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Abstract

A key aspect of the simulation process is the formulation of proper mathematical mod-
els. The model must be able to emulate the physical phenomena under investigation.
Partial differential equations play a major role in the modelling of many processes which
arise in physics, chemistry and engineering. Most of these partial differential equations
cannot be solved analytically and classical numerical methods are not always applica-
ble. Thus, efficient and stable numerical approaches are needed. A fruitful method for
solving the nonlinear difference schemes, which discretize the continuous problems, is
the method of upper and lower solutions and its associated monotone iterations. By
using upper and lower solutions as two initial iterations, one can construct two mono-
tone sequences which converge monotonically from above and below to a solution of the
problem. This monotone property ensures the theorem on existence and uniqueness of
a solution. This method can be applied to a wide number of applied problems such
as the enzyme-substrate reaction diffusion models, the chemical reactor models, the
logistic model, the reactor dynamics of gasses, the Volterra-Lotka competition models
in ecology and the Belousov-Zhabotinskii reaction diffusion models.

In this thesis, for solving coupled systems of elliptic and parabolic equations with
quasi-monotone reaction functions, we construct and investigate block monotone it-
erative methods incorporated with Jacobi and Gauss—Seidel methods, based on the
method of upper and lower solutions . The idea of these methods is the decomposition
technique which reduces a computational domain into a series of nonoverlapping one
dimensional intervals by slicing the domain into a finite number of thin strips, and then
solving a two-point boundary-value problem for each strip by a standard computational
method such as the Thomas algorithm.

We construct block monotone Jacobi and Gauss-Seidel iterative methods with quasi-
monotone reaction functions and investigate their monotone properties. We prove the-
orems on existence and uniqueness of a solution, based on the monotone properties
of iterative sequences. Comparison theorems on the rate of convergence for the block
Jacobi and Gauss-Seidel methods are presented. We prove that the numerical solutions
converge to the unique solutions of the corresponding continuous problems. We esti-

mate the errors between the numerical and exact solutions of the nonlinear difference

xii



schemes, and the errors between the numerical solutions and the exact solutions of the
corresponding continuous problems. The methods of construction of initial upper and

lower solutions to start the block monotone iterative methods are given.

xiii
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Chapter 1

Introduction

1.1 Overview of the method of upper and lower solutions

The monotone method and its associated upper-lower solutions for nonlinear ordinary
and partial differential equations have been given extensive attention in recent years.
The method is popular because not only does it give constructive proof for existence
theorems but it also leads to various comparison results which are effective tools for the
study of qualitative properties of solutions. The monotone behaviour of the sequence
of iterations is also useful in the treatment of numerical solutions of various boundary

value and initial-boundary value problems.

1.1.1 The monotone method of upper and lower solutions for contin-

uous problems

The first steps in the theory of lower and upper solutions were given by Picard in 1890
[67] for partial differential equations, and in [68] he extended his theory for ordinary
differential equations. In both cases, the existence of a solution is guaranteed from a
monotone iterative technique. Existence of solutions for Cauchy equations was proved
by Perron in 1915 [66]. Miiller extended Perron’s results to initial value systems in [52].
Dragoni [36], [35] introduced the notion of the method of lower and upper solutions for
ordinary differential equations with Dirichlet boundary conditions.

In the classical books of Bernfeld and Lakshmikantham [12] and Ladde et al. [46],
the classical theory of the method of lower and upper solutions and the monotone iter-
ative technique is presented. This theory treats the solution as the limit of a monotone
sequence formed by solutions of linear problems related to nonlinear equations.

To illustrate the basic idea of the monotone method, let us consider a typical elliptic

boundary value problem in the form

—Lu(z) + f(z,u) =0, zcw, ulx)=g(zr), =€ciw,



where L is a uniformly elliptic operator in a bounded domain w € R* (k = 1,2,...) and
Ow is a boundary. Uniform elliptic operator means that the matrix (a;;), i,j =1,... K
of the coefficients of the second derivatives is positive definite and bounded from above

and below, that is,

Lu(z) = Z a; j0*u/0x;0x; + ij(a:)ﬁu/ﬁxj, (1.1)
j=1

1,j=1

N|=

doll€)” < D aij(@)&iy < dali€)?, 1€l = (Zé?) :
=1

i,j=1

where dy and d; are positive constants. Suppose there exists an ordered pair of upper
and lower solutions u and %, that is, w and @ are smooth functions with > % such
that

—Lu(z) + f(z,u) >0, zew, u(x)>g(z), zeciw,

and u satisfies the reversed inequalities. Then by using @ and u as two distinct initial

iterations one can construct two sequences {7} and {u(™} from the iteration process

— Lu™ () + c(x) (u(") (z) — u("_l)(x)> =—f <x, u(”_1)> , TEw,

u™ () =g(x), =€ Ow,

where u(™ stands for @™ or (™, and the function ¢(z) is taken as any upper bound
of df/0u for u < u < u. Based on the property of upper and lower solutions, one
establishes that the sequence {E(”)} is monotone nonincreasing and the sequence {g(”)}
is monotone nondecreasing, and both sequences converge, respectively, to solutions u

and u of the problem. The monotone property of these sequences leads to the relation
i<ul D <u®™ <u<m<at <a P <u inw, n>1

When @ = u, there is a unique solution in the sector (u, @) between & and u; otherwise
the problem has multiple solutions.

A major advance of this technique is the extension of the idea of upper-lower so-
lutions to coupled systems of a finite number of parabolic and elliptic equations [46],
[59]. For coupled systems of equations, whether parabolic or elliptic, the definition of
upper-lower solutions depends on the quasi-monotone property of the vector reaction
function f in the system. Based on the quasi-monotone property of the reaction func-
tions one can also construct two sequences which are monotone. Although these two
sequences converge to some limits u and 1, it is not certain that u or u is a solution of

the problem except in the special cases where every component of the reaction function



f is quasi-monotone nondecreasing and for systems of two equations with the quasi-
monotone nonincreasing property of the reaction functions. The method of upper and
lower solutions has been developed for continuous systems of partial differential equa-

tions with the focus on comparison results and qualitative behavior of the solutions [8],
[10], [45], [47], [53], [54], [55], [70].

1.1.2 The monotone method of upper and lower solutions for differ-

ence schemes

Various reaction-diffusion-convection-type problems in the chemical, physical and en-
gineering sciences are described by nonlinear elliptic and parabolic equations. In order
to treat such nonlinear problems numerically, the nonlinear problems are approximated
by using the finite difference or finite element methods, which lead to nonlinear sys-
tems of algebraic equations. The main mathematical concern is to investigate whether
these systems have a solution and to find efficient, stable and computationally effective
methods for solving these discrete systems.

The idea of upper and lower solutions was employed by Parter [64] and Greenspan
and Parter [43] for solving finite difference schemes which approximate elliptic problems.
Under the condition that the nonlinear function is bounded, they constructed explicitly
initial upper and lower solutions. Russell and Shampine [69] used a similar approach
for a singular boundary value problem. The method of upper and lower solutions was
applied for treating scalar elliptic problems in [16], [28], [29], [31], [48], [59], [70] and
for scalar parabolic problems in [8], [15], [21], [23], [24], [26], [40], [50], [54], [55].

This method gains more complexity when it is applied to coupled systems. A
great deal of research has been done on investigating the method for systems of elliptic
problems [17], [19], [20], [47], [49], [56], [57] and for systems of parabolic problems [27],
[38], [44], [55], [60], [58], [72].

The idea of block monotone methods is based on the decomposition technique which
reduces a domain into a series of nonoverlapping one dimensional intervals by slicing
the domain into a finite number of thin strips, and then solving a two-point boundary-
value problem for each strip by a standard computational method such as the Thomas
algorithm [51]. Block monotone iterative methods, based on the method of upper and
lower solutions, were developed in [13], [18], [22], [25], [30], [61], [62],[73], [74] for solving
scalar elliptic equations and in [14], [63] for solving scalar parabolic equations.

In [61], block Jacobi and block Gauss-Seidel monotone iterative schemes were pre-
sented for solving second-order nonlinear elliptic equations. Theorems on existence
and uniqueness theorems of the solution were proved. These block monotone iterative

schemes have been extended for the fourth-order elliptic equations in [62]. In [63], block



Jacobi and block Gauss-Seidel monotone iterative methods were constructed for treat-
ing nonlinear scalar parabolic equations. In [73], the block monotone method, suitable
for parallel computers, was developed for numerical solutions of nonlinear scalar elliptic
boundary value problems. This block method is based on the block monotone Jacobi
method. In [13], [14], [18], [30], block monotone domain decomposition methods, based
on a Schwarz alternating method and a block successive underrelaxation method, were
developed for numerical solutions of nonlinear scalar elliptic and parabolic problems
with interior and boundary layers.

The method of upper and lower solutions can be successfully applied to many ap-
plied problems. Some of the models which are governed by elliptic boundary value
problems, where the numerical methods of upper and lower solutions can be applica-
ble, are i) the steady-state enzyme-substrate reaction model [9], where the effect of
inhibition is taken into consideration; ii) the logistic model [32] which describes popu-
lation growth; iii) reactor dynamics and the subsonic motion of gasses [7].

Some models which are governed by parabolic boundary problems, where the numer-
ical methods of upper and lower solutions can be applicable, are i) the time-dependent
enzyme-substrate reaction model [9], where the effect of inhibition is neglected; ii) the
chemical reactor method [42], when the isothermal reaction is irreversible.

Models governed by systems of nonlinear elliptic equations, where the numerical
methods of upper and lower solutions can be applicable, are i) the gas-liquid interac-
tion model [34], where a dissolved gas and a dissolved reactant interact in a bounded
diffusion medium; ii) the Volterra-Lotka competition model in ecology [33] which de-
scribes the coexistence of competing species in ecology; iii) the Belousov-Zhabotinskii
reaction diffusion model [11], [59] which includes the metal-ion-catalyzed oxidation by
bromate ion of organic materials.

Models governed by systems of nonlinear parabolic equations, where the numerical
methods of upper and lower solutions can be applicable, are i) the time-dependent gas-
liquid interaction model [34]; ii) the time-dependent Belousov-Zhabotinskii reaction
diffusion model [11], [59]; iii) the time-dependent Volterra-Lotka competition model
[33].

In thesis, for solving coupled systems of elliptic and parabolic equations with quasi-
monotone reaction functions, we construct and investigate block monotone Jacobi and
Gauss-Seidel iterative methods. We estimate the errors between the numerical and
exact solutions of the nonlinear difference schemes, and the errors between the numer-
ical solutions and the exact solutions of the corresponding continuous problems. The
methods of construction of initial upper and lower solutions to start the block mono-
tone iterative methods are given. The block monotone iterative methods are applied to

the gas-liquid interaction model [34], the Volterra-Lotka competition model in ecology



[33] and the Belousov-Zhabotinskii reaction diffusion model [11], [59] in the case of
elliptic systems, and applied to the time dependent version of the Volterra-Lotka co-
operation model [33], the Belousov-Zhabotinskii reaction diffusion model [11] and the

Volterra-Lotka competition model in ecology [33] in the case of parabolic systems.

1.2 Monotone iterative method for elliptic equations

Elliptic differential equations are used to characterize a wide family of problems in
chemistry, physics and engineering sciences. The elliptic problem under consideration

in this section is in the form
— Lu(z) + f(z,u) =0, zecw, ulz)=g(r), z€ciw, (1.2)

where the domain w is bounded and connected in R* (k = 1,2,...), and dw is the

boundary. The differential operator L(x) is given by

L= Z Oz, ( 8:@) * Z 8:1:,,

where the coefficients of the differential operator are assumed to be smooth and D(z) >

0 in . The functions f and g are also assumed smooth in their corresponding domains.

1.2.1 Nonlinear difference scheme

On the domain @, we introduce a mesh A = Ah U OA", where A" and OA", are
respectively, a set of interior mesh points and a set of boundary mesh points. For

solving the nonlinear problem (1.2), we consider the nonlinear difference scheme

AP)U(p) + f(p,U) =0, peA", Ulp)=g(p), peoA, (1.3)

where U(p), p € A" is an unknown mesh function. The difference operator A(p) is
defined by
A)U(p) =dp)U(p)— > a@U®), (1.4)
p'€d’(p)
where o/(p) = o(p) \ {p}, o(p) is a stencil of the scheme at an interior mesh point
p € A". The five-point stencil of a point in the grid is a stencil made up of the point
itself together with its four neighbors. The coefficients of the difference operator A(p)

are assumed to satisfy the assumptions

d(p) >0, a(p)>0, pedp), dp)— D a@)>0, peA'. (15
p'ec’(p)



. —~h. . . . .
We assume that the mesh domain A is connected, that is, for two interior mesh points

p and p, there exists a finite set of mesh points {p1, p2,...,pr} such that

p1€d'(p), p2ed(p1),..., pr €' (pr—1), D€ (pr). (1.6)

We introduce the linear difference problem

A(p)W(p) + c*(p)W(p) = ¢(p), pe A", W(p)=g(p), peIA", (1.7)

where ¢*(p) is a positive bounded mesh function. We now consider the maximum
principle for the difference operator A(p) 4+ ¢*(p) and give a bound on the magnitude
of the solution to (1.7).

Lemma 1.2.1. Let the coefficients of the difference operator A(p) satisfy (1.5) and the
mesh domain K" be connected (1.6).

(i) If a mesh function W (p) satisfies the conditions
(Ap) +c* @) W(p) 20 (<0), peA’, W(p)=0(<0), pedA’, (18)

then W(p) >0 (<0), pe .

(i) The following bound on the magnitude of the solution to (1.7) holds

|l an
kuAhSmax{uguaAh, P & (1.9

lle*[l
where
[Wlign = max [W(p)l, [lglloar = max |g(p)].
A

Proof. We prove part (i) of the lemma by the contradiction argument. From condition
(1.8) and the definition of the difference operator (1.4), we have

dp) + ¢ (p)— > alp)) =0. (1.10)

p'€a’(p)

Assume by contradiction that there exist mesh points in A® such that

11)21}& W(p) = W(p«) <O. (1.11)

From condition (1.8) of the lemma, we have at p,

2 et (p) UPOW(PL)
W(ps) > ey
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From here and (1.11), it follows that

Zp/*eo"(p*) a(pfk>
d(ps) + c*(ps)

Wips) > AW (ps), A

With (1.10), we conclude that
Wip)(1=X) >0, A<

Since (1 — ) > 0 and W (p.) < 0, we get the contradiction with our assumption.

Now we prove part (ii) of the lemma. We consider the problem

(Alp) + @) V) = o), peA", V(D)= lglloar, » <A™ (1.12)
Denoting S(p) =V (p) — W(p), p € Kh, from (1.7) and (1.12), we have
(A(p) + <" (1) S(p) = [8(p)| — d(p) 20, S(p) 20, peIA".
From here, by using the maximum principle (i) of the lemma, we conclude that
S(p) =V(p) —W(p) 20, pel.
Similarly, we can prove that
V(p)+W(p) >0, pe A

Thus, we prove that
—h
Wp)|<V(p), peA.

We now prove that

V) <k k= max{uguw, [0l } (1.13)

=
Case 1. Assume that in (1.13)

9| an

le*llgn

k= llglloan >

By contradiction, suppose that for some mesh points in A", the following inequality
holds
V(p«) = max V(p) > [lgllaan- (1.14)
pEAL



From (1.12), we have

(A(ps) + () V(pe) = |6(ps)],  pv € A™. (1.15)

From the definition of the difference operator A(p) in (1.8) and (1.14), for the left hand
side of (1.15), we have

([dp) + @) Vp) = > a@IV(El) > a(p)V(pa),
pL€a’(p«)

g(pe) = dp) + ¢ () — Y alpl).

pLEa’ (px)

From here and (1.15), we conclude that

[P(ps)]|

Vip) < q(ps)

From here and assumption (1.5), we conclude that

16wl _ 1ollan

Vi) c*(pe) — c*(ps)

< llgllaan-

We have the contradiction with our assumption.
Case 2. Assume that in (1.13)

o = 1llan

> llglloan-
(Teal

We consider the same argument as in Case 1. By contradiction, we suppose that for

some mesh points in A", the following inequality holds

21 an
V(py) = maxV(p) > . 1.16
(p+) ma (p) ) (1.16)
From (1.12), similar to (1.15), we have
(A(ps) + ¢ () V(pe) = [6(ps)], p e A",
From here, (1.4) and (1.16), we conclude that
Vi < o) _ 16l
c*(p«) c*(p«)
We have the contradiction with our assumption. ]

Remark 1.2.2. A difference scheme which satisfies the mazimum principle from Lemma



1.2.1 is said to be monotone. The monotonicity condition guarantees that systems of
algebraic equations based on such methods are well-posed.
1.2.2 The method of upper and lower solutions

Two mesh functions U (p) and ﬁ(p), pe Kh, are called ordered upper and lower solutions

of the difference scheme (1.3), if they satisfy inequalities

Up) <U(p), pel, (1.17a)
AP)U(p) + f(p,U) <0< A)U(p) + f(p,U), pe A, (1.17b)
Up) < g(p) <U(p), pedA", (1.17¢)

For given upper and lower solutions U (p), U (p), p€ Kh, we define the sector

PN PN ~ —~h
(0.0)={U@): 0w <UG) <Tp), pei'}.
We assume that f(p,U) satisfies the constraint

fulp,U) < c(p), Ue(U,0), peh", f.= gi, (1.18)

. cps . . ~h

where ¢(p) is a positive bounded function in A™.
To solve the nonlinear difference scheme (1.3), we construct an iterative method
which satisfies the monotone convergence property. The sequence of solutions {U ™ (p)},

pE Kh, is calculated by the following iterative method:

(A(p) +c(p) 2™ (p) = =K(p,UTY),  pe A, (1.19)
K(p, UV = AU D (p) + f(p.U"Y),
Z0(p) =gp) —UV(p), ZM(p)=0, n>2, peodA”,
20 (p) =U™(p) ~ U D(p), ped,
where K(p, U™=Y), p € A" is the residual of the nonlinear difference scheme (1.3) and

¢(p) is defined in (1.18).

We introduce the notation
—h

and prove the monotone property of I'.

Lemma 1.2.3. Assume that Ui(p) and Us(p), p € X" are functions in (U,U), such



that U1(p) > Ua(p) and (1.6), (1.18) are satisfied. Then
L(p.U3) 2 T(p.U2). peR’ (1.21)
Proof. From (1.20), we have

L(p,U1) —T(p, U2) = c(p)[U1r(p) — U2(p)] — [f(p, U1) — f(p, U2)].

By using the mean-value theorem, we have

f(p,U1) — f(p,U2) = fu(p, Q) (U1(p) — Uz2(p)),

where Us(p) < Q(p) < Ui(p), p € A", From here, using the assumption of the lemma
and (1.18), we conclude (1.21). O

In the following theorem, we prove the monotone convergence of upper and lower

sequences generated by (1.19).

Theorem 1.2.4. Suppose that the coefficients of the difference operator A(p) in (1.3)
satisfy (1.5) and f(p,U) satisfies (1.18). Let U(p) and ﬁ(p), p € Kh, be upper and
lower solutions (1.17). Then upper {U(n) (p)} and lower {Q(") (p)}, pE A" sequences

generated by (1.19) with, respectively, U(O)(p) = ﬁ(p) and Q(O)(p) = ﬁ(p), pE Kh,
converge monotonically, such that,
U <UMp) TV () <T" V), pei” (1.22)

Proof. Since U (p) = U(p), pe Kh, is a lower solution, it follows that IC (p, Q(O)) <0.

From here and (1.19), we obtain
(Ap) +cp) 2V (p) 20, peA’, ZW(p)>0, peor™
By using the maximum principle in Lemma 1.2.1, we conclude that
zM@p) >0, ped” (1.23)
Similarly, for the upper solution o (p) = U (p), p € Kh, we have

ZWp) <0, peir’ (1.24)

We now prove that U(l)(p), and U m(p), pE A" are ordered upper and lower solutions
(1.17). Letting W™ (p) = T™ (p) ~U™(p), p € A", using notation (1.20), from (1.19),

10



we obtain
(Ap) + cp) WO () =T(p,T ) = T(p,U®), pe A, WO(p)=0, peadA.

From here, (1.21) and taking into account that U (p) < 7 (p), p € Kh, by using

Lemmas 1.2.1 and 1.2.3 , we conclude that
wOp) >0, ped (1.25)
Thus, we prove (1.17a). From (1.19) and using notation (1.20), we obtain that
Kp,UW) =T(p,U®) ~T(p,uY), pea™ (1.26)
From here, (1.21) and (1.25), it follows that
Kp,UV) <0, peA” (1.27)
Similarly, we can prove that
Kip, Ty >0, peAh (1.28)

From the boundary condition in (1.19), it follows that U™ (p) and U(l)(p), p € A",
satisfy (1.17c). From here, (1.25), (1.27) and (1.28), we conclude that U(l)(p) and
UM (p), pe A" are ordered upper and lower solutions (1.17).

By induction on n, we can prove that 7™ (p) and U (n) (p),p€ A" are ordered upper
and lower solutions (1.17) which satisfies (1.22). O

1.2.3 Existence and uniqueness of a solution of the nonlinear differ-

ence scheme

We now prove the existence of a solution of the nonlinear difference scheme (1.3).

Theorem 1.2.5. Let the assumptions in Theorem 1.2.4 be satisfied. Then the nonlinear
difference scheme (1.3) has maximal U(p) and minimal U(p), p € X" solutions in the
sector <l7, 17> IfV(p), p € A" s any solution in <(7, (7), then

= —~h
Ulp) <Vip) <U(p), peA. (1.29)
Proof. From (1.22), we conclude that lim U™ (p) = U(p), p € X' asn — oo exists, and

lim Z™(p) =0, ped. (1.30)

n—oo

11



From (1.19), by using the mean-value theorem, we conclude that
K(p.U™) = = (c(p) = £up. Q™)) Z7(p). p A", (1.31)

where U (p) < @ (p) < UM (p). pe X"
By taking the limit of both sides and using (1.30), it follows that

K(p,U)=0, peA” (1.32)

Similarly, we can prove that

Kp,U)=0, pe AP,

where U(p) = limy, 00 o™ (p), p € g Thus, from here and (1.32), we conclude
that U(p) and U(p), p € Kh, are, respectively, minimal and maximal solutions of the
nonlinear difference scheme (1.3) in the sector (U, U).

Now we prove (1.29). Using V(p) and ﬁ(p), p € A" as initial upper and lower

iterations, the sequence {Q (n) (p)¢, p € Kh remains unchanged and converges to the

solution U(p), p € A Taking into account that the sequence {U(n) (p)}, pE A" with

—(0 —h
T%0) =V(p), pek’
consists of the single element V' (p), p € Kh, from (1.22), it follows that
V(p) >U(p), peh. (1.33)

Similarly, by using U(p) and V(p), p € A" as initial upper and lower iterations, the

sequence {U(n) (p)}, pE A" remains unchanged and converges to the solution U(p),

pE A Taking into account that the sequence {U(p)}, p € Kh, with
UOp) =V(p), pel,
consists of the single element V(p), p € Kh, from (1.22), it follows that
V(p) <TU(p), peh.

From here and (1.33), we conclude (1.29). O

For uniqueness of a solution of (1.3), we assume that f(p, U), satisfies the two sided
inequalities

e(p) < fulp.U) < clp), U(p) € (U,0), pel’, (1.34)

12



where ¢(p) is a bounded function and ¢(p) is defined in (1.18).

Theorem 1.2.6. Suppose that the coefficients of the difference operator A(p) in (1.3)
satisfy (1.5) and f(p,U) satisfies (1.34). Then the nonlinear difference scheme (1.3)

has a unique solution.

Proof. From Theorem 1.2.5, it follows that U(p) and U(p), p € Kh, are two solutions to

the nonlinear difference scheme (1.3). For uniqueness of a solution, it suffices to prove

that U(p) =U(p), p € A", From (1.22), we conclude that
U ) <Um) <Tp) <T" ), pel” (1.35)

Letting W(p) = U(p) — U(p), p € Kh, from (1.3), it follows that

APW(p) + f(p,U) - f(p.U) =0, pe A" W(p)=0, peadr"
By using the mean-value theorem, we conclude that
(A(p) + fulp, @) W(p) =0, peAt, W(p)=0, pecadr”, (1.36)

where U(p) < Q(p) < U(p), p € X" From (1.35), we conclude that the partial
derivative f,(p, Q) satisfies (1.34). From here, (1.34) and (1.36), by using (1.9), we
conclude that W(p) =0, pe€ A O

1.2.4 Convergence analysis of the point monotone iterative method

We now investigate convergence properties of the monotone iterative method (1.19).
Linear rate of convergence
We modify the monotone iterative method (1.19) by replacing ¢(p) by the constant
¢ as follows:
¢ = max c(p). (1.37)
pEKh
Theorem 1.2.4 still holds if we replace ¢(p) by ¢.

Theorem 1.2.7. Suppose that the coefficients of the difference operator A(p) in (1.3)
satisfy (1.5) and f(p,U) satisfies (1.34). Let ﬁ(p) and [A](p), pE Kh, be ordered upper
and lower solutions (1.17). Then for the sequence {U(”)(p)}, p € X generated by
(1.19), the following estimate holds:

c

g=1-—=, c¢=minc(p), n>2, (1.38)

n
HZ( ! A’ c —~h
peEA

<o o)

A

where ¢(p) is defined in (1.34), ¢ is defined in (1.87), and q, 0 < q < 1 is the linear

rate of convergence.
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Proof. Similar to (1.31) with the assumption (1.37), we conclude that
K (pU" D) == (6= fu (p.Q"V)) 20D w), (1.39)

where U2 (p) < Q(n_l)(p) < U™ Y(p). From (1.24) and (1.25), it follows that
(U2 g1y ¢ (U,U), which leads to f,(p, Q("fl)) satisfies (1.34). From here,
(1.19), (1.37) and (1.39), we obtain that

(A(p) +6) 2™ (p) = (¢ = fulp, Q") Z"V(p).

By using (1.9), it follows that

|2

o selz
A

A
where ¢ < 1, since ¢ < ¢. If ¢ = ¢, it means that problem (1.2) is linear. By induction on

n, we can prove (1.38) for a lower sequence { U™ (p)}, pe A" By a similar argument,

we can prove (1.38) for an upper sequence {U(n) (p)}, pE A" O

Quadratic rate of convergence
We modify the monotone iterative method (1.19) by replacing c(p) by ¢~ (p) and
calculating the sequence {U (”)}, pE Kh, as follows:

(A®) + D) 20 () = =K (p,UD), pe At (1.40)
K(p,U™) = AU (p) + £ (.U,

ZM(p) =g(p) —UOp), ZMWp) =0, n>2, pecdAl,

ZM(p) = U™ (p) — U V(p), pei”,

where the mesh function ¢~ (p) is given by

"D (p) = max{ fu(p, U)}, UV (p) <U) < T (p). (1.41)

Two sequences { R (p)} and {U(n) (p)}, pE A" are in use for calculating ¢~ (p).

Introduce the notation

¢ = ma mp {110 V)], V) € (0.0)} (142)

We now prove the quadratic convergence of the monotone iterative method (1.40),

(1.41) in the following theorem.
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Theorem 1.2.8. Suppose that the coefficients of the difference operator A(p) in (1.3)
satisfy (1.5). Assume that f satisfies (1.18). Then for the sequences {U(n)(p)} and
(UM (p)}, p e Kh, generated by (1.40), the following estimate holds:

2

s (1.43)

o
A

w < we

where W™ (p) = o™ (p)—U™(p), pe Kh, ¢ and & are, respectively, defined in (1.38)
and (1.42).

Proof. From (1.40) with the modification (1.41), we obtain

(A®) + ")) W ) = G D(p), pe Al (1.44)

G (p) = D (WD () — [f(p, T ) — f(p, UMY,
wWm(p) =0, pedAt

By using the mean-value theorem, we have
—=(n—1 n— n— n—
F@, ") = £, U") = fulp, QU)W (p),

where

QD (p) e U=V, Ty,

From (1.41), we have
V) = fulp, YY),

where Y (1 (p) € (Q("_l),ﬁ(n_1)>. We now present the right hand side G~ (p) of
(1.44) in the form

G (p) = (£l YD) = £ulp, Q) ) WO p).
By using the mean-value theorem, it follows that
Julp Y ) = ulp, QD) = funlp, H) (YO0 () = QU0 (p))
where H(™=1)(p) lies between Y ("~ and Q»~1). Taking into account that
YD) - Q)| < TV e) - U ).
In the notation (1.42), we can estimate G~V (p) as follows:

ot

o) .

wsefve)
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From here, (1.44) and using (1.9), we conclude (1.43). O

1.3 Monotone iterative method for parabolic equations

Parabolic differential equations are used to characterize a wide family of problems
in chemistry, physics and engineering sciences. Here, we study monotone iterative

methods for solving the parabolic problem in the form

% — Lu(x,t) + f(z,t,u) =0, (z,t) € Qr =w x (0,7, (1.45)

u(z,t) = g(x,t), (x,t) €0Qr =0w x (0,T], wu(z,0)=19(z), =zew,

where the domain w is bounded and connected in R* (k =1,2,...), and Jw is the

boundary. The differential operator L(x,t) is given by

Lu=)_ 0 D(z t)@ +§:vy(x t)%
laa:y " Oy, = "0y,

where the coefficients of the differential operator L(z,t) are assumed to be smooth and
D(z,t) > 0in w x [0,T]. The functions f, g and ¢ (z) are also assumed smooth in their

corresponding domains.

1.3.1 Nonlinear implicit difference scheme

On the domains @ and [0, 7], we introduce, respectively, meshes A" = AU OA" and
A" = ATUOA™, where A" and A" are sets of interior and boundary spatial points and

AN ={tm:ti<to<...<ty =T}, OA" ={ty=0}.

For solving the nonlinear problem (1.45), we consider the nonlinear implicit difference

scheme

(A tm) + 70 DU (D, tm) + By tm, U) — T U(pytm—1) =0, pe A", (1.46)

—h
Up,stm) = g(p,tm), p€OAN', m>1, Up,0)=v(p), peA”,

where [ is the identity operator and the time step 7, =ty — tin—1, m > 1, to = 0. On
each time level ¢,,, m > 1, the difference operator A(p, t,,) is defined by

A, tm)U (D tm) = A0, tm)U (0 tim) = > a0, tm) U0, tm), (1.47)
p'€c’(p)

16



where o/ (p) = a(p)\{p}, o(p) is a stencil of the scheme at an interior mesh point p € A".

The coefficients of the difference operator are assumed to satisfy the assumptions
d(p,tm) >0, a(p,tm) >0, p' €d'(p), (1.48)

d(p,tm) — Y a(p,tm) >0, pe A"
p'€c’(p)

It is assumed that the mesh domain A" is connected (1.6).

On each time level t,,, m > 1, we introduce the linear difference problem

(A, tm) + (Tt + 0 tm)) ) W (D, tm) = d(p,tm),  p € A", (1.49)
W(p,tm) = g(p,tm), pEON", *(pitm) >0, pei’.

We now consider the maximum principle for the difference operator
Ap,tm) + (" + ¢ (0, tm)) 1,

and give a bound on the magnitude of the solution to (1.49).

Lemma 1.3.1. Let the coefficients of the difference operator A(p,ty,) satisfy (1.48)
and K" be connected (1.6).

(i) If a mesh function W (p,ty,) satisfies the conditions

(AP, tm) + (Tt + (P, tm)I) W(p,tm) >0 (<0), pe A", (1.50)
W(p,tm) >0 (<0), pecdA,

then W(p,t,,) >0 (<0), pe€ .

(ii) The following bound on the magnitude of the solution to (1.49) holds

. _ ( [(s tn) || A
||W( >tm)||Kh < max{”g( 7tm)||dAh7 ||C*(',tm)||xh T Trﬁl } ) (151)

where

lgCstm)llonr = masx|g(p, tm)l,  [6(; tm)llan = max|é(p, tm)]

Proof. The proof of the lemma on each time level ¢,,, m > 1, repeats the proof of
Lemma 1.2.1 for the case of the elliptic problem with the following modifications. In

(1.10) and (1.12), we have now, respectively,

d(pa tm) + C*(p’ tm) + Tn_’bl - Z (I(p,,tm) Z 07
p'€a’(p)
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and

(A®:tm) + (" (0, tm) + 7)) V(p,tm) = [6(p, tm)],  p € A",
V(p,tm) = lg(stm)lloan, p € DA

1.3.2 The method of upper and lower solutions

On each time level t,,, m > 1, two mesh functions ﬁ(p, tm) and ﬁ(p,tm), pE A" are
called ordered upper and lower solutions of the difference scheme (1.46), if they satisfy

the inequalities

Up.tm) <U(p,tm), peA”, (1.52a)

(A tm) + 7 D) Up + fF(0,tm, U) — 72 U (pytm—1) >0, p € A", (1.52b)

(AP, tm) + 72 1) U, tm) + F(0rtm, U) = 7 U(ptm1) <0, p € AP,

Up,tm) < 9(p,tm) < U(p,tm), p €A, (1.52¢)
U(p.0) < 9(p) <U(p,0), pei”.

For given upper and lower solutions ff(p,t ), U(p, m) and t,, fixed, we define the

sector

(ﬁ(tm)’ U(tm)> = {U(pv tm) : ﬁ(pv tm) S U(p7 tm) é ﬁ(patm)a p € Kha m Z 1} .

We assume that f(p,t,,,U) satisfies the constraint

f’u(patWh U) S C(p7 tm) U(pvtm) € <(7(tm)7 ﬁ(tm)>> p € Kha fu = %7 (153)

where ¢(p, t,,) is a nonnegative bounded mesh function.

To solve the nonlinear difference scheme (1.46), we construct an iterative method
which satisfies the monotone convergence property. On each time level t¢,,, m > 1,
the sequence of solutions {U™ (p,t,,)}, p € A" is calculated by the following iterative
method:

(A, tm) + (1,0 + c(ptm))I) Z™ (p, t) = —K (0, tm, UT™V), pe AP, (1.54)
ZV(p,tm) = g(p,tm) = U (p,tm), 2 (p,tm) =0, m>2, peaA”,

Up,0) =v(p), peX', Ulp.tm)=U"(p,ty),

K(p,tm, U") = (A, tm) + 70, DU (p, t) + £ (s b, U™D) = 72 U (D, ),
Z0 (p,t) = U™ (p,t) — U V(p,ty), pel’, m>1,
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where K(p, ty,, U(”_l)), p € A" is the residual of the implicit difference scheme (1.46),
c(p, tm) is defined in (1.53), U(p, t,,) is the approximate solution on each time level t,,
and n,, is the number of iterates on time level ¢,,.

We introduce the notation

—h
F(p, tms U) = C(p,tm)U(p,tm) - f(pvtma U)> peAN, (1-55)
and prove the monotone property of I'(p, t,,, U).

Lemma 1.3.2. Assume that Ui(p,ty,) and Ua(p,tm), p € Kh, m > 1, are functions in

~ ~

(U(tm),Ul(tm)), such that Uy(p,tm) < Us(p,tm), and (1.6), (1.53) are satisfied. Then
T(p, tm, U1) < T(p,tm,Us), pEA’, m>1. (1.56)
Proof. From (1.55), we obtain

C(p,tm,Us) =T (p,tm, U1) = c(p,tm)[U2(p,tm) — Ur(p, tm)]
_[f(pa tm7 UQ) — f(p, tm, Ul)]

By using the mean-value theorem, we have

f(p7 tm? UQ) - f(p7 tma Ul) - fu(pytm7Q) (UQ(pvtm) - Ul(p7 tm)) )

where Ui (p, tm) < Q(p,tm) < Ua(p,tm), p € A", From here, using the assumption of
the lemma and (1.53), we conclude (1.56). O

In the following theorem, we prove the monotone convergence of upper and lower

sequences generated by (1.54).

Theorem 1.3.3. Suppose that the coefficients of the difference operator A(p,ty,) in
(1.46) satisfy (1.48), f(p,tm,U) satisfies (1.53) and X" is connected (1.6). Let U(p,tm)
and ﬁ(p, tm), D € Kh, m > 1, be ordered upper and lower solutions (1.52). Then upper
{U(n) (p,tm)} and lower {Q(”) (p,tm)}, p € Kh, m > 1, sequences generated by (1.54)
with, respectively, 7 (pytm) = ﬁ(p,tm) and U (pytm) = ﬁ(p, tm), D € Kh, m > 1,

converge monotonically, such that,
U, tn) <UD pit) TV (0ot) T Vpot), ped’. m>1. (L57)

Proof. Since U (pytm) = ﬁ(p, tm), p € A" is a lower solution, it follows that the
residual K(p, tl,Q(O)) < 0. From here and (1.54), on the first time level ¢, we obtain

(A(p7 tl) + (7—1_1 + C(p7 tl))I) Z(l)(putl) Z 07 p c Ah7 Z(l)(patl) Z 07 p c aAh
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By using the maximum principle in Lemma 1.3.1, we conclude that

Z0(p.t1) >0, pei’. (1.58)

Similarly, for the upper solution [TA (p,t1) = ﬁ(p, t1),p € Kh, we have
ZWp, ) <0, pei” (1.59)

We now prove that U(l)(p,tl) and Q(l)(p, t1), p € A" are ordered upper and lower
solutions. Denoting W(l)(p,tl) = U(l)(p, t1) — Q(l)(p, t1), p € Kh, using notation
(1.55), from (1.54), we obtain that

(Alp,t1) + (77" + elp, t0)T) W (p, 1) = T(p, 11, T ) — T(p, 11, UD), p e A,
WO (p,t1) =0, pe At

From here, (1.56) and taking into account that U (p,t;) < 7 (p,t1), p € Kh, by

Lemma 1.3.1, we conclude that
wO(p,t1) >0, pei (1.60)
Thus, we prove (1.52a). From (1.54) and using notation (1.55), we have
K(p,t1,UM) =T(p,t1,UD) = T(p,t:,UY), pe A", (1.61)
From here, (1.56) and (1.60), it follows that
K(p,t1,UM) <0, peAl (1.62)
Similarly, we can prove that
Kp,t1,UY) >0, peAh. (1.63)

Thus, we conclude (1.52b). From the boundary and initial conditions in (1.54), it
follows that U™ (p, ¢;) and U(l)(p,tl), pE A satisfy (1.52c). From here, (1.60), (1.62)
and (1.63), we conclude that U(l)(p,tl) and UM (p,t1), p € A" are ordered upper
and lower solutions (1.52). By induction on n > 1, we can prove that U(n)(p,tl)
and U™ (p,t1), p € A" are ordered upper and lower solutions (1.52) which satisfy the
monotone property (1.57) on the first time level ¢;.

On the time level t1, from (1.57), we have

= n —=(n ~ —h
U(p7t1) < Q( 1)(p7t1) < Ug 1)(patl) < U(pa tl)a peE A
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From the assumption of the theorem that U (p,t2) and U (p,t2), p € A" are upper and
lower solutions (1.52), we obtain that ﬁ(p, t9) and ﬁ(p, ta), p € A" are upper and lower
solutions with respect to U(nl)(p, t1) and U™ (p, 1)), p € Kh, that is,

(A(p,t2) + 75 DU (p, 12) + f(p, 12, U) — 5 TV (p, 1) > 0, pe AP,

(A(p, t2) + 15 1)U (p, ta) + f(p,ta, U) — 73 U™ (p, 11) <0, pe AN

On the second time level ta, from (1.54), we have

(A(p, t2) + (13 + c(p, t2)) ) UV (p, t2) = c(p, t2)UO (p, t2) — f(p, t2,U)
+ U (p 1), pe A,
UW (p,t2) = g(p,t2), pe AL

From here and using notation (1.55), for W) (p, ty) = U(l)(p, ta) — Q(l)(p, ta), p € Kh,

we have the following difference problem

(Alp, t2) + (37" + c(p, t2))T) WO (p,t3) = T(p, ta, T) — T(p, 5, U®)
+ 7 [T, 0) - U (1)

Taking into account that U (p, ) < o (p, t2) and U™ (p, t5) < U(nl)(p, ta), p € Kh,
(1.56) and using Lemma 1.3.1, it follows that W) (p,t5) > 0, that is,

UD(p,t2) <TV(p,ta), ped

The proof that U(l)(p, te) and U m(p, ta), p € A" are ordered upper and lower solutions
(1.52) repeats the proof on the first time level ¢;. By induction on n > 1, we can prove
that U(n) (p,t2) and U™ (p,t2), p € A" are ordered upper and lower solutions (1.52),
which satisfy the monotone property (1.57) on the second time level ¢5. By induction

on m > 1, we can prove (1.57) for m > 1. O

1.3.3 Existence and uniqueness of a solution to the nonlinear differ-

ence scheme

Theorem 1.3.4. Let the assumptions in Theorem 1.3.3 be satisfied. Then the nonlinear
difference scheme (1.46) has mazimal U(p,ty) and minimal U(p,ty), p € Kh, m>1,

~

solutions in the sector (U (tm), U(tm)). IfV(p,tm), p € Kh, m > 1, is any other solution

~

in (U(tm),Ul(tm)), then

Uptm) < V(p,tw) <TU(p,tn), ped’, m>1 (1.64)
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Proof. From (1.57), we conclude that limQ(”)(p,tl) =U(p,t1), p € A asn — o0

exists, and

U(p7 tl) S Q(n_l)(p7 tl) S Q(n)(p7t1)7 ll)m Z(n)(p7t1) = 07 p S Khv (165)

~

where U (p,t;) = U(p,t1), p € X", From (1.54) and using the mean-value theorem,

we conclude that

K:(pa tlag(n)) = - (C(p> tl) - fu(p7 tlvg(n))) Z(n)(pvtl)v pE Ahv (166)

where Q(n_l) (p7 tl) < Q(n_l) (pa tl) < Q(n) (pa tl)a pe Kh'
By taking limit of the both sides and using (1.65), it follows that

K(p,t,,U) =0, peA (1.67)
Similarly, we can prove that
K (p,tl,U) =0, peAr

where U(p,t1) = lim, 00 U(n), pE A" Thus, from here and (1.67), we conclude that
U(p,t1) and U(p,t1), p € Kh, are, respectively, minimal and maximal solutions of the
nonlinear difference scheme (1.46) in the sector (U(t1),U(t1)). By the assumption of
Theorem 1.3.3 that U (p,t2) is a lower solution and from (1.65), on the second time

level t5, we obtain that
’C(pat27 ﬁ) = (A(pth) + Tgll)ﬁ(p7 t2) + f(patQa [7) - Tglg(pa tl)a

where U(p,t1), p € A" is the approximate solution on the first time level ¢, which
is defined in (1.54). From here and taking into account that from (1.57), U(p,t1) >

~

U(p,t1), p € Kh, it follows that
K(pﬂtQ’ﬁ) S (A(p7 t?) + 7'2_1])(7(177752) + f(pth) (/j) - T2_1/U\(p7t1) S 07

which means that ﬁ(p, to) is a lower solution with respect to U(p,t1), p € A By a

similar argument as on the first time level ¢;, we can prove that
. (n) . —~h
lim U™ (p,t2) =U(p,t2), pe€A,

n—oo

exists and solves (1.46) on the second time level t5. By induction on m > 1, we can
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prove that
Up,tm) = lim U™ (p,ty), ped’,

is a solution of the nonlinear difference scheme (1.46).

Similarly, we can prove that

U(p,tm) = lim U(n)(p, tm), DE Kh,

n—o0

is another solution to the nonlinear difference scheme (1.46).
On each time level t,,, m > 1, the proof of (1.64) repeats the proof of (1.29) from
Theorem 1.2.5 for elliptic problems. O

For uniqueness of a solution of (1.46), we assume that f(p, t,,, U) satisfies the two

sided inequalities

~

(P, tm) < fulpotim, U) < e(pitm),  Upytm) € (U(tw), Ultm)), pedX’, m=>1,
(1.68)
where ﬁ(p, tm), U (pytm), p € Kh, m > 1, are given ordered upper and lower solutions of
(1.46), c(p,tm) and c(p, t,,) are, respectively, bounded and nonnegative bounded mesh

functions. It is assumed that the time step 7, satisfies the assumption

Tm < 775 Tm = min(O,gm), Cm = min Q(pv tm)a m Z 1a (169)
Y] pel”
where ¢(p, t,,) is defined in (1.68). If v, = 0, then no restrictions on time exist.

In the following theorem, we prove the uniqueness of a solution of the nonlinear
difference scheme (1.46).

Theorem 1.3.5. Let the mesh X" be connected (1.6), and T, m > 1, satisfy (1.69).
Assume that the coefficients of the difference operator A(p,ty,) in (1.46) satisfy (1.48)
and f(p,tm,U) satisfies (1.68). Then the nonlinear difference scheme (1.46) has a

unique solution.

Proof. On each time level t,,,, m > 1, from Theorem 1.3.4, it follows that U(p, t,,) and
U(p,tm), p € Kh, m > 1, are two solutions of the nonlinear difference scheme (1.46).

For uniqueness of a solution, it is sufficient to prove that U(p,t,,) = U(p,tm), p € Kh,

m > 1. On the first time level ¢1, in the notation W (p,t1) = U(p,t1) —U(p,t1), p € Kh,
from (1.46), it follows that

(A(patl) + TI_II)W(pvtl) + f(patlaﬁ) - f(p7tlag> = Oa pE Aha
W(p,t) =0, pe oA
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From here, by using the mean-value theorem, we conclude that

(Alp,t1) + (71" + fulp t1, QNI) W(p,t1) =0, pe A, W(p,t1) =0, pe oA,

(1.70)

where U(p,t1) < Q(p,t1) < U(p,t1). From (1.57) and (1.64), we conclude that
fu(p, t1,Q) satisfies (1.68). From (1.68) and (1.69), we obtain

Tfl + fu(pvtlaQ) > 0.

From here and (1.70), by using Lemma 1.3.1, we conclude that W (p,t;) =0, p € A"

On the second time level to, we have
(A(p’ t2) + (7—271 + fu(patQa Q))I) W(p7 t2) = 07 pe Ahv W(pa t2) = 07 pe aAha

where U(p, t2) < Q(p,t2) < U(p,ta), p € i By the same argument as for W(p,t;) =0,
pE Kh, we obtain W(p,ta) =0, p € A" By induction on m, m > 1, we can prove that
W(p,tm) =0,p€ Kh, m > 1. Thus, we prove the theorem. O

1.3.4 Convergence analysis of the monotone iterative method

Convergence analysis of the monotone iterative method on [0, T]

Here, we investigate convergence of the monotone iterative method of the whole
time interval [0,7]. We now choose a stopping criterion for the monotone iterative
method (1.54) as follows:

K (- tm, U™ <65 m>1, (1.71)
e (-t )],

where U™ (p,tm), is generated by (1.54), and 0 is a prescribed accuracy. We set up
Up,tm) =U") (p,t,,), p € Kh, m > 1, such that n,, is minimal subject to (1.71). We
now prove the following theorem for the convergence of the iterative method (1.54),
(1.71).

Theorem 1.3.6. Let the mesh A" be connected (1.6), and T, m > 1, satisfy (1.69).
Assume that the coefficients of the difference operator A(p,ty,) in (1.46) satisfy (1.48)
and f(p,tm,U) satisfies (1.68). Then the following estimate holds:
max [|[U(c, tym) — U (- tm)||n < T9, (1.72)
m>1 A
where U(p,tm), p € Kh, m > 1 is the approximate solution generated by (1.54), (1.71)

and U*(p,tm), p € Kh, m > 1, is the unique solution of the nonlinear difference scheme

(1.46). Furthermore, on each time level m > 1, the sequences converge monotonically
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(1.57).

Proof. Theorem 1.3.3 gives the monotone convergence of the sequence {U (m) (p,tm)},
p € Kh, m > 1. The existence and uniqueness of a solution of the nonlinear differ-
ence scheme (1.46) are proved in Theorems 1.3.4 and 1.3.5. We present the difference
problem for U(p, t,,) = U(nm)(p, tm), p € Kh, m > 1 in the form

(A(p’ tm) + TTZII)U(p’ tm) + f(p’ tm,U) - TTZIU(P, tm—l) = ,C(p’ tm,U)u peE Aha
Ur(p,tm) = g(p,tm), p € OA".

From (1.46), for U*(p, t,,), we have
(A, tn) + 70 DU (P tn) + (0 b, U™) = 7, U (P tn—1) =0, p € A",

From here, for W (p,t) = U(p,tm) — U*(p,tm), p € A" and using the mean-value

theorem, it follows that

(AP tm) + 7 DWW (Ds tn) + Fu(Ds b, QW (ps ) = K (s b, T
+ Trglw(patm—l)a
peA", W(p,tn) =0, pedAl,

where U*(p, tm) < Q(pytm) < U(p,tm), p € Kh, m > 1. From here, (1.68), (1.69) and
(1.71), by using (1.51), we obtain

IWCstm)lgn < 7+ [[WC ) |5

Taking into account that HW(, to)H = 0, by induction on m > 1, we conclude that

s=1
Thus, we prove the theorem. ]

We now investigate convergence properties of the monotone iterative method (1.54)
on each time level.
Linear rate of convergence
We modify the monotone iterative method (1.54) by replacing ¢(p, t,,) by the con-
stant ¢ as follows:
c= max  ¢(p,tm). (1.73)
(potm)EA" x A"

Theorem 1.3.3 still holds if we replace ¢(p, t,,) by ¢.
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Theorem 1.3.7. Suppose that the coefficients of the difference operator A(p,ty,) in
(1.46) satisfy (1.48), f(p,tm,U) satisfies (1.53) and A" is connected (1.6). Then for
the sequence {U(”)(p,tm)}, pE Xh, m > 1, generated by (1.54), (1.73), the following
estimate holds:

(n) (. n—1y (1), __c
12t < G120t = = (1.74)

where ¢ < 1 is the linear rate of convergence.

Proof. We consider the case of lower solution. Similar to (1.66), with assumption (1.73),

we conclude that
]C(pvtmvg(nil)) = - (E_ fu(pvt’mvg(nil))) Z(nil)(pa tm)7 p S Ah7 (175)

where U (p, t,,) < Q("fl)(p,tm) <U™ D(p,ty), pe Kh, m > 1. From (1.59) and
(1.60), it follows that the partial derivative fy,(p, tn,@(nfl)) satisfies (1.53). From here,
(1.54), (1.73) and (1.75), we obtain that

(A, t) + (7" + 1) 20 (0, ) = (F= fulp, b, Q")) 20D (1), p € A"

By using Lemma 1.3.1, it follows that

2ot

" < gm HZ("_I)(',tm)HXh :

By induction on n, we can prove (1.74) for a lower sequence {U () (pytm)}, p € Kh, m >
1. By a similar argument, we can prove (1.74) for {U(n) (pytm)}, p € Kh, m > 1. O

Quadratic rate of convergence

On each time level ¢,,, m > 1, we modify the monotone iterative method (1.54) by
replacing ¢(p, tp) by ¢ D(p,t,n), n > 1, and calculating the sequence {U™ (p,t,,)},
pE Kh, m > 1, as follows:

(A tm) + (7" + D (@, )T) 20, tn) = ~Kpi s U), p € A", (1.76)

ZW(pitym) = g0, tm) — U (ptn), ZM(ptn) =0, n>2, pedAl,

7h n
U(pv 0) = w(p)v p S A 9 U(pa tm) = U( m)(p, tm),
K (P, tm, U™D) = (AP tm) + 70 DU (0, t) + F (0t U ™D) = 71U (9, 1),
Z(n) (patm) = U(n) (p7 tm) - U(n—l)(p’ tm): pE Kha m > 1,
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where the mesh function ¢~V (p, t,,) is given by

c(nil)(pa tm) = mgx{fu(patmv U)}7 Q(nil)(patm) S U(p7 tm) S U(n_l)(p’ tm) (177)

On each time level m > 1, two sequences {ﬁ(n)(p, tm)} and {UM™(p,t,,)}, p € i,
m > 1, are in use for calculating ¢V (p, t,,).

We introduce the notation

6 = ma [ {9 )] U 0rt) € (D0, D) w8} 179

pEA

We now prove the quadratic convergence of the monotone iterative method (1.76),

(1.77) in the following theorem.

Theorem 1.3.8. Suppose that the coefficients of the difference operator A(p,ty,) in
(1.46) satisfy (1.48), and mesh X" is connected (1.6). Assume that f satisfies (1.53).
Then for the sequences {U(m) (p,tm)} and {U(m) (pytm)}, P € Kh, m > 1, generated by
(1.76), (1.77), the following estimate holds:

[ ¢t ; , (1.79)

< Tt [WOTD )|

where W™ (p, t,,,) = U(n)(p, tm) — Q(”)(p, tm), P € Kh, m > 1, and &, is defined in
(1.78).

Proof. From (1.76) and (1.77), we obtain

(AP tm) + (7t + D, ) T) Wy t) = G Dpstn), pe A, (180)

GV (p,t) = "D (p,t )W D (p, 1) — (f(p, t, U ) = £(p, tmjﬂ(”‘”)) :
W (p,t,) =0, pedAn.

By using the mean-value theorem, we have
@t T ) = (0, U ™D) = fulp, i, Q)W (p, 1),

where UV (p, t,,) < Q"D (p, t,) < T )( tm). From (1.77), we have

DD t) = fulpytin, YD),

where Q(”_l)(p, ty) <Y D(p t,) < U(n_l)(p, tm). We now present the right hand
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side of G~V (p, t,,) in (1.80) as follows:

GO (pstm) = (fulps s YO) = fulpytins Q7)) WOV, ).

By applying the mean-value theorem, we have

fu(p7 tim, Y(nil)) - fu(pa tom, Q(nil)) =
Fuu (P, tim, H"D) (Y(”_”(p, tm) — QU Y (p, tm)) :

where H(™~1 (p, tmm) lies between Q(”_l)(p, tm) and Y(”_l)(p, tm). Taking into account
that
n— n— +=(n—1 n—
YOV, tm) = QD (p, )| < T (0, ) = UV, ).

In the notation (1.78), we estimate G~ (p, t,,) as follows:

2
A

ot

T

From here, (1.80) and using (1.51), we conclude (1.79). O

1.4 General overview of the thesis

In Chapter 2, the nonlinear difference scheme for approximating the elliptic prob-
lems is presented. For solving the nonlinear difference scheme, the point Jacobi and
point Gauss-Seidel iterative methods are constructed and their monotone properties
are proved. The uniqueness of a solution of the nonlinear difference scheme is given.
We prove that the numerical solution converges to the unique solution of the nonlinear
elliptic problem and estimate the L., discrete-norm of the error between the numer-
ical and exact solutions of the nonlinear difference scheme and the error between the
numerical solution and the exact solution of the elliptic problem. We prove that the
point monotone Gauss-Seidel method converges faster than the point monotone Ja-
cobi method. Initial upper and lower solutions to start the point monotone iterative
methods are constructed. Numerical experiments are presented.

