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Abstract

Ordinary differential equations (ODEs) and partial differential equations (PDEs) arise
in most scientific disciplines that make use of mathematical techniques. As exact solu-
tions are in general not computable, numerical methods are used to obtain approximate
solutions. In order to draw valid conclusions from numerical computations, it is crucial
to understand which qualitative aspects numerical solutions have in common with the
exact solution. Symplecticity is a subtle notion that is related to a rich family of geo-
metric properties of Hamiltonian systems. While the effects of preserving symplecticity
under discretisation on long-term behaviour of motions is classically well known, in this
thesis

(a) the role of symplecticity for the bifurcation behaviour of solutions to Hamiltonian
boundary value problems is explained. In parameter dependent systems at a bifurcation
point the solution set to a boundary value problem changes qualitatively. Bifurcation
problems are systematically translated into the framework of classical catastrophe the-
ory. It is proved that existing classification results in catastrophe theory apply to
persistent bifurcations of Hamiltonian boundary value problems. Further results for
symmetric settings are derived.

(b) Tt is proved that to preserve generic bifurcations under discretisation it is nec-
essary and sufficient to preserve the symplectic structure of the problem.

(c) The catastrophe theory framework for Hamiltonian ODEs is extended to PDEs
with variational structure. Recognition equations for A-series singularities for func-
tionals on Banach spaces are derived and used in a numerical example to locate high-
codimensional bifurcations.

(d) The potential of symplectic integration for infinite-dimensional Lie-Poisson sys-
tems (Burgers’ equation, KdV, fluid equations, . ..) using Clebsch variables is analysed.
It is shown that the advantages of symplectic integration can outweigh the disadvan-
tages of integrating over a larger phase space introduced by a Clebsch representation.

(e) Finally, the preservation of variational structure of symmetric solutions in mul-
tisymplectic PDEs by multisymplectic integrators on the example of (phase-rotating)

travelling waves in the nonlinear wave equation is discussed.
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Chapter 1

Introduction

1.1 The idea of bifurcation analysis and symplecticity

Hamiltonian systems occur as mathematical models that describe a wide range of phys-
ical systems ranging from classical mechanical systems describing the movement of
planets, particles, electrons in electrodynamics fields or molecular dynamics to hydro-
dynamical systems. Moreover, they can be utilised, for instance, when drawing sam-
ples from statistical distributions numerically using Hamiltonian Monte Carlo methods.
Mathematical models often contain parameters. Depending on the values of the pa-
rameters, a Hamiltonian boundary value problem might have a unique solution, no
solution, or many solutions. As parameters are varied, the set of solutions can undergo
qualitative changes, called bifurcations. In the simplest example, two solutions can
merge and annihilate as a parameter is varied. For instance, the Bratu problem, that
we will introduce as an example later, describes a combustion process which admits
two time-invariant heat distributions for parameter values p < 3.51. As the parameter
value is increased, the heat distributions become more and more similar to each other
until they coincide at p ~ 3.51. If the parameter value is increased beyond this criti-
cal value then no invariant heat distribution exists. The situation is illustrated in the
bifurcation diagram plotted in Figure 1.1. The singular point at which the solutions
merge is called a bifurcation point.

When more parameters are present then solutions to boundary value problems
can interact in more complicated ways. Of particular relevance are those phenomena
which are stable and cannot be destroyed by introducing small perturbations since we
expect these to occur in models describing real world phenomena. When trying to
understand a mathematical model with parameters, then locating bifurcation points is
important because at these highly singular points the model behaviour changes quali-

tatively. However, as mathematical models consisting of ordinary or partial differential

13



CHAPTER 1. INTRODUCTION 14

‘/
05 10 15 20 25 30 35 .

Figure 1.1: Two branches of solutions to the Bratu problem merge and annihilate in a
fold bifurcation at the parameter value p ~ 3.51.

equations typically exceed the complexity of differential equations for which exact solu-
tions can be obtained, solutions need to be computed numerically using an integration
scheme which discretises the model equation.

A structure present in Hamiltonian systems is symplecticity. It is well known that if
the model equations are Hamiltonian systems then preserving the symplectic structure
of the system under discretisation leads to excellent behaviour of the numerical solution
in long-term simulations. Advantages include excellent energy conservation properties
of the numerical solution, preservation of the topology of the phase portrait like the
absence of artificial attractors or the preservation of statistical quantities as well as
chaotic and non-chaotic behaviour. Indeed, the numerical solutions behave like exact
solutions of a nearby Hamiltonian system which is advantageous when analysing the
numerical solution and explains why the numerical solution shares so many geometric
properties with the exact solution.

Whether preserving symplectic structure when computing bifurcation diagrams for
boundary value problems is relevant or not is not clear a priori since the classical re-
sults refer to long-term integrations. In contrast, in typical boundary value problems
for Hamiltonian systems the problem is posed on a time-interval of fixed length. In this
thesis we show that there are bifurcation phenomena which are related to the symplec-
ticity of the problem. Indeed, we will translate Hamiltonian boundary value problems
systematically into critical point problems: solutions to boundary value problems cor-
respond to critical points € U of parameter dependent functions S,,: U — R defined
on an open neighbourhood U in R™ with parameters u. More precisely, we will show
that families of Hamiltonian boundary value problems up to symplectomorphisms cor-
respond to smooth function families up to stably right-equivalence (with notions to be
made precise later).

The bifurcation behaviour of critical points is classified in classical catastrophe the-

ory. We will show that the classification covers persistent bifurcations of Hamiltonian
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boundary value problems. We will prove that symplectic integration schemes preserve
all persistent bifurcations exactly while non-symplectic discretisation schemes destroy
certain persistent bifurcations. This means when bifurcation diagrams are computed
using a non-symplectic integrator on a Hamiltonian boundary value problem then in-

correct bifurcations can show up or bifurcation points can disappear.

1.2 Motivational example

Before providing a review of the relevant notions and a more rigorous and general
treatment, we give a motivational example which will sketch the relation between bi-
furcations of solutions to Hamiltonian boundary value problems and the bifurcation of
critical points of parameter dependent functions. It illustrates some key ideas and was
the starting point of the research findings presented in this work.

Let p,q be the standard coordinates of R? with the standard symplectic structure
w = dp Adq. We consider the two-parameter family of Hamiltonian systems defined by

H,:R* =R, Hu(p,q) = p* + g+ p2g’ +q".

For ;€ R? the time-7-flow map Ou: R? — R? of the Hamiltonian vector field Xg

assigns to initial values (p(0), ¢(0)) the solution of Hamilton’s equations

(1.2.1)

at time 7. Each map ¢, is symplectic. Let us consider the Dirichlet boundary value

problem
q(0)=¢"  q(r)=Q" (1.2.2)

for ¢*, @* € R. In other words, we look for orbits of the Hamiltonian flow which start
on the line R x {¢*} in the phase space R? and end on the line R x {Q*} at time 7.
Since solutions to initial value problems are unique, we can specify a solution to (1.2.1)

and (1.2.2) by the value p(0). This means we seek solutions p(0) to the equation

(g0 ¢u)(p(0),q") = Q" (1.2.3)

Figure 1.2 shows a bifurcation diagram, i.e. a plot of solutions p(0) of (1.2.3) over
the p-plane for the integration time 7 = 4 and the boundary values ¢* = 0.2 = Q*.
The plot shows a cusp bifurcation. Compared with the fold bifurcation displayed in

Figure 1.1 it requires two parameters to occur. Depending on the parameter values p,



CHAPTER 1. INTRODUCTION 16

0.08

Figure 1.2: A plot of solutions p to the Hamiltonian boundary value problem (1.2.3)
over the parameter space for 7 = 4, ¢* = 0.2 = QQ* shows a cusp bifurcation. Depending
on the parameter values 1, o the problem has 3 or 2 solutions or 1 solution. To obtain
the plot the Hamiltonian flow was approximated using the symplectic Stormer—Verlet
scheme, which will be introduced in Example 3.3.2, with time step size 0.1.

pe the problem has 3 or 2 solutions or 1 solution in the considered range of param-
eters. The cusp bifurcation is one of the seven elementary catastrophes classified by
Thom (1973). The bifurcation persists under small perturbations, i.e. a small pertur-
bation of the Hamiltonian or the boundary condition results in a bifurcation diagram
which qualitatively looks like the bifurcation diagram of the unperturbed system shown
in Figure 1.2. This means that the above bifurcation is a persistent phenomenon in
Dirichlet problems for families of Hamiltonian systems with two parameters. (Notions
will be made more precise in the following chapters.)

The occurrence of bifurcations from Thom’s list of classical catastrophes (Table 1.1)
is related to the symplecticity of the maps ¢,. Indeed, it is an instance of the fact
that many boundary value problems for symplectic maps are governed by catastrophe
theory which we will explain in the following chapters. Let us sketch the connection
here for Dirichlet problems for symplectic maps on R?". Let ¢,: (R*™,w) — (R?", w)
denote a family of symplectic maps. We equip (R?",w) with Darboux coordinates
Pls--sPnsqy...,q" such that w = > i1 dpj A d¢/. Let m,m: R x R?» — R?»
denote the projection to the first or second factor of the cross product R?® x R2",
respectively. We equip R?" x R?" with the symplectic form w @ (—w) := 7jw — Tiw and
obtain coordinates pi,...pn,q', ..., ¢% Pi,... Py, QY, ..., Q" on R* x R?" by pulling
back the coordinates p1,...,pn,q",...,¢" from R?>" with 7; and 7. The graphs of the

symplectic maps can be embedded as Lagrangian submanifolds:

Ty ={(p, 0 6u(p,9) | (p,q) € R*"} C (R*" x R*™,w & (—w)).
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’ ADE class ‘ name ‘ germ miniversal unfolding
Ao fold x3 3+ H1x
Az cusp x? 4+ pox? +
Ay swallowtail x® 25 4 p3ad + pox® +
As butterfly 6 28 4 pgrt + psa + pox® 4+ e
DI hyperbolic umbilic | 23 + zy? | 23 + zy? + u3(2? — v?) + poy + 1
Dy elliptic umbilic 23 —xy? | 23— 2y? + ps(a® + y?) 4 poy + T
Ds parabolic umbilic | 2%y +y* | 2%y + y* 4+ pux® + pzy® + poy +

Table 1.1: Thom’s seven elementary catastrophes (Lu, 1976, p.89), (Gilmore, 1993,
p.66). The table shows all stable singularities for parameter families with at most
4 parameters up to right-left equivalence. Plotting the critical points = such that
VF,(x) = 0 of a function family (miniversal unfolding) F), over the parameter space
we obtain bifurcation diagrams. Up to reparametrisation and parameter-dependent
changes of coordinates the fold looks like Figure 1.1 and the cusp looks like Figure 1.2.

The 1-form

n
a=> ((¢" - q)dp; — (Q" — Q;)dP;)
j=1
on R?" x R?" is a primitive of w @ (—w) and, therefore, closed on the simply connected
submanifolds I', for each p. Thus, there exists a family of primitives S,: I'), — R
with dS;, = ,«, where ¢,: I')) < R?" x R?" is the natural inclusion. Where pj, P
(1 < j < n) constitutes a local coordinate system on I',,, i.e. where det (%{W) - #0,
Zh]

the problem
(qou)(p,q") = Q"

is equivalent to ;o0 = 0 or

dsS, = 0.

