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Abstract

A key aspect of the simulation process is the formulation of proper mathematical mod-

els. The model must be able to emulate the physical phenomena under investigation.

Partial differential equations play a major role in the modelling of many processes which

arise in physics, chemistry and engineering. Most of these partial differential equations

cannot be solved analytically and classical numerical methods are not always applica-

ble. Thus, efficient and stable numerical approaches are needed. A fruitful method for

solving the nonlinear difference schemes, which discretize the continuous problems, is

the method of upper and lower solutions and its associated monotone iterations. By

using upper and lower solutions as two initial iterations, one can construct two mono-

tone sequences which converge monotonically from above and below to a solution of the

problem. This monotone property ensures the theorem on existence and uniqueness of

a solution. This method can be applied to a wide number of applied problems such

as the enzyme-substrate reaction diffusion models, the chemical reactor models, the

logistic model, the reactor dynamics of gasses, the Volterra-Lotka competition models

in ecology and the Belousov-Zhabotinskii reaction diffusion models.

In this thesis, for solving coupled systems of elliptic and parabolic equations with

quasi-monotone reaction functions, we construct and investigate block monotone it-

erative methods incorporated with Jacobi and Gauss–Seidel methods, based on the

method of upper and lower solutions . The idea of these methods is the decomposition

technique which reduces a computational domain into a series of nonoverlapping one

dimensional intervals by slicing the domain into a finite number of thin strips, and then

solving a two-point boundary-value problem for each strip by a standard computational

method such as the Thomas algorithm.

We construct block monotone Jacobi and Gauss-Seidel iterative methods with quasi-

monotone reaction functions and investigate their monotone properties. We prove the-

orems on existence and uniqueness of a solution, based on the monotone properties

of iterative sequences. Comparison theorems on the rate of convergence for the block

Jacobi and Gauss-Seidel methods are presented. We prove that the numerical solutions

converge to the unique solutions of the corresponding continuous problems. We esti-

mate the errors between the numerical and exact solutions of the nonlinear difference

xii



schemes, and the errors between the numerical solutions and the exact solutions of the

corresponding continuous problems. The methods of construction of initial upper and

lower solutions to start the block monotone iterative methods are given.

xiii
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Chapter 1

Introduction

1.1 Overview of the method of upper and lower solutions

The monotone method and its associated upper-lower solutions for nonlinear ordinary

and partial differential equations have been given extensive attention in recent years.

The method is popular because not only does it give constructive proof for existence

theorems but it also leads to various comparison results which are effective tools for the

study of qualitative properties of solutions. The monotone behaviour of the sequence

of iterations is also useful in the treatment of numerical solutions of various boundary

value and initial-boundary value problems.

1.1.1 The monotone method of upper and lower solutions for contin-

uous problems

The first steps in the theory of lower and upper solutions were given by Picard in 1890

[67] for partial differential equations, and in [68] he extended his theory for ordinary

differential equations. In both cases, the existence of a solution is guaranteed from a

monotone iterative technique. Existence of solutions for Cauchy equations was proved

by Perron in 1915 [66]. Müller extended Perron’s results to initial value systems in [52].

Dragoni [36], [35] introduced the notion of the method of lower and upper solutions for

ordinary differential equations with Dirichlet boundary conditions.

In the classical books of Bernfeld and Lakshmikantham [12] and Ladde et al. [46],

the classical theory of the method of lower and upper solutions and the monotone iter-

ative technique is presented. This theory treats the solution as the limit of a monotone

sequence formed by solutions of linear problems related to nonlinear equations.

To illustrate the basic idea of the monotone method, let us consider a typical elliptic

boundary value problem in the form

−Lu(x) + f(x, u) = 0, x ∈ ω, u(x) = g(x), x ∈ ∂ω,

1



where L is a uniformly elliptic operator in a bounded domain ω ∈ Rκ (κ = 1, 2, . . .) and

∂ω is a boundary. Uniform elliptic operator means that the matrix (ai,j), i, j = 1, . . . κ

of the coefficients of the second derivatives is positive definite and bounded from above

and below, that is,

Lu(x) =

κ∑
i,j=1

ai,j∂
2u/∂xi∂xj +

κ∑
j=1

bj(x)∂u/∂xj , (1.1)

d0‖ξ‖2 ≤
κ∑

i,j=1

aij(x)ξiξj ≤ d1‖ξ‖2, ‖ξ‖ =

(
κ∑
i=1

ξ2
i

) 1
2

,

where d0 and d1 are positive constants. Suppose there exists an ordered pair of upper

and lower solutions ũ and û, that is, ũ and û are smooth functions with ũ ≥ û such

that

−Lũ(x) + f(x, ũ) ≥ 0, x ∈ ω, ũ(x) ≥ g(x), x ∈ ∂ω,

and û satisfies the reversed inequalities. Then by using ũ and û as two distinct initial

iterations one can construct two sequences {u(n)} and {u(n)} from the iteration process

− Lu(n)(x) + c(x)
(
u(n)(x)− u(n−1)(x)

)
= −f

(
x, u(n−1)

)
, x ∈ ω,

u(n)(x) = g(x), x ∈ ∂ω,

where u(n) stands for u(n) or u(n), and the function c(x) is taken as any upper bound

of ∂f/∂u for û ≤ u ≤ ũ. Based on the property of upper and lower solutions, one

establishes that the sequence
{
u(n)

}
is monotone nonincreasing and the sequence

{
u(n)

}
is monotone nondecreasing, and both sequences converge, respectively, to solutions u

and u of the problem. The monotone property of these sequences leads to the relation

û ≤ u(n−1) ≤ u(n) ≤ u ≤ u ≤ u(n) ≤ u(n−1) ≤ ũ, in ω, n ≥ 1.

When u = u, there is a unique solution in the sector 〈û, ũ〉 between û and ũ; otherwise

the problem has multiple solutions.

A major advance of this technique is the extension of the idea of upper-lower so-

lutions to coupled systems of a finite number of parabolic and elliptic equations [46],

[59]. For coupled systems of equations, whether parabolic or elliptic, the definition of

upper-lower solutions depends on the quasi-monotone property of the vector reaction

function f in the system. Based on the quasi-monotone property of the reaction func-

tions one can also construct two sequences which are monotone. Although these two

sequences converge to some limits u and u, it is not certain that u or u is a solution of

the problem except in the special cases where every component of the reaction function

2



f is quasi-monotone nondecreasing and for systems of two equations with the quasi-

monotone nonincreasing property of the reaction functions. The method of upper and

lower solutions has been developed for continuous systems of partial differential equa-

tions with the focus on comparison results and qualitative behavior of the solutions [8],

[10], [45], [47], [53], [54], [55], [70].

1.1.2 The monotone method of upper and lower solutions for differ-

ence schemes

Various reaction-diffusion-convection-type problems in the chemical, physical and en-

gineering sciences are described by nonlinear elliptic and parabolic equations. In order

to treat such nonlinear problems numerically, the nonlinear problems are approximated

by using the finite difference or finite element methods, which lead to nonlinear sys-

tems of algebraic equations. The main mathematical concern is to investigate whether

these systems have a solution and to find efficient, stable and computationally effective

methods for solving these discrete systems.

