Bresler et al. 2014), 2 = (Delaye 2014), 3 = (Delaye & Lee 2015), 4 = (Wang

et al. 2016), 5 = (Bresler et al. 2016a)

1 2 3 4 Ours
Ours
without
text

State 95.2% - 91.6% 98.3% 97.5% 99.6%
Final State 96.1% - 96.5% 99.2% 98.0% 98.4%
Text 99.1% - 99.0% 99.7% 99.7% -
Arrow 89.3% - 97.7% 98.0% 93.8% 94.0%
Arrow Initial 78.5% - - 97.3% - % -
Overall 94.5% 98.4% 98.0% 99.0% 96.5% 95.4%

Table 7.21: The stroke level accuracy of our sketch recognition system on FA dataset.
1 = (Bresler et al. 2014), 2 = (Delaye 2014), 3 = (Wang et al. 2016), 4 = (Bresler

et al. 2016a)

CHAPTER 7. EVALUATION AND COMPARISON 144

Minimum Maximum Average Median
(Bresler et al. 2014) 0.25 15.86 2.37 1.73
(Bresler et al. 2016a) 0.27 1.43 0.69 0.62
Ours 1.15 13.18 3.73 3.01

Table 7.22: The computation time (in second) of the our approach as compared to
other approaches on FA dataset.

Table 7.22 also shows the computation time of our approach on the FA dataset,
compared with that of other approaches. Our approach takes longer to find and recog-
nise the shapes as compared to the reported results. This is because the number of
connector strokes are often higher than the number of shape strokes in a diagram. This
means that there is a larger search space for the shape grouping/recognition algorithm,
as there are more unrecognised strokes (i.e. connectors) in the search space. In addition,
the state shapes (which make up double that of final state shapes in the dataset) are
extendable and do not get removed from the search space when they are recognised.
These issues result in our algorithm having to generate and test more shape candidates.

Overall, our approach can find and recognise 94.4% of the shapes in the FA dataset,
which is the second best results, coming after the work of Bresler et al. (2016a) with
achieving 98.5% accuracy. Manually removing the text strokes increases the accuracy
of our approach to 98.0%, which is comparable to the 98.5% achieved by Bresler et al.
(2016a). Our approach takes 3.7 seconds on average to find and recognise the shapes
in a diagram in FA dataset.

7.4 Summary

In this chapter, we first introduced the work of Stahovich et al. (2014), followed by
description of the evaluation datasets. We performed a full comparative study and
compared our results with that of reported by Stahovich et al. (2014) on the evalua-
tion datasets. The results show that our approach is significantly more accurate than
the work of Stahovich et al. (2014) in finding shapes in process diagrams, and is also
significantly faster for this dataset. On the family tree dataset, our approach has a
comparable performance to Stahovich’s work in terms of accuracy and computation
time. Next, we evaluated our approach on two public datasets that were used during
the development, and compared the results with other reported results in the literature.
The results show that our approach can successfully group and recognise 91.7% of the
shapes in the FC dataset, which is higher than that of all other reported results in the
literature. For the FA dataset, our approach correctly finds and recognises 94.4% of the
shapes in the dataset. This is comparable to many results in the literature, and only
outperformed by a method that uses domain information.

Chapter 8

Conclusion and Future Work

In this thesis we built a recognition system for online sketched diagrams. In particular,
we focused on connected diagrams, which are more challenging due to the close spatial
proximity of connectors and shapes. This chapter provides a summary of the thesis and
review of the contributions made to area of sketch recognition. We also discuss possible
future research.

8.1 Contributions

The key contributions of this work are:

• A deterministic grouping algorithm. The grouper hypothesises shape candidates,
in a continuous interaction with a recogniser. We showed that the grouper in
isolation can perform the grouping task efficiently.

• A rejection system that uses novelty detection techniques for identifying invalid
shape candidates. We explored different rejection methods, and showed that the
proposed rejection technique in isolation is accurate in rejecting invalid shape
candidates.

• A connector recognition system. Our connector recognition learns about the con-
nector heads and tries to localise them around the recognised shapes.

The objective of this research was to develop a system that has the following char-
acteristics:

• Domain independence: The nature of our approach is domain independent. How-
ever, we showed for domains with extendable shapes (such as finite automata
or digital circuits), the list of extendable shapes as an input to the system can
significantly reduce the computation time.

145

CHAPTER 8. CONCLUSION AND FUTURE WORK 146

• Being fast: In the evaluations we showed our approach performs significantly
faster than Stahovich’s system (Stahovich et al. 2014) on one of the datasets. On
public datasets, our approach performs slightly slower than some of the results
reported by Bresler et al. (2016a) and Wu et al. (2015), comparable to results
obtained by Cowans & Szummer (2005) and faster than those obtained by Carton
et al. (2013).

• Supportive of free sketch environments: Our approach does not put any restric-
tion on how shapes should be drawn in a diagram, therefore, it supports a free
sketching environment for the shapes. However, there are some limitations with
the connector recognition system, such as bi-directed and undirected connectors
or connectors connecting multiple shapes.

• Accuracy: In the evaluations we showed that our approach has comparable results
with other approaches. We showed that our approach is significantly more accu-
rate than that taken by Stahovich et al. (2014) in finding the shapes in process
diagrams. Moreover, our approach is more accurate than all the reported results
in the literature for the FC dataset. On the FA dataset our approach achieves
the second best results being less accurate than those obtained by Bresler et al.
(2016a), which use domain information.

8.2 Future Work

We thoroughly investigated simultaneous grouping and recognition system for sketch
recognition. Further improvements to this field could be made by exploring the possibil-
ity of adding a backtracking process to the grouping. The described grouping algorithm
is greedy, in that as soon as a shape is identified, its strokes are combined, and all those
strokes are treated as a single element. This can lead to problems when a negative
shape candidate is incorrectly accepted. We believe a backtracking process can be used
after the recognition of shapes and connectors. The idea of backtracking is to borrow
strokes from neighbouring shapes to build new shape candidates.

To further improve the accuracy of the system, some domain information (context)
needs to be automatically learned. In the work of Alvarado & Davis (2004), domain
patterns are defined to be combinations of domain shapes that are likely to occur,
which are hard-coded to the system using grammar and language. For example, when
an arrow is detected in a family tree domain, there should be a parent and child shapes
before and after the arrow. We believe a domain independent system that is capable
of automatically inferring domain patterns from training examples would be a further
step forward in this area. The learnt domain patterns could be used to examine the
validity of relationships between recognised shapes and connectors. This could work in

CHAPTER 8. CONCLUSION AND FUTURE WORK 147

concert with a backtracking process, that could be launched if the recognised shapes
and connectors do not conform to the known domain patterns. A possible way forward
to learning such patterns is association analysis, which is used to find the relations and
patterns in a dataset (Tan et al. 2018).