We can conclude that the bifurcations in the boundary value problem (1.2.2) for
families of symplectic maps ¢, behave like the gradient zero problem or critical points
problem. Therefore, bifurcations of solutions are classified in catastrophe theory. If
no more than four parameters are present and the bifurcation cannot be destroyed by
introducing small perturbation terms then the problem must be equivalent to one of

Thom’s list of classical catastrophes (Table 1.1).

1.3 Further results of the dissertation

Next to the classification and the consideration of how symplectic integrators preserve

persistent bifurcations, we will use the catastrophe framework to analyse how typical
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boundary conditions such as Dirichlet boundary conditions can affect which bifurca-
tions occur. Indeed, we will prove that Dirichlet boundary conditions prohibit some
of the bifurcations which persistently occur in the full problem class of Hamiltonian
boundary value problems. Moreover, we will see that extra structure can cause more
bifurcations to occur as persistent phenomena than just the ones in Thom’s list (Ta-
ble 1.1). For instance, we will prove that in completely integrable systems a novel
pitchfork bifurcation occurs as a persistent phenomena. Moreover, if the Hamiltonian
and the boundary conditions are invariant under a symmetry action then the symmetry
is inherited by the corresponding critical points problem. This will constitute Part 11
of the thesis, whereas Part I consists of a review of relevant notions and concepts.

In Part IIT we will consider three generalisations of the concept of Hamiltonian
ODEs to the PDE setting. First we will interpret Hamiltonian structure as the existence
of a variational principle. Using this viewpoint we can transfer catastrophe classification
results to a broad class of partial differential equations. In particular, we will develop
detection formulas for A-series bifurcations and show in a numerical experiment how
to locate high-codimensional bifurcations computationally.

As a second generalisation we consider infinite-dimensional Lie-Poisson systems.
These cover important PDEs such as Burgers’ equation, the Korteweg—de Vries equa-
tion (KdV), the Camassa-Holm equation and Euler’s fluid equations. Using Clebsch
variables, we will, on the example of Burgers’ equation and related equations, lift
the Lie—Poisson system to a Hamiltonian system defined on an infinite-dimensional
symplectic space, where, after discretisation, symplectic integration methods can be
applied. We will show that the advantages of symplectic integration can outweigh the
disadvantage of calculating on a larger phase space.

As a third generalisation of Hamiltonian ODEs to the PDE setting, we consider
multi-symplectic systems. Here we analyse how integration schemes which preserve
multi-symplectic structure can preserve structure that governs symmetric solutions

such as travelling waves in the nonlinear wave equation.
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Review of relevant concepts
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The following part of the thesis provides some introductory notes to the mathemat-
ical concepts that are relevant to this thesis. In Chapter 2 we recall some elementary
notions in symplectic geometry and Hamiltonian systems and give first examples. In
particular, we introduce the notion of complete integrability and symmetries briefly, as
they will be relevant later on.

We proceed in Chapter 3 with basic notions in numerical analysis and introduce
(partitioned) Runge—Kutta methods. In particular, we recall the implicit and explicit
midpoint rule as well as the Stérmer—Verlet scheme, which will be used in our nu-
merical simulations. Moreover, we recall the notion of symplectic integrators which is
essential to understand the implications of the main results of this thesis for numerical
computations.

Chapter 4 continues the review of concepts by recalling the scientific terminology
used when describing boundary value problems as well as by presenting some ideas of
solution strategies and discretisation schemes. In particular, we recall shooting meth-
ods, finite difference schemes, and Galerkin’s method. Moreover, we present numerical
continuation methods, which will be employed especially in Chapter 11 to compute
bifurcation diagrams.

We conclude the review with an introduction to some notions and concepts in
singularity theory and catastrophe theory in Chapter 5. We will give the reader an
idea of the mathematical meaning of the classification seen in Table 1.1 as well as
provide more illustrations of the elementary catastrophes. Moreover, we contrast the
classification of the bifurcation behaviour of critical points of a scalar-valued function
with the behaviour of roots of a function between spaces of the same dimension.

Throughout this work we will denote the end of a definition, example, observation,

or remark by A. The end of a proof is denoted by [J.



Chapter 2

Symplectic geometry and

Hamiltonian mechanics

The notions of symplecticity and Hamiltonian systems are of central importance for the
analysis done in this work. We will, therefore, review a selection of elementary notions in
symplectic geometry and Hamiltonian mechanics. References are Libermann and Marle,
1987; McDuff and Salamon, 2017. An introductory reference is Haro, 1998. Here, we
will simultaneously pursue a coordinate independent as well as a classical approach to
define required notions to obtain some flexibility in the presentation of arguments later.
Several alternative (equivalent) ways of introducing symplectic structures are presented
in V. I. Arnold, Khukhro, et al., 2007, Ch. 1.3. Some familiarity with basic notions in
differential geometry is assumed. For an introduction see, for instance, Warner, 1983.
We will remain in the setting of finite dimensional manifolds to avoid the technicalities
of infinite dimensional manifolds Kriegl and Michor, 1997. A development of the theory
of symplectic geometry and Hamiltonian systems on infinite dimensional linear spaces
can be found in Marsden and Ratiu, 1999b.

2.1 Preliminary definitions, examples, and observations

Definition 2.1.1 (Symplectic map on R?"). Let

o I,
J =

be a matrix in R?"*2" where I,, denotes an n-dimensional identity matrix. A dif-
feomorphism ¢: R?" — R?" is symplectic (with respect to the symplectic structure .J)
if

D' (2)JDg(z) = J

21
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for all z € R?", where D¢(2) denotes the Jacobian matrix of the map ¢ at z and D¢ ' (2)

its transpose. A
The notion can be generalised as follows to allow for a coordinate free treatment.

Definition 2.1.2 (symplectic manifold). A smooth manifold M equipped with a closed,

nondegenerate differential 2-form w is called a symplectic manifold. A

Definition 2.1.3 (symplectic map / symplectomorphism). A diffeomorphism ¢: M —
M’ between two symplectic manifolds (M,w) and (M’,w’) is called a symplectic map
or symplectomorphism if ¢*w' = w, where ¢* denotes the pullback of the map ¢. In

other words, for all m € M and all vectors v, w in the tangent space T,, M at m

) (A (0), Ao (1)) = i (v, ).

Here d¢,,(v) = ¢.(v) denotes the differential of ¢ at the point m evaluated at the
tangent vector v, i.e. the pushforward of v by ¢. A

The theory of Riemannian geometry, in which manifolds are equipped with a metric,
differs from the theory of symplectic geometry. One striking difference is that locally
all symplectic manifolds of the same dimension are symplectomorphic and a standard

form can be provided.

Theorem 2.1.1 (Theorem of Darboux). Let (M,w) be a symplectic manifold. For each
m € M there exists an open neighbourhood U C M around m and local coordinates

Pl Pnsq s ..., q" defined on U such that

n
w = dej Adg.
j=1

In other words, any two symplectic manifolds M, M’ are locally symplectomorphic, i.e.
around any two points p € M and p’ € M there exist open neighbourhoods U, U’ and a
symplectomorphism ¢: U — U’.

Remark 2.1.1. The coordinate system py,...,pn,q",...,q" are referred to as Darbouz-
coordinates. To prove the theorem, one can first prove a linear version, i.e. prove that
skew-symmetric, nondegenerate bilinear forms on R?" (linear symplectic forms) can,

after a linear coordinate transformation, be represented by the matrix

=(_OI é).

Darboux’s theorem can then be proved for manifolds using a Moser-type argument

connecting two given symplectic forms wy and w; on a sufficiently small neighbourhood
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by a smooth family w; of symplectic forms and constructing a smooth family ; of
diffeomorphisms such that ¢fw; = wp. A proof can be found in Libermann and Marle,
1987. A

Remark 2.1.2. From Darboux’s theorem it follows that the dimension of every sym-
plectic manifold M is even. Let us remark on a few global properties of symplectic
manifolds. Let dim(M) = 2n. It is easy to verify in Darboux coordinates that the n-th
exterior power w” is nondegenerate. Thus, w" is a volume form and M is orientable. It
follows that symplectic maps on M are orientation and volume preserving. However, if
n > 1 then the group of symplectic maps is smaller then the group of volume preserving
maps (see e.g. Gromov’s non-squeezing theorem (McDuff and Salamon, 2017, Ch.12)).
Orientable surfaces (n = 1) admit symplectic structures: we can use their volume forms
as symplectic structures. However, not every even dimensional, orientable manifold ad-
mits a symplectic structure: spheres of dimension 2n with n > 2 are counterexamples

as can be deduced from their algebraic topological structure.! A

Remark 2.1.3. In the setting of Darboux’s theorem the vector fields of the coordi-

: o) o) o) o) :
nate functions Bpri o Bpnt BT BT constitute a local frame for the tangent bundle

TM — M over M. We have

w<03>_ Lo g=1 w<35>_0 w<33>_0
opi” O 0, j#i oqi’ 0¢7 ’ dp;’ Op;

Thus, in the considered local frame the symplectic form w corresponds to the nonde-

generate, skew-symmetric bilinear form that is represented by the matrix

J:<o 1)7
1 0

where I denotes an identity matrix of size n x n. Moreover, the condition ¢*w = w for

a map on M to be symplectic translates to
D¢ JD¢ = J.

We have, thus, recovered Definition 2.1.1. A

Ezample 2.1.1 (Cotangent bundle). An important example of a symplectic manifold is
the cotangent bundle. Let us describe its canonical symplectic structure in detail. Con-

sider a smooth manifold X. The cotangent bundle 7: T* X — X admits a symplectic

LA 2n-dimensional sphere S2" with n > 2 is a compact manifold without boundary. Therefore, its
volume form p cannot have a primitive (by Stokes’s theorem) and the cohomology class [u] must be
nontrivial. However, the cohomology class [w"] = [wA ... Aw] = [w]U...U [w] for any 2-form w is
trivial because the second cohomology class of S?" is zero. Here U denotes the cup-product. Thus, w™
cannot be a volume form and w cannot be a symplectic form.
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structure which can be defined canonically? as follows: define the 1-form A on 7*X by
Aa(v) = a(dr|q(v)) forall « € T*X,v e T,T*X.

The 1-form A is called the Liouvillian-1-form. The symplectic structure on T*X is
given as w = d\. Indeed, the 2-form w is closed since d? = 0, as required. Let us give
a description of w in local coordinates to show non-degeneracy as well as for reference
later. For all @ € T*X we find local coordinates x,...,z, for X centred at m(«).