The idea of upper and lower solutions was employed by Parter [64] and Greenspan

and Parter [43] for solving finite difference schemes which approximate elliptic problems.

Under the condition that the nonlinear function is bounded, they constructed explicitly

initial upper and lower solutions. Russell and Shampine [69] used a similar approach

for a singular boundary value problem. The method of upper and lower solutions was

applied for treating scalar elliptic problems in [16], [28], [29], [31], [48], [59], [70] and

for scalar parabolic problems in [8], [15], [21], [23], [24], [26], [40], [50], [54], [55].

This method gains more complexity when it is applied to coupled systems. A

great deal of research has been done on investigating the method for systems of elliptic

problems [17], [19], [20], [47], [49], [56], [57] and for systems of parabolic problems [27],

[38], [44], [55], [60], [58], [72].

The idea of block monotone methods is based on the decomposition technique which

reduces a domain into a series of nonoverlapping one dimensional intervals by slicing

the domain into a finite number of thin strips, and then solving a two-point boundary-

value problem for each strip by a standard computational method such as the Thomas

algorithm [51]. Block monotone iterative methods, based on the method of upper and

lower solutions, were developed in [13], [18], [22], [25], [30], [61], [62],[73], [74] for solving

scalar elliptic equations and in [14], [63] for solving scalar parabolic equations.

In [61], block Jacobi and block Gauss-Seidel monotone iterative schemes were pre-

sented for solving second-order nonlinear elliptic equations. Theorems on existence

and uniqueness theorems of the solution were proved. These block monotone iterative

schemes have been extended for the fourth-order elliptic equations in [62]. In [63], block
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Jacobi and block Gauss-Seidel monotone iterative methods were constructed for treat-

ing nonlinear scalar parabolic equations. In [73], the block monotone method, suitable

for parallel computers, was developed for numerical solutions of nonlinear scalar elliptic

boundary value problems. This block method is based on the block monotone Jacobi

method. In [13], [14], [18], [30], block monotone domain decomposition methods, based

on a Schwarz alternating method and a block successive underrelaxation method, were

developed for numerical solutions of nonlinear scalar elliptic and parabolic problems

with interior and boundary layers.

The method of upper and lower solutions can be successfully applied to many ap-

plied problems. Some of the models which are governed by elliptic boundary value

problems, where the numerical methods of upper and lower solutions can be applica-

ble, are i) the steady-state enzyme-substrate reaction model [9], where the effect of

inhibition is taken into consideration; ii) the logistic model [32] which describes popu-

lation growth; iii) reactor dynamics and the subsonic motion of gasses [7].

Some models which are governed by parabolic boundary problems, where the numer-

ical methods of upper and lower solutions can be applicable, are i) the time-dependent

enzyme-substrate reaction model [9], where the effect of inhibition is neglected; ii) the

chemical reactor method [42], when the isothermal reaction is irreversible.

Models governed by systems of nonlinear elliptic equations, where the numerical

methods of upper and lower solutions can be applicable, are i) the gas-liquid interac-

tion model [34], where a dissolved gas and a dissolved reactant interact in a bounded

diffusion medium; ii) the Volterra-Lotka competition model in ecology [33] which de-

scribes the coexistence of competing species in ecology; iii) the Belousov-Zhabotinskii

reaction diffusion model [11], [59] which includes the metal-ion-catalyzed oxidation by

bromate ion of organic materials.

Models governed by systems of nonlinear parabolic equations, where the numerical

methods of upper and lower solutions can be applicable, are i) the time-dependent gas-

liquid interaction model [34]; ii) the time-dependent Belousov-Zhabotinskii reaction

diffusion model [11], [59]; iii) the time-dependent Volterra-Lotka competition model

[33].

In thesis, for solving coupled systems of elliptic and parabolic equations with quasi-

monotone reaction functions, we construct and investigate block monotone Jacobi and

Gauss-Seidel iterative methods. We estimate the errors between the numerical and

exact solutions of the nonlinear difference schemes, and the errors between the numer-

ical solutions and the exact solutions of the corresponding continuous problems. The

methods of construction of initial upper and lower solutions to start the block mono-

tone iterative methods are given. The block monotone iterative methods are applied to

the gas-liquid interaction model [34], the Volterra-Lotka competition model in ecology
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[33] and the Belousov-Zhabotinskii reaction diffusion model [11], [59] in the case of

elliptic systems, and applied to the time dependent version of the Volterra-Lotka co-

operation model [33], the Belousov-Zhabotinskii reaction diffusion model [11] and the

Volterra-Lotka competition model in ecology [33] in the case of parabolic systems.

1.2 Monotone iterative method for elliptic equations

Elliptic differential equations are used to characterize a wide family of problems in

chemistry, physics and engineering sciences. The elliptic problem under consideration

in this section is in the form

− Lu(x) + f(x, u) = 0, x ∈ ω, u(x) = g(x), x ∈ ∂ω, (1.2)

where the domain ω is bounded and connected in Rκ (κ = 1, 2, . . .), and ∂ω is the

boundary. The differential operator L(x) is given by

Lu =
κ∑
ν=1

∂

∂xν

(
Dν(x)

∂u

∂xν

)
+

κ∑
ν=1

vν(x)
∂u

∂xν
,

where the coefficients of the differential operator are assumed to be smooth and D(x) >

0 in ω. The functions f and g are also assumed smooth in their corresponding domains.

1.2.1 Nonlinear difference scheme

On the domain ω, we introduce a mesh Λ
h

= Λh ∪ ∂Λh, where Λh and ∂Λh, are,

respectively, a set of interior mesh points and a set of boundary mesh points. For

solving the nonlinear problem (1.2), we consider the nonlinear difference scheme

A(p)U(p) + f(p, U) = 0, p ∈ Λh, U(p) = g(p), p ∈ ∂Λh, (1.3)

where U(p), p ∈ Λ
h

is an unknown mesh function. The difference operator A(p) is

defined by

A(p)U(p) = d(p)U(p)−
∑

p′∈σ′(p)

a(p′)U(p′), (1.4)

where σ′(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an interior mesh point

p ∈ Λh. The five-point stencil of a point in the grid is a stencil made up of the point

itself together with its four neighbors. The coefficients of the difference operator A(p)

are assumed to satisfy the assumptions

d(p) > 0, a(p′) ≥ 0, p′ ∈ σ′(p), d(p)−
∑

p′∈σ′(p)

a(p′) ≥ 0, p ∈ Λh. (1.5)
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We assume that the mesh domain Λ
h

is connected, that is, for two interior mesh points

p̃ and p̂, there exists a finite set of mesh points {p1, p2, . . . , pr} such that

p1 ∈ σ′(p̃), p2 ∈ σ′(p1), . . . , pr ∈ σ′(pr−1), p̂ ∈ σ′(pr). (1.6)

We introduce the linear difference problem

A(p)W (p) + c∗(p)W (p) = φ(p), p ∈ Λh, W (p) = g(p), p ∈ ∂Λh, (1.7)

where c∗(p) is a positive bounded mesh function. We now consider the maximum

principle for the difference operator A(p) + c∗(p) and give a bound on the magnitude

of the solution to (1.7).