Another area of possible improvement to our system is the connector recognition,
which is the main weakness of our approach. We showed that connector head rotation
is an error prone process. We believe using different feature representation or rotation
invariant features for the connector heads could improve the performance of the con-
nector recogniser. In addition, the connector recognition system needs to be extended
to have support for bi-directional connectors as well as the connectors that connect
multiple shapes together.

As the dimensionality of the features increases, the data becomes increasingly sparse
in the space that it occupies. Therefore, the training samples may not be representative
of all possible samples. This is phenomenon is referred to as the curse of dimensionality
(Tan et al. 2018), which becomes problematic for machine learning algorithms leading
to lower accuracy. In the experiments of Chapter 5, we noticed that the curse of dimen-
sionality did not affect the results when different methods of proximity measurements
were used. In the future work, the reasons for this can be investigated.

We have shown that a deterministic system of simultaneous grouping and recognition
for domain independent systems can be made, that it can run in short times, and that
the results are sufficient for it to be used. Starting from this system a more accurate
system could be made by incorporating context to conform the recognised shapes and
connectors with the learned domain information.

Appendix A

Rejection Evaluation Results on
Original Features

Table A.1: The evaluation result of proximity-based rejection method with different
proximity metrics on the original features.

FC FA Flowchart Class Digital

Cosine
TPR 99.6% 100.0% 96.1% 99.4% 98.0%
TNR 86.4% 93.2% 90.2% 74.2% 87.6%
AUC 93.0% 96.6% 93.2% 86.8% 92.8%

Correlation
TPR 99.5% 100.0% 95.7% 98.8% 92.3%
TNR 89.1% 95.2% 92.7% 79.3% 91.6%
AUC 94.3% 97.6% 94.2% 89.1% 92.0%

Euclidean
TPR 99.8% 100.0% 94.2% 99.4% 96.0%
TNR 43.1% 95.1% 90.6% 67.1% 74.4%
AUC 71.4% 97.5% 92.4% 83.3% 85.2%

Euclidean +
Cosine

TPR 99.5% 100.0% 94.2% 98.8% 94.7%
TNR 86.7% 95.2% 90.9% 74.7% 88.9%
AUC 93.1% 97.6% 92.6% 86.8% 91.8%

Euclidean +
Correlation

TPR 99.4% 100.0% 93.8% 98.8% 91.1%
TNR 89.2% 95.7% 92.9% 79.4% 92.0%
AUC 94.3% 97.8% 93.3% 89.1% 91.5%

Hamming
TPR 99.8% 100.0% 95.2% 98.8% 91.5%
TNR 77.2% 81.7% 92.2% 87.1% 95.3%
AUC 88.5% 90.8% 93.7% 93.0% 93.4%

Hamming +
Cosine

TPR 99.5% 100.0% 93.8% 98.8% 91.1%
TNR 87.4% 93.7% 93.3% 87.1% 95.9%

148

APPENDIX A. REJECTION EVALUATION RESULTS ON ORIGINAL FEATURES149

Table A.1 Continued

FC FA Flowchart Class Digital
AUC 93.5% 96.8% 93.5% 93.0% 93.5%

Hamming +
Correlation

TPR 99.5% 100.0% 93.3% 98.2% 88.7%
TNR 89.5% 95.4% 94.5% 87.7% 96.6%
AUC 94.5% 97.7% 93.9% 93.0% 92.6%

Bray Curtis
TPR 99.6% 100.0% 95.2% 99.4% 93.9%
TNR 81.3% 94.3% 92.3% 81.5% 92.2%
AUC 90.4% 97.1% 93.8% 90.5% 93.1%

Bray Curtis +
Cosine

TPR 99.5% 100.0% 95.2% 98.8% 93.5%
TNR 86.6% 94.4% 92.3% 82.1% 92.2%
AUC 93.0% 97.2% 93.8% 90.4% 92.9%

Bray Curtis +
Correlation

TPR 99.5% 100.0% 94.7% 99.4% 91.9%
TNR 89.2% 95.3% 93.2% 81.6% 92.9%
AUC 94.3% 97.6% 94.0% 90.5% 92.4%

Dice
TPR 99.9% 100.0% 99.5% 100.0% 99.2%
TNR 40.7% 30.7% 89.0% 85.9% 51.4%
AUC 70.3% 65.3% 94.3% 92.9% 75.3%

Dice +
Cosine

TPR 99.6% 100.0% 95.7% 99.4% 97.2%
TNR 87.0% 93.4% 93.9% 86.3% 91.1%
AUC 93.3% 96.7% 94.8% 92.9% 94.1%

Dice +
Correlation

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 89.4% 95.3% 95.0% 87.6% 94.0%
AUC 94.5% 97.6% 95.1% 93.2% 92.8%

Hellinger
TPR 99.5% 100.0% 95.2% 99.4% 94.7%
TNR 89.1% 96.8% 93.9% 84.7% 92.5%
AUC 94.3% 98.4% 94.5% 92.1% 93.6%

Hellinger +
Cosine

TPR 99.5% 100.0% 95.2% 98.8% 94.3%
TNR 89.5% 96.8% 93.9% 84.7% 92.5%
AUC 94.5% 98.4% 94.5% 91.7% 93.4%

Hellinger +
Correlation

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 90.2% 96.9% 94.2% 86.0% 93.2%
AUC 94.8% 98.4% 94.7% 92.9% 92.4%

Kulczynski
TPR 99.9% 100.0% 99.5% 100.0% 99.2%
TNR 36.8% 21.4% 88.3% 85.2% 39.2%
AUC 68.3% 62.0% 93.9% 92.6% 69.2%

Kulczynski + TPR 99.6% 100.0% 95.7% 99.4% 97.2%

APPENDIX A. REJECTION EVALUATION RESULTS ON ORIGINAL FEATURES150

Table A.1 Continued

FC FA Flowchart Class Digital
Cosine TNR 87.0% 93.4% 93.9% 85.9% 90.9%

AUC 93.3% 96.7% 94.7% 92.7% 94.1%

Kulczynski +
Correlation

TPR 99.5% 100.0% 95.2% 98.8% 91.5%
TNR 89.4% 95.3% 95.0% 87.4% 94.0%
AUC 94.5% 97.6% 95.1% 93.1% 92.7%

Manhattan
TPR 99.9% 100.0% 94.2% 98.8% 96.4%
TNR 45.9% 95.0% 89.6% 68.0% 81.2%
AUC 72.9% 97.5% 91.9% 83.4% 88.8%