In Chapter 3, for solving nonlinear systems of elliptic differential equations with
quasi-monotone nondecreasing and nonincreasing reaction functions, we present the
nonlinear difference scheme which approximates the nonlinear elliptic systems. We con-
struct the point monotone Jacobi and Gauss-Seidel methods for solving the nonlinear
difference scheme and prove their monotone properties. The existence and uniqueness
of a solution of the nonlinear difference scheme with quasi-monotone nondecreasing

and quasi-monotone nonincreasing reaction functions are proved. We prove that the
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numerical solution converges to the unique solution of the nonlinear elliptic problem
and estimate the L., discrete-norm of the error between the numerical and exact so-
lutions of the nonlinear difference scheme and the error between the numerical solu-
tion and the exact solution of the elliptic system. We prove that the point monotone
Gauss-Seidel methods converge faster than the point monotone Jacobi methods for the
quasi-monotone nondecreasing and quasi-monotone nonincreasing cases. Constructions
of initial upper and lower solutions to start the point monotone iterative methods are
presented.

In Chapter 4, for solving nonlinear systems of elliptic differential equations, we
construct the block monotone Jacobi and Gauss-Seidel methods with quasi-monotone
nondecreasing and nonincreasing reaction functions and prove their monotone prop-
erties. We prove that the numerical solution converges to the unique solution of the
nonlinear elliptic problem and estimate the L., discrete-norm of the error between
the numerical and exact solutions of the nonlinear difference scheme and the error be-
tween the numerical solution and the exact solution of the elliptic system. For the
quasi-monotone nondecreasing and nonincreasing cases, we prove that the block mono-
tone Gauss-Seidel methods converge faster than the block monotone Jacobi methods.
Numerical experiments are presented.

In Chapter 5, for solving nonlinear systems of parabolic differential equations, the
two classes of coupled parabolic systems with quasi-monotone nondecreasing and non-
increasing reaction functions are considered. We present a nonlinear difference scheme
which approximates the parabolic system. For solving the nonlinear difference scheme,
we construct the point monotone Jacobi and Gauss-Seidel methods and prove their
monotone properties on each time level. The existence and uniqueness of a solution of
the nonlinear difference scheme, for the quasi-monotone nondecreasing and nonincreas-
ing cases, are proved. We prove that the numerical solution converges to the unique
solution of the nonlinear parabolic problem and estimate the L, discrete-norm of the
error between the numerical and exact solutions of the nonlinear difference scheme, and
the error between the numerical solution and the exact solution of the parabolic prob-
lem. We prove that for the quasi-monotone nondecreasing and nonincreasing cases,
the point monotone Gauss-Seidel methods converge faster than the point monotone
Jacobi methods. For quasi-monotone nondecreasing and nonincreasing cases, on each
time level, we construct initial upper and lower solutions to start the point monotone
iterative methods. Numerical experiments are presented.

In Chapter 6, for solving the nonlinear parabolic systems with quasi-monotone
nondecreasing and nonincreasing reaction functions, we construct the block monotone
Jacobi and Gauss-Seidel iterative methods and prove their monotone properties on each

time level. For the quasi-monotone nondecreasing and nonincreasing cases, we prove
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that the numerical solution converges to the unique solution of the nonlinear parabolic
problem and estimate the L., discrete-norm of the error between the numerical and
exact solutions of the nonlinear difference scheme and the error between the numerical
solution and the exact solution of the parabolic problem. Numerical experiments are

presented.
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Chapter 2

Jacobi and Gauss-Seidel methods
for elliptic boundary value

problems

In this chapter, for solving nonlinear elliptic problems, based on the method of up-
per and lower solutions, we employ point monotone Jacobi and Gauss-Seidel iterative
methods. Some properties of solutions to the continuous problem are reviewed. Dif-
ference schemes which approximate the nonlinear continuous problem are presented.
In the view of the upper and lower solutions method, the point monotone Jacobi and
Gauss-Seidel methods are constructed. Convergence analysis of the point monotone
iterative methods are introduced. We construct initial upper and lower solutions to
start the monotone iterative methods. Numerical experiments illustrate the theoretical
results.

By comparing the numerical results in this chapter with [61], we conclude that
to attain the required stopping test, the numbers of iterations for the point monotone
methods are almost double of the numbers of iterations for the block monotone methods
in [61].

The numerical experiments give a motivation to investigate block monotone iterative
methods rather than point monotone iterative methods for solving nonlinear differential

problems.
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2.1 Properties of solutions to the nonlinear elliptic prob-

lem

We consider properties of the nonlinear elliptic boundary value problem

— Lu(z,y) + f(z,y,u) =0, (x,y) € w, (2.1)
w={(z,y):0<z<l, 0<y<l}, wuly =g(y), (z,9)€iw,

where [; and [y are constants and Ow is the boundary of w. The differential operator L
is defined by

Lu(z,y) = D) (2, y)uar + DY (2, y)uyy + v (2, y)us + 0@ (2, y)uy, (2.2)

where D@ (z,y) and DW (x,y) are positive functions. It is assumed that the functions
f(z,y), g(x,y), D@ (z,y), DW(z,y), v (x,y) and v¥ (x,y) are smooth in their re-
spective domains. It is clear that the differential operator Lu(z,y) in (2.2) is uniformly

elliptic which is a special case of (1.1) and the coefficient matrix

is positive definite and bounded.
Two functions u(z,y) and u(x,y) are called ordered upper and lower solutions to

(2.1), if they satisfy the inequalities

u(z,y) <u(z,y), (z,y) €, (2.3a)
~Lu(z,y) + f(z,y,u) <0< —Lu(z,y) + f(z,y,u), (v,y) €w, (2.3b)
u(r,y) < g(x,y) <u(z,y), (2,y)€ ow. (2.3¢)

For given ordered upper u(x,y) and lower u(x,y) solutions, a sector (u, u) is defined in

the form

(U, u) ={u(z,y) :  ulz,y) <u(z,y) <u(r,y), (v,y)€w}.

To ensure the existence of a solution to (2.1), in the sector (u, u), the function f(z,y,u)

is assumed to satisfy the constraint

8f>’

- (2.4)

fulwyw) S clay), uley) € @D, (y)em, (fu=

where c¢ is a nonnegative bounded function. The following theorem states the existence
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of a solution to problem (2.1).

Theorem 2.1.1. Let u(x,y), u(z,y) be ordered upper and lower solutions of (2.1), and
f satisfy (2.4). Then problem (2.1) has a solution uv*(z,y) € (u,u).

The proof of the theorem is given in Theorem 3.2.1, [59].
For uniqueness of a solution to (2.1), the function f(z,y,u) is assumed to satisfy

the two-sided constraints
0 < fulz,y,u) <c(z,y), wu(z,y) € @u), (v,y)cw. (2.5)

Theorem 2.1.2. Let u, u be ordered upper and lower solutions of (2.1), and f satisfy
(2.5). Then problem (2.1) has a unique solution u*(x,y) € (u(z,y),u(z,y)).

The proof of the theorem is given in Theorem 3.3.1, [59].

2.2 The nonlinear difference scheme

—~hz

_ . =h h
On @, we introduce a rectangular mesh A™ = A Y.

x A
:{xi, iZO,l,...,Nw; x(]:O, TN, :ll; hm:xﬂ_l—xi},

—h .
Ay:{yj7 320717'-->Ny5 1/020, l/Ny:l27 hy:yj+1_yj}7

where x; and y; are equally spaced. By using the central difference approximations for
the first and second derivatives, we introduce the nonlinear difference scheme in the

form

AijUij + fi5(Uij) =0, (3,5) € Q" Uij = gij, (i,5) € 0Q", (2.6)

where Q" is the set of indices of interior mesh points in Kh, 9Q" is the set of indices
of boundary mesh points in A" and the central difference approximations for the first
and second derivatives are given by

Ui1i—2Uii +Usiq 4

2 _ Yi-1lj J i+1,j 2 —

DU;; = 2 , DyUij =

€T
Uit1j —Ui—1

DLU; = e D,Ui; =
x

Uij-1—2U;; +U; j 11
h;

, (2.7)

Uijr1 —Uij—
oh,
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When no confusion arises, we write f(x;,y;,U(xi,vy;)) = fij(Usj). The difference oper-
ator A;;U;; in (2.6) is defined by

AUy = A Uy + AL Uy, (2.8)
1
AE?U@']' =52 [—lijUiq,j + 2D§;-C)U,-j — rijUiH,j} ,
1
AE?)UU ) [_bijUi,j—l + ZD%J)UU - qijUi,j+1} ;
Yy
DZ(;C) UE;) Dgf) Ulﬁ;;)
lij = — o T = +-L
h2  2h, h2 " 2h,
) DS'J) v%’) DS'J) U@(Jy)
VT T, T TR Ty,

To insure that l;;, r;;, bj; and g;; are positive, we choose the step sizes h, and h,, which

satisfy the inequalities

D@ opW
he < —9— hy< =9 i=12..,N,—1, j=12,...,N,—1
o5 oy
iJ i

Remark 2.2.1. If the effect of convection v(z,y) dominates diffusion D(z,y) in (2.2)
to the extent that these conditions require prohibitively small hy, and hy, then an upwind

difference scheme can be used to remove any restriction on h, and hy, that is,

Uit1,;—Uij . (z)
— h, Zf v <0,
DLU; = e Y (2.9)

U;;—U;— j . T
371]7 'Lf ’Uz(]) 2 07

T

Uij+1=Uij if 2@ <0
1y — )

h 9
D/ U;; = v (2.10)
Y Sl f o) > 0.

We introduce the linear problem
AiiWij; + ijWij = ®;;, (i,7) € Qh, Wij = 9ij, (i,5) € 8Qh, (2.11)

where c¢f; is a nonnegative mesh function. We formulate the maximum principle for the

difference operator A;; + ¢j;, (4, j) € Qn.
Lemma 2.2.2. If a mesh function W;; satisfies the conditions

AigWij+cWig 2 0(<0),  (4,5) €, Wi; >0 (<0), (i,5) € 0",

then Wi; >0 (< 0), (i,§) € Q" = QhUaQh,
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The proof of the lemma is given in Lemma 1.2.1, Chapter 1.
Two mesh functions ﬁlj and ﬁij, (1,5) € Q" are called ordered upper and lower

solutions of (2.6), if they satisfy the inequalities

U, < Uy, (i,5) Q" (2.12a)
AijUsj + £i5(Us) <0 < AUsj + fi5(Uy), - (i, §) € Q1 (2.12b)
Ui < gi; < Uy, (i,5) € 90" (2.12¢)

For given ordered upper ﬁij and lower (7@-, (i,7) € (oK solutions, a sector <(7,U ) is

defined as follows

<(/j, ﬁ) = {Ui]’ : ﬁi]’ < Uij < ﬁij, (Z,j) € ﬁh} .

In the sector <(7 ,U), we assume that the function f in (2.1) satisfies the constraint

9fi;(Uy) .

=~ .o —h
ou > Gijy Uij € <U7 U>a (Zaj) € ) (213)

where ¢, (4, ) € Q" isa nonnegative bounded mesh function.

We introduce the notation
.. —h
Lij(Uis) = iUy — fij(Uig),  (i,5) € @, (2.14)

where ¢;; is defined in (2.13), and prove a monotone property of I';;.

Lemma 2.2.3. Suppose that U;; and Vij, (i,j) € 0" are mesh functions in (U,U),
which satisfy Us; > Vij, (i,7) € ﬁh, and (2.13) is satisfied. Then

Tij(Us) > Tij(Vig),  (in5) € 2", (2.15)
Proof. From (2.14), we have
Lij(Uij) = Tij(Vig) = ¢ij (Ui = Vig) = [fij(Uij) = fi5(Vig)]-
From here and using the mean-value theorem, we obtain

0fii(Qij
Lij(Uig) = Tij(Vij) = (Cv:j - fj;?”) (Uij = Vi),

where, Vi; < Qi < Uy, (4,]) € 0", From here, (2.13) and taking into account that
Ui > Vij, , (4,]) € ﬁh, we conclude (2.15). O

35



2.3 The point monotone Jacobi and Gauss-Seidel iterative

methods

Write down the difference scheme (2.6) at an interior mesh point (i, j) € Q" in the form

dijUij — LijUi—1; — mi5Uis1j — bijUi j—1 — ai;Ui j41 = — fi;(Uij),  (i,7) € Q", (2.16)
dij = lij + i + bij + @i lijsrij, bij i > 0, (2.17)

where [;;, 735, bjj and g;; are defined in (2.8).

We now present the point monotone Jacobi and Gauss—Seidel methods for the non-
linear difference scheme (2.16). The upper {Uﬁf)} and lower {QZ(?)}, (1,7) € Q" se-
quences of solutions are calculated by the following point Jacobi and Gauss—Seidel

methods

L7 = —Ky(Ug V), (i,5) € Q" n>1, (2.18)

L2y = (diy+ i) 2 = (lijZ-(n) o+ bz’jzﬁ)—l) ’

% i—1,5
(n) _ 77(n) (n—1) .. =h

n—1 n—1 n—1 n—1 n—1
’Cij(Uz‘(j )) = dijUig‘ - lijUi(—l,j) - TijUz‘(+1,j) - bijUi(,j—l)

n—1 n—1
- ql'jUi(,jJrl) + fij(Uij ))7
where lCij(Ui(]ﬁfl)), (1,7) € Q" is the residual of the nonlinear difference scheme (2.16)
on Ul-(f_l), (i,5) € ﬁh, and c¢;; is defined in (2.13). For n = 0 and n = 1, we have,

respectively, the point Jacobi and Gauss-Seidel methods.

Theorem 2.3.1. Let ﬁij and ﬁij, (1,7) € Q" be ordered upper and lower solutions
(2.12). Suppose that the function f in (2.1) satisfies (2.13). Then the upper {UE;)} and
lower {QE;L)}, (1,7) € " sequences generated by (2.18) with, respectively, UZ(?) = U
and Qg.)) = (/jij, (1,7) € Q" converge monotonically from above to a maximal solution

Uij, (4,)) € ﬁh, and from below to a minimal solution U,;, (i,j) € ﬁh, that 1s,

v

)

n = —=(n —(n—1 .. —=h
SQZ(‘j)SQijSUijSUEj)SU'Ej )7 (4,7) € 2. (2.19)
Proof. Since UZ(»?),

lCij(Ug-))) >0, (i,7) € Q", and from (2.18), we have

(i,7) € Q" is an initial upper solution, from (2.12b), it follows that

—(1 —(1 —(1 ..
(dij + Cij)Zz('j) - nlisz(‘—)l,j - nbisz(',j)—l <0, (i,4) € Qn, (2.20)

(1) - h
Z;; <0, (i,5) €0Q"
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From here, n = 0,1 and b;; > 0 in (2.17), for j =1 in (2.20), we obtain

(din+c) 25 =l Z <0, i=1,2,...,N,—1, Z) <0, i=0,N,. (221)

Taking into account that n = 0,1, /11 > 0 in (2.17) and using the maximum principle
in Lemma 2.2.2, for i = 1 in (2.21), we have Z\'] < 0. From here, l»; > 0 in (2.17) and
using the maximum principle in Lemma 2.2.2, for ¢ = 2 in (2.21), we obtain 7;1% <0.
By induction on %, we can prove that Z( ) <0, +=0,1,...,N,.

By a similar manner, for j = 2 in (2.20), we conclude that 71(12) <0, 7=

0,1,...,N,. By induction on j, we can prove that
7 <0, (i,5) eQ". (2.22)
Similarly, for an initial lower solution U EJ), (1,7) € ﬁh, we have

(1) .\ _&h
zD >0, (i) e (2.23)

We now prove that U(-) and UV (i,7) € Q" are ordered upper and lower solutions

=i
(2.12). Letting W( n) = U(n) g (i,7) € " , using notation (2.14), from (2.18), we

iJ =ij
conclude that

1 1 1 0 0 (0 0
(dij + ci) Wi =l W — bW =g+ W, +T35(0) - Ty,
()€ Q" Wi =0, (i,5) € 00",

From here, (2.16) and taking into account that Uff UEJ), (i,7) € ﬁh, by Lemma
2.2.3, we conclude that

(i,j) e Q" Wl =0, (i,5) € 90"

(dij + ci) W =ty W — by WD p
(2.24)

%, — 1 ’
From here, n = 0,1 and ;; > 0 in (2.17), for j = 1 in (2.24), we obtain
(dig + i)W —nliaWi >0, i=12,.. No—1, W =0, i=0N,

From here, by Lemma 2.2.2, for i = 1, we have Wl(ll) > 0. From here, I3 1 > 0 in (2.17)
and using Lemma 2.2.2, for ¢ = 2, we conclude that WQ( 1) > 0. By induction on i, we
can prove that Wl(ll) >0, +=0,1,...,N,.

By a similar manner, for j = 2 in (2.24), we can prove that Wz(é) >0, i=

0,1,...,Ng. By induction on j, we can prove that

wl >0, (i,5) e, (2.25)

v]
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that is, we prove (2.12a). We now prove (2.12b). From (2.18) and using the mean-value

theorem, we conclude that

ot
):_<Cij 0fij(Qsj )) (1)

(1)
au Z TZ]ZZJ,-I g qijZi,j+17 (226)

77(1)
ICZ']'(U~ ij

2

where U(l) < @S < UE?), (i,7) € Q" From (2.23) and (2.25), it follows that
ofi;(Q /au satisfies (2.13), and from (2.13), (2.17), (2.22) and (2.26), we conclude
that

—(1 .
ICU(UEJ)) > 07 (Zvj) S th
which means that UEJ), (i,5) € Q" satisfies (2.12b). By a similar argument, we can
prove that

Ki(UL) <0, (i.5) € Qn,

which means that U EJ) , (i,7) € Q" satisfies (2.12b). From the boundary condition on
o0 in (2.18), it is clear that US) and QS) satisfy (2.12c). Thus, we prove that US)
and UEJ),

Now, by induction on n, we can prove that {UZ(»?)}, (i,j) € Q" is a monotone

(i,7) € Q" are ordered upper and lower solutions (2.12).

decreasing sequence of upper solutions and {U, E;l)}, (i,5) € Q" is a monotone increasing
sequence of lower solutions.

We now prove that the sequence {UE?)}, (1,7) € Q" converges monotonically from
above to a maximal solution U;; and the sequence {QE?)}, (i,5) € Q" converges
monotonically from below to a minimal solution U,;. From (2.19), we conclude that

lim UZ(?) = Uij and lim U, S;L) = U,;; as n — oo exist and

lim Z() 0, lim Z() 0, (i,j)eﬁh.

n—o0 n—oo

Similar to (2.26), we obtain

=(n)
—(n) 0fi;(Qi; )\ =n) —(n) —(n) .
]Cij(Ui‘ )= _(Cz‘j - T]>Zij - TijZiJrl,j - QijZi,j+1u (4,7) € th
where U( Q(n) < U(n 1), (1,7) € " By taking limit of the both sides, we conclude
that

,Cz](ﬁz]) = 07 (%]) € Qh7

which means that U;j, (4,5) € 0 is a maximal solution to (2.6). Similarly, we can
prove that
Kij(Uy) =0, (i.j) € 2,
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which means that U,;, (i,]) € Q" is a minimal solution to (2.6). Thus, we prove the

theorem. O

To prove the uniqueness of a solution to the nonlinear difference scheme (2.6), we

assume that the reaction function f in (2.1) satisfies the following two-sided constraint

0<c, <) oo v e @.0), (), (2.27)

Cij > ou =~ Cij,

where Cij and c¢;; are positive bounded mesh functions.

Theorem 2.3.2. Let ﬁij and ﬁij, (i,5) € ﬁh be ordered upper and lower solutions
(2.12), and f in (2.1) satisfy (2.27). Then the nonlinear difference scheme (2.6) has a

unique solution.

Proof. To prove the uniqueness of a solution to the nonlinear difference scheme (2.6),
it suffices to check that U,; = Ujj, (i,5) € ﬁh, where U;; and Ujj, (i,5) € Q" are the
minimal and maximal solutions from (2.19). Letting Vij = U;; — U, (i,4) € ﬁh, from
(2.6), we have

LijVij + fi;(Us) — fi;(Uy;) =0, (i,4) €Q", Vi =0, (i,4) € oQ".

From here and using the mean-value theorem, we obtain

(%+wﬁ%»wzaumem,%=m@memm

where U,;; < Qi < U,j, (i,7) € Q" From here and the left inequality in (2.27), by
using the maximum principle in Lemma (2.2.2), we conclude that

‘/z] :07 (Zvj) Eﬁh‘

Thus, we prove the theorem. O

2.4 Convergence analysis of the point monotone iterative

methods

A stopping test for the point monotone iterative methods (2.18) is chosen in the form

= max , (2.28)

HIC(U(H))HQh <0 HK(U(H))‘ Qo (i,j)eQh

where 0 is a prescribed accuracy and ICij(Ui(jn)) is defined in (2.18).
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In the following lemma, we give a bound on the magnitude of the solution to the

linear problem (2.11).

Lemma 2.4.1. The following bound on the magnitude of the solution to the linear

problem (2.11) with a positive mesh function c;j holds

(i)
Wl < o { gl max, 12D (2.29)
where
= max viE
ll9llacn (i.])eB0n 1941

The proof of the lemma is given in Lemma 1.2.1, Chapter 1.

Theorem 2.4.2. Suppose that the two-sided constraint in (2.27) is satisfied. Then for
the sequence of solutions {Ui(jn)}, (1,7) € ﬁh, generated by the point monotone iterative
methods (2.18), (2.28), we have the following estimate

HU(%) —U*||_, < 2—15’

Q

where U, (i,7) € Q" is the unique solution of the nonlinear difference scheme (2.6),

57
¢ijs (i,7) € Q" is defined in (2.27), and ng is the minimal number of iterations subject
to (2.28).

Proof. From (2.18), for UZ-(;L‘S) and U, (1,7) € Q", we have

YR
AU + fU5) = KU, (1) e ", USY =gy, (i) € P,
AUl + f(U5) =0, (i,5) € Q" Ujy=gij,  (i,5) € 09"

Letting W/Z-(jm) =y _y (1,7) € ﬁh, from here and using the mean-value theorem,

i 150
we obtain that

(ns)
afij(Qij6 )W-(m)

S W = KU, ) e @ Wi =0, (i) € 00",

)

AUWZ-(;Z&) +
where QE;”) lies between Ui(Jm) and U};. From here and using (2.29), we conclude that

||W(”5)||§h <t HK(U(W))’

or’
From here and (2.28), we prove the theorem. O

Theorem 2.4.3. Let the assumptions in Theorem 2.4.2 be satisfied. Then for the
sequence of solutions {Ui(jn)}, (1,7) € ﬁh, generated by (2.18), (2.28), the following
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estimate holds
e

o S O+ IEM) ),

where u*(x,y) is the exact solution to (2.1), E;j is the truncation error of the exact so-

lution u*(x,y) on the nonlinear difference scheme (2.6), and ns is the minimal number
of iterations subject to the stopping test (2.28).

. _=h

50 ij? (27])69 )

is the unique solution of the nonlinear difference scheme (2.6). From (2.6), by using

Proof. We denote e;; = Uf; — u; (i,§) € ﬁh, where the mesh function U

the mean-value theorem, we obtain that

dfi;(Yij)

D eij = —Eij(h), (i,5) €Q" e =0, (i,5)€ o,

Az‘jez‘j +

where Y;; lies between u;; and U;. From here and (2.27), by Lemma 2.4.1, it follows
that
lellgn < ¢ HIEM)|qn. (2.30)

We estimate HU(W) — u*Hﬁh as follows

HU(”“) _U 4 U —

o H 10" =l

From here, (2.30) and using the estimate from Theorem 2.4.2, we prove the theorem. [

2.5 Construction of initial upper and lower solutions

To start the monotone iterative methods (2.18), an initial iteration is needed. In this

. . . c e 1. . =~ = .o =h
section, we discuss the construction of initial iterations U;; and Uj;, (i,7) € Q.

2.5.1 Bounded functions

Assume that the functions f and g in (2.1) satisfy the following conditions:
f(2,9,0) <0, g(z,y) >0, flo,y,u) > M, u(z,y) >0, (z,y)€w, (2.31)

where M = const > 0.

We introduce the mesh function
U, =0, (i,5)eq, (2.32)

and the linear problem

AUy =M, (i,j) € ", Uy =gy, (i,j) €0 (2.33)
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Lemma 2.5.1. Assume that the assumptions in (2.31) are satisfied. Then the mesh
functions from (2.32) and (2.33) are ordered lower and upper solutions (2.12).

Proof. Letting W;; = ﬁij — ﬁij, (i,§) € ﬁh, from (2.32) and (2.33), we have
AUVVZJ - M’ (Z’]) € Qh’ VVZ] = Gij, (’Lv.]) € 8Qh’

where A;; is defined in (2.6). From here, (2.31) and the maximum principle in Lemma
2.2.2, we conclude that
Wi; 20, (i.j) e Q"

Thus, we prove (2.12a). Now we prove (2.12b). From (2.33), by the maximum principle
in Lemma 2.2.2, we obtain
Uy 20, (i.j) €. (2.34)

From (2.31), (2.33) and (2.34), we have
Aijﬁij + fij(ﬁij) >0, (i,5)€Qn

that is, Nz-j, (i,7) € Q" satisfies (2.12b). From (2.33), it is clear that ﬁij , (i,7) € 00"
satisfies (2.12c). Thus, (72-]-, (1,7) € Q" is an upper solution (2.12). From (2.31) and
(2.32), we conclude that

hence, ﬁij, (i,7) € 0" is a lower solution (2.12). Thus, ﬁij and ﬁij, (ij) € Q" from

(2.32) and (2.33) are ordered lower and upper solutions (2.12) to the nonlinear difference
scheme (2.6). O

2.5.2 Constant upper and lower solutions
Assume that the functions f and ¢ in (2.1) satisfy the conditions
f(2,9,0) <0, g(x,y) 20, wulz,y) =0, (z,y)€, (2.35)
and there exists a positive constant K, such that
flz,y, K) >0, g(z,y) <K, (zr,y)€w. (2.36)

Introduce the constant mesh function

=K, (i,j)eq" (2.37)

[T
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The following lemma states that the mesh functions from (2.32) and (2.37) are ordered

lower and upper solutions (2.12).

Lemma 2.5.2. Assume that (2.35) and (2.36) are satisfied. Then the mesh functions
from (2.82) and (2.87) are ordered lower and upper solutions (2.12).

Proof. Letting W;; = (72-]- — ﬁij, (i,§) € ﬁh, from (2.32) and (2.37), we conclude that
AiiWii =0, (i,5) € Q" Wi; >0, (i,5) € 09"

From here and Lemma 2.2.2, we obtain that W;; > 0, (i,7) € " Thus, we prove
(2.12a). From (2.36) and (2.37), we have

Az’jfjij + fij(ﬁij) >0, (i,5)€Qn fjij > gij, (i,§) € 00"

Thus, ﬁij, (i,5) € Q" from (2.37) satisfies (2.12b), (2.12c). From (2.32) and (2.35), we
obtain that

AijUij + fi;(Ui) <0, (i,5) € Q" Uij < gij,  (5,5) € 99",

that is, ﬁij, (1,7) € Q" from (2.32) satisfies (2.12b), (2.12¢). Thus, we prove that ﬁij
and Uy, (i, ) € ﬁh, from (2.32) and (2.37) are ordered lower and upper solutions (2.12)

to the nonlinear difference scheme (2.6). O

2.6 Applications

Here, we construct initial upper and lower solutions for two applied problems.

2.6.1 The enzyme kinetics model [9]

In the enzyme-substrate reaction scheme, if the effect of inhibition is taken into consid-
eration, then the scheme is governed by (2.1) with Lu(z, y) = Au(x,y) and the reaction
function f is given by

ot >0, (2.38)

Flu) = 14+ au + bu?’ v=

where o, a and b are positive constants. Problem (2.1) is reduced to

“Dut gty =0, () €w, ulwy) =gla.y) 20, (2y) € dw.

The nonlinear difference scheme (2.6) has the form

oUij
1+ alij + bU}

AU + =0, (i,5)€Q" Uyj=gy, (i,j)eco (2.39)
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where the difference operator A;j, (i, j) € Q" is defined in (2.6) with D = 1 and v;; = 0,
(i,4) € Q"
We now show that

.. —h
Ui =K, U;=0, ,j)eN, K= i 2.40
j j (i,4) a9 (2.40)
are ordered upper and lower solutions to (2.39).
From (2.38) and g(z,y) > 0, it follows (2.35). From (2.38) and (2.40), we conclude
that (2.36) is satisfied. Thus, Lemma 2.5.2 holds for ﬁij and [71-]-, (1,7) € Q" from
(2.40). From (2.38), we have

o(1 — bu?)
1+ au+ bu?)?’

fu(wayvu) = (

We assume that b < 1/K2, and hence, in the sector (U,U) = (0, K), we conclude that

72 (U _
o(1—bK?) < 9fi;(Us) <o, (i,j) € Qh7 h< 1 (2.41)

0< , .
(1+aK + bK?)? ou  — K?

The assumptions in (2.27) are satisfied with ¢;; = o(1 — bK?)/(1+ aK + bK?*)? and
¢ij = 0. From here, we conclude that Theorems 2.3.1 and 2.3.2 hold for the enzyme
kinetics model (2.39).

2.6.2 The chemical reactor model [42]

In the chemical reactor, when the isothermal reaction is irreversible, the temperature
is constant and the mass concentration is described by (2.1) with Lu(z,y) = Au(z,y),

and the reaction function f in the form
f(u) =0ouf, u>0, (2.42)
where o and p are positive constants with p > 1. Problem (2.1) is reduced to
—Au+ou? =0, (x,y)€cw, u(z,y)=gx,y) >0, (z,y)€ dw.
The nonlinear difference scheme (2.6) has the form

AU +0oUl =0, (1,5) €, Uy =gij, (i,j) € 09", (2.43)

44



where the difference operator A;;, (i,7) € Q" is defined in (2.6). We introduce the

linear problem

AUy =0, (i,5) € Q" Uij=gij, (i,7) € 9" (2.44)

Now we show that (/jij and ﬁij, (i,5) € Q" from, respectively, (2.32) and (2.44) are
ordered lower and upper solutions (2.12). Letting W;; = (~]¢j — ﬁij, (1,7) € ﬁh, from
(2.32) and (2.44), we have

AW =0, (i,5) € Q"
From here, by using Lemma 2.2.2, we conclude that
Wi; >0, (i,5) €.
Thus, we prove (2.12a). From (2.44), by using Lemma 2.2.2, we obtain
U; >0, (i,j)eq". (2.45)
From (2.32), (2.42) and (2.44), we conclude that
AU + £ (Ui) = £i5(U3) 20, (i,j) € Q" U3 >0, (i.5) € 00",
that is, ﬁij, (i,7) € Q" satisfies (2.12b) and (2.12c). From (2.32) and (2.42), we have
AiUij + £i5(U5) =0, (i,5) € Q" Uiy <gij, (i,5) € 02",

that is, ﬁij =0, (i,j) € Q" satisfies (2.12b) and (2.12c). Thus, we prove that ﬁij
and ﬁij, (i,5) € Q" from, respectively, (2.32) and (2.44) are ordered lower and upper
solutions (2.12) to (2.43).

From (2.42), in the sector (0,U), we obtain

OF (U _
0< W <c, (i.j)eq
~ \p—1
where c=p o (max (i) U¢j> . From here, we conclude that Theorem 2.3.1 holds

for the chemical reactor model (2.43).
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2.7 Comparison of the point monotone Jacobi and Gauss—
Seidel methods

In the following theorem, we show that the point monotone Gauss—Seidel method with
n =1 in (2.18) converges faster than the point monotone Jacobi method with n = 0 in
(2.18).

Theorem 2.7.1. Let ﬁij and ﬁij, (1,7) € ﬁh, be ordered upper and lower solutions
(2. 12) Assume that the function f in (2.1) satisfies (2.13). Suppose that the sequences
{( p )J} and {( )GS}; (i,7) € ﬁh, are, respectively, the sequences generated by the
point monotone Jacobz' method with n = 0 in (2.18) and the point monotone Gauss—
Seidel method with n = 1 in (2.18), where (U%)))J = (Uz('?))as = ﬁij and (QE?))J =
UD)es = Uy, (i,§) € Q" then

(UM< UM)es < (T )es < T, (i) € Q" (2.46)

Proof. Letting I/Vl-(f) = (U-(-n)) — <U-(-n))J, (i,7) € ﬁh, from (2.18), we obtain

)

AW = e W™ ety (O )gs — (UF7),) +raWika) - (247)

+7bij ((U?;-)_l)cs — (U5),) + Wi
— £ )es) = £ (@ )]s G0,5) 2,
—=(n) .o
W’ =0, (i,7) € ON".

By using Theorem 2.3.1, we have (ﬁ(@))as < (U(ﬁfl)

i < (Ui )Gs' From here, n = 0,1, (2.17)
and (2.47), we obtain

——(n —(n—1 —=7(n—1 n— n—1
AZ]WZ(]) ~ l]W( ) + nlz]WrE_l,]) + rile(-f—l ]) + anJW( 1) + qUWZ(,j-i-l)

—[£(T5 ™ es) = £(@G )]s () € 2,

w7 (n) - h

Using notation (2.14), we write the above inequality in the form

5 n—1
AW <t WD 4 WY 4np W) 4 WY (2.48)

n—1 n—1
(T es) = T (T )5), (,4) € QP
(n)

W" = Oa (Za]) € tha

vy
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where

—(n—1 —(n—1 —(n—1
(T8 = @)y = £ (@),
—(n—1)

I
T (T8 as) = iy (T as = Fis (T )as).-

From n = 0,1, (2.16) and the fact that (UE?))GS = (UE?))J, (i,5) € ﬁh, forn=11in
(2.48), we conclude that

AW <0, () e, Wi=o0, (i) e o

By using the maximum principle in Lemma 2.2.2, we obtain
—(1) . —=h
Wij <0, (Zaj)EQ :

From here, (2.16), using the monotone property (2.15), for n = 2 in (2.48), we conclude
that
AMWZ(?) <0, (i,))eQ", WP =0, (,5)eo0

By using Lemma 2.2.2, we obtain that
WP <o, (,5)eq"
By induction on n, we can prove that
W <o, (,j)eq", n>1

Thus, we prove (2.46) for upper sequences. By a similar argument, we can prove (2.46)

for lower sequences. O

2.8 Numerical experiments

Test 1
We consider the test problem

— (Ugg + Uyy) +ou(u—1) =q(z,y), 0<z<1,0<y<2), (2.49)
u(0,y) =sin(ry/2), wu(l,y) =0, wu(z,0)=wu(x,2)=0.

The function
u(z,y) = (1 - 2%) sin(ry/2),
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is the analytical solution of the model problem (2.49), when o = 72/4 and
q(w,y) = 2sin(ry/2) + (r°/4)(1 — 2%)* sin®(7y/2).

By using Lemma 2.5.2, it follows that for the model problem (2.49), the pair (7@- =K
and ﬁij =0, (i,j) € Q" are ordered upper and lower solutions, such that, (2.35) and
(2.36) are satisfied whenever %K(K —1)—gq(x,y) > 0. For K > 2, the last inequality
holds true, and we take ﬁij =2 and (,Afij =0, (i,7) € Q"

Taking into account that f,(u) = o(2u — 1), we conclude that f, < 372/4, and,
hence, we choose ¢;; = 372/4 in (2.13). The space step sizes h, and h, are taken as
hy = hy = 0.05. The stopping criterion of the monotone iterative methods (2.18) is
chosen as in [61]

7™ —um| <, (2.50)

where the notation of the norm from (2.29) is in use, UZ(-;Z) and Qg.l), (1,7) € Q" are the
upper and lower sequences generated by (2.18), and § is a prescribed accuracy. We set
§=10"°.

Under the same conditions, the test problem (2.49) was considered in [61] and solved
by the block monotone Jacobi and Gauss-Seidel methods.

In Tables 2.1, 2.3 and in Tables 2.2, 2.4, we present upper and lower approximate
solutions generated by, respectively, the point monotone methods (2.18) and the block
monotone methods from [61]. The exact solution and the required number of iterations
ng to reach the stopping test (2.50) are given as well.

The numerical results confirm the theoretical estimates (2.19) and (2.46) obtained,
respectively, in Theorem 2.3.1 and Theorem 2.7.1.

Comparing our numerical results and the results from [61], we conclude that the
numbers of iterations ng in the point monotone methods are almost double of the
numbers of iterations in the block monotone methods from [61]. That gives us a
motivation to investigate the block monotone approach for solving nonlinear differential
problems.

Since the exact solution for our test problem is known, we investigate the numerical

error E(N) and order of convergence v(N) to the exact solution with respect to 1/N,

N, = N, = N as follows
E(N)
N)=1
] ) PY( ) 089 (E(2N)> )

where UZ-(;L‘S), (i,7) € ﬁh, is the numerical solution generated by (2.18), (2.50), u* is the
exact solution to the continuous problem and ng is the minimal number of iterations
subject to (2.50).

glre) _x

E(N)= [( max Uy i

i,5)€w
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In Table 2.5, for different values of N (N, = N, = N), we present E(N) and ().
The data in the table indicate that the numerical solution of the nonlinear difference
scheme (2.6) converges to the exact solution with second-order accuracy.

From the numerical experiments, we conclude that the sequence of solutions gener-

ated by (2.18) has a linear rate of convergence ¢, such that, ¢ is defined in the form

[0 g

= ——7]"— <1, n>2.
GG

q

Table 2.1: Solutions by the point monotone Jacobi method for Test 1.

Solution y;/x; 0 1/4 1/2 3/4 1 ng

Ui; 0.382683 0.358796 0.287050 0.167448 0

U,; 1/4 0.382683 0.358793 0.287045 0.167445 0

Ujj 0.382683 0.358766 0.287013 0.167424 0

Ui; 0.707107  0.662967 0.530396 0.309403 0 1598 (U;;)
U;j 1/2  0.707107 0.662962 0.530389 0.309398 0 1566 (Q”)
Uij 0.707107 0.662913 0.530330 0.309400 O

Uij 0.923880 0.866206 0.692994 0.404253 0

U; 3/4 0.923880 0.866200 0.692984 0.404246 0

Ujj 0.923880 0.866137 0.692910 0.404197 0

U, 1 0.937574 0.750089 0.437560

U,; 1 1 0.937568 0.750080 0.437553 0O

U5 1 0.937500 0.750000 0.437500

Test 2

As the second test problem, we consider the enzyme kinetics model Section 2.6.1 in

the form

au
Dl ) e e

u((),y) =1, u(lay) =1, 0<y<l1,
u(z,0)=1, wu(z,1)=1, 0<z<1.

=0, O0<z<l, 0<y<l, (2.51)

We choose a = 1, b = 0.1 and ¢ = 10. The upper solution ﬁij = K and the lower
solution ﬁij = 0 from (2.40). We choose K = 1. It is clear that b and K satisfy the
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Table 2.2: Solutions by the block monotone Jacobi method for Test 1.

Solution  y;/x; 0 1/4 1/2 3/4 1 ns

U;; 0.3832 0.3592 0.2874 0.1676 O

U,; 1/4  0.3822 0.3583 0.2867 0.1672 0

Ujj 0.3827 0.3588 0.2870 0.1674 O

U, 0.7080 0.6638 0.5310  0.3097 0 953 (U;;)
Ui /2 0.7063 0.6621 0.5297 0.3090 0 922 (U,;)
Ujj 0.7071 0.6629 0.5303 0.3094 O

Ui; 0.9250 0.8672 0.6937 0.4047 O

U, 3/4 0.9229 0.8652 0.6921 0.4038 0

Ujj 0.9239 0.8661 0.6929 0.4042 O

Ui; 1.0012 0.9386 0.7509  0.4380

U, 0.9989 0.9365 0.7492 0.4370 0.437553 O

Uy 1.000 0.9375 0.7500 0.4375 O

Table 2.3: Solutions by the point monotone Gauss-Seidel method for Test 1.

Solution y;/x; 0 1/4 1/2 3/4 1 ns

Uij 0.382683 0.358795 0.287047 0.167447 0

Us; 1/4  0.382683 0.358794 0.287046 0.167446 0

Usj 0.382683 0.358766 0.287013 0.167424 0

Uij 0.707107 0.662964 0.530392 0.309340 0 921 (U”)
U,; /2 0.707107 0.662964 0.530391 0.309340 0 880 (U,;)
Ujj 0.707107 0.662913 0.530330 0.309359 0

Ui; 0.923880 0.866203 0.692989 0.404249 0

U 3/4 0.923880 0.866202 0.692987 0.404242 0

Ujj 0.923880 0.866137 0.692909 0.404197 0

Ui; 1 0.937571 0.750084 0.437556

U 1 1 0.937569 0,750083 0.437555 O

Ujj 1 0.937500 0.750000 0.437500
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Table 2.4: Solutions by the block monotone Gauss-Seidel method from [61] for Test 1.

Solution  y;/z; 0 1/4 1/2 3/4 1 ns

Ui 0.3831 0.3591 0.2873 0.1676 0O

U,; 1/4  0.3825 0.3586 0.2868 0.1673 0

Ujj 0.3872 0.3588 0.2870 0.1674 O

[ 0.7078 0.6636 0.5308 0.3096 0 505 (U;;)
U 1/2 0.7067 0.6626 0.5300 0.3092 0 508 (U,;)
Ujj 0.7071 0.6629 0.5303 0.3094 O

Ui 0.9247 0.8669 0.6935 0.4046 O

Us; 3/4 09234 0.8657 0.6926 0.4040 O

Usj 0.9239 0.8661 0.6929 0.4042 O

Ui 1.0008 0.9383 0.7506  0.4379

U; 0.9996 0.9371 0.7497 0,4373 0.437555 O

Ugj 1.0000 0.9375 0.7500 0.4375 O

Table 2.5: Order of convergence of the nonlinear scheme (2.6) for Test 1.

N 8 16 32 64 128
E 2.082e-03 5.280e-04 1.327e-04 3.376e-05 9.015e-06
v 1.98 1.99 1.97 1.91

inequality b < 1/K? in (2.41). From (2.41), the bounded ¢;; = o, (i,5) € Q" where Cij
is defined in (2.27).

The exact solution for our test problem is unknown, and the numerical solution is
compared to a corresponding reference solution. We investigate the numerical error
and numerical order of convergence with respect to 1/N, N, = N, = N. We define the
numerical error F(N) and the order of convergence v(V) of the numerical solution as

follows

b, — 07!

v

L A(N) = log (m) ,

where ﬁfjef is the reference solution. A stopping test for the monotone iterative methods

E(N) = [( max

ij)ew"

(2.18) is chosen in the form of (2.28). In our tests, we choose the reference solution
with N,y =512 and § = 107° in (2.28).
In Table 2.6, for different values of N (N, = Ny, = N), we present E(N) and (V).
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The data in the table indicate that the numerical solution of the nonlinear difference
scheme (2.6) converges to the reference solution with the second-order accuracy.

In Table 2.7, we present the number of iterations to find the approximate solution
for (2.51) by the point monotone point Jacobi method with 7 = 0 in (2.18) and the
point monotone Gauss-Seidel method with n = 1 in (2.18), with different values of
diffusion coefficient D and number of mesh points N. In Figure 2.1, we show the
convergence of numerical solutions, obtained by the point Gauss-Seidel method with
n = 11in (2.18) and N = 128 to the reference solution N,. = 512, where the dashed
line represents the numerical solution and the solid blue line refers to the reference
solution with respect to x and fixed value of y. In the subgraph 2.1a, starting from the
initial lower solution U = 0, we show the convergence of the numerical lower solutions
at ng = 80 and ng = 1000 to the reference solution. Similarly, starting from the initial
upper solution U= 1, the subgraph 2.1b shows the convergence of the numerical upper

solutions at ng = 80 and ng = 1000 to the reference solution.

Table 2.6: Order of convergence of the nonlinear scheme (2.6) for Test 2.

N 16 32 64 128 256
E  3.916e-02 1.066e-02 2.866e-03 7.054e-04 1.434e-04
¥ 1.88 1.89 2.02 2.30

Table 2.7: Numbers of iterations for Test 2. Over line and under line iterations refer
to, respectively, point monotone Jacobi Gauss-Seidel methods.

D\ N 16 32 64 128 256
1 671 2677 10702 42802 172305
339 1342 5355 21405 85600
10-1 142 543 2146 8558 34206
77 278 1081 4287 17102
10-2 20 58 209 811 3222
15 34 110 412 1620
10-3 6 12 28 88 329
6 10 19 49 170
—4 3 5 7 15 40
10 3 4 7 12 25
5 2 3 4 5 9
10 2 3 4 5 8
6 2 2 3 3 4
10 2 2 2 3 4
-7 2 2 2 2 3
10 2 2 2 2 3
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Figure 2.1: Convergence of lower and upper solutions to the reference solution for Test
2.

0 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
x-axis x-axis

(a) Lower solutions. (b) Upper solutions.

2.9 Conclusions to Chapter 2

Theoretical results

Far solving nonlinear elliptic problems, we constructed and investigated monotone
properties of point Jacobi and Gauss-Seidel iterative methods. The nonlinear ellip-
tic problem (2.1) is approximated by using the central difference approximations for
the first and second derivatives. For solving the nonlinear difference scheme (2.6), the
point Jacobi and Gauss-Seidel iterative methods are constructed. We prove that the
sequences of upper and lower solutions, generated by the point iterative methods, con-
verge monotonically to the solutions of the nonlinear difference scheme. In Theorem
2.3.2, we prove the uniqueness of a solution under the conditions that the nonlinear
reaction function is bounded from below and above. By using the stopping test (2.28),
based on the norm of the residual, we prove that the numerical solution converges
to the unique solution of the nonlinear elliptic problem (2.6) and estimate the L
discrete-norm of the error between the numerical and exact solutions of the nonlinear
difference scheme (2.6) in Theorem 2.4.2 and between the numerical solution and the
exact solution of the elliptic problem (2.1) in Theorem 2.4.3. In Theorem 2.7.1, we
prove that the point monotone Gauss-Seidel method converges faster than the point
monotone Jacobi method. In Lemmas 2.5.1 and 2.5.2, under assumptions (2.31) and
(2.35) on the reaction function, we construct initial upper and lower solutions to start
the point monotone iterative methods.

Numerical results

The numerical experiments show that the numerical solution of the nonlinear differ-

ence scheme (2.6) converges to the reference solution with the second order accuracy.
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The numerical sequences of upper and lower solutions, generated by the point mono-
tone methods (2.18) with stopping (2.28), converge monotonically. The point monotone
Gauss-Seidel method with = 1 in (2.18) converges faster than the point monotone Ja-
cobi method with n = 0 in (2.18) which confirms Theorem 2.7.1. The block monotone
methods from [61] converge faster than the corresponding point monotone methods
(2.18). In Test 2, for fixed diffusion coefficient D, the numbers of iterations increase
with increasing V. For fixed values of N and small values of D, the numbers of itera-

tions are independent of D.
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Chapter 3

Jacobi and Gauss-Seidel methods

for systems of elliptic problems

This chapter deals with numerical methods for solving nonlinear elliptic systems. We
derive the point monotone Jacobi and Gauss—Seidel methods for solving difference
schemes which approximate the coupled systems of elliptic problems. In the view of
the method of upper and lower solutions, two monotone upper and lower sequences
of solutions are constructed. Convergence estimates for the point monotone iterative
methods are introduced. Constructions of initial upper and lower solutions are pre-
sented. The sequences of solutions generated by the point monotone Gauss—Seidel

method converge faster than those generated by the Jacobi method.

3.1 Properties of solutions to systems of nonlinear elliptic

problems

We consider properties of systems of nonlinear elliptic boundary value problems

_Laua($ay)+fa($ayv u) :O> (x,y) Gw, (31)
w={(z,y):0<z<ly, 0<y<la}, un(z,9)=0ga(z,y), (z,9)€ 0w, a=1,2,

where [y, Iy are positive constants, u = (u1,u2) and Ow is the boundary of w. The

differential operators L., a = 1,2, are defined by

Lota(z, y) = D((xx) (xv y)ua,zx + D(()ty) (J?, y)ua,yy + ’U(()éx) (:c, y)ua,r + U((xx)(xa y)ua,ya

where D& (z,y), DY (x,y), « = 1,2, are positive functions. It is assumed that the

functions fo(z,y,u), go(z,y), D&I)(x,y), D((yy)(x,y), U((f)(:z,y) and v&y)(:zr,y), a=1,2,

are smooth in their respective domains.
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3.1.1 Quasi-monotone nondecreasing case

Two vector functions u(x,y) = (uy, u2) and u(z,y) = (u1,uz2), are called ordered upper

and lower solutions to (3.1), if they satisfy the inequalities

a(CC, y) S a(l‘, y)v (l‘, y) € w’ (32&)
— Latia(z,y) + fa(z,9,u) <0 < —Lata(z,y) + falz,y,0), (2,9) €w, (3.2b)
u(r,y) < g(z,y) <ulz,y), (2,y) € dw. (3.2¢)

For a given ordered upper u and lower u solutions, a sector (u, u) is defined as follows

(w,u) = {u(z,y) : ulz,y) <ulr,y) <ule,y), (z,y) €w}.

In the sector (u,u), the functions fu(x,y,u), a = 1,2, are assumed to satisfy the
constraint
0 , .
VWeltotr ) (), we @m, @y ewm a=12, (3.3)
Oug
0 .
—WEO, we (uu), (r,y)ew, o#a «ad =12, (3.4)
Uy

where ¢, (z,y), « = 1,2, are nonnegative bounded functions. The functions f,(x,y,u),

a = 1,2, are called quasi-monotone nondecreasing in (u, ), if they satisfy (3.4).

Theorem 3.1.1. Let u = (uy,u2) and u = (U1, uz) be ordered upper and lower solutions
(3.2). Assume that the functions fo(x,y,u), a = 1,2, in (3.1) satisfy (3.3) and (3.4).
Then a solution to the nonlinear problem (3.1) exists.

The proof of the theorem is given in Theorem 8.4.1, [59].

We assume that the reaction functions f,, o = 1,2, in (3.1) satisfy the conditions

a « b b J—
0<c,(z,y) < fgl;yu) <colz,y), (x,y) €W, ue€(—-00,0), a=1,2 (3.5)
0
0< _faéi’ y,v) < oo (@,y), (z,y) €w, ue(—o0,0), o #a, ad =12,
(3.6)
Qaa’ (%ZD)] — /
0<f=max | max | ————= || <1, (z,y) €W, ué€ (—00,00), a # q,
’ =12 |:(1‘,y)6w< Qa(l',y) ( y) ( ) ?é
a, =1,2. (3.7)
Introduce the linear problem
Lowa(2,y) + ch(z, )wa(z,y) = a(z,y), (z,y) €W, (3.8)

woc(xay) = goc(xay)7 («T,y) € 8wh7 a = 1727
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where ¢ (z,y), o = 1,2, are positive bounded functions. We give a bound on the

magnitude of the solution to the linear problem (3.8) in the following lemma.

Lemma 3.1.2. The following bound on the magnitude of the solution to the linear
problem (3.8) holds

[walz < max{HgaHOw, ¢7a } , a=12 (3.9)
a llw
where
HgaHaw = max |ga(;1;7y)|7 ¢7a — max ¢0<($ y)
(#,y)€0w el w (@yew ck (;1: y)

The proof of the lemma is given in Lemma 1.2.1 from Chapter 1.

Theorem 3.1.3. Let assumptions (3.5)—(3.7) be satisfied. Then the continuous prob-

lem (3.1) has a unique solution.

Proof. The existence of solutions to the nonlinear problem (3.1) is given in Theorem
3.1.1. Suppose that u*(z,y) = (ui(z, y),u3(z, y)) and w™(z,y) = (ui*(z,y), u3* (2, y)),
(x,y) € W are two solutions to (3.1). Letting zo(z,y) = v} (x,y) —ul(x,y), (z,y) €@
a=1,2, from (3.1) for z,(z,y), we have

_Laza(x y)+fa(x ya aa a)
f (‘,r y7 « Ol ) +fa($ y7 ’ * ) fa(x y’ :';*7 Z*) — O?
(z,y) €w, za(z,y) =0, (x,y) €dw, a=1,2.

From here and using the mean-value theorem, we obtain

8fa($7 Y; 4o, UZ’)
Oug

2o(z,y) =0, (2,y) €0w, o #a, a,d=1,2,

8fa(l‘, Y, ’LLZ*, ka’)
z
Ouy

- Laza(z:,y) + Za(ﬂf,y) = a’(x’y)7 (ﬂf,y) cw

where the functions ¢, (z,y), ko(z,y) lie between v} (z,y) and u3*(z,y), a = 1,2. From
here and (3.5), by using estimate (3.9), we conclude that

(fa(uy', ko ))ua/ “a! < H (fa(ug"s ka ))ua/

(foz(Qaa ua’))ua

120 |-

(fa(Qm uo/))ua

1zallz < H

Using (3.5)—(3.7), we obtain
Izallz < Bllza llw-

Letting z = maxa=12 ||2a|lz, we have z(1 — §) < 0. From here, (3.7) and taking into

account that z > 0, we conclude that z = 0. Thus, we prove the theorem. [
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3.1.2 Quasi-monotone nonincreasing case

Introduce the following notation:

F =1
1(3372%1017“2)’ o ’ Oé/ ;é Q. (310)

Folx,y, Ua, Uagr) =
Oc( y « Oé) {f2($7y,U1,u2)7 a:2’

Two vector functions u(z,y) = (u1,u2) and u(z,y) = (uy,us), are called ordered up-
per and lower solutions to (3.1) in the case of quasi-monotone nonincreasing reaction

functions f,, a = 1,2, if they satisfy the inequalities

a(xay) S ﬂ(fﬁay), ($7y) € wv (311&)

— Lotia(7,y) + fa(r,y,Ua, Ua) <0 < =Latia(z,y) + fol®, Y, Ua, ), (2,Y) € w,
(3.11b)

Ua(7,Y) < gal2,y) < Un(z,y), (2,9) €0w, o #a, a,d =1,2. (3.11c)

For a given ordered upper u and lower @ solutions, a sector (u, u) is defined as follows

(W, u) = {u(x,y); ulr,y) <u(z,y) <ulz,y), (=,y)cd}.

In the sector (u,u), the vector function f(z,y,u) is assumed to satisfy the constraint

0 P
M <colz,y), weuu), (ry ecew, a=12, (3.12)
Oug
0 -
—MSO, we (uu), (v,y)cew, o#a, od =12 (3.13)
Oy
where co(z,y), @« = 1,2, are nonnegative bounded functions. The vector function

f(z,y,u) is called quasi-monotone nonincreasing in (u, u), if it satisfies (3.13).

Theorem 3.1.4. Let u = (uy,u2) and u = (U1, uz2) be ordered upper and lower solutions
(8.11). Assume that the functions fo(x,y,u), « = 1,2, in (8.1) satisfy (3.12) and
(3.13). Then a solution to the nonlinear problem (3.1) exists.

The proof of the theorem is given in Theorem 8.4.2, [59].
We assume that the reaction functions f,, o = 1,2, in (3.1) satisfy the conditions
(3.5), (3.7) and

_Ofalz,y,u)

<0, (m,9)€w, we€(-c0,x), od#a ad =12
Oug

(3.14)

qoa’ (.%‘, y) <

Theorem 3.1.5. Let assumptions (3.5), (3.7) and (3.14) be satisfied. Then the con-

tinuous problem (3.1) has a unique solution.
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Proof. The existence of a solution to the nonlinear problem (3.1) is given in Theorem

3.1.4. The proof of uniqueness of a solution repeats the proof of Theorem 3.1.3. O

3.2 The nonlinear difference scheme

——hx

_ . —h h
On w, we introduce a rectangular mesh A~ = A Y.

x A

A= {z;, 1=0,1,...,Ny; zo=0, an,=1l1; hy=zi11—xi}, (3.15)

—h .
N ={y;, 7=0,1,....Ny; v =0, yn, =l hy=yj+1—y;}.