Lemma 1.2.1. Let the coefficients of the difference operator A(p) satisfy (1.5) and the

mesh domain Λ
h

be connected (1.6).

(i) If a mesh function W (p) satisfies the conditions

(A(p) + c∗(p))W (p) ≥ 0 (≤ 0), p ∈ Λh, W (p) ≥ 0 (≤ 0), p ∈ ∂Λh, (1.8)

then W (p) ≥ 0 (≤ 0), p ∈ Λ
h
.

(ii) The following bound on the magnitude of the solution to (1.7) holds

‖W‖
Λ
h ≤ max

{
‖g‖∂Λh ,

‖φ‖Λh
‖c∗‖

Λ
h

}
, (1.9)

where

‖W‖
Λ
h ≡ max

p∈Λ
h
|W (p)|, ‖g‖∂Λh ≡ max

p∈∂Λh
|g(p)|.

Proof. We prove part (i) of the lemma by the contradiction argument. From condition

(1.8) and the definition of the difference operator (1.4), we have

d(p) + c∗(p)−
∑

p′∈σ′(p)

a(p′) ≥ 0. (1.10)

Assume by contradiction that there exist mesh points in Λh such that

min
p∈Λh

W (p) = W (p∗) < 0. (1.11)

From condition (1.8) of the lemma, we have at p∗

W (p∗) ≥
∑

p′∗∈σ′(p∗) a(p′∗)W (p′∗)

d(p∗) + c∗(p∗)
.
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From here and (1.11), it follows that

W (p∗) ≥ λW (p∗), λ ≡
∑

p′∗∈σ′(p∗) a(p′∗)

d(p∗) + c∗(p∗)
.

With (1.10), we conclude that

W (p∗)(1− λ) ≥ 0, λ < 1.

Since (1− λ) > 0 and W (p∗) < 0, we get the contradiction with our assumption.

Now we prove part (ii) of the lemma. We consider the problem

(A(p) + c∗(p))V (p) = |φ(p)|, p ∈ Λh, V (p) = ‖g‖∂Λh , p ∈ ∂Λh. (1.12)

Denoting S(p) ≡ V (p)−W (p), p ∈ Λ
h
, from (1.7) and (1.12), we have

(A(p) + c∗(p))S(p) = |φ(p)| − φ(p) ≥ 0, S(p) ≥ 0, p ∈ ∂Λh.

From here, by using the maximum principle (i) of the lemma, we conclude that

S(p) = V (p)−W (p) ≥ 0, p ∈ Λ
h
.

Similarly, we can prove that

V (p) +W (p) ≥ 0, p ∈ Λ
h
.

Thus, we prove that

|W (p)| ≤ V (p), p ∈ Λ
h
.

We now prove that

V (p) ≤ k, k ≡ max

{
‖g‖∂Λh ,

‖φ‖Λh
‖c∗‖

Λ
h

}
. (1.13)

Case 1. Assume that in (1.13)

k = ‖g‖∂Λh ≥
‖φ‖Λh
‖c∗‖

Λ
h

.

By contradiction, suppose that for some mesh points in Λh, the following inequality

holds

V (p∗) = max
p∈Λh

V (p) > ‖g‖∂Λh . (1.14)
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From (1.12), we have

(A(p∗) + c∗(p∗))V (p∗) = |φ(p∗)|, p∗ ∈ Λh. (1.15)

From the definition of the difference operator A(p) in (1.8) and (1.14), for the left hand

side of (1.15), we have

(d(p∗) + c∗(p∗))V (p∗)−
∑

p′∗∈σ′(p∗)

a(p′∗)V (p′∗) ≥ q(p∗)V (p∗),

q(p∗) = d(p∗) + c∗(p∗)−
∑

p′∗∈σ′(p∗)

a(p′∗).

From here and (1.15), we conclude that

V (p∗) ≤
|φ(p∗)|
q(p∗)

.

From here and assumption (1.5), we conclude that

V (p∗) ≤
|φ(p∗)|
c∗(p∗)

≤ ‖φ‖Λh
c∗(p∗)

≤ ‖g‖∂Λh .

We have the contradiction with our assumption.

Case 2. Assume that in (1.13)

k =
‖φ‖Λh
‖c∗‖

≥ ‖g‖∂Λh .

We consider the same argument as in Case 1. By contradiction, we suppose that for

some mesh points in Λh, the following inequality holds

V (p∗) = max
p∈Λh

V (p) >
‖φ‖Λh
c∗(p)

. (1.16)

From (1.12), similar to (1.15), we have

(A(p∗) + c∗(p∗))V (p∗) = |φ(p∗)|, p ∈ Λh.

From here, (1.4) and (1.16), we conclude that

V (p∗) ≤
|φ(p∗)|
c∗(p∗)

≤ ‖φ‖Λh
c∗(p∗)

.

We have the contradiction with our assumption.

Remark 1.2.2. A difference scheme which satisfies the maximum principle from Lemma
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1.2.1 is said to be monotone. The monotonicity condition guarantees that systems of

algebraic equations based on such methods are well-posed.

1.2.2 The method of upper and lower solutions

Two mesh functions Ũ(p) and Û(p), p ∈ Λ
h
, are called ordered upper and lower solutions

of the difference scheme (1.3), if they satisfy inequalities

Û(p) ≤ Ũ(p), p ∈ Λ
h
, (1.17a)

A(p)Û(p) + f(p, Û) ≤ 0 ≤ A(p)Ũ(p) + f(p, Ũ), p ∈ Λh, (1.17b)

Û(p) ≤ g(p) ≤ Ũ(p), p ∈ ∂Λh. (1.17c)

For given upper and lower solutions Ũ(p), Û(p), p ∈ Λ
h
, we define the sector

〈Û , Ũ〉 =
{
U(p) : Û(p) ≤ U(p) ≤ Ũ(p), p ∈ Λ

h
}
.

We assume that f(p, U) satisfies the constraint

fu(p, U) ≤ c(p), U ∈ 〈Û , Ũ〉, p ∈ Λ
h
, fu ≡

∂f

∂u
, (1.18)

where c(p) is a positive bounded function in Λ
h
.

To solve the nonlinear difference scheme (1.3), we construct an iterative method

which satisfies the monotone convergence property. The sequence of solutions {U (n)(p)},
p ∈ Λ

h
, is calculated by the following iterative method:

(A(p) + c(p))Z(n)(p) = −K(p, U (n−1)), p ∈ Λh, (1.19)

K(p, U (n−1)) = A(p)U (n−1)(p) + f(p, U (n−1)),

Z(1)(p) = g(p)− U (0)(p), Z(n)(p) = 0, n ≥ 2, p ∈ ∂Λh,

Z(n)(p) ≡ U (n)(p)− U (n−1)(p), p ∈ Λ
h
,

where K(p, U (n−1)), p ∈ Λh is the residual of the nonlinear difference scheme (1.3) and

c(p) is defined in (1.18).