Manhattan +
Cosine

TPR 99.5% 100.0% 94.2% 98.8% 95.5%
TNR 86.7% 95.2% 90.6% 75.3% 89.5%
AUC 93.1% 97.6% 92.4% 87.0% 92.5%

Manhattan +
Correlation

TPR 99.5% 100.0% 93.8% 98.8% 91.9%
TNR 89.2% 95.8% 93.0% 79.5% 92.3%
AUC 94.3% 97.9% 93.4% 89.2% 92.1%

Ellipse
TPR 99.3% 100.0% 92.8% 98.2% 91.9%
TNR 72.2% 95.7% 91.5% 80.3% 86.6%
AUC 85.7% 97.8% 92.2% 89.2% 89.2%

Ellipse +
Cosine

TPR 99.1% 100.0% 92.8% 98.2% 91.1%
TNR 88.7% 95.7% 91.6% 80.3% 90.9%
AUC 93.9% 97.8% 92.2% 89.2% 91.0%

Ellipse +
Correlation

TPR 99.0% 100.0% 92.3% 98.2% 88.7%
TNR 90.2% 96.1% 93.1% 81.2% 92.9%
AUC 94.6% 98.0% 92.7% 89.7% 90.8%

Appendix B

Rejection Evaluation Results on
Merged Features

Table B.1: The evaluation result of proximity-based rejection method with different
proximity metrics on the merged features.

FC FA Flowchart Class Digital

Euclidean +
Cosine

TPR 99.6% 100.0% 98.6% 99.4% 98.0%
TNR 79.7% 88.7% 93.3% 88.5% 79.9%
AUC 89.7% 94.3% 95.9% 93.9% 88.9%

Euclidean +
Correlation

TPR 99.6% 100.0% 98.6% 99.4% 97.6%
TNR 87.3% 88.9% 94.1% 90.7% 86.0%
AUC 93.5% 94.4% 96.3% 95.0% 91.8%

Hamming +
Cosine

TPR 99.7% 100.0% 99.5% 99.4% 99.2%
TNR 79.1% 78.2% 91.4% 87.6% 78.6%
AUC 89.4% 89.1% 95.4% 93.5% 88.9%

Hamming +
Correlation

TPR 99.7% 100.0% 98.6% 98.8% 98.0%
TNR 86.5% 87.5% 94.3% 92.1% 88.5%
AUC 93.1% 93.7% 96.4% 95.4% 93.3%

Bray Curtis +
Cosine

TPR 99.8% 100.0% 98.6% 99.4% 98.0%
TNR 76.6% 85.0% 93.3% 90.4% 87.7%
AUC 88.2% 92.5% 95.9% 94.9% 92.9%

Bray Curtis +
Correlation

TPR 99.8% 100.0% 98.6% 99.4% 97.6%
TNR 86.3% 87.1% 93.9% 91.1% 89.0%
AUC 93.1% 93.5% 96.2% 95.3% 93.3%

Dice +
Cosine

TPR 99.7% 99.8% 99.0% 100.0% 99.6%
TNR 80.9% 79.2% 96.2% 88.7% 80.7%

151

APPENDIX B. REJECTION EVALUATION RESULTS ON MERGED FEATURES152

Table B.1 Continued

FC FA Flowchart Class Digital
AUC 90.3% 89.5% 97.6% 94.4% 90.1%

Dice +
Correlation

TPR 99.7% 99.8% 98.6% 99.4% 98.0%
TNR 86.8% 88.3% 97.1% 91.3% 91.9%
AUC 93.2% 94.0% 97.8% 95.3% 94.9%

Hellinger +
Cosine

TPR 99.7% 100.0% 98.1% 99.4% 97.2%
TNR 87.8% 89.8% 96.1% 90.2% 90.6%
AUC 93.8% 94.9% 97.1% 94.8% 93.9%

Hellinger +
Correlation

TPR 99.7% 100.0% 98.1% 98.8% 96.8%
TNR 88.2% 90.0% 96.1% 91.0% 91.0%
AUC 93.9% 95.0% 97.1% 94.9% 93.9%

Kulczynski +
Cosine

TPR 99.7% 99.8% 99.5% 100.0% 99.6%
TNR 80.5% 78.7% 95.9% 88.2% 79.0%
AUC 90.1% 89.2% 97.7% 94.1% 89.3%

Kulczynski +
Correlation

TPR 99.7% 99.8% 98.6% 99.4% 98.0%
TNR 86.7% 88.3% 97.1% 91.2% 91.8%
AUC 93.2% 94.0% 97.8% 95.3% 94.9%

Manhattan +
Cosine

TPR 99.7% 100.0% 98.1% 99.4% 98.4%
TNR 82.3% 87.3% 90.6% 88.0% 79.6%
AUC 91.0% 93.6% 94.4% 93.7% 89.0%

Manhattan +
Correlation

TPR 99.7% 100.0% 98.1% 99.4% 98.0%
TNR 87.4% 88.2% 92.9% 90.8% 86.2%
AUC 93.6% 94.1% 95.5% 95.1% 92.1%

Ellipse +
Cosine

TPR 99.6% 100.0% 94.8% 98.8% 93.5%
TNR 85.2% 93.4% 96.1% 91.1% 90.7%
AUC 92.5% 96.7% 95.4% 95.0% 92.1%

Ellipse +
Correlation

TPR 99.6% 100.0% 94.8% 98.8% 93.1%
TNR 88.3% 93.4% 96.1% 91.3% 91.3%
AUC 93.9% 96.7% 95.4% 95.1% 92.2%

Appendix C

Statement of Contribution

153

References

Accord.NET (2019). [Online; accessed 1-July-2019].
URL: http://accord-framework.net

Alvarado, C. (2007), Sketch recognition for digital circuit design in the classroom, in
‘2007 Invited Workshop on Pen-Centric Computing Research’, Citeseer.

Alvarado, C. & Davis, R. (2004), Sketchread: a multi-domain sketch recognition engine,
in ‘Proceedings of the 17th annual ACM symposium on User interface software and
technology’, ACM, pp. 23–32.