Define coordinates p1,...,pn,q',...,¢" on T*X by

o 9
¢ =x'om and p; as the linear extension of p;(y) = v (8’) for 1 <i<n.
x

For o« € T* X we calculate

0 0
Ao (w ) - (d“ (aqi

j=1 () \:q’j—'
" 0
= Z [0 b~y . 51']‘
j=1 < Oz’ (o)

= pi(a)

where ¢ is the Kronecker delta with ¢;; = 1 if ¢ = j and 0 otherwise. Similarly,

0 - 0 , 0
)\a - = (6% - d f]f] OT) |« e =0.
(apz a) j; <3x3 ﬂ(a)> L,_)/‘ <8pz a)
Therefore,
A—i<)\< 0 >dqi+A< 0 >dp‘> —zn:pdqi
i=1 oq' op' Z i=1 o
We obtain .
w:deZ-/\dqi (2.1.1)
i=1

2In a coordinate independent way



CHAPTER 2. SYMPLECTIC GEOMETRY & HAMILTONIAN MECHANICS 25

which is nondegenerate since w™ = w A ... Aw is a volume form. A

Different notions exist for submanifolds of symplectic manifolds to describe how
the symplectic structure degenerates when restricted to a submanifold. Of central
importance for this work is the notion of Lagrangian submanifolds, defined below, on
which w fully degenerates. A framework which we will develop to describe bifurcations
of solutions to certain boundary value problems will involve the intersection of such

manifolds in an ambient symplectic manifold.

Definition 2.1.4 (isotropic, Lagrangian, symplectic, coisotropic submanifold). Let
(M,w) be a symplectic manifold of dimension 2n. Consider an inclusion ¢: L < M of
a submanifold L into M. If t*w =0, i.e.

Vm € LYv,w € T, L : wy(v,w) =0,

then L is called isotropic. If L is isotropic and dim L = n then L is called Lagrangian.

If (L, *w) constitutes a symplectic manifold then L is called symplectic. If
Tl == {v e T,yM : w(v,w) =0 for all w € T}, L} C Ty, L

then L is called coisotropic. A

Remark 2.1.4. A Lagrangian submanifold L of a symplectic manifold M is maximally

isotropic as well as minimally coisotropic. A
The following calculus result is handy when working with cotangent bundles.

Proposition 2.1.2. Consider the cotangent bundle 7w: T*X — X over a smooth man-

ifold X with the canonical symplectic structure w = dX defined in Example 2.1.1. If
B: X = T*X is a 1-form on X then

B*\ = B.

Here B on the left hand side of the assertion is to be interpreted as a map B: X — T*X

and on the right hand side as a 1-form on X.
Proof. Let v € X and w € T; X. We have

B Az () = Ag(aw)) (dBlz(w)) = B(x)(d7|g() (dB]z(w)))
=B@)(d( TmoB )u(w))) = Bz(w).
——

=id: X—X
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Corollary 2.1.3. Since pullback and an application of the differential operator d com-
mute it follows that B(X) is a Lagrangian manifold of (T*X,d\) if and only if the

1-form B is closed.

Ezxample 2.1.2. Of importance to this project is the following relation of symplectic
maps with Lagrangian submanifolds: consider the symplectic manifold (M,w) with lo-
cal Darboux coordinates (p,q) = (p1, .-, Pn, ¢, - .,q") and (M, @) with local Darboux
coordinates (P,Q) = (P,...,P,,Q",...,Q"). Define the projections 7: M x M— M
and #: M x M — M. The manifold (M x M,w,) with wy = 7w — 7@ is a sym-
plectic manifold with local Darboux coordinates (p, @, q, P). Here, we do not differen-
tiate between a coordinate function ¢/, Dj, Q, P; and its pullback with the appropriate
projection to simplify notation. The graph L of a symplectic map ¢: M — M is a

Lagrangian submanifold of (M x M ,wx) because
(idas, 9)*(wx) = w — ¢*w = 0.

Conversely, the above calculation shows that a Lagrangian submanifold of M x M de-
fines a symplectic map wherever it can be written as a graph over M, i.e. parametrized

by the coordinates p, q. A

In the following chapter we will relate boundary value problems for symplectic
maps to the problem of finding critical points of a smooth function. To construct these

functions we will need the classical tool of generating functions.

Definition 2.1.5 (generating functions). We continue in the setting of Example 2.1.2.
However, we drop the requirement that L is the graph of a symplectic map. Consider

the following locally defined differential one-forms on (M x M , W ).

b1 =7 ¢'dp; — QP b= ¢’dp; + P;dQ’,
j=1 j=1
03 => —pjdg — Q/dP; 01 => —pjdg’ + PdQ’.
j=1 j=1
The one-forms fulfil df; = —wy such that each 6; is closed on Lagrangian submanifolds

L of M x M and therefore, by the Poincaré Lemma, admits a local primitive S; : L >R,
where L C L. The function S; is called a generating function of type j for L. 1f L is the
graph of a symplectic map ¢ then we also say generating function of type j for ¢. A

We can express the generating functions introduced in Definition 2.1.5 in local
coordinates: wherever (p, P) = (p1,...,Pn, P1,...,P,) constitutes a local coordinate

system on L we can express S; as a map in (p, P). We write S; = Si(p, P) and
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consider

n

051 851 ; ;

——dpj + -5dP; =dS; =0 Tdp; — Q7 dP;. 2.1.2
2 Op; Dj 8 P, 1 1= Zq p; — QdP; ( )
7=1 7=1

The differential 1-forms dp;, d¢?, dp;, d@7 constitute a local frame for the cotangent

bundle over M x M and provide at each point (m,m) a basis for T ) (M x M ).

Therefore, comparing coefficients in (2.1.2) we can conclude that L can be recovered

locally as

Ip; 0P op, "
On the other hand, a map Sy of (p, P) generates a Lagrangian submanifold via (2.1.3).

Analogously, if (p, Q) constitutes local coordinates on L then we can express Sy =

Sa(p, Q) and recover L locally as

N oS
2(p,Q), Pj = —=

{(p,q,PQ ‘q = O 20,

)}
If (g, P) constitutes local coordinates on L then we can express S3 = S3(¢, P) and

recover L locally as

353 i 853
P. —pi=——(q,P),—Q = P) ;.
{(p7Q7 7@)‘ p] 8(]] (Q7 )7 Q 8.P ( )}
If (¢,Q) constitutes local coordinates on L then we can express Sy = Sy4(q,Q) and

recover L locally as

05, 854
The collection of generating functions defined in Definition 2.1.5 is by no means
complete but there are other primitives 8 of —wyx inducing truly different generating
functions. An example is 0 = >"_, (p; — P)d¢? + (Q7 — ¢/)dP;.
Let us now recover the notions of classical Hamiltonian mechanics in the presented

setting.

Definition 2.1.6 (Hamiltonian system). A symplectic manifold (M, w) equipped with
a smooth map H: M — R is called a Hamiltonian system. A

Definition 2.1.7 (Hamiltonian vector field). Let (M,w, H) be a Hamiltonian system.
Since the 2-form w is nondegenerate, there exists a unique vector field Xz on M such
that

dH = —w(Xg,.).

The vector field Xy is called Hamiltonian vector field for (M,w, H). A
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In a frame induced by Darboux coordinates p',...,p", qi,...,¢, the Hamiltonian

vector field with respect to the system (M, w, H) is given as

Xy o300 ol

=7 =2 2.1.4
Op; 0¢7  Oq; OpJ ( )

j=1
and its flow lines v: I — M, where I C R is an open neighbourhood of 0, fulfil the first
order ordinary differential equation

o0 = Go0) and Gloy o)D) = 3 0(0)

for j € {1,...,n}. Abbreviating ¢’ oy with ¢/ and p; o~ with p; the differential equation

reads

. OH 0H
¢ =-—(p,q) and pj=—-——(p,q) forall je{l,...,n}, (2.1.5)

3pj aq]'
where ¢/ and p; denote time derivatives. Using the local coordinate z = (p,q) the
differential equation reads
t=J'VH(z), (2.1.6)

Definition 2.1.8 (Hamilton’s equations, motions and flow). If Xy is a Hamiltonian

vector field then the flow equation

Cot) = X (1)

as well as its expression in Darboux coordinates (2.1.5) or (2.1.6) are called Hamilton’s
equations. The flow lines of a Hamiltonian vector field Xy are called motions of the

system and the flow map for X is called a Hamiltonian flow. A

Hamilton’s equations are form invariant under symplectic changes of coordinates.
Moreover, only symplectic transformation leave Hamilton’s equations invariant for all
Hamiltonians. Indeed, this is the historical motivation to consider symplectic transfor-

mations. The statements are made precise in the following proposition.

Proposition 2.1.4 (symplectic change of coordinates). Let (M,w, H) be a Hamiltonian
system and let ¢ be a symplectic map. Define H = H o ¢~*. The Hamiltonian vector
fields X and Xp are ¢-related, i.e. for all z € M

Xi(0(2) = ¢«(X1(2)) = do|(Xu(2)).
Therefore, under a symplectic change of coordinates Hamilton’s equations %w(t) =

Xu(y(t)) translate to %&(t) = X7(3(t)), where ¥ = ¢ oy, i.e. Hamilton’s equations
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are left form invariant. Moreover, symplectic maps are exactly the diffeomorphisms

which leave Hamilton’s equations form invariant for all Hamiltonians.

Proof. Let Z = ¢(z). We have

~wz(Xg(2),) =d(H o ¢z = dH|. 0 d¢ ™|z = ~w.(Xp(2),d¢ ™" [5())
= —wz( “Ha(del (X (2))), doTz() = = (67 (w2)(del (X (2)), )

Notice that to each v € T, M there exists H such that Xp(z) = v. Now X;(Z) =
¢«(Xp(z)) for all Hamiltonians H and z € M if and and only if the last expression of
the calculation above coincides with —w,(d¢|.(X g (2)),-) for all H and z. That is true
if and only if (¢~1)*(wz) = w.. O

Remark 2.1.5. The proof of Proposition 2.1.4 can be done in local coordinates as fol-

lows.

D¢(2)2 = De(2)J 'V H(2) = Dé(2)J ' V(H 0 ¢)(¢7(2))

— Dé(z) JDE N b()VHE) Y JIV(Z).

N
|

J-1D¢(2)J

The equations () hold for all H and z if and only if ¢ is symplectic. This means Hamil-

ton’s equations are form invariant exactly under symplectic changes of coordinates. A

Ezxample 2.1.3. The movement of a particle of unit mass in a gravitational field V' : R" —
R can be described by Newton’s law of motion as & = —VV(z), where z(t) € R"
describes the position of the particle at time ¢. Setting ¢ = x and p = & the equations
of motion arise as Hamilton’s equations on R?" equipped with the standard symplectic

structure for the Hamiltonian

1
H(p,q) = 5(p,p) + V(a),
where (,) denotes the Euclidean scalar product in R". A

2.2 Conservation laws for Hamiltonian systems

Proposition 2.2.1. Let (M,w, H) be a Hamiltonian system. The Hamiltonian H is a
constant of motion, i.e. for any flow line v: I — R of the Hamiltonian vector field X g

we have H o~y = H.
Proof. For all 7 € I

d

3| H o) = dH|y)(7(7)) = —wy0) (Xu (v(7)), (7)) = —wy () (3(7),7(7)) = 0.

T
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Quantities that are constant along motions are also called integrals of motion.

Proposition 2.2.2. At each time T the Hamiltonian flow ¢, of a Hamiltonian system

(M,w, H) defines a symplectic map.?
Proof. Using the definition of the Lie-derivative and the properties of a flow map

d
dt

d

. d
brw = — at

dt

(6% 0 d)w = 7 (

gbfw) = ¢ Lx,w.
t=0

t=1 t=0

Using Cartan’s formula for the Lie derivative it follows that

Lx. w=1tx, dv +dix,w=0
H H H 9
~ ~——
=0 =—dH

where tx,, o denotes the contraction of a differential form a with the vector field Xg.