We introduce the notation

Γ(p, U) = c(p)U(p)− f(p, U), p ∈ Λ
h
, (1.20)

and prove the monotone property of Γ.

Lemma 1.2.3. Assume that U1(p) and U2(p), p ∈ Λ
h

are functions in 〈Û , Ũ〉, such
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that U1(p) ≥ U2(p) and (1.6), (1.18) are satisfied. Then

Γ(p, U1) ≥ Γ(p, U2), p ∈ Λ
h
. (1.21)

Proof. From (1.20), we have

Γ(p, U1)− Γ(p, U2) = c(p)[U1(p)− U2(p)]− [f(p, U1)− f(p, U2)].

By using the mean-value theorem, we have

f(p, U1)− f(p, U2) = fu(p,Q) (U1(p)− U2(p)) ,

where U2(p) ≤ Q(p) ≤ U1(p), p ∈ Λ
h
. From here, using the assumption of the lemma

and (1.18), we conclude (1.21).

In the following theorem, we prove the monotone convergence of upper and lower

sequences generated by (1.19).

Theorem 1.2.4. Suppose that the coefficients of the difference operator A(p) in (1.3)

satisfy (1.5) and f(p, U) satisfies (1.18). Let Ũ(p) and Û(p), p ∈ Λ
h
, be upper and

lower solutions (1.17). Then upper
{
U

(n)
(p)
}

and lower
{
U (n)(p)

}
, p ∈ Λ

h
sequences

generated by (1.19) with, respectively, U
(0)

(p) = Ũ(p) and U (0)(p) = Û(p), p ∈ Λ
h
,

converge monotonically, such that,

U (n−1)(p) ≤ U (n)(p) ≤ U (n)
(p) ≤ U (n−1)

(p), p ∈ Λ
h
. (1.22)

Proof. Since U (0)(p) = Û(p), p ∈ Λ
h
, is a lower solution, it follows that K

(
p, U (0)

)
≤ 0.

From here and (1.19), we obtain

(A(p) + c(p))Z(1)(p) ≥ 0, p ∈ Λh, Z(1)(p) ≥ 0, p ∈ ∂Λh.

By using the maximum principle in Lemma 1.2.1, we conclude that

Z(1)(p) ≥ 0, p ∈ Λ
h
. (1.23)

Similarly, for the upper solution U
(0)

(p) = Ũ(p), p ∈ Λ
h
, we have

Z
(1)

(p) ≤ 0, p ∈ Λ
h
. (1.24)

We now prove that U
(1)

(p), and U (1)(p), p ∈ Λ
h

are ordered upper and lower solutions

(1.17). Letting W (n)(p) = U
(n)

(p)−U (n)(p), p ∈ Λ
h
, using notation (1.20), from (1.19),

10



we obtain

(A(p) + c(p))W (1)(p) = Γ(p, U
(0)

)− Γ(p, U (0)), p ∈ Λh, W (1)(p) = 0, p ∈ ∂Λh.

From here, (1.21) and taking into account that U (0)(p) ≤ U
(0)

(p), p ∈ Λ
h
, by using

Lemmas 1.2.1 and 1.2.3 , we conclude that

W (1)(p) ≥ 0, p ∈ Λ
h
. (1.25)

Thus, we prove (1.17a). From (1.19) and using notation (1.20), we obtain that

K(p, U (1)) = Γ(p, U (0))− Γ(p, U (1)), p ∈ Λh. (1.26)

From here, (1.21) and (1.25), it follows that

K(p, U (1)) ≤ 0, p ∈ Λh. (1.27)

Similarly, we can prove that

K(p, U
(1)

) ≥ 0, p ∈ Λh. (1.28)

From the boundary condition in (1.19), it follows that U (1)(p) and U
(1)

(p), p ∈ ∂Λh,

satisfy (1.17c). From here, (1.25), (1.27) and (1.28), we conclude that U
(1)

(p) and

U (1)(p), p ∈ Λ
h

are ordered upper and lower solutions (1.17).

By induction on n, we can prove that U
(n)

(p) and U (n)(p), p ∈ Λ
h

are ordered upper

and lower solutions (1.17) which satisfies (1.22).

1.2.3 Existence and uniqueness of a solution of the nonlinear differ-

ence scheme

We now prove the existence of a solution of the nonlinear difference scheme (1.3).

Theorem 1.2.5. Let the assumptions in Theorem 1.2.4 be satisfied. Then the nonlinear

difference scheme (1.3) has maximal U(p) and minimal U(p), p ∈ Λ
h

solutions in the

sector 〈Û , Ũ〉. If V (p), p ∈ Λ
h

is any solution in 〈Û , Ũ〉, then

U(p) ≤ V (p) ≤ U(p), p ∈ Λ
h
. (1.29)

Proof. From (1.22), we conclude that limU (n)(p) = U(p), p ∈ Λ
h

as n→∞ exists, and

lim
n→∞

Z(n)(p) = 0, p ∈ Λ
h
. (1.30)
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From (1.19), by using the mean-value theorem, we conclude that

K(p, U (n)) = −
(
c(p)− fu(p,Q(n))

)
Z(n)(p), p ∈ Λh, (1.31)

where U (n−1)(p) ≤ Q(n)(p) ≤ U (n)(p), p ∈ Λ
h
.

By taking the limit of both sides and using (1.30), it follows that

K(p, U) = 0, p ∈ Λh. (1.32)

Similarly, we can prove that

K(p, U) = 0, p ∈ Λh,

where U(p) = limn→∞ U
(n)

(p), p ∈ Λ
h
. Thus, from here and (1.32), we conclude

that U(p) and U(p), p ∈ Λ
h
, are, respectively, minimal and maximal solutions of the

nonlinear difference scheme (1.3) in the sector 〈Û , Ũ〉.
Now we prove (1.29). Using V (p) and Û(p), p ∈ Λ

h
as initial upper and lower

iterations, the sequence
{
U (n)(p)

}
, p ∈ Λ

h
remains unchanged and converges to the

solution U(p), p ∈ Λ
h
. Taking into account that the sequence

{
U

(n)
(p)
}

, p ∈ Λ
h

with

U
(0)

(p) = V (p), p ∈ Λ
h
,

consists of the single element V (p), p ∈ Λ
h
, from (1.22), it follows that

V (p) ≥ U(p), p ∈ Λ
h
. (1.33)

Similarly, by using Ũ(p) and V (p), p ∈ Λ
h

as initial upper and lower iterations, the

sequence
{
U

(n)
(p)
}

, p ∈ Λ
h

remains unchanged and converges to the solution U(p),

p ∈ Λ
h
. Taking into account that the sequence {U(p)}, p ∈ Λ

h
, with

U (0)(p) = V (p), p ∈ Λ
h
,

consists of the single element V (p), p ∈ Λ
h
, from (1.22), it follows that

V (p) ≤ U(p), p ∈ Λ
h
.