We denote by Q" and 90" the sets of indices which correspond to interior and boundary

mesh points, such that

Qh:{(i,j): i=1,2,...,N,—1, j=1,2,...,N, — 1},
00" ={(i,5): i=0,Ny;, §j=0,1,....,N,; i=0,1,...,N;, 3j=0,N,}.

For (i,7) € Q' =My 00", we introduce the notation

T (Ui, Uzgj)y, =1,

o #a. (3.16)
T2, (U1, U24j), =2,

Teij(Uasijs Untij) = {

By using the central difference approximations for the first and second derivatives on

the 5-point stencil, we introduce the nonlinear difference scheme

A ijUniij + faij(Uasijs Uaris) = 0, (i,5) € Q" (3.17)
Unij = Gayijs  (1,)) €0Q", o #a, a,d =1,2,

where faij(Ua,ij, Uarij) is defined by (3.16), Q" is the set of indices of interior mesh
points in Kh, 00" is the set of indices of the boundary mesh points in A" and the

central difference approximations for the first and second derivatives are given by

p2y. . Yaim1g = 2Vaij +Uait1y oy Uaig=1 = 2Uaij + Uaijiet
2Uajij = 02 v DyUaij = 12 ;
T Y

(3.18)

U, .. —U, .

1 (X?Z?]J’_]‘ O6717] 1

5 DyUa,ij = oh ; o = 1, 2.
Y

Un,it1,j = Uaji—1,5
2h,

1
D,Uaq,ij =
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The difference operators Aq ijUq ij, @ = 1,2, in (3.17) are defined by

AaijUnij = AL Un i + ALY Uasis,

aij oij
(2) 1 (z)
Aaijlaii = 33 | “laiiUai-15 + 2Dq3;Uaij = TaiUai+ri]
xT

1
Ag{sza,ij = [_ba,ijUa,i,j—l +2DY) Ua,ij — Qa,ionz,iJ-&-l} ,

hi?QJ a,ij
(z) (z) (z) (z)
- Doij _ Vags S Doij " Vois
@ h2 2h, " Y h2 2h,’
() () () ()
b — Doclfij _ Uaz{ij Qoii = DO‘E{U 4 UO‘Z{” a=1,2
1) T ) o) 5 — 1, 4.
TR 2m, TR 2my

To insure that Iy 5, Ta,ij, ba,ij and ga,ij, @ = 1,2, are positive, we choose

hy < (;‘)’ij , hy < (;‘)’” .
| a,ij| |Ua,z‘j|

Remark 3.2.1. If the effect of convection v(x,y) dominates diffusion D(x,y) to the
extent that these conditions require prohibitively small h, and hy, then an upwind dif-

ference scheme for the first derivatives can be used to remove any restriction on hy, and
hy, that is, for a = 1,2,

Univ1j—Uaii ¢ (@)
- . aw’ Zf Uaﬂ'j S 07

xr
D Upij =
T o] Ua,ij_Ua,i—l,j . (:L‘)
e if Vg ii 2 0,
Ua,ij+1—Ua,ij . (v)
, By o if v <0,
DyUaﬂj =

Ua,ij—Uaij—1 . (v)
By o if v 20,

We introduce the linear version of problem (3.17) in the form

AcijWaij + ¢ ijWaij = ®ayj,  (i,§) € 2", (3.19)
Waii = Gaijs (i,7) €0, a=1,2,

where ¢, ;;, (1,7) € ﬁh, «a = 1,2, are nonnegative bounded functions. We formulate the

maximum principle for the difference operators Aqij + ¢, 5, (4,7) € Qh a=1,2.

Lemma 3.2.2. If W, (i,7) € ﬁh, a = 1,2, satisfy the conditions

Aa,iiWa,ij + Cz,ijWa,z‘j >0(<0), (i,j) € 0",
Wai; >0(<0), (i,5) €0Q", a=1,2,
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then Wai; >0 (<0), (1,5) €', a=1,2.
The proof of the lemma is given in Lemma 1.2.1 from Chapter 1.

Remark 3.2.3. In this remark, we discuss the mean-value theorem for vector-valued
functions. Assume that Fo(,y, Ua,Us ), & # a, a = 1,2, are smooth functions, then

we have

« hom o
fa(x7y7ua7ua’) - fa(az,y, wonua’) - W[UQ — wa], (320)

OFa (e, Do
]:a(xaya UOMUO/) —Fa(ﬂs,y,ua,wa/) = aéuaa)[ua/ - wO/]’
o

where ho(z,Y), pa(z,y) lie between uq(x,y) and wq(x,y), a = 1,2, and notation (3.10)

1S 1N use.

3.2.1 Quasi-monotone nondecreasing case

.= ~ ~ PPN . =h
Two vector mesh functions U;j; = (Ui, Usz,j) and Uy = (Ui iy, Uzyj), (4,5) € 2, are

called ordered upper and lower solutions of (3.17), if they satisfy the inequalities

Uij < Uagjs (i25) €90, (3.21a)
Aa,ijﬁa,ij + fa,ij([/jij) <0< Aa,ijﬁa,ij + f&,ij(fjij)y (1,7) € Qh, (3.21b)
Unij < 9o < Uagjs  (i,§) € 09", a=1,2. (3.21c)

For a given pair of ordered upper and lower solutions ﬁij and 171-]-, (i,j) € ﬁh, we define

the sector
<ﬁ,ﬁ>:{Uij:ﬁU§Ui]’§ﬁij, (Z,])Eﬁh}

In the sector ((7, (7>, we assume that the functions fq 5, (4,7) € ﬁh, a=1,2 in (3.17),

satisfy the constraints

W < Caij, Ue <(/J\7 ﬁ>7 (Zh]) € §h7 a = 1727 (322)
_WZO; U€<(7,[7>7 (i7j)€§h7 04/7é057 a,a =1,2, (3.23)

where cq4j, (1,7) € Qh, «a = 1,2, are nonnegative bounded functions in Q" We say
that the functions fq;(Usj), (i,]) € ﬁh, a = 1,2, are quasi-monotone nondecreasing
in (U, U) if they satisfy (3.23).
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We introduce the notation

. h
Laij(Uayijs Vo ij) = €aijUasij — fayij(Uasijs Var i), (4,5) € 7, (3.24)

/ /
o Fa, a,a =1,2,

where cq 45, (i,7) € ﬁh, a = 1,2, are nonnegative bounded functions, and notation
(3.16) is in use. We give a monotone property of I'a i;(Ua,ij, Vo ij), (4,7) € ﬁh, o # a,
a,o =1,2 from (3.24).

Lemma 3.2.4. Suppose that U;; = (Ui 45, Uz,i5) and Vij = (Viij, Va,ii), (4,7) € ﬁh, are
vector functions in (U,U), such that Uij > Vij, (i,7) € ﬁh, and assume that (3.22) and
(3.23) are satisfied. Then

.. =h
Lo,ij(Uasijs Uarij) = Tasij(Vasijs Varij), (6,7) €, o #a, a,d =1,2. (3.25)
Proof. From (3.24), we have

Laij(Uayijs Uarij) = Taij(Vayij, Var i) = Cayij(Uayij — Vasis) (3.26)
— [feii(Uavij, Uat ij) = fovij(Vaij, Uar ij)]
= [fasis (Vasijs Uar i) = faij(Vasis Var i) ] »

(i,9) € ﬁh, o Ao, a,d =1,2.

Using the mean-value theorem (3.20), we obtain that

Laij(Uaijs Uarij) = Davig(Vasis Varij) =

(Ca,ij — (faij (Qaij> Ua’,ij))ua) (Uasij = Vaij) — (fasij (Vs Ya’,z’j))ua, (Uari5 — Ve ij)
N

Vasii < Quiijs Ya,ij < Unyijy, (,7) €Q, o #a, a,d =1,2.

Taking into account that U, i; > Vi, (4,]) € ﬁh, a=1,2, from (3.22) and (3.23), we
conclude (3.25). O

3.2.1.1 Applied problems

The gas-liquid interaction model

Consider the gas-liquid interaction model where a dissolved gas A and a dissolved
reactant B interact in a bounded diffusion medium w (more details are given in [34]).
The chemical reaction scheme is given by A 4+ k1B — k9P and is called the second
order reaction, where ki and ks are the rate constants and P is the product. Denote
by z1(x,y) and zo(x,y) the concentrations of the dissolved gas A and the reactant B.

Then the above reaction scheme is governed by (3.1) with Ly zq = DqAza, fo = 042122,
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a = 1,2, where o; is the rate constant, oo = kj01. By choosing a suitable positive

constant p; > 0 and letting u; = p1 — 21 > 0, ugs = 22, we have
Ji(ur,ug) = —o1(p1 —ur)uz,  falur,uz) = o2(p1 — ur)us, (3.27)
and system (3.1) is reduced to

_DaAua"i_foz(uth) :O, (x,y) € w, a:1727
ui(z,y) = gi(z,y) >0, wuz(x,y) =ga2(z,y) >0, (z,y) € dw,

where g7 = p1 — g1 > 0 and g; > 0 on w. The nonlinear difference scheme (3.17) for

the model is presented in the form

AazJUaz]+fa1]( az]an’,ij):Ov (’i,j)EQh, O/#O[, Ot,O/:]_,Z,
Urij = g5 Uzij = 9245, (6,5) € 09", (3.28)

where f,, a = 1,2, are defined in (3.27), and
AaijUasij = —Da(D2+D?))Uayj, (i,5) € Q", a=1,2,
where D2, Dg are defined in (3.18). We introduce the linear problems
AaijVaij =0, (i,5) € Q" a=1,2, (3.29)
Vi =gt Ve = 9245, (i,4) € 0Q"
We now show that

o PPN o —=h
(U1,i5,Uzi45) = (p1,V2,5)s  (Urj,Uz45) = (Vi45,0),  (i,7) € Q7 (3.30)

~

are ordered upper and lower solutions (3.21) to (3.28). Letting W ; = ﬁa,ij — Uajijs
(i,7) € ﬁh, a = 1,2, from (3.27) and (3.29), we have

AwiiWaii =0, (i,j) €Q", a=1,2.

From here and using Lemma 3.2.2, we conclude that W, ;; > 0, (i,]) € ﬁh, a=1,2
Thus, we prove (3.21a). From (3.27), (3.29) and (3.30), we obtain

i) =0, (i,7) € Q" o # 0, a,d =1,2,
i) =0, (i,7) € Q" o #a, a,d =1,2.

A UO(’L]+fOéZ]( «

zgaU
A ﬁazj+fa2](AaZj7ﬁ

Hence, we conclude (3.21b). From (3.30), it follows (3.21c). Thus, we prove that ijoz,ij
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and ﬁaﬂ;j, (i,j) € ﬁh, a = 1,2, from (3.30) are ordered upper and lower solutions
(3.21). From (3.27), in the sector (U, U), we have

0 iq .. —h
gl’j (U1,i,Uz5) = 01Us35 < 01Vay5,  (4,5) € 2,
U
0 ii .. —h
gz; (U5, Uzij) = oa(p1 — Uri5) < oap1,  (i,5) € Q,
Of14j o —h
B 51, L (Uvij, Uaij) = o1(p1 — Urij) >0, (i,5) € Q"
()
0fa2,ij —
- gfb’l] (U1,ij,Uz5) = 02U23; >0, (i,]) € Q"

Thus, the assumptions in (3.22) are satisfied with
. _=h
c1ij = 01Vayj, €245 = o2p1, (i,7) € 0.

From here, we conclude that f,, a = 1,2, from (3.27) satisfy (3.22) and quasi-monotone

nondecreasing property (3.23).

Enzyme-substrate reaction diffusion model
In the enzyme—substrate reaction problem, the chemical reaction scheme is expressed
by

E+S=FES—FE+P,

where F/, S and P represent, respectively, enzyme, substrate and product. The usual

enzyme concentration law is given by
E+ C = Ey, (3.31)

where C' = ES is the enzyme substrate complex, and Fy is the total enzyme (more
details are given in [41]). Let z1(x,y) and z2(x,y) be, respectively, the concentrations
of the enzyme and the substrate. Then the above reactant scheme is governed by
(3.1) with Lozo = Dalza, a = 1,2, f1(z1,22) = a12122 — b1(Eo — 22), fa(z1,22) =
asz1z2 — ba(Ey — 22), where aq, by, a = 1,2, are positive constants. Letting u; = z1,

uy = By — z9 > 0, we have
filur,ue) = ajui(Ey — ug) — byua,  fa(ur,uz) = —agui(Eo — ug) + baug.  (3.32)
System (3.1) is reduced to
— Do DNug + foltug,ue) =0, (z,y) €w, o #a, a,d =1,2,

Ul(x,y) :gl(xay) 207 UQ(Z',y) :g;(:vvy)’ ($,y) Gawv

64



where g1 > 0 on Ow and g5 = Ey — g2 > 0. The nonlinear difference scheme (3.17) for

the model is presented in the form

AaijUajij + fa,ij(Ua,ija Uo/ﬂ'j) =0, (i,])€ Qha o #Fa, a,d =1,2, (3.33)
Urij = 91i5s Uzij = G545, (i,4) € 09",

where f,, a = 1,2, are defined in (3.32), and
AwijUaij = —=Da(Ds + Di)Uayj,  (i,5) €Q", a=1,2,

where D2, Dg are defined in (3.18).

Introduce the linear problem
AvijVig = @iy, (3,5) € Q" Vij = g1, (i,5) € 09", (3.34)

where @5, (i,7) € ﬁh, is any positive mesh function, such that ®;; > by Ey, (4, J) € "
We now show that

~ - PPN o —=h
(Ur,i5,Uz5) = (Vij, Eo), (U144, Us,5) = (0,0), (i,7) € Q7 (3.35)

~

are ordered upper and lower solutions (3.21) to (3.33). Letting W ;; = ﬁayij — Uaij,
(i,7) € ﬁh, a =1,2. From (3.34) and (3.35), we conclude that

Ay Wi =55, (i,5) € Q") Wiy >0, (i,5) € 90",
AgiiWaij =0, (i,5) €Q", Way; >0, (i,4) € 09"

From here, by Lemma 3.2.2, we obtain that
Wa,ij > 07 (7’33) € ﬁha o = ]-a 2. (336)
Thus, we prove (3.21a). From (3.32), (3.34) and (3.35), we have

A1 iU + frij(Urij, Usij) = @45 — b1 Eg > 0, (i,5) € Q"
Ao.iiUsij + f1.45(Urij, Usij) = baEo >0, (i,§) € Q,

that is, ﬁaﬂ-j, (i,7) € Q" a = 1,2, from (3.35) satisfy (3.21b). From (3.32) and (3.35),

we have
-Aoz,ijﬁoz,ij + fa,ij(ﬁoc,iju ﬁa’,ij) = Oa (7”]) € Qha a/ 7£ «, Oé,O/ = 17 27

that is, ﬁa,ij, (i,7) € Q" a = 1,2, satisfy (3.21b). From (3.36), it follows (3.21c) is
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satisfied. Thus, we prove that (ﬁl’ij,ﬁg’ij) and (lAfLij,(Afg’ij), (i,5) € Q" from (3.35)
are ordered upper and lower solutions (3.21) to the nonlinear difference scheme (3.17).
From (3.32) and (3.35), in the sector (U,U), we have

0f1,j o —=h
g;’lj (U1,i5,Usz5) = a1(Eo — Uaj) < arEy,  (i,7) € 7,
0 fa,ij —
(Q)fz; (Ut,ij, Ua,ij) = aoU1 35 + by < a2V + b, (i,7) € a"
O0f1,j R
_ 9y (U145, U245) = arUr 35+ b1 >0, (i,7) € Qh,
@ug
0f2,j R
- gz’lj (U1,i,Uz5) = a2(Eo — Uayij) >0, (i,7) € a".

Thus, the assumptions in (3.22) are satisfied with
.. =h
crij = a1Eo,  ca5=a2Vij+ba,  (i,5) €Q.

From here, we conclude that f,, a = 1,2, from (3.32) satisfy (3.22) and quasi-monotone

nondecreasing property (3.23).

3.2.2 Quasi-monotone nonincreasing case

Two vector mesh functions ﬁij = ((7172-3', (7271-3'), ﬁij = (ﬁlﬂ-j, ﬁgﬂ'j), (i,§) € ﬁh, are called

ordered upper and lower solutions of (3.17), if they satisfy the inequalities

Uij < Ungjy (i) €90, (3.37a)
AiiUnii + Foris Uiy Unr i) <0 < AaiiUnis + Faij(Uaijs Uari),  (i,5) € QO

(3.37D)
ﬁa,ij < Gayij < ﬁa,ij, (i,j) € 9Q", o #a, a,d =1,2, (3.37¢)

where notation (3.16) is in use.
For a given pair of ordered upper and lower solutions ﬁij and Uij, (i,7) € ﬁh, we

define the sector

~ o~ ~

(U,U) = {Uij U < Uiy < Uiy, (4,)) € ﬁh}-

In the sector <ﬁ, ﬁ), we assume that the functions fy 45, (i,7) € ﬁh, a=1,2in (3.17),
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satisfy the constraints

0 fa,ij(Usj 5o )
W < Ca,ijs U e <U7 U>> (Zaj) € Qha o= 1’27 (338)
B angZL(UZ]) <0, Ue <i\]7 ﬁ)) (4,7) € ﬁha o # a, aval =1,2, (3.39)

where cqi5, (1,7) € ﬁh, a = 1,2, are nonnegative bounded functions in Q" we say that
the functions fq 45, (4,7) € Qh, «a = 1,2, are quasi-monotone nonincreasing in <[7 , ﬁ) if
they satisfy (3.39).

We give a monotone property of I'o s (Uaij, Uar ij), (1,7) € ﬁh, o #a,a,d =1,2,

from (3.24) in the quasi-monotone nonincreasing case (3.39).

Lemma 3.2.5. Suppose that Usj = (U145, Uz;5) and Vij = (Vij, Vo), (4,7) € ﬁh, are
vector functions in (U,U), such that Uij > Vij, (i,)) € Q. Assume that (3.38) and
(3.39) are satisfied. Then

o —=h

Laij(Uasijs Varij) = Taij(Vaij, Uwij),  (4,5) €, o #a, a,d =1,2. (3.40)
Proof. From (3.24), we have

Laij(Uasijs Vo ij) = a(Vaij, Uar i) = Cayij(Uayij — Vayis)

— [feij (Uaigis Var i) = Feviig (Ve Vo i5)]
+ [foii (Vaijs U ij) — fevi (Ve Ve ij)] »

(i,j) €Q, o #a, ad =12
Using the mean-value theorem (3.20), we obtain that

Loij(Unijs Varij) = Ta(Vaijs Uar ij) =
(Ca,ij — (faij(Qaij Va’,ij))ua> (Uaij = Vaij) + (fasij (Vasiss Ya’,ij))ua/ (Uw ij — Vi ij),

R
Va,ij < Qaijs Yoij < Uaijy, (4,5) €Q, o #a, a,d=1,2.

Taking into account that Uai; > Vaij, (4,7) € ﬁh, a=1,2, from (3.38) and (3.39), we
conclude (3.40). O
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3.2.2.1 Applied problems

The gas-liquid interaction model
We now consider the gas-liquid model from Section 3.2.1.1 with the reaction func-

tions given in the original form
falui,ug) = oquiue, «a=1,2. (3.41)
System (3.1) is reduced to

- DaAua + fa(ula u2)

=0, (:L‘a y) cw,
ua(2,y) = ga(®,y) 20, (2,y) € 0w, a=12.
The nonlinear difference scheme (3.17) for the model is presented in the form

A iiUnij + faij(Uasijs Uaris) = 0, (i,5) € Q" (3.42)
Ua,ij = Go,ij, (Zaj) € thv O/ ;é «, «, O/ = 17 27

where f,, a = 1,2, are defined in (3.41), and
Aa,ijUa,z‘j = —Da(D?C + DZ)Ua,ijy (Z,]) € Qh, a=1,2,

where D2, D; are defined in (3.18).

We introduce the linear problems
AcijVaus =0, (i,j) € Q" (3.43)

Vasij = Gaijs  (1,7) €0Q", a=1,2.

We show that

(U4, Uzij) = (Viij, Vi), ((71,@‘]‘, (72,@') =(0,0), (4,7) € Qh, (3.44)

are ordered upper and lower solutions (3.37) to (3.42). Letting W ;; = Uq,ij — Uiy,
(i,j) € ", a = 1,2. From (3.42) and (3.43), we have

AnijWaii =0, (i,5) €Q", a=12.

From here and using Lemma 3.2.2, we conclude that W, ;; > 0, (4,j) € ﬁh, a=1,2.
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Thus, we prove (3.37a). From (3.42)-(3.44), we obtain

]fja,zj + fa,ij(Ua,ij; fjo/,ij) (27]) € Qh? Ofl 7&7 «, «, O/ = 17 27

Aa,z = 07
AwiiUnij + faij(Uasijs Uarij) =0, (i,7) €Q", o #,0, a,d/ =1,2.

Hence, we conclude (3.37b). From (3.44), it follows (3.37c). Thus, we prove that the
mesh functions ﬁa,ij and ﬁa,ij, (i,5) € ﬁh, a =1,2, from (3.44) are ordered upper and
lower solutions (3.37). From (3.41), in the sector ([?, U), we have

0 ij .. —h
gl’] (U1i5,Ugij) = 01Uz5 < 01Vayj,  (4,5) € Q7
uy
0 ij .. —h
gz’J (Ut,i,Uzj) = 02U1 35 < 02Vi5, (4,5) € 2,
()
0 f1,ij . =h
- 8u2J =—01U1,4 <0, (i,5) € 0,

0 f2,i R
— aUIJ = —02U272‘j < 0, (2,]) e .

Thus, the assumptions in (3.38) are satisfied with
. ah
clij = 01Vayj, 245 = 02V,  (4,5) € .

From here, we conclude that f,, a = 1,2, from (3.41) satisfy (3.38) and quasi-monotone

nonincreasing property (3.39).

The Volterra—Lotka competition model in ecology

The coexistence of the competing species in ecology is closely related to the existence
of a positive steady-state solution and the asymptotic behavior of the time-dependent
solution in relation to the steady-state solution. The Volterra—Lotka competition model

is governed by (3.1) with Lyus = Aug, and
fa(ur,ug) = —ug(aq — bour — dqua), «a=1,2, (3.45)
where aq, by and d,, @ = 1,2, are positive constants. System (3.1) is reduced to
—DoAug + folur,uz) =0, (z,y) €w, uq(z,y)=0, (z,y)€dw, a=12.
The nonlinear difference scheme (3.17) for the model is presented in the form

Aa,ijUa,ij + foé’ij(Ua,ij’ Ua/,ij) e 07 (zL’]) c Qh7 (346)
Uaij =0, (i,5) €9Q", o #a, a,d =1,2,
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where f,, a = 1,2, are defined in (3.45), and
AcijUnij = =Da(D3 + Dy)Uauj,  (i,4) €, a=1,2,

where D2, D} are defined in (2.8). We now show that

a; a2

~ - PPN o —=h
(Ui, Uz ij) = (a, d:>’ (U1,ij,U2,45) = (0,0), (i,5) € Q, (3.47)

are ordered upper and lower solutions (3.37) to (3.46). From (3.47), it follows (3.37a).
From (3.45) and (3.47), we obtain

(i,5) € Q"
(i, 5) € Q.

~Al UUl ij + fl 1](U1 i U2 z]) = 0
Az.4iUz.5 + fa.ij(Uvij, Uzij) = O,
Similarly, we obtain

AviiUri + f1i5(U135. Uai) = 0, (i 5) € Q",
AZZ]UQZ]+f21](UIZj7U2Z]):0 (Zvj)EQh
Hence, we conclude (3. 37b) From (3.47), it follows (3.37c). Thus, the mesh functions

Ua 4ij and Ua iy (1,7) € Q" , a=1,2 from (3.47) are ordered upper and lower solutions
(3.37). From (3.45), in the sector (U, U), we have

0f1,j d R
J1ij (Ut,ij, Us,ij) = —a1 + 201U 45 + diUsz 5 < 2a1 + 71@7 (i,4) € Qh,
8u1 d2

0fa2,j aiby R
f2.ij (U1,ij, Ua,ij) = —ag + baUy 45 + 2doUs 45 < ag + 7, (i,7) € Qh,
OUQ b1

0f1,j 0fa,ij . =h
— : = —d U i < O - ’ = _b U 7 S O ’ Q .
Dy 1U145 < 9, 2U2 14 (i,7) €

Thus, assumptions (3.38) are satisfied with

dia aib LN A
Cl,ij = 2a; + (11 2, C2,ij = a2+%, (laj) ey
2 1

From here, we conclude that f,, « = 1,2, from (3.45) satisfy (3.38) and quasi-monotone

nonincreasing property (3.39).
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3.3 The monotone Jacobi and Gauss-Seidel methods

At interior mesh points (z;,y;), (i,) € Q", the difference scheme (3.17) can be written

in the following form

da,ijUaij = loyijUai=1,j — Ta,ijUayi+1,j — ba,ijUasij—1 — Ga,ijUaij+1 = (3.48)
/ I
fazg( azj;Ua’,ij), a %a, o, :1,2,
da,ij = la,z’j + Toij + ba,ij + Goigs la,z’j, Ta,ijs ba,z’ja qa,ij > 0, (3.49)

where loj; Taijs ba,ij and gaij, a = 1,2, are defined in (3.17).

3.3.1 Quasi-monotone nondecreasing case

The definition of the ordered upper ﬁij and lower Uij, (i,§) € Q" solutions (3.21) can

be written in the form

Unij < Uaijr (i,§) €00, (3.50a)
,C (ﬁa R fja’ z]) < 0 S Ica,ij(ﬁoz,ijv ﬁa’,ij): (17.7) € Qh: (350b)
Unij < goij < Uaijs  (i,5) € 09", o #a, a,a’ =1,2, (3.50c)

where Ko i(Ua,ij, U ij), (1,7) € Q" a =1,2, are the residuals of the nonlinear differ-
ence scheme (3.48) on U, 4, (i,7) € Q" a = 1,2, and notation (3.16) is in use.

We now present the point monotone Jacobi and Gauss-Seidel methods for the differ-
ence scheme (3.48). Upper {Ua Zj} and lower {Ua ZJ} (i,7) € ﬁh, a = 1,2, sequences
of solutions are calculated by the following point Jacobi and Gauss-Seidel iterative
methods:

Lo 20 = Koy UL, Gy e @t n>1, (3.51)

Z8) = gaii — UYL, 20 =0, n>2, (i) € 00",
Ea l]ZLn'L)] (da,ij + Ca,ij)Zén% (la ij Zénz) 14 + ba z]ZLnl)j 1)

( ) _ 77(n) (n—1) .

aw Uaz] Ua,ij ;o ()€ o )

n—1 n—1 n—1 n—1 n—1
Kaia (U35 Uc(v’,ij ) = daig UL = laigUSisty = raisUsity
n—1 n—1 n—1 n—1
_boz,ijU(i,i,j )1 Qo UUO(”]JL + fa Zj(UO(é i ) Uoi i ))’

where K, U(U("_l),U(n_l)), (i,5) € Q" o # o, a,a’ = 1,2, are the residuals of the

o, o' ,ig

nonlinear difference scheme (3.48) on U ), (i,7) € Q" a = 1,2, and notation (3.16)

[eR%]

is in use. For n = 0 and n = 1, we have, respectively, the point Jacobi and Gauss-Seidel
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methods.

Remark 3.3.1. For quasi-monotone nondecreasing functions (3.38), upper and lower
solutions are mdependemf hence, by using (5’ 51) we calculate either the sequence

{Uﬁ”l],UM} (1, j)EQ or the sequence {U“], 2”} (i,7

Theorem 3.3.2. Let ﬁij = (ﬁl,ij, 62’72]') and ﬁij = (ﬁl,ija ﬁ2,ij); (Z,]) S ﬁh, be ordered
upper and lower solutions (3.50). Suppose that the functions fo, « = 1,2, in (3.1)
satisfy (3.22) and (3.23). Then upper {U } and lower {U(n) }, (i,4) € ﬁh, a=1,2,

,t]

sequences generated by (3.51) with, respectively, U( ) U” and U( ) = lAfij, (i,5) € ﬁh,

,ij

converge monotonically from above to a mazimal solution UZ], (1,7) € ﬁh, and from

below to a minimal solution U,;, (4,7) € ﬁh,

g@}l) G,5) €@, a=1,2. (352

I

I < Qa,ij < Ua,ij < U(n) <

a,ij =
If Sij = (S1,i5, S24) is any other solution in <CA7, ﬁ), then
Uy < Sy <Tyj, (i,5) € Q" (3.53)

Proof. Since U((I L, (1,7) € Qh, a = 1,2, are initial upper solutions (3.21), it follows
0)

that ICavz-j(U(O)-- Ug/w‘j) >0, (i,5) € Q", o/ # a, o,/ =1,2. From here and (3.51), we

a,1])
have
(1 —(1 (1 .
(daij + ca ij)ZEx,zj - 7710472'3‘2&,2—1,3‘ - 77ba7ijZEx,2,j—1 <0, (4,]) € Qha (3.54)

Z((JzZ]<0 (i,j)Gth, 0421,2.

From here, n = 0,1, by > 0 in (3.48) and Z( )0 <0, for j =1 in (3.54), we obtain

—(1 1 .
(it + Cait)Zons = MlainZo_ 11 <0, i=1,2,... N, —1,

7\ <0, i=0,N,, a=12 (3.55)
Taking into account that n = 0,1, l411 > 0in (3.48), Z (1) 0.1 < 0, by using the maximum

principle in Lemma 3.2.2, for i = 1 in (3.55), we have Z( )1 <0, @ =1,2. From here,
for i = 2 in (3.55), by Lemma 3.2.2, we have 7((117)2,1 <0, «=1,2. By induction on i,
we can prove that 7&121 <0,:=0,1,..., Nz, a=12.

By induction on 5 > 1, we can prove that

ZW <0, (,5) e, a=12 (3.56)

a,t]
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(0)

=a,1]’

Similarly, for initial lower solutions U (i,j) € ﬁh, a = 1,2, we can prove that

(1) .o =h .
Za,ij = 07 (Z7J) €N , Q= 172 (357)

We now prove that U o\ and U j) € ﬁh a = 1,2, are ordered upper and lower

OCZ] az]? (

solutions (3.50). Letting w - gy

a,t] a,ij =a,ij’

notation (3.24), from (3.51), we conclude that

(i,J) € ﬁha a = 1,2, n > 0, using

0 0 —(0)  7(0) 0 0
La 1J Wc(y z)] =Ta ijWé z')+1 J + qa/ijWo(z,z'),j—i-l + Pa,ij(Ua,ij? Uo/,ij) — Lo (gfx,zjﬂgfx’?zj)v
Gpear, wll=0 (.j)edt, o+a, ad =12
—(0) ©) . . _ =h
From here, (3.48), (3.51) and taking into account that U, ;; > U, (i,7) € 0,

a =1,2, by Lemma 3.2.4, we obtain

1 1 1 .o
(dovij + Caif) Wl = Mlaig Wiy ;= nbaig Wi, >0, (i,5) € Q", (3.58)
wlo—o0, (i,j) €00, a=12.

Q,ij

From here and taking into account that W(ili),o =0,a=1,2 for j =1 in (3.58), we

conclude that

(da,i,1+ca,i,1)W( ) nlazlwo(w) 1,1 >0, i=1,2,...,N; — 1,

a,i,l

wl =0, i=0N,, a=12

Q,,

Taking into account that Wo(t’l&l =0, « = 1,2, by Lemma 3.2.2, for i = 1 in (5.50), we
have W(ilfl >0, a=1,2. From here, n = 0,1, lo21 > 0, a = 1,2, in (3.48) and
using Lemma 3.2.2, for ¢ = 2, we obtain that Wo%)l >0, a = 1,2. By induction on i,
we can prove that

wh >0, i=01,....N,, a=1,2

a,i,l =

By induction on j > 1, we can prove that

wll >0, (.5)e@", a=12 (3.59)

az]—

Thus, we prove (3.50a).

From (3.51) and using the mean-value theorem, we conclude that
771 771 1) 770 (1)
Ka,ij(Ua,ij7 Ua’,ij) = - (Ca,ij - (fa 5] (Qa RYE Uo/,z'j)>u )Za ij (360)
©0) 571 (1) (1) (1)
<fOl Z]( ,ijo Ya zg))u , Za’,z] nla Z]Za i—1,7 Taﬂ]'Za,i—l-l,j
—(1 (1
—Uba,ijzé,z',jfl — qa,ing;’jJrl, o £a, a,d=1,2,
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#7(1) A1) 571 770 s h
where Uy ;i < Quiiy Yaij < Uaijs (3,7) € Q" a = 1,2, From (3.57) and (3.59),

we conclude that (fa,ij(@(l),. U(Q)..))u (fa i (U az],?(l,)..))u / satisfy (3.22) and

a,ijr ol ig alij

(3.23). From (3.22), (3.23), (3.48), (3.56) and (3.60), it follows that

Ica ZJ(U(()}L?US’),z]) 2 07 (,La]) € Qha O/ 7& «, «, O/ = 17 2.
Thus, U& 2], (i,5) € ﬁh, a = 1,2, satisfy (3.50b). By a similar manner, we can prove
that

Koy UD y<0, (i,j) e, o #a, ad =12

=a,ij = ij

that is, vt (1,7) € ﬁh, a = 1,2, satisfy (3.50b). From the boundary conditions on

=a,ij’

o0 in (3.51), it follows that U& Zj and Ug{ 2], (i,7) € 00", a = 1,2 satisfy (3.50c).
Thus, we prove that Ué 2] and USZJ, (1,7) € ﬁh, a = 1,2, are ordered upper and

lower solutions (3.50).
By induction on n, we can prove that {U&”Z]} (1,7) € ﬁh, a = 1,2, are monotone
decreasing sequences of upper solutions and {fo 2]} (i,5) € ﬁh, a = 1,2, are monotone

increasing sequences of lower solutions which satisfy (3.52). From (3.52), it follows that

th&z)] = U,,ij and thEH)] Ugijyr (157) Gﬁh, a=1,2, as n — oo exist and
lim Z0 =0, lm 2™ =0, (i,))eQ", a=1,2 (3.61)
n—ooo HUY ’ n—oo % ij ’ ’ ’ T '
Similar to (3.60), we have
—=(n) F=(n n n—1 —(n
’Ca,z'j(Ug,gj,Uif,)ij) = —<Ca,ij - (fa 5@ 2]7U£y ”))>u )ZEH)J (3.62)

n—1) —(n n —(n
(fOéZJ( ,ij )7Y(()/,)ij)>u ch )7,] lOé,ijZé,'L?fl,j

7(n) 7(n) (n)
—Ta,ijZa,z‘H,j - nba,ijZa,i,jfl - Qa,ijZa,i,ij
(1,7) € Q" o #a, a,d =1,2,

where
7 e N
Uaz]<Qa'L]7Y <Uaz_] ; (l,])EQ s 05—1,2

By taking limit of both sides, we conclude that

]Coz,ij(Ua,ija Uo/,ij) = 07 (Zvj) € th O/ 75 a, «, O/ = 1» 2.

= .o —=h . . . .
Thus, Uq,j, (4,5) € ', a = 1,2, are maximal solutions to the nonlinear difference

scheme (3.17). By a similar argument, we can prove that

ICoz,ij (Qa,ijyga’,ij) = 07 (Zv.]) € th O/ 7é o, «a, O/ = 17 27
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that is, U, ;;, (i,7) € ﬁh, a = 1,2, are minimal solutions to the nonlinear difference
scheme (3.17).

Now, we prove (3.53). We assume that S;; = (51,45, 52:45), (4,7) € ﬁh, is another
solution in <[7 U ). We consider the sector (S, U ), which means that we treat Sj,
(i,7) € Q" , as a lower solution. Since {S((an)]} = {Saij}, (4,7) € ﬁh, a =12 isa
constant sequence for all n, then from (3.52), we conclude that Sa;; < Uaj, (i,5) € ﬁh,
a=1,2.

Now, we consider the sector ([7, S), which means that we treat S;, (i,7) € ﬁh, as
an upper solution. Similarly, since {?&”2]} = {Sa,ij}, (1,7) € ﬁh a =1,2, is a constant
sequence for all n, then from (3.52), we conclude that U, ;; < Sa.ij, (4,7) € ﬁh, a=1,2.
Thus, we prove (3.53). O

3.3.2 Quasi-monotone nonincreasing case

The definition of the ordered upper ﬁij and lower ﬁij, (1,7) € Q" solutions (3.37) can

be written in the form

Uaij < Uaijr  (i,5) €9, (3.63a)
Kaij(Unijs Uarij) < 0 < Kaij(Uaijs Unrij),  (irj) € QP (3.63b)
ﬁa,ij < Gayij < Ui i, (1,5) €09, o £a, a,d =1,2, (3.63c)

where Ko ij(Uaij, Uy ij), (1,7) € Q" o= 1,2, are the residuals of the nonlinear differ-
ence scheme (3.48) on U, 5, (i,7) € Q" a = 1,2, and notation (3.16) is in use.

In the case of quasi-monotone nonincreasing reaction functions, for solving the
nonlinear difference scheme (3.48), we introduce the point Jacobi and Gauss-Seidel

iterative methods in the forms

n n—1 n L.
LoiiZ0h = Koy U050 USD), (i) e Qn, (3.64)
LoiiZ0) = —Kagy@TVTUD), (1) €,

a,ij aij — M a,i,j—1

Loi;Z") = (dagis + Cai) 20, (lo‘7iJZ(gzz) 1j 1 basijZ, z") )

ZzW —y) g gy eql,

a,ij ayig a,ij
(0)

(n) Gojij — Ua,ij’ n=1, . h

Zois = { 0, 2, (i,7) € 09",

Kaij(Ua,ij, U ij) = da,ijUaij — laijUaji=1,j — Ta,ijUayi+1,j — ba,ijUayij—1

— (a ZjUa 2,j+1 + foe zy( [eRYE) Ua’,ij)7
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where I, ij(U(" b U(n 1))7 (i,7) € Q" o # a, a,o/ = 1,2, are the residuals of the

a,ij aljij
difference equations (3.48) on UL(YnZ] 2

,(i,5) € Q" o = 1,2, and notation (3.16) is in use.
For n = 0 and n = 1, we have, respectively, the point Jacobi and point Gauss-Seidel

methods.

Remark 3.3.3. For quasi-monotone nonincreasing functions, upper and lower solu-

tions are coupled hence, by using (3.64), we calculate either the sequence {Uﬁ-j, UQT%}

(i,5) € Q" or the sequence {Ulnz)j,Uz it (6,4) €

Theorem 3.3.4. Let the pair ﬁij = ([71 ij,ﬁz ij) and ﬁij = ((71 i]’,UQ ij)s (i,7) € ﬁh,
be ordered upper and lower solutions (3.63). Assume that the functwns fa,

1,2, in (3’ 1) satisfy cquatwns (8.38) and (3.39). Thcn the sequences {Ul g2 21]}
{U1 l],UQU} (i,5) € Q" , generated by (3 64) with {Ul i 2”} = {U1 U,UQU} and
{U1 E 2”} = {U1 ZJ,UQ it (i,)) € " , converge monotonically to their respective
solutions (U1,ij,Us ;i) and (Uy 45, Uaj), such that

U <UM <U,, <Taiy <TLL <TOY, () €@, a=12 (3.65)

=a,ij a,ij a,t)

If Sij = (S1,ij,52,5), (i,7) € ﬁh, is any other solution in (U,U), then

U, <8y <Ty, (i,5)eq". (3.66)

)

Proof. In the case of the sequence {Ul i UgnZ)J} (1,7) € Q" (Ug Z)], Ug?i)j) = ((7172-]-, [7272-]-),
(i,5) € Q" are initial upper and lower solutions (3.63). Hence, it follows that the resid-

wals Ky (T35 USY) 2 0, Koy (VY USSY) < 0, (1,5) € QP from (3.64), we
have
(dl i +c zy)Zg z)J ll zyzglz) 1,7 = nbl,ijjgli),jfl < 07 (Zvj) € th (367)
(daij + c2,4) 25 Z)] 7752,@‘&%,3_1,]- - lez,z‘jzgi),j_l >0, (i,j) €,
ZY <0, 2. >0, (i5) €00,

For here, 1) = 0,1, bai > 0 in (3.49) and Z{'} <0, Z8")) > 0,i=0,N,, for j = 1 in
(3.67), we obtain

Ll ZV) <0, (i) € QP (3.68)

(dl Jij +c1 ’L]) i
D = mlainZs) 1y >0, (i,5) € QY

(d22]+022])
i=1,2....N,—1, 2\, <0, 2z >0, i=0N,.

Taking into account that n = 0,1, l,;1 > 0 in (3.49), 7%71 <0, Zg()m > 0, and
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(1)

using the maximum principle in Lemma 3.2.2, for ¢ = 1 in (3.68), we have 71,171 <0
Zgil > 0. From here, by using Lemma 3.2.2, for ¢ = 2 in (3.68), we have 78%71 <
0, Zg}%’l > 0. By induction on ¢ and j, we can prove that

Zih <o, z8) >0, (i,5) Q" (3.69)

Zi 1J 4]

Similarly, for the sequence {Qfgj,ﬁgi)j}, (i,7) € ﬁh, from (3.64), we conclude that

1 1 . N =h
z0) >0, Zy) <0, (i,5) Q" (3.70)
We now prove that Ug 23- and U((l 237 (i,7) € ﬁh a = 1,2, are ordered upper and lower
solutions (3.63). Letting WC(M l)] = U& L UEX zj, (i,5) € ﬁh, o = 1,2, using notation

(3.24), from (3.64), we conclude that

0 0 77(0) 0 0) 7700
La ZJW( ) = =Ta ijW( z‘)+1 J + Qa,ijW(g,z‘)7j+1 + Fa,ij(Ua,z’ﬁQg/?ij) - Fa,ij(U( )" U /,ij)’

a,ij «@ =—,1)’

Gear, wl =0 (i,5)eo", o #a, aad =12

a,i]

From here, (3.49) and taking into account that U& Zj > Ug)zj, (i,7) € ﬁh, a=1,2 by

using Lemma 3.2.5, we obtain

(davij + Cad)) W = Mlais Wiy = mbaig Wi,y 20, (i,)) €@t (3.71)
WO(”)J =0, (i,j)ed, a=1,2

Since Wo(é 7,)0 =0,a=1,2, for j =11in (3.71), it follows that

(doit + i )Wody = MlaiaWay 1y 20, =12 No—1, (3.72)
Wl =0, i=0,N,, a=12

From here, W(gl =0, « = 1,2, by using Lemma 3.2.2, for i = 1 in (3.72), we have

(03
Wo(élfl >0, « = 1,2. From here, n = 0,1, lo21 > 0, @ = 1,2, in (3.49) and using
Lemma 3.2.2, for i = 2 in (3.2.2), we obtain W0(412)1 >0, a = 1,2. By induction on i

and j, we can prove

wh >0, (6,5) e, a=12 (3.73)

,ij

Thus, we prove (3.63a).
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From (3.64) and using the mean-value theorem (3.24), we conclude that

—(1 1 1 1
Ko @0 08)) = — (e - (@), ) 71 37
0 —(1
(fl ZJ(UE 2]7 éll)]))m Z( ) —nl fngz) 1,5 — T17ijZ§,z')+1,j

(1) (1) .
—nb1ijZ1 ;-1 — QijZi 415 (,7) € Q"

where

0 0 1 .o =h
1’Lj—Qll] gz)]a Q( ')‘< (1--<U( ) <Z7j)€Q :

From (3.69), (3.70) and (3.73), it follows that the partial derivatives (fl (@Slfj, Qg%))
u1

—(0 .
and < AT Qg@?}.»w satisfy (3.38) and (3.39). From here, (3.49), (3.69), (3.70) and
(3.74), we obtain that

(1 ..
K1 (T, Uyl >0, (i,5) € M (3.75)
Similarly, we can prove that
(1 ..
Ko (U3, US) <0, (i,5) € Q. (3.76)

By a similar manner, for the sequence {U1 i Uénl)J}, (1,7) € ﬁh, from (3.64), we can

prove that
1 1 .
KLU U55) <0, Ko@) T50) 20, Guj)e@  (3.77)
From the boundary conditions on 90" in (3.64), it follows that USZ], USL, (i,7) € ﬁh
a = 1,2, satisfy (3.63c). Thus, from here, (3.73), (3.75)—(3.77), we conclude that U((l 2]
and U((x ZJ, (i,j) € ﬁh, a = 1,2, are ordered upper and lower solutions (3.63).

By induction on n, we can prove that {Uanm} (i,7) € ﬁh, a = 1,2, are monotone
decreasing sequence of upper solutions and {U o j} (1,7) € ﬁh, o = 1,2, are monotone

increasing sequence of lower solutions which satisfy (3.65). From (3.65), it follows that

th(()tnl)] =U,,; and limelnz)J =U,j» (1,7) € ﬁh, a=1,2, as n — oo exist and
lim 2. =0, lm 2™ =0, (i,))eQ", a=1,2 (3.78)
n—o0 ot ’ n—oo % ij ’ ’ ’ T '
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Similar to (3.74), for any n > 1, we have

ICI 7 (Ug 1)]7 Ug?]) = - (Cl,m fl 7 (Ql KYR U2n1)j)u1) 7??] (379)

(1)

+f1,ij(U1,ig_‘ ,ani')uzzg”?] Nl1,ij 21,1,

- 7"1,ij7$)+1] nb1 ZJZS Z)J 1— q1,ing7;i),j+17 (i,5) € Q",

where
n—1 n—1 n n .o oY
Ug K2 < Ql ] = Ug XY )’ Qg,ij : = Qgﬂ)j < Qé,i)ﬁ (27]) e,

By taking the limit of both sides and using (3.78), we obtain that
K1,ij(Ut,i5,Us,5) =0, (4,4) € Q" (3.80)

Similarly, we have
K2,ij(U14.Usy;) =0, (i,5) € Q" (3.81)

In a similar manner, we can prove that
Kiij(Uy s Uij) = 0, Kaij(Uy 5, Uaig) =0, (4,5) € Q™ (3.82)

Thus, from (3.80)-(3.82), we conclude that U, ;j, U, (i,5) € Q" a = 1,2, are,
respectively, maximal and minimal solutions to the nonlinear difference scheme (3.17).

Now, we prove (3.66). We assume that S;; = (51,45, 52.45), (4,7) € ﬁh, is another
solution in <ﬁ U). We consider the sector (S,U), which means that we treat S;j,
(i,5) € Q" , as a lower solution. Since {Sam} = {Saij}, (4,7) € ¥, a =1,2,is a

a,tj

constant sequence for all n, then from (3.65), we conclude that S, ;; < Uoz,ij7 (1,7) € ﬁh,
a = 1,2. Now, we consider the sector <ﬁ, S), which means that we treat S;;, (i,7) € ﬁh,
as an upper solution. Similarly, since {3("2].} = {Saij}, (i,)) € ﬁh a =12 is a
constant sequence for all n, then from (3.65), we conclude that U, ;; < Sa.j, (4,7) € ﬁh,

a =1,2. Thus, we prove (3.66). O

3.4 Existence and uniqueness of solutions to the nonlinear
difference problem (3.17)

We give a bound on the magnitude of the solution to the linear problem (3.19).

Lemma 3.4.1. The following bound on the magnitude of the solution to the linear
problem (3.19) with positive functions cqij, (i,7) € ﬁh, a=1,2, holds

Q.
- } a=1,2, (3.83)
Oh

(0}

[Wallor < max{ugauam,
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where
P,

Ca

a,t]
= max |—Y

= max i
||9a||8Qh |gaﬂ]|7 Qh (i,5)€QP

(i,5) €00

The proof of the lemma is given in Lemma 1.2.1 from Chapter 1.

3.4.1 Quasi-monotone nondecreasing case

Theorem 3.4.2. Let ﬁij = (ﬁl,ij, [72@') and Uz'j = (ﬁlﬂ'j, [7271'3'), (Z,]) S ﬁh, be ordered
upper and lower solutions (3.21). Suppose that the functions f,, o = 1,2, in (3.1)
satisfy (3.22) and (3.23). Then a solution to the nonlinear difference problem (3.17)

exrists.

Proof. From (3.52), it follows that U, ;; and Uaj, (i,7) € ﬁh, a = 1,2, are solutions
o (3.17). Thus, we prove the theorem. O

Theorem 3.4.3. Let assumptions (3.5)—(3.7) be satisfied. Then the nonlinear differ-

ence scheme (3.17) has a unique solution.

Proof. Suppose that U, = (U7 ,;,Us3;;) and U = (U773, Ush,), (i,7) € Q" are two

solutions to (3.17). Letting Vo5 = U, —UX% ., (4,]) € Qh, a=1,2, from (3.17), we

a,tj i)

have

AaijVasij + fo,ijUaijs Uss ii) = forii(Uais Uar i)
+ fOé,iJ(Uc*u*;j’ ; 1]) fa,ij (U;*Ua U;*z]) =0,
(i,j) € Q") Vay=0, (i,j) e, a=12.

From here and using the mean-value theorem, we obtain

0 faij(Qasij> Ul i)  0faii (U Yar i5)
8ua 8“0/
Vai; =0, (i,5) €0Q", o #a, a,d =1,2,

AcijVaij + Vajij = Vg, (4,7) € Q,

where Qq,ij, Ya,ij lie between U ;- and UZY ., (4,7) € ﬁh, a = 1,2. From here, by using

a,ij a,ij

estimate (3.83), we conclude that

(fa(US", Yar))u,,
(fa(Qa: UZ))

Vallgr < H

(fa(US" Yar)).,,
(fal Qa,U*

1Vl
Q
ﬁh

Then from here and (3.5)—(3.7), we obtain

Vallgs < BlVar .
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Letting v = maxa—12 [|Val/gn, we have v(1 — 8) < 0. From here, (3.7) and taking into
account that v > 0, we conclude that v = 0. Thus, we prove the theorem. ]
3.4.2 Quasi-monotone nonincreasing case

Theorem 3.4.4. Let ﬁij = ([7171']‘, [7271‘]‘) and ﬁij = (ﬁl,ij, 62,7;]'), (Z,j) S ﬁh, be ordered
upper and lower solutions (3.37). Suppose that the functions fo, o = 1,2, in (3.1)
satisfy (3.38) and (3.39). Then a solution to the nonlinear difference problem (3.17)

exists.

Proof. From (3.65), it follows that {U1;,Us;;} and {U; ., Uz}, (i,4) € Q" are
solutions to (3.17). Thus, we prove the theorem. O

Theorem 3.4.5. Let assumptions (3.5), (3.7) and (3.14) be satisfied. Then the non-

linear difference scheme (3.17) has a unique solution.

The proof of the theorem repeats the proof of Theorem 3.4.3.

3.5 Convergence analysis

3.5.1 Quasi-monotone nondecreasing case

A stopping test for the point monotone iterative methods (3.51) is chosen in the form

max ||Ko (USY U <, (3.84)
Qh
a(U(&n), UO("))HQh = (i%?s(zh Ko Z](Uo(j?], U(in)zj) o #a, a,d=1,2,

where ICa,ij(U(n) U( ) i) (0,7) € Q" a = 1,2, are defined in (3.51) and J is a prescribed

g’

accuracy.

Theorem 3.5.1. Assume that the assumptions in Theorem 3.4.8 are satisfied. Then for
n)

the sequences { am} (i,j) € ﬁh, a = 1,2, generated by the point monotone iterative
methods (3.51), (3.84), we have the estimate

max HU(&"‘S) U}
a=1,2

- < (l—lﬁ)67 0 = min {(mln c,(z ,y)} > 0, (3.85)

a=12 | (z,y)€w

where U*

a,ig?

scheme (3.17), and ng is a minimal number of iterations subject to the stopping test

(3.84).

(i,j) € ﬁh, a = 1,2, is the unique solution of the nonlinear difference
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Proof. From (3.17), for T and U Jj) € ﬁh, a =1,2, we have

a,tj au?(.v

AaigUet) + Fais U8 TG = Ky (U5, T0)) 6,3 € 9,

a’ i

U&nfg) = Goijs (i,7) € th, a=1,2,

Aaz]U;1]+faZJ( Oél]’U; zg)_oa (iaj)EQh,
U; Ky = Ga,ij, (27.7) S th, o = 1,2

Letting wne) — o) _ g j) € ﬁh, a = 1,2, we have

] a,ij azg?(ﬂ

‘Aa ] Wo(znz(; + fa i (U((xnf])7 Uo:}(sz)j) fa l]( o,ij) Ugnéz)j) + fa ZJ( a,ijs Ugl&z)j)
— Jaii(Uaijs Us ij) = Kaij (Uglnf]),U((;}“Z)]) ’
(i,j) e, Wi =0, (i,5)€09", a=1,2

a,1]

From here, by the mean-value theorem, we obtain

'ACV R¥] c(ynz(; (fa ] (Qanfj)7 U((Jznéz)j>>u Wo(z 7 - <f0¢( o, ognfj))>u , W(Slj])

[e3

+ ,Ca,ij (U(né) U(né)) (Z,]) c Qh,

i al i

W) — 0, (i,j)€dQ", o #a, ad =12,

a,ij

where
.o —h
alj—Qazj’ OET;‘;)<U£11‘])7 (/L7J)GQ ) a:172'

From here, (3.5), (3.6) and using (3.83), we conclude that

(ns) Ka (U("é) U(T/Lé)) (fa( @ 0" ))> (ns)
W) || on < + Yo HW |l
« (na (W) (ns) 77(ns) @ lgh

(fa( )>ua Oh (fa( « U ))ua Oh

Letting w(™) = max,—19 HW(%) o From here, (3.5)—(3.7), we obtain
(ng) < (ns) 77(ns) H ns)
g s e (0777 [+

where p is defined in (3.85). From here and (3.84), we prove (3.85). O

Theorem 3.5.2. Let the assumptions in Theorem 3.4.3 be satisfied. Then for the

sequences { a”} (i,j) € ﬁh, a = 1,2, generated by the point monotone iterative
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methods (3.51), (3.84), the following estimate holds

1
(ns) _ o * <
s 080 = | < g [0+ g VBl (3.56)
HE H oh — Mmax |Eazg| (387)
(i,§)eQ”

where v’ (z,y), @ = 1,2, are the evact solutions to (3.1), Enj, (i,7) € Q" a = 1,2,
are the truncation errors of the exact solutions u},(x,y), o = 1,2, on the nonlinear
difference scheme (3.17), and ng is the minimal number of iterations subject to the
stopping test (3.84).