As ¢p = id we conclude ¢iw = w. O

Remark 2.2.1. Alternatively, Proposition 2.2.2 can be proved in local coordinates: ex-
pressing the flow ¢; and the Hamiltonian H in local Darboux coordinates z = (p, q) we

obtain q
o) = TV H((2))

Differentiation w.r.t. z yields

%ngt(z) = J ' Hess(H)(¢4(2))Depy(2),

where D¢y(z) denotes the Jacobi-matrix of the flow map ¢; at z and Hess(H)(¢:(2))
the Hessian matrix of H at ¢;(z). We have

%(D@(Z)TJD@(Z)) = (J™'Hess(H)(¢¢(2))Dr(2)) " JDy(2)
+ D¢t(2)TJ_{;iHeSS(H)(@(Z))D@(Z)
=Id

= Dey(2) "Hess(H)(¢4(2)) J_TJ Do (=)
=—Id

+ Dey(2) " Hess(H)(¢4(2))Debi(2)
=0

3If the vector field X is not complete, this statement holds locally.
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Let I be the identity matrix of dimension dim(M). Together with
Deo(z) " JDpo(2) = IJI = J

the above calculation shows that the flow map is symplectic. A

Remark 2.2.2. The symplecticity of Hamiltonian flows corresponds to the conserva-
tion of a certain quadratic quantity. In the setting of Remark 2.2.1, solutions to the

augmented system

t=J'VH(2)
01 = J 'Hess H(2)v (2.2.1)
vy = J 'Hess H(2)vs.

with initial data (z(0),v1(0),v2(0)) are given as

2(t) = ¢(2(0)),  vi(t) = Dr(2(0))v1(0),  w2(t) = Dy (2(0))v2(0).

As can be deduced from the calculation in Remark 2.2.1, symplecticity of the flow

map of 2 = J 'V H(z) is equivalent to the conservation of the quadratic quantity
Q(z,v1,v2) = v] Juy

by the flow of the augmented system (2.2.1). A

Definition 2.2.1 (Poisson bracket). For two smooth functions f,g: M — R on a
symplectic manifold (M,w) we define the Poisson bracket {f,g}: M — R of f and g
by

{f, 9} =w(Xy, Xg)

where X and X, denote Hamiltonian vector fields with respect to f and g. A

In the following, the evaluation of a vector field X at the (germ of a locally defined)
function f is denoted by X (f). This corresponds to the Lie derivative of f along the
vector field X, i.e. Lx(f). The following properties of the Poisson bracket can be

computed directly from the definition.

Lemma 2.2.3. We have

{fi9} = w(Xy, Xg) = —df(Xy) = —X4(f).

Lemma 2.2.4. We have
[Xfan] = X{f,g}'
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Proof. Let Y be a vector field.

—w(Xipgp Y) = d{f,g}(Y)
= (dw(X7, Xy))(Y)
= —(dLXfLng)(Y) — (LXf d(ex,w))(Y)
— (dowx; 4+ tx; 0d)(ex,w) (V)
(Cartan’s formula) = —Lx, (Lng) (Y)

(Lie derivative of 1-form) = —Lx, ((tx,w)(Y)) + (tx,w)(Lx,(Y))
= _[’Xf ( (ng Y)) + w(ng EXf (Y))
(Leibniz rule to first term) = — Lx, (w)(Xy,Y) —w(Lx,(Xy),Y)
=0
_w([Xfa Xg]? Y)
The claim follows by the nondegeneracy of w. O

Lemma 2.2.5. The Poisson bracket fulfils the Jacobi-identity,

{f {9, h}} +{g,{n. 1}} +{h{f,9}} = 0.

Proposition 2.2.6. The Poisson bracket is skew-symmetric and bilinear over R and
fulfils the Jacobi identity. Therefore, the Poisson bracket is a Lie bracket on the space
C>°(M) of smooth functions M — R. Moreover, since [Xy, Xg| = Xys 4 the map
f — Xy defines a Lie-algebra homomorphism (C*>(M),{-,-}) = (I'(T'M),[.,.]). Here
[(TM) denotes the vector fields on M (sections of the tangent bundle) and [-,-] the

commutator of vector fields.

Remark 2.2.3. Using (2.1.4) we can express the Poisson bracket locally in Darboux

coordinates as

dg 0f 0g Of
(9= Z%a?f@a*qf

A

Remark 2.2.4. Sign conventions for w, Xy or {-,-} as well as the ordering of the coor-
dinates p ,q or ¢, p are not consistent in the literature (Hall, 2013; Bates and Weinstein,
1997; Golubitsky, I. Stewart, and Marsden, 1987; Brugnano, lavernaro, and Trigiante,
2012; Libermann and Marle, 1987). Notice that in other sign conventions f — X can

be an anti-homomorphism in contrast to Proposition 2.2.6. A
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Proposition 2.2.7. Let (M,w,H) be a Hamiltonian system with Hamiltonian vector
field Xg and flow map ¢¢. Let f: M — R be a smooth function. The function f is an
integral of motion if and only if {H, f} =0

Proof. We have 1
af‘“ﬁt = (df o) (Xmodt) ={H, f}o .
O

Definition 2.2.2 (Poisson commuting). Functions f,g with {f,g} = 0 are said to

Poisson commute. A

Later in this work we will investigate boundary value problems in Hamiltonian
systems. For these problems not only symplectic structure will play a role: sometimes
a Hamiltonian system has more integrals of motion than the Hamiltonian which can
have an effect on how solutions to boundary value problems behave as parameters are
varied. Let us introduce the notion of complete integrability. These are systems which

have a maximal set of Poisson commuting integrals.

Definition 2.2.3 (Completely (Liouville) integrable system). Let (M, w, H) be a Hamil-
tonian system with dim M = 2n. If there exist n pairwise Poisson commuting integrals
of motion fi,..., f, such that the differentials dfy,...,df, are linearly independent
on a dense open subset My of M then (M,w, H) is a completely (Liouville) integrable
system. A

Ezample 2.2.1. Any Hamiltonian system with n = 1 is a completely integrable system if
the complement of {x € M : dH, = 0} is open and dense since the Hamiltonian itself is
a conserved quantity. Moreover, sums of completely integrable systems are completely
integrable: consider two completely integrable systems (M, w, H), (M’,w’, H') and the
projections w: M x M' — M and ©': M x M" — M’. Then the system (M x M’ m*w +
7*w',H om+ H' o ') is completely integrable. A

A motion in a completely integrable system will remain in a common level set of
fi,--+, fn. Moreover, a motion is either entirely contained in My or in its complement
M\ Mp.* The non-empty level sets of |y, = (f1,---, fn)|lry: Mo — R are Lagrangian
submanifolds of My of dimension n. These are invariant under the flow of X ,..., Xy,
and form integral submanifolds of the (integrable) foliation spanned by the vector fields
Xp ..., Xy, on My. The flow of Xy is a linear combination of Xy ,..., Xy, with co-
efficients that are constant on each level set. Let N denote a connected component
of a non-empty level set of f|y, and assume that Xy |n,..., Xy, |~ are complete vec-

tor fields. We are now prepared to make assertions about global properties of the

4One can verify that non-degeneracy of dfi A ... A df, is preserved along motions.
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Hamiltonian system. Indeed, the following theorem says that in the compact case
N is isomorphic to a torus or otherwise isomorphic to the cross product of a torus
with a suitable Euclidean space. Moreover, motions on N are affine linear in suitable

coordinates.

Theorem 2.2.8 (angle-coordinates). In the setting described above, there exists an
integer 0 < k < n and a diffeomorphism V: R¥/7ZF x R"=% 5 N. The universal
covering R™ — RF /ZF x R"™* =: T induces coordinates on T. Composing the coordinate
functions with W= we obtain global coordinates x',... 2™ on N. The diffeomorphism
U can be chosen such that the Hamiltonian flow ¢; on N is an affine linear map

¢i(x) = x + tv for a fized v € R™.

The diffeomorphism is constructed using the linear action of R” on N induced by

the commuting Hamiltonian flows ¢~/1, ..., ¢Xfn:

((t1s- o), ) > (G0 0. 0 6™ (y)

The space T is constructed by quotienting out the isotropy group of the above action
with respect to some point on N. Moreover, using the constants of motions fi,..., f,
we can extend the coordinate system x!,....z" of N to a coordinate system of a

neighbourhood of N as made more precise by the following

Theorem 2.2.9 (action-angle-coordinates). Assume that N is compact. There exists
an open neighbourhood U C My of N such that fly: U — f(U) is a trivial fibre bundle
with a symplectic trivialisation ¢: U — (R™/Z™) x f(U). The symplectic structure on
(R"/Z™) x f(U) € R?™ is induced by the standard symplectic structure on R?".

Remark 2.2.5. The coordinates in the above theorems are called action-angle coordi-
nates and the level sets f \El(a) are called Liouville tori. The coordinates x!,... 2"
can be interpreted as angle-coordinates. The term action refers to the values of the
constants of motion f1, ..., f,. For proofs of the above theorems see, e.g., V. I. Arnold,

1989. A
Ezample 2.2.2. Consider the Hamiltonian H (p, ¢) = H(q) on (R?", w) with the standard

symplectic structure. Hamilton’s equations in the notation of (2.1.5) read

The coordinate functions ¢, . . ., g, are n functionally independent, Poisson commuting

constants of motion, i.e. dqy, ..., dg, are linearly independent at each point in R?>". The
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motion to the initial value (qo, pp) is described by the linear map

b (P0) 4y —VH(q) A
qo 0 .

Ezample 2.2.3. Consider the frictionless mathematical pendulum (mass m = 1, massless
incompressible rod of length 1, gravitational acceleration g = 1) whose deflection angle
q is described by the differential equation G + sin(q) = 0. A first order formulation is

given by Hamilton’s equations for the Hamiltonian system

1

H(p,q) = 5p* = cos(q) (2.2.2)

on the symplectic manifold M := R x R/(27Z) where the symplectic structure and
the coordinates p, ¢ are induced by the standard structures on the covering manifold
R2. Define My := (R x R/(27Z)) \ {(0,0), (0,7)}. The system is completely integrable
since the Hamiltonian H is a constant of motion, dH # 0 for (p,q) € My and X is
a complete vector field. A phase portrait, i.e. a plot of level sets of H, is displayed
in Figure 2.1. The points (0,0), (0,7) are equilibria since dH |y g, vanishes. The
invariant set H~!(1) is the union of two homoclinic orbits joining the saddle equilibrium
(0, 7) with itself. However, the motions on H~1(1)\ {(0,7)} do not reach (0, ) in finite
time.