From here and (1.33), we conclude (1.29).

For uniqueness of a solution of (1.3), we assume that f(p, U), satisfies the two sided

inequalities

c(p) ≤ fu(p, U) ≤ c(p), U(p) ∈ 〈Û , Ũ〉, p ∈ Λ
h
, (1.34)
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where c(p) is a bounded function and c(p) is defined in (1.18).

Theorem 1.2.6. Suppose that the coefficients of the difference operator A(p) in (1.3)

satisfy (1.5) and f(p, U) satisfies (1.34). Then the nonlinear difference scheme (1.3)

has a unique solution.

Proof. From Theorem 1.2.5, it follows that U(p) and U(p), p ∈ Λ
h
, are two solutions to

the nonlinear difference scheme (1.3). For uniqueness of a solution, it suffices to prove

that U(p) = U(p), p ∈ Λ
h
. From (1.22), we conclude that

U (n)(p) ≤ U(p) ≤ U(p) ≤ U (n)
(p), p ∈ Λ

h
. (1.35)

Letting W (p) = U(p)− U(p), p ∈ Λ
h
, from (1.3), it follows that

A(p)W (p) + f(p, U)− f(p, U) = 0, p ∈ Λh W (p) = 0, p ∈ ∂Λh.

By using the mean-value theorem, we conclude that

(A(p) + fu(p,Q))W (p) = 0, p ∈ Λh, W (p) = 0, p ∈ ∂Λh, (1.36)

where U(p) ≤ Q(p) ≤ U(p), p ∈ Λ
h
. From (1.35), we conclude that the partial

derivative fu(p,Q) satisfies (1.34). From here, (1.34) and (1.36), by using (1.9), we

conclude that W (p) = 0, p ∈ Λ
h
.

1.2.4 Convergence analysis of the point monotone iterative method

We now investigate convergence properties of the monotone iterative method (1.19).

Linear rate of convergence

We modify the monotone iterative method (1.19) by replacing c(p) by the constant

c̃ as follows:

c̃ = max
p∈Λ

h
c(p). (1.37)

Theorem 1.2.4 still holds if we replace c(p) by c̃.

Theorem 1.2.7. Suppose that the coefficients of the difference operator A(p) in (1.3)

satisfy (1.5) and f(p, U) satisfies (1.34). Let Ũ(p) and Û(p), p ∈ Λ
h
, be ordered upper

and lower solutions (1.17). Then for the sequence
{
U (n)(p)

}
, p ∈ Λ

h
generated by

(1.19), the following estimate holds:∥∥∥Z(n)
∥∥∥

Λ
h ≤ qn−1

∥∥∥Z(1)
∥∥∥

Λ
h , q = 1− ĉ

c̃
, ĉ = min

p∈Λ
h
c(p), n ≥ 2, (1.38)

where c(p) is defined in (1.34), c̃ is defined in (1.37), and q, 0 < q < 1 is the linear

rate of convergence.
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Proof. Similar to (1.31) with the assumption (1.37), we conclude that

K
(
p, U (n−1)

)
= −

(
c̃− fu

(
p,Q(n−1)

))
Z(n−1)(p), (1.39)

where U (n−2)(p) ≤ Q(n−1)(p) ≤ U (n−1)(p). From (1.24) and (1.25), it follows that

〈U (n−2), U (n−1)〉 ∈ 〈Û , Ũ〉, which leads to fu(p,Q(n−1)) satisfies (1.34). From here,

(1.19), (1.37) and (1.39), we obtain that

(A(p) + c̃)Z(n)(p) = (c̃− fu(p,Q(n−1))Z(n−1)(p).

By using (1.9), it follows that∥∥∥Z(n)
∥∥∥

Λ
h ≤ q

∥∥∥Z(n−1)
∥∥∥

Λ
h ,

where q < 1, since ĉ < c̃. If ĉ = c̃, it means that problem (1.2) is linear. By induction on

n, we can prove (1.38) for a lower sequence
{
U (n)(p)

}
, p ∈ Λ

h
. By a similar argument,

we can prove (1.38) for an upper sequence
{
U

(n)
(p)
}

, p ∈ Λ
h
.

Quadratic rate of convergence

We modify the monotone iterative method (1.19) by replacing c(p) by c(n−1)(p) and

calculating the sequence
{
U (n)

}
, p ∈ Λ

h
, as follows:(

A(p) + c(n−1)
)
Z(n)(p) = −K

(
p, U (n−1)

)
, p ∈ Λh, (1.40)

K(p, U (n−1)) ≡ A(p)U (n−1)(p) + f
(
p, U (n−1)

)
,

Z(1)(p) = g(p)− U (0)(p), Z(n)(p) = 0, n ≥ 2, p ∈ ∂Λh,

Z(n)(p) = U (n)(p)− U (n−1)(p), p ∈ Λ
h
,

where the mesh function c(n−1)(p) is given by

c(n−1)(p) = max
U
{fu(p, U)}, U (n−1)(p) ≤ U(p) ≤ U (n−1)

(p). (1.41)

Two sequences
{
U (n)(p)

}
and

{
U

(n)
(p)
}

, p ∈ Λ
h

are in use for calculating c(n−1)(p).

Introduce the notation

ξ = max
p∈Λ

h

[
max
U

{
|fuu(p, U)| , U(p) ∈ 〈Û , Ũ〉

}]
. (1.42)

We now prove the quadratic convergence of the monotone iterative method (1.40),

(1.41) in the following theorem.
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Theorem 1.2.8. Suppose that the coefficients of the difference operator A(p) in (1.3)

satisfy (1.5). Assume that f satisfies (1.18). Then for the sequences {U (n)
(p)} and

{U (n)(p)}, p ∈ Λ
h
, generated by (1.40), the following estimate holds:∥∥∥W (n)

∥∥∥
Λ
h ≤

ξ

ĉ

∥∥∥W (n−1)
∥∥∥2

Λ
h , (1.43)

where W (n)(p) = U
(n)

(p)−U (n)(p), p ∈ Λ
h
, ĉ and ξ are, respectively, defined in (1.38)

and (1.42).

Proof. From (1.40) with the modification (1.41), we obtain(
A(p) + c(n−1)(p)

)
W (n)(p) = G(n−1)(p), p ∈ Λh, (1.44)

G(n−1)(p) = c(n−1)(p)W (n−1)(p)− [f(p, U
(n−1)

)− f(p, U (n−1))],

W (n)(p) = 0, p ∈ ∂Λh.

By using the mean-value theorem, we have

f(p, U
(n−1)

)− f(p, U (n−1)) = fu(p,Q(n−1))W (n−1)(p),

where

Q(n−1)(p) ∈ 〈U (n−1), U
(n−1)〉.

From (1.41), we have

c(n−1)(p) = fu(p, Y (n−1)),

where Y (n−1)(p) ∈ 〈U (n−1), U
(n−1)〉. We now present the right hand side G(n−1)(p) of

(1.44) in the form

G(n−1)(p) =
(
fu(p, Y (n−1))− fu(p,Q(n−1))

)
W (n−1)(p).