Alvarado, C. & Davis, R. (2006), Dynamically constructed bayes nets for multi-domain
sketch understanding, in ‘ACM SIGGRAPH 2006 Courses’, ACM, p. 32.

Anthony, L. & Wobbrock, J. O. (2010), A lightweight multistroke recognizer for user
interface prototypes, in ‘Proceedings - Graphics Interface’, Canadian Information
Processing Society, pp. 245–252.

Anthony, L. & Wobbrock, J. O. (2012), $n-protractor: A fast and accurate multistroke
recognizer, in ‘Proceedings of Graphics Interface 2012’, GI ’12, Canadian Information
Processing Society, Toronto, Ont., Canada, Canada, pp. 117–120.
URL: http://dl.acm.org/citation.cfm?id=2305276.2305296

Arandjelović, R. & Sezgin, T. M. (2011), ‘Sketch recognition by fusion of temporal and
image-based features’, Pattern Recognition 44(6), 1225–1234.

Awal, A.-M., Feng, G., Mouchere, H. & Viard-Gaudin, C. (2011), ‘First experiments on
a new online handwritten flowchart database’.
URL: https://doi.org/10.1117/12.876624

Bhat, A. & Hammond, T. (2009), Using entropy to distinguish shape versus text in
hand-drawn diagrams, in ‘IJCAI International Joint Conference on Artificial Intelli-
gence’, Vol. 9, pp. 1395–1400.

154

REFERENCES 155

Bishop, C. M., Svensen, M. & Hinton, G. E. (2004), Distinguishing text from graphics
in on-line handwritten ink, in ‘Proceedings - International Workshop on Frontiers in
Handwriting Recognition, IWFHR’, Vol. 4, pp. 142–147.

Blagojevic, R., Chang, S. H.-H. & Plimmer, B. (2010), The power of automatic feature
selection: Rubine on steroids, in ‘Proceedings of the Seventh Sketch-Based Inter-
faces and Modeling Symposium’, SBIM ’10, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, pp. 79–86.
URL: http://dl.acm.org/citation.cfm?id=1923363.1923377

Blagojevic, R., Plimmer, B., Grundy, J. & Wang, Y. (2011), ‘Using data mining for
digital ink recognition: Dividing text and shapes in sketched diagrams’, Computers
& Graphics 35(5), 976–991.

Bresler, M., Prusa, D. & Hlavác, V. (2013a), Modeling flowchart structure recognition
as a max-sum problem, in ‘12th International Conference on Document Analysis and
Recognition’, IEEE, pp. 1215–1219.

Bresler, M., Prusa, D. & Hlavác, V. (2013b), Simultaneous segmentation and recogni-
tion of graphical symbols using a composite descriptor, in ‘Computer Vision Winter
Workshop’, Vol. 13, pp. 16–23.

Bresler, M., Prusa, D. & Hlavác, V. (2015a), Detection of arrows in on-line sketched di-
agrams using relative stroke positioning, in ‘IEEE Winter Conference on Applications
of Computer Vision’, IEEE, pp. 610–617.

Bresler, M., Prusa, D. & Hlavác, V. (2015b), Using agglomerative clustering of strokes
to perform symbols over-segmentation within a diagram recognition system, CVWW
’15, pp. 67–74.

Bresler, M., Prusa, D. & Hlavác, V. (2016a), ‘Online recognition of sketched arrow-
connected diagrams’, Int. J. Doc. Anal. Recognit. 19(3), 253–267.
URL: http://dx.doi.org/10.1007/s10032-016-0269-z

Bresler, M., Prusa, D. & Hlavác, V. (2016b), ‘Online recognition of sketched arrow-
connected diagrams’, International Journal on Document Analysis and Recognition
(IJDAR) 19(3), 253–267.

Bresler, M., Prusa, D. & Hlavác, V. (2016c), Recognizing off-line flowcharts by recon-
structing strokes and using on-line recognition techniques, in ‘2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR)’, pp. 48–53.

REFERENCES 156

Bresler, M., Van Phan, T., Prusa, D., Nakagawa, M. & Hlavác, V. (2014), Recogni-
tion system for on-line sketched diagrams, in ‘Frontiers in Handwriting Recognition
(ICFHR), 2014 14th International Conference on’, IEEE, pp. 563–568.

Brieler, F. & Minas, M. (2010), ‘A model-based recognition engine for sketched dia-
grams’, Journal of Visual Languages & Computing 21(2), 81 – 97. Special Issue on
Sketch Computation.

Buxton, B. (2007), Sketching User Experiences: Getting the Design Right and the Right
Design, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Carton, C., Lemaitre, A. & Coüasnon, B. (2013), Fusion of statistical and structural
information for flowchart recognition, in ‘2013 12th International Conference on Doc-
ument Analysis and Recognition’, pp. 1210–1214.

Chang, C.-C. & Lin, C.-J. (2011), ‘Libsvm: A library for support vector machines’,
ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27.
URL: http://doi.acm.org/10.1145/1961189.1961199

Chang, S. h.-h., Blagojevic, R. & Plimmer, B. (2012), ‘Rata.gesture: A gesture recog-
nizer developed using data mining’, Artif. Intell. Eng. Des. Anal. Manuf. 26(3), 351–
366.
URL: http://dx.doi.org/10.1017/S0890060412000194

Chao, B., Zhao, X., Shi, D., Feng, G. & Luo, B. (2017), Eyes understand the sketch!:
Gaze-aided stroke grouping of hand-drawn flowcharts, in ‘Proceedings of the 22Nd
International Conference on Intelligent User Interfaces’, IUI ’17, ACM, New York,
NY, USA, pp. 79–83.

Cheema, S. (2014), ‘Pen-based methods for recognition and animation of handwritten
physics solutions’.

Chen, Q., Grundy, J. & Hosking, J. (2003), An e-whiteboard application to support
early design-stage sketching of uml diagrams, in ‘Proceedings of the 2003 IEEE Sym-
posium on Human Centric Computing Languages and Environments’, HCC ’03, IEEE
Computer Society, Washington, DC, USA, pp. 219–226.
URL: http://dl.acm.org/citation.cfm?id=1153917.1153996

Costagliola, G., De Rosa, M. & Fuccella, V. (2014), ‘Recognition and autocompletion
of partially drawn symbols by using polar histograms as spatial relation descriptors’,
Computers & Graphics 39, 101–116.