Moreover, H~'(1) separates the phase space M into three connected components
corresponding to three different ways the pendulum can behave: the level sets lying
in the compact component which contains the point (p,q) = (0,0) correspond to os-
cillations of the pendulum back and forth or calmly hanging down at (p,q) = (0,0).
The orbits in the component containing (p, ¢) = (p,0) with p > v/2 and the component
containing (p,q) = (p,0) with p < —+/2 correspond to a rotation of the pendulum.
The movements on the separatrix described by the mathematical model are of a rather
theoretical nature: at the saddle equilibrium (0, 7) the mathematical pendulum stands
on its rod and a movement starting on any other points of the separatrix approaches

the state (0, 7) while becoming arbitrarily slow. A

In general, the motions in completely integrable systems cannot leave their Liouville
tori and are called quasi-periodic motions. In case of compact Liouville tori the motions
are periodic if and only if there exists a nontrivial Z-linear combination of vy, ..., v, to
zero, where v comes from the angle-coordinate-theorem Theorem 2.2.9. The angles v
can be thought of as belonging to the Liouville torus since each motion x + tv running
on the torus has the same v. The case where v1, ..., v, are not Z-linearly dependent is
called the non-resonant case.

It is of interest what happens to the Liouville tori if the Hamiltonian system is
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Figure 2.1: Level sets of the Hamiltonian H(p, q) = %pQ — cos(q) for the mathematical
pendulum

perturbed slightly such that complete integrability is destroyed. This question is an-
swered by perturbation theory for integrable systems or KA M-theory, where KAM stands
for Kolmogorov, Arnold and Moser. An introduction can be found in V. I. Arnold,
Khukhro, et al., 2007. Roughly speaking, under non-degeneracy conditions most non-
resonant tori deform and persist for sufficiently small perturbations but get destroyed
when the perturbation becomes too large. Destroyed tori are being replaced by a set
in the phase space where motion (in many cases) becomes chaotic. How much pertur-
bation a torus can resist depends on how irrational the frequency vector v is. A typical
condition that allows statements about persistence is the Diophantine condition: there
exist a, 8 > 0 such that

1> kvl > Bkl (2.2.3)
7j=1

for all k € Z¥\ {0} (V. 1. Arnold, Khukhro, et al., 2007, Ch.6).

Ezample 2.2.4. Returning to the mathematical pendulum from Example 2.2.3, we in-

troduce a small time periodic forcing term in the vertical direction
G = —sin(q) — esin(t) (2.2.4)
with ¢ € R. It has the time dependent Hamiltonian

~ 1
H(t,p,q) = 5])2 — cos(q) + esin(t)q. (2.2.5)

To obtain an autonomous, i.e. a time-independent Hamiltonian H, we interpret t as a

second component of the g-variable and introduce its conjugate momentum as a second
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component of the p-variable. We obtain

H:R3xR/27Z — R
(2.2.6)

1 .
(p,q) = (1,02, q1, q2) 520? + p2 — cos(q1) + esin(g2)q1.

Notice that we have lifted the variable ¢;, which corresponds to ¢ in (2.2.4) and (2.2.5),
from R/277Z to R. On the contrary, we consider go, which corresponds to the time
variable ¢t in (2.2.4) and (2.2.5), as a variable on R/27Z rather than on R, where the
time variable was originally defined. This setting takes into account that the forcing is
2m-periodic and will turn out to be convenient in the analysis.

Hamilton’s equations are

@ =p1

G2 =1

p1 = —sin(q1) — esin(gz)
P2 = —€cos(q2)q1-

Now we can analyse the four-dimensional phase portrait. If ¢ = 0 then we obtain
a completely integrable Hamiltonian system with integrals H and p2. The invariant
manifolds coincide with the Cartesian product of (periodic continuations of) the invari-
ant manifolds of the free mathematical pendulum with the gs-circle R/27Z. However,
increasing €, the regular movements get more and more destroyed. Since ¢o = 1 every
orbit is transversal to the (Poincaré-) section ga = 0 and returns to the section every
27 time units. To obtain an illustration of the phase space movement, we plot the
intersection points of a motion with the section go = 0 for 10000 periods of the forcing
term. This corresponds to the image of 10000 iterates of a so called Poincaré map. A
projection of the image to the q1, pi-plane is displayed in Figure 2.2. The figure shows
several orbits, i.e. iterates for various initialisations. The solid lines show the phase plot
of the unperturbed system, for orientation. One can see that orbits near the separatrix
of the unperturbed system have dissolved. Other periodic orbits have broken up into
periodic islands surrounded by chaotic regions.

The plot in Figure 2.2 was obtained numerically. Hamilton’s equation were solved
using the symplectic Stdrmer—Verlet scheme which will be introduced in Example 3.3.2.
Indeed, symplectic methods capture important qualitative features of Hamiltonian sys-

tems as will be made more precise in Section 3.5. A
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Figure 2.2: Subset of the phase portrait of the perturbed system H (t,q,p) = %p2 —
cos(q) +esin(t)g with € = 0.02. The underlying dynamics have been calculated for 1000
periods of the forcing term using the Stérmer—Verlet scheme (Example 3.3.2) with 30
steps per period. The plot shows every 30th calculated point. For orientation, the thin
black solid lines show the phase plot of the unperturbed system.

2.3 Symplectic symmetries

Symmetries are an important concept in Hamiltonian dynamics as they help to un-
derstand the motion of the system and allow for reductions to smaller dimensional
systems. Let us briefly introduce the notions required in the following chapters. For a

more extensive study consult, for instance, Marsden, Misiolek, et al., 2007.

2.3.1 Continuous symmetries

A Lie group G is a smooth manifold which has the structure of a group. Consider a

Lie group action of G on a smooth manifold M, i.e. a group homomorphism
o: G~ Diff (M), g+~ (m— g.m)

such that the map
GxMw— M, (g,m)—gm

is smooth. Here Diff (M) denotes the group of diffeomorphisms on M. If (M,w) is a
symplectic manifold and o(G) C Diff(M) is a subgroup of the symplectomorphisms on
M then the group action is called symplectic.

Notice that symplectic group actions o: G +— Sp(M) leave the symplectic form
w of M invariant. Thus, if a Hamiltonian H of a Hamiltonian system (M,w,H) is
invariant under all symplectomorphisms o(g) for g € G then the equations of motions
are invariant such that motions are mapped to motions under o(g) for every g € G.

We refer to symplectic group actions leaving H invariant as continuous symmetries of
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the Hamiltonian system.

Under mild assumptions on the group action there is a deep relation between con-
served quantities and continuous symmetries of Hamiltonian systems, explained by the
famous Noether theorem: in the abelian case, to a k-dimensional symplectic group
action one can construct a k-dimensional conserved integral of motion. (Under non-
degeneracy conditions the integrals are independent.) See Hairer, Lubich, and Wanner,
2013, Ch. VI for details. On the other hand, the ideas presented in the paragraph pre-
ceding the angle-coordinates theorem (Theorem 2.2.8) can be made precise and it can

be shown that flow maps of conserved quantities give rise to symplectic group actions.

2.3.2 Time reversal symmetry

Let us introduce a non-continuous symmetry, which frequently appears in Hamiltonian
systems: the time reversal symmetry. For this, we need the concept of related vector

fields which has already been mentioned in Proposition 2.1.4.

Definition 2.3.1 (related vector fields). Let M and N be smooth manifolds and
p: M — N a smooth map. Two vector fields X € I'(T'M), Y € I'(TM) are called

p-related if
p«X = p'Y,

where p, X denotes the push-forward of X and p*Y the pull-back of Y. In other words
dpoX =Y op. A

Ezxample 2.3.1. Recall from Proposition 2.1.4 that the Hamiltonian vector fields Xy
and Xpo4-1 are ¢-related if ¢ is symplectic. A

Definition 2.3.2 (reversible vector field). Let M be a smooth manifold and p: M — M
be a diffeomorphism with p? = —id. A vector field X € I'(T'M) is called p-reversible if
and only if X is p-related to —X. A

Proposition 2.3.1. Let ¢; denote the flow map of a p-reversible vector field X €
[(TM) on a smooth manifold M at time t. Then

pogr=¢_top.

Proof. The claimed equality holds for t = 0 and differentiating p o ¢; as well as ¢_; o p
with respect to t shows that both maps are flow maps of —X. Therefore the claim

follows by the uniqueness property of flow maps. O

Definition 2.3.3 (time-reversal Hamiltonian system). A Hamiltonian system with a

p-reversible Hamiltonian vector field is called a time-reversal Hamiltonian system. /A
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In time-reversal Hamiltonian systems the motions remain invariant if one applies p

to the phase space and inverts time.

Example 2.3.2. The Hamiltonian system (R?",w, H) for the standard symplectic struc-

ture with mechanical Hamiltonian

H(p,q) = %(p,m - V(g

is a time-reversal Hamiltonian system. The map p is given as p(p,q) = (—p,q). The
motions of H remain invariant if time as well as all momenta p are reversed. The
unperturbed pendulum is a concrete example of a mechanical Hamiltonian system (see
Figure 2.1). A



Chapter 3

Numerical integration and

structure preserving methods

Let us follow Hairer, Lubich, and Wanner, 2013 to define and characterize numerical
schemes to solve ordinary differential equations (ODEs) that take into account geomet-
ric structures and conserved quantities of the flow. For a general introduction to ODE

theory and numerical approaches we refer to Atkinson, Han, and D. E. Stewart, 2011.

3.1 Basic notions of numerical methods

Consider the following non-autonomous system of first order ordinary differential equa-

tions

y=rfty) (3.1.1)

where f is defined near a point (tp,yp) € R x R™.

Definition 3.1.1 (one-step method). A numerical-one-step method assigns a map
Oy yo — y1 to a sufficiently regular ODE (3.1.1), a start-time ¢y and all sufficiently
small parameters h > 0. The map ® is called a one-step map. A

T

If defined, we say that the sequence {yj;1 = @h(yj)}évzl with h = % approrimates
a solution of the initial value problem (3.1.1) with y(¢9) = yo on the interval [to, to + 7]
at the time steps {to + Jj h};i1 (regardless of how good the approximation is).

So called multi-step methods are implicitly defined by relating all elements (but a
finite number of start values) of an approximating sequence with a finite number of
previous elements. Formally, these methods are equivalent to one-step methods acting

on higher dimensional spaces.

Definition 3.1.2 (order of a method). A method is of order p if p € N is the largest

41
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integer such that for all n € N and all analytic f: R x R — R" in (3.1.1)
y1 —y(to +h) = O(RP™Y) as h — 0. (3.1.2)

Here y denotes the solution to the initial value problem (3.1.1) with y(to) = yo. The

above term is called local error. If p > 0 then the method is called consistent. A

Remark 3.1.1. To define the order of a method with respect to the class of analytic
functions f is convenient because by the Cauchy—Kowalevski theorem (see, for instance,
Teschl, 2012, §4) solutions are unique and analytic such that (3.1.2) is defined. It is
interesting to note that defining the order of a method only for the class of scalar
f: R — R leads to a different order theory, not just for exotic methods but even
for classical classes of integrators like Runge—Kutta methods (see definition below), as
remarked in Butcher, 2009. A

Remark 3.1.2. By definition, the order of convergence of a numerical method is defined
asymptotically as h — 0 and does not per se contain information on how the method
behaves for large or moderate time-steps. Depending on the conditioning of the ODE,

one might be forced to choose the step-size h very small to enjoy convergence properties.