By using the mean-value theorem, it follows that

fu(p, Y (n−1))− fu(p,Q(n−1)) = fuu(p,H(n−1))
(
Y (n−1)(p)−Q(n−1)(p)

)
,

where H(n−1)(p) lies between Y (n−1) and Q(n−1). Taking into account that∣∣∣Y (n−1)(p)−Q(n−1)(p)
∣∣∣ ≤ U (n−1)

(p)− U (n−1)(p).

In the notation (1.42), we can estimate G(n−1)(p) as follows:∥∥∥G(n−1)
∥∥∥

Λh
≤ ξ

∥∥∥W (n−1)
∥∥∥2

Λ
h .
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From here, (1.44) and using (1.9), we conclude (1.43).

1.3 Monotone iterative method for parabolic equations

Parabolic differential equations are used to characterize a wide family of problems

in chemistry, physics and engineering sciences. Here, we study monotone iterative

methods for solving the parabolic problem in the form

∂u

∂t
− Lu(x, t) + f(x, t, u) = 0, (x, t) ∈ QT = ω × (0, T ], (1.45)

u(x, t) = g(x, t), (x, t) ∈ ∂QT = ∂ω × (0, T ], u(x, 0) = ψ(x), x ∈ ω,

where the domain ω is bounded and connected in Rk (k = 1, 2, . . .), and ∂ω is the

boundary. The differential operator L(x, t) is given by

Lu =
k∑
ν=1

∂

∂xν

(
D(x, t)

∂u

∂xν

)
+

k∑
ν=1

vν(x, t)
∂u

∂xν
,

where the coefficients of the differential operator L(x, t) are assumed to be smooth and

D(x, t) > 0 in ω× [0, T ]. The functions f , g and ψ(x) are also assumed smooth in their

corresponding domains.

1.3.1 Nonlinear implicit difference scheme

On the domains ω and [0, T ], we introduce, respectively, meshes Λ
h

= Λh ∪ ∂Λh and

Λ
τ

= Λτ ∪ ∂Λτ , where Λh and ∂Λh are sets of interior and boundary spatial points and

Λτ = {tm : t1 < t2 < . . . < tNτ = T}, ∂Λτ = {t0 = 0}.

For solving the nonlinear problem (1.45), we consider the nonlinear implicit difference

scheme

(A(p, tm) + τ−1
m I)U(p, tm) + f(p, tm, U)− τ−1

m U(p, tm−1) = 0, p ∈ Λh, (1.46)

U(p, tm) = g(p, tm), p ∈ ∂Λh, m ≥ 1, U(p, 0) = ψ(p), p ∈ Λ
h
,

where I is the identity operator and the time step τm = tm − tm−1, m ≥ 1, t0 = 0. On

each time level tm, m ≥ 1, the difference operator A(p, tm) is defined by

A(p, tm)U(p, tm) = d(p, tm)U(p, tm)−
∑

p′∈σ′(p)

a(p′, tm)U(p′, tm), (1.47)
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where σ′(p) = σ(p)\{p}, σ(p) is a stencil of the scheme at an interior mesh point p ∈ Λh.

The coefficients of the difference operator are assumed to satisfy the assumptions

d(p, tm) > 0, a(p′, tm) ≥ 0, p′ ∈ σ′(p), (1.48)

d(p, tm)−
∑

p′∈σ′(p)

a(p′, tm) ≥ 0, p ∈ Λh.

It is assumed that the mesh domain Λ
h

is connected (1.6).

On each time level tm, m ≥ 1, we introduce the linear difference problem

(
A(p, tm) + (τ−1

m + c∗(p, tm))I
)
W (p, tm) = φ(p, tm), p ∈ Λh, (1.49)

W (p, tm) = g(p, tm), p ∈ ∂Λh, c∗(p, tm) ≥ 0, p ∈ Λ
h
.

We now consider the maximum principle for the difference operator

A(p, tm) + (τ−1
m + c∗(p, tm))I,

and give a bound on the magnitude of the solution to (1.49).

Lemma 1.3.1. Let the coefficients of the difference operator A(p, tm) satisfy (1.48)

and Λ
h

be connected (1.6).

(i) If a mesh function W (p, tm) satisfies the conditions

(
A(p, tm) + (τ−1

m + c∗(p, tm)I
)
W (p, tm) ≥ 0 (≤ 0), p ∈ Λh, (1.50)

W (p, tm) ≥ 0 (≤ 0), p ∈ ∂Λh,

then W (p, tm) ≥ 0 (≤ 0), p ∈ Λ
h
.

(ii) The following bound on the magnitude of the solution to (1.49) holds

‖W (·, tm)‖
Λ
h ≤ max

{
‖g(·, tm)‖∂Λh ,

‖φ(·, tm)‖Λh
‖c∗(·, tm)‖

Λ
h + τ−1

m

}
, (1.51)

where

‖g(·, tm)‖∂Λh ≡ max
p∂Λh

|g(p, tm)|, ‖φ(·, tm)‖Λh ≡ max
p∈Λh

|φ(p, tm)| .

Proof. The proof of the lemma on each time level tm, m ≥ 1, repeats the proof of

Lemma 1.2.1 for the case of the elliptic problem with the following modifications. In

(1.10) and (1.12), we have now, respectively,

d(p, tm) + c∗(p, tm) + τ−1
m −

∑
p′∈σ′(p)

a(p′, tm) ≥ 0,
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and

(
A(p, tm) + (c∗(p, tm) + τ−1

m )I
)
V (p, tm) = |φ(p, tm)|, p ∈ Λh,

V (p, tm) = ‖g(·, tm)‖∂Λh , p ∈ ∂Λh.

1.3.2 The method of upper and lower solutions

On each time level tm, m ≥ 1, two mesh functions Ũ(p, tm) and Û(p, tm), p ∈ Λ
h

are

called ordered upper and lower solutions of the difference scheme (1.46), if they satisfy

the inequalities

Û(p, tm) ≤ Ũ(p, tm), p ∈ Λ
h
, (1.52a)(

A(p, tm) + τ−1
m I

)
Ũp+ f(p, tm, Ũ)− τ−1

m Ũ(p, tm−1) ≥ 0, p ∈ Λh, (1.52b)(
A(p, tm) + τ−1

m I
)
Û(p, tm) + f(p, tm, Û)− τ−1

m Û(p, tm−1) ≤ 0, p ∈ Λh,

Û(p, tm) ≤ g(p, tm) ≤ Ũ(p, tm), p ∈ ∂Λh, (1.52c)

Û(p, 0) ≤ ψ(p) ≤ Ũ(p, 0), p ∈ Λ
h
.

For given upper and lower solutions Ũ(p, tm), Û(p, tm) and tm fixed, we define the

sector

〈Û(tm), Ũ(tm)〉 =
{
U(p, tm) : Û(p, tm) ≤ U(p, tm) ≤ Ũ(p, tm), p ∈ Λ

h
, m ≥ 1

}
.