Proof. We denote Eq ij = u}, ;; — Uj i, (i,7) € Q" , a = 1,2, where the mesh functions
U; g (i,§) € ﬁh, a = 1,2, are the unique solutions of the nonlinear difference scheme

(3.17). From (3.17), we obtain that

Aaz]Eaz]+faz]( a,ijs Uyt z]) fOMj( iy Uq z])+foélj( az])ujy’,ij)
fOtlj( az]vU; 7,]) Ea,ij,
(i,§) € Q") Eay=0, (i,j) €, a=1,2

By the mean-value theorem, we have

A 8foz,z’j(Qa,z‘j7Uj;/7ij) B - _afoc z]( aZJaYa’,ij)
@ Ouq w Ouy

Ey ij + Eqgj,

(i,j) €Q" Enaij=0, (i,j)€0Q", o #a, a,d =1,2,

where Qa,ij, Yo, lie between uy, ;; and U, ij, (1,7) € ﬁh, a = 1,2. From (3.5) and

(3.6), by using (3.83), it follows that

Qaa’

Bl < \

E
Bl +\ a
o Ca

Letting e = maxa—12 | Eallg, from (3.7), we have

e < fe+ max ||— , o a=1,2
a=1,2 Cqo ﬁh
From here, we conclude that
1 a
e< ——max |—| , a=1,2. (3.88)
1—-Ba=12|| ¢, |lg"
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We estimate max,—1 2 HU&"‘*) —

_—— follows

max [|U") = Ug + Ug — uf |0 < max U — Uzlln + max (U] — ug [ -

a=1,2

From here, (3.85) and (3.88), we prove the theorem. O

3.5.2 Quasi-monotone nonincreasing case

For the sequences {Uﬁ")j, U gnz)j} and {Qﬁ)],ﬁéz)]}, (i,j) € ﬁh, generated by (3.64), we

introduce the notation

K= max{HlCl (Ugn)’gén)) (i,5) th "CQ ( 1 )’ U(n)> (m’)eﬂh} ’ (3.892)
for the sequence {Ul i Ug?]}, (i,7) € Q" and
wmmae{ e 00| e 0 ) ) s

for the sequence {U U(n)} (i,j) € Q, where the residuals Ko (U(".). U(tL)‘.)

1 z]? 2 51 a,1)? a’,] ’

(i,5) € Q" o # «a, a,a’ = 1,2, are defined in (3.64), and the notation of the norm
(3.83) is in use. A stopping test for the point monotone iterative methods (3.64) is
chosen in the form

K <4, (3.90)
where K, a = 1,2, are defined in (3.89) and ¢ is a prescribed accuracy.

Theorem 3.5.3. Assume that the assumptz’ons in Theorem 3.4.5 are satisfied. Then for
Usiits {U1 i 2”} (i,7) € ﬁh, generated by the point monotone
iterative methods (3.64), (3.90), we have the estimates

the sequences {Ul i ) Ul

max {[T1" = Uf |l 10" = U [l } < =ore (3.91)
n, * n * 1
max { U~ U g 105" = sl } < (=558

0= in{ min ca(x,y)} > 0,

. .
where U} ;. (i,

scheme (3.17), and ng is a minimal number of iterations subject to (3.90).

j) € ﬁh, a = 1,2, are the unique solutions of the nonlinear difference

Proof. We consider the case of the sequence {U 1 U, U an)]} (i,5) € Q". From (3.17), for
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Ug za) Uén;;) and U} Q5 (i,4) € ﬁh7 a=1,2, we have

Ar U+ fuag O U8 = Koy (07 08%)) gy e ot

'A2 %) an(;) + f2 ZJ( 172(;) Ué ’Lj)) ’CQ i (Ug ’Lj)7 Ugnz(;)) (Zvj) € Qha

Ugnl(;) = 915> Ué 13) = 92,i5, (’L:j) € th7
AalJU(;ZJ—i_falJ( Oc’Lj’U:z 1])_0’ (i,j)EQh’
U(; i — Goyigs (laj) € th, o ?é «, Oé,Oé/ =1,2,

Letting Wg w) Uﬁ‘;) Uy ,;; and wis) = Ui — U( o) (i,7) € 0", we obtain

2,17 2,15

-Al jij 1 Zj —|— fl Z]( 1 l]), Ugn;; ) - fl,ij(Uil]’ Ué Jij ) + fl Z](Ul U?anz(;))
- fl,ij(Uik,ij’ U2,ij) = Kl,ij (Uﬁ-‘?, Ug;?) ’
Az,z’jﬂgﬁ‘) + f2,i; (U5, U 35) — foi5 (U, m’ Ué"z‘;)) + J23i (U, Ugn;;))

f2 l]( lzg Ugnz(;)) = IC? 2LJ (Ug zj)Ugnz(;))
(4,5) € Q" Ug z(;) = 915> Qg,ij) = 9245, (i,7) € 09",

From here, by the mean-value theorem, we obtain

AW + (@ U88), W = (AU, vay)), Wiy
+ K (Ug 2, Ugniz))

WS+ (Fa U, V) W45 = (R(@.085)), WL

~Kag (UV5.05%5).

(i,5) € Q" Wi =0, wi) =0

.o h
1,27 2,17 ) (Z,]) € 00 )

where

n n .. —h
UM]<Q1,] g;;), U§z§)<Y2w<U2w (i,7) € Q.

From here, (3.5), (3.14) and using (3.83), we obtain

Ky <U§n5)’ an;))

(A(@.uy))

(fl(Uf, YQ(n(s)))u2

w7 (1s)
7" e < e
’ (r@,ul))

+

Y

e

Qh

uy ||Qh w1 ||Qh
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iz (T, 05 (R@.0")

u 7 (1)
(fQ(Uik,Y;né))) + (f2(U1*7Y2(n6)))u21 HWl

WS |l <

Qb

uz ||Qh Qh

Letting w(™) = max {HW%””HWU ||E§n5)||§h} From here, (3.5), (3.7) and (3.14), we
obtain

(né) < max

s (71,

where p is defined in (3.91). From here and (3.90), we prove (3.91).

By a similar argument, we can prove (3.91) for the sequence {U1 i Ué“l)]}, (i,j) €

o 0

Theorem 3. 5 4 Let the assumptions in Theorem 8.5.83 be satisfied. Then for the
sequences {Ul i UQnZ)j} nd {anz)J,U;Z)j}, (i,7) € Q" generated by the point monotone
iterative methods (3.64), (3.90), the following estimate holds

77N * n * 1
max { [T — ufllgp 103" — i } < (755 [5+ max ||Ea||m] o (392)

1

max {03 il |05 il } < 755

[5+ ma uEaum] ,

| Eq Hfh = max \an\ a=1,2,
(i.j)eq"

where u(z,y), « = 1,2, are the ezact solutions to (3.1), Ea.j, (i,j) € Q" a = 1,2,
are the truncation errors of the exact solutions u}(x,y), o = 1,2, on the nonlinear
difference scheme (3.17), and ng is the minimal number of iterations subject to the
stopping test (3.90).

The proof of the theorem repeats the proof of Theorem 3.5.2.

3.6 Constructions of initial upper and lower solutions

We discuss constructions of upper and lower solutions which are used as initial iterations
in the monotone iterative methods (3.51) and (3.64).
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3.6.1 (Quasi-monotone nondecreasing case
3.6.1.1 Bounded functions
Assume that the functions f,(z,y,u) and go(z,y), @ = 1,2, in (3.1) satisfy the following

conditions

- MO! S fa($;y70) S 07 Ua(xay) 2 07 ($7y) E w? (393)
Jol(z,y) >0, (2,y) € 0w, a=1,2,

where M, = const > 0, a = 1,2, and 0 is the zero vector (0,0).
We introduce the mesh functions

ﬁa,ij = 07 (7’7]) € ﬁhv o = ]-a 27 (394)

and the mesh functions [,Nfa,ij, (i,j) € ﬁh, a = 1,2, which are solutions of the following

linear problems:

Aa,ijUaij = Mo, (i,)) € Q" Uajij = Yaij, (4,]) € 0", a=1,2, (3.95)

where A, ij, (i,§) € Q", a = 1,2, are defined in (3.17).

Lemma 3.6.1. Assume that the assumptions in (3.93) are satisfied. Then the mesh
functions from (3.94) and (3.95) are ordered lower and upper solutions (3.21).

~

Proof. Letting W ;; = ﬁa,ij —Uayj, (4,7) € ﬁh, a = 1,2, from (3.94) and (3.95), we

have
AwiiWaij = Mo, (i,5) € Q") Waii =0, (i,5) €09, a=1,2.

From here, M, > 0, a = 1,2, and using the maximum principle in Lemma 3.2.2, we

conclude that

~ ~

Uaiij = Uayij > 0, (i,7) € ﬁh, a=1,2.

Thus, we prove (3.21a). From (3.93) and (3.95), we have
Aa7ij(7a7ij + fa7ij((7a7ij, ﬁa%j) >0, (i,j)€ Q" o #£a, ad =1,2.
Thus, [7&71']-, (i,7) € ﬁh, a = 1,2, satisfy (3.21b). From (3.93) and (3.94), we obtain
.Aaﬂ'jﬁaﬂ;j + fa,ij(ﬁa,ij, fja/’ij) <0, (i,))€ Q" o #a, ad=1,2,

that is, ﬁa,ij, (i,5) € ﬁh, a = 1,2, satisfy (3.21b). From (3.94) and (3.95), it follows
that ﬁan‘j and (A]/Oévij, (i,7) € Qh, a = 1,2, satisfy (3.21c). Thus, ﬁa,ij and ﬁa,ij,

87



(i,5) € ﬁh, a = 1,2, from (3.94) and (3.95) are ordered lower and upper solutions
(3.21) to the nonlinear difference scheme (3.17). O

The gas-liquid interaction model

Consider the gas-liquid interaction model which is presented in Section 3.2.1.1.
Since the reaction functions fi(u1,u2) = —o1(p1 — ui)ue, fo(ui,u2) = o2(p1 — ui)ua,
satisfy the assumptions in (3.93), with any positive constants M,, o = 1,2. Hence,
by using Lemma 3.6.1, it follows that the mesh functions Ua,ij and [7&71% (i,7) € ﬁh,
a = 1,2, from, respectively, (3.94) and (3.95) are ordered lower and upper solutions to
(3.28).

3.6.2 Constant upper and lower solutions

Assume that the functions f,(z,y,u) and go(z,y), o = 1,2, in (3.1) satisfy the condi-
tions
fa(xayao) S O> ua(:c,y) ZO? (-'L',y) Ew? o = 1>2> (396)

and there exist positive constants M7, Ms such that
falz,y, M) 20, (z,y) €W, 0<galz,y) <Ma, (i,j) €0w, a=12, (3.97)

where M = (M, Ms). Introduce the constant mesh functions

Ua,ij = Mo, (i,j) € Q" a=1.2 (3.98)

Lemma 3.6.2. Assume that (3.96) and (3.97) are satisfied. Then the mesh functions
from (3.94) and (3.98) are ordered lower and upper solutions (3.21).

Proof. From (3.94) and (3.98), we obtain (3.21a). From (3.97) and (3.98), we have

Aa,ijﬁa,ij + fa,ij(fja,ij, ﬁa’,ij) >0, (Z,]) S Qh, o #a, a o = 1,2.

Thus, Ua,ij, (i,7) € ﬁh, a = 1,2, satisfy (3.21b). From (3.94) and (3.96), we obtain
Aa,ijﬁa@j + foé7ij(ﬁa7ij, ﬁa/ﬂ'j) <0, (Z,j) S Qh, o #a, a o = 1,2.

Hence, ﬁa,ijv (i,5) € ﬁh, a = 1,2, satisfy (3.21b). From (3.94) and (3.98), it follows
that ﬁa,ij and fj&,ijv (1,7) € ﬁh, a = 1,2, satisfy (3.21c¢). Thus, we prove that (/ja,ij
and ﬁw’j? (i,j) € ﬁh, a = 1,2, from (3.94) and (3.98) are ordered lower and upper

solutions (3.21) to the nonlinear difference scheme (3.17). O

The gas-liquid interaction model
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Consider the gas-liquid interaction model which is presented in Section 3.2.1.1.
Since the reaction functions fi(u1,u2) = —o1(p1 — uy)ug, fo(uy,uz) = o2(p1 — ui)us,

satisfy the assumptions in (3.96) and (3.97), with M,, o = 1,2 are given by
My = 00, a=1,2, > ma T it > ma 3.99
@~ Ga 0L = e ti 02 = NEn 924 (3:99)
By using Lemma 3.6.3, it follows that the mesh functions ﬁa,@'j and ﬁa,ij, (1,7) € ﬁh,

a = 1,2, from, respectively, (3.94) and (3.99) are ordered lower and upper solutions to
(3.28).

3.6.3 Quasi-monotone nonincreasing case

From the definition of upper and lower solutions (3.37) for quasi-monotone nonincreas-
ing functions, it follows that lower and upper solutions are coupled. Thus, we give

sufficient conditions for the existence of coupled lower and upper solutions.

3.6.3.1 Bounded functions

Assume that the functions f,(x,y,u) and g, (z,y), @ = 1,2, in (3.1) satisfy the following

conditions

- MOL < fa(%%umoa’) < Oa fa(x7y70a7ua’) < 07 ua(xay) > 07 (xvy) € w,
(3.100)

ga(fv,y) 207 ($,y) ana Oé?éO/, O[:LQ,

where M, = const > 0, a = 1,2, and 0, means uq(z,y) =0, (z,y) €W, a = 1,2.

Let ﬁa,zj, (1,7) € ﬁh, a = 1,2, be solutions of the linear problems (3.95) and the
mesh functions ﬁa,ij, (i,5) € ﬁh, a=1,2, from (3.94).

We show that ﬁa,ij and ﬁa,ij, (i,j) € ﬁh, a = 1,2, from (3.94) and (3.95) are

coupled pairs of ordered upper and lower solutions.

Lemma 3.6.3. Assume that (3.100) is satisfied. Then the mesh functions from (3.94)
and (3.95) are ordered lower and upper solutions (3.37).

Proof. From (3.95), by using the maximum principle in Lemma 3.2.2, we conclude that

Uaij > 0, (4,7) € ﬁh, a = 1,2. From here and (3.94), it follows that ﬁa,ij > ﬁa,ij,
(1,7) € ﬁh, a = 1,2. Hence, we prove (3.37a). From (3.94), (3.95) and (3.100), we have

Aa7ij6vo¢,7jj + fa,ij((}a,ij, ﬁa’,ij) >0, (i,4)¢€ Qh, o # a, a0 =1,2.
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From (3.94) and (3.100), we obtain

Aanga1]+fa1j( az]7Ua’,ij)§07 (i7j>€Qh7 O/7éa’ a,o/:l,2.

From here, we conclude that U, i and U g (z 7)€ Q" a = 1,2, satisfy (3.37b). From
(3.94) and (3.95), it follows that Ua i and U, ijs (1,7) € Q" a = 1,2, satisfy (3.37c).
Thus, Ua,ij and Uaﬂ'j, (i,7) € " , = 1,2, from (3.94) and (3.95) are ordered lower
and upper solutions (3.37) to the nonlinear difference scheme (3.17). O

The gas-liquid interaction model

Consider the gas-liquid interaction model which is presented in Section 3.2.2.1.
Since the reaction functions fo(ui,us) = oquiuz, a = 1,2, satisfy the assumptions in
(3.100), with any positive constants M,, o = 1,2. Hence, by using Lemma 3.6.3, it
follows that the mesh functions ﬁa,ij and ﬁan‘j? (1,7) € ﬁh, a = 1,2, from, respectively,
(3.94) and (3.95) are ordered lower and upper solutions to (3.21).

3.6.4 Constant upper and lower solutions

Assume that the functions f,(z,y,u) and go(x,y), o = 1,2, in (3.1) satisfy the condi-

tions

foz('rayaMaaOa’) >0, fa(xay70aaMa’> <0, 'U'a(xay) >0, (m,y) € w, (3'101)
0<ga(m,y) < My, (2,9)€0w, o #a, aod =12

where M,, a = 1,2, are positive constants, 0, means that u,(z,y) = 0, (z,y) € w,
a=1,2.

Lemma 3.6.4. Assume that the assumptions in (3.101) are satisfied. Then the mesh
functions from (3.94) and (3.98) are ordered lower and upper solutions (3.37).

Proof. From (3.94) and (3.98), we obtain (3.37a). From (3.94), (3.98) and (3.101) , we
have

ﬁa’,”) O, (Z,]) S Qh, O/ ;é a, Q, Oé/ = 17 2.
f]\a’,z]) 0, (Z,]) S Qh, O/ ;é a, Q, O/ = 1, 2.

Aa z]Uaz] + fa lj(Na’L]
Aa z]Uaz] + fa ’LJ(U

Hence, ﬁa,ij and ﬁa,ij, (i,§) € ﬁh, a = 1,2, satisfy (3.37b). From (3.94) and (3.98),
it follows that ﬁavij and ﬁw‘j, (1,7) € ﬁh, a = 1,2, satisfy (3.37c). Thus, we prove
that Ua,ij and ﬁom’ja (i,5) € ﬁh, a=1,2, from (3.94) and (3.98) are ordered lower and
upper solutions (3.37) to the nonlinear difference scheme (3.17). O
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The Volterra-Lotka competition model
Consider the Volterra—Lotka competition model which is presented in Section 3.2.2.1.
The reaction functions f,(u1,u2) = —ug(aa — baur — doug), o = 1,2, satisfy the as-

sumptions in (3.101), with positive constants M,, a = 1,2, such that

My > max ga.;, a=1,2.
(4,5)€O0w
Hence, by using Lemma 3.6.4, it follows that the mesh functions Ua,ij and ﬁom’ja (i,j) €

ﬁh, a = 1,2, from, respectively, (3.94) and (3.98) are ordered lower and upper solutions
to (3.46).

3.7 Comparison of convergence rates of the point mono-

tone Jacobi and Gauss—Seidel methods

3.7.1 Quasi-monotone nondecreasing case

The following theorem shows that the point monotone Gauss—Seidel method with n =1

in (3.51) converges faster than the point monotone Jacobi method with = 0 in (3.51).

Theorem 3.7.1. Let ﬁij = ([7171']', [7271']') and ﬁij = (Ul,ij7 fj?,ij); (l,j) S ﬁh, be ordered
upper and lower solutions (3.17), the functions fo, o = 1,2, in (3.1) satisfy (3.22) and
(8.23). Suppose that the sequences {(U(n)-)J} and {(UC(Z?])GS}; (4,5) € ﬁh, a=1,2, are

a,i]
generated by the point monotone Jacobi method with n =0 in (3.51) and by the point

monotone Gauss—Seidel method with n =1 in (3.51), where (U,E;'))>J = (UE?))GS = Uy
and (U(O))J = (QZ(‘;)))GS = ﬁij, (i,7) € Q" Then

WY, < (U™ s < (T )as < (U)s (1,5) €0, a=1,2. (3.102)

“a,ij “a,ij a,ij o,

Proof. Letting E(n) = (U(n) )GS - (U(n) )3’ (i,5) € ﬁh, a = 1,2, from (3.51), we

aﬂ] 7avl.7 70577’.7
have

(dais + Caig) WEN) = caii W +nlass (S, o — (W0 )s)
+ Ta,ijmw?;rll),j + 1baij ((ngz),j—l)(}s - (Q(():lijjlzl)‘]>
+ qa,ijWSfifﬁl — Jasij ((ngi;l))cs, (ngﬂzj‘l))cs)
o (@S5, WS )5 () 0,
Wi =0, (i,j) €00, a=1,2.

]

—a 77;.7' —x 7ij

From here, n = 0,1, (3.49) and taking into account (3.24) for (U(n_l)) < (U(n) ) ,
Gs Gs

91



(i,4) € ﬁh, a = 1,2, we obtain

(dayij + Ca,ij)w((;?j > Ca Z]W((X i Y4 Nla ”W& i 1)] +7q Z]W((:;:BJ (3.103)
+ nba ”W(n 1) W(f‘,jl—&)—l
n—1
- fa,zg < “ayij ((1 B2 ))GS)

+f0172]( ~a,ij ngnz])) )7 (i,j)EQh,
wio=0, (i,j)€dQt, a=12

For n =1 in (3.103), in view of (Q(O) )as (U( ) 1, (,7) € Q" , « = 1,2, and using

] o]

the maximum principle in Lemma 3.2.2, we conclude that

) S oh B

W,ii=0, (i,j) €, a=12 (3.104)
Using notation (3.24), for n = 2 in (3.103), we have

+ Nba UW(I)

—a,t,j—1

+ ra l]W( )

2 1
(dayij + ca,z-jM&,Zj >l W) it

—a,i—1,7

+ Qa,ijW( ) a zg((QS;j)Gs, (Q((ll/?@'j)cs)
- ra,ij«ag{zjn, W09, (g)eah
w®. =0, (i,5) €00, a=12,

—a,ij

From here, n = 0,1, (3.49) and (3.104), by using Lemma 3.2.2, we obtain that
W >0, (5)eq" a=12
By induction on n, we can prove that

w™ >0, (G,))e®", a=1,2, n>1

—q,ij
Thus, we prove (3.102) for the case of lower solutions. By the same manner, we can
prove (3.102) for the case of upper solutions. O

3.7.2 Quasi-monotone nonincreasing case

In the case of quasi-monotone nonincreasing reaction functions, the following theorem
shows that the point monotone Gauss—Seidel method with n = 1 in (3.64) converges
faster than the block monotone Jacobi method with 7 = 0 in (3.64).

Theorem 3.7.2. Let fjij = (ﬁl,ij, ﬁg,ij) and fj@'j = ([7171']', [7271'3‘), (Z,j) S ﬁh, be ordered
upper and lower solutions (3.63). Assume that functions fo, o = 1,2, satisfy (3.38) and
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(5’ 39). Suppose that the sequences {(U “J)p7 (U22 )p} and {(Ugnl)])p, (Uz z])p} (1,5) €
Q" ,P=J or P=GS, are the sequences generated by the point monotone Jacobi method
with n =0 in (3.64) or the point monotone Gauss—Seidel method with n =1 in (3.64),
where (TS) s = (U)as = Uyj and (UD); = UD)gs = Ty, (i, 4) € 2" Then

1) —1]

UT))s < US)es < Uaies < o), (25) €@, a=1.2.

~o,ij Q,ij ,ij

Proof. The proof of the theorem repeats the proof of Theorem 3.7.1, where I'y 45, (4, 7) €

ﬁh, a = 1,2, are written in the form

Faij (Ug’lgj’ Q‘(;Lv)w) = Cosig a 1] = faij ( a g an)z])
o iy (U T ) = 0 yU™ — fo @S T,

—Q,1)’ /7ij —0,1] ;1)) ']

and the monotone property (3.25) for I'y 45, (4,7) € ﬁh, a=1,2, is in use. O

3.8 Numerical experiments

We present numerical experiments for numerical solutions of test problems with quasi-
monotone nondecreasing or nonincreasing reaction functions f,, o = 1,2, in (3.1).
Exact solutions for our test problems are unknown, and numerical solutions are com-
pared to corresponding reference solutions. We investigate the numerical error and
numerical order of convergence with respect to 1/N, N, = N, = N. We define the
numerical error E(N) and the order of convergence «(N) of the numerical solution

similar to the definition in ([37], p.79), in the following forms:

AN = log, ( E() ) o (3.105)

E(N) = max E2N)

a=1,2

ng) ref
max ‘Ua ’Lj - UOC,Z]
(i.)eQ"

where ™) (i,5) € ﬁh, a = 1,2, are the approximate solutions generated by either

a,ig

the monotone iterative methods (3.51), (3.84) or (3.64), (3.90), and U"“., (i,) € ﬁh,

,)?

a = 1,2, are the reference solutions. In our tests, we choose the reference solutions
with N = 256 and § = 107° in (3.84) and (3.90).

3.8.1 Quasi-monotone nondecreasing case

Test 1
As the first test problem with quasi-monotone nondecreasing reaction functions

(3.23), we consider the gas-liquid interaction model in 3.2.1.1, where Louq = Do (uq 20+
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Ua,yy), @ = 1,2, in (3.1). The reaction functions are given by

fl(ul,uQ) = —0'1(1 — ul)uQ, fg(ul, UQ) = 0’2(1 — ul)ug, (3.106)

where u, > 0, @ = 1,2, are concentrations of, respectively, the gas and liquid, and
0o = const > 0, a = 1,2, are reaction rates. We choose the boundary conditions
g1(z,y) = 0, g2(x,y) = 1 in (3.1). The pairs ((71,(72) = (1,1) and ((71,(72) = (0,0)
are ordered upper and lower solutions. Indeed, all the assumptions in (3.93) and (3.96)

with M, =1, a = 1, 2, are satisfied. From here, on <[7 , U ), we conclude the inequalities

0 f1,ij Ofv.ij ,7) € Q

affj] = 01Us45 < 1, —%%1(1—%)20, (i,5) € Q0"
1 2

Of2,i5 X ) eq

G2 _ o1 — Uy ) <1, —224 i >0, (i,5) Q.

Jug oa(1 = Upyy) < Ouq 72l 20, (h) €

Thus, fa, o = 1,2, satisfy (3.22) and (3.23) with ¢, = 1, @« = 1,2. We calcu-
late sequences of upper solutions generated by (3.51), (3.84) with the initial iteration
(U145, Uaij) = (1,1), (i,§) € Q". We take Dy = 1, Dy = 0.1, in (3.1) and 0o = 1,
a=1,2,in (3.106).

In Table 3.1, for different values of N (N, = N, = N), we present E(N) and
v(N) from (3.105). The data in the table indicate that the numerical solution of
the nonlinear difference scheme (3.17) converges to the reference solution with second-
order accuracy which confirms the theoretical error estimate for the central difference
scheme. Numbers of iterations ns and execution times (CPU) are given in Table 3.2. The
computer used to run our codes has Windows 10 Enterprise operating system, Intel(R)
Core(TM) 15-6500 processor and 8GB installed memory (RAM). From these results, we
conclude that the point monotone Gauss-Seidel method converges faster than the point
monotone Jacobi method, which confirms Theorem 3.7.1; the point monotone Gauss—
Seidel method is approximately twice as fast as the point monotone Jacobi method.
In Figure 3.1, we show the convergence of numerical solutions, obtained by the point
Gauss-Seidel method with 7 = 1 in (3.51) and N = 128 to the reference solution
Nyep = 256, where the dashed line represents the numerical solution and the solid blue
line refers to the reference solution with respect to  and fixed value of y = 0.5. In the
subgraph 3.1a, staring from the initial lower solution U= 0, we show the convergence
of the numerical lower solution Us at ng = 100 and ngs = 2000 to the reference solution.
Similarly, starting from the initial upper solution U= 1, the subgraph 3.1b shows the
convergence of the numerical upper solution U; at ng = 300 and ns = 6000 to the
reference solution.

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions
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Table 3.1: Order of convergence of the nonlinear scheme (3.17) for Test 1 by using the
point monotone Gauss-Seidel method.

N 8 16 32 64 128
E  7.060e-03 1.798e-03 4.466e-04 1.065e-04 2.130e-05
v 1.97 2.01 2.07 2.32

Table 3.2: Numbers of iterations ns and CPU times for Test 1.

N 8 16 32 64 128
the point Jacobi method
ng 190 771 3092 12378 49520
CPU(s) 0.01 0.07 1.09 16.15 261.28
the point Gauss-Seidel method
ng 97 388 1548 6191 24762
CPU(s) 0.005 0.04 0.53 8.58 141.37

Figure 3.1: Convergence of lower and upper solutions calculated by the point monotone
Gauss-Seidel method (/N = 128) to the reference solution for test 1.
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(a) Lower solutions. (b) Upper solutions.

(3.23), we consider system (3.1) with Loua (2, y) = Da(ta,ze +Ua,yy), @ = 1,2, and the

reaction functions in the forms

fl(ul,uQ) = 01u1(1 + Giug), fg(ul, UQ) = 09 (1 + ) ug, (3.107)

14 ug

where oo, @ = 1,2, are positive constants. We choose the boundary conditions
ga(x,y) = 1, o = 1, 2, n (3.1). The pairs (Ul,ij7 Ug}ij) = (1, 1) and (Ul,z'ja U27ij) = (0, 0),

(i,5) € ﬁh, are ordered upper and lower solutions. Indeed, all the assumptions in (3.96)
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and (3.97) with M, = 1, a = 1,2, are satisfied. From here, on the sector <(7,U), we
conclude the inequalities

0 0
oi(l+e < 8112 =o01(l+e ™) <20, 0< _(91{; =oure” 2 < oy,
3 0 fa dfa 02U2
oy < 22 51 <2 0< 22 92%2
272 = Jus o2l + 1 +U1) = T 0w (1+w)? T 7

Thus, fa, @ = 1,2, satisfy (3.5)—(3.7) with ¢, = o1(1 + e 1), ¢y = 302/2, ¢1 = 207,
co = 209, q12 = 01 and ¢21 = 03. We calculate sequences of upper solutions generated
by (3.51), (3.84) with the initial iteration (U;, Us) = (1,1). We take Dy = 0.1, v = 1, 2,
n (3.1) and o4 =1, @ = 1,2, in (3.107).

In Table 3.3, for different values of N, we present E(N) and v(N) from (3.105).
The data in the table indicate that the numerical solution of the nonlinear difference
scheme (3.17) converges to the reference solution with second-order accuracy which
confirms the theoretical error estimate for the central difference scheme.

Numbers of iterations ns and execution (CPU) times are given in Table 3.4. From
these results, we conclude that the point monotone Gauss-Seidel method converges
faster than the point monotone Jacobi method, which confirms Theorem 3.7.1. The
numerical data indicate that the point monotone Gauss—Seidel method is approximately

twice as fast as the point monotone Jacobi method.

Table 3.3: Order of convergence of the nonlinear scheme (3.17) for Test 2.

N 8 16 32 64 128
E  1.413e-02 3.800e-03 9.567e-04 2.294e-04 4.595e-05
¥ 1.89 1.99 2.06 2.32

Table 3.4: Numbers of iterations ng and CPU times for Test 2.

N 8 16 32 64 128
the point Jacobi method
ng 89 353 1409 5632 22525
CPU(s) 0.02 0.05 0.70 10.90 174.46
the point Gauss-Seidel method
ng 46 178 706 2818 11264
CPU(s) 0.01 0.02 0.37 5.78 92.29
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3.8.2 Quasi-monotone nonincreasing case

Test 3
As the first test problem with quasi-monotone nonincreasing reaction functions
(3.39), we consider the Volterra-Lotka competition model which is presented in Section
3.2.2.1, where Loug = Do (Ua,zz + Uayy), @ = 1,2, in (3.1) and the reaction functions
are given by
fa(ur,ug) = —ug(aq — bour — dqug), «=1,2. (3.108)

We choose the boundary conditions go(z,y) = 1, o = 1,2, in (3.1). The pairs
~ =T s N,

(U1,i5,U245) = (a1/b1,a2/d) and (Ui ;;,Uz45) = (0,0), (i,7) € Q are ordered up-
per and lower solutions. Indeed, all the assumptions in (3.101) are satisfied. From

here, on <(7 , (7), we conclude the inequalities

0f1,i d R
L(Ul,z'j, Usij) = —a1 + 21Uy 45 + diUz i < 2a1 + ﬂ, (i,5) € Qh,
8U1 d2

0f2,i

b _
9 (Ut,i,Uz;5) = —ag + boUy 45 + 2daUz 35 < ag + i 2 (i,5) € Qh,
U9 bl

_ O0f 02,3
Ous ouy

=—diUy,;; <0, — = —bols,;; <0, (i,j) €Q.

Thus, fa, a = 1,2, satisfy (3.38), (3.39) with c1;; = 2a1 + diaz/d2 and ca45 = as +
arba /by, (i,7) € Q". We calculate the sequence {Uﬁ”}wgg}, (1,7) € ﬁh, generated by
(3.64), (3.90) with the initial iteration (ﬁl,ij, ﬁZ,ij) = (a1/b1,0), (i,7) € Q" . We take
Dy=1,Dy=0.11in (3.1) and aq =1, b, =1 and d, = 1, a = 1,2, in (3.108).

In Table 3.5, for different values of N, we present E(N) and (V) from (3.105).
The data in the table indicate that the numerical solution of the nonlinear difference
scheme (3.17) converges to the reference solution with the second-order accuracy which
confirms the theoretical error estimate for the central difference scheme. Numbers of
iterations ns and execution (CPU) times are given in Table 3.6. From these results, we
conclude that the point monotone Gauss-Seidel method converges faster than the point
monotone Jacobi method, which confirms Theorem 3.7.2. The numerical data indicate
that the point monotone Gauss—Seidel method is approximately twice as fast as the

point monotone Jacobi method.

Table 3.5: Order of convergence of the nonlinear scheme (3.17) for Test 3.

N 8 16 32 64 128
E  6.193e-3 1.590e-3 3.960e-04 9.448e-05 1.890e-05
vy 1.96 2.01 2.07 2.32
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Table 3.6: Numbers of iterations ng and CPU times for Test 3.

N 8 16 32 64 128
the point Jacobi method
ng 157 626 2501 10002 40007
CPU(s) 0.02 0.08 1.11 17.31 287.70
the point Gauss—Seidel method
ng 77 311 1249 5000 20002
CPU(s) 0.01 0.05 0.59 9.26 152.73

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions
(3.39), we consider the Belousov-Zhabotinskii reaction diffusion model ([59], some back-
ground to the model is also given in [65]), which includes the metal-ion-catalyzed ox-

idation by bromate ion of organic materials. the chemical reaction scheme is given
by

A+Y - X, X+Y =P, A+X2X+2Z 2X P, Z-—)\Y,

where A; and Ay are constants which represent reactants, P, and P, are products,
A is the stoichiometric factor, and X, Y and Z are, respectively, the concentrations
of the intermediates HBrOg (bromous acid), Br~ (bromide ion) and Ce(IV)(cerium).
A simplified system of two equations [39] of the above reactant scheme is governed
by (3.1) with Loug = DoAug, o = 1,2, where u; and wug represent, respectively, the

concentrations X and Y. The reaction functions are given by
f1=—ui(a—buy —oruz), fo=oqujug, (3.109)

where a, b, 0,, a = 1, 2, are positive constants.

We choose the boundary conditions g(z,y) = 1, o = 1,2, in (3.1). The pairs
([71,[72) = (M, M) and (ﬁl,ﬁg) = (0,0) are ordered upper and lower solutions.
Indeed, all the assumptions in (3.101) are satisfied, where M,, a = 1,2, are chosen in

the following form:

a
M7 > max | —, max x, , Ms > max z,Y).
b= <b (z,y)€0w gl( y)) 2 (z,y)€0w 92( y)
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From here, on <l? ,U), we conclude the inequalities

014 )
%(Ul,ijy UQ,ij) = QbUl,z] —+ UlUZ,ij —a < Qle + O'1M2, (Z,j) c Qh7
1
8 i‘ . . =~y
@(Ul,ijy UQ,ij) = U2U17ij S 02M1, (2,]) c Qh’
611,2
a 1:‘ . . =~
_ fL J ((]172']'7 UQ,ij) = _UlUl,ij < 0’ (ij) c Qh’
8u2
Oz )
_ éfzvlﬂ (Ul,ij7 U2,ij) = _UQUZ,ij < 0’ (Z,]) c Qh_

Thus, fa, o = 1,2, satisfy (3.38) and (3.39) with ¢y ;; = 2bM1+01M> and ¢2,;; = o2 M1,
(i,7) € Q". We calculate the sequence {U%,Qé”ﬁj}, (i,7) € ﬁh, generated by (3.64),
(3.90) with the initial iteration (ﬁ17ij,ﬁ27ij) = (1,0), (i,4) € Q". We take D; = 1,
Dy;=0.1in (3.1),anda=1,b=1and 0, =1, « = 1,2, in (3.109).

In Table 3.7, for different values of N, we present E(N) and (V) from (3.105).
The data in the table indicate that the numerical solution of the nonlinear difference
scheme (3.17) converges to the reference solution with the second-order accuracy which
confirms the theoretical error estimate for the central difference scheme. Numbers of
iterations ns and execution (CPU) times are given in Table 3.8. From these results, we
conclude that the point monotone Gauss-Seidel method converges faster than the point
monotone Jacobi method, which confirms Theorem 3.7.2. Numerical data indicate that
the point monotone Gauss—Seidel method is approximately twice as fast as the point

monotone Jacobi method.

Table 3.7: Order of convergence of the nonlinear scheme (3.17) for Test 4.

N 8 16 32 64 128
E  6.208e-3 1.587e-3 3.948e-04 9.416e-05 1.884e-05
vy 1.97 2.01 2.07 2.32

Table 3.8: Numbers of iterations ng and CPU times for Test 4.

N 8 16 32 64 128
the point Jacobi method
ng 145 566 2248 8980 35906
CPU(s) 0.08 0.06 0.74 11.58 200.21
the point Gauss—Seidel method
ng 78 288 1129 4495 17958
CPU(s) 0.05 0.03 0.41 6.28 102.21
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3.9 Conclusions to Chapter 3

Theoretical results

For solving nonlinear elliptic systems with quasi-monotone nondecreasing and non-
increasing reaction functions, we constructed and investigated monotone properties of
point Jacobi and Gauss-Seidel iterative methods. The coupled system of nonlinear el-
liptic problems (3.1) is approximated by using the central difference approximations for
the first and second derivatives. For solving the nonlinear difference scheme (3.17) with
quasi-monotone nondecreasing (3.23) and quasi-monotone nonincreasing (3.39) reaction
functions, the point Jacobi and point Gauss-Seidel iterative methods for the coupled
system are constructed. In Theorems 3.3.2 and 3.3.4, we prove that the sequences
of upper and lower solutions, generated by the point iterative methods for problems
with quasi-monotone nondecreasing (3.23) and quasi-monotone nonincreasing (3.39)
reaction functions, converge monotonically to the solutions of the nonlinear difference
scheme. In Theorems 3.4.2, 3.4.3 and 3.4.4, 3.4.5, for, respectively, quasi-monotone
nondecreasing and nonincreasing cases, we prove the existence and uniqueness of a
solution under the conditions that the nonlinear reaction functions are bounded from
below and above. By using the stopping tests (3.84) and (3.90), based on the norms of
residuals, for quasi-monotone nondecreasing and nonincreasing cases, we prove that the
numerical solution converges to the unique solution of the nonlinear elliptic problem
(3.1) and estimate the Lo, discrete-norm of the error between the numerical and exact
solutions of the nonlinear difference scheme (3.17) in Theorems 3.5.1 and 3.5.3 and the
error between the numerical solution and the exact solution of the elliptic system (3.1)
in Theorems 3.5.2 and 3.5.4. We prove that the point monotone Gauss-Seidel meth-
ods converge faster than the point monotone Jacobi methods for the quasi-monotone
nondecreasing and quasi-monotone nonincreasing cases, respectively, in Theorems 3.7.1
and 3.7.2. In Lemmas 3.6.1, 3.6.2 and 3.6.3, 3.6.4, respectively, for the quasi-monotone
nondecreasing and quasi-monotone nonincreasing reaction functions, under assump-
tions (3.93), (3.96) and (3.100), (3.101), we construct initial upper and lower solutions

to start the point monotone iterative methods.

Numerical results

The numerical experiments show that the numerical solution of the nonlinear dif-
ference scheme (3.17) converges to the reference solution with second-order accuracy.
The numerical sequences of upper and lower solutions generated by the point mono-
tone methods (3.23) with stopping (3.84) and the point monotone methods (3.39) with
stoping (3.90) converge monotonically. The point monotone Gauss-Seidel method with
n=11in (3.23) and n = 1 in (3.64) converges faster than the point monotone Jacobi
method with 7 = 0 in (3.23) and = 0 in (3.64) which confirm, respectively, Theorems

100



3.7.1 and 3.7.2. The point monotone Gauss-Seidel method is approximately twice as

fast as the point monotone Jacobi method.
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Chapter 4

Block Jacobi and Gauss-Seidel
methods for systems of elliptic

problems

This chapter deals with numerical methods for solving nonlinear elliptic systems by
block iterative methods based on the Jacobi and Gauss—Seidel methods. The idea of
these methods is the decomposition technique which reduces a domain into a series of
nonoverlapping one dimensional intervals by slicing the domain into a finite number
of thin strips, and then solving a two-point boundary-value problem for each strip by
a standard computational scheme such as the Thomas algorithm [51]. In the view of
the method of upper and lower solutions, two monotone upper and lower sequences of
solutions are constructed. Convergence rates for the block monotone iterative methods
are estimated in similar way as in Section 3.5. Constructions of initial upper and
lower solutions are similar to Section 3.6. We show that the sequences of solutions
generated by the block monotone Gauss—Seidel method converges faster than by the

block monotone Jacobi method.

4.1 The block monotone Jacobi and Gauss-Seidel meth-

ods

We decompose the mesh A=A Khy, which is defined in (3.15), into strips. For

. . . . —~h .
x; = fixed, i = 0,1,..., N, we introduce vertical strips A;, in the form

N ={(zi,y;), j=01,....N,}, i=0,1,...,N,. (4.1)

Figure 4.1 illustrates the decomposition of the domain Q"
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Figure 4.1: Fragment of the domain decomposition

Boundary conditions

=h
Q
Vertical strip L .
\ i=fixed, i=0,1,...,Nx

S ij+1

i i1 a4 ditti

z o

< 411

For the value of ¢, we consider the following notation:

I=TUdT, T={1,2,...,N,—1}, 0T ={0,N,)}.

(4.2)

For the nonlinear difference scheme (3.48), (3.49), we define vectors and diagonal ma-

trices by

T .=
Uai= Uasits---,Uain,-1), 1€LI,

T
Foi(UasisUari) = (fasin (Uasins Uarit)s - - - faioNy =1 (UayiNy—1,Uaring—1)) s

Lo; = diag(la,it, - -5 laiNg—1); Raq=diag(rat, ... 7aiN,~1),
By, = diag(bai1; - -5 0aiN,~1), Qo = diag(qa,i1, -+, qai,Ny,—1),
Lo; >0, Ry;>0, By.;>0, Qa;>0,

i€, od#a, ad =12,

where the following notation is in use

Fii(U,,Us;), a=1

Fa,i(Ua,ia Uo/,i) =
F>i(U1,,Us4), a=2,
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with symmetry Fo, ;(Uayi; Uari) = Fa,i(Uar iy Uayi). The terms Lo 1Uqp and R N, —1Ua, N, »
a = 1,2, are included in the boundaries.
Then the difference scheme (3.48), (3.49) can be presented in the form
AaiUni — La,iUnic1 — RaiUajiv1 = —Foi(Uai, Uy i), 1€, (4.5)

Uaio = 9a,i0s  UainN, = Jain,, 1€, a=12

with the tridiagonal matrices Ay, 1 € Z, o =1, 2,

dai —Qa,isl 0
—bai2 dai2 —Qai,2
Aa i =
—bai, N, 2 dei,N,—2 ~qo,i,Ny—2
|0 —bai,N, 1 doi,N,—1

The elements of the matrices L,; and R,;, ¢ € Z, a = 1,2, contain the coupling
coefficients of a mesh point (i, j) to, respectively, mesh points (i — 1,7) and (i + 1, 7),
j=1,2,...,N,— 1.

Remark 4.1.1. let A = [a;j] and B = [b;j] be two real n x r matrices. Then, A >
B(> B) if a;j > bij(> bij) for all1 <i<n,1<j<r.if O is the null matriz and
A > O(> 0), we say that A is a nonnegative(positive) matriz.

Lemma 4.1.2. If H = [hyj] is a real, irreducibly diagonally dominant N x N matriz
with h;j; <0 for alli # j, and hy; >0 for alli=1,2,...,N, j=1,2,...,N, then

H™'> 0, (4.6)

where O is the N x N null matriz.

The proof of the lemma is given in Corollary 3.20, [71].

4.1.1 Quasi-monotone nondecreasing case

In the case of the quasi-monotone nondecreasing functions f,, o = 1,2, in (3.1), we

say that mesh functions

(Ui, Usyz), (U1, Usy), i€,
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are called ordered upper and lower solutions of (4.5), if they satisfy the inequalities

IAJW- < Ui, i€7Z, (4.7a)
KeiUnis Ugr i) <0 < Koi(Uai, Unr i), i €T, (4.7b)
Kai(Uayis Var i) = AaiUayi — La,iUaji—1 — Ra,iUaiv1 + Fai(Uayis Voo i)

Ua,i < Gai < ﬁaﬂ-, i€cdI, o #a, ad =12, (4.7c)

where notation (4.4) is in use.
For a given pair of ordered upper and lower solutions ((NJM, ﬁu), (ﬁu, (72#‘), icZ,
we define the sector
({U,0) = {Ua,i ¢ Uny S Usi < Ui, i€7Z, a= 1,2}. (4.8)
Remark 4.1.3. Similar to Remark 3.2.3, we state the mean-value theorem for mesh
vector-functions. Assume that Fyo(,y, Ua, Uo), (2,y,t) € Qp, o # a, a, o’ = 1,2, are

smooth functions, then we have

- Fa,i(voa,iv Uoz’,i)
- Fa,z’(Ua,i> Va’ z)

)

(Fa,i(ro,iv Ua’,i))ua [Ua,i - Va,i]a (49)
(Fai(Uay, Ya’,i))ua, Uari — Var il

Foa,i(Uam Uoc’,i)
Fa i(Ua,ia Ua’ [

)

~—

)

where Qi and Yy ; lie between U,; and Vy;, i € I, o = 1,2, and notation (4.4) is in

use. The partial derivatives (Foi)u, and (Fai)u,, are the diagonal matrices

(Fai),, = diag <(fa,i,1(Qa,i,1a Un',in1) g, s+ -+ (Fainy—1(Qai, Ny —1, Ua’,i,Ny—l))ua) ;
(4.10)

vooos (faisvy—1(UaiNg -1, Yor N, 1)),

ol

(Fa,i)ua, = diag ((fa,i,l(Ua,i,la Yorin)),

0(/

We rewrite notation (3.16) in vector form

Fa,i<Uoz,i7 Uo/,i) = Coc7iUOc,i - Foa,i(Uam Uoc’,i)a (411)

. . T / /
Ca,i = dlag(coz,i,la s 7Co¢,i,Ny—1)a (S Ia « 7é a, o,

.. —=h . . .
where cq 5, (i,7) € 2, o = 1,2, are nonnegative bounded functions, and notation

(4.4) is in use. We give a monotone property of L' i(Un,isUn i), i € Z, v = 1,2.

Lemma 4.1.4. Let (5.22) and (5.23) hold, and Uy i, Vai, i € Z, a = 1,2, be any mesh
functions in ([7, 17> such that Ua; > Vi, i €I, a =1,2. Then

Fa,i(Ua,iy Ua’,i) Z Fa,i(va,i7 Va’,z’)a 1€ f, CMI 7& «, «, al = 17 2. (412)
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Proof. From (4.11), we have

Fai(UaisUsi) = Tai(Vasi, Vari) = CailUayi — Vil
—[Fa,i(Ua,is Uy i) — Foi(Vais U i)
~ [Fa,i(Vayis Uar i) = Foi(Vei, Var i)l
icI, o #a, o,d =12

Using the mean-value theorem (4.9), we obtain that

Fa,i(Ua,ia Uo/,i) - Fa,’i(Va,ia Vo/,i) =
(Ca,i - (Fa,i(Qa,ia Ua,i))ua) (Ua,i - Va,i) - (Fa,i(va,i, Ya’,i))ua/ (Uo/,i - Vo/,i) 5
Voi €Qui <Yoi<Uyi, 1€, o #a, ad =12,

where the partial derivatives are defined in (4.10). Taking into account that Uy ; > Vo 4,

i €T, a=1,2, from (3.22) and (3.23), we conclude (4.12). O

We now construct block iterative methods for solving (4.5). Upper {U(anl) } and lower
{Q&"g}, i € Z, a = 1,2, sequences of solutions are calculated by the following block

Jacobi and Gauss-Seidel iterative methods:

AaiZ) —Lai 2 |+ CaiZl) = —KauUTD, UG, ieT, (4.13)
-y —1
Zénl) _ Ja,i i’ n ) ic 81,
’ 0, n>2,

!/

Z(()fi) = Ug? —yh e I, o #a, ad =12,

i ’

where ICa,Z-(U(EZ_l), Ug;l)), 1 €T, # a,a,d =1,2, are the residuals of the difference

scheme (4.5) on Uézfl), i € Z, a = 1,2, which are defined in (4.7). If n =0 and n = 1,

we have, respectively, the block Jacobi and block Gauss—Seidel iterative methods.

Remark 4.1.5. For quasi-monotone nondecreasing functions (3.23), upper and lower
solutions are independent, hence, by using (4.13), we calculate either the sequence
{U@,Ué?}, i € T or the sequence {Q%),an)}, iel.

i
Remark 4.1.6. The basic advantage of the block Jacobi iterative method (4.13) with
n = 0 is that the Thomas algorithm can be used for each subsystem («,i), i € Z,
a=1,2, and all the subsystems can be computed in parallel.

The advantage of the block Gauss—Seidel method (4.13) with n = 1 is that the
Thomas algorithm for solving tridiagonal systems can be used for each subsystem («,1),
Z,a=1,2. Since U(EZLO), a = 1,2, are given, and from (4.6), (Aai+Coi) t >0,i €T,
a = 1,2, then the tridiagonal systems (4.13) fori =1 are well-defined and can be solved
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for UO(:LI), a = 1,2, by the Thomas algorithm. Now, the tridiagonal systems (4.13) for

i = 2 are well-defined and can be solved for UO(:E),

a = 1,2, by the Thomas algorithm.
Thus, starting from i = 1 and finishing off with i = N, —1, we solve only the tridiagonal
systems for U™ e Z,a=1,2.

oyt

Figure 4.2 illustrates the implementation of block Jacobi and Gauss-Seidel methods.

Figure 4.2: Implementation of the block Jacobi and Gauss-Seidel methods

—h
Q
Boundary conditions
Vertical strip
\ i=fixed, i=0,1,...,Nx
_'cl. y ij+1
: 'i-1,j_ ] 0i+1,j
c Qi1
(n-1) (n) (n-1) Jacobi method
(n) (n) (n-1) Gauss-Seidel method

Theorem 4.1.7. Let (ﬁl,i,ﬁgﬂ-) and ((7171-,&171‘), i € I, be ordered upper and lower
solutions (4.7) of (4.5). Suppose that the functions fo, a = 1,2, in (3.1) satisfy (3.22)
and (3.23). Then upper {US?Z} and lower {Qg;)}, i €I, a=1,2, sequences generated
by (4.13) with, respectively, (U@ﬁéﬁ?) = (ﬁl,i,ffgﬂ-) and (Q&?B,Qé?i)) = (ﬁ17i762,i),
i € I, converge monotonically from above to a maximal solution (Ul,i7U2,i>; ie€Z, and

from below to a minimal solution (U, ;,U,;), i € 7,
i€, a=12 (4.14)
If Sai, i €I, a = 1,2, are any other solutions in (ﬁ, (7>, then

Uyi<80i<Uay, i€, a=12 (4.15)
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Proof. Letting Wo(z) = U((lnl) v ie Z, a = 1,2, in notation (4.11), from (4.13), we

~a,i’

have
(Aa,i + Ca,i)Wo(ji) - nLOé TWo(zlz) 1= Ra Wo(z z)+1 +Ta Z(U(()z 27 U(O) ) Ol, (Qg 27 Qg))z)

1 €T, W(SZ-):0, i€cdL, o #a, ad =12

Taking into account that Q((l) U ; < U(O) = fjm, i €Z,Rai>0,i €L, a=1,2,
from (4.3), using (4.12), it follows that

(Aai + Cag)W) — Lo, W) >0, iez, Wl)=0, icdl, a=12
(4.16)

Since W) = 0 and from (4.6), (Aa,1 + Ca)™' > O, a = 1,2, for i = 1 in (4.16), by
using (4.12), we conclude that W(l) >0, a = 1,2. From here, n = 0,1, Ly2 > O,
a=1,2, from (4.3), and using (4.12) for i = 2, we obtain that WOEQ) >0, a=1,2. By

induction on 4, we can prove that

wi >0, ieZ, a=1,2

)

Thus, we prove (4.7a). Since ﬁa,i ,i €I, a=1,2, are upper solutions (4.7), it follows
that ,Coc,i(fja,iv (7,1/71') >0,i€Z,d #a, a,a’ =1,2. From here and (4.13), we have

(Aai + Coi)Z0) =L 200 1 <0, i€, a=1,2 (4.17)

a,i—1

Taking into account that n = 0,1, La; > O from (4.3), (Aa;+ Cai)~! > O from (4.6),
Z8) <0,ieT,a=1,2 fori=1in (4.17), we conclude that Z\) <0, a = 1,2. By

induction on 4, we can prove that

7V <0, icZ, a=12 (4.18)
Similarly, for initial lower solutions U, ;, i € Z, o = 1,2, we can prove that
2! <0, ieZ, a=12 (4.19)

From (4.13) and using notation (4.11), we have

) = TaaTELT), (4.20)

a1~ ol

KaiT).T) = —RaiZootiy + Tag(T), Ut

Ol’L’ -

i€, o #a, a,d =12
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Taking into account that R,; > O, a = 1,2, (4.18), by using 4.12, we conclude that

ICW-(U(D- U(ll)i) >0, i€, d#a, ad =12

a1y ¥ o,

Thus, US}, i €Z, a=1,2, satisfy (4.7b). By a similar manner, we can prove

’Ca,i(U(l) vy>0, i€, o £a, ad =12,

) /
a1 =o'

that is QS) i €I, a=1,2, satisfy (4.7b). From the boundary conditions on i € 9Z in

(4.11), it follows that Usz and QSZ, i €I, a=1,2, satisfy (4.7c).

Thus, we prove that USZ and U Sz, i €I, o =1,2, are ordered upper and lower
solutions (4.7).
n)

By induction on n, we can prove that {U&,i}, i € Z, a = 1,2, are a monotone
(n)

decreasing sequence of upper solutions and {U,;}, i € Z, a = 1,2, are a monotone

increasing sequence of lower solutions which satisfy (4.14).
From (4.14), we conclude that lim T Ug,i and lim U ™ _y_,

o, Qi =y

i€, a=12,
as n — oo exist, and

im 2" =0, lim 2™ =0, ieZ, a=12

n j—
n—oo ' n—oo Ht
Similar to (4.20), for n > 1, we conclude that

Kavi(U&?@?’U(N)) = —Ra,ifgﬂ + Pa,i(U(()ZLi_l),U

ol

i€, o #a, a,d=1,2.

(n—1)

O =T @0, T,

o,

By taking the limit of both sides, (4.14) and using (4.11), we conclude that
Ka,i(Ua,ian/,i) =0, i€l o Fa, a o = 1,2.

Thus, Uy, i € Z, @ = 1,2, are maximal solutions to the nonlinear difference scheme

(4.5). By a similar argument, we can prove
KailUpisUyi) =0, i€, o #a, ad =12,

that is, U, ;, @ € Z, a = 1,2, are minimal solutions to the nonlinear difference scheme
(4.5).