A

Remark 3.1.3 (adaptive methods). An ODE can be differently conditioned in different
parts of the phase space. While in some parts small step-sizes are required to keep
the accuracy of the method within a certain tolerance, in other parts choosing larger
steps can be admissible and boost efficiency. It can, therefore, be advantageous to
vary the step-size h during the integration process dynamically. Such methods are
called adaptive and can be significantly more efficient (Ilie, Séderlind, and Corless,
2008). Adapting the time steps dynamically can be interpreted as solving a modified
system with a non-adaptive method (Hairer, Lubich, and Wanner, 2013, Ch. VIIL.2).
However, in general the modified system will not inherit geometric structures from
the initial problem. For some approaches to introduce adaptive time-stepping while
preserving a Hamiltonian structure of a system see Hairer, Lubich, and Wanner, 2013,
Ch. VIII. A

3.2 Runge-Kutta methods

An important class of one-step-methods are Runge—Kutta methods. Consider the fol-

lowing scheme of real numbers, called Butcher tableau,

c| A

T (3.2.1)
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where A € R%*® is a real matrix and b, ¢ € R® are real column vectors.

Definition 3.2.1 (Runge Kutta method). Let ¢; in (3.2.1) correspond to the i*! row
sum of A, i.e. ¢; = ijl a;; for © = 1,...,s. The s-stage Runge-Kutta method corre-
sponding to the Butcher tableau (3.2.1) and to the step-size h is a numerical one-step

method. Applied to the ODE (3.1.1) it is defined as the map yo — P (v0) = y1, where

S S
yi=yo+h> bk withki=f|to+chy+h> ajk; |, i=1,..s.
i=1 j=1

(3.2.2)

The values k; are called stages. A

Remark 3.2.1. If the matrix A is a lower triangular matrix then (3.2.2) provides explicit
formulas for @5 (yo). In that case the method is called explicit. Otherwise the method
is called implicit and the calculation of y; in (3.2.2) requires the solution of a system
of equations. Therefore, the above scheme (3.2.2) will not induce a well defined map
yo — yp for all Butcher tableaux, step-sizes h and general ODEs (3.1.1). We will
consider only those Runge-Kutta methods, which induce a well defined map at least
for the class of linear, invertible functions f: y — f(y) in (3.1.1). Given such a method,
the existence and locally uniqueness of the map yg + y1 for more general regular ODEs

can be obtained by the implicit function theorem for sufficiently small parameters h. A

Remark 3.2.2 (B-series). Computing the formal Taylor series of the local error y; —
y(yo + h) around h = 0 for a general Runge-Kutta method applied to (3.1.1) with
y(to) = yo one can find conditions on the components A = (ai;),b = (b;),c = (¢;) of
the Butcher tableaux for the method to be of order p. For p < 3 these are given by

Zf:l bi=1
Soiabi=1, > bici= %
Y bi=1, > bici= %7 Soiy bic} = %7 bT Ac = %

for order 1, 2 and 3 respectively (see Hairer, Lubich, and Wanner, 2013, p. 25). However,
to construct Runge—Kutta methods of high order it is necessary to allow a quickly
growing number of stages s to make sure that the equations representing the order
conditions are solvable. If one limits the number of stages s and /or requires the method
to be explicit, then limits for the order p, so called order barriers, can be derived
(Butcher, 2009). To compute series expansions of solutions y(t9 + h) to (3.1.1) and of
Runge-Kutta methods applied to (3.1.1) in the step-size h (so called B-series) in order
to obtain order conditions for higher order Runge-Kutta methods, it is convenient to

use a clever notation making use of rooted trees. J.C. Butcher obtained a formal power
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series expansion of Runge-Kutta methods and could write down a general expression for
order conditions. See Butcher, 2010 for a review. An introduction to B-series and trees
including some historical remarks can be found in McLachlan, Modin, Munthe-Kaas,
et al., 2017 as well as in Hairer, Lubich, and Wanner, 2013, Ch. III. A

Below we present the scheme as well as the Butcher tableau of some Runge-Kutta
methods of low order from Hairer, Lubich, and Wanner, 2013, Ch. II1.1.1.

3.2.1 Order p=1.

e Explicit Euler method.
y1 = yo + hf(to, yo),

e Implicit Euler method.

Y1 = Yo + hf<t0 + hvyl)a

3.2.2 Order p =2.

e [mplicit trapezoidal rule.

Y1 = yo + g(f(tmyo) + f(to + h,y1)),

o Implicit midpoint rule.

1 +
y1="yo+hf to-l-*h,u ;
2 2
e Heun’s method.
1 0] O 0
y1 = o+ 51 (f (o, yo) + f(to + R yo + 1 (to, 10))), 101 0

1/2 1/2
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e Explicit midpoint method.

0 0 O

1 1
yi =y +hf (to + ih,yo + th(to,y0)> ; 1/211/2 0
0 1

3.2.3 Order p =4.

Examples of a Runge-Kutta methods of order 4 are the methods RK/ given by the
Butcher tableau

0
1/2 | 1/2
121 0 1/2

110 o0 1
1/6 1/3 1/3 1/6

and the 3/8-rule

0
1/3| 1/3
2/3| -1/3 1
1] 1 -1 1
1/8 3/8 3/8 1/8.

Notice that both methods are explicit such that the one-step maps are cheap to

evaluate numerically.

3.3 Partitioned methods

In the following we concentrate on autonomous first order differential equations. Recall
that any time-dependent system (3.1.1) can be replaced by an autonomous system by
adding the differential equation { = 1 to the set of ODEs and the initial condition
t(0) = to if an initial value problem is considered. See the perturbed mathematical
pendulum (Example 2.2.4), for instance.

It can be useful to treat different variables in initial value problems with different

numerical methods. Consider the following differential equations in partitioned form

y:f(yaz)a ,é:g(y,z). (3'3'1)

In (3.3.1) the vector valued functions y and z are allowed to be of different dimension.
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Definition 3.3.1 (partitioned Runge-Kutta method). Consider the two tableaux

>

C‘A ¢
o

SN
—

each corresponding to s-stage Runge—Kutta methods. A partitioned Runge—Kutta
method for (3.3.1) is given by (yo, 20) — (y1, 21) where

y1:yo+h2biki, ZIZZO“‘hZBiZi
=1 =1

s s s s
ki=1f y0+h2aijkj,zo+h2dijlj , li=g y0+h2aijkj,zo+h2&ijlj
Jj=1 j=1 j=1 j=1

A

Ezample 3.3.1 (Symplectic Euler method). The symplectic! Euler method or semi-
implicit Fuler method is represented by the Butcher tableaux

This corresponds to the scheme

y1 =vyo + hf(y1,20)

(3.3.2)
z1 = 2o + hg(y1, 20)-

Here the y-variable is treated with the implicit Euler scheme while the z-variable is
treated with the explicit Euler method. A

Ezample 3.3.2 (Stormer—Verlet scheme). Another example is the second order accurate
Stormer—Verlet scheme, which we will frequently employ in our numerical simulations.

It is given by the Butcher tableaux

ol 0 o 1/2]1/2 0
1172 1/2 1/2]1/2 0
[1/2 1/2 [1/2 1/2

Notice that the above scheme becomes explicit if f does not depend on y and g does

The name will be explained in the following.
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not depend on z. In that case we obtain

1
y1=yo +hf <Zo + th(yo)>

2= 20+ 5h (gu0) + 9(un)

The term z0+%hg(y0) can be interpreted as a first order approximation of 2/, using the
explicit Euler method. For reference, we give the formulas of the 2nd order symplectic
Stormer—Verlet numerical integration scheme for Hamilton’s equations (2.1.5). The

method reads

h
Pnt1/2 = DPn — §qu(pn+1/23 qn)
h
Int1 = qn + §(VPH(pn+1/27 an) + VpH (Pps1/2: Gnr1))
h
Pr+1 = Pnt1/2 — §qu(pn+1/2a Qn+1)-

The scheme is explicit if the coordinate expression of the Hamiltonian function H

separates the variables ¢ and p, i.e. if H is of the form

H(p,q) = K(p) +V(q).

This is the case for mechanical Hamiltonians, for instance. If H separates ¢ and p then
the Stormer—Verlet integration scheme is commonly referred to as Leapfrog method
(Hairer, Lubich, and Wanner, 2013, p. 1.3.1).

A

3.4 Adjoint and symmetric methods

Definition 3.4.1 (adjoint method and symmetric method). If ®; is a numerical one
step method, then ®; := @:}L is called the adjoint method to ®j. If &7 = @}, then the

method is called symmetric. A
Ezrample 3.4.1. The implicit Euler method is the adjoint method to the explicit Fuler
method. The trapezoidal rule and the midpoint rule are symmetric. A

Remark 3.4.1. The flow map ¢, at time 7 of a vector field fulfils - = ¢_,. Symmetric

numerical methods preserve a discrete version of this property. A
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3.5 Symplectic integrators

Hamiltonian flows are symplectic (see Chapter 2). Let us introduce numerical methods

which preserve this property.

3.5.1 Definitions and examples

Definition 3.5.1 (symplectic numerical method). A numerical (one-step) method as-
signs to Hamilton’s equations for a Hamiltonian system locally defined one-step maps
®;,. If for all smooth Hamiltonians H there exists hg > 0 such that for all 0 < h < hg

the map @y, is symplectic then the numerical method is called symplectic. A

Remark 3.5.1. Often the restriction to positive h in Definition 3.5.1 can be lifted and
the condition 0 < h < hg be replaced by |h| < ho. Using the latter condition in the
definition of a symplectic method, a method is symplectic if and only if its adjoint

method is symplectic. A

Ezxample 3.5.1. The symplectic Euler method applied to a Hamiltonian system in the
standard form (2.1.5) reads

q1 = qo + hVpH (po, q1)
p1=po — hV4H (po,q1).

The adjoint scheme is given by

q1 = qo + hVpH(p1,qo)
p1=po —hV¢H (p1,qo).

In the formula above the indices are used as in (3.3.2) and do not denote vector com-
ponents. It can be calculated that the Jacobian matrix of the map ®5: (po,qo) —
(p1,q1)" is symplectic (Hairer, Lubich, and Wanner, 2013, Thm. 3.3) for / in a small
neighbourhood of 0. It follows that the symplectic Euler method and its adjoint method

are symplectic numerical methods. A

Ezample 3.5.2. Applied to the first order formulation ¢ = p, p = —VV/(q) of the second
order problem # = —VV () the Stormer—Verlet scheme coincides with @}, 50®} /2 where
®},/2 is the symplectic Euler scheme. Thus, the Stormer—Verlet scheme is symplectic on
this problem class. It is also symplectic—but implicit—on general Hamiltonian systems.
See Hairer, Lubich, and Wanner, 2003, pp. 412-414 for four different proofs. A
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3.6 Further approaches and variational integrators

If a symplectic method is implicit, the equations that occur need to be solved up to
round-off error to preserve symplecticity. See Tan, 2005 for an analysis of symplectic
Runge-Kutta methods (which are all implicit) combined with fixed point iterations or
Newton iterations. In Geiser, Liiskow, and Schneider, 2015 an approach is presented
to efficiently tackle non-separable Hamiltonian systems. A class of semi-implicit inte-
grators is introduced which are symplectic only on separable Hamiltonian systems but
still perform well on non-separable Hamiltonian systems.