We assume that f(p, tm, U) satisfies the constraint

fu(p, tm, U) ≤ c(p, tm) U(p, tm) ∈ 〈Û(tm), Ũ(tm)〉, p ∈ Λ
h
, fu ≡

∂f

∂u
, (1.53)

where c(p, tm) is a nonnegative bounded mesh function.

To solve the nonlinear difference scheme (1.46), we construct an iterative method

which satisfies the monotone convergence property. On each time level tm, m ≥ 1,

the sequence of solutions {U (n)(p, tm)}, p ∈ Λ
h

is calculated by the following iterative

method:

(
A(p, tm) + (τ−1

m + c(p, tm))I
)
Z(n)(p, tm) = −K(p, tm, U

(n−1)), p ∈ Λh, (1.54)

Z(1)(p, tm) = g(p, tm)− U (0)(p, tm), Z(n)(p, tm) = 0, m ≥ 2, p ∈ ∂Λh,

U(p, 0) = ψ(p), p ∈ Λ
h
, U(p, tm) = U (nm)(p, tm),

K(p, tm, U
(n−1)) = (A(p, tm) + τ−1

m I)U (n−1)(p, tm) + f(p, tm, U
(n−1))− τ−1

m U(p, tm−1),

Z(n)(p, tm) = U (n)(p, tm)− U (n−1)(p, tm), p ∈ Λ
h
, m ≥ 1,
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where K(p, tm, U
(n−1)), p ∈ Λh is the residual of the implicit difference scheme (1.46),

c(p, tm) is defined in (1.53), U(p, tm) is the approximate solution on each time level tm

and nm is the number of iterates on time level tm.

We introduce the notation

Γ(p, tm, U) = c(p, tm)U(p, tm)− f(p, tm, U), p ∈ Λ
h
, (1.55)

and prove the monotone property of Γ(p, tm, U).

Lemma 1.3.2. Assume that U1(p, tm) and U2(p, tm), p ∈ Λ
h
, m ≥ 1, are functions in

〈Û(tm), Ũ(tm)〉, such that U1(p, tm) ≤ U2(p, tm), and (1.6), (1.53) are satisfied. Then

Γ(p, tm, U1) ≤ Γ(p, tm, U2), p ∈ Λ
h
, m ≥ 1. (1.56)

Proof. From (1.55), we obtain

Γ(p, tm, U2)− Γ(p, tm, U1) = c(p, tm)[U2(p, tm)− U1(p, tm)]

−[f(p, tm, U2)− f(p, tm, U1)].

By using the mean-value theorem, we have

f(p, tm, U2)− f(p, tm, U1) = fu(p, tm, Q) (U2(p, tm)− U1(p, tm)) ,

where U1(p, tm) ≤ Q(p, tm) ≤ U2(p, tm), p ∈ Λ
h
. From here, using the assumption of

the lemma and (1.53), we conclude (1.56).

In the following theorem, we prove the monotone convergence of upper and lower

sequences generated by (1.54).

Theorem 1.3.3. Suppose that the coefficients of the difference operator A(p, tm) in

(1.46) satisfy (1.48), f(p, tm, U) satisfies (1.53) and Λ
h

is connected (1.6). Let Ũ(p, tm)

and Û(p, tm), p ∈ Λ
h
, m ≥ 1, be ordered upper and lower solutions (1.52). Then upper

{U (n)
(p, tm)} and lower {U (n)(p, tm)}, p ∈ Λ

h
, m ≥ 1, sequences generated by (1.54)

with, respectively, U
(0)

(p, tm) = Ũ(p, tm) and U (0)(p, tm) = Û(p, tm), p ∈ Λ
h
, m ≥ 1,

converge monotonically, such that,

U (n−1)(p, tm) ≤ U (n)(p, tm) ≤ U (n)
(p, tm) ≤ U (n−1)

(p, tm), p ∈ Λ
h
, m ≥ 1. (1.57)

Proof. Since U (0)(p, tm) = Û(p, tm), p ∈ Λ
h

is a lower solution, it follows that the

residual K(p, t1, U
(0)) ≤ 0. From here and (1.54), on the first time level t1, we obtain

(
A(p, t1) + (τ−1

1 + c(p, t1))I
)
Z(1)(p, t1) ≥ 0, p ∈ Λh, Z(1)(p, t1) ≥ 0, p ∈ ∂Λh.
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By using the maximum principle in Lemma 1.3.1, we conclude that

Z(1)(p, t1) ≥ 0, p ∈ Λ
h
. (1.58)

Similarly, for the upper solution U
(0)

(p, t1) = Ũ(p, t1), p ∈ Λ
h
, we have

Z
(1)

(p, t1) ≤ 0, p ∈ Λ
h
. (1.59)

We now prove that U
(1)

(p, t1) and U (1)(p, t1), p ∈ Λ
h

are ordered upper and lower

solutions. Denoting W (1)(p, t1) = U
(1)

(p, t1) − U (1)(p, t1), p ∈ Λ
h
, using notation

(1.55), from (1.54), we obtain that

(
A(p, t1) + (τ−1

1 + c(p, t1))I
)
W (1)(p, t1) = Γ(p, t1, U

(0)
)− Γ(p, t1, U

(0)), p ∈ Λh,

W (1)(p, t1) = 0, p ∈ ∂Λh.

From here, (1.56) and taking into account that U (0)(p, t1) ≤ U
(0)

(p, t1), p ∈ Λ
h
, by

Lemma 1.3.1, we conclude that

W (1)(p, t1) ≥ 0, p ∈ Λ
h
. (1.60)

Thus, we prove (1.52a). From (1.54) and using notation (1.55), we have

K(p, t1, U
(1)) = Γ(p, t1, U

(0))− Γ(p, t1, U
(1)), p ∈ Λh, (1.61)

From here, (1.56) and (1.60), it follows that

K(p, t1, U
(1)) ≤ 0, p ∈ Λh. (1.62)

Similarly, we can prove that

K(p, t1, U
(1)

) ≥ 0, p ∈ Λh. (1.63)

Thus, we conclude (1.52b). From the boundary and initial conditions in (1.54), it

follows that U (1)(p, t1) and U
(1)

(p, t1), p ∈ Λ
h

satisfy (1.52c). From here, (1.60), (1.62)

and (1.63), we conclude that U
(1)

(p, t1) and U (1)(p, t1), p ∈ Λ
h

are ordered upper

and lower solutions (1.52). By induction on n ≥ 1, we can prove that U
(n)

(p, t1)

and U (n)(p, t1), p ∈ Λ
h

are ordered upper and lower solutions (1.52) which satisfy the

monotone property (1.57) on the first time level t1.