Now, we prove (4.15). We assume that S, ;, i € Z, a = 1,2, are other solutions in
<ﬁ, (7> We consider the sector (S, ff), which means that we treat S, 4,1 € Z, a = 1,2,
as lower solutions. Since {ﬁ&nz) } ={Sai}, i €Z, a =1,2, is a constant sequence for all
n, then from (4.14), we conclude that Sp; < Ua, i €Z, a = 1,2.
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Now, we consider the sector <(7, S), which means that we treat S, ;, i € I, a=1,2,
as upper solutions. Similarly, since {ga@ } = {Sai}, i € Z, @ = 1,2, is a constant
sequence for all n, then from (4.14), we conclude that U, ; < Sa, i € Z,a=12.
Thus, we prove (4.15). O

4.1.2 Quasi-monotone nonincreasing case

In the case of the quasi-monotone nonincreasing functions f,, a = 1,2, (3.39), we say

that mesh functions
(U1,Uz4),  (Ur,Usy), i€,

are called ordered upper and lower solutions of (4.5), if they satisfy the inequalities

Ui < Upi, i€, (4.21a)
Ica,i(fj\a,ia ﬁa’,i) < 0 < ]Ca,i(ﬁa,iy ﬁa’,i)a (S I, (421]3)
fja,i < Gai < (7@, i€0I, o #a, oad =12, (4.21c)

where ICM-(U'M, ﬁa’,i)a i €Z,d #a, a,a/ =1,2, are defined in (4.7).

Lemma 4.1.8. Let (3.38) and (5.39) hold, and (Ui;,Us;), (Vis,Vai), i € T be any
functions in the sector ([7, U) (4.8) such that Uai > Vai, i €L, a=1,2. Then

Fa,i(Ua,ia Va’,i) > Fa,i(Va,i> Ua’,i)a 1€ fa O/ 7é «, «, O/ = 17 2. (422)
Proof. From (4.11), we have

Lai(Uayis Vari) = Ta(Vayis Uari) = Cai(Uayi — Vi)
- [Fa,i Ua,i7 Va’,z‘) - Fa,i(voc X Va’ z)]
[

( b I
+ Fa,i(va,ia Ua’,z‘) - Fa,i(vmia Va’ z)] )

)

i€, o #a, ad =12,
where notation (4.4) is in use. Using the mean-value theorem (4.9), we obtain that

Fa,i(Ua,ia Va’,i) - Fa(va,i7 Ua’,i) =
<Ca,i - (Fa,i(Qa,i7 Va’,i))ua> (Ua,i - Va,i) + (Fa,i(Va,i’ Ya’,i))ua, (an’,i - Va’,i)’
Va,i < Qa,iaYa,i < UOM', 1 E j, o 75 a, CM,O/ =1,2,

where the partial derivatives are defined in (4.10). Taking into account that Uy ; > Vo 4,

i €T, a=1,2, from (3.38) and (3.39), we conclude (4.22). O

In the case of quasi-monotone nonincreasing reaction functions (3.39), for solving
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the nonlinear difference scheme (4.5), we introduce the block Jacobi and Gauss-Seidel

iterative methods in the forms

AaiZ) = nLaiZ0) ) + CoiZ) = —Kaa@S D USTY), ieT, (4.23)
Aq zZ&nZ) nLa,iZg?_l + Ca,ilg,? = —Ka z(U(n 2 U(n 1)), 1 €1,
20 v U, e
_y© —
Zénz) _ Ja,i Ua,z, n 1, ic 8I,
' 0, n>2,

where ICa,i(Ugfi_l), Ugfi_l)), i€, d #a,a,ad =1,2, are the residuals of the difference
scheme (4.5) on Ugf;l), i € Z, « = 1,2, which are defined in (4.7). For n=0and n =1
n (4.23), we have, respectively, the block Jacobi and block Gauss—Seidel methods.

Remark 4.1.9. For quasi-monotone nonincreasing functions fo, o = 1,2, (3.39),
upper and lower solutions are coupled, hence, by using (4.23), we calculate either the

sequence {U“ ,Ug}?} i € T or the sequence {U1 i é’f}}, iel.

Remark 4.1.10. The basic advantages of the block Jacobi iterative method with n = 0
in (4.13) and the block Gauss—Seidel method with n = 1 in (4.13) are the Thomas
algorithm can be used for each subsystem («, i), i € Z, « = 1,2, as in the case of quasi-

monotone nondecreasing reaction functions, which are indicated in Remark 4.1.6.

Theorem 4.1.11. Let (ﬁl,i,(}27i) and (ﬁu,ffg,i), i € I be ordered upper and lower
solutions (4.7). Assume that the functions fo, a = 1,2, in (3 1) satisfy equations
(3.38) and (3.39). Then the sequences {Uﬁ”z, )} {UIZ 7U22 }, i € I, generated

by the monotone methods (4.23) with {U“,Uh} = {UlZ,UQZ} and {U“,U(O)} =
{Ul,i: Uz,i}, ieT, converge monotonically to their respective solutions (ULZ,QQZ) and
(QU,UQ,,-), i € Z, such that (4.14) holds. If Sai, i € Z, « = 1,2, are any other s7oluti0n
n (U,U), then (4.15) holds.

Proof. In the case of the sequence {UiZ ,Ug Z)}, €z, (Ug Z),Qé?i)) = ((717,‘, Uy i), i€,
are initial upper and lower solutions (4.21). Hence, it follows that Ky ;(U 502) U, (0 )) >0,
lcg,i(UfQ,ng’g) <0,i€Z, from (4.23), we conclude that

(Ar; + Cn, 1)Z( : —77L1,7;782~)_1 <0, i€l
(A + 02,1)2&) - 77L2,7;Z§2,1 >0, i€l
Z <o, z{) >0, icor

Taking into account that (A, ; + Cai)~! > O from (4.6), n =0
from (4.3), for i = 1, Zg()] <0, Z;lg > 0, we conclude that Zg

1,2

1, Lo; > 0, a =
1
1 <0, 28] >0 By
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induction on 7, we can prove that

Zil <o, z8) >0, i€l (4.24)
Similarly, for the sequence {U gt?,ﬁg?}, i € Z, from (4.23), we conclude that

2" —nri;2") >0, et
Z5) — Lo 7% <o, et
z) >0, Z!) <0, icor

from (4.3), for ¢ = 1, Z% > 0, 7&3 < 0, we conclude that Zgli >0, 7&12 < 0. By

Taking into account that (Ag; + Cyayi)~! > O from (4.6), n = 0,1, Ly; > O, a = 1,2

induction on 4, we can prove that
z >0, Zy)l <o, i€l (4.25)

We now prove that U( ) ;and U e T, a = 1,2, are ordered upper and lower solutions

(4.21). Letting WY = U(l) _UW. i €T, o= 1,2, in notation (4.11), from (4.23), we

i =,

have

1 + Fa,z(U( ) U(O)) CVZ(U( ) U(O))

a,t) a1

1 1
(Aa,i + Ca,i)Wo(é,i) = 77La 'LW( ) 1t R, ’LWOE 1)+

iez, wll=0 i€dl, d#a, ad =12

From here with ¢ = 1, taking into account that L, ; > O, Ry ; > O from (4.3), n = 0,1,
UY) = 0o U = Uiy Uy < Uy i € 7,00 = 1,2, W) = 0 and (A +Coa) ™t > 0
from (4.6), we conclude that Wé% >0, a=1,2. For ¢ = 2, taking into account that
WO(}l) >0, a = 1,2 and using similar arguments as for ¢ = 1, we prove that WSQ) >0,

a = 1,2. By induction on %, we can prove that
w) >0 ieZ, a=12 (4.26)

Thus, we prove (4.21a).
From (4.23), we have

KaiUah US) = ~CoiZi) = RaiZa s + Fas(Ua) UL = FosUL) UD))

;1) 1) <o 1 a1 =l 3/

icZ, o #a, a,d=1,2.
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From here, in notation (4.11), we obtain that

]C (U(l) U( ) ) _Ra,iZ(alerl + Faz(U(O) U( ?Z) (U(l) U( ) )

o, o ’l QL1 = o, =q z
i€, o #a, ad =12
Taking into account that R, ; > O, by using (4.22), we conclude that
(7 (D) : / r_
KailUyinU,:) >0, i€, o #a, o =12 (4.27)

1) =l i

Similarly, we can prove

KaiWD,TW) <0, i€, o' #a, aa =12 (4.28)

From the boundary conditions with i € 9Z in (4.23), it follows that U SZ, U g 2, 1€ 0T,

a = 1,2, satisfy (4.7c). Thus, from here, (4.26)—(4.28), we conclude that U( ) ; and UEX 2,
i € Z, a = 1,2, are ordered upper and lower solutions (4.21).

By induction on n, we can prove that {U n)}, i € Z, a = 1,2, are monotone

decreasing sequence of upper solutions and {U } i € Z, a = 1,2, are monotone
increasing sequence of lower solutions which satlsfy (4.21).
From (4.14), we conclude that limﬁg’? = U, and 1imQ&"3 =U

as n — oo exist, and

ieT,a=1,2,

a,l

lim Z0) =0, lm 2z =0, i€, a=12

From here and (4.23), we conclude that
’Ca,i(UOz,’iaQa’ﬂ') = 07 ICa,i(Qa,ia Ua,i) =0, i€ I, o 7é a, «, o = 17 2a

which means that (U1;,U,;) and (U, ;,Us;), ¢ € Z, are solutions to the nonlinear
difference scheme (4.5).
The proof of (4.15) repeats the proof in Theorem 3.3.2, Chapter 3. O
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4.2 Convergence analysis and constructions of initial it-

erates

4.2.1 The quasi-monotone nondecreasing case

A stopping test for the block monotone iterative methods (4.13) is chosen in the form

~

e

(6% Y le%

T (4.29)

= max o U U], o £ =12

Ko, 5]

where ICM(U(”) U(n)), i € I, a = 1,2, are defined in (4.7) and 0 is a prescribed

o, )

accuracy.

Theorem 4.2.1. Assume that the assumptions in Theorem 3.4.3 are satisfied. Then
for the sequences {Uéni)}, i € Z, o = 1,2, generated by the block monotone iterative
methods (4.13), (4.29), we have the estimate (3.85) from Theorem 3.5.1 in Chapter 3.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.1 with Uy, i € Z,
a = 1,2, rather than U, ;, (4, ) € ﬁh, a=1,2. O

Theorem 4.2.2. Let the assumptions in Theorem 3.4.83 be satisfied. Then for the
sequences {UO(Z)}, i €I, a = 1,2, generated by the block monotone iterative methods
(4.13), (4.29), the estimate (3.86) from Chapter 3, holds.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.2 with Uy, i € Z,
a = 1,2, rather than U, 5, (4, ]) € ﬁh, a=1,2. O

4.2.2 The quasi-monotone nonincreasing case

For the sequences {U&?,Qg@)} nd {Ugnl ,U(n)} i € T, generated by (4.23), we intro-

duce the notation

max{HlC1 (U1 U )H ( ( ,U<n)>H } for {711, U3,
Ko (4.30)

masc{ [ (17,0275 e (U7 07 [ o €0, T2,

where the residuals K, ; <U(n) U(n)>, i €Z,d # a,a,d =1,2 are defined in (4.7).

a,t? i

A stopping test for the block monotone iterative methods (4.23) is chosen in the form
K <4, (4.31)
where K is defined in (4.30).
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Theorem 4.2.3. Assume that the assumptz’ons in Theorem 8.4.5 are satisfied. Then
for the sequences {Ul iU } {U1 ¥ ,UQZ }, i € I, generated by the block monotone
iterative methods (4.23), (4.31), we have the estimate (3.91) from Chapter 3 holds.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.3 with Uy, i € Z,
a = 1,2, rather than U, ;;, (i,]) € ﬁh, a=1,2. O

Theorem 4 2.4. Let the assumptions in Theorem 3.5.3 be satisfied. Then for the se-
quences {Ul i ,Uénl } and {U1 ¥ ,Ug;)}, i € I, generated by the block monotone iterative

methods (4.23), (4.31), we have the estimate (3.92) from Chapter 3 holds.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.4 from Chapter 3
with Ui, i € Z, a = 1,2, rather than Uy, (i,5) € ﬁh, a=1,2. O

4.2.3 Constructions of initial upper and lower iterates

In Section 3.6, for quasi-monotone nondecreasing and quasi-monotone nonincreasing
reaction functions, we consider the constructions of initial upper and lower solutions in
the cases of bounded reaction functions and constant initial iterates.

Constructions of initial iterates only depend on properties of corresponding reaction
functions f,, o = 1,2. Hence, the constructed initial iterates from Section 3.6 can be

used as starting iterates for the block monotone iterative methods (4.13) and (4.23).

4.3 Comparison of convergence rates of the block mono-

tone Jacobi and Gauss—Seidel methods

4.3.1 The quasi-monotone nondecreasing case

In the case of quasi-monotone nondecreasing reaction functions (3.23), the following
theorem shows that the block monotone Gauss—Seidel method with n = 1 in (4.13)

converges faster than the block monotone Jacobi method with n =0 in (4.13).

Theorem 4.3.1. Let ((71,1-,(72,2-) and ([7171',[?271), i € I, be ordered upper and lower
solutions (4.7), and the functions fo, o = 1,2, in (3.1) satisfy (3.22) and (3.23).
Suppose that the sequences {(U(n) s} and {( C”)Gs} i €I, a = 1,2, are generated
by the block monotone Jacobi method with n = 0 in (4.13) and by the block mono-
tone Gauss—Seidel method with n = 1 in (4.13), where (U(()SZ)J = (USZ)GS = ﬁa,i and
W)y =U)gs = Uairi €T, a =1,2. Then

—Q,1

W) < UM )es < Tl Nes < TN s i€Z, a=1.2 (4.32)

ot Q,l o,
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Proof. Letting W&nz = (U(n));{ - (USQ)GS, i€Z, a=1,2, from (4.13), we have

i

(O s, (U5 )es )

o’ i

1€Z, W(n) =0, i€dZ, o #a, ad =12
From here and taking into account that (U((lnz_ D) < (ﬁ(n?) i €L, a =12 it
’ Gs Gs
follows that

AaiWe) + CaaWa) = nLaiWiiy + RaiWai + Lo (U5, 087)s)

—Ta ((Uo(z_l))cs, (Uo(zi_l))cs> ; (4.33)
1€1, ngl) =0, i€dI, o #a, ad =12

Taking into account that (Aa; + Cas)~t > O from (4.6), La; > O, Ry; > 0,4 € T,
a=1,2, from (4.3), n = 0,1, (U)es = @)y, W) =0, i €7, a =12 and using

“ayi a,l

the monotone property (4.12), we conclude for n = 1 in (4.33) that

wW>o0 ieZ, a=1,.2

i =

Similarly, from here and (4.33) with n = 2, we obtain that W((fz >0,i€l, a=12.
By induction on n, we can prove that W((an) >0,i €Z, a =1,2. Thus, we prove
(4.32) for upper solutions. By following the same manner, we can prove (4.32) for

lower solutions. O

4.3.2 The quasi-monotone nonincreasing case

In the case of quasi-monotone nonincreasing reaction functions (3.39), the following
theorem shows that the block monotone Gauss—Seidel method with n = 1 in (4.13)

converges faster than the block monotone Jacobi method with n =0 in (4.13).

Theorem 4.3.2. Let (5171',62,2-) and (ﬁl,i,ﬁg,i), i € I be ordered upper and lower
solutions (4.21), and the functions fo, o = 1,2, in (3.1) satisfy (3.38) and (3.39).
Suppose that the sequences {(U(gr?)‘]} and {(UO(Z))GS}, i €I, a =1,2, are generated
by the block monotone Jacobi method with n = 0 in (4.23) and by the block mono-
tone Gauss—Seidel method with n =1 in (4.23), where (U((JS)Z-)J = (U((E)i)GS = ﬁa,i and
Wy = WU gs = Uais i €T, a =1,2. Then (4.32) holds.

Proof. The proof of the theorem repeats the proof of Theorem 4.3.1, where Ty ;, i € Z,
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a = 1,2, are written in the form

Lo s (TS, UMY = CoiTU) — Foa (T, U,
Fa,Z(Q((JZLLUa?,)i) = Ca,igg?g - Fal(ggznz)‘)ﬁg’t)z)a

and the monotone property (4.22) for 'y ;, i € Z, a = 1,2, is in use.

4.4 Numerical experiments

We present numerical experiments for test problems with quasi-monotone nondecreas-
ing (4.7) and quasi-monotone nonincreasing (4.21) reaction functions f,, @ = 1,2, in

(3.1). Exact solutions for our test problems are unknown, and numerical solutions

U(nm)

are compared to corresponding reference solutions. The approximate solutions U, ",
bl

i € Z, a = 1,2, m > 1, are generated by either the block monotone methods (4.13),
(4.29) or the block monotone methods (4.23), (4.31). In our tests, we choose the refer-
ence solutions with N = 256 and 6 = 107 in (4.29) and (4.31). The reference solutions
are calculated by the corresponding block method. O

4.4.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions
(3.23), we consider Test 1 from Section 3.8.1 with the same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative
method (4.13), (4.29) and the initial iteration (U4, Us,) = (1,1), i € L.

In Table 4.1, we give number of iterations ns and execution (CPU) times for the block
iterative methods and for the point monotone iterative methods from Table 3.2. From
these results, we conclude that the block monotone Gauss-Seidel method converges
faster than the block monotone Jacobi method, which confirms Theorem 4.3.1. Nu-
merical data indicate that the block monotone Gauss—Seidel method is approximately
twice as fast as the block monotone Jacobi method. The data in Table 4.1 show that
the block monotone methods converge faster than the corresponding point monotone
methods.
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Table 4.1: Number of iterations ns and CPU times for Test 1.

N 8 16 32 64 128
the block Jacobi method
ng 101 397 1577 6299 25189
CPU(s) 0.02 0.11 0.91 14.17 225.99
the block Gauss—Seidel method
ng 51 180 762 3084 12370
CPU(s) 0.01 0.06 0.47 7.34 117.62

the point Jacobi method
ns 190 771 3092 12378 49520
CPU(s) 0.01 0.07 1.09 16.15 261.28
the point Gauss—Seidel method
ng 97 388 1548 6191 24762
CPU(s) 0.005 0.04 0.53 8.58 141.37

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions
(3.23), we consider Test 2 from Section 3.8.1 with the same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative
method (4.13), (4.29) and the initial iteration (U, Ua;) = (1,1), i € T.

In Table 4.2, we give numbers of iterations ns and execution (CPU) times for the
block iterative methods and for the point monotone iterative methods from Table 3.4.
From these results, we conclude that the block monotone Gauss-Seidel method con-
verges faster than the block monotone Jacobi method, which confirms Theorem 4.3.1.
Numerical data indicate that the block monotone Gauss—Seidel method is approxi-
mately twice as fast as the block monotone Jacobi method. The data in Table 4.2
show that the block monotone methods converge faster than the corresponding point
monotone methods. In Figure 4.3, we show the convergence of numerical solutions,
obtained by the block Gauss-Seidel method with = 1 in (4.13) and N = 64 to the
reference solution V,.; = 256, where the dashed line represents the numerical solution
and the solid blue line refers to the reference solution with respect to xz and fixed value
of y = 0.5. In the subgraph 4.3a, staring from the initial lower solution U= 0, we
show the convergence of the numerical lower solutions at nsg = 60 and ns = 400 to
the reference solution. Similarly, starting from the initial upper solution U = 1, the
subgraph 4.3b shows the convergence of the numerical upper solutions at ns = 60 and

ng = 400 to the reference solution.
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Table 4.2: Number of iterations ns and CPU times for Test 2.

N 8 16 32 64 128
the block Jacobi method
ng 48 181 709 2820 11266
CPU(s) 0.01 0.04 04 5.74 88.26
the block Gauss—Seidel method
ng 41 86 403 1645 6612
CPU(s) 0.05 0.06 0.28 3.41 55.39

the point Jacobi method
ng 89 353 1409 5632 22525
CPU(s) 0.02 0.05 0.70 10.90 174.46
the point Gauss-Seidel method
ng 46 178 706 2818 11264
CPU(s) 0.01 0.02 0.37 5.78 92.29

Figure 4.3: Convergence of lower and upper solutions to the reference solution for Test
2.
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(a) Lower solutions. (b) Upper solutions.

4.4.2 (Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions
(3.39), we consider the Volterra—Lotka competition model from Section 3.8.1 with the
same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative
method (4.23), (4.31) and the initial iteration (U4, Us;) = (1,0), i € Z.

In Table 4.3, we give numbers of iterations ns and execution (CPU) times for the

block monotone iterative methods and for the point monotone iterative methods from
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Table 3.6. From these results, we conclude that the block monotone Gauss-Seidel
method converges faster than the block monotone Jacobi method, which confirms The-
orem 4.3.2. Numerical data indicate that the block monotone Gauss—Seidel method is
approximately twice as fast as the block monotone Jacobi method. The data in Ta-
bles 4.3 show that the block monotone methods converge faster than the corresponding

point monotone methods.

Table 4.3: Number of iterations ns and CPU times for Test 3.

N 8 16 32 64 128
the block Jacobi method
ng 84 327 1301 5196 20776
CPU(s) 0.02 0.05 0.58 8.80 142.48
the block Gauss—Seidel method
ng 48 147 617 2493 9994
CPU(s) 0.01 0.02 0.28 4.39 71.55

the point Jacobi method
ngs 155 623 2498 9999 40003

CPU(s) 0.03 0.17 1.29 18.61 281
the point Gauss—Seidel method
ng 80 314 1251 5002 20004

CPU(s) 0.02 0.08 0.68 10.12 148.51

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions
(3.39), we consider the Belousov-Zhabotinskii reaction diffusion model from Section
3.8.2 with the same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative
methods (4.23), (4.31) and the initial iteration (U ;, (//\'272-) =(1,0),i e Z.

In Table 4.4, we give numbers of iterations ns and execution (CPU) for the block
monotone iterative methods and for the point monotone iterative methods from table
3.8. From these results, we conclude that the block monotone Gauss-Seidel method
converges faster than the block monotone Jacobi method, which confirms Theorem
4.3.2. Numerical data indicate that the block monotone Gauss—Seidel method is ap-
proximately twice as fast as the block monotone Jacobi method. The data in Table 4.4
show that the block monotone methods converge faster than the corresponding point

monotone methods.
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Table 4.4: Number of iterations ns and CPU times for Test 4.

N 8 16 32 64 128
the block Jacobi method
ng 80 289 1131 4500 17973
CPU(s) 0.006 0.06 0.63 9.72 153.84
the block Gauss—Seidel method
ng 40 138 559 2242 8974
CPU(s) 0.004 0.03 0.26 3.95 63.86
the point Jacobi method
ng 157 626 2501 10002 40007
CPU(s) 0.02 0.08 1.11 17.31 287.70
the point Gauss—Seidel method
ng 77 311 1249 5000 20002
CPU(s) 0.01 0.05 0.59 9.26 152.73

4.5 Numerical experiments with convective terms

In the case when the elliptic problem (3.1) contains the convective terms, the implemen-
tation of the block monotone Gauss-Seidel method depends on approximations of the
partial derivatives u, , and on the signs of the coefficients v((f), a = 1,2, in convective
terms.

If the central difference approximations (2.7) are in use, then the implementation
of the block Gauss-Seidel method can be started from either ¢ = 0 or ¢ = N, that is,
it can be started from either vertical sides of the computational domain.

When the one-sided difference approximations (2.9) are in use, we consider the

following cases:

(i) If o > 0, « = 1,2, then the backward difference approximations from (2.9) are
in use, and the implementation of the block Gauss-Seidel method (4.13) is started
from the left vertical side.

(ii) If v&m) < 0, o = 1,2, then the forward difference approximations from (2.9) are

in use, and the implementation of the block Gauss-Seidel method is started from
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the right vertical side

Aa,’LZg,,LZ) B Ra,ZZ(n) + C(XJZ(S,LZ) = _Ica,i(U(n'_l)7 U(7_1))7 i = I7I - 17 ceey 17

a,i—1

(4.34)

(0)
n ai_U x :11 .
ZC(Vz) = Jar, st " 1€ aI,
’ 0, n>2,

Zzgzr,Li) =u" - Uo(:fl), i€, o #a, a,d =12

ayi

(iii) If, for example, v%w) > 0and véx) < 0, then the backward difference approximation
from (2.9) for uy, and the forward difference approximation from (2.9) for us,
are in use. The implementation of the block Gauss-Seidel method is started from
the left vertical side for Zﬁ), i=1,2,...,7, (4.13) and from the right vertical
side for 2y, i =1,7 —1,...,1.

As a test problem with convective terms, we consider Test 2 from Section 3.8.1 with
the constant coefficients ng) = v, vém) = v and vgy) = 0, a = 1,2, in the elliptic
problem (3.1). We choose the constant diffusion coefficients D; = D, Dy = D, the
initial iteration (171,2‘; (721) = (1;1), i € Z and calculate sequences of upper solutions
generated by the block monotone Gauss-Seidel method with n = 1 in (4.13) and the
stopping test (4.29).

In Table 4.5, for v = 1,10, 100, different values of N and D =1, 10~!, 1072, 1073,
by using the central difference approximations for uq 4, o = 1,2, we present numbers
of iterations ns to satisfy the stopping test (4.29). From the numerical data in Table
4.5, we conclude that for fixed value of D, numbers of iterations are independent of the
coefficient v in the convective terms, and for N = fixed, numbers of iterations decrease
when D decreases.

In Table 4.6, for v = 1,10,100, different values of N and D = 1, 107!, 1072,
1073, by using the backward difference approximations for Uq,z, @ = 1,2, numbers of
iterations ng are given. From the numerical data in Table 4.6, we conclude that for
fixed values of D and N, numbers of iterations for D = O(1) decrease very fast when
the coefficient v in the convective terms increases; number of iterations for sufficiently
small values of D is almost independent of v; for fixed values of N and v, numbers
of iterations decrease when D decreases. From the numerical data in Tables 4.5 and
4.6 , we can conclude that for D = 1 and v = 1, numbers of iterations are almost the
same for both the central and backward difference approximations of uq ., @ = 1,2.
For D < 107! and v = 1,10, 100, numbers of iterations for the backward difference
approximations are less than for the central difference approximations. Thus, when

the convective terms dominate the diffusion terms, the block monotone Gauss-Seidel

122



method with the one-sided difference approximations of the first partial derivatives are
more efficient than the block monotone Gauss-Seidel method with the central difference

approximations.

Table 4.5: Number of iterations by using the central difference approximations.

D/N 16 32 64 128 256
v=1,10,100
1 141 598 2422 9715 38886
10~ 74 343 1400 5623 22516
1072 2 54 240 976 3919
1073 13 20 34 97 406

Table 4.6: Number of iterations by using the backward difference approximations.

D/N 16 32 64 128 256
v=1
1 141 595 2403 9627 38511
107! 55 251 992 3897 15399
1072 31 54 114 347 1159
1077 14 15 18 24 42
v =10
1 80 338 1314 5132 20229
1071 51 63 137 349 1282
1072 16 18 22 31 51
1073 16 16 17 19 21
v =100
1 51 101 268 349 1307
107! 19 22 28 37 60
1072 18 19 21 22 26
1073 18 19 20 21 22
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4.6 Conclusions to Chapter 4

Theoretical results

For solving nonlinear elliptic systems with quasi-monotone nondecreasing and non-
increasing reaction functions, we construct and investigate monotone properties of block
Jacobi and block Gauss-Seidel iterative methods. For solving the nonlinear difference
scheme (3.17) with quasi-monotone nondecreasing (3.23) and quasi-monotone nonin-
creasing (3.39) reaction functions, the block Jacobi and block Gauss-Seidel iterative
methods are constructed. In Theorems 4.1.7 and 4.1.11, we prove that the sequences
of upper and lower solutions, generated by the block monotone iterative methods for
problems with quasi-monotone nondecreasing (3.23) and quasi-monotone nonincreas-
ing (3.39) reaction functions, converge monotonically to the solutions of the nonlinear
difference scheme. By using the stopping test (4.29) and (4.31), based on the norms of
residuals, respectively, for the quasi-monotone nondecreasing and nonincreasing cases,
we prove that the numerical solution converges to the unique solution of the nonlin-
ear elliptic problem (3.1) and estimate the L, discrete-norm of the error between the
numerical and exact solutions of the nonlinear difference scheme (3.17) in Theorems
4.2.1 and 3.5.2, and the error between the numerical solution and the exact solution of
the elliptic system (3.1) in Theorems 4.2.3 and 4.2.4. We prove that the block mono-
tone Gauss-Seidel methods converge faster than the block monotone Jacobi methods
in Theorems 4.3.1 and 4.3.2, respectively, for the quasi-monotone nondecreasing and
nonincreasing reaction cases. The construction methods of initial iterates from Section
3.6 depend only on properties of corresponding reaction functions and can be used as
starting iterates for the block iterative methods (4.13) and (4.23).

Numerical results

The numerical sequences of solutions generated by block monotone methods (4.13)
with stopping (4.29) and the block monotone methods (4.23) with stopping (4.31) con-
verge monotonically. The block monotone Gauss-Seidel methods with n = 1 in (4.13)
and (4.23) converge faster than the block monotone Jacobi methods with n = 0 in (4.13)
and (4.23) which confirm, respectively, Theorems 4.3.1 and 4.3.2. The block monotone
Gauss-Seidel methods are approximately twice as fast as the block Jacobi methods. For
fixed diffusion coefficient D, the numbers of iterations ng increase with increasing N.
The block monotone methods converge faster than the corresponding point monotone
methods. The number of iterations ns and CPU times for the block Jacobi methods
are very close to the data for the point Gauss-Seidel methods. When the convective
terms dominate the diffusion terms, the block monotone Gauss-Seidel method with the
one-sided difference approximations of the first derivatives are more efficient than the

block monotone Gauss-Seidel method with the central difference approximations.
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Chapter 5

Jacobi and Gauss-Seidel methods

for systems of parabolic problems

This chapter deals with investigating numerical methods for solving coupled system of
nonlinear parabolic problems by point iterative methods based on Jacobi and Gauss—
Seidel methods. In the view of the method of upper and lower solutions, two monotone
upper and lower sequences of solutions are constructed. Convergence rates for the point
monotone iterative methods are estimated. We show that the sequences of solutions
generated by the point monotone Gauss—Seidel method converge faster than by the
point monotone Jacobi method. Constructions of initial upper and lower solutions are

presented.

5.1 Properties of solutions to systems of nonlinear parabolic

problems

We consider the system of nonlinear parabolic problems in the form

Uat — Lota(z,y,t) + falz,y,t,u) =0, (z,y,t) € Qr =w x (0,77, (5.1)
w={(r,y):0<z<l, 0<y<la},

U (2, y,t) = ga(2,y,t),  (,y,t) € 0Qr = dw x (0, T],

ua(2,9,0) = ba(z,y), (v,y) €W, a=12,

where u = (u1,u2), Ow is the boundary of w and [, Iy are positive constants. The

differential operators L, a = 1,2, are defined by

Loua(z,y,t) = D((f) (,y,t) U gz + D&y) (2, Y, t)Ua,yy + v((f) (,y, t) U+ U((Xy) (z,y,)Uay,
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where DE;’”’ (x,y,t), Dgy) (x,y,t), « = 1,2, are positive functions. It is assumed that the
functions fu(x,y,t,u), go(z,y,t), Dc(f) (z,y,t), D(()y) (z,y,t), v&m) (z,y,t) and v&y) (z,y,t),

a = 1,2, are smooth in their respective domains.

5.1.1 Quasi-monotone nondecreasing case

Two vector functions u = (u1,u2) and u = (U1, uz2), are called ordered upper and lower

solutions to (5.1), if they satisfy the inequalities

u(z,y,t) <u(z,y,t), (2,9,t) € Qr, (5.2a)
aoz,t — Lotia +fa(x,y,t,a) <0< ﬂa,t —Laﬂa+fa(:n,y,t,17), (a:,y,t) € Qr, (5'2b)
a(:ﬂ,y,t) < g(m,y,t) < ’lj(l',y,t), (‘T7y,t) € 8QT’ (52C)

a(xayao) Sﬁ’(%?/) Sa(l‘,y,O), (l‘,y) € w, ()[:].,2,

For given ordered upper u and lower u solutions, a sector (u,u) is defined as follows

~

(w,u) = {u(z,y,t) :  w(z,y,t) <u(z,yt) <u(z,yt), (z,y,t)eQr}. (5.3)

In the sector (u,u), the functions f,(z,y,t,u), o = 1,2, are assumed to satisfy the

constraints

S afa($7 y? t’ u)

0< BB LY o oyt), we @i, (eyne@n a=12  (54)
Uq
0 t s —
— fa(;’y’ ) >0, we(uu), (z,y,t)€Qp, o #a, a,d =12 (55)
U’

where co(x,y,t), a = 1,2, are nonnegative bounded functions. The reaction functions
falz,y,t,u), o = 1,2, are called quasi-monotone nondecreasing in (u, u), if they satisfy
(5.5).

Theorem 5.1.1. Let u = (uy, uz) and u = (U1, uz2) be ordered upper and lower solutions
(5.2). Assume that the functions fo(z,y,t,u), o = 1,2, in (5.1) satisfy (5.5). Then

problem (5.1) has a unique solution in the sector (u,u).

The proof of the theorem is given in Theorem 8.3.1, [59].

5.2 Quasi-monotone nonincreasing case

Introduce the following notation:

fl(xay7t7u17u2)7 o = 17 (56)

Falz,y,t, ua, ug) =
Oé( Y, Uy Uas oz) {.7:2(56,?/,@“17“2)’ a=2
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Two mesh functions @a(z,y,t) and Uq(z,y,t), « = 1,2, are called ordered upper and
lower solutions to (5.1) in the case of quasi-monotone nonincreasing reaction functions

fa, @ =1,2, if they satisfy the inequalities

Uo(2,y,t) < Ua(r,y,1), (2,9,1) € Qr, (5.7a)
Ua,t — Latla + fo(2,Y,t, U0, Uar) <0, (2,9,1) € Qr, (5.7b)
Uat — Lot + fo(z,y,t, Ua, Uy ) >0,  (z,9,t) € Qr,

Ua(2,9,t) < ga(w,y,1) < Ualz,y,t), (2,9,t) € 0QT, (5.7¢)

ﬂa(:v,y,O) Swa(%y) §ﬂa($,y,0), (x,y) 6@, O/?é()é, a,a’:1,2,

where notation (5.6) is in use.
In the sector (u,u) from (5.3), the functions fu(z,y,t,u), « = 1,2, are assumed to

satisfy (5.4) and the constraint

_afa($, y,t,u)

9 <0, we{uua)y, (r,y,t)€Qp, o #a, ad =12 (5.8)

The reaction functions f,(z,y,t,u), « = 1,2, are called quasi-monotone nonincreasing
in (u,w), if they satisfy (5.8).

Theorem 5.2.1. Let u = (uy,u2) and u = (u1,uz2) be ordered upper and lower solutions
(5.7). Assume that the functions fo(x,y,t,u), a = 1,2, in (5.1) satisfy (5.4) and (5.8).

Then problem (5.1) has a unique solution in the sector (u,u).

The proof of the theorem is given in Theorem 8.3.2, [59].

5.3 The nonlinear difference scheme

On w and [0, 7], we introduce a rectangular mesh A" = A" x A" and A", such that

Khx ={z;, i=0,1,....Ny; x0=0, an, =1l1; hy=1xi41 — 2}, (5.9)

ANV ={y;, 7=0,1,...,Ny; 30 =0, yn, =lo; hy=yj+1 -y},
AN ={tm, m=0,1,....N; to=0, tny.=T; 7=ty —tm_1}.

We denote by Q" 90" and Q7 the sets of indices which correspond to interior space

mesh points, boundary space mesh points and time mesh points, such that

Qh:{(z’,j): i=1,2,...,N,—1, j=1,2,...,N, — 1},
00" ={(i,5): i=0,Ny, j=0,1,....,N,; i=0,1,...,Nz, 3j=0,N,},
Q' ={m: m=0,1,...,N;}.
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For (i,7,m) € Q"< = Q" U 0" x Q, we introduce the notation
T1ijm(Utijm, U2ijm), a=1
T.. U .. ,U/“ — )LDy »2],10) 3005 ’ ) 510
im{Uagim Ut ijm) { T2ij,m (Ut ijom, Unijm), o =2. (5.10)

By using the central difference approximations for the first and second derivatives on

the 5-point stencil, we introduce the nonlinear two-time levels difference scheme

(Aaijm + 7—1) Uaijon + Faijm Uasijoms Uar ijm) — T Ussijim—1 = 0, (5.11)
(i,j,m) € Q' = Q" x O, Uajijom = Ga,ijym, (1,7, m) € o0 = 90" x O,

o =h
Un,ijo = Yayij, (i,5) € Q7

where fo.ijm(Ua,ijm, U ijm), & # @, a, o/ = 1,2, are defined by (5.10) and the central
difference approximations for the first and second derivatives are given by

2 — Ua7i_17j7m B 2Ua,ij,m + Ua,z’—i—l,j,m
DiUaijm = 72 , (5.12)
xT
L A Uaij—1,m — 2Uqijm + Uajijt1,m
yYayijm = 12 )
Y
piy. . Uaittijm = Uni-1,jm
T~ QL) m 2hx ’
U NER] _ U i1
D;Uoz,ij,m = oty thm L ,m’ o = 1, 2, m > 1.

2h,

The difference operators Aq ijmUa,ijm, @ = 1,2, in (5.11), are defined by

() ()
Aa,ijmUaijm = Ag i mUajiim + Ay ijmUasijm (5.13)
x o,tg,m T &1,
A((x,l)-j,mUa,ij,m = “lagmUai-14m + ——" 5 ~ TaijmUait1m,
T
2DY . Upij
(v) a,ij,m =~ Q,L),m
AniimUasijm = —bajijmUaij—1,m + — QoijmUaij+1,m;
Y
p@ @ p@ @
L. o a,tj,m a,tj,m r . a,tj,m + a,ij,m
a,ij,m — - ) a,ijm — ;
h2 2h, h2 2h,
2 o@) pW +@)
b . o a,tj,m a,ij,m Qovii o a,ij,m + a,ij,m a=1.2 m> 1
o,],m 2 - ’ ary,m 2 ’ — Ly 4y - -+
n2 2h, n2 2h,

To ensure that loijm, Ta,ijms ba,ijm and ga,ij, o = 1,2, are positive, we choose space
step sizes h; and h, such that

2D, 2D

) ]7m a77"7’m

z < T}(x) ‘ , hy < 7’ ) ‘ . (5.14)
a,ij a,ij,m
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Remark 5.3.1. If the effect of convection dominates diffusion to the extent that these
conditions require prohibitively small h, and hy, then an upwind difference scheme for

the first derivatives can be used to remove any restrictions on h, and hy, that is, for
a=12,

Ua,i+1,j,m7Ua,ij,m Zf ,U(Z) < 0
6% )

) ijm =
, T 30
D Ua ij,m = Ug iim—Ug. i ;
T »Ld, a,ijym—UVa,i—1,5,m Zf U(x) >0
T ’ a7ij7m =
Ua,i,j+1,m—Ua,ijm . (y)
DU Ry U Vim0,
yYaijm — Ua,ijm—Ua,i,j—1,m Zf U(y) >0
” ; oigym = Y-

On each time level t,,, m > 1, we introduce the linear version of problem (5.11)
(Aoz,ij,m + T_l + Cz,ij,m> Wa,ij,m = ©Va,ij,m; (’L,]) c Qh7 (515)
Usijom = Gaijm, (5,7) €0Q", a=1,2,

.. =h . .
where c(’;’ijvm, (1,7) € @', a =1,2, m > 1, are nonnegative bounded mesh functions. In

the following lemma, we formulate the maximum principle for the difference operators

Aa,ij,m + 71 + cz,ij,m? a=1,2.

Lemma 5.3.2. If Wy ijm, o = 1,2, satisfy the conditions
(Aasiom + 7+ i ijom) Waijam 2 0 (£0), (i) € 2",
Wa,ij,m > 0 (§ 0)7 (Zaj) S 8Qh7

then Wa,ij,m >0 (S 0)7 (27]) S ﬁh'

The proof is given in Lemma 1.2.1 from Chapter 1.

Remark 5.3.3. In this remark, we state the mean-value theorem for vector-valued
functions. Assume that fo(z,y,t, e, vy ), & # a, a,a’ = 1,2, are smooth functions,

then we have
fa(xayatvuavua’) - foz(xvyat?womuoé,) = (fa(x,y,t,qa7uo/))ua [uOé - wa]’ (516)

fa(x,y,t, uouuoc’) - fa(xayatvuonwa’) = (fa(xuyatauaaho/)ua, [uo/ - wo/]7

where qo(,y,t) and ho(x,y,t) lie between uq(z,y,t) and wo(z,y,t), (z,y,t) € Qp,
a = 1,2, and notation (5.10) is in use.
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5.3.1 Quasi-monotone nondecreasing case

On each time level ¢, € Q7, m > 1, two vector mesh functions

o o -~ PN PN . _=h
Uijm = (Uvijm, U2ijm)s  Uijm = (Urijm, U2ijm),  (4,5) €
are called ordered upper and lower solutions of (5.10), if they satisfy the inequalities

Unijm < Unijm,  (ir§) € Q" (5.17a)
(Aa i + 7 ) Uniim + faijmUijm) = 7 Uaijm—1 <0, (i,5) € Q" (5.17b)
(Aaijom + 71 Unsijom + Faijom Uijm) — 7 Uaijm—1 > 0, (i,5) € Q"

Uniiom < Gosijm < Uaijum, (i,5) € 0Q", (5.17¢)

-~ ~ . _=h
Ua,ij,O < ¢a,z’j < Ua,ij,()v (Zvj) € ; = 1a 2a m > 1.
For a given pair of ordered upper and lower solutions ﬁwm and Uijm, (i,j) € ﬁh,

m > 1, we define the sector
Uy Up)) = {Uij,m Uijm < Uijom < Uijm,  (1,4) € Q" m> 1} - (5.18)

In the sector (U, Up) from (5.18), we assume that the functions fasijm, (4,7) € ﬁh,

a=1,2, m > 1, satisfy the constraints

0 a,ij,m\Yi ~ o~ o o

fﬂau(%) < Cajijm,» U € (Un,Un), (i,j) € Q" a=1,2 (5.19)
O faijm =~ o _sh .

T 20, UE(UnUn), () €9, o' #a, aa' =12 (520)

where cqijm, (4,7) € ﬁh, a = 1,2, m > 1, are nonnegative bounded functions. We
say that the functions fq ijm(Uijm), (,7) € Qh, a = 1,2, m > 1, are quasi-monotone
nondecreasing in the sector (Up,, Uy,) from (5.18) if they satisfy (5.20).

Remark 5.3.4. For quasi-monotone nondecreasing functions (5.20), upper and lower

solutions (5.17) are independent.

We introduce the notation

Laijom(Uasijm, Uatijm) = CasijmUaijm — fayijmUasijm, Uatijm)s (5.21)
(,7) eﬁh, o #£a, a,d =12 m>1.
where cq ijm, (1,5) € ﬁh, a=1,2, m > 1, are defined in (5.19) and notation (5.10) is
in use. We give a monotone property of I ijm(Uaijms U’ ijm), (4,75) € ﬁh, o # a,

o, =1,2, m > 1.
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Lemma 5.3.5. Suppose that Uij,m = (Ul,ij,m7U2,ij,m) and me = (m,ij,ma‘/Q,ij,m)7
(i,5) € ﬁh, m > 1, are two vector functions in the sector (Up,,Up,) from (5.18), such
that Uijm > Vijm, (i,7) € ﬁh, m >1, and (5.19), (5.20) are satisfied. Then

- —h
CoijmUaijims Uat igm) > Cavijm(Vaijms Varigm),  (6,5) €, o #a,  (5.22)
a,d =1,2, m>1.

Proof. From (5.21), we have

Cosijym(Uasijm> U ijom) — Lavijom(Vaijms Voo ijm) =

Cavijom Uaijom — Vasijm) — [favijom Uasijoms Uatijm) — fasiim(Vasizm, Uatijm)] —
[fasijom (Vasizm, Uaijom) — favijom (Vasigms Varijm)] . (4,4) € ﬁh,

o #a, a,d =12 m>1

Using the mean-value theorem (5.16), we have

Laijom(Uayijm, Uatijm) — Lavijom (Vayijm, Vs ijm) =
(ch ij,m — fa,ij,m(Qa,ij,m7 Ua’,ij,m))ua> (Ua,ij,m - Va,ij,m)_
(fa j,m a ,13,ms Ya’,ij,m))ua, (Ua’,ij,m - Va’,ij,m);

.o =h
VazymSQaz]m7Yamm§Uazgm7 (%])EQ 3 O/#Oé, a)aI:LQ’ m > 1.

Taking into account that Us ijm > Vajm: (i,4) € @ a = 1,2, m > 1, from (5.19)

and (5.20), we conclude (5.22). O

5.3.1.1 Applied problems

The gas-liquid interaction model
In section 3.2.1.1, we consider the steady-state gas-liquid interaction model. Here,

we consider the time-dependent gas-liquid interaction model in the form

Ua,t — Dy Aug + fa(ula UQ) =0, (ﬂi‘,y,t) € QTa
’U,l(.’E,y,t) = gf(xayat) > 07 U2($7yat) = 92(1“’%75) > 07 (l‘,y,t) € aQTa
’LLa(:E,y,O) :wa(ﬂ%y), (l‘,y) cw, a=12

where the reaction functions f,, o = 1,2, are defined in (3.27), g7 = p1—¢g1 > 0, g2 > 0

on dw and 1, > 0, o = 1,2, in @"”. The nonlinear difference scheme (5.11) for the
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model is presented in the form

(Aaijom + T DUanijim + FasijmUasijoms Uatijim) = T Ussijm— = 0, (i, 7) € Q",

Utijm = 9t ijms Uzijm = 92,i5m>  (1,§) € 092", m >1, (5.23)
o =h

Ua,ij,o = 1/10471‘]’, (Z,j) =X Y s a' 75 o, o/ = 1, 2,

where f,, a = 1,2, are defined in (3.27), and
AcijmUaijm = =Da(Dy + D)Uajijm,  (1,7) €Q", a=1,2, m>1,

where D2, D} are defined in (5.12). Introduce the following mesh functions

7 179 m = 07 .. =
Ua)ijym = { rllp{aﬂj m > 1 (7’?.7) e Qh? a = 17 27 (5'24)
() — )

- rlr[) RYE mzoa .. —h
Ua,ij,m:{ Oa”m>1 (Za]) GQ ) 0521,2,

where K,, a = 1,2, satisfy the conditions

Ky > maX( max  gy(z,y,t), max(p, max wl(m‘,y)>,
(z,y,t)€0QT (z,y)ew

Koz mox (| mox gan.nt), max o))
(z,y,t)€0QT (x,y)€@

We now show that these mesh functions are ordered upper and lower solutions (5.17)
to (5.23).
From (5.24), we conclude (5.17a). From (3.27) and (5.24), for m = 1, we have

(Arijan + 7 D050 + Frijn (Ui, Uaga) — 7 U0 =
(Arija + 7 DKy —o1(p1 — K1)Ko — 77 135 =
T 1— Y145) —o1(p1 — K1)Ko = 0.

YKL = 115) (p1 — K1)K2 >0

From (3.27) and (5.24), for m = 2, we have

(Al,ij71 + Tfl)ﬁl,ij,Q + fl,ij,z(ﬁuj,g, [727”'72) — 7'7117172-]}1 =
(Aija + T YK —o1(p1 — K1) Ky — 77K =
—o1(p — K1)Ka > 0.
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By induction on m > 1, we can prove that

(-Aa,ij,m + 7—71) ﬁa,ij,m + fa,ij,m(ﬁa,ij,m7 Ua’,ij,m) - Tﬁan,ij,m—l 2 0; (2;]) S Qh;

o #a, a,d =12, m>1
Similarly, we can prove that

(-Aoz,ij,m + 7'_1) ﬁa,ij,m + fa,ij,m(ﬁa,ij,m7 ﬁo/,ij,m) - T_lﬁa,ij,mfl <0, (i,4)¢€ Qn,

o #a, ad =12 m>1

Hence, we conclude (5.17b). From (5.24), it follows (5.17c). Thus, we prove that
ﬁa,ij,m and ﬁa,ij,mv (1,7) € ﬁh, a=1,2, m > 1, from (5.24) are ordered upper and

lower solutions (5.17). From (3.27), in the sector (Up,, Uy,), for m > 1, we have

OF1 i .. =h
M(Ul,ij,m, Uijm) = 01Uzijm < 01K, (i,7) € Q,
Oty o =h
J;;;m(ULij,my Uzijm) = 02(01 = Urijm) < o2p1,  (i,5) € €0,

0 f1,ij, 9 f2,4, ) eq"
- E)T”gm = o1(o1 — Utijm) > 0, _aTmlm = 02Usijm 20, (i,§) €.

Thus, the assumptions in (5.19) are satisfied with

.. —=h
Clijm = 01K, C2,ij,m = 0201, (17]) ceQ, m2>1L1
From here, we conclude that f,, « = 1,2, from (3.27) satisfy (5.19) and possess quasi-

monotone nondecreasing property (5.20).

The Volterra-Lotka cooperation model
Consider the Volterra-Lotka cooperation model in an ecological system (more details

are given in [59]). The model is governed by (5.1) with Loua = Aug, a = 1,2, and
f1 = —U1<1 —up + aﬂm), f2 = —UQ(l —+ asuq1 — ’LLQ), (5.25)

where w1 and uo are the populations of two cooperating species, the parameters aq,
a = 1,2, are positive constants which describe the interaction of the two species, which
satisfy the inequality

1

< —. 5.26
@<~ (5.26)
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System (5.1) is reduced to

’U/OZ’t—DaAua‘i‘fa(Ul,UQ) :07 (x7y7t) S QT:
Ua(x;.%t) = 07 (xay7t) € 8QT7 Ua(%%o) = wa(‘ray% (37721) Ew, a= 172

The nonlinear difference scheme (5.11) for the model is presented in the form

(Aa,ijom + 7’_1) Uaijom + fasiimUaijoms Uat ijm) — T Uayijm—1 =0, (i,j) € Q"
. R,
Uoz,ij,m = 0, (Z,j) & 8Qh, m > 1, Ua,ij,() = wa,ijv (Z,j) =Y/ , (5.27)

o £a, a,d =1,2,
where f,, a = 1,2, are defined in (5.25), and
Aa,ijmUsijom = —Da(Di + D) Uaijm, (i,5) €', a=1,2, m=>1,
where D2, Dz are defined in (5.12). Introduce the following mesh functions

~ ~ ~ ~ o =h
(Ut,ijom, Uzijm) = (M1, M2), (Utijm,Uzijm)=(0,0), (i,5) €2, m>1, (5.28)
My =a1 My + 1,

az +1
M2 Z max{i, max Q;Z)Q,ijv ma}ih ngij’

l—aaz  jeq (i,))€02

1 1
i( max P15 — 1),—( max - gi,ij — 1)}
a1 % (i,5)eQ a1 % (i,5)€Q

We now show that these mesh functions are ordered upper and lower solutions (5.17)
to (5.27). From (5.28), it follows (5.17a). From (5.25), (5.26) and (5.28), we have

(A,ijm + 7'71) Ussijim + foijmUasijims Uat ijm) — T Usijim—1 > 0,
(Aa,ij,m + 7—71) Ua,ij,m + fa,ij,m(Ua,ij,m’ Uo/,ij,m) - Tﬁonc,ij,m—l < 07
(i,j) € Q" o #£a, ad =1,2

Hence, we conclude (5.17b). From (5.28), it follows (5.17c). Thus, ﬁa,i‘j?m and ﬁa,ij,ma
(i,4) € ﬁh, a=1,2, m>1, from (5.28) are ordered upper and lower solutions (5.17).
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~

From (5.25), in the sector (Up,, Up,), for m > 1, we have

Of14) ,j) e Q"

ﬁ(ULU:m’ U2,ij,m) = 2U1,ij,m — CLlUQyij’m —1 S 2M1; (Za]) € Q ’

9f2,ijm Lj) e

TM(ULijvm’ U2,z'j,m) = 2U2,ij,m — CLQULij}m -1 S 2M2a (Zaj) S Q 3
Ot . Ofaj O

_ Ofvijm _ arUiijm 20, — Faijm _ aUsijm >0, (i,]) € Q"

Oug ouq -
Thus, the assumptions in (5.19) are satisfied with

. =h
Clijm = 2M1,  c24jm = 2Ma,  (i,5) €, m>1

From here, we conclude that f,, a = 1,2, from (5.25) satisfy (5.19) and possess quasi-
monotone nondecreasing property (5.20).
5.3.2 Quasi-monotone nonincreasing case

On each time level ¢, € Q7, m > 1, two vector mesh functions

~ ~ PN ~ ~ R
Uijm = (Uvi5.m, U2ijm)s - Uijm = (Utijm, U2ijm), (i,5) € 2,

are called ordered upper and lower solutions of (5.10), if they satisfy the inequalities

Uaijm < Unijm,  (i,7) € 2", (5.292)
(Aaijm + 7 Unsijm + Faijom Uasijins Uat ijom) — T Uaijim—1 > 0, (i,5) € Q"
(5.20b)
(A,ijm + 7_,1> ﬁa,ij,m + fa,ij,m(ﬁa,z'j,m, ﬁa’,ij,m) - Tﬁlﬁa,ij,m—l <0, (i,5) € Q"
Unsijom < Gasijom < Uagijm,  (i,4) € 99", (5.29¢)

= ~ .. —h
Ua,ij,O < ﬂlayij < Ua7i]’7o, (’L,]) €N , o 75 o, «, o = 1, 2, m > 1,

where notation (5.10) is in use.
In the sector (ﬁm, (7m> from (5.18), we assume that the functions fo ijm, (4,7) € ﬁh,
a=1,2,m>1,in (5.11), satisfy (5.19) and the constraint

Heiimasin) <o 1 e (G l), () €T, o £, aga’ =1,2. (5.30)

Ouyy ’

. .. —=h .
We say that the functions faijm, (i,j) € @, o = 1,2, m > 1, are quasi-monotone

nonincreasing in the sector <l?m, Ur,) if they satisfy (5.30).

Remark 5.3.6. For quasi-monotone nonincreasing functions fo, a = 1,2, (5.80),

upper and lower solutions (5.29) are coupled.
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We give a monotone property of I'y ijm, (4,7) € ﬁh, a=1,2,m > 1, from (5.21)

in the quasi-monotone nonincreasing case.