There is a variety of approaches to construct and analyse symplectic integrators.
Conditions on the coefficients of general Runge-Kutta methods and partitioned Runge—
Kutta methods can be derived (Hairer, Lubich, and Wanner, 2013, Ch. VI.4). More-
over, the composition of symplectic methods leads to new symplectic methods. For a
construction of symplectic method bases on the Hamilton—Jacobi equation see Hairer,
Lubich, and Wanner, 2013, Ch. VL.5.

Another approach is to discretise Hamilton’s principle. In the continuous formula-
tion the principle states that a motion (¢(¢),4(t)) of a Hamiltonian system is a critical

point of the action integral

t1
Sta)= [ L)
to
among all curves ¢ with ¢(tg) = qo and ¢(t1) = ¢1 for given qp and ¢;. Here, L is called
the Lagrangian of the problem. Using an approximation of the integral Ly (gn, gn+1) =
f;"“ L(q(t),q(t))dt as a generating function leads to a symplectic map (g¢n,pn) —
(Gn+1,Pn+1) which can be used as a one-step map. See Hairer, Lubich, and Wanner,

2013, Ch. VI.6 and references therein for an analysis and examples.

3.7 Preservation of Hamiltonian structure — energy con-

servation

While symplectic integrators preserve the symplectic structure of a Hamiltonian system
exactly, the numerical flow does not leave the Hamiltonian invariant. However, as will
be made precise in the following, there exists a modified Hamiltonian which is preserved
exponentially well on exponentially long time intervals. The numerical flow looks like
the exact flow of a slightly perturbed Hamiltonian system and the numerical solution

appears to have the correct structural properties.

Theorem 3.7.1. Consider a Hamiltonian system with analytic Hamiltonian H: D —
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R with D C R?™. Apply a symplectic integrator ®;, of order p with step-size h to Hamil-
ton’s equations. Consider a numerical solution yo,y1, ... that remains in a compact set

K C D. Expanding ®,(y) in h we obtain
Ou(y) = y+hJ'VH(y) + h*da(y) + hPds(y) + . ...

Assume that all d; are analytic and do not grow too fast in j, i.e. there exists M € R
such that ||d;(y)|| < M7 for all y € K. Then there exists a formal power series

H(y) = H(y) + W Byt (y) + W Hya(y) + .

and hg € R and N(h) € Z such that

Henmy(yn) = Henwy (o) + O (e‘% (3.7.1)
H(yn) = H(yo) + O (h") (3.7.2)

for all n € N with nh < 62—2 (exponentially long) for a constant hy € R. Here fISN(h)
denotes the truncation after the Nth summand of the formal power series H and N(h)

is the largest integer satisfying hIN (h) < hyg.

The assumptions formulated in Theorem 3.7.1 on the method ®; are fulfilled for
all introduced symplectic methods. The formal power series H can be obtained using
a technique called backward error analysis. However, the series does in general not
converge for h in an open neighbourhood of 0. Therefore, to obtain (3.7.1) one has to
work with a truncated series and introduce an error term which is exponentially small
in . Decreasing h the truncation error in the Hamiltonian H decreases exponentially
(see (3.7.1)), while the truncation index N(h) only grows like h~!. Moreover, in the
sense of formal power series in h, the symplectic map ®;, is the flow of the modified
equation y = JIVH (y) such that we can refer to H as a Hamiltonian rather than just
a modified conserved quantity. See chapter IX in Hairer, Lubich, and Wanner, 2013 for
a proof of Theorem 3.7.1 and further details.

The excellent energy? preservation property of the symplectic Stormer—Verlet scheme
is illustrated in Figure 3.1. While the energy error H(q,p) — H(qo, po) oscillates and
remains bounded for the 2nd order accurate symplectic integrator (hinting at the exis-
tence of a modified conserved quantity), the energy error for the non-symplectic explicit
midpoint rule, which is of the same order, grows linearly on the simulated time interval
when applied to the Hamiltonian H(q,p) = %pQ — cos(q) of the free pendulum (2.2.2)

with step-size 0.1. We can see a clear advantage of the symplectic method for long-term

2Here, energy refers to the Hamiltonian. In many applications in physics the Hamiltonian represents
the energy of the system.



CHAPTER 3. STRUCTURE PRESERVING NUMERICAL METHODS o1

-3
%107 110

10 [ @ Stérmer-Verlet|
_ e RK2 . 05
o 8 9 -
= 5 09
B | [0}
> ° S 0
S 4 5 0.5
5 2R oS odosesesereretatatatotetelelels
$ 2! ° 4 000850050580
0 Teteledelelalateleleteteleletete,
15
0 50 100
time

Figure 3.1: The figure to the left shows the energy error of the symplectic Stormer—
Verlet scheme and the non-symplectic explicit midpoint rule (RK2) applied to the
Hamiltonian system of the free pendulum H(q,p) = 1p? — cos(q) from (2.2.2). The
initial values (go,po) = (1,1) and the step-size h = 0.1 were used to obtain the plots.
The plot to the right shows the long time behaviour of the energy error for the Stérmer—
Verlet scheme. Here, only every 10°th point is plotted.

simulations.



Chapter 4
Boundary value problems

Boundary value problems for differential equations are systems of differential equations
together with specified values of a sought solution and its derivative at specific points.
Unfortunately, there are no theorems similar to the Picard-Lindelof theorem for initial
value problems for ODEs available to clarify in a general setting under which conditions
a solution to a boundary value problem exists or is unique. However, many different
classes of problems have been analysed, see e.g. Bernfeld and Lakshmikantham, 1974;
Bailey, 1968. Indeed, in the following chapters non-uniqueness of solutions to boundary
value problems is an essential part of our investigations: we will analyse how the
topology of solution sets to boundary value problems changes as parameters in the
problem are varied (bifurcations), link bifurcation behaviour to the intrinsic structure

of the boundary value problem and point out implications for numerical computations.

4.1 Typical boundary conditions

Before presenting numerical approximation schemes for boundary value problems, let

us review some typical boundary conditions.

4.1.1 Boundary value problems for ordinary differential equation

For F': R x R™ x R™ — R™ consider the ordinary differential equation (ODE)

y=F(t,y,79) (4.1.1)

and the boundary condition
9(y(a),y(b)) = 0. (4.1.2)

The equations (4.1.1) and (4.1.2) constitute a boundary value problem, where y: [a, b] —
R™ is sought. The ODE (4.1.1) together with the boundary condition (4.1.2) constitute

52
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a boundary value problem. Typically, (4.1.2) consists of n independent equations. If

for some yo € R™ then the problem is called an initial value problem (IVP). If the
expression g(y(a),y(b)) genuinely depends on y(a) and y(b) then the problem is called
a 2 point boundary value problem. If g(y(a),y(b)) is of the form

y'(a)
: v6
" |y
9(y(a), y(b)) S (0)
: u6
y™(b)

for yg, yg € R™ then the problem is called a Dirichlet problem. Furthermore, a Dirichlet
problem is homogeneous if y§ = 0 = yg. A Dirichlet problem arises, for example, when

formulating the problem
i= f(t,u,0) u(a)=u? u(b) =u’

with u®,u® € R™ and f: R x R™ x R™ — R as a Ist order system of ODEs. The
problem
= f(t,u,n) ala) =u®, wb) =u’

is called a Neumann problem and u® u® € R™ are called the Newmann data of the
problem. Combining Dirichlet and Neumann boundary conditions component wise in

a linear way to

! (a) + ol (a) = B, W (b) + afid (b) = ], 1<j<m
with a®, 3%, ab, B® € R™ we obtain Robin boundary conditions. The problem
el

= f(t,u,u) wu(a) =u? u(a) =10

is called a Cauchy problem. Its 1st order formulation is an IVP.
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4.1.2 Boundary value problems for partial differential equation

The above definitions are also used in the setting of partial differential equations
(PDEs). For F: Q x RM — R with a domain @ ¢ R¥ and M € N we consider
the PDE

F <$a u, {uwil }ilv {ufliiliQ }i1i2’ AR {ufliiliQ...z‘l }(ZJ)J> =0. (4'1'3)

Equation (4.1.3) depends on = € Q (space-time) and the I-jet of u. The PDE is to be
solved for u: 2 — R. Assume that 02 is sufficiently regular, e.g. piecewise smooth. A

typical boundary condition has the form

G (u7 {Uwil }il’ {uxili2 }iliQ’ R {uﬂfiliQ...z‘l }(ij)j> =0 on 0.

If we specify u|gn then we obtain a Dirichlet problem. Specifying the normal derivative

uy along 0f) we obtain a Neumann problem. A condition of the form

giu + gaoun = g

for given g1, g2, g: 022 — R is called a Robin condition.

The mentioned boundary conditions appear, for example, when modelling the tem-
perature of material/fluids using the heat equation. Dirichlet boundary conditions
model a heat distribution on the surface 02 that is constant in time while homoge-
neous Neumann conditions u,|gn correspond to an insulated vessel (no heat transfer
through the surface 92). Robin boundary conditions refer to convection heating or

cooling of the material in the region bounded by Q (Larsson and Thomée, 2003).

4.2 Shooting or marching methods

There are different strategies available for solving boundary value problems for differ-
ential equations. One of them is called a shooting method or marching method.

Consider the two-point boundary value problem

<q> =F <q> : q(ta) = qa> q(ts) = @ (4.2.1)
P p

for a map F that is locally Lipschitz-continuous on a sufficiently large domain in R?",
where the curves ¢ and p are sought. Let (q( “3Pa)s P( - ;pa)) : [ta,ty] — R?™ denote the

solution to the initial value problem

(g(upaD . (q(t;paD C gltipe) = der Pt pe) = pa. (4.2.2)



CHAPTER 4. BOUNDARY VALUE PROBLEMS 95

The problem (4.2.1) can now be translated into the task of finding all p, € R™ such that
q(tp; Pa) = q» because solutions to initial value problems are unique. This explains the
name shooting or marching method: using an initial guess p, the evaluation of q(ty; pa)
corresponds to shooting or marching to the endpoint at time t;. The value ¢(tp; p,) can
then be compared to ¢ in order to improve the next guess for p,. This may be repeated
until the distance ||q(tp; pa) — gp|| is below a given tolerance or until the updates of p, in
each step become smaller then a specified value. In computations, a solution to (4.2.2)
for a given p, can be approximated using an ode solver that is efficient and accurate
for the problem F'. The equation ¢(t»;pa) — g» = 0 can then be solved using another
numerical method as, for example, Newton’s method, fix-point iterations or, in the
one-dimensional case, using a bisection type algorithm.

Whether a solution is found using this approach and which solution is approximated
highly depends on the initial guess. In the one-dimensional case one can evaluate
Pa — q(tp; Pa) — qp (With low accuracy) on a grid to obtain good initial guesses (change
of sign) for a bisection type algorithm. In this way we can find all solutions p, in a given
interval provided that the grid is fine enough and F is sufficiently regular. Another
idea to obtain good initial guesses for q(tp;pa) — g» = 0 is to use the solutions of a
nearby problem or a series of problems converging to the original problem (4.2.1). This
is particularly helpful if the original problem is a small perturbation of a well-behaved
problem or if a whole series of problems has to be solved anyway. This idea is known
as continuation and has the nice side effect that one can see how a solution evolves
with the perturbation parameter. Some refinements of this approach will be presented
in Section 4.5.