Costagliola, G., Deufemia, V., Ferrucci, F. & Gravino, C. (2003), ‘Exploiting xpg for
visual languages definition, analysis and development’, Electronic Notes in Theoretical

REFERENCES 157

Computer Science 82(3), 612 – 627.
URL: http://www.sciencedirect.com/science/article/pii/S1571066105826313

Costagliola, G., Deufemia, V. & Risi, M. (2005), Sketch grammars: A formalism for
describing and recognizing diagrammatic sketch languages, in ‘Eighth International
Conference on Document Analysis and Recognition (ICDAR’05)’, IEEE, pp. 1226–
1230.

Costagliola, G., Rosa, M. D. & Fuccella, V. (2014), ‘Local context-based recognition
of sketched diagrams’, Journal of Visual Languages & Computing 25(6), 955 – 962.
Distributed Multimedia Systems DMS2014 Part I.
URL: http://www.sciencedirect.com/science/article/pii/S1045926X14001141

Costagliola, G., Rosa, M. D. & Fuccella, V. (2015), ‘Extending local context-based
specifications of visual languages’, Journal of Visual Languages & Computing 31, 184
– 195. Special Issue on DMS2015.
URL: http://www.sciencedirect.com/science/article/pii/S1045926X15000701

Costagliola, G., v, V. & Risi, M. (2006), A multi-layer parsing strategy for on-line
recognition of hand-drawn diagrams, in ‘Proceedings of the Visual Languages and
Human-Centric Computing’, VLHCC ’06, IEEE Computer Society, Washington, DC,
USA, pp. 103–110.
URL: https://doi.org/10.1109/VLHCC.2006.4

Cowans, P. J. & Szummer, M. (2005), A graphical model for simultaneous partitioning
and labeling, in ‘Tenth International Workshop on Artificial Intelligence and Statis-
tics’, Citeseer.

Damm, C. H., Hansen, K. M. & Thomsen, M. (2000), Tool support for cooperative
object-oriented design: Gesture based modelling on an electronic whiteboard, in ‘Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems’, CHI
’00, ACM, New York, NY, USA, pp. 518–525.
URL: http://doi.acm.org/10.1145/332040.332488

Delaye, A. (2014), ‘Structured prediction models for online sketch recognition’, Inter-
pretation 1(3), 4–16.

Delaye, A. & Lee, K. (2015), ‘A flexible framework for online document segmentation
by pairwise stroke distance learning’, Pattern Recognition 48(4), 1193–1206.

Delaye, A. & Liu, C.-L. (2012), Text/non-text classification in online handwritten doc-
uments with conditional random fields, Springer, pp. 514–521.

REFERENCES 158

Deng, W., Wu, L., Yu, R. & Lai, J. (2013), On-line sketch recognition using direction
feature, in ‘IFIP Conference on Human-Computer Interaction’, Springer, pp. 259–266.

Deufemia, V., Risi, M. & Tortora, G. (2014), ‘Sketched symbol recognition using latent-
dynamic conditional random fields and distance-based clustering’, Pattern Recogn.
47(3), 1159–1171.
URL: http://dx.doi.org/10.1016/j.patcog.2013.09.016

Ding, X., Li, Y., Belatreche, A. & Maguire, L. P. (2014), ‘An experimental evaluation
of novelty detection methods’, Neurocomputing 135, 313 – 327.
URL: http://www.sciencedirect.com/science/article/pii/S0925231213011314

Duda, R. O. & Hart, P. E. (1972), ‘Use of the hough transformation to detect lines and
curves in pictures’, Commun. ACM 15(1), 11–15.
URL: http://doi.acm.org/10.1145/361237.361242

EmguCV (2019). [Online; accessed 1-July-2019].
URL: http://www.emgu.com/

Everingham, M., Gool, L., Williams, C. K., Winn, J. & Zisserman, A. (2010), ‘The
pascal visual object classes (voc) challenge’, Int. J. Comput. Vision 88(2), 303–338.
URL: http://dx.doi.org/10.1007/s11263-009-0275-4

Fahmy, A., Abdelhamid, W. & Atiya, A. (2018), Interactive sketch recognition frame-
work for geometric shapes, in L. Cheng, A. C. S. Leung & S. Ozawa, eds, ‘Neural
Information Processing’, Springer International Publishing, Cham, pp. 323–334.

Feng, G., Viard-Gaudin, C. & Sun, Z. (2009), ‘On-line hand-drawn electric circuit
diagram recognition using 2d dynamic programming’, Pattern Recogn. 42(12), 3215–
3223.
URL: http://dx.doi.org/10.1016/j.patcog.2009.01.031

Fonseca, M. J., Pimentel, C. & Jorge, J. A. (2002), Cali: An online scribble recognizer
for calligraphic interfaces, in ‘Sketch Understanding, Papers from the 2002 AAAI
Spring Symposium’, pp. 51–58.

Gennari, L., Kara, L. B., Stahovich, T. F. & Shimada, K. (2005), ‘Combining geometry
and domain knowledge to interpret hand-drawn diagrams’, Computers & Graphics
29(4), 547–562.

Géron, A. (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilly Media.

Goldmeier, E. (1972), ‘Similarity in visually perceived forms.’, Psychological issues .

REFERENCES 159

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. & Witten, I. H. (2009),
‘The weka data mining software: an update’, ACM SIGKDD explorations newsletter
11(1), 10–18.

Hammond, T. A. & Davis, R. (2009), Recognizing interspersed sketches quickly, in ‘Pro-
ceedings of Graphics Interface’, Canadian Information Processing Society, pp. 157–
166.

Hammond, T. & Davis, R. (2006), Ladder: A language to describe drawing, display,
and editing in sketch recognition, in ‘ACM SIGGRAPH 2006 Courses’, ACM, p. 27.

Hammond, T. & Paulson, B. (2011), ‘Recognizing sketched multistroke primitives’,
ACM Transactions on Interactive Intelligent Systems (TiiS) 1(1), 1–34.

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recog-
nition, in ‘2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)’, pp. 770–778.

Herold, J. & Stahovich, T. F. (2012), The 1¢ recognizer: a fast, accurate, and easy-to-
implement handwritten gesture recognition technique, in ‘Proceedings - Sketch-Based
Interfaces and Modeling, SBIM’, Eurographics Association, pp. 39–46.

Hse, H. H. & Newton, A. R. (2005), ‘Recognition and beautification of multi-stroke
symbols in digital ink’, Computers & Graphics 29(4), 533–546.