Lemma 5.3.7. Suppose that Uz'j7m = (Ul,z'j,m,UQ,z’j,m) and Vij,m = (Vl,ij,m,VZij’m),
(i,7) € ﬁh, a=1,2, m>1, are two vector functions in (Up,, Uy,), such that Usjm >
Vijm, (1,7) € ﬁh, m > 1, and (5.19) and (5.30) are satisfied. Then

—,
La(Utijms Vo,ijm) = Ta(Viijm, U2ijm), (i,7) €, a=1,2, m>1. (5.31)
Proof. From (5.21), we have

Ceijom(Utijms Vo,ijm) — Cayigm(V1,ij,ms U2,ijim) = (5.32)
CavijomUayijm — Vasigm) = [fonigmUigms Vasigm) — favigm(Visijms Va,ijm)]

+ [foijom(Viijms Uim) — faijm(Viijms Vaijm)] -

Using the mean-value theorem (5.16), we obtain

Fa,ij,m(Ua,ij,m; Va’,ij,m) - Fa@j,m(va,ij,m? Ua’,ij,m) =
(Ca,ij,m - (fa,ij,m(Qa,ij,ma Vo/,z'j,m))ua) (Ua,ij,m - Va,ij,m)+
(feijom (Vavigims Yot ijam)).,, (Ut ijam = Var ijm)

.. —=h
Va,ij,m < Qa,ij,ma Ya,ij,m < Ua,ij,ma (17]) cQ, o 7& a, «, o = 1,2, m=>1

Taking into account that Us ijm > Vaijms (i,4) € @ a = 1,2, m > 1, from (5.19)
and (5.30), we conclude (5.31). O

5.3.2.1 Applied problems

The Belousov-Zhabotinskii reaction diffusion system
The Belousov-Zhabotinskii reaction diffusion model includes the metal-ion-catalyzed
oxidation by bromate ion of organic materials ([59], some background to the model is

also given in [65]). The chemical reaction scheme is given by
A1+Y - X, X+Y =P, A+X2X+4+7 2X > P, Z-—)\Y,

where A; and A, are constants which represent reactants, P, and P, are products,
A is the stoichiometric factor, and X, Y and Z are, respectively, the concentrations
of the intermediates HBrO2 (bromous acid), Br~ (bromide ion) and Ce(IV)(cerium).
A simplified system of two equations of the above reactant scheme is governed by

(5.1) with Loug = DaAug, a = 1,2, where u; and uy represent, respectively, the
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concentrations of X and Y [39]. The reaction functions are given by
fi = —ui(a —buy — oru2), f2 = oourug, (5.33)

where a, b, 04, & = 1,2, are positive constants. System (5.1) is reduced to

Ua,t — DyAug + fa(u17u2) =0, (xayat) € Qr,
ua(2,y,t) = ga(2,y,t) 20, (z,9,1) € 0QT,
U (2,9,0) = Ya(r,y) 20, (v,y) €W, a=1,2.

The nonlinear difference scheme (5.11) for the model is presented in the form

(Aaijm + T DUaijim + faijmUssijim Uat ijm) — T Unijm—1 =0, (i,5) € ",
. R
Usijom = Gaijoms  (i,7) € 0", Usijo = Vayj, (i,5) € X, (5.34)

o #a, a,d =12 m>1.
where f,, a = 1,2, are defined in (5.33), and
Aa,ij,mUa,ij,m = _Da(D;% + DQy)Uoz,ij,m7 (27]) € Qh7 o = 17 2) m > 1)

where D2, Dz are defined in (5.12). We introduce the mesh functions

~ Yagj, m=0, =  —p
Uagiim = ' ,j) €N, a=1,2, 5.35
{K ) (5.3)

—_

9

- ¢ K5E) m=0, .. ot
Ua,m-,mz{ O“Z”m>1 (i,j) €, a=1,2,

where K., a = 1,2, satisfy the conditions

K > a b7 a b ’t ) a ) )
1 > max <a/ o g1(z,y,1) &éﬂﬂx y))

KQZmaX< max o(x,y,t), max s(x, >
(w,yi)eaQTg( v:t) (m,y)eww( v)

We now show that these mesh functions are ordered upper and lower solutions (5.29)
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to (5.34). From (5.35), it follows (5.29a). From (5.33) and (5.35), for m = 1, we have

(Aviga + 771 Urijn + frign (Ui, Usija) — 7 W50 =
7 Ky — Ky(a—bKy) — 771145 >0,

(Agiji +771) Unijn + Foiia(Urijn, Usijn) — 7 0s450 =
T Ky — e >0, (i,5) € Q.

From (5.33) and (5.35), for m = 2, we obtain

(Aaijz + 71 Usijz + faij2Uaija Uarije) — 7 U1ija =0,  (i,5) € Q",

/ /
o o, a,a =1,2.

By induction on m, m > 1, we can prove that

~ ~

(Aoz,ij,m + 7_71) Uoc,ij,m + fa,ij,m(Ua,ij,mv Ua’,ij,m) - Tﬁan,ij,m—l > 07 (17.7) € th

o Aa, a,d =1,2.
From (5.33) and (5.35), for m = 1, we have

(Aasiji +7 ) Uniijt + faijn Uaijts Uaijn) — 7 Uaijo = =T Yasij <0,
(G,/) e, o #a, a,d =12

From (5.33) and (5.35), for m = 2, we obtain

~

(Aaijz +7 1) Unyijz + faij2Uaijo. Unij2) — 7 Uaija = —7 " Ka <0,
(1,j) € Q" o #a, oo =1,2.

By induction on m, m > 1, we can prove that

~

(Aasijom + 775 Unsijom + foijamUasijoms Ut ijm) — T Uaijm—1 < 0, (i,5) € Q",
(i,/) €', o #a, a,d =1,2.

Hence, we conclude (5.29b). From (5.35), it follows (5.29¢). Thus, ﬁa,i‘j?m and fjoc,ij,mv
(i,j) € ﬁh, a=1,2, m > 1, from (5.35) are ordered upper and lower solutions (5.29).

138



~

From (5.33), in the sector (Up,, Up,), for m > 1, we have

o R
qu,;]lm(Umj,m, Uzjijm) = 2bU1ijm + 01U2,ijm — @ < 20K1 + 01K>, (i,5) € @7,
O foii o o
faz’;];ﬂ(Umj,m, Usijm) = 02Ut ijm < 02Ky,  (i,7) € Q7

Of1 i s ol
B jc;%m(ULz‘j,m, Uzijom) = —01U1ijm <0, (i,7) € 0,

Uy

Ohs s o oh

B M(Ul,ij,m, Uzijm) = —02U2ijm <0, (i,7) € Q"

Thus, the assumptions in (5.19) are satisfied with

o —=h
Clijom = 2bK1 + 01K2,  co4jm = 02K1, (4,5) €, m>1.

From here, we conclude that f,, a = 1,2, from (5.33) satisfy (5.19) and possess quasi-

monotone nonincreasing property (5.30).

Enzyme-substrate reaction diffusion model
In section 3.2.1.1, we consider the steady-state enzyme substrate reaction diffusion
model. Here, we consider the time-dependent enzyme substrate reaction diffusion model

with the reaction functions given in the original form [59]
fi = arujug — b1 (Ep — u2), fo = aguiug — ba(Ey — ug). (5.36)
System (5.1) is reduced to

Uat — Dalug + fo(ur,u2) =0, (x,y,t) € Qr, (5.37)
ua(x,y,t) = galz,y,t) >0, (x,y,t) € 0QT,

ua(2,y,0) = ta(z,y), (v,y) €W, a=12,

Ey > (mf;txiwz(x,y),

x,Y)EW

where the reaction functions f,, a = 1,2, are defined in (5.36) and Ej is defined in

(3.31). The nonlinear difference scheme (5.11) for the model is presented in the form

(Awijom + 7 VWajijm + faijmUaijm: U ijm) =7 Uaijm-1 =0, (i,5) € 2",
. o =h
Usijm = Govijm > 0, (i,§) € 09", Upijo = VYaij >0, (i,5) € Q" (5.38)

o Aa, a,d=1,2, m>1.
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where f,, a = 1,2, are defined in (5.36), and
AaijmUaijm = =Da(Ds + D*)Uaujm, (i,j) €, a=1,2, m>1,

where D2, D7 are defined in (5.12). Denote by Vijm, (i,7) € ﬁh, m > 1, solutions to
the linear problems
(Avijm + 7 Wijm = 7 Vijm-1+ Mo, (i,§) € Q", (5.39)
.o .o —h
‘/ij,m = g1,ij,m; (,La]) € th7 ‘/ij,O = ¢1,ij7 (Za]) € ; m > 1a

My = const > b1 Ej.

We show that the functions

(Ut ijms Uaijm) = (Vi Bo)s (Orijm: Uaijm) = (0,0),  (i,j) € 9", m>1,
(5.40)
are ordered upper and lower solutions (5.29) to (5.38). Firstly, we prove that Vj;, > 0,
(i,§) € ﬁh, m > 1. From (5.39), for m = 1, we obtain that

(Avija + 7 Vi1 =7 "1 + Mo, (4,5) € Q"
. . —h
Viji = 91451, (4,7) € o, Vijo = Y145, 4,j€.
Taking into account that ¢ ;; > 0, (4,7) € Qh, we have

(Avija +7 DVijm >0,  (i,4) € Q"

.o .. —h
Viia = gria,  (6,5) €09Q", Vijo =114, (i,5) €Q".
Using the maximum principle in Lemma 5.4.1, we obtain
.. —=h
V;j,lzov (27])69 .

From here and (5.39), for m = 2, by using the maximum principle in Lemma 5.4.1, we
have
V;j,Z 2 07 (Z,j) € ﬁh‘

By induction on m, m > 1, we can prove that
. _=h
Vijm >0, (i,j) €2, m>1.
From here, taking into account that the total enzyme Ey > 0 and (5.39), it follows

that the upper and lower solutions from (5.40) satisfy (5.29a). From (5.36), (5.39) and
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(5.40), for a = 1, we have

(Avijm +771) ﬁl,ij,m + fl,ij,m(ﬁl,ij,ma [72,ij,m) — Tﬁlﬁl@‘j,m—l = Mo — b1 Ey >0,
(i,7) € Q" m>1.

From (5.36), (5.37) and (5.40), for « = 2 and m = 1, we obtain

(Agiji+771) [72,1‘]',1 + f2,ij,1([71,ij,1a [72,1']',1) - 7__1[72,2‘]',0 =7 (Ey — v2,j) > 0,
(i,5) € Q"

For m = 2, it follows that
(Agijo + 7 ) Usijo + foijo(Uijo, Unije) — 7 U251 =0, (3,7) € QM
By induction on m, m > 1, we can prove that
(Asijom +771) Uzijm + f2,z'j,2((71,ij,m, Upijm) =7 Usijm-1 >0, (i,§) € Q" m>1.
From (5.36) and (5.40), for « =1 and m = 1 , we have
(Al,ij,l + 7—1) [71,1‘]',1 + f1,z‘j,1((71,z‘j,1, [72,1‘3‘,1) - 7_1[71,1‘]',0 = —7_1¢1,z‘j <0, (i,7) € Q"
For m = 2, we have
(Aiij2 + 7‘_1) ﬁl,ij,2 + fl,ij,2((71,ij,27 ﬁZ,ij,2) - T_lﬁl,ij,l =0, (i,j) € Q"
By induction on m, m > 1, we can prove that

(Avijm + 7 ) Urijm + frijmUvigm, Uaigm) = 7 Urigm—1 <0, (i,5) € 2",
m > 1.

From (5.36) and (5.40), for @ = 2 and m = 1, we have

(Aija+771) [72,1‘]‘,1 + foija(Urija, (72,z‘j,1) — 7'71[72,1']‘,0 = —(b2Eo + 7 Mpa5) <0,
(i,5) € Q"

For m = 2, it follows that

(Agijo +7 1) Usyjo + f2,ij,2([71,ij,2, Usijo) — T "Usuj1 = —baBo <0, (i,7) € Q"
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By induction on m, m > 1, we can prove that

(Asijom +771) Usijom + foijm(Utijm, Uziim) — 7 Usijm—1 <0, (i,5) € Q"
m > 1.

Hence, we conclude (5.29b). From (5.40), it follows (5.29¢). Thus, ﬁa,ij,m and ﬁaﬁmm,
(i,j) € ﬁh, a=1,2, m>1, from (5.40) are ordered upper and lower solutions (5.29).
From (5.36), in the sector (U, Up,), for m > 1, we have

0f1.j N

Jcal;zjl’rn(Ul,ij,m,Uz,ij,m) =a1Usijm < ar1Ep, (i,7) € Q,

0f2,ij,m N =h

“ou, Uigm Uaijm) = a2Usijm + b2 < 62Vijm + o, (i.) € 0,
Of: . o =h

- M(Ul,m,m, Uzijom) = —(a1U1ijm +b1) <0, (4,5) € 2,
0faij . =h

B %(Ul,ij,mv Uz,ijom) = —a2Uzi5m <0, (i,j) € Q.

Thus, the assumptions in (5.19) are satisfied with
. _=h
ClLijm = a1Eo,  c2ijm = a2Vijm +b2, (1,5) €Q°, m=>1.

From here, we conclude that f,, a = 1,2, from (5.36) satisfy (5.19) and possess quasi-

monotone nonincreasing property (5.30).

5.4 The point monotone Jacobi and Gauss-Seidel meth-

ods

On each time level m > 1, at interior mesh points (i,7) € Q" the difference scheme
(5.11), (5.13) can be written in the following form

da,ij,mUa,ij,m - loa,ij,mUoz,i—l,j,m - ra,ij,mUa,i—l—l,j,m - boa,ij,mUa,i,j—l,m (5413)
-1 -1
— Qa,ijmUasij+1,m + T Uaijm = —faijmUaijm, Ust ijm) + T Uajijm—1,
.o h
(i,7) € Q7

.. .. —=h
Ua,ij,m = Ga,ijm, (/L?j) € 8Qh) m > ]-7 Ua,ij,o = wozﬂ'ja (7’7]) € 1 ;
o £a, a,d=1,2,

da,ij,m = la,ij,m + Ta,ij,m + ba,ij,m + qa,ijms la,ij,rm Ta,ijm ba,ij,rm qayij,m > 07

(5.41b)
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where o ijm, Ta,ijms Dajijm and qa,ijm, (4,7) € Q" o =1,2, m > 1, are defined in
(5.13).
In the following lemma, we formulate the maximum principle for the difference

operators dg jjm + 7 ' + Cov ij.m (i,7) € Q" a=1,2, m > 1.
Lemma 5.4.1. If W, ;;m, a = 1,2, satisfy the conditions
(daijom + 77+ ijm) Wasijom >0 (£0),  (i,) € Q"
Waijm >0 (<0), (i,5) €09", a=1,2 m>1,
then Waijm >0 (<0), (i,j) €', a=1,2, m > 1.
The proof is given in Lemma 1.2.1 from Chapter 1.

5.4.1 Quasi-monotone nondecreasing case

The definition of the ordered upper ﬁa,ij,m and lower ﬁa,ij,m, (i,j) € ﬁh, a =12,

m > 1, solutions (5.17) can be written in the form

~ ~ N

Uaijom < Uaijm,  (i,7) € £0, (5.42a)
Ka,ij,m( ,5,m Ua,ij,mfla Uo/ﬂ'j,m) <0< ]Ca,ij,m(ﬁa,ij,m7 ﬁa,i]’,mfl, ﬁa’,ij,m)v (5.42b)
Kea,ijim(Uaijms Uayijm—1,Un ijm) =

-1
(daijm + 7 )Uaijm — la,ijmUai—=1,jm — TaijmUait1,j,m — ba,ijmUaij—1,m
—1
- Qa,ij,mUa,i,j—i—l,m + fa,ij,m(Ua,ij,m7 Ua’,ij,m) - T Ua,ijnn—lv
PR / /
(i,j) €Q", o' #a, a,d =12,

Aa7ij7m < Gajijm < ﬁa,mm, (Z,]) c 89h7 m>1, (5.42(3)

~

~ R
Uaijo < Ya,ij < Uaijo, (4,7) €, a=1,2,

where Ko ijm(Ua,ijms Ua,ijm—1, Uat ijm), (4,7) € Q" a=1,2, m > 1, are the residuals
of the nonlinear difference scheme (5.41) on Uy jm, (4,7) € Q" a = 1,2, m > 1, and
notation (5.10) is in use.

On each time level m > 1, we present the point Jacobi and Gauss-Seidel methods
for the difference scheme (5.41). Upper {UL"ZW} and lower {Q&nz)]m}, (i,5) € ﬁh,

a = 1,2, m > 1, sequences of solutions are calculated by the following point Jacobi
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and Gauss-Seidel iterative methods:

ﬁa,ij,mzéz‘)j,m = _Ica,ij,m<UC(Z‘]_‘ir)La Uaijm—1, Uo(én” ,)n) (i,7) € Q" n>1, (5.43)
Zgzjm = Ya,ijm — Uo(fi)j’m, Zénl)Jm =0, n>2, (i,7)€ 0N,

.. —h Nm,
ang Vo Jids (17]) €0, Ua,i]}m = U(Ez z]Zn’
ﬁa,ij,mZ(n‘)‘ = (da,ij,m + Ca,ij,m)Z(n')

aij,m a,ij,m
-n (la ij, mZg,Li)—l,j,m + ba,ij,mZ(gT,Li)7j—1,m> _lztgcnz)] m’
AN 5 R 55 ) (4,7) € §h7 o #£a, ad =12 m>1,

@,1),m a,t),m a,tj,m?

where K, ijm(U(n_l) Uaijm— 1,U(n_1) ), (i,5) € Q" o # o, a,a’ = 1,2, m > 1, are

a,ij,m’ o ij,m
the residuals of the nonlinear difference scheme (5.41) on UC(Z] ir)“ (i,5) € Q" a=1,2,
m > 1, which are defined in (5.42) and notation (5.10) is in use. The mesh functions
Uaijm, (1,7) € ﬁh, a=1,2, m > 1, are the approximate solutions on time level m > 1,
where n,, is a number of iterations on time level m > 1. For n = 0 and n = 1, we have,

respectively, the point Jacobi and Gauss-Seidel methods.

Remark 5.4.2. For quasi-monotone nondecreasing functions (5.19), upper and lower
solutions are independent, hence by using (5.43), we calculate either the sequence
{U%mﬁ%m}, (i,5) € Q m > 1, or the sequence {U1 Um,Ug’?j’m}, (i,7) € ﬁh,
m > 1.

Theorem 5.4.3. Let (ﬁl,ij,maﬁlij,m) and (Url,ij7m,ﬁg7ij7m), (Z,j) € ﬁh, m > 1, be
ordered upper and lower solutions (5.42). Suppose that the functions fa, a=1,2, in
(5.1) satisfy (5.19) and (5.20). Then upper {Ua ijm) and lower {Ua djimts (5,7) € ﬁh,

a=1,2, m > 1, sequences generated by (5.43) with, respectively, Ugfﬁm = ﬁwj,m and
7

PN . =h ‘
Upyiim = Uasijoms (4,J) €7, a=1,2, m > 1, converge monotonically, such that,

g G)EN, a=12 m>1 (544)

Proof. Since U& 2] 1, (i,1) € ﬁh, a = 1,2, are upper solutions (5.42) with respect to

—h . 0
Unijo = Yo (1:5) € O, a = 1,2, it follows that Ka,z1 (T s Ve Uoriin) = 0,
(i,5) € Q" o/ # a, a,a’ = 1,2. From here and (5.43), we have

_ —(1 —(1 —(1
(dasiji +7 '+ Ca,iLl)ZEx,Z‘j,l - nla,ijJZ((x,z‘—l,j,l - Uba,ij,lzé,g,j—1,1 <0, (5.45)
(i) e Z8L <0, (i,j) €0, a=1,2

From here, 7 = 0,1, bas11 > 0, @ = 1,2, in (5.41b) and Z\) 0, <0,i=1,2..., Ny —1,

2ty ocz()
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a=1,2 for j =1in (5.45), we obtain

(doizg+ (771 + Ca,i,l,l)I)ZS;J,l - 77%,1,1,17(&1},17171 <0, i=1,2,...,N,—1,
ZW <0, i=0,N,, a=1,2 (5.46)

av,L’l:

Taking into account that n = 0,1, lo1,1,1 > 0, @ = 1,2, from (5.41b), 7&172),171 <0,
a = 1,2, for i = 1 in (5.46), by using the maximum principle in Lemma 5.4.1, we
have Zg)“l < 0, a = 1,2. From here, for i = 2 in (5.46), by Lemma 5.4.1, we

have Z{(X)zll < 0, o = 1,2. By induction on ¢, we can prove that Z(()ézl,l < 0,
1=0,1,...,N;,, a=12
By induction on j > 1, we can prove that
(1) . _=h
Za,ij,l <0, (27]) € ,  a=1,2. (547)

(0)

Similarly, for initial lower solutions U} D (i,5) € ﬁh, o = 1,2, we can prove that

(1) SN ah _
Zyii1 >0, (i,j) e, a=1,2. (5.48)

We now prove that Ué 2;1 and U& 2317 (i,5) € ﬁh, a = 1,2, are ordered upper and
lower solutions (5.42). Letting WO(L Z)J 1= Uszj 1 — U&{zﬂ, (i,5) € ﬁh, a = 1,2, using
notation (5.21) and taking into account that Wé z)jO =0, (i,j) € ﬁh, a = 1,2, from
(5.43), we conclude that

770)  77(0)
[’OMJJW; ’L)j 1 TOM]ylW(Ez z)—i—l,] 1 t 4o Z]alwo(c Z)]+1 1 + Fa 11,1 (Ua ,47,10 Uo/,ij,l)

0
—Ta 1], 1(Q((1 2],1’Qg¢ )z] 1) (Z’j) € Qh’

wl =0, (4,5) €9, o £a, a,d =12

a,ij,1

From here, (5.41b), (5.43) and taking into account that U((I L 1> Ugﬂ, (i,7) € ﬁh,
a = 1,2, by using (5.22), we obtain

(daija + 771+ Coz,ij,l)Wo(ji)jJ = Nlaij, 1WO(C Z) 1.1 — Mbayij, 1W(§ ,)J 112>20, (4,5) € or,
wll =0, (i,j)€a", a=1.2 (5.49)

From here and taking into account that W(iz)o 1=0,i=1,2,...,N, — 1, a = 1,2, for
j =1in (5.49), it follows that

EASE]

w

avlalv

(daz 11+ 7 —I— Ca,2,171)W(Si)’171 — nlaz 1 1Wo(¢ Z) 111 >0, +=1,2,...,N, — 1, (5.50)
120, 1=0,N;, a=1,2.
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Taking into account that Wo(j())’l’l =0, a = 1,2, by Lemma 5.4.1, for ¢ = 1 in (5.50),
we have Wo(cll)ll >0, «a=1,2. From here, n =0,1, lp211 > 0, o = 1,2, in (5.41Db)
and using Lemma 5.4.1, for ¢ = 2, we obtain that chlz)ll >0, = 1,2. By induction

on %, we can prove that

wh >0 i=0,1,...,N,, a=1,2

ail,l =

By induction on 5 > 1, we can prove that

wll >0, (1.j)e@", a=12 (5.51)
Thus, we prove (5.42a).
From (5.43) and using notation (5.21), we conclude that
—(1 —(1 (1 (1
’Ca,z’j,l(U( ) %,zjaU( i) = —Ula,ij,lz( ) - ra,ij,lzfx,z-&-l,j,l (5.52)

O‘ﬂij71’ O{’,ij,l a7i_17j71
(1) (1
- Uba,ij,lza,i,qu - Qa,ij,lza,i,j+1,1
—(0)  +(0 —(1) =1
+ Taija (Tosyn Ui 1) = Taigan (Ui 1 USi50)

a,ijg, 1~ ol ig,l a1, ol ig,1
(Z.7j) th? a/#a7 a?a/:]‘72'
From n = 0,1, (5.41b) and (5.47), by using (5.22), we obtain that

—(1 —(1 .
Ka,ij,l(Ug,gj,la@ba,ij) Ug/),ij,l) > Oa (Za]) € Qh’ a/ 7& «, O[,O/ = ]-7 2.

Thus, Us,zj,l’ (i,5) € Q" a = 1,2, satisfy (5.42b). By a similar manner, we can prove

that

Kayijyl(gt(ll,gj,l’ wavij’gs’),ij,l) S 0’ (Za]) € Qha a/ 7& «, Oé,O/ = ]-a 2.

Hence, Q(l) (i,7) € Q" a = 1,2, satisfy (5.42b). From the boundary and initial

a,if,10
conditions in (5.43), it follows that Us,ﬂj,l and QS’ZJJ satisfy (5.42c).
Thus, we prove that US’ZJ}I and Q&{ijl, (i,5) € ﬁh, a = 1,2, are ordered upper and
lower solutions (5.42). By induction on n > 1, we can prove (5.44) on the first time
level m = 1.

On the second time level m = 2, taking into account that Uf}jg = (NJa’ij’g, (1,7) €

ﬁh, a=1,2, from (5.42), we obtain

Kaij2(Ua,ij2: Uayijn Uaij2) =
71 i and i i
(daij2 + 7 )Uaij2 — la,ij2Uai—142 — Taij2Uait1,5,2 — basij2Uasij—1,2

N - o o
= Go,ij2Uaij+1,2 T fo,i5,2 (U2, Uarig2) — 77 Uayigits
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where Uaﬂ-ﬂ, (1,5) € ﬁh, a = 1,2, are the approximate solutions on the first time
level m = 1, which are defined in (5.43). From here and taking into account that from
(544), Uoé’ijl < ﬁa,ij,l, (’L,]) S ﬁh, a =1,2, it follows that
Kaij2Uaij2: Uasists Ut ig.2) = Kaij2(Uasij2: Uaijs Ut ij2) = 0, (5.53)
(1,7) € Q" a=1,2, o #a, ad =12,
which means that U((lo’zj’z = ffwj,g, (1,7) € ﬁh, a = 1,2, are upper solutions with
respect to U ij1, (i,7) € 0, a = 1, 2. Similarly, we can obtain that

~

Keaij2 (Ua,z’j,% Ua,ij1s Ua',ij,z) <0, (i,j)€Q", o #a, a0 =12,

which means that Qg),zj,z = ﬁaﬂ'j’g, (i,5) € ﬁh, a = 1,2, are lower solutions with respect
to Uy i1, (i57) € ﬁh, a =1,2. From here, (5.43) and (5.53), on the second time level

m = 2, we have

_ —(1 —(1 —(1
(dajz + 77"+ Ca,ij,2)Z<(1,3j,2 - ﬁla,z'jzzé,z_m - nboz,ij,ZZgz,z,j—l,Q <0, (5.54)
(i) € Q" ZUL, <0, (ij)€oQt, a=1.2

From here, = 0,1, by i1 > 0, a = 1,2, in (5.41b) and Z4 )55 < 0,0 =1,2..., Ny—1,
a=1,2 for j =1 in (5.54), we obtain

_ =1 —(1 .
(dajiio+77"+ Ca,i,1,2)Z((x,2,172 - nla,z‘,l,ZZ((y;_LLz <0, i=12,...,N; -1,

2ty Ly

ZW <0, i=0,N,, a=12 (5.55)

O571-7]-7

Taking into account that n = 0,1, lp112 > 0, @ = 1,2, in (5.41b), 7;}07172 <0,

a = 1,2, for i = 1 in (5.55), by using the maximum principle in Lemma 5.4.1, we
have 7((11’)171,2 < 0, @ = 1,2. From here, for i = 2 in (5.55), by Lemma 5.4.1, we
D~

2 =Y

have 7&17)27172 < 0, a = 1,2. By induction on i, we can prove that 7%‘71,

i=0,1,...,N;, «a=1,2.
By induction on j > 1, we can prove that

Z02<0, () e, a=12

a?z.]?

(0)

Similarly, for initial lower solutions U, ;. , (i,5) € ﬁh, a = 1,2, we can prove that

zZY >0, (6,5))eq’, a=12

Lajij2 =
The proof that T 5 and Q(l) (i,5) € ﬁh, a = 1,2, are ordered upper and lower

Oé,'ij, a7ij727
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solutions (5.42) repeats the proof on the first time level m = 1. By induction on m > 1,

we can prove (5.44) for m > 1. O

5.4.2 Quasi-monotone nonincreasing case

In the case of quasi-monotone nonincreasing functions (5.30), on each time level m > 1,

we say that mesh functions
= o ~ ~ . _ah
(Urijoms U2ijm)s  (Utigms U2ijm),  (3,7) €2, m>1,

are ordered upper and lower solutions of (5.41), if they satisfy the inequalities

ijm < Uagjm,  (i.§) €2, (5.56a)
a,ij,m(ﬁa,ij,m» ﬁa,ij,mA’ Ua’,ij,m) <0< ’Ca,z‘j,m(ﬁa,q,m, ﬁa7ij7m71, ﬁa/,ij,m), (5.56Db)
i,7) € Qo +a, a,ad=1,2,

wijm < Gaijm < Unijm,  (i,4) €9Q", m>1, (5.56¢)

~ o —=h
0,ij,0 < Vaij < Uaijo,  (1,5) €Q, a=1,2,

"?ﬁS)

)

~

-

where Ko,ijm(Uaijms Ua,ijm—1,Un ijm), (4,7) € Q" a=1,2, m > 1, are the residuals
of the nonlinear difference scheme (5.41) on Uq ijm, (4,7) € 0" a=1,2, m > 1, which
are defined in (5.42) and notation (5.10) is in use.

We now present the point Jacobi and block Gauss—Seidel methods for the nonlinear
difference scheme (5.41) when the reaction functions f,, a = 1,2, are quasi-monotone
nonincreasing (5.30).

For solving the nonlinear difference scheme (5.41), on each time level t,,, m > 1,

we construct the point iterative Jacobi and point iterative Gauss-Seidel methods in the

forms
Ea,ij,migfzj,m = —Ka,ijm (nglﬂ)w Uayijm-1, Qg}?ﬁn)’ (5.57)
.Ca,ij,ngffjm = —’Ca,ij,m(ggz,zvQa,z‘j,mfl’ US’L;J{?)R)’ (z’j) € Qh’ nzl,
Z8) = Gaijon — U s 200 =0, n>2, (i) € QP
Ua,ijo = Vayij, (i,]) € ﬁha Ua,ijom = UngTzn’
Zalggn = Vs = Ui (63) €', o' #a, aa’ =12 m>1,

where the difference operators ‘Ca:ij:ngli)j,m7 (i,5) € Q", a = 1,2, m > 1, are defined in
1 —1 ..

(543)’ Kavijvm(U(g,Lij,'rr)L’ Ua,ij,mflg UC(ZZZJ,?)n)’ (27]) € Qha o 7& «, OZ,O/ = 1a 2a m > 17 are

the residuals of the nonlinear difference scheme (5.41) on yln (i,7) € Q" a=1,2,

a,tj,m?
m > 1, which are defined in (5.42) and notation (5.10) is in use. The mesh functions
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.o =h . . .
Uaijm, (1,7) € ", a =1,2, m > 1, are the approximate solutions on time level m > 1,
where n,, is a number of iterations on time level m > 1. For n = 0 and 1 = 1, we have,

respectively, the point Jacobi and Gauss-Seidel methods.

Remark 5.4.4. For quasi-monotone nonincreasing functions fo, a = 1,2, (5.30), up-
per and lower solutions are coupled, hence, by using (5.57), we calculate either the

(n) bo(4,7) € ﬁh, m > 1, or the sequence {U1 Z)]m,Ug?j’m},

sequence {Ul Um,QQ Gim

(z,j)EQ ,m>1.

In the following theorem, we prove the monotone property of the point iterative
methods (5.57).

Theorem 5.4.5. Suppose that (ﬁl,ij,my ﬁgyi]’,m) and (ﬁl,ij,m, ﬁg,ij,m), (i,§) € ﬁh, m >
1, are ordered upper and lower solutions (5.56) to (5.41). Suppose that fo, «
1,2, in (5.1) satisfy (5.19) and (5.30). Then the sequences {Uﬁ") vl } and

,J,m =245, m

{U1 jijme énz_]ir)L} (i,7) € Q m > 1, generated by (5.57), with (ng)]m,ng)]m) =

(Ul,ij,m,Uz,ij,m) and (U(O) U(O) ) = (Ul,ij,maUQ,ij,m)} (i,5) € Q" , m > 1, converge

1,i73,m> >~ 2,ij,m

monotonically, such that,

v < oo gD G e @, a=1,2, m>1.  (558)

Yesijm < Yaim < Vaijm < Vaijm
Proof. On the first time level m = 1, in the case of the sequence {Ul ijl,UgZ)j’l},
(Uﬁofj,l,gg?z?j’l) = (ﬁ17ij71,(,72,ij,1), (i,5) € Q" , are initial upper and lower solutions
(5.56) with respect to Unj0 = Yayij, (4,)) € ﬁh, a = 1,2. Hence, it follows that
K1ija <ﬁl,ij,l7¢1,ijaﬁ2,z‘j,l> >0, (,4) € Q" and Kaijn (ﬁl,ij,lﬂ/@ﬂj?[/jzz‘j,l) <0
(i,7) € Q". From here and (5.57), we have

_ —(1 —(1 —(1

diija+7 T+ cl,ij,l)Zg,i)j,l - nll,ij,lZg,i)fl,j,l - 77517ij71Z§,i),j71,1 <0, (5.59)
— 1 1 1 ..

dijn+ (77 + cajn ))Zg,i)j,l - 77l2,ijzé,i)—1,j,1 - 77b27ij71Zé,z‘),j—1,1 >0, (i,4) €,

2V <0, 28>0, (i) o

(
(

For here, 7 = 0,1, bai11 > 0 in (5.41b) and Zi1g; < 0, 2800, = 0, i = 0,N,, for
j =11in (5.59), we obtain
(dyi; -1 W () < e gh
1451 +7  + cmj,l) 1,611 —M141141;-111 S 0, (i,9)€ , (5.60)
(dogja+ (77 + o)) Zh) 11 = mlainaZy) 100 2 0, (i,4) € 2,

i=1,2....N,—1, 2\, <0, 28 >0, i=0N,.

Taking into account that n = 0,1, l4 ;1,1 > 0 in (5.41b), Z% <0, Zg()),m > 0, and

using the maximum principle in Lemma 5.4.1, for ¢ = 1 in (5.60), we have 75371,1 <0,
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Zgi,l,l > 0. From here, by using Lemma 5.4.1, for ¢ = 2 in (5.60), we have 78%71’1 <

0, Zg%,l,l > 0. By induction on ¢ and j, we can prove that

h

Zi <0, 20 >0, (.j)eq” (5.61)
Similarly, for (U{"). |, T5% 1), (i,5) € @, from (5.57 h
imilarly, for (U ;;1,Us ;1) (i,7) € €27, from (5.57), we can prove that
z) >0, 2V <0, (i.j)eq" (5.62)
We now prove that Ug 341 and U& 2] 1 (4,]) € ﬁh, a = 1,2, are ordered upper and
lower solutions (5.56). Letting W(g Z)Jl = Us,zjl Q& 2] 5 (4,7) € ﬁh, a = 1,2, using

notation (5.21), from (5.57), we conclude that

1 —(0 0
Ea’ij’lwo(t’i)j = Ta,z],lwo(t 1)+1 .1 + qa ,17, 1W0(¢ 1)]+1 1 + Fa ,ig,1 (U(()é,’)ij,17 Qé’?ij,l)
T O T, (1) €

70‘72]71’ a/72.771
Wo(clz)jl =0, (i,j)ed, o #a, ad =12
Heq" a=12

From here, (5.41b) and taking into account that U((X Z] 1> U& 2] 5 (4,

by using (5.31), we obtain

(da,ij,l + T_l -+ Ca,ij,l)Wc(:i)jJ - nla,z’j IWO(M) 1,5,1 nba,z],lwo(é z)] 1,1 > 0, (Z,]) € Qha
(5.63)
w

a1 =0, (i,j) € 09", a=12

Since W)y ; =0, a = 1,2, for j = 1 in (5.63), it follows that

(da,i,l,l + Ca,i,lyl)Wo(ji),l,l — UZQ’ZJJWOE z) 11,1 >0, +=1,2,...,N, — 1, (5.64)
wl =0, i=0,N, a=12

a,i,l,
From here, W( 8 11 =20, a=1,2 fori=1in (5.64), by using Lemma 5.4.1, we have
W1 >0, a=1,2 Fromhere,n=0,1, lo211 >0, a = 1,2, in (5.41b), for i = 2 in
(5.64), by using Lemma 5.4.1, we obtain Wé}%’m >0, a« = 1,2. By induction on i and
7, we can prove that

wl >0, (G,7)eq", a=12 (5.65)

a,ij

Thus, we prove (5.56a) on the first time level m = 1.
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From (5.57) and using notation (5.21), we conclude that

—(1 1 —(1
Kaijn TS0 ais UL i) = —Ta 312011 — doiga Dot g (5.66)
+ Fa’ijjl(U(Ox U(O) ) Lo (U(l) U(l),. )

a,ig,1 o ij,1 a,if, 1) =/ ij,1/
(1,/) e, o #a, a,d =12
From here, (5.41b) and (5.61), by using (5.31), we obtain that

KaiinOS 0t UY ) 20, (1,5) €9, o/ #a, ad =12 (5.67)

=’ ’Lj,

Similarly, we can prove that

Ka,ijﬂ(Qg};jJ)wa,ijvﬁgél’?ijJ) < 07 (Z7j) € Qh? O/ 7é «, Cll = ]-a 2. (568)

From the boundary and initial conditions in (5.57), it follows that U ((X Zj LU ((112 i1

(5.56¢). Thus, from here, (5.65), (5.67) and (5.68), we conclude that U& 231 and Uszj 17

satisfy

(1,7) € ﬁh, a = 1,2, are ordered upper and lower solutions (5.56).

By induction on n, we can prove that {Ugfijyl}, (i,§) € ﬁh, a = 1,2, are monotone
decreasing sequences of upper solutions and {U ((fgj’l}, (1,7) € ﬁh, a = 1,2, are mono-
tone increasing sequences of lower solutions which satisfy (5.58) on the first time level

=1.

On the second time level m = 2, for the sequence {U1 i, 2,72 i, 2} (i,7) € ﬁh, we

have U§73j72 = Ul,ijg and Qé,i)j,Z = Ug,ij,g, (i,j) € ", From (5.42), we obtain that

Ki4j2(Ut,i5.2,Uij1, Uzij) =
_1 i =~ =~ i
(diijo+7 U2 — lij2Uri-142 — 152014152 — b145.2U14,5—1,2

_ N I L
—q1,i5.2U01, 412 + f1i5.2(U145.2, Uz ij2) — 7 U14j1,

K2,j2(U1ij2,Us 51, U2,ij2) =
A . . .
(dogjo +7 U2 — 1245.2U2i-1 52 — 12,i5,2U2i41,5,2 — b2,i5,2U2,4,j—1,2

N - b _1
= q2,ij,2U2i 5412 + f252(Ur.2, U2ij2) — 7 Usija,

— .. —=h . . .
where Uy i1 and Uy ;i 4, (i,j) € Q, are the approximate solutions on the first time

level m = 1, which are defined in (5.57). From here and taking into account that from
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(5.58), Ul,ij,l S ﬁl,ij,l and (7271']"1 S QZUJ’ (Z,]) c ﬁh, it follows that

]Cl )17, Q(Ul 17, 27U1 ,17, 17U2 )7, 2) > ’Cl )17, Q(Ul 17, 27U1 'L],laUZ 17, 2) 0 (Za]) € Qha (569)
K2 ,i7, 2(U1 ,7, 2’U2 Jid, 17U2 iJ, 2) < ,C2 ,7, Q(Ul 7, 27U2 Zj,17U21] 2) < 0 (Za]) € Qha

which means that U§°3] 9 = ﬁlﬂ-jg and ngi)j? = ﬁzyijg, (i,j) € Q" are upper and lower

. . =3 .o —h
solutions with respect to U1 ;1 and Uy ;;4, (4,7) € Q.

Similarly, we can obtain that
Ki,ijz2 <U1,ij,2,Ql,ij,1aUz,z‘jﬂ) <0, Ky (Ul,z'mﬁzz'j,hU2,z‘j,2> >0, (i,j) € Q"

which means that (727@72 and (71@;2, (i,5) € ﬁh, are upper and lower solutions with
respect to Us g1 and Uy 54, (4,5) € ", From here, (5.57) and (5.69), on the second

time level m = 2, we have

_ —(1 —(1 1
(diijo+7 "+ Cl,z'jz)Zg,z-)j,g - nll,ijﬂzg,i)—l,j 2 — b1y z)] 12 <0, (5.70)
(daijo+ 77" + cagj, 2)2512-)@2 - nl2,ijzgi)71,j,2 - 77172,1']',2Zé,2,j,1,2 >0, (i,j) €,
1 ..
Zg 2]2 Zg )J’ >0, (i,7)€ o

For here, 7 = 0,1, baji12 > 0 in (5.41b) and Zi1gs < 0, 2505 > 0, i = 0,N,, for
j =11in (5.70), we obtain

_ —(1 —(1 ..
(dijine+ (771 + Cl,i,lﬂ))Zg,z‘),LQ - nll,i,l,zzg,i)_m,z <0, (i,j) €9, (5.71)
(daine + (771 + 02,1',1,2))@9,1,2 - 77l2,i,1,2Z$3_1,1,2 >0, (i,j) €9,
. —(1 .
i=1,2....N,—1, Z{),,<0, 28 ,>0, i=0,N,

Taking into account that n = 0,1, l4 12 > 0 in (5.41b), Z 513 12 <0, Zg()),lﬂ >0, and

using the maximum principle in Lemma 5.4.1, for ¢ = 1 in (5.71), we have Zﬂ,l,Q <0,
Zgi,m > 0. From here, by using Lemma 5.4.1, for ¢ = 2 in (5.71), we have 75}%7172 <

0, 2227172 > 0. By induction on ¢ and j, we can prove that

1 .. =h
Z(Z)JQSO, Zgzj2>0 (i,j) e Q.

Similarly, for the sequence {U1 i, Q,UQ diots (1,5) € " , from (5.57), we can prove that

Z%Z)jﬂ > 07 Zg]:’L)],Z < 07 (27]) € ﬁh'

The proof, that U& ZJQ and U((l 2]2, (i,j) € ﬁh, a = 1,2, are ordered upper and lower
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solutions (5.56), repeats the proof on the first time level m = 1. By induction on m,

we can prove (5.58) for m > 1. In a similar manner, we can prove the theorem for the
7 .. =h

sequence {anz)ﬂn, Ug?jm}, (1,7) e X, m> 1. O

5.5 Existence and uniqueness of a solution to the nonlin-

ear difference scheme (5.41)

We give estimates of the solution to the linear problem (5.15).

Lemma 5.5.1. The following estimates of the solution to the linear problem (5.15)
hold

|Paijm| _
HWa,muﬁh < max{||ga,m|89hv (i,r‘gg}éh W , a=1,2 (5.72)
where
HWa,mHQh = (;;;2%}1 Waijml,  lgamllaar = (i,ﬁggm |9a,ijml-

The proof of the lemma is given in Lemma 1.2.1, Chapter 1.

5.5.1 Quasi-monotone nondecreasing case

In the following theorem, we prove the existence of a solution to the nonlinear difference
scheme (5.41) based on Theorem 5.4.3.

Theorem 5.5.2. Let (ﬁ17ij7m, ﬁ27ij7m) and ((717Z-j7m, (727Z-j7m), (i,5) € ﬁh, a=1,2, m>
1, be ordered upper and lower solutions (5.42) to (5.41). Suppose that fo, o = 1,2,
in (5.1) satisfy (5.19) and (5.20). Then a solution of the nonlinear difference scheme
(5.41) exists in the sector <(7m, Un), m > 1, from (5.18).

Proof. We consider the case of upper solutions based on the point Gauss—Seidel method

with 7 = 1 in (5.43). On the first time level m = 1, from (5.44), we conclude that

limy o0 Ty = Vaggns (i,5) € 2", a = 1,2, exist and

Vaiji < v 1 < Tl < Uniji, lim 7&%,1 =0, (i,j)€ ", a= 1,2,

a,ij, ayig,1

n—oo
(5.73)
where U&Ojj,l = ﬁa,ij,l, (i,5) € ﬁh, a =1,2. From (5.42) and (5.43), we have
77(n) 77(n) +(n) —(n) ()
ICa»ij,l(UaTjij,la 1/fa,ij> Uo?,z’j,l) = _(Ca,ij,lzojjij,l + Ta,ij,lzozﬂ,j,l + Qa,ij,IZoZz‘,jH,l)

77N 77 (n —(n—1) 37=7(n—1
+ fa,ijyl(fo,z)j,lv UEX’,)Z'j,l) - fa,ijJ(ng,ij,l)v U&’,ij,b?

(i,/)) €, o £a, a,d =1,2.
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By the mean-value theorem (5.16), we have

ica,,-j,l(USfQj’l, wa,ij,Ugf?,-j,l) = —[Ca,ij1 — (fa,z‘j,l)uaﬁ(ofi)jg
- (fa,z‘j,l)uarzz(;,)ij,l - Ta,ij,ligz?ﬂ,j,l
- Qa,ij,lir(;:g,j+l,1y
(i,j) €, o #a, a,d =12,
(fa )i = Faiin Q01 T8 Mues aii )i = Gaiia @i YU D,
Tl < QU <UL, Tlhy <Y, <TU3.

a 17,17 a,ig,l a,tg,1 o’ ig,1

By taking limits of the both sides and using (5.73), we conclude that
Kaijt (Vaijts Yasijs Varign) =0, (i,§) € ", o' #a, a0’ =1,2.

Thus, Vi, (i,4) € ﬁh, a =1,2, solve (5.41) on the first time level m = 1.

By the assumption of the theorem that fjoz,ij,?a (i,7) € ﬁh, a = 1,2, are upper
solutions and from (5.73), it follows that ﬁmiﬂ, (i,j) € ﬁh, a = 1,2, are upper
solutions with respect to Vi1, (4,7) € ﬁh, a = 1,2. Indeed, from (5.73), it follows
that Vi1 < ﬁa,ij,l, (i,7) € Q, a = 1,2, and we have

Ka,ij,Q(ﬁa,ij,Q,ﬁa,ij,la Ua ij2) = (dagj2 + T_l)ﬁa,ij,Z - la,ij,Qﬁa,ifl,j,Q - Ta,ij,Qﬁa,iJrl,j,Z
— baij, 2ﬁa,i,j 1,2 — aij, A G412
+fa1], ( az],ZaUa z]2)_7— Uam,lu
> Koijo(Unijo, Uaijits U Uqtij2) > 0,
(i,j) € Q" o #a, ad =1,2

Using a similar argument as in (5.73), we can prove that the limits

lim U7 = Vaie, (,5)eQ", a=1,2,

n—00 2

exist and solve (5.41) on the second time level m = 2.

By induction on m > 1, we can prove that

are solutions of the nonlinear difference scheme (5.41). Similarly, we can prove that
Veizms (1.7) €Q", a=1,2, m > 1, defined by

lim U, —v (i,/)) e, a=1,2 m>1,

Y L aij,mo
n—oo - MWLM Js
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are solutions to the nonlinear difference scheme (5.41). O

We now assume that in the sector <(7m, ﬁm> from (5.18), the reaction functions f,

a = 1,2, satisfy the two-sided constrains

8f .. Ul” ’U27.. ~ ~
Qa,ij,m < a’Z]’m( 87;]7771 Z],m) < Ca,ij,m, Ua,ij,m € <Um7 Um>7 (574)
«a

8foz,2' ',m(Ul,i j,ms Ug,i ',m) N .
_ J 6ui, 2 < qaijms Uaijom € (U, Um), (5.75)

0<

(i,4) € Qh, o £a, a,d =1,2,
where cqijm, (i,]) € Qh, a = 1,2, m > 1, are defined in (5.19), ga,ijm and ¢, ;;m;
(i,j) € ﬁh, a = 1,2, m > 1, are, respectively, nonnegative bounded and bounded

functions. It is assumed that the time step 7 satisfies the assumption

1
7 < max —, (5.76)

m>1 By,
Bm = max (O, qdm — Qm) =

Gm — Cm»  if @ — ¢, >0,

a=1,2 =h

¢y = min [(Er)ueré Ca,ij,m] » Om = 108 ldamllgn,

where the notation of the discrete norm from (5.72) is in use. When 3, = 0, m > 1,

then there is no restriction on 7.

Theorem 5.5.3. Let (ﬁl,ij,m,ﬁlij,m) and (ﬁl,ij,m,ﬁzij,m); (l,]) S ﬁh, m > 1, be
ordered upper and lower solutions (5.42) to (5.41). Suppose that functions fo, o = 1,2,
in (5.1) satisfy (5.74), (5.75), and assumption (5.76) on the time step T is satisfied.

Then the nonlinear difference scheme (5.41) has a unique solution.

Proof. Firstly, we show that if V. (i,5) € ﬁh, a = 1,2, m > 1, are any other

(63
solutions in (U, Uy,), then

Koc,ij,m S V;}Z]%m S Va’ij’m, (Z,]) € Q s o = 1, 2, m 2 ]., (577)
where V o j.m and Veijm (1,7) € ﬁh, o =1,2, m > 1, are the solutions to the nonlinear
difference scheme (5.41), which are defined in Theorem 5.5.2. Using (Vi";; ., Va'iim)

and (ﬁ17ij7m,ﬁ27ij7m), (i,7) € Qh, m > 1, as initial upper and lower iterations, the
)  n

.o —=h .
sequence {U; imoUs i mb (4,7) € @7, m > 1, remains unchanged and converges to

. .. =h . .
the solution (V5 ;5 Vo iim), (i,5) € 27, m > 1. Taking into account that the sequence
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(T TS Y, (,5) € @, m > 1, with

—(0 —(0 * * P ol
(Ug,i)j,mv Ué,i)j,m) = (Vl,z‘j,m? VQ,z’j,m)v (7’7]) SRY) y M > 1a
consists of the single element (V" .., Va'y5 )5 (i,7) € ﬁh, m > 1, from (5.44), it follows
that
Vi >V i,/) e, a=1,2 m>1 (5.78)

a,i),m = Xa,ijmo

.. . =~ ~ .. =h Cee
Similarly, by using (Uiij,m, U1,ij,m) and (Vl*zjm, VZ*” m) (i,7) € @, m > 1, as initial
upper and lower iterations, the sequence {U 1 U o 2 i, m} (1,7) € ﬁh, m > 1, remains

unchanged and converges to the solutlon (Viijm, Vaijm), (i,4) € ﬁh, m > 1. Taking

into account that the sequence {U1 ijm U(in)J mt (4,7) € ﬁh, m > 1, with

0 0 * * . =h
(Qg,i)j,mvgg,i)j,m) = (Vl,ij,mv V2,z'j,m)v ('Lv]) € ;oom 21,

consists of the single element (Vi"; ., V' m)s (i,7) € ﬁh, m > 1, from (5.44), it follows

that

VEim < Veaiim, (65 €@, a=1,2 m>1

a,ij,m

From here and (5.78), we conclude (5.77).
Taking into account (5.77), for the uniqueness of a solution to the nonlinear differ-

ence scheme (5.41), it suffices to prove that

Veaiim=Vaiim (61", a=12 ,m>1

From (5.44) and Theorem 5.5.2, we have

U™ <V < Vaiim < T e, a=1,2 m>1  (5.79)

—Q,1],m — OC’LJTI’L O[l]m? (7

Letting Weijm = Vayijm — YVaijm (i,7) € ﬁh, a=1,2,m>1, from (5.11), by using
the mean-value theorem (5.16), we obtain for m > 1

(Aaijom + (77" + (faijm (Qaizim, Ve ijim) Jua)) Waijm = (5.80)

1 o
— Uaoigm\ X ijm> Laligm))u VValijgm a,ij,m—1, 1,7 y
Weijm =0, (i,j) €™ o #a, a,d =12,
.. =h
Ka”m_Qazjmayaz]mSVaz]ma (Z‘JJ)EQ Y a:172

From here and (5.79), it follows that the partial derivatives satisfy (5.74) and (5.75).
From here for a = 1, (5.74), (5.75), taking into account that Wy ;0 = 0, (¢,7) € ﬁh,

156



a = 1,2 and using (5.72), we conclude that

wy <

= W — > 1.
g Wy Wm = Ay [Wamllgn, m =
From the above inequality, by the assumption on 7 in (5.76) and w; > 0, we conclude
that w; = 0. On the second time level m = 2, taking into account that w; = 0, by the
similar manner, we conclude that wy = 0. Now, by induction on m, m > 1, we can

prove that w,, = 0, m > 1. Thus, we prove the theorem. O

5.5.2 Quasi-monotone nonincreasing case

In the following theorem, we prove the existence of a solution to (5.41) based on The-

orem 5.4.5.

Theorem 5.5.4. Let (ﬁl,ij,ma ﬁg}ijm@) and (ﬁlj,im, (727¢j7m), (i,§) € Qh, a=1,2 m>
1, be ordered upper and lower solutions (5.56) to (5.41). Suppose that fo, o = 1,2,
in (5.1) satisfy (5.19) and (5.30). Then a solution of the nonlinear difference scheme
(5.41) exists in the sector <ﬁm, Up), m > 1, from (5.18).

Proof. We consider a sequence {Ul ”m,Qénl)Jm} (1,7) € ﬁh, m > 1, generated by the

point monotone Gauss-Seidel method with n =1 in (5.57).

On the first time level m = 1, from (5 58), we conclude that lim,, Ug Z)] 1=Viija
(n)

and limy, 00 Uy i1 =Y, (1,5) € Q" , exist and

n n .o =h
Viga <UL <O <O, lim Z0), =0, (,7) €@, (5.81)

Ugijn <USY <US < Vo, Tim zM =0, (i,5) €,

where Ug Z)J =01 4,1 and Ug 2] 1= Ug,ij,l, (i,j) € Q". From (5.57), for « = 1, we have
77(n) 7(n) 7(n) 7(n)
K1ijn (U1 551 wlﬂjﬂggli)j,l) = —(c1ija 21 51 + 1,031 21 t4151) + Qi1 210411

n -1 n
+f1 1,1 (Ug Z_)],I’Uglj 1) fl 1t 1(U5 ,i7,1 ) Uézy i))
(i,5) € Q"
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By the mean-value theorem (5.16), we have

IclyijJ(UgfLi)j,lywl,ijaggli)j,l) = [eriin — (Frign)w)| 21
- (fl,ijyl)UQngi)j,l - Tl,ij,lZ@Jrl,jJ - QLij,lZg?i),jJrl,la
(i,4) € 2,
. _ . (n) —rrn) - _ A U(”)- y. (™
by 1 ]y 17,10 =213, 1 8]y 2 50y 07,10 7, 29
(flw 1)u = (flw 1(Q1 17,10 -2 1))u (flw 1)u = (flzl( 1,ij,15 £2 1))u

TF(n n +7(n—1 n—1 n n
U&,i)j,l < Qg,i)j,l < Ug,ij,1)7 Qg,z‘j,l) < Y2(,z'j?,1 < Qéz)jl

From (5.81), by taking limit of the both sides, we conclude that
K1,ij1(Viii, 1 Vo) =0, (i,4) € Q"
Similarly, we can prove that
Ka,iji(Viija i, Voijn) =0, (4,4) € Q"

Thus, (V1i5,1,Va51), (i,4) € ﬁh, solve (5.41) on the first time level m = 1.