Shooting methods are not constrained to problems which are strictly of the form
(4.2.2). To illustrate this, consider, for instance, the following problem which contains

first derivatives
q(ta) = qa, aq(ty) + Bq(ty) =

with a, 3,7 € R™ and assume that solutions (q(-;pa), q(-;pa)) to the initial value prob-
lem (4.2.2) can be obtained numerically to sufficient accuracy. The problem reduces to

finding the roots p, of

aq(ty; pa) + B(mq o F)(q(ty; pa), p(ts; pa)) — v = 0,

where 7, denotes the projection to the g-components. Again, a root-finding algorithm
can be used to obtain solutions.

Stability issues can occur when shooting methods are applied over long time-
intervals. If so, it can be useful to subdivide the time-interval [a,b] into sub-intervals

t, = tg < t1 < ... <ty = tp. The values of the solution at the time steps t; are
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sought. The condition that all pieces fit together continuously and that the start and
endpoints fulfil the initial boundary condition is considered as a (high-dimensional)
boundary value problem. The advantage is that the numerical integration only needs
to take place over each sub-interval rather than the full interval. Such integrations can
be done in parallel. The technique is called multiple shooting. Details can be found,

for instance, in Gander and Vandewalle, 2007.

4.3 Finite difference methods

In Chapter 3 we reviewed Runge—Kutta methods to solve initial value problems for
ODEs. Let us present another method to discretise differential equations which is also
applicable for PDEs.

We illustrate the idea of finite difference schemes on the Bratu problem: for a
domain ©Q C R™ with topological boundary 9€) let us consider the following elliptic
PDE with Dirichlet boundary condition

Au+ pe' =0, ulpgo=0 (4.3.1)

where p € R is a parameter and A denotes the Laplace operator. The problem is
known as the n-dimensional Bratu problem. It appears in models describing chemi-
cal reactions (combustion model, chemical reactor theory) and the expansion of the
universe (Chandrasekhar model). An analytical solution is available for n = 1. See
Mohsen, 2014 for a survey on different approaches to solve this problem numerically
and for references to applications.

Consider the square Q@ = [0,1] x [0,1] in the z,y-plane. We introduce the grid
{(xi,yj) }i=o,...N+1,j=0,...,M+1 With uniform spacing Az = ﬁ in the z-direction and
uniform spacing Ay = ﬁ in the y direction. There are N - M interior grid points
{(xi,yj) }i=1,.. N j=1,..,m Which are not determined by the boundary condition and must
be calculated.

is a 2nd order approximation in h

The central difference formula £ (@th/ 2)Zf (@—h/2)

of the derivative f’(z) for a regular map f. Applying this formula again to f'(z + h/2)

and f'(x — h/2) we obtain the 2nd order accurate approximation

We denote an approximation to u(x;, y;) for a solution u of (4.3.1) by w; j. Using (4.3.2)

to approximate the partial derivatives 8‘9—; ::Lndg—;2 we obtain

Uitlj — 2Uij + U1y i1 — 2Uij + Uij—1
+
Ax? Ay?

— _ueu’i;j
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for all interior grid points 1 <7 < N and 1 < j < M, whereas

Ugj = U0 = Ui N+1 = UN+1,; = 0

foral 0 <i< N+1and 0 < j < M + 1 are determined by the Dirichlet boundary
condition. Let U = {u;;}i=1,. Nj=1,.,m denote the matrix of approximated values
over interior grid points. The discretised version of (4.3.1) is second order accurate in
Az and Ay. In matrix form it reads
1
Az?

1

T
NU + Ay

UTy + peV = 0. (4.3.3)
Here eV = (e%i4); ; denotes a point-wise exponential of the elements of U and Ty and

Ty are tridiagonal Toeplitz matrices of the form

where Ty is N x N-dimensional and Ty is of dimension M x M. Equation (4.3.3)
can now be solved using, e.g., the MATLAB built-in function fsolve. If one would
like to use an iteration scheme which requires the Jacobian of (4.3.3), as, for example,
Newton’s method, it is helpful to rewrite the system using the Kronecker product ® as

follows
1

1
I —T;
<M® N+Ay2

- o
A2 TM®IN>u:e“
such that a Jacobian matrix can easily be obtained. Here Ij; and Iy are identity
matrices of dimension M and N, respectively. The vector u denotes a vectorisation of
the matrix U = {w;;}i=1,. N,j=1,.,m in which all columns u_; of U are stacked on top

of each other, i.e.

=T _ (, T T T T
U —(u,yl, Uogy ooy U N1 uN>

When implementing the required matrices, using a data type for sparse systems is
recommended. In each Newton step a Sylvester equation needs to be solved. More
information on equations of Sylvester type can be found in Bhatia and Rosenthal,
1997 and references therein. As suggested in Mohsen, 2014, initial guesses for iterative

solvers can be obtained as

uij = asin(mz;) sin(my;), a€R. (4.3.4)
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In case h = Az = Ay we obtain the following set of difference equations, known as the

five-point stencil,

Wi—1,5 + Uij—1 — A5 + Ui j1 + Uit

h2 + pe =0

for all 4,5 € {1,..., N} together with the boundary condition

Upj = Uj0 = Ui N41 = UN+41,; = 0

for all 0 < 4,5 < N + 1. Thus, another way of writing (4.3.3) is

w1 et!

I T I U eu.2
% : + : =0. (4.3.5)

I 1T I U N—1 e¥-N-1

I T U N e N

Here I denotes an N x N-dimensional identity matrix. The matrix T is an N x N-

dimensional, tridiagonal Toeplitz matrix of the form

Since the matrix in (4.3.5) is very sparse it is recommended to use appropriate data
types when implementing (4.3.5). Moreover, the Kronecker product can be used to
generate the matrix structure. Again, the above equation may be solved using fsolve
or using Newton iterations. Notice that a Jacobian matrix of (4.3.5) is easily obtained
and can improve (or is required) for the iteration methods. Using different values for
the parameter a in the initial guess (4.3.4) we find two solutions for p = 0.1. Their
plots are displayed in Figure 4.1.

In the example of a full finite difference discretisation of the Bratu problem, we have
considered grids with uniform spacings. However, finite-difference methods can be used
with non-uniform grids as well. Adaptive finite difference methods have successfully
been applied to various problems. See, for instance, Oberman and Zwiers, 2016 and

references therein.

Remark 4.3.1. Using shooting methods to solve a boundary value problem it is impor-

tant to be able to solve initial value problems efficiently. In terms of computational
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Figure 4.1: Plot of a high- and low energy solutions to the Bratu problem for the
parameter value g = 0.1 using 6400 interior grid points.

costs, this can favour explicit methods for time-stepping. When applying the 5-point
stencil to the Bratu problem, we have used a full discretisation scheme which couples
each grid point to all of its neighbours. It is impossible to solve the obtained equations
sequentially but all equations need to be solved at once which makes the scheme im-
plicit. However, in full discretisation schemes the cost-difference between explicit and
implicit vanishes because iterative methods are used to solve the required system of

equations and reasonable initial guesses are available. A

4.4 Finite element methods

Another popular method to solve PDEs are finite element methods which belong to
the family of Galerkin methods. Let us explain the mechanism for the linear PDE
Lu = f for scalar-valued functions f and linear differential operators L on a domain €.
The PDE is viewed in an appropriate Hilbert space together with a sequence of finite
dimensional subspaces that converge in an appropriate way to the original Hilbert
space. On each subspace we choose the solution u, for which the error term Lu — f
is orthogonal to the subspace and, therefore, minimal: for a finite basis {¢;} consider
the ansatz u = Zj cj¢; leading to Lu = Zj cjL¢;. One can determine the coefficients
{c¢i} using the equations (¢;, Lu— f) = 0, where (.,.) denotes the scalar product of the
Hilbert space. In the classical approach, the boundary conditions are incorporated in
the Hilbert space. In the following, we will elaborate on these ideas. See Brenner and
Scott, 2008; Renardy and Rogers, 2004b for references.

4.4.1 Weak formulations and existence and uniqueness properties

For a discussion of existence and uniqueness properties for different types of PDEs we

refer to Renardy and Rogers, 2004b of which we will give a short review. The Riesz
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representation theorem relates a Hilbert space (H, (-,-)) with its dual space H*, i.e. the
space of all linear functionals on H which are bounded with respect to the operator

norm.

Theorem 4.4.1 (Riesz representation theorem). Let (H,{(.,.)) be a Hilbert space and
H* its dual space. Forl € H* there exists a unique u € H such that (u,v) = l(v) for
allve H.

Proof. See, for instance, Renardy and Rogers, 2004a, Thm. 6.52 or Lax, 2002, Thm. 4,
§6.3. O

The Laz-Milgram theorem can be interpreted as a generalisation of Theorem 4.4.1.

Theorem 4.4.2 (Lax-Milgram theorem). Let (H,{.,.)) be a Hilbert space and H* its
dual space. Consider a bilinear form B: H x H — R with

|B(u,v)| < cil|ullg||lvllg Yu,v e H (bounded)

B(u,u) > co|lull}; Yu € H (coercive).

Here ||.||z denotes the norm on H induced by the scalar product. For anyl € H* there

exists a unique solution uw € H to
B(u,v) =1l(v) Vv € H.

Proof. See, for instance, Renardy and Rogers, 2004a, §9.2.2 or Lax, 2002, Thm. 6,
§6.3. O

For the formulation of PDEs, Sobolev spaces, especially those which are Hilbert
spaces, are popular: let  be an open subset of the Euclidean space R™. For k > 1 we

can define the Sobolev spaces

H*(Q) = {ue L*(Q) : Du € L*(Q) for all o € Nj with » a; <k
j=1

dlely,

Where Dau = —a = a-
oz]1..0z"

denotes the weak ath partial derivative. Equipped with the
inner product
(u,v) = Y (D%, D) 2(q)
lal<k
H*(Q) is a Hilbert space. The induced norm is denoted by |.|| mr(q)- We denote the
closure of smooth functions with compact support C5°(Q) in H*(Q) by HE(Q). The
space HE(Q) is a sub-Hilbert space of H*(9).
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Theorem 4.4.3 (Poincaré inequality). Let the domain € be contained in a strip —a <
x1 < a < oo for some a € RY. There exists a constant C depending on k and a such
that

6y < C S 10220y,
|a|=k

Proof. See Renardy and Rogers, 2004a, Thm. 7.32. O

Corollary 4.4.4. For bounded domains ) the symmetric, bilinear form
(w, ) 1) :/(Vu, Vu)dx
0 Q

is an inner product on Hy(Q) which induces a norm that is equivalent to || - || y1(q)-

Ezample 4.4.1 (Poisson equation). On a bounded domain € consider the Poisson equa-

tion with Dirichlet boundary conditions
—Au = f, ujgn =0

with f € L2(2). The weak formulation is given as
(o) ey = [ fodx, Vo€ GF@)
Q

where u € H&(Q) is sought. Corollary 4.4.4 together with the Riesz representation
theorem (Theorem 4.4.1) guarantees existence and uniqueness of a solution u € HE(Q).

AN
Remark 4.4.1. Under further assumptions on the regular