Hse, H. & Newton, A. R. (2004), Sketched symbol recognition using zernike moments, in
‘Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04)
Volume 1 - Volume 01’, ICPR ’04, IEEE Computer Society, Washington, DC, USA,
pp. 367–370.
URL: http://dx.doi.org/10.1109/ICPR.2004.838

Hu, M.-K. (1962), ‘Visual pattern recognition by moment invariants’, IRE transactions
on information theory 8(2), 179–187.

Illingworth, J. & Kittler, J. (1988), ‘A survey of the hough transform’, Computer Vision,
Graphics, and Image Processing 44(1), 87 – 116.
URL: http://www.sciencedirect.com/science/article/pii/S0734189X88800331

Ioffe, S. & Szegedy, C. (2015), Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in ‘Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37’, ICML’15,
JMLR.org, pp. 448–456.
URL: http://dl.acm.org/citation.cfm?id=3045118.3045167

REFERENCES 160

Johnson, G., Gross, M. D., Hong, J. & Yi-Luen Do, E. (2009), ‘Computational sup-
port for sketching in design: a review’, Foundations and Trends in Human-Computer
Interaction 2(1), 1–93.

Johnston, D. & Alvarado, C. (2013), ‘Sketch recognition of digital logical circuits’.

Julca-Aguilar, F. D. & Hirata, N. S. T. (2018), Symbol detection in online handwritten
graphics using faster r-cnn, in ‘2018 13th IAPR International Workshop on Document
Analysis Systems (DAS)’, pp. 151–156.

Julca-Aguilar, F., Mouchère, H., Viard-Gaudin, C. & Hirata, N. S. T. (2017), ‘A General
Framework for the Recognition of Online Handwritten Graphics’, ArXiv e-prints .

Kang, B., Hu, H. & LaViola Jr, J. J. (2014), Mixed heuristic search for sketch predic-
tion on chemical structure drawing, in ‘Proceedings of the 4th Joint Symposium on
Computational Aesthetics, Non-Photorealistic Animation and Rendering, and Sketch-
Based Interfaces and Modeling’, ACM, pp. 27–34.

Kara, L. B. & Stahovich, T. F. (2005), ‘An image-based, trainable symbol recognizer
for hand-drawn sketches’, Computers & Graphics 29(4), 501–517.

Kara, L. B. & Stahovich, T. F. (2007), Hierarchical parsing and recognition of hand-
sketched diagrams, in ‘ACM SIGGRAPH - International Conference on Computer
Graphics and Interactive Techniques’, ACM, p. 17.

Landay, J. A. & Myers, B. A. (1995), Interactive sketching for the early stages of
user interface design, in ‘Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems’, CHI ’95, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, pp. 43–50.
URL: http://dx.doi.org/10.1145/223904.223910

Landay, J. A. & Myers, B. A. (1996), Sketching storyboards to illustrate interface
behaviors, in ‘Conference Companion on Human Factors in Computing Systems’,
CHI ’96, ACM, New York, NY, USA, pp. 193–194.
URL: http://doi.acm.org/10.1145/257089.257257

Lee, C., Jordan, J., Stahovich, T. F. & Herold, J. (2012), Newtons pen ii: an intelligent,
sketch-based tutoring system and its sketch processing techniques, in ‘Proceedings of
the International Symposium on Sketch-Based Interfaces and Modeling’, Eurograph-
ics Association, pp. 57–65.

Lee, W., Kara, L. B. & Stahovich, T. F. (2007), ‘An efficient graph-based recognizer
for hand-drawn symbols’, Computers & Graphics 31(4), 554–567.

REFERENCES 161

Leung, W. H. & Chen, T. (2002), User-independent retrieval of free-form hand-drawn
sketches, in ‘Acoustics, Speech, and Signal Processing’, Vol. 2, IEEE, pp. 2029–2032.

Li, Y. (2010), Protractor: a fast and accurate gesture recognizer, in ‘Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems’, ACM, pp. 2169–2172.

LibSVMsharp (2019). [Online; accessed 1-July-2019].
URL: https://github.com/ccerhan/LibSVMsharp

Lin, H.-L. (2014), Estimating Student Competence in Engineering Statics From a Lex-
ical Analysis of Handwritten Equations, Thesis.

Liu, C.-L. & Zhou, X.-D. (2006), Online japanese character recognition using trajectory-
based normalization and direction feature extraction, IWFHR,.

Liu, D. C. & Nocedal, J. (1989), ‘On the limited memory bfgs method for large scale
optimization’, Mathematical Programming 45(1), 503–528.
URL: https://doi.org/10.1007/BF01589116

Manual, F. (1997), ‘101-5-1, operational terms and graphics’, Washington, DC, Depart-
ment of the Army 30(3), 2.

Marsland, S. (2003), ‘Novelty detection in learning systems’, Neural computing surveys
3(2), 157–195.

Marsland, S. (2015), Machine learning: an algorithmic perspective, CRC press.

Mouchère, H., Viard-Gaudin, C., Zanibbi, R. & Garain, U. (2016), Icfhr2016 crohme:
Competition on recognition of online handwritten mathematical expressions, in ‘2016
15th International Conference on Frontiers in Handwriting Recognition (ICFHR)’,
pp. 607–612.

Niels, R., Willems, D. & Vuurpijl, L. (2008), ‘The nicicon database of handwritten icons
for crisis management’.

Oltmans, M. (2007), Envisioning sketch recognition: a local feature based approach to
recognizing informal sketches, PhD thesis, Massachusetts Institute of Technology.

OpenCV (2019). [Online; accessed 1-July-2019].
URL: https://opencv.org/

Ouyang, T. & Davis, R. (2007), Recognition of hand drawn chemical diagrams, in
‘Proceedings of the 22Nd National Conference on Artificial Intelligence - Volume 1’,
AAAI’07, AAAI Press, pp. 846–851.

REFERENCES 162

Ouyang, T. & Davis, R. (2009a), Learning from neighboring strokes: Combining ap-
pearance and context for multi-domain sketch recognition, in ‘Advances in Neural
Information Processing Systems 22’, pp. 1401–1409.

Ouyang, T. Y. & Davis, R. (2009b), A visual approach to sketched symbol recognition,
in ‘Proceedings of the 21st International Jont Conference on Artifical Intelligence’,
IJCAI’09, Morgan Kaufmann Publishers Inc., pp. 1463–1468.
URL: http://dl.acm.org/citation.cfm?id=1661445.1661680

Ouyang, T. Y. & Davis, R. (2011), Chemink: a natural real-time recognition system
for chemical drawings, in ‘In International Conference on Intelligent User Interfaces
(IUI ’11’, ACM, pp. 267–276.