By the assumptions of the theorem that [717”-72, and (72#-]-72, (i,7) € ﬁh, are upper
and lower solutions and from (5.56), it follows that ﬁlﬂ'j,g, and (7271-]-,2, (i,j) € ﬁh, are
upper and lower solutions solutions with respect to V751, and Voijns (4,7) € a".
Indeed, from (5.81), it follows that Vi ;1 < ﬁm’l, Vaijin = 6271']'71, (i,j) € Q". From
here and (5.41), we have

/C1,ij,2((71,ij,2,v1,ij,1, [72,2']',2) = (di,ij2 + T_l)ﬁuj,z - l1,z‘j,2ﬁ1,i—1,j,2 - 7“1,1'3‘,2[71,@'+1,j,2
- bl,ij,2ﬁl,i,jfl,2 - Q1,ij,2[71,i,j+1,2
+ fl,ij,2((71,ij,2a ﬁ2,ij,2) + T_1V1,z'j,1
> ICl,ij,Z(ﬁl,ij,% ﬁl,zj,l, (72,13',2) >0, (i,5) € Q"

K:Q,ij,2((~]1,z’j,2azz7ij717 [72,2']',2) = (do,ij2 + 7—_1)[72,1'3',2 - l2,ij,2ﬁ2,i—1,j,2 - 7“2,ij,2ﬁ2,z'+1,j,2
- bz,z‘j,2[72,i,j—1,2 - Q2,ij,2[72,i,j+1,2
+ f2,z'j,2((71,1;j,2, [72,ij,2) + T_1K27ij’1
< K2,ij,2([71,ij,2a [72,1‘]',17 ﬁQ,z’j,z) <0, (i,5)ear

which means that (71@',2 and ﬁgﬂ'jg, (i,5) € ﬁh, are upper and lower solutions with

_ N —h
respect to V51 and V.4, (4,7) € Q.
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Using a similar argument as in (5.81), we can prove that the limits

—(n) R
nh~>r{olo Ul 13,2 V1 180525 hm U; z)j 2 K2,1’]’,2 (Zvj) € ’
exist and (V152, Vo 50), (i, 7) € ﬁh, solves (5.41) on the second time level m = 2.

By induction on m > 1, we can prove that

lim TV = Vigm,  m U =V () €0, m>1.

n—00 Lig,m

Thus, (V1.im,Yaijm)> (i,4) € &', m > 1, are solutions of the nonlinear difference
scheme (5.41).
Similarly, for a sequence {an-)} T, }, (i,4) € ﬁh, m > 1, we can prove that

Jdig,ms ~ 2,0j,m
. —(n) — N =h
nh—%o Ug 1)Jm - Klyi]}m’ nh—{go U27i]}m = Va,ijm, (4,7) €, m=1,
and (V45 s Vaijm), (i,4) € ﬁh, m > 1, are solutions of the nonlinear difference
scheme (5.41). O

We now assume that in the sector (ﬁm, ﬁm>, m > 1, the reaction functions f,,

a = 1,2, satisfy (5.74) and the two-sided constrains

Ofaijom(Utijms U2ijm)
811,0/

<0, Unijm € (Unm, Up), (5.82)

Qoijm < —

(i,j) € ﬁh, o #a, ad =12,

where cqijm, (1,7) € ﬁh, a = 1,2, m > 1, are defined in (5.19), ga,ijm and ¢, ;;ms

(1,7) € ﬁh, a = 1,2, m > 1, are, respectively, nonpositive bounded and bounded

functions.

Theorem 5.5.5. Let (ﬁl,ij,myﬁlij,m) and (ﬁl7ij7m;ﬁ27ij,m); (Z,j) S ﬁh, m > 1, be
ordered upper and lower solutions (5.56) to (5.41). Suppose that functions fo, o = 1,2,
in (5.1) satisfy (5.74), (5.82), and assumption (5.76) on the time step T is satisfied.

Then the nonlinear difference scheme (5.41) has a unique solution.

Proof. Firstly, we show that if V. (i,7) € ﬁh, a = 1,2, m > 1, are any other

solutions in <Um, Um), m > 1, then

1% <V <Vaiim, () €@, a=12 m>1, (5.83)

azym— a,ij,m =

where (Viijm: Voiim) and (Vg0 Voiim), (6,§) € ﬁh, m > 1, are the solutions

to the nonlinear difference scheme (5.41), which are defined in Theorem 5.5.4. Using
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=~ - . =h c e 1 s .
(Utijms Uz,ijom) and (Vi 0, Va'ys )y (6,5) € 2, m > 1, as initial iterations, the se-
(n) (n)

.. —h .
Lijm Us ij m} , (4,7) € 7, m > 1, remains unchanged and converges to the

quence {U

solution (V1,ijm, Vo ijm)s (4,4) € ﬁh, m > 1. Taking into account that the sequence

(U Ubiy}s (1,7) €9, m > 1, with
0 (0 % x .. —=h
(Qg,i)j,m7 ng)]m) = (Vl,ij,m7 V2,z'j,m)7 (i,7) €2, m>1,

consists of the single element (Vi . Vo' ), (4, 5) € ﬁh, m > 1, from (5.58), it follows
that

Viiim < Viijms, Voijm = Voijms, (6,5) €2, m>1 (5.84)

Similarly, by using (ﬁw,m, Ung,m) and (V1" ms Vaijm)s (4,5) € ﬁh, m > 1, as initial
(n)

iterations, the sequence {Q%)j,wﬁzij,m} , (3,7) € ﬁh, m > 1, remains unchanged and
converges to the solution (V.. Vaijm), (i,7) € ﬁh, m > 1. Taking into account
that the sequence {U(n) vl b, (4,7) € ﬁh, m > 1, with

Lij,m> 22/i5,m

(U(O) U(O) ) = (Vl*,ij,mv VQ’iij,m)v (17]) € ﬁh’ m > 1,

17ij7m’ i27ij7m

consists of the single element (V" .., Va'y5 )5 (i,7) € ﬁh, m > 1, from (5.58), it follows
that
= . _=h
Vfiz’j,m >Viiime Voijm < Voijm, (4,7) €2, m2>1.

From here and (5.84), we conclude (5.83).
Taking into account (5.83), for the uniqueness of a solution to the nonlinear differ-

ence scheme (5.41), it suffices to prove that

.o —h
Voéﬂ'j’m = Voz,ij,m’ (’l,j) c Q 5 o = 1,2, m 2 1.

From (5.58) and Theorem 5.5.4, we have

U on < Vaiim < Voijm < Uoims () €0, a=1,2, m>1.  (5.85)

a,ij,mo

Letting Wa ijm = Va,ij,m —Voijm (i,5) € ﬁh, a=1,2,m>1, from (5.11), by using

the mean-value theorem (5.16), we obtain for m > 1

(Aoc,ij,m + (7—71 + (fa,ij,m(Qa,ij,mvVa’,ij,m))ua)) Wa,ij,m = (586)
1 o

o (fa’ij’m(zaﬂj,m’ Yalﬂij7m))ua/ Wa’ﬂj,m + ;Wa,ij,m—ly ('L,]) € Qh,

Waijm =0, (i,j)€9Q" o #a, a,d/ =1,2,

R
Ka,ij,m < Quajijoms Yoijm < Vaijm, (4,4)€Q, a=1,2.
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From here and (5.85), it follows that the partial derivatives satisfy (5.74), (5.82). From
here for m =1, (5.74), (5.82), taking into account that Wy ;50 = 0, (4, j) € ﬁh, a=1,2,
and using (5.72), we conclude that

w 741
L= 1+7¢

Wi, Wm = Max HWa,mHQh-

From here, by the assumption on 7 in (5.76) and w; > 0, we conclude that w; = 0. On
the second time level m = 2, taking into account that w; = 0, by the similar manner,
we conclude that we = 0. Now, by induction on m > 1, we can prove that w,, = 0,

m > 1. Thus, we prove the theorem. O

5.6 Comparison of convergence of the point monotone Ja-

cobi and Gauss—Seidel methods

5.6.1 Quasi-monotone nondecreasing case

The following theorem shows that the point monotone Gauss—Seidel method with n =1

in (5.43) converges faster than the point monotone Jacobi method with n = 0 in (5.43).

Theorem 5.6.1. Let (ﬁl,ij,m,ﬁg,ij,m) and (ﬁ17ij7m,ﬁ27ij7m), (i,j) € ﬁh, m > 1, be
ordered upper and lower solutions (5.42) to (5.41), the functions fo, a = 1,2, in (5.1)
satisfy (5.19) and (5.20). Suppose that the sequences {(Uo(énl)]m)J} and {(U;TZ)Jm)GS},
(1,7) € ﬁh, a=1,2, m > 1, are generated by the point monotone Jacobi method with
n =0 in (5.43) and by the point monotone Gauss—Seidel method with n =1 in (5.43),

where (TS, )o= (Tigm)es = Usj and (US),) 5= (U )as = Usjm. (i) € O, m>1

17,m 13,m =1ij,m =1j,m
Then

O™ N, < W™ Vs < (T Vs < (T Vs (6,5) €@, a=1,2 m>1

a,ij,m ~a,ij,m a,ij,m a,ij,m
(5.87)

a7ij7m 7a7ij7m 7a7ij7m

Proof. Letting E(”) = (U(n) )cs - (U(n) )J, (i,7) € ﬁh, m>1, a=1,2, from
(5.43) and using notation (5.21), we have
(dasijom + 7 + ca,ij,m)<w$i)j,m) =
n n—1 n—1
Maijm <(Q((1,z)—1,j,m)cs - (Q((x,i—l),j,m)-]) + aiimW Sl o
n n—1 n—1
+ Nbaijm ((Qfx,i),jfl,m)cs - (Q(oz,i,jll,m)J> + Qoo
n—1 n—1 n—1 n—1
+ Taijm <(Q§v,ij,n)z)’gr(x’,ij,2n))cs — Laijm <(Q£v,ij,n)z)7gr()/,ij,2n)>J
+77t ((Qa,ij,m—l)(;s - (Qa,z'j,m—1);l) . (i,5) € Qf,
w =0, (i,) €0, m>1, Wo,=0, (i,j)eQ", a=12

a7ij7m
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;17,1 —Q,1],m

From here and taking into account that (Q(nfl)> < (U("?. ) , (i,7) € ﬁh, a=1,2,
Gs Gs

m > 1, we obtain

(da,ij,m + Til + Ca7ij7m)w¢(£2j,m > nlayijymwt(lnz 11)] m W(il’_l),j,m (588)
+ Uba i mW(n l) (n—l)

(n—1) (n—1)
+ Fa,ij,m ((Qa,ij,m)’ Qo/,ij,m)) s
(n—1) (n—1)
- Fa,ij,m <(Qa,ij,m)’ Qa’,ij,m)>J
+7t ((Qoz,ij,mfl)(‘rs - (ga,ij,mfl)il) ., (i,5) € Q"
W(n) = Oa (Za]) € thv m > 1, Wa,ij,(] =0, (Z’]) € ﬁh’ o= 17 2.

—a,tj,m

L - (0) (0) .\ ah
Taking into account that n = 0,1, (5.41b) and (U, ;;.n)es = (Upim)a: (6:5) € 7,

a=1,2 m>1, forn =1 in (5.88), on the first time level m = 1, by using the

maximum principle in Lemma 5.4.1, we conclude that

wl >0, (i,j)eQ", a=1,2

— ’L],

Similarly, from here, n = 0,1, (5.41b) and (5.88) with n = 2, by using (5.22) and
Lemma 5.4.1, we obtain that W >0, (i,7) € ﬁh, a = 1,2. By induction on n,

—a,ij,1
n > 1, we can prove that I/V((fz)]1 >0, (1, )eﬁh a=1,2.
On the second time level m = 2, taking into account that W& ZJ o=0and W, ;1 >

0, (i,7) € Q" , a=1,2 from (5.41b) and (5.22), by using Lemma (5.4.1), we have
wh  >o, (i,j) e Q" =
ij,2 i,7) €2, a=1,2.

Similarly, from here and (5.88) with n = 2, by using (5.31), on the second time level
m = 2, we obtain that E&%ng >0, (i,j) € ﬁh, a = 1,2. By induction on n, we can
prove that W&nzj 5 >0, (i,7) € ﬁh, a=1,2.

By induction on m > 1, we can prove that

w20, () e, a=12 m>1.

a’Z])m

Thus, we prove (5.87) for the case of lower solutions. By the same manner, we can

prove (5.87) for the case of upper solutions. O

5.6.2 Quasi-monotone nonincreasing case

Theorem 5.6.2. Let (ﬁl,ij,m,ﬁZij,m) and (ﬁl,ij,mvﬁZ,ij,m): (Z,j) € ﬁh, m > 1, be
ordered upper and lower solutions (5.56) to (5.41). Suppose that the functions f,,
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1,i3,m =2/ij,m
(W) )5 O ) 5} and { O )as (S )as}, { U m)es. (T8 2mas ) (1,) €

Q, a=1,2, m > 1, are, respectively, the sequences generated by the point monotone

a = 1,2, in (5.1) satisfy (5.19) and (5.30). The sequences {(U(n) )7, (U(n) )J},

Jacobi method with n = 0 in (5.57), and the point monotone Gauss—Seidel method with
n=11n (557), where (U(O) Vs = (U(O) )es = ﬁa%m and (U(O) Vs = (U(O) )es =

a,ij,m a,ij,m ~a,ij,m a,t,m

~

Ua,ijm, (1,7) € Qh, a=1,2, m > 1. Then the inequalities in (5.87) hold true.
Proof. The proof of the theorem repeats the proof of Theorem 5.6.1, where I'y ;jm,

. _=h . .
1€Q,a=1,2, m>1, are now written in the form

Tavijim (U2 U )ZCa,ij,mU(n) —fa,z'j,m(U(n) U™,

avigoms Yot ijm i, m avigims Yot ijm
(n)  77(n) _ (n) (n)y  75(n)
Laijm(Usijm> U ) = CaijmU — faijm(U U ),

a’ij,m =a,ij,m ~a,ijm’ o ij,m

and the monotone properties (5.31) for I'q ijm, (i,7) € ﬁh, a=1,2, m > 1, are in

use. UJ

5.7 Convergence analysis of the point monotone iterative

methods

5.7.1 Quasi-monotone nondecreasing case

Instead of (5.74), we now assume that for m > 1,

dm S faﬂ%m( 57’;]’77“ 271J’m) S Ca,ij,m» Ua,ij,m S <UM7 Um>, (27]) S Qh, a = 17 27
(6%
(5.89)

where gy, is defined in (5.76).

Remark 5.7.1. The assumption 0fo/0uq > qm > 0 in (5.89) can always be obtained
by a change of variables. Indeed, we introduce the functions z(z,y,t) = e Mug(x,y,t),

a =1,2, where X is a constant. Now, z = (21, 22) satisfies (5.1) with
.]7(1 = Azq +€_)\tfa(m7yut7e)\tza)7 a=1,2

instead of fo, a = 1,2, and we have

9fa Ofa  0fa  Ofa ,
024 AT oug’  Ozy  Ouy’ o Fa aa ’

Thus, if X > maxy,>1(gm, |¢,,|), where ¢ and ¢, are defined in (5.76), then from here
and (5.74), we conclude that ﬁﬁ/aza, a=1,2, satisfy (5.89).
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A stopping test for the point monotone iterative methods (5.43) is chosen in the
form

]Ca,ij,m (U(n)

a,ij3,m’

max [ max
(

g (n)
Ot:l,Z i,j)GQh UO&,Z],m—l, Uo/7ij7m)’:| S 57 (590)

(n) (n)
where Koaijm(Uy i m» Uasijm—1, Uyt i m

), (i,5) € Q" o/ #a, a,a/ =1,2, m > 1, are
residuals of the nonlinear difference scheme (5.11), Ugfi)jm’ (i,7) € Q" a=1,2,m>1,
are generated by (5.43), and § is a prescribed accuracy. On each time level m > 1,
we set up Uy ijm = U&’ﬁn, (i,5) € ﬁh, a =1,2, m > 1, such that n,, is the minimal
number of iterations subject to (5.90).

Theorem 5.7.2. Suppose that the assumptions in Theorem 5.5.3 are satisfied. Then
for the sequences {UO(ZLZ)Jm}, (i,7) € ﬁh, a = 1,2, m > 1, generated by the point

monotone iterative methods (5.43), (5.90), we have the estimate

max max [Uam = Uamligr < T9, (5.91)

(i,j) e, a=1,2,

m > 1, are the unique solutions to the nonlinear difference scheme (5.11) and T is the

where Uq ijm = ynm) (i,§) € ﬁh, a=1,2, m>1, and U*

ayig,m’ a,ij,m’

final time.

(i,/) €', a=1,2,m > 1, from (5.11), by

using the mean-value theorem (5.16), we obtain

Proof. Letting Wq ijm = Ua,ijm — Uy

a,tg,m?

(Aijom + 7+ (Faijom (Quijims Uat i) e ) Werigm =

— (farijm Uz ijm» Yorijim))ug Wer ijm + Kevijm (Uasijoms Uaigm—1, Ut ijm)
+ flwa,ij,m_l,

(1,j) € Q" o #a, o,d =1,2,

Waijm =0, (4,7) €0, m=>1, Waijo=0, (i,j)€ 9", a=1,2,

.o =h .
where Qo ijm and Yo ijm, (i,7) € @, a =1,2, m > 1, lie between U} ;;

(i,5) € ﬁh, a=1,2, m > 1, and the partial derivatives satisfy (5.75) and (5.89). From
here, (5.75) and (5.89), by using (5.72), we obtain that

and Ua,ij,ma

1
Wiy, < (Qmwm +d+ 7'7171)m—1) y  Wm = maX2 HWa,mHQha m > 1.

T+ gm a=1,
Solving this inequality for w,,, we have
Wy, < 70 + W1, m > 1. (5.92)

Since wg = 0, for m = 1 in (5.92), we have w; < 76. For m = 2, it follows that
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wy < §(T + 7), and by induction on m > 1, we can prove that

m
Wiy, < (527‘.
=1

Since > ", 7 < T, we prove (5.91). O

Theorem 5.7.3. Let the assumptions in Theorem 5.7.2 be satisfied. Then for the
sequence of solutions {Ug?jm}, (1,7) € ﬁh, a = 1,2, m > 1, generated by (5.43),

(5.90), the following estimate holds

max max [|Uam — ta,mllgn < T(0 + max Ep), (5.93)

E, = ;2314?(2 HEa,muﬁhv m > 1,

where Uy ijm = Uo%j”zn, (1,7) € ﬁh, a=1,2,m>1,u}(x,y,t), « =1,2, are the exact
solutions to (5.1), and Eq ijm, (1,7) € ﬁh, a=1,2, m > 1, are the truncation errors

of the exact solutions on the nonlinear difference scheme (5.11).

Proof. We denote Vo ijm = UZ —ut (i,j) € ﬁh, a=1,2,m>1, where U*

a,ij,m a,ij,m> o,ij,m>
(1,7) € ﬁh, a =1,2, m > 1, are the unique solutions of the nonlinear difference scheme
(5.11). From (5.11), by using the mean-value theorem (5.16), we obtain that

(Aaijm + 7"+ (fasijm (Quasijim: Usr i m)ua ) Varsiom =
1 ..
- (fa,ij,m(u;ij,ma Ya’,ij,m))ua/ Vo/,ij,m + ;Vo/,ij,m—l - Ea,ij,my (27]) € Qh)
o o —=h
Vasijm =0, (i,§) € 09", Vaio=0, (i,j) e,

/ /
o Fa, a,a =1,2,

where Qg ijm and Yy jjm lie between U and u* (i,7) € ﬁh, a=1,2,m>1.

a7ij7m a7ij7m’

From here, (5.75), (5.89) and using (5.72), it follows that

1
U, <

< o mtm 7 o+ B), o = 3 [Vagnllgr, > 1,

Solving for v,,, we obtain

U < U1 + TEp.

From here, taking into account that vg = 0, by induction on m > 1, we obtain that

m
VU < ZTEl.
=1
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Since Y )", 7 < T, where T is the final time, we have

Um < Tmax B, m>1. (5.94)

m>1

We now estimate the left hand side in (5.93) as follows
1Ua,m £ U m = U mllgr < 1Uam = Ugmllgr + 1Uam — tamlign-
From here, (5.91) and (5.94), we prove (5.93). O

5.7.2 Quasi-monotone nonincreasing case

Stopping tests for the sequences {Uﬁ’gm, U. énz)]m} and {Qﬁ)jmﬁ%m}, (i,7) € ﬁh,
m > 1, generated by the point monotone iterative methods (5.57), are chosen in the

forms

7=(n) 7= (n)
max { max  K1ijm (U1 3jms Utijm—1,Us i )3

(i,5)eQn
(7). N (n) }
d?)?éh Koaigom (U ijm: QQ,U,m—hQZ,i]’,m) <4, (5.95a)
max { (ﬁﬁi’éh K1,ijom (U3 55 ms Ud ijm—1 Uijm)i

max Koijm(U" Ug,ij,m,l,ﬁgf?jﬁm)}gé, (5.95b)

Y14i5.mo
(i,5)eQn I

Ua,ijm—1, vl

o jig,m

where ’Ca,ij,m(Uo(Z)j,W ), (i,5) € Q" o/ #a, a,a/ =1,2, m > 1, are
residuals of the nonlinear difference scheme (5.41), which are defined in (5.42), and §

is a prescribed accuracy. On each time level m > 1, we set up

U\ 5im)-

1,i5,m

(Utijom:Usijm) = (U(nm) Uty (Uy.ijms Uzijm) = w)

1,i5,m> Y1 ij,m Y1,ij,m>

(i) € 9", m =1,
such that n,, is the minimal number of iterations subject to (5.95).

Theorem 5.7.4. Let ﬁa,ij,m and ﬁaﬂ-j,m, (i,5) € ﬁh, a=1,2, m > 1, be ordered upper
and lower solutions (5.56) to (5.41). Suppose that the functions f,, o = 1,2, satisfy
(5.82) and (5.89), and assumption (5.76) on the time step T holds. Then for sequences
{ﬁ%)j’m,ggt%m} and {Q%)j’m,ﬁg?j’m}, (i,5) € Qh, m > 1, generated by (5.57), (5.95)
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with

—(0 0 ~ -~ 0 ==(0 ~ ~
(U( ) U ) = (U1,ij,m> U2,ijim) (U( ) Ué,i)j,m) = (U1,ij,m> U2,ijm)s

1Lig,m> =2245,m =1,55,m>

(i,/) Q" m>1,
the following estimates hold

max {max [ T1m = Ut i 1Wam — Usillge | } < 75, (5.96)

m>1
mase {max U = Uil [02m = Ul |} < 75,

N oL .\ _=h
where Uqijm = U(SZ”LL, (,J) €, a=12m>1, and Uy ;; .. (i,7) € X", a=1,2,
m > 1, are the unique solutions to the nonlinear difference scheme (5.41).

Proof. We consider the case of the sequence {Uﬁ)].’m,(] (n) b (i,9) € ﬁh, m > 1,

Y2,ij,m
that is, the point monotone iterative methods (5.57), (5.95) generate the numerical
. o .. =h . =
solutions (Ul,ij,maQQ,ij,m): (t,7) € @, m > 1. Letting Wiijm = Utijm — Uf’ij’m,
Wasijm = Usijm — Us ijms (i57) € ﬁh, m > 1, from (5.11), by using the mean-value

theorem (5.16), we obtain

(Aijm + 4 (fl,ij,m(Ql,ij,maQ27ijym))u1) Wiijm =

— (fLijm(UT ij.m> Yo,ijm ) )us Wosigm + K,igm (U ,i5m, Utijum—1,Us ijm)
+ 7 Wijme1,

(Az,ijom + 71+ (Fo,ijm (Utim, @2,ijm) Juz ) Woijm =

— (Foiim (Y1,i3.m: U3 im))us Wigom + K2,i5,m (U ijms Uz ijim—1: Uz ijm)
+ 771W27ij7m_1, (i,§) € Q. om >,

* TT *
Ulijm < Quijm, Y1,ijm < Utijms  Usjjm < Q2ijms Y2,i5m < Usjjm.

where the partial derivatives satisfy (5.82) and (5.89). From here, (5.82), (5.89) and
using (5.72), we obtain

1
Wy, <

S g @mtm 0 T )y win = max [Wognllgn,  m = 1.

Solving this inequality for w,,, we have

Wy < 76 + Wip—1, m > 1.
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From here, taking into account that wg = 0, by induction on m > 1, we obtain that

m
Wy < 527.
=1

Since Y %, 7 < T, we prove the theorem for the sequence {Ul U mo anl)j mt (1,7) € ﬁh,

m > 1. The case of the sequence {U1 ij.m 21] m} ,j) € Q" , m > 1, is proved in a

similar manner. O

Theorem 5.7.5. Let the assumptions in Theorem 5.7.4 be satisfied. Then for sequences
.. —=h

{Ul i mo 2Z]m} and {U1 Z]m,UgZ§7m}, (i,7) € Q°, m > 1, generated by (5.57), (5.95)

with

(0 0 ~ P 0 —(0 o ~

(Ug,i)j,m?gg,z')j,m) = (Urijims Uz,ijm), (Qg,i)j,mv Uy z)J m) = (Utijm, Uz,ijm),
(i) €@, m>1,

the following estimates hold

mascma | [0 = g | Uz = 3l | < 76 + max By,

mascmax |0, — il [Tz = 3l | < 76+ max ),
E, = _% HEoemH shy, m>1,
where w)(x,y,t), o = 1,2, are the exact solutions to (5.1), and Eqijm, (i,7) € ﬁh,

a = 1,2, m > 1, are the truncation errors of the exact solutions on the nonlinear

difference scheme (5.41).

Proof. The proof of this theorem repeats the proof of Theorem 5.7.3. O

5.8 Construction of initial upper and lower solutions

We discuss constructions of upper and lower solutions which are used as initial iterations
in the monotone iterative methods (5.43) and (5.57).
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5.8.1 Quasi-monotone nondecreasing case
5.8.1.1 Bounded reaction functions

We assume that functions f,, go and ¥, a = 1,2, in (5.1) satisfy the conditions

fa(xay7t70) S 07 _Ka S fa(w,y,t,u), Ua(l‘,y,t) 2 07 ($7y7t) € @T? (597)
ga(l"yat) 2 07 (l’,y,t) € aQTa T/Ja(%y) 2 O> ($7y) € wa Q= 1727

where K, = const > 0, & = 1,2, and 0 is the zero vector (0,0). We introduce the mesh
functions
Usijm =0, (i) €Q", a=12 m>1, (5.98)

and the mesh functions (7&7¢j7m, (i,4) € ﬁh, a=1,2, m > 1, which are solutions of the

linear problems

AaijmUsgijm =T~ Vaujm-1 + Ko, (i,5) € Q", (5.99)
~ .o =~ .o —=h

Ua,ij,m = Ga,ijm, (7/7j) € 8§2h7 Uoc,ij,o = wocﬂja (7’7.7) € ) o = 1) 27 m > ]-7
where the difference operators Aq ijm, (4,7) € Q" o = 1,2, m > 1, are defined
in (5.13). We show that under assumptions (5.97), ﬁa,ij,m and ﬁaﬂ-j,m, (i,7) € ﬁh,
a =1,2, m > 1, are ordered upper and lower solutions (5.42) to (5.11). From (5.97)—
(5.99), by using Lemma 5.4.1, we conclude that ﬁaﬁ-j’l >0, (i,j) € ﬁh, a = 1,2,

and

=~ ~ . _ah
0= Ua,ij,l < Ua,ij,l, (Z,]) €N , a=12

By induction on m, we can prove that

0= ﬁa7ij7m < ﬁa,ij,ma (’L,]) € ﬁh, o = 1,2, m > 1.

By using (5.99), the residuals of the difference equations (5.11) on ﬁa’ij,m, (i,7) € Q,

a = 1,2, can be presented in the form

lca’ij»m(Uavijvm’ Uaijm—1, Ua'ij',m) =Ko+ fa,ij,m(Ua,ij,ma Uo/,i])m)a
(i7j)€Qh7 CY/#Oé, a>a/:1727 m21

Using (5.97), we obtain that

.. h
Ka,ijmUasijms Uaijm—1,Uar ijm) =0, (4,5) € Q", o #a, a,d' =12, m>1.
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From here and taking into account that

~ ~ ~

.. h
,Ca,ij,m(Ua,ij,m7 Ua,ij,m—ly Ua’,ij,m) < 07 (17]) € ) O/ 7é «, «, O/ = 17 27 m > 17

where ﬁa,mm, (1,7) € ﬁh, a=1,2,m > 1, from (5.98), we conclude that Ua,ij,m from
(5.98) and ﬁaﬂ-jm, (i,5) € ﬁh, a = 1,2, m > 1, from (5.99) are ordered lower and
upper solutions (5.42) to (5.11).

5.8.1.2 Constant upper and lower solutions

We now assume that functions fy, go and 9., a = 1,2, in (5.1) satisfy the conditions

falz,y,t,0) <0, folz,y,t,K) >0, unlz,y,t)>0, (z,9,t)€ Qp, (5.100)
Oﬁga(l‘,y,t) SKO&? ($7yat) GaQTv 0§¢a($7y) gKav (:an) € w,

where K = (K1, K3) and K,, o = 1,2, are positive constants. On each time level

m > 1, we introduce the constant mesh functions

Uniim = Koy, (1,5) €Q", a=1,2, m>1L (5.101)

From (5.98) and (5.101), on each time level m > 1, we have

~ ~ o~ ~ ~ ~

Ka,ijm(Uaijyms Uayijm—1,Uar ijm) =0, Kaijm(Uaijms Uaijim—1,Uat ijm) = 0,

(i,j)GQh, o #a, ad =12 m>1

~

Thus, under assumptions (5.100), Uq,ijm, (4,7) € ﬁh, a=1,2,m>1, from (5.98) and
ﬁa,ij,m, (1,7) € ﬁh, a=1,2,m > 1, from (5.101) are ordered lower and upper solutions
(5.42) to (5.11).

5.8.2 Quasi-monotone nonincreasing case

5.8.2.1 Bounded reaction functions

We assume that functions f,, go and ¥, a = 1,2, in (5.1) satisfy the conditions

foc(x7y)tu Oonuo/) S 07 _Koc S foz(x)y7t7 uaaoa’)a uoc(xvyvt) Z 07 (5102)
($7y7t) € @T; ga($7y7t) 2 07 (xay?t) € 8QT7 ’l/}OJ(xvy) Z 07 (xay) € w7

where K, = const > 0, a = 1, 2, the notation 0., a = 1,2, means that u, =0, a = 1,2,
and notation (5.10) is in use.

We show that under assumptions (5.102), Uy ijm and Uq ijm, (i,7) € ﬁh, a=1,2,

m > 1, from, respectively, (5.98) and (5.99) are ordered lower and upper solutions
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(5.56) to (5.11). From (5.98), (5.99) and (5.102), by using Lemma 5.4.1, we conclude
that ﬁa,iﬂ >0, a=1,2, and

=5 =~ .o —h
0= Ua,ij,l < Ua,ij,l, (Z,]) €N , a=12

By induction on m > 1, we can prove that

0= Uaijom < Unijm, (1,5) €Q", a=12 m>1. (5.103)

Consider the case of the sequence {Uﬁ’zm, ) b, (i,9) € ﬁh, m > 1, where

72’ij7m

(U(O) vl )= (Uvijms Uzijm),  (6,5) € a', m>1.

17ij7m’ ini]’vm

By using (5.99), the residual of the first difference equation in (5.11) on (ﬁl,ijym, 6271‘3'7”1),
(1,7) € ﬁh, m > 1, can be presented in the form

Kl,ij,m(ﬁl,ij,ma ﬁl,z’j,m—l, [72,ij,m) =K+ f1,z‘j,m([71,ij,m, ﬁ2,ij,m); (i,7) € Q" m>1.
From here, (5.98) and (5.102), we conclude that
,Cl,ij,m(ﬁl,ij,ma ﬁl,ij,mfla ﬁ2,ij,m) >0, (i,5)eQ", m>1

From (5.98), (5.102) and (5.103), for the residual of the second difference equation in
(5.11) on ((71,ij,m, ﬁQ’Z‘j’m), (i,7) € ﬁh, m > 1, it follows the inequalities

K2.ijm(Utijm, Uzijim—1, Ugijm) <0, (i,7) € Q" m > 1.
.. ~ ~ .\ =h
Similarly, for the case (U1ijm,U2,ijm), (4,7) € &, m > 1, we have

Kiijm(Utigms Utijm—1,U2,i5m) <0, Koijm(Utijm: U2,ijm—1, Uzijm) > 0,

(i,7) € Q" m>1.

Thus, ﬁa,ij,m and ﬁaﬂ-j,m, (i,j) € ﬁh, a =1,2, m > 1, from, respectively, (5.98) and
(5.99) are ordered lower and upper solutions (5.56) to (5.11).
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5.8.2.2 Constant upper and lower solutions

We now assume that functions f, go and ¥, a = 1,2, in (5.1) satisfy the conditions

fa(z,y,t,00,us) <0,  folz,y,t, Ka,0u0) >0, un(z,y,t) >0, (5.104)
(xvyat) e@T? Osga(x7yvt) SKCH (xay7t) GaQT,
nga(:u,y) SKCH (:an) ewv

where K, = const > 0, « = 1,2, and notation (5.10) is in use.

We show that under assumptions (5.104), ﬁaMm and ﬁa@m, (i,4) € ﬁh, a=1,2,
m > 1, from, respectively, (5.98) and (5.101) are ordered lower and upper solutions
(5.56) to (5.11). From (5.98), (5.101) and (5.104), for the case of (ﬁlji%m,ﬁg,m’m),
(i,§) € ﬁh, a=1,2, m>1, we have

K1ijm (Ut igms Utijom—1,U2,i5m) =0, Koijm(Utijms Uzijim—1, U2ijm) < 0,

(i,7) € Q" m>1.
Similarly, for the case (ﬁl,ij,m, ﬁz,ij,m), (i,7) € ﬁh, a=1,2, m>1, we have

K1ijm(Utigms Utijom—1,U2,i5m) <0, Koijm(Utijms Uijim—1, U2ijm) > 0,

(i,j) € Q" m>1.

Thus, under assumptions (5.104), ﬁa,ij,m and ﬁa,zj,m, (i,5) € ﬁh, a=12 m>1,
from, respectively, (5.98) and (5.101) are ordered lower and upper solutions (5.56) to
(5.11).

5.9 Numerical experiments

We present numerical experiments, implemented by the point monotone Jacobi and
Gauss-Seidel methods, for test problems with quasi-monotone nondecreasing (5.20) and
quasi-monotone nonincreasing (5.30) reaction functions f,, o = 1,2, in (5.1). Exact
solutions of our test problems are unknown, and numerical solutions are compared to
corresponding reference solutions. In our tests, we choose the reference solutions with
N =256 and 6 = 107° in the stopping tests (5.90) and (5.95). The reference solutions

are calculated by the corresponding block method.

5.9.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions
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(5.20), we consider the Volterra-Lotka cooperating model from Section 5.3.1.1, where

Lata = Do(Ua,ze + Uayy), @ = 1,2, in (5.1). The reaction functions are given by
fi(ur,ug) = —ur (1 —up +aruz),  fo(ur,uz) = —ua(l + aguy — uz), (5.105)

where uq > 0, a = 1,2, are the populations of two species with a symbiotic relationship
and aq, @ = 1,2, are positive constants which describe the interaction of the two species.

As ordered upper and lower solutions, we choose the pairs (Uy, Us) = (M, My) and
(U1,Us) = (0,0). Then all the assumptions in (5.100) with M; = 3 and M, = 2, are
satisfied. From here, in the sector (0, M), M = (M, Ms), we conclude the inequalities

0 0
i:2’LL1—CL1’LL2—1§2]\41:6, —i:alulz(),
ouq Oua

0 0
ﬁZQUQ*CLQ’LH*lSQMQ:Zl, *QZCLQUQZO.
Ous ouq

Thus, fo, o = 1,2, satisfy (5.19) and (5.20) with ¢; = 6 and ¢ = 4. We choose
the initial iteration (ﬁl,ijv ﬁg}ij) = (3,2), (i,4) € Q" and calculate sequences of upper
solutions generated by (5.43), (5.90). We take D1 = 0.7, Do = 1, a1 = 0.5, ag = 1

9oz, y,t) =0, (x,y,t) € 0Qr, a = 1,2, and ¢ (z,y) =1, (z,y) € 0, a = 1,2, in (5.1).

In Table 5.1, for different values of N, T' = 2 and 7 = 0.01, we present average
numbers of iterations ng per a time step and corresponding CPU times for the point
monotone methods (5.43). From these results, we conclude that the point monotone
Gauss-Seidel method converges faster than the point monotone Jacobi methods, which
confirms Theorem 5.6.1; the point monotone Gauss—Seidel method is approximately

twice as fast as the point monotone Jacobi method.

Table 5.1: Average numbers of iterations ns and CPU times for Test 1.

N 8 16 32 64 128
the point Jacobi method
ng 11.98 35.88 135.27 533.09 2958.82
CPU(s) 0.13 0.91 13.42 212.16 1287.19
the point Gauss-Seidel method
ng 6.99 19.50 69.27 268.10 1680.77
CPU(s) 0.12 0.56 7.34 115.24 733.43

Test 2
As the second test problem with quasi-monotone nondecreasing reaction functions
(5.20), we consider the time dependent case of Test 2 from Section 3.8.1 with the same

data sets and initial functions ¥, (x,y) = sin(wz) sin(wy), (z,y) € &, « = 1,2.
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We choose the initial iteration (ﬁl,ij» ﬁ27ij) = (1,1), (4,9) € Q" and calculate se-
quences of upper solutions generated by the point monotone iterative methods (5.43),
(5.90).

In Table 5.2, for different values of N, 7 = 0.5 and 7 = 0.01, we give average
numbers of iterations ns and execution (CPU) times for the point iterative methods
(5.43). From these results, we conclude that the point monotone Gauss-Seidel method
converges faster than the point monotone Jacobi method, which confirms Theorem
5.6.1; the point monotone Gauss—Seidel method is approximately twice as fast as the

point monotone Jacobi method.

Table 5.2: Average numbers of iterations ng and CPU times for Test 2.

N 8 16 32 64 128
the point Jacobi method
ng 7.62 17.36 52.80 193.92 752
CPU(s) 0.07 0.13 1.44 20.31 325.65

the point Gauss—Seidel method
ng 5.86 11.24 29.46 99.78 379.78
CPU(s) 0.06 0.09 0.82 11.26 173.81

5.9.2 Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions
(5.30), we consider the Belousov-Zhabotinskii reaction diffusion model which is pre-
sented in Section 5.3.2.1, where Louq = Do(Uazz + Uayy), @ = 1,2, in (5.1) and the

reaction functions are given by
f1 = —ul(a - bu1 — 01U2), f2 = 02U1UQ. (5.106)

where o,, @« = 1,2, a and b are positive constants. We choose the following boundary
and initial conditions g, (z,y) = 1, (z,y) € 0", V¥a(z,y) = 0, (z,y) € @, a = 1,2, in
(5.1).

The pairs (U145, Usij;) = (K1, K2) and (Uy.4;m, Ua.ijm) = (0,0), (3,5) € ", m > 1,

are ordered upper and lower solutions. Indeed, all the assumptions in (5.104) are
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satisfied. From here, on ((7 ,U), we conclude the inequalities

o R
qu,;]lm(Umj,m, Uzjijm) = 2bU1ijm + 01U2,ijm — @ < 20K1 + 01K>, (i,5) € @7,
O foii o o
faz’;];ﬂ(Umj,m, Usijm) = 02Ut ijm < 02Ky,  (i,7) € Q7
Of1 i s ol
B jc;%m(ULz‘j,m, Uz,ijm) = —01U1ijm <0, (i,7) € 2,
Uy
Ofoir .. ~h
B féfLNn(Ul,ij,m7 Uzijm) = —02U2ijm <0, (i,7) € Q"
1

Thus, fa, a = 1,2, satisfy (5.19) and (5.30) with ¢ ijm = 20K1 + 01K and ¢2jm =
09Ky, (i,7) € ﬁh, m > 1. We choose the initial iteration (ﬁlyij,m,ﬁgyij,m) = (K1,0),
%m_g?jm}, (i,j) € ﬁh, m > 1, generated
by (5.57), (5.95). We take Do =1, = 1,2,in (5.1),a=1,b=1land o, =1, a = 1,2,
in (5.106).

In Table 5.3, for different values of N, T'= 1 and 7 = 0.01, we give average numbers

(i,5) € Q" and calculate the sequence {U

of iterations ns and execution (CPU) times for the point monotone iterative methods
(5.57). From these results, we conclude that the point monotone Gauss-Seidel method
converges faster than the point monotone Jacobi method, which confirms Theorem
5.6.2; the point monotone Gauss—Seidel method is approximately twice as fast as the
point monotone Jacobi method.

In Figure 5.1, we show the convergence of numerical solutions, obtained by the
point Gauss-Seidel method with n = 1 in (5.57) and N = 64 to the reference solution
Nyep = 256, where the dashed line represents the numerical solution and the solid
blue line refers to the reference solution with respect to x and fixed value of y = 0.5.
In subgraph 5.1a, staring from the initial lower solution [72710 = 0, on the time level
t19p = 0.1, we show the convergence of the numerical lower solutions U. g,Ll)O atn = 2 and
n = 600 to the reference solution. Similarly, starting from the initial upper solution
ﬁmo = 1, on the time level t19 = 0.1, subgraph 5.1b shows the convergence of the

numerical upper solutions Ultll)o at n = 5 and n = 300 to the reference solution.

Table 5.3: Average numbers of iterations ns and CPU times for Test 3.

N 8 16 32 64 128
the point Jacobi method
ng 15.34 50.83 196.43 779.99 3115.91
CPU(s) 0.15 0.66 9.64  155.46 1612.87

the point Gauss—Seidel method

ng 9.21 27.16 100.04 391.93 1624.43
CPU(s) 0.08 0.37 5.19 80.32 741.89
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Figure 5.1: Convergence of lower and upper solutions to the reference solution for Test
3.

(a) Lower solutions. (b) Upper solutions.

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions
(5.30), we consider the time dependent case of Test 3 from Section 3.8.2 with the same
data sets and initial functions 1, (x,y) = sin(7z) sin(7y), (z,y) € @, a =1,2.

We choose the initial iteration ([7171‘9’7 fjg}ij) = (1,0), (i,7) € Q" and calculate se-
quences of upper solutions generated by the point monotone iterative method (5.57),
(5.95).

In Table 5.4, for different values of N, T" = 0.5 and 7 = 0.01, we give average
numbers of iterations ns and execution (CPU) times for the point iterative method
(5.57). From these results, we conclude that the point monotone Gauss-Seidel method
converges faster than the point monotone Jacobi method, which confirms Theorem
5.6.2; the point monotone Gauss—Seidel method is approximately twice as fast as the

point monotone Jacobi method.

Table 5.4: Average numbers of iterations ns and CPU times for Test 4.

N 8 16 32 64 128
the point Jacobi method
ng 21.14 74.58 287.66 1139.54 4547.02
CPU(s) 0.09 0.49 7.14 112.98  1889.27
the point Gauss—Seidel method
ng 12.70 39.66 146.32 572.46 2276.22
CPU(s) 0.07 0.27 3.77 57.85 942.17
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5.10 Conclusions to Chapter 5

Theoretical results

For solving nonlinear parabolic systems with quasi-monotone nondecreasing and
nonincreasing reaction functions, we construct and investigate monotone properties of
point Jacobi and point Gauss-Seidel iterative methods. The coupled system of non-
linear parabolic problems (5.1) is approximated by the nonlinear implicit difference
scheme, where for the spatial derivatives, the central difference approximations are in
use. For solving the nonlinear difference scheme (5.11) with quasi-monotone nonde-
creasing (5.20) and quasi-monotone nonincreasing (5.30) reaction functions, the point
Jacobi and point Gauss-Seidel iterative methods are constructed. In Theorems 5.4.3
and 5.4.5, on each time level, we prove that the sequences of upper and lower solutions,
generated by the point monotone iterative methods for problems with quasi-monotone
nondecreasing (5.20) and quasi-monotone nonincreasing (5.30) reaction functions, con-
verge monotonically. In Theorems 5.5.2 and 5.5.3, respectively, for quasi-monotone
nondecreasing and nonincreasing cases, we prove the existence and uniqueness of a so-
lution of the nonlinear difference scheme (5.11). Taking into account the fact that on
each time level, in general, the nonlinear discrete problems can be solved only inex-
actly, we introduce the stopping tests on each time level. By using the stopping test
(5.90) and (5.95), based on the norms of residuals, respectively, for the quasi-monotone
nondecreasing and nonincreasing cases, we prove that the numerical solution converges
to the unique solution of the nonlinear difference scheme and estimate the L, discrete-
norm of the error between the numerical and exact solutions of the nonlinear difference
scheme (5.11) in Theorems 5.7.2 and 5.7.3, and the error between the numerical solution
and the exact solution of the parabolic problem (5.1) in Theorems 5.7.4 and 5.7.5. We
prove that the point monotone Gauss-Seidel methods converge faster than the point
monotone Jacobi methods for the quasi-monotone nondecreasing and nonincreasing,
respectively, in Theorems 5.6.1 and 5.6.2. For quasi-monotone nondecreasing and non-
increasing cases, on each time level, we construct initial upper and lower solutions to
start the point monotone iterative methods.

Numerical results

The numerical sequences of upper and lower solutions, generated by the point
monotone iterative methods (5.43) and (5.57) with stopping tests (5.90) and (5.95),
respectively, for the quasi-monotone nondecreasing and nonincreasing cases, converge
monotonically. The point monotone Gauss-Seidel methods with n = 1 in (5.43) and
n = 11in (5.57) converge faster than the point monotone Jacobi methods with n = 0
in (5.43) and n = 0 in (5.57) which confirm, respectively, Theorems 5.6.1 and 5.6.2.
The point monotone Gauss-Seidel methods are approximately twice as fast as the point

monotone Jacobi methods.
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Chapter 6

Block Jacobi and Gauss-Seidel
methods for systems of parabolic

problems

This chapter deals with numerical methods for solving nonlinear parabolic systems by
block iterative methods based on the Jacobi and Gauss Seidel methods. The idea of
these methods is the decomposition technique which on each time level reduces a domain
into a series of nonoverlapping one dimensional intervals by slicing the domain into a
finite number of thin strips, and then solving a two-point boundary-value problem
for each strip by a standard computational scheme such as the Thomas algorithm
[48]. In the view of the method of upper and lower solutions, on each time level, two
monotone upper and lower sequences of solutions are constructed. Convergence rates
for the block monotone iterative methods are estimated in similar way as in Section
5.7. Constructions of initial upper and lower solutions are similar to Section 5.8. We
show that the sequences of solutions generated by the block monotone Gauss-Seidel

method converges faster than by the block monotone Jacobi method.

6.1 The block monotone Jacobi and Gauss-Seidel meth-
ods

—hz

On each time level m > 1, we decompose the mesh N Khy, from (5.9), into

vertical strips similar to (4.1).

For the nonlinear difference scheme (5.11), on each time level m > 1, we define
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vectors and diagonal matrices by

Unjim = Waitms - Uning—1,m)" s 1 €Z={0,1,...,N,}, (6.1)
Foiom(Utim, Usim) =

(faitm(Utitm, U2itm)s - - foi,Ny—1,m (Ui, Ny—1,ms UQ,i,Ny—l,m))Ta

Lo im = diag(lai1,m, - - - ,lw’Ny_l,m), Roim = diag(ra,i1m, - - - ,ra,iny_Lm),

i€eZ={1,2,....,N,— 1}, o #a, ad =12,
wa,i = (wa,i,0> C) wa,i,Ny)Tv 1€ jv o = 1’ 2.

where the following notation is in use

FrimUiim,Usim), a=1,

i€Z, m>1, (6.2)
Foim(Utim, Uzim), o =2,

Fa,z’,m(Ua,i,my Ua/,i,m) = {
with symmetry Fa,i,m(Ua,i,ma Ua’,i,m) = Fa,i,m(Ua’,ma Ua,i,m)- The terms La,l,mUa,O,m
and Ry n,—1Uq, N, m are included in the boundaries. Thus, the difference scheme (5.11),

(5.13) can be presented in the form

-
a,i,mUa,i,m - La,i,mUa,i—l,m - Ra,i,mUa,i+l,m = (63)
—1 . /

- Fa,Lm(Ua,i,m) Uo/,i,m) + 7 Ua,i,m—la (S I) «@ 7é a, o, = ]-a 27
T —1
avimUaim = (Aaim + 77 DUaim,

Uoc,i,m = Ga,im; 1€ 81-7 m > 17 Ua,i,O = wa,ia 1€ ja a = 17 27

where [ is the identity matrix, and the tridiagonal matrices Ay ;m, @ € Z, a = 1,2,
m > 1, are defined by

da,i,l,m —qa,il,m 0
_ba,i,Q,m da,i,2,m —qa,i2,m
Aoz,z’,m -
_boz,i,Ny—2,m da,i,Ny—2,m —qa,i,Ny—2,m
| 0 _ba,i,Ny—l,m da,i,Ny—l,m

The elements of the matrices Lqim and Raim, 1 € Z, o = 1,2, m > 1, contain the
coupling coefficients of a mesh point (7, j,m) to, respectively, mesh points (i — 1, 7, m)
and (i +1,5,m), j=1,2,...,N, — 1.

179



6.1.1 Quasi-monotone nondecreasing case

In the case of the quasi-monotone nondecreasing functions f,, a = 1,2, (5.20), we say

that mesh functions
(Utim:U2im)y  (Utim,Usim), €L, m>1,

are ordered upper and lower solutions of (6.3), if they satisfy the inequalities

Unim < Unim, i€, (6.4a)
,C (fj Aoc i,m—1, Ua’,i,m) <0< Ica,i,m(fja,am, ﬁa,i,m—l; ﬁa’,i,m)v (RS I, (64b)
,C (Ua,i,mv Ua,i,m—lv Ua’,i,m) A; ¥ mUa,i,m - La,i,mUa,i—l,m - Ra,i,mUa,i—l-l,m

+ Fa,i,m(Ua,i,my Ua’,i,m) - T_an,i,m—ly
o Aa, a,d =1,2,
Ua,i,m < Goa,i,m < Ua,i,ma 1€0L, m>1, Ua,i,O < 7#oz,i < Ua,i,Oa 1€ fa a=1,2,
(6.4c)

where notation (6.2) is in use. On each time level m > 1, for a given pair of ordered

upper and lower solutions (ﬁl,im, [727i7m), (Ul,i,my ﬁz’i’m), i € Z, m > 1, we define the

sectors
(fjmy ﬁm> = {Ua,z,m ﬁa,z,m S Ua,i,m S Noz,z,my (S f, o = 17 27 m Z 1} .

(6.5)

Remark 6.1.1. Similar to Remark 5.3.3 from Chapter 5, we state the mean-value
theorem for vector-valued mesh functions. Assume that fo(x,y,t, ue, uar), (x,y,t) €

Qr, o/ #a, a,a’ = 1,2, are smooth functions, then we have

FoimUaim, Uatim) — Faim(Vayim, Uat im) = (6.6)
(Faim(Qayiyms Uo/,i,m))ua Wa,im — Vayimls

FoimUaim,Ustim) — Faiim(Uaim, Varim) =

(FaimUasim, Yarim)),  Uarim — Variml,

Uy

where Qaim and Yo im lie between Uy im and Vo im, i € Z, aa=1,2, m>1, and

notation (6.2) is in use.
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The notation (Fa,im)u, and (Fa,im)u,, stands for the diagonal matrices

(Fa,i,m(Qa,i,ma Ua’,i,m))ua = (67)
diag ((fa,i,l,m(Qa,i,l,ma Ua’,i,m))ua oo (fanioNy—1m (Qai,Ny—1,m> Ua’,i,Ny—l,m))ua) ,
(Fa,i,m(Ua,i,mv Ya’,i,m))ua/

diag ((fa,i,l,m(Ua,i,l,ma Ya’,i,m))ua, ) (fa,i,Ny—l,m(Ua,i,Ny—l,ma Yo/,i,Ny—l,m))ua,> .

We rewrite (5.21) in the vector form

Fa,i,m(Ua,i,mp Uo/,i,m) = Coa,i,mUa,i,m - Fa,i,m(Ua,i7ma Ua’,i,m)v (68)

. . T / /
Ca,i,m = dlag(ca,z‘,l,m7 v )ca,i,Nyfl,m)a (S Ia « 7é a, @, = ]-7 27 m > 17

where cqijm, (i,]) € ﬁh, a = 1,2, m > 1, are nonnegative bounded functions, and
notation (6.2) is in use. We give a monotone property of I'aim(Ua,im: Ua’im), @ € Z,
o #a,a,0d =1,2, m>1.

Lemma 6.1.2. Suppose that (U1 im,U2,ijm) and (Viim,Vo,im), (4,7) € ﬁh, m > 1,
are two vector functions in the sector <l7m, ﬁm) from (5.18), such that Uy im > Vaim,
(i,7) € ﬁh, a=1,2, m>1, and (5.19), (5.20) are satisfied. Then

Fa,@m(Ua,i,n’w Ua’,i,m) Z Fa,i,m(va,i,my Va’,i,m): (RS T, O/ 7& a, «, O/ = 17 27 m 2 1.
(6.9)

Proof. From (6.8),

Fa,i,m(Ua,i,ma Ua K m) Foe,z,m(voc,z,ma Va’ 7 m) = Ca i,m(Ua,i,m - Va,i,m)
= [Faim(Uaim, Ut im) = Faim (Vasim, Uat im )]
- [Fa,i,m(va,i,m; o ,z,m) Fa,z m(Va,i,mv o’ i m)]

Using the mean-value theorem (6.6), we have

Fa,i,m(Ua,i,m7 Ua/,i,m) - Fa,i,m(Va,i,m7 Va’,i,m) =
(Ca,i,m - (Fa,i,m)ua)(Ua,i,m - Va,i,m) - (Fa,i,m)ua/(Ua/,i,m - Vo/,i,m)a

where (Foim)u, and (Fa,im)u,, are defined in (6.7). From here, (5.19), (5.20) and the

assumptions of the lemma that Uy im > Vaim, ¢ € Z, o= 1,2, m > 1, we conclude

(6.9). O

Based on the method of upper and lower solutions, we now present the block Jacobi

and block Gauss—Seidel methods for the nonlinear difference scheme (6.3) when the
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reaction functions f,, o = 1,2, are quasi—monotone nondecreasing (5.20). On each
LWieI, a=1,2,m>1,
solutions are calculated by the following block Jacobi and block Gauss-Seidel iterative
methods:

time level t,,, m > 1, the upper {Ua ; m} and lower {U

azm

(Agz i,m + Ca,i,m)Z(n‘) - nLa,i,mZ(n')

a,i—1m

~Kavim (U(nfl) Unim—1, U(nfl)) ’

a,i,m a,i,m ol im
i€, od#a, a,ad =12 (6.10)
m — U —1,
zM = ¢ Jeim T Baimr T i€dT, m>1,
tAS) ()7 n > ,

azO wau iET, Ua,i,m:U(nm) a=1,2,

where Ko im (Uéﬁ;}b),Ua,i,m,l,Uéﬁ;?g), o # a, a,d = 1,2, m > 1, are defined in
(6.4), 0 is a zero column vector with N, — 1 components and Up im, i € Z, a = 1,2,
m > 1, are the approximate solutions on time level m > 1, where n,, is a number of
iterations on time level m > 1. For n = 0 and n = 1, we have, respectively, the block

Jacobi and block Gauss—Seidel methods.