On the time level t1, from (1.57), we have

Û(p, t1) ≤ U (n1)(p, t1) ≤ U (n1)
1 (p, t1) ≤ Ũ(p, t1), p ∈ Λ

h
.
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From the assumption of the theorem that Ũ(p, t2) and Û(p, t2), p ∈ Λ
h

are upper and

lower solutions (1.52), we obtain that Ũ(p, t2) and Û(p, t2), p ∈ Λ
h

are upper and lower

solutions with respect to U
(n1)

(p, t1) and U (n1)(p, t1), p ∈ Λ
h
, that is,

(A(p, t2) + τ−1
2 I)Ũ(p, t2) + f(p, t2, Ũ)− τ−1

2 U
(n1)
1 (p, t1) ≥ 0, p ∈ Λh,

(A(p, t2) + τ−1
2 I)Û(p, t2) + f(p, t2, Û)− τ−1

2 U (n1)(p, t1) ≤ 0, p ∈ Λh.

On the second time level t2, from (1.54), we have

(
A(p, t2) + (τ−1

2 + c(p, t2))I
)
U (1)(p, t2) = c(p, t2)U (0)(p, t2)− f(p, t2, U

(0))

+ τ−1
2 U (n1)(p, t1), p ∈ Λh,

U (1)(p, t2) = g(p, t2), p ∈ ∂Λh.

From here and using notation (1.55), for W (1)(p, t2) = U
(1)

(p, t2)− U (1)(p, t2), p ∈ Λ
h
,

we have the following difference problem

(
A(p, t2) + (τ−1

2 + c(p, t2))I
)
W (1)(p, t2) = Γ(p, t2, U

(0)
)− Γ(p, t2, U

(0))

+ τ−1
2

[
U

(n1)
(p, t1)− U (n1)(p, t1)

]
.

Taking into account that U (0)(p, t2) ≤ U (0)
(p, t2) and U (n1)(p, t2) ≤ U (n1)

(p, t2), p ∈ Λ
h
,

(1.56) and using Lemma 1.3.1, it follows that W (1)(p, t2) ≥ 0, that is,

U (1)(p, t2) ≤ U (1)
(p, t2), p ∈ Λ

h
.

The proof that U
(1)

(p, t2) and U (1)(p, t2), p ∈ Λ
h

are ordered upper and lower solutions

(1.52) repeats the proof on the first time level t1. By induction on n ≥ 1, we can prove

that U
(n)

(p, t2) and U (n)(p, t2), p ∈ Λ
h

are ordered upper and lower solutions (1.52),

which satisfy the monotone property (1.57) on the second time level t2. By induction

on m ≥ 1, we can prove (1.57) for m ≥ 1.

1.3.3 Existence and uniqueness of a solution to the nonlinear differ-

ence scheme

Theorem 1.3.4. Let the assumptions in Theorem 1.3.3 be satisfied. Then the nonlinear

difference scheme (1.46) has maximal U(p, tm) and minimal U(p, tm), p ∈ Λ
h
, m ≥ 1,

solutions in the sector 〈Û(tm), Ũ(tm)〉. If V (p, tm), p ∈ Λ
h
, m ≥ 1, is any other solution

in 〈Û(tm), Ũ(tm)〉, then

U(p, tm) ≤ V (p, tm) ≤ U(p, tm), p ∈ Λ
h
, m ≥ 1. (1.64)
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Proof. From (1.57), we conclude that limU (n)(p, t1) = U(p, t1), p ∈ Λ
h

as n → ∞
exists, and

Û(p, t1) ≤ U (n−1)(p, t1) ≤ U (n)(p, t1), lim
n→∞

Z(n)(p, t1) = 0, p ∈ Λ
h
, (1.65)

where U (0)(p, t1) = Û(p, t1), p ∈ Λ
h
. From (1.54) and using the mean-value theorem,

we conclude that

K(p, t1, U
(n)) = −

(
c(p, t1)− fu(p, t1, Q

(n))
)
Z(n)(p, t1), p ∈ Λh, (1.66)

where U (n−1)(p, t1) ≤ Q(n−1)(p, t1) ≤ U (n)(p, t1), p ∈ Λ
h
.

By taking limit of the both sides and using (1.65), it follows that

K (p, t1, U) = 0, p ∈ Λh. (1.67)

Similarly, we can prove that

K
(
p, t1, U

)
= 0, p ∈ Λh.

where U(p, t1) = limn→∞ U
(n)

, p ∈ Λ
h
. Thus, from here and (1.67), we conclude that

U(p, t1) and U(p, t1), p ∈ Λ
h
, are, respectively, minimal and maximal solutions of the

nonlinear difference scheme (1.46) in the sector 〈Û(t1), Ũ(t1)〉. By the assumption of

Theorem 1.3.3 that Û(p, t2) is a lower solution and from (1.65), on the second time

level t2, we obtain that

K(p, t2, Û) = (A(p, t2) + τ−1
2 I)Û(p, t2) + f(p, t2, Û)− τ−1

2 U(p, t1),

where U(p, t1), p ∈ Λ
h

is the approximate solution on the first time level t1, which

is defined in (1.54). From here and taking into account that from (1.57), U(p, t1) ≥
Û(p, t1), p ∈ Λ

h
, it follows that

K(p, t2, Û) ≤ (A(p, t2) + τ−1
2 I)Û(p, t2) + f(p, t2, Û)− τ−1

2 Û(p, t1) ≤ 0,

which means that Û(p, t2) is a lower solution with respect to U(p, t1), p ∈ Λ
h
. By a

similar argument as on the first time level t1, we can prove that

lim
n→∞

U (n)(p, t2) = U(p, t2), p ∈ Λ
h
,

exists and solves (1.46) on the second time level t2. By induction on m ≥ 1, we can
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prove that

U(p, tm) = lim
n→∞

U (n)(p, tm), p ∈ Λ
h
,

is a solution of the nonlinear difference scheme (1.46).

Similarly, we can prove that

U(p, tm) = lim
n→∞

U
(n)

(p, tm), p ∈ Λ
h
,

is another solution to the nonlinear difference scheme (1.46).

On each time level tm, m ≥ 1, the proof of (1.64) repeats the proof of (1.29) from

Theorem 1.2.5 for elliptic problems.

For uniqueness of a solution of (1.46), we assume that f(p, tm, U) satisfies the two

sided inequalities

c(p, tm) ≤ fu(p, tm, U) ≤ c(p, tm), U(p, tm) ∈ 〈Û(tm), Ũ(tm)〉, p ∈ Λ
h
, m ≥ 1,

(1.68)

where Ũ(p, tm), Û(p, tm), p ∈ Λ
h
, m ≥ 1, are given ordered upper and lower solutions of

(1.46), c(p, tm) and c(p, tm) are, respectively, bounded and nonnegative bounded mesh

functions. It is assumed that the time step τm satisfies the assumption

τm <
1

|γm|
, γm = min(0, cm), cm = min

p∈Λ
h
c(p, tm), m ≥ 1, (1.69)

where c(p, tm) is defined in (1.68). If γm = 0, then no restrictions on time exist.

In the following theorem, we prove the uniqueness of a solution of the nonlinear

difference scheme (1.46).

Theorem 1.3.5. Let the mesh Λ
h

be connected (1.6), and τm, m ≥