Patel, R., Plimmer, B., Grundy, J. & Ihaka, R. (2007), Ink features for diagram recog-
nition, in ‘Sketch-Based Interfaces and Modeling - ACM SIGGRAPH/Eurographics
Symposium Proceedings’, ACM, pp. 131–138.

Paulson, B. C. (2010), Rethinking pen input interaction: enabling freehand sketching
through improved primitive recognition, PhD thesis, Texas A&M University.

Paulson, B. & Hammond, T. (2008), Paleosketch: Accurate primitive sketch recognition
and beautification, in ‘Proceedings of the 13th International Conference on Intelligent
User Interfaces’, IUI ’08, ACM, pp. 1–10.
URL: http://doi.acm.org/10.1145/1378773.1378775

Paulson, B., Rajan, P., Davalos, P., Gutierrez-Osuna, R. & Hammond, T. (2008),
What!?! no rubine features?: using geometric-based features to produce normal-
ized confidence values for sketch recognition, in ‘HCC Workshop: Sketch Tools for
Diagramming’, pp. 57–63.

Pearl, J. (1988), Probabilistic reasoning in intelligent systems: networks of plausible
inference, Elsevier.

Pereira, J. a. P., Jorge, J. A., Branco, V. A., Silva, N. F., Cardoso, T. D. & Fer-
reira, F. N. (2004), Cascading recognizers for ambiguous calligraphic interaction, in
‘Proceedings of the First Eurographics Conference on Sketch-Based Interfaces and
Modeling’, SBM’04, Eurographics Association, pp. 63–72.

Peterson, E. J., Stahovich, T. F., Doi, E. & Alvarado, C. (2010), Grouping strokes
into shapes in hand-drawn diagrams, in ‘Proceedings of the National Conference on
Artificial Intelligence’, pp. 974–979.

REFERENCES 163

Pimentel, M. A., Clifton, D. A., Clifton, L. & Tarassenko, L. (2014), ‘A review of novelty
detection’, Signal Processing 99, 215 – 249.
URL: //www.sciencedirect.com/science/article/pii/S016516841300515X

Plimmer, B. & Apperley, M. (2003), Evaluating a sketch environment for novice pro-
grammers, in ‘CHI ’03 Extended Abstracts on Human Factors in Computing Sys-
tems’, CHI EA ’03, ACM, New York, NY, USA, pp. 1018–1019.
URL: http://doi.acm.org/10.1145/765891.766126

Plimmer, B., Blagojevic, R., Chang, S. H.-H., Schmieder, P. & Zhen, J. S. (2012), Rata:
codeless generation of gesture recognizers, in ‘Proceedings of the 26th Annual BCS
Interaction Specialist Group Conference on People and Computers’, British Computer
Society, pp. 137–146.

Plimmer, B., Purchase, H. C. & Yang, H. Y. (2010), Sketchnode: Intelligent sketch-
ing support and formal diagramming, in ‘Proceedings of the 22nd Conference of
the Computer-Human Interaction Special Interest Group of Australia on Computer-
Human Interaction’, OZCHI ’10, Association for Computing Machinery, New York,
NY, USA, p. 136–143.
URL: https://doi.org/10.1145/1952222.1952249

Qi, Y., Szummer, M. & Minka, T. P. (2005), Diagram structure recognition by bayesian
conditional random fields, in ‘Computer Vision and Pattern Recognition, IEEE Com-
puter Society Conference on’, Vol. 2, IEEE, pp. 191–196.

Ray, S., Herrera-Cámara, J. I., Runyon, M. & Hammond, T. (2019), Flow2Code: Trans-
forming Hand-Drawn Flowcharts into Executable Code to Enhance Learning, Springer
International Publishing, Cham, pp. 79–103.
URL: https://doi.org/10.1007/978-3-030-17398-26

Reaver, J., Stahovich, T. F. & Herold, J. (2011a), How to make a quick $: Using hier-
archical clustering to improve the efficiency of the dollar recognizer, in ‘Proceedings
- SBIM: ACM SIGGRAPH / Eurographics Symposium on Sketch-Based Interfaces
and Modeling’, ACM, pp. 103–108.

Reaver, J., Stahovich, T. F. & Herold, J. (2011b), How to make a quick$: Using hier-
archical clustering to improve the efficiency of the dollar recognizer, in ‘Proceedings
of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling’,
SBIM ’11, ACM, New York, NY, USA, pp. 103–108.
URL: http://doi.acm.org/10.1145/2021164.2021183

Ren, S., He, K., Girshick, R. & Sun, J. (2017), ‘Faster r-cnn: Towards real-time object
detection with region proposal networks’, IEEE Trans. Pattern Anal. Mach. Intell.

REFERENCES 164

39(6), 1137–1149.
URL: https://doi.org/10.1109/TPAMI.2016.2577031

Rubine, D. (1991), ‘Specifying gestures by example’, pp. 329–337.
URL: http://doi.acm.org/10.1145/122718.122753

Saund, E. & Lank, E. (2003), Stylus input and editing without prior selection of mode,
in ‘UIST: Proceedings of the Annual ACM Symposium on User Interface Softaware
and Technology’, ACM, pp. 213–216.

Schmieder, P. (2009), Comparing basic shape classifiers: a platform for evaluating sketch
recognition algorithms, PhD thesis, University of Auckland.

Schäfer, B. & Stuckenschmidt, H. (2019), Arrow r-cnn for flowchart recognition, in
‘2019 International Conference on Document Analysis and Recognition Workshops
(ICDARW)’, Vol. 1, pp. 7–13.

Sezgin, T. M. & Davis, R. (2005), Hmm-based efficient sketch recognition, in ‘Pro-
ceedings of the 10th international conference on Intelligent user interfaces’, ACM,
pp. 281–283.

Sezgin, T. M. & Davis, R. (2007a), ‘Sketch interpretation using multiscale models of
temporal patterns’, IEEE Computer Graphics and Applications 27(1), 28–37.

Sezgin, T. M. & Davis, R. (2007b), Temporal sketch recognition in interspersed draw-
ings, in ‘Proceedings of the 4th Eurographics Workshop on Sketch-based Interfaces
and Modeling’, SBIM ’07, ACM, New York, NY, USA, pp. 15–22.
URL: http://doi.acm.org/10.1145/1384429.1384436

Sezgin, T. M. & Davis, R. (2008), ‘Sketch recognition in interspersed drawings using
time-based graphical models’, Computers & Graphics 32(5), 500–510.