Remark 6.1.3. For quasi-monotone nondecreasing functions (5.20), upper and lower
solutions are independent, hence, by using (6.10), we calculate either the sequence
{ng),ﬁgz)}, i € T or the sequence {ng?,ggn.)}, i€l

5

Remark 6.1.4. Basic advantages of the block Jacobi iterative method with n = 0 in
(6.10) and the block Gauss—Seidel method with n =1 in (6.10), are that on each time
level m > 1, the Thomas algorithm can be used for solving each subsystem («, i), i € Z,
a=1,2, as in the case of elliptic systems with quasi-monotone nondecreasing reaction

functions, which are indicated in Remark 4.1.6.

Theorem 6.1.5. Let (ﬁ17i7m,l727i7m) and (ﬁl,i,m,ﬁg,i7m), i € I, m > 1, be ordered
upper and lower solutions (6.4) to (6.3). Suppose that the functions fa, a =1,2,
(5.1) satisfy (5.19) and (5.20). Then the upper {U Zm} and lower {U }ieZ,
a = 1,2, m > 1, sequences generated by (6.10) with, respectively, (Ugozm,Uél)m) =
(U1, Usin) and (U, UL

1,2,m> sz)

azm

(ﬁl,i,mg ﬁgﬂ"m), i€, m>1, converge monoton-
ically, such that,

U( 1) U(”) < U(”) < U(n 1)

=a,i,m — —a,z,m = a,i,m

i€, a=1,2, m>1. (6.11)

Proof. Since ngl, i € Z, a = 1,2, are upper solutions (6.4) with respect to U, ;0 =
—(0)

Yo i € T, a = 1,2, it follows that Kait(T s, tai Usig) > 0,0 € T, o # a,

azl
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a,a’ =1,2. From here and (6.10), we have

—(1 —(1 .
(A;,i,l + Coz,z',l) ZEY,’)L',l S nLOC,Z}lZEY,zfl,D 1€ I, o = 1, 2 (612)

Taking into account that (A;ﬂ-?l + C’aﬂ-,l) > O from (4.6), n=0,1, Ly, 1 > O from
(5.41b) and Z\ ), <0,i € T, a = 1,2, for i = 1 in (6.12), we conclude that Z) ; <0,

a = 1,2. By induction on %, we can prove that

7Y <0, i€, a=1,2 (6.13)

a,i,l =

(0 )

Similarly, for the lower solutions U, il = Ua 41,1 € Z, a = 1,2, we can prove that

ZM >0, ieZ, a=1,2 (6.14)

—a,z,l =

We now prove that U( ) and U

il Uyir: @ € Z, a = 1,2, are ordered upper and lower

solutions (5.17) with respect to the vectors U, o = v¥a,, ¢ € Z, @ = 1,2. Letting

Wo(a,lz),l = USE 11— Q(g;l, i € Z, a = 1,2, in notation (5.21), from (6.10), we have
. 0)  +(0
(Aa,i,l + Ca,i,l) Wo(ji) a 7 IWO([ z) 1,1 — Ra % IWO([ 1)+1 1 + Fa 7 1(Ug,2,17 U(a'?@l)
- Fm(Q&?%,p Ut(xof?m)?

i€, o #a, a,d=1,2, wb

a,t,l

=0, i€d, a=1,2.

a1 T a,t,l

a=1,2, from (5.41b), and using (6.9), it follows that

Taking into account that U( )= Aazl < U( )= [70471-,1, i€, Ry;1 > 0,1 €1,

(A% i1+ Cas )W —nLasaW) >0, iez, W) =0, icdI, a=1>2
(6.15)

Since W01 = 0 and (A7 1 + Cap1)™" > O, a = 1,2, from (4.6), for i = 1 in (6.15),
we conclude that Wo(¢11)1 >0, a = 1,2. From here, (A7 5, + Co21)™ 1 >0,7=0,1,
Lo21 > O, o = 1,2 in (5.41b), for i = 2, we obtain that W;I%I >0, a =1,2. By

induction on ¢, we can prove that
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Thus, we prove (6.4a). From (6.10) and using notation (6.8), we conclude that

Kain TS0 1 0 Ui 1) = =RainZon iy + Tain (T, T ) (6.16)

- Fa,z‘,l(Us,z,p US&;),

i€, o #a, ad =12
From here, (6.13), Ryi1 > O, i €Z, a = 1,2, in (5.41b), by using (6.9), we obtain

ICCY,Z'J( o, 171/)04 Z)U(l) ) 0, €1, o # q, a’o/ =1,2.

a1

Thus, U( ) i €T, a=1,2, satisfy (6.4b). By a similar manner, we can prove that

a,t,1

lCa7Z71(QSZl,@Z)aZ, S)Zl) <0, i€Z, d#a ad=12.

Hence, U«iz 1, 1 €I, a=1,2, satisfy (6.4b). From the boundary conditions in (6.10),

it follows that U}, and UL | i e 7, a = 1,2, satisfy (6.4c).

a,i,l =a,i,1?

Thus, we prove that U( ) and UV

il Uyir 1€ Z, a = 1,2, are ordered upper and lower

solutions (6.4). By induction on n > 1, we can prove (6.11) on the first time level
m = 1.
On the second time level m = 2, taking into account that U(O) = ﬁm,g, i1,

a,t,2
a=1,2, from (6.3), we obtain

Kaiz2 (Ua,i,% Uait, Ua’,i,?) =
N - - - - .
Al ioUai2 — Lai2Uai-12 — Rai2Uait12 + Foi2(Uai2, Uai2) =7 Uajit,
. / /
1€, o #a, a,a =1,2,

where Uai 1,1 € Z, a = 1,2, are the approximate solutions on the first time level
m = 1, which defined in (6.10). From here and taking into account that from (6.11),
Uml < Uazl, 1€Z, a=1,2, it follows that

Keai2 <ﬁa,i,27ﬁa,i,la ﬁa’,i,2) > Kaji2 (ﬁa,m, ﬁa,z’,la Ua’,i,Q) >0, (6.17)

i€, o #a, a,d=1,2,

77(0) 77

which means that U, ;o = U2, © € Z, o = 1,2, are upper solutions with respect to

Ua,l,l, i € Z, a =1,2. Similarly, we can obtain that
’Coz,i,Z (ﬁa,i,Qvga,i,lu fjoc’,i,?) < 0) 1€ Ia O/ ?é «, «, O/ = 17 27

which means that U) ﬁa,m, i € I, a = 1,2, are lower solutions with respect to

~a,1,2
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U1, % €Z, a=1,2. From here, (6.10) and (6.17), on the second time level m = 2,
we have
(An;0+ Cain) 200y < nLaioZo) 10 i€T, a=1,2 (6.18)

Taking into account that n = 0,1, Ly ;2 > O from (5.41b), (14;;71»72 + Ca,i,g)_l > 0,
1€, a=1,2, and 7872)’2 <0, for i =1 in (6.18), it follows that 7&17)172 <0,a=1,2.
From here and (6.18) with ¢ = 2, we conclude that 7((11’)272 <0, @ = 1,2. By induction

on i, we can prove that

7V, <0, ieZ, a=1.2 (6.19)
Similarly, for initial lower solutions U, ; o, i € Z, o = 1,2, we can prove that

ZzZW >0, i€, a=12 (6.20)

a2 = ) — Ly« .

The proof that U(l) and UY . i ¢ Z, o = 1,2, are ordered upper and lower solutions

a,t,2 ~=,1,2?

(6.4) repeats the proof on the first time level m = 1. By induction on m, we can prove
(6.11) for m > 1. O

6.1.2 Quasi-monotone nonincreasing case

In the case of the quasi-monotone nonincreasing functions (5.30) , on each time level

m > 1, we say that mesh functions
(U1,im:U2im)y,  (Utim,Usim), €L, m>1,

are ordered upper and lower solutions to (6.3), if they satisfy the inequalities

ﬁa,i,m < Ua,i,ma (RS jv (621&)

Ka,i,m(Ua,i,my Ua,i,m—h Ua’,i,m) <0< ,Ca,i,m(Ua,i,ma Ua,i,m—lv Ua’,i,m)y (NS I7
(6.21b)

ﬁa,i,m < Ya,i,m < ﬁa,i,ma 1€ 81—7 m > ]-a (70172'70 < ¢a,i < ﬁa,i,Oa (NS fa o = 17 27
(6.21c)

where Koim(Uaim, Uaim—1,Usrim), 1 €L, o/ # «, a,’ = 1,2, m > 1, are defined in
(6.4).

Lemma 6.1.6. Let (5.19) and (5.30) hold, and Usim, Vaim, i €L, a =1,2, m > 1,
be two mesh functions in <ﬁm, ﬁm> such that Usim > Vaim, 1 €Z, a = 1,2, m > 1.
Then

LCaimUaiim, Vorim) = Taim(Vaim, Uarim), 1€ I, d #a, ad =12 m>1
(6.22)
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Proof. From (6.8), we have

Fa,i,m(Ua,i,m7 Va ,z,m) Pa 7 m(Va 1,m> Ua’,i,m) = Ca,i,m(Ua,i,m - Va,i,m)
- [Fa,i,m(Ua,i,m7 « ,z,m) Fa 2,m (Va,i,wu Va’,z’,m)]
+ [Fa,i,m(va,i,ma o ,1,m) Fa,z,m(va,i,ma Va’,i,m)]7

where notation (6.2) is in use. Using the mean-value theorem (5.16), we have

Fa,i,m(Ua,i,ma Va’,i,m) - Fa,i,m(Va,i,ma Ua’,i,m) =
(Coc,i,m - (Fa,i,m(Qa,i,ma Va’,i,m))ua) (Ua,i,m - Va,i,m)
+ (Fa,i,m(voe,i,mv Ya’,i,m))ua/ (Uo/,i,m - Va’,i,m)a

Va,i,m < Qa,i,ma Ya,i,m < Uoc,i,my 1€ f7 o 7é a, «, o = 1,2, m2>1,

where (Foim)u, and (Foim)u,, are defined in (6.6). From here, (5.19), (5.30) and the

assumptions of the lemma, we conclude (6.22). O

We now present the block Jacobi and block Gauss—Seidel methods for the nonlinear
difference scheme (6.3) when the reaction functions f,, = 1,2, are quasi-monotone
nonincreasing (5.30).

For solving the nonlinear difference scheme (6.3), on each time level t,,, m > 1, we
construct the block iterative Jacobi and block iterative Gauss-Seidel methods in the

forms

_ _ 1 _
(Agc Ji,m + Ca,i,m)Z(():z?,m - nLa,i,mZ(():z?—l,m = _K:a,i,m <U(oenz m)7 UOéﬂ:m—h Q{S’L i 1171) ’

r - 1
(Aa Ji,m + Ca,i,m)gg’?’m - nLa,i,mZg?_Lm = _Ka,i,m (ngzml—b)u Qaﬂj,m—lv U&nﬂ,,n)q) )

ieT, (6.23)
{0 =1
7~ { St~ Uiy " _, Q=0T

a,z,O ¢CM 2 e I Z(n) — U(n) - U(n»_l) Ua,i,m - U(nm)

a,1,m a,1,m o,1,m ’ a,t,m’

o #Aa, a,d =12 m>1,

where the residuals Ky ; m (Uénz_n}b), Ua,iim—1, U(Sj,ll_rlrz), 1e€Z,d #a,a,0 =1,2,m>1,
are defined in (6.4), 0 is zero vector with N, —1 components. The vectors Uy i m, @ € 7,
a = 1,2, m > 1, are the approximate solutions on time level m > 1, where n,, is a
number of iterations on time level m > 1. For n = 0 and n = 1, we have, respectively,

the block Jacobi and block Gauss—Seidel methods.

Remark 6.1.7. For quasi-monotone nonincreasing functions fo, o = 1,2, (5.50),
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upper and lower solutions are coupled, hence, by using (6. 23’) we calculate either the

sequence {Uhm,ngm} i € Z, m>1, or the sequence {U“m,UQZm} i€, m>1.

Remark 6.1.8. Basic advantages of the block Jacobi method with n =0 in (6.23) and
the block Gauss—Seidel method with n =1 in (6.23) are that on each time level m > 1,
the Thomas algorithm can be used for solving each subsystem (o, 1), 1 € Z, a« = 1,2, as
in the case of elliptic systems with quasi-monotone nondecreasing reaction functions,

which are indicated in Remark 4.1.6.

In the following theorem, we prove the monotone property of the block iterative
methods (6.23).

Theorem 6.1.9. Let (ﬁlzm,ﬁzlm) and (ﬁl,i,myﬁli,m)y i €Z, m > 1, be ordered
upper and lower solutions (6.21) to (6. 5’) Suppose that fo, a = 1,2, in (5.1) satisfy

(5.19) and (5.30). Then the sequences {Ul e Uznz)m} and {Ul im Ug;)m} i€, m>
1, generated by (6.23), with (Ug’L)TTNUéz)m) = (Ul,i,m,Ug,@m) and (ng)m’Ug’L)m) =

(U17i7m,[727z‘7m), i € I, m > 1, are ordered upper and lower solutions and converge

monotonically, such that,

(n—1)

=a,i,m a,t,m

i€, a=1,2 m>1. (6.24)

Proof. On first time level m = 1, in the case of the sequence {Ul s 1} (Ugoz) 1 Qg}i{l)
(Ulﬂ,l, Uzﬂyl), i € Z, are initial upper and lower solution (6.21) with respect to U, ;0 =
¢a,i7 1€ f, o = 1,2. Hence, it follows that ,Cl,z',l ((71,111,1#1’1',[7272'71) > 0, 7 € I, and

’Cgﬂ',l ([71,1"1,'1#2’@', [7271'71) < 0, i € 7. From here and (6.23), we have

(AT1 + CLi) 23y < L2V, ieT, (6.25)
(AZ;1 +Coinl)Z §21>77L2zlzgz)117 ie1,
Zl <0, 20 >0, icor, ZV),=-o0.

Taking into account that n = 0,1, Ly ;1 > O from (5.41b) and Z( ) 01 <0, Zél()) 1 >0,
for i = 1 in (6.25), we have (A],; +Ci11) 21, < 0, (A;11 F ) 2, > .
From here and taking into account that (A7, ;; + Co11)™t > 0, @ = 1,2, where O is
the (Ny —1) x (Ny — 1) null matrix, it follows that 78271 <o, Zgil > 0. By induction

on 7, we can prove that

Zil <o, Zl) >0, icT (6.26)
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Similarly, for the sequence {U g'?l,Ungl}, from (6.23), we can prove that

1 —(1 .
Z(l,i),l >0, Zé,i),l <0, i€l (6.27)

We now prove that USZI and U SZ 1, &€ Z, a = 1,2, are ordered upper and lower

solutions (6.21). Let ng),l = Uszl - Qg},;l, i € Z, a« = 1,2. Using notation (6.8),
from (6.23), we have
(0
(Ag,i,l + Ca,i,l)Wo(z,li),l = nLa,i,IWc(y,lz‘)le + Ra,i,lwo(fi)ﬂ,l + Fa,i,l(fo,i,hQ((;S?i,l)

T (WO, TY. )y, ez

. , .
~a,i, 10~ a1

w 0, i€0I, Waio=0, i€Z, od#a «oad =12

ail =

From (6.22), taking into account that n = 0,1, Ryi1 > O, i € T from (5.41b) and

ch?i),l >0,ic€Z,a=1,2, we conclude that
(A7 i1+ Cait)Waity = nLaiaWai1y, i€T, (6.28)
Wi =0, i€dL, Wy)y=0, icZ, a=12

Taking into account that 0(3371 =0 and (A;J-’l +Cnin) 1> 0,i€I, a=1,2 for
)

i = 11in (6.28), we have Wé,Ll > 0, « = 1,2. From here, for i = 2 in (6.28), by a
similar manner, we obtain I/Vo(l%1 >0, a = 1,2. By induction on ¢, we can prove that
wll >0, i€eZ, a=12 (6.29)

Thus, we prove (6.21a) on the first time level m = 1.
From (6.23) and using (6.22), we obtain

/Ca,zu(US,i,l,wa,i,gﬁjl?i,l) = ~Rai1Zoti11 + Tain(@ar, UL, ) (6.30)

=a’,i,1
—Fa,i,l(U(l) U(l) ),

Oé,i,l’ fa/,l',l

i€, o #a, a,d=1,2.

Taking into account that Ry ;1 > O, i € T in (5.41b), from (6.26), (6.27) and (6.30),
by using (6.22), we conclude that

Ko (Ufj)l i, U )20, i€, o £a, a,d =1,2. (6.31)

=a’,i,1
Similarly, we can prove that

Keaia (US)10ais USin) S0, i€, o #£a, ad =12 (6.32)



Thus, (6.31) and (6.32) satisfy (6.21b). From the boundary and initial conditions in
(6.23), it follows that Q&lzl and T satisfy (6.21c). Thus, from here, (6.29), (6.31)

a,t,1
and (6.32), we conclude that [0

i1 and QS;I, i €I, a = 1,2, are ordered upper and

lower solutions (6.21).

By induction on n, we can prove that Uf)fil, i € I, a = 1,2, are monotone decreasing
; (n)

sequences of upper solutions and U il

sequences of lower solutions which satisfy (6.24).

i € I, a = 1,2, are monotone increasing

On the second time level m = 2, for the sequence {UY’?’Q, U énZ)Q}, i € T, we have

Uﬁ% = ﬁl,i,z and Qg,)z‘)z = ﬁg,i,g, i € Z. From (6.3), we obtain that

- . . - N
K1i2(U1i2,U1i1,U2:2) = AT ;2Uri2 — L1i2Uri-12 — R 2U1i41.2
~ Iy -
+ F1i2(U1i2,Uzi2) =7 Unin,

K2,i2(Uti2,Us;1,Uz2) = A 9U2i2 — Lai2Uzi-12 — Ro;i2U2i412

I .
+ Foi2(Uri2,Uzi2) =7 Uy,

where Uu,l and Ug;q, @ € Z, are the approximate solutions on the first time level
m = 1, which are defined in (6.23). From here and taking into account that from
(6.24), Ul,i,l < [7171'71 and 17271‘71 < Q2,i,1’ 1 € j, it follows that

Kii2 (ﬁl,i,ZaULi,h (72,1',2) > Ko (ﬁl,i,% 61,1,1, ﬁZ,i,2> > 0, (6.33)

Kaio <U1,¢,2,Q27i,1, U2,7;,2) < Koo (Ul,i,2a Usi, Ul,z',2> <0, €7,

. =(0 ~ -~ .= .
which means that U&}Q = U2 and Q(2022 = Us2, t € L are upper and lower solutions
with respect to Ul,i,l and Ugir,i € T

Similarly, we can prove that
K12 (Ul,i,27Q1,z‘,1a U2,i,2> <0, Koo (Ul,i,QaﬁQ,i,ly U2,z',2) >0, i€l

which means that [7272‘,2 and (71,@2, i € I, are upper and lower solutions with respect to
Usip and Uy, 4, i € Z. From here, (6.23) and (6.33), on the second time level m = 2,

we have

—(1 —(1 )
Alin+ 01,112)2%,3,2 < nLl,i,QZg72_172, i€, (6.34)
AJ o+ Cai2)Z5) s > nlainZi) |, i€,

7

(
(

Zi, <0, Zi),>0, icor

i7

189



-1
Taking into account that n = 0,1, La,2 > O from (5.41b), (A;i’2 + Ca,i,Q) > 0,

1 €T, a =12 and 7%72 < 0, Zg(%g > 0, for i = 1 in (6.34), we conclude that
752’2 <0, Z éliz > 0. From here, in a similar manner, for i = 2 in (6.34), we conclude
that 78%72 <0, ZS%,Q > 0. By induction on %, we can prove that

Z\,<0, z8),>0, iel

The proof, that U(l)- and UY, i€ Z, a = 1,2, are ordered upper and lower solutions

a,1,2 ~a,1,2?
(6.21), repeats the proof on the first time level m = 1. By induction on n, we can
(n)

a,1,2)

n . - . . . o
and U & Z) 9, © € I, a = 1,2, are monotone increasing sequence of lower solutions which

satisfy (6.24). By induction on m, we can prove (6.24) for m > 1. In a similar manner,

prove that U i € Z, a = 1,2, are monotone decreasing sequence of upper solutions

we can prove the theorem for the sequence {ng)m,ﬁgz)’m}, i€, m>1. O
6.1.3 Existence and uniqueness of a solution to the nonlinear differ-
ence scheme (6.3)

In Section 5.5, for quasi-monotone nondecreasing reaction functions f,, a = 1,2, (5.20),
we prove the existence and uniqueness of a solution to the nonlinear difference scheme
(5.41) in, respectively, Theorems 5.5.2 and 5.5.3. The proofs of these results are based
on the monotone properties of the point iterative sequences (5.44) in Theorem 5.4.3 and
the maximum principle in Lemma 5.4.1. In a similar manner, we prove the existence
and uniqueness of a solution by using the monotone properties of the block iterative
sequences (6.11) in Theorem 6.1.5 and property (4.6) of irreducibly diagonally dominant
matrices in Lemma 4.1.2, Chapter 4.

In the case of quasi-monotone nonincreasing reaction functions (5.30), we prove the
existence and uniqueness of a solution to (5.11) in, respectively, Theorems 5.5.4 and
5.5.5 in Chapter 5. As in the quasi-monotone nondecreasing case, the proofs are based
on the monotone properties of the point iterative sequences (5.58) in Theorem 5.4.5
and Lemma 5.4.1 in Chapter 4.

In a similar manner, these results can be proved by using the monotone properties
of the block iterative sequences (6.24) in Theorem 6.1.9 and Lemma (4.1.2).

6.2 Comparison of convergence of the block monotone Ja-

cobi and block monotone Gauss—Seidel methods

We compare the convergence rates of the block monotone Jacobi and block monotone
Gauss—Seidel methods.
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6.2.1 (Quasi-monotone nondecreasing case

In the case of quasi-monotone nondecreasing reaction functions (5.20), the following
theorem shows that the block monotone Gauss—Seidel method with n = 1 in (6.10),

converges faster than the block monotone Jacobi method with n = 0 in (6.10).

Theorem 6.2.1. Let (ﬁl,i,m> ﬁzlm) and ([A]l,@m, ﬁ27i7m), i€, m>1, be ordered upper
and lower solutions (6.4) of the nonlinear difference scheme (6.3). Suppose that fo, a =
1,2, in (5.1) satisfy (5.19) and (5.20). The sequences {(U(gnl)m)J} and {(Uc(f?m)(;s},
i€, a=1,2, m>1, are, respectively, the sequences generated by the block monotone
Jacobi method with n =0 in (6.10), and the block monotone Gauss—Seidel method with
n=1in (6.10), where (Ton )y = Totm)as = Uaign and (U )y = (UY), )as =

ﬁa,@m, i€Z, a=1,2, m>1. Then the following inequalities hold

W Vs < @) es < T Das < @0 )s i€, a=1,2, m>1 (6.35)

~=a,i,m ~=a,i,m a,i,m

,t,m ,i,m a,i,m

Proof. Letting W (U(n? )J — (U(n? )Gs’ i€Z, a=1,2, m>1, from (6.10)

and using notation (6.8), we have

T —(n —(n n—1 —(n n—1
Aa,z,mW(()c,'g,m + Cmi,mwgz,g,m = ﬂLa,i,m ((ng i— 1)m)J - (U((x,z?fl,m)cs> + ROé i ngz Z+1)m
' *(nfl) *(”fl) . ) *(”fl) *("fl)
+ FOéﬂ,m (Ua,z,m ) Ua’,z,m)J FOéﬂ,m (Ua,z,m ’ Ua’,z,m)Gs
47! ((Ua,i,mfl).] - (Uoz,i,mfl)GS) , 1€T1,
W(n) = 0, 1€ (9I, m > 1, Woz,i,O = Oa (&S fa Q= 172

From here and taking into account that (U&nl) m) < (UEY”[ TE,[L)) i€, a=1,2,
b Gs s GS
m > 1, in (6.11), it follows that

A; K ng?z),m CO&,Z,ngz,z),m > nLa,i,mWén;;z) + ROé ) ngznz-l-ll)m (636)
+ Fa,i,m <U£¢nz 7711)’ Ug’L i 131)
J

- Fa,i,m <U£¢n;ri)a Uf}???@)
™ ™ GS

+77 ((Ua,i,mfl)J - (Ua,i,m—l)cs) , 1€T,

W(n) =0, i€0Z, m>1, Wa,i,o =0, ¢ f) a=1,2

,1,M
Taking into account that n = 0,1, (Ag’i’1 + Cai1)~t > O from (4.6), La;1 > O,
Rag1 > 0, i € T from (5.41b), (T)1)es = (Try)s, i € T, @ = 1,2, for n = 1 in

(6.36), on the first time level m = 1, we conclude that

wl >0, icZ, a=12

a,i,l



Similarly, from here and (6.36) with n = 2, by using (6.9), we obtain that szl >0,
i € Z, a = 1,2. By induction on n, we can prove that ngl)l >0,icZ,a=1,2.

On the second time level m = 2, taking into account that (A7 ;5 4 Cai2) ™' > O
from (4.6), Lajz > O, Raya > O, i € T from (5.41b), W), = 0 and Wa,y1 > 0,
1€ ﬁh, a=1,2, from (6.36) and using (6.9), we have

w

aﬂ:

, >0, i€Z, a=1,2

Similarly, from here and (6.36) with n = 2, by using (6.9), on the second time level
m = 2, we obtain that W(Q) 220,1¢€ Z, o = 1,2. By induction on n, we can prove
thatW( 1,>0ieT, a=1,2
By induction on m > 1, we can prove that
W(n)

o,1,Mm —

>0, i€, a=12 m>1.

Thus, we prove (6.35) for upper solutions. By the same manner, we can prove (6.35)

for lower solutions. O

6.2.2 Quasi-monotone nonincreasing case

Theorem 6.2.2. Let (fjl,ij,m7fj2,ij,m) and (fjljijjm,fjg@m), 1 € T, m > 1, be ordered
upper and lower solutions (6.21) of the nonlinear difference scheme (6.3). Suppose that
fa, = 1,2, in (5.1) satisfy (5.19) and (5.30). The sequences {(U(lnz)m) (Uénl)m)J},

{@),)5 T} and {@V)es (U )es ) { UL )as, (Thitm)as), i € T, =
1,2, m > 1, are, respectively, the sequences generated by the block monotone Jacobi
method with n =0 in (6.23), and the block monotone Gauss—Seidel method with n = 1
in (6.23), where (T),) s = (T Vos = Unim and (U V5= (UL Yos = Un i,

a,i,m a,i,m a,t,m =a,i,m

i €T, a=1,2, m>1. Then the inequalities in (6.35) hold true.

Proof. The proof of the theorem repeats the proof of Theorem 6.2.1, where I'y ; m,

i€, a=1,2, m>1, are now written in the form

- Faim(U(n) U(n) )

a,t,mr o ,2,m

Taim(T U™ = i)

a,1,m) =—a',1,m g o,t,m

Ca U( n) azm(U(n) U(”) )

Bm&aim a,i,m’ ol i,m

Toim@™ T,

~o,i,m’ o i,m

and the monotone property (6.22) for Tgim, i € Z, « = 1,2, m > 1, is in use. O
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6.3 Convergence analysis of the block monotone iterative

methods

6.3.1 Quasi-monotone nondecreasing reaction functions

A stopping test for the block monotone iterative methods (6.10) is chosen in the form

g}l%é |:Hl€aIX ‘Ka,i,m(Uc(fi)’my Ua,i,m—h Ug};’m> ’:| <0, (637)
where Kayi,m(Ué:Qm, Ua,ijm—1, U(i )lm) 1€, d #a,a,d =1,2, m > 1, are residuals

of the nonlinear difference scheme (6.3), U C(Z?m,

1€Z,a=1,2, m > 1, are generated
by (6.10), and ¢ is a prescribed accuracy. On each time level m > 1, we set up
Usim = Ugll";r)w i€Z a=12 m > 1, such that n,, is the minimal number of

iterations subject to (6.37).

Theorem 6.3.1. Let ﬁamm and ﬁa,i,m; i€, a=1,2, m>1, be ordered upper and
lower solutions (6.4) of (6.3). Suppose that the functions fo, o = 1,2, satisfy (5.82)
and (5.89). Assume that assumption (5.76) on the time step T holds, where qo.ijm,
(1, j) € ﬁh, a=1,2, m > 1, from (5.82). Then for sequences {Ulzm,Uéf;%m} and
{U Ul },i€Z, m>1, generated by (6.10), (6.37) with

1,5,m> =24im

(U(O-) 5y )= (ﬁl,i,ma ﬁ2,z‘,m), (Q(O-) Ul ) = (ﬁl,i,m, ﬁQ,i,m)a i€Z, m>1,

1i,m> ™~ 2,4,m 1,i,m> =2i,m

the following estimates hold

max max |[Uam — Ug mllgr < T9, (6.38)

m>1 a=1,2

where Ua7¢7m:U("m) i€, a=1,2, m>1, and U*

a,r,m’ a,t,m?

i€, a=1,2, m>1, are

the unique solutions to the nonlinear difference scheme (6.3).

Proof. The proof of the theorem repeats the proof of Theorem 5.7.2 from Chapter 5
with Uy im, @ € Z, a = 1,2, m > 1, rather than U, ijm, (i,7) € ﬁh, a=1,2,m>1. 0O

Theorem 6.3.2. Let the assumptz’ons in Theorem 6.3.1 be satisfied. Then for the
sequence of solutions { },i€Z, a=1,2, m>1, generated by (6.10), (6.37), the

azm

following estimate holds

max max 1 Uam — Wy llon < T(6 4+ max Ey,), (6.39)
m>1 a=1,2 ’ m>1

E, = max ||Eqm|gn, m>1,
a=1,2

193



where Uy im = Ué@mn)l, i€, a=12 m>1, u(r,yt), a = 1,2, are the ezact
solutions to (5.1), and Eqim, i € Z, a=1,2, m > 1, are the truncation errors of the

exact solutions on the nonlinear difference scheme (5.11).

Proof. The proof of the theorem repeats the proof of Theorem 5.7.3 from Chapter 5
with Uy im, i € Z, a = 1,2, m > 1, rather than U, ijm, (i,]) € ﬁh, a=1,2,m>1. 0O

6.3.2 Quasi-monotone nonincreasing case

Stopping tests for the sequences {U(n) Qg?m} and {Q(") Uénz)m}, i€, m>1,

1,4,m> 1,i,m>

generated by the block monotone iterative methods (6.23), are chosen in the forms

max {maZX /C1,z‘,m(U(n) Utim—1, U ); max lCz,z-,m(Ug’?m,Qgim_l, Y, )} <0,
ic ic o o

1,2,m» =24,m =2,i,m
(6.40)
. (n) 7). , (n) 77 77(n)
max rgleazx ’Cl,z,m(gu,mvgu,m—b U2,i,m)7 rlneazx K271>m(gl,i,m7 Uzim-1, U2,i,m) <9,
where ’Ca,i,m(Uo(Z‘),ma Ua,im—1, UC(Z,Z)Z )i €L, #a, a,d = 1,2, are residuals of the

nonlinear difference scheme (6.3), which are defined in (6.4), and ¢ is a prescribed

accuracy. On each time level m > 1, we set up

Ui Us i) = (@0 Uy (U Taim) = (@) T €T, m>1,

1,i,m1 214,m =1,m’
such that n,, is the minimal number of iterations subject to (6.40).

Theorem 6.3.3. Let ﬁmm and ﬁa,@m, i€, a=1,2, m>1, be ordered upper and
lower solutions (6.21) of (6.3). Suppose that the functions fo, o = 1,2, satisfy (5.82)
and (5.89). Assume that assumption (5.76) on the time step T holds, where qa.ijm,
(i,4) € ﬁh, a=1,2, m>1, from (5.82). Then for sequences {Uﬁ’?m,gg’?m} and
{Q(n) Ué”}m}, i €I, m>1, generated by (6.23), (6.40) with

,2,m?

(ﬁ(o) U(O) ) = (ﬁl,i,mv [727i,m)7 (U(O) U;(,)z),m) = ((71,7;,77% ﬁZ,i,m)y S f’ mz 1’

1,4,m1 ¥2.i.m =1,5,m>

the following estimates hold

masc {ma ([T m = Ul g [Um — Uil | } < 76, (6.41)

max {max U, ,, = Ul 1T20m = Us,llp | } < 70,

m>1

where Uy im = ynm) i€, a=1,2 m>1, and U* i€, a=1,2,m>1, are

a,i,m’ a,i,m?

the unique solutions to the nonlinear difference scheme (5.11).
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Proof. The proof of the theorem repeats the proof of Theorem 5.7.4 from Chapter 5
with Uyim, i € Z, a = 1,2, m > 1, rather than U, ijm, (i,7) € ﬁh, a=1,2,m>1. O

Theorem 6.3.4. Let the assumptions in Theorem 6.3.3 be satisfied. Then for sequences
{U(n) Ul } and {Q(n) T v e T, m > 1, generated by (6.23), (6.40) with

Lo,mo 22/im 1,4,m> = 2,i,mJ>

(Ug?i),m7g(0) ) = (ﬁl,i,ma ﬁQ,i,m)a (Q(O) Uéofm) = (ﬁl,i,nm ﬁQ,i,m)a i€Z, m>1,

2,i,m 1,i,m>

the following estimates hold

mascmax |01 = g llgns Uz = 3l | < 706 + max ).

mascmax U = g [Tz = 3l | < 706 + max ).

E,, = o{ga?% ||Ea7m||§h, m>1,

where u},(z,y,t), « = 1,2, are the exact solutions to (5.1), and Euim, i €I, a =1,2,
m > 1, are the truncation errors of the exact solutions on the nonlinear difference
scheme (5.11).

Proof. The proof of the theorem repeats the proof of Theorem 5.7.5 from Chapter 5
with Ug im, 1 € Z,a=1,2, m > 1, rather than Ua,ijm, (3,J) € ﬁh, a=12m>1. U

6.4 Construction of initial upper and lower solutions

In Section 5.8, for quasi-monotone nondecreasing and quasi-monotone nonincreasing
reaction functions, we develop the methods of construction of initial upper and lower
solutions in the cases of bounded reaction functions and constant initial iterates.
Since these methods depend on only properties of corresponding reaction functions
fa, @ = 1,2, hence, the constructed initial iterates from Section 5.8 can be used as

starting iterates for the block monotone iterative methods (6.10) and (6.23).

6.5 Numerical experiments

We present numerical experiments, implemented by the block monotone Jacobi and
Gauss-Seidel methods, for test problems with quasi-monotone nondecreasing (5.20) and
quasi-monotone nonincreasing (5.30) reaction functions f,, @ = 1,2, in (5.1). Exact
solutions for our test problems are unknown, and numerical solutions are compared to
corresponding reference solutions. The approximate solutions U O(ZT”W)L, i€, a=1,2,

m > 1, are generated by either the block monotone methods (6.10), (6.37) or the block

monotone methods (6.23), (6.40). In our tests, we choose the reference solutions with
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N =256 and § = 1075 in (4.29) and (4.31). The reference solutions are calculated by
the corresponding block method.

6.5.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions
(5.20), we consider the Volterra-Lotka competition model from Section 5.3.1.1 with the
same data sets. We choose the initial iteration ((717i’m,(72’i7m) = ({1},{1}), i € Z,
m > 1, where {1} is the vector with Z components of ones and calculate sequences of
upper solutions generated by the block monotone iterative method (6.10), (6.37).

In Table 6.1, for different values of N, T' = 2 and 7 = 0.01, we give numbers
of iterations ns and execution (CPU) times for the block monotone iterative methods
and for the point monotone iterative methods from Table 5.1. From these results, we
conclude that the block monotone Gauss-Seidel method converges faster than the block
monotone Jacobi method, which confirms Theorem 6.2.1; the block monotone Gauss—
Seidel method is approximately twice as fast as the block monotone Jacobi method and
the block monotone methods converge faster than the corresponding point monotone

methods.

Table 6.1: Average numbers of iterations ns and CPU times for Test 1.

N 8 16 32 64 128
the block Jacobi method
ng 9.12 23.18 82.89 321.67 1797.83
CPU(s) 0.15 0.80 10.92 181.16 824.01
the block Gauss—Seidel method
ng 6.22 14.14 38.20 158.08 894.23
CPU(s) 0.15 0.49 5.07 84.83  437.52
the point Jacobi method
ng 11.98 35.88 135.27 533.09 2958.82
CPU(s) 0.13 0.91 1342 212.16 1287.19
the point Gauss-Seidel method
ng 6.99 19.50 69.27 268.10 1680.77
CPU(s) 0.12  0.56 7.34 115.24  733.43

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions
(5.20), we consider Test 2 from Section 5.9.1 with the same data sets. We choose the
initial iteration (U} im,Usim) = ({1},{1}), i € Z, m > 1 and calculate sequences of
upper solutions generated by the block monotone iterative method (6.10), (6.37).
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In Table 6.2, for different values of N, T = 0.5, 7 = 0.01, we give numbers of
iterations ns and execution (CPU) times for the block monotone iterative methods and
for the point monotone iterative methods from Table 5.2. From these results, we
conclude that the block monotone Gauss-Seidel method converges faster than the block
monotone Jacobi method, which confirms Theorem 6.2.1; the block monotone Gauss—
Seidel method is approximately twice as fast as the block monotone Jacobi method
when the number of mesh points N is higher and the block monotone methods converge
faster than the corresponding point monotone methods. Also from Table 6.2, it can
be noticed that the data for the block Jacobi method are very close to the data of the
point Gauss-Seidel method.

In Figure 6.1, we show the convergence of numerical solutions, obtained by the
block Gauss-Seidel method with n =1 in (6.10) and N = 64 to the reference solution
Nyep = 256, where the dashed line represents the numerical solution and the solid blue
line refers to the reference solution with respect to x and fixed value of y = 0.5. In
subgraph 6.1a, starting from the initial lower solution (7172-,5 = {0}, i € Z, on the time
level t5 = 0.05, we show the convergence of the numerical lower solutions Qg’fi)ﬁ, 1€,
at n = 200 to the reference solution. Similarly, starting from the initial upper solution
(7171-75 = {1}, i € Z, on the time level t5 = 0.05, subgraph 6.1b shows the convergence

of the numerical upper solutions U(lz-)ﬁ, 1 € Z, at n = 100 to the reference solution.

Table 6.2: Average numbers of iterations ns and CPU times for Test 2.

N 8 16 32 64 128
the block Jacobi method
ns 5.76 12.20 29.36 99.66 379.66
CPU(s) 0.07 0.12 0.88 12.31 185.05
the block Gauss—Seidel method
ng 4.62 9.54 21.16 40.28 181.54
CPU(s) 0.04 0.09 0.72 5.01 92.23

the point Jacobi method
ng 7.62 17.36 52.80 193.92 752
CPU(s) 0.07 0.13 144  20.31  325.65
the point Gauss—Seidel method
ng 5.86 11.24 29.46 99.78 379.78
CPU(s) 0.06 0.09 0.82 11.26 173.81

6.5.2 (Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions
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Figure 6.1: Convergence of lower and upper solutions to the reference solution for Test
2.
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(5.30), we consider Test 3 from Section 5.9.2 with the same data sets. We choose the
initial iteration (ﬁu,m, (72””) = ({1},{0}), i € Z, m > 1 and calculate the sequence
{Uﬁf‘gm,g gnz)m}, i € Z, m > 1, generated by the block monotone iterative method
(6.23), (6.40).

In Table 6.3, for different values of N, T' = 1 and 7 = 0.01, we give average
numbers of iterations ns and execution (CPU) times for the block monotone iterative
methods (6.23) and for the point monotone iterative methods from Table 5.3. From
these results, we conclude that the block monotone Gauss-Seidel method converges
faster than the block monotone Jacobi method, which confirms Theorem 6.2.2; the block
monotone Gauss—Seidel method is approximately twice as fast as the block monotone
Jacobi method when we have higher number of mesh points IV and the block monotone
methods converge faster than the corresponding point monotone methods. Also from
Table 6.3, it can be noticed that the data for the block Jacobi method are very close
to the data of the point Gauss-Seidel method.

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions
(5.30), we consider Test 4 from Section 5.9.2 with the same data sets. We choose the
initial iteration (ﬁl,i,my ﬁgmm) = ({1},{0}), i € Z, m > 1 and calculate the sequence
{Uﬁf;fm,g gnz)m}, i € I, m > 1, generated by the block monotone iterative method
(6.23), (6.40).

In Table 6.4, for different values of N, T' = 0.5, 7 = 0.01, we give numbers of
iterations ns and execution (CPU) times for the block monotone iterative methods and
for the point monotone iterative methods from Table 5.4. From these results, we

conclude that the block monotone Gauss-Seidel method converges faster than the block
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Table 6.3: Average numbers of iterations ns and CPU times for Test 3.

N 8 16 32 64 128
the block Jacobi method
ng 9.33 27.17 100.04 391.75 1559.75
CPU(s) 0.10 0.39 5.52 86.52  737.94
the block Gauss—Seidel method
ng 8.53 16.58 46.09 192,55  776.80
CPU(s) 0.07 0.24 2.66 44.55  397.53
the point Jacobi method
ng 15.34 50.83 196.43 779.99 3115.91
CPU(s) 0.15 0.66 9.64  155.46 1612.87
the point Gauss—Seidel method
ng 9.21 27.16 100.06 391.93 1624.43
CPU(s) 0.08 0.37 5.19 80.32  741.89

monotone Jacobi method, which confirms Theorem 6.2.2; the block monotone Gauss—
Seidel method is approximately twice as fast as the block monotone Jacobi method
when we have higher number of mesh points N and the block monotone methods
converge faster than the corresponding point monotone methods. Also from Table 6.4,
it can be noticed that the data for the block Jacobi method are very close to the data
of the point Gauss-Seidel method.

Table 6.4: Average numbers of iterations ng and CPU times for Test 4.

N 8 16 32 64 128
the block Jacobi method
ng 12.74 39.68 146.32 572.32  2276.06
CPU(s) 0.09 0.29 4.23 65.75  1047.561
the block Gauss—Seidel method
ng 10.10 22.71 67.42 281.08 1133.24
CPU(s) 0.07 0.18 1.92 32.40 530.07
the point Jacobi method
ng 21.14 74.58 287.66 1139.54 4547.02
CPU(s) 0.09 0.49 7.14 112.98  1889.27
the point Gauss—Seidel method
ng 12.70 39.66 146.32 57246  2276.22
CPU(s) 0.07 0.27 3.77 57.85 942.17
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6.6 Conclusions to Chapter 6

Theoretical results

For solving nonlinear parabolic systems with quasi-monotone nondecreasing and
nonincreasing reaction functions, we construct and investigate monotone properties of
block Jacobi and block Gauss-Seidel iterative methods. For solving the nonlinear dif-
ference scheme (6.3) with quasi-monotone nondecreasing and nonincreasing reaction
functions, the block Jacobi and block Gauss-Seidel iterative methods are constructed.
In Theorems 6.1.5 and 6.1.9, on each time level, we prove that the sequences of upper
and lower solutions, generated by the block monotone iterative methods for problems
with quasi-monotone nondecreasing (5.20) and quasi-monotone nonincreasing (5.30)
reaction functions, converge monotonically. The existence and uniqueness of a solution
of the nonlinear difference scheme (6.3) are proved in Chapter 5. Taking into account
the fact that on each time level, in general, the nonlinear discrete problems can be
solved only inexactly, we introduce the stopping tests on each time level. By using the
stopping tests (6.37) and (6.40), respectively, for the quasi-monotone nondecreasing
and nonincreasing cases, we prove that the numerical solution converges to the unique
solution of the nonlinear parabolic problem (5.1) and estimate the L, discrete-norm of
the error between the numerical and exact solutions of the nonlinear difference scheme
(6.3) in Theorems 6.3.1 and 6.3.3, and the error between the numerical solution and
the exact solution of the parabolic problem (5.1) in Theorems 6.3.2 and 6.3.4. The
construction methods of initial iterates from Section 5.8.2 depend only on properties
of corresponding reaction functions and can be used as starting iterates for the block
iterative methods (6.10) and (6.23).

Numerical results

The numerical sequences of upper and lower solutions, generated by the block mono-
tone iterative methods (6.10) and (6.23) with the stopping tests (6.37) and (6.40),
respectively, for the quasi-monotone nondecreasing and nonincreasing cases, converge
monotonically. The block monotone Gauss-Seidel methods with n = 1 in (6.10) and
n = 1in (4.13) converge faster than the block monotone Jacobi methods with n = 0
in (6.10) and n = 0 in (6.23) which confirm, respectively, Theorems 6.2.1 and 6.2.2.
The block Gauss-Seidel methods are approximately twice as fast as the block Jacobi
methods. The block monotone methods converge faster than the corresponding point
monotone methods. The number of iteration ns and execution CPU time for the block

Jacobi methods are very close to the data for the point Gauss-Seidel method.
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Chapter 7

Conclusion

In Chapter 1, we review nonlinear elliptic and parabolic problems. Nonlinear difference
schemes which approximate elliptic and parabolic problems are presented. For the
linear versions of the difference problems, we prove the maximum principle and error
estimation. For elliptic and parabolic problems, the iterative methods for solving the
nonlinear difference schemes, are constructed. The monotone property of the sequences
of solutions, generated by the monotone iterative methods, are proved. Existence and
uniqueness of solutions of the nonlinear elliptic and parabolic difference schemes are
given. The error between the numerical and exact solutions of the nonlinear difference
schemes, for elliptic and parabolic cases, are estimated. Linear and quadratic rates of
convergence of the iterative sequences of upper and lower solutions, are discussed.

In Chapter 2, the nonlinear difference scheme for approximating the elliptic prob-
lems is presented. For solving the nonlinear difference scheme, the point Jacobi and
point Gauss-Seidel iterative methods are constructed. The monotone properties of the
sequences of upper and lower solutions, generated by the point iterative methods, are
proved. The uniqueness of a solution of the nonlinear difference scheme is given. By
using the stopping test, we prove that the numerical solution converges to the unique
solution of the nonlinear elliptic problem and estimate the L, discrete-norm of the
error between the numerical and exact solutions of the nonlinear difference scheme and
the error between the numerical solution and the exact solution of the elliptic prob-
lem. We prove that the point monotone Gauss-Seidel method converges faster than the
point monotone Jacobi method. Initial upper and lower solutions to start the point
monotone iterative methods are constructed.

From the numerical experiments, we conclude i) the numerical solution converges to
the reference solution with second order accuracy; ii) the numerical sequences of upper
and lower solutions, generated by the point monotone methods, converge monotonically;
iii) the point monotone Gauss-Seidel method converges faster than the point monotone

Jacobi method; iv) the block monotone methods from [61] converge faster than the
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corresponding point monotone methods.

In Chapter 3, we construct and investigate the point monotone Jacobi and Gauss-
Seidel methods for solving nonlinear systems of elliptic differential equations. The
two classes of coupled elliptic systems with quasi-monotone nondecreasing and quasi-
monotone nonincreasing reaction functions are considered. We present the nonlinear
difference scheme which approximates the nonlinear elliptic systems. We prove the
monotone properties of the sequences of upper and lower solutions, generated by the
point iterative methods for the quasi-monotone nondecreasing and nonincreasing cases.
The existence and uniqueness of a solution of the nonlinear difference scheme with
quasi-monotone nondecreasing and quasi-monotone nonincreasing reaction functions
are proved. By using the stopping tests, based on the norms of the residuals of the
nonlinear difference scheme, we prove that the numerical solution converges to the
unique solution of the nonlinear elliptic problem and estimate the L, discrete-norm of
the error between the numerical and exact solutions of the nonlinear difference scheme
and the error between the numerical solution and the exact solution of the elliptic
system. We prove that the point monotone Gauss-Seidel methods converge faster than
the point monotone Jacobi methods for the quasi-monotone nondecreasing and quasi-
monotone nonincreasing cases. Constructions of initial upper and lower solutions to
start the point monotone iterative methods are presented.

From the numerical experiments, we conclude i) the numerical solution of the non-
linear difference scheme converges to the reference solution with second-order accuracy;
ii) the numerical sequences of upper and lower solutions, generated by the point mono-
tone methods, converge monotonically; iii) the point monotone Gauss-Seidel meth-
ods converge faster than the point monotone Jacobi methods; iv) the point monotone
Gauss-Seidel methods are approximately twice as fast as the point monotone Jacobi
methods.

In Chapter 4, we construct and investigate the block monotone Jacobi and Gauss-
Seidel methods for solving nonlinear systems of elliptic differential equations. The two
classes of coupled elliptic systems with quasi-monotone nondecreasing and nonincreas-
ing reaction functions are considered. The block monotone iterative methods are based
on the decomposition technique which reduces a domain into a series of nonoverlapping
one dimensional intervals by slicing the domain into a finite number of thin strips, and
then solving a two-point boundary-value problem for each strip by a standard computa-
tional scheme such as the Thomas algorithm. The monotone properties of the sequences
of upper and lower solutions, generated by the block monotone iterative methods are
proved. By using the stopping tests, based on the norms of residuals, for the quasi-
monotone nondecreasing and nonincreasing cases, we prove that the numerical solution

converges to the unique solution of the nonlinear elliptic problem and estimate the L.
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discrete-norm of the error between the numerical and exact solutions of the nonlinear
difference scheme and the error between the numerical solution and the exact solution
of the elliptic system. For the quasi-monotone nondecreasing and nonincreasing cases,
we prove that the block monotone Gauss-Seidel methods converge faster than the block
monotone Jacobi methods. These theoretical results were published in [1].

From the numerical experiments, we conclude that i) the numerical sequences of
solutions, generated by block monotone methods with the stopping tests, converge
monotonically; ii) the block monotone Gauss-Seidel methods converge faster than the
block monotone Jacobi methods; iii) the block monotone Gauss-Seidel methods are ap-
proximately twice as fast as the block Jacobi methods; iv) the block monotone methods
converge faster than the corresponding point monotone methods; v) the numbers of it-
erations ng and CPU times for the block Jacobi methods are very close to the data
for the point Gauss-Seidel methods; vi) when the convective terms dominate the dif-
fusion terms, the block monotone Gauss-Seidel method with the one-sided difference
approximations of the first partial derivatives are more efficient than the block mono-
tone Gauss-Seidel method with the central difference approximations. The materials
on Chapter 4 in the quasi-monotone nondecreasing case were published in [5] and for
quasi-monotone nondecreasing and nonincreasing cases, the results are submitted for
publication in [3].

In Chapter 5, for solving nonlinear systems of parabolic differential equations, we
construct and investigate the point monotone Jacobi and Gauss-Seidel methods. The
two classes of coupled parabolic systems with quasi-monotone nondecreasing and non-
increasing reaction functions are considered. We prove that, on each time level, the
sequences of upper and lower solutions, generated by the point iterative methods, con-
verge monotonically. The existence and uniqueness of a solution of the nonlinear differ-
ence scheme, for the quasi-monotone nondecreasing and nonincreasing cases, are proved.
By using the stopping tests, based on the norms of residuals, for the quasi-monotone
nondecreasing and nonincreasing reaction functions, we prove that the numerical solu-
tion converges to the unique solution of the nonlinear parabolic problem and estimate
the Lo, discrete-norm of the error between the numerical and exact solutions of the
nonlinear difference scheme, and the error between the numerical solution and the the
exact solution of the parabolic problem. We prove that for the quasi-monotone nonde-
creasing and nonincreasing cases, the point monotone Gauss-Seidel methods converge
faster than the point monotone Jacobi methods. For quasi-monotone nondecreasing and
nonincreasing cases, on each time level, we construct initial upper and lower solutions
to start the point monotone iterative methods.

From the numerical experiments, we conclude that i) the numerical sequences of

upper and lower solutions, generated by the point monotone iterative methods, for the
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quasi-monotone nondecreasing and nonincreasing cases, on each time level, converge
monotonically; ii) the point monotone Gauss-Seidel methods converge faster than the
point monotone Jacobi methods; iii) the point monotone Gauss-Seidel methods are
approximately twice as fast as the point monotone Jacobi methods.

In Chapter 6, we construct and investigate the block monotone Jacobi and Gauss-
Seidel iterative methods for solving the nonlinear parabolic systems with quasi-monotone
nondecreasing and nonincreasing reaction functions. We prove that on each time level,
the sequences of upper and lower solutions, generated by the block monotone iterative
methods, converge monotonically. By using the stopping tests, based on the norms
of residuals, for the quasi-monotone nondecreasing and nonincreasing cases, we prove
that the numerical solution converges to the unique solution of the nonlinear parabolic
problem and estimate the L., discrete-norm of the error between the numerical and
exact solutions of the nonlinear difference scheme and the error between the numerical
solution and the exact solution of the parabolic problem. These theoretical results were
published in [2].

From the numerical experiments, we conclude that i) the numerical sequences of
upper and lower solutions, generated by the block monotone iterative methods, for the
quasi-monotone nondecreasing and nonincreasing cases, on each time level, converge
monotonically; ii) the block monotone Gauss-Seidel methods converge faster than the
block monotone Jacobi methods; iii) the block Gauss-Seidel methods are approximately
twice as fast as the block Jacobi methods; iv) the block monotone methods converge
faster than the corresponding point monotone methods; v) the average numbers of itera-
tions and execution times for the block Jacobi methods are very close to the data for the
point Gauss-Seidel method. The materials of this chapter for the quasi-monotone non-
decreasing case has been accepted for publication in [6] and for both the quasi-monotone
nondecreasing and nonincreasing cases, the results are submitted for publication in [4].

The main goal of the thesis is to develop numerical methods, based on the monotone
point and block Jacobi and Gauss-Seidel iterative methods, for solving elliptic and
parabolic equations and systems of equations.

The brief conclusions from our theoretical results, obtained in the thesis, are the

following:

1. We prove that the iterative sequences of numerical solutions, generated by the

point and block monotone iterative methods, converge monotonically.

2. We estimate the L., discrete-norm between the numerical and exact solutions
of the nonlinear difference schemes and the error between the numerical solution

and the exact solution of the corresponding continuous problem.
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3.

4.

The existence and uniqueness of a solution of the nonlinear difference schemes

are proved.

We prove that the point and block monotone Gauss-Seidel methods converge

faster than the corresponding point and block monotone Jacobi methods.

The brief findings from our numerical experiments, obtained in the thesis, are the

following:

1.

The numerical sequences of solutions, generated by the point and block monotone

methods, converge monotonically.

. The point and block monotone Gauss-Seidel methods converge faster than the

point and block monotone Jacobi methods.

The point and block monotone Gauss-Seidel methods, respectively, are approxi-
mately twice as fast as the corresponding point and block monotone Jacobi meth-

ods.

. The block monotone methods converge faster than the corresponding point mono-

tone methods.

. The numbers of iterations and execution times for the block Jacobi methods are

very close to the data for the point Gauss-Seidel methods.

When the convective terms dominate the diffusion terms, the block monotone
Gauss-Seidel method with the one-sided difference approximations of the first par-
tial derivatives are more efficient than the block monotone Gauss-Seidel method

with the central difference approximations.
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