Sezgin, T. M., Stahovich, T. & Davis, R. (2007), Sketch based interfaces: Early pro-
cessing for sketch understanding, in ‘ACM SIGGRAPH 2007 Courses’, SIGGRAPH
’07, Association for Computing Machinery, New York, NY, USA, p. 37–es.
URL: https://doi.org/10.1145/1281500.1281548

Shilman, M. & Viola, P. (2004), Spatial recognition and grouping of text and graphics,
in ‘Proceedings of the First Eurographics conference on Sketch-Based Interfaces and
Modeling’, Eurographics Association, pp. 91–95.

Shilman, M., Viola, P. & Chellapilla, K. (2004), Recognition and grouping of handwrit-
ten text in diagrams and equations, in ‘Frontiers in Handwriting Recognition, 2004.
IWFHR-9 2004. Ninth International Workshop on’, IEEE, pp. 569–574.

REFERENCES 165

Stahovich, T. F., Peterson, E. J. & Lin, H. (2014), ‘An efficient, classification-based
approach for grouping pen strokes into objects’, Computers & Graphics 42, 14–30.

Stevens, P. C., Blagojevic, R. & Plimmer, B. (2013), Supervised machine learning for
grouping sketch diagram strokes, in ‘Proceedings of the International Symposium
on Sketch-Based Interfaces and Modeling’, SBIM ’13, ACM, New York, NY, USA,
pp. 43–50.
URL: http://doi.acm.org/10.1145/2487381.2487383

Stoffel, A., Tapia, E. & Rojas, R. (2009), Recognition of on-line handwritten commu-
tative diagrams, in ‘2009 10th International Conference on Document Analysis and
Recognition’, pp. 1211–1215.

Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. (2017), Inception-v4, inception-
resnet and the impact of residual connections on learning, in ‘Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence’, AAAI’17, AAAI Press,
pp. 4278–4284.
URL: http://dl.acm.org/citation.cfm?id=3298023.3298188

Tan, P.-N., Steinbach, M., Karpatne, A. & Kumar, V. (2018), Introduction to Data
Mining (2Nd Edition), 2nd edn, Pearson.

Taranta, II, E. M. & LaViola, Jr., J. J. (2015), Penny pincher: A blazing fast, highly ac-
curate $-family recognizer, in ‘Proceedings of the 41st Graphics Interface Conference’,
GI ’15, Canadian Information Processing Society, Toronto, Ont., Canada, Canada,
pp. 195–202.
URL: http://dl.acm.org/citation.cfm?id=2788890.2788925

Tarjan, R. (1972), ‘Depth-first search and linear graph algorithms’, SIAM journal on
computing 1(2), 146–160.

Tirkaz, C., Yanikoglu, B. & Sezgin, T. M. (2012), ‘Sketched symbol recognition with
auto-completion’, Pattern Recognition 45(11), 3926 – 3937.

Torgerson, W. S. (1952), ‘Multidimensional scaling: I. theory and method’, Psychome-
trika 17(4), 401–419.
URL: https://doi.org/10.1007/BF02288916

Tumen, R. S., Acer, M. E. & Sezgin, T. M. (2010), Feature extraction and classi-
fier combination for image-based sketch recognition, in ‘Proceedings of the Seventh
Sketch-Based Interfaces and Modeling Symposium’, SBIM ’10, Eurographics Associ-
ation, Aire-la-Ville, Switzerland, Switzerland, pp. 63–70.

REFERENCES 166

Van Phan, T. & Nakagawa, M. (2016), ‘Combination of global and local contexts for
text/non-text classification in heterogeneous online handwritten documents’, Pattern
Recognition 51, 112 – 124.
URL: http://www.sciencedirect.com/science/article/pii/S0031320315002721

Vatavu, R.-D., Anthony, L. & Wobbrock, J. O. (2012), Gestures as point clouds: A $p
recognizer for user interface prototypes, in ‘Proceedings of the 14th ACM Interna-
tional Conference on Multimodal Interaction’, ICMI ’12, ACM, pp. 273–280.

Vatavu, R.-D., Anthony, L. & Wobbrock, J. O. (2018), $q: A super-quick, articulation-
invariant stroke-gesture recognizer for low-resource devices, in ‘Proceedings of the
20th International Conference on Human-Computer Interaction with Mobile Devices
and Services’, MobileHCI ’18, ACM, New York, NY, USA, pp. 23:1–23:12.
URL: http://doi.acm.org/10.1145/3229434.3229465

Wang, C., Mouchère, H., Lemaitre, A. & Viard-Gaudin, C. (2017), ‘Online flowchart
understanding by combining max-margin markov random field with grammatical
analysis’, International Journal on Document Analysis and Recognition (IJDAR)
20(2), 123–136.
URL: https://doi.org/10.1007/s10032-017-0284-8

Wang, C., Mouchère, H., Viard-Gaudin, C. & Jin, L. (2016), Combined segmenta-
tion and recognition of online handwritten diagrams with high order markov random
field, in ‘2016 15th International Conference on Frontiers in Handwriting Recognition
(ICFHR)’, pp. 252–257.

Wobbrock, J. O., Wilson, A. D. & Li, Y. (2007), Gestures without libraries, toolkits
or training: a $1 recognizer for user interface prototypes, in ‘UIST: Proceedings of
the Annual ACM Symposium on User Interface Softaware and Technology’, ACM,
pp. 159–168.

Wu, J., Wang, C., Zhang, L. & Rui, Y. (2015), Offline sketch parsing via shapeness
estimation, in ‘Proceedings of the 24th International Conference on Artificial Intelli-
gence’, IJCAI’15, AAAI Press, pp. 1200–1206.
URL: http://dl.acm.org/citation.cfm?id=2832415.2832416

Wu, T.-F., Lin, C.-J. & Weng, R. C. (2004), ‘Probability estimates for multi-class
classification by pairwise coupling’, J. Mach. Learn. Res. 5, 975–1005.

Yesilbek, K. T. & Sezgin, T. M. (2017), ‘Sketch recognition with few examples’, Com-
puters & Graphics 69, 80 – 91.
URL: http://www.sciencedirect.com/science/article/pii/S0097849317301516

REFERENCES 167

Yin, J. & Sun, Z. (2005), An online multi-stroke sketch recognition method integrated
with stroke segmentation, in ‘International Conference on Affective Computing and
Intelligent Interaction’, Springer, pp. 803–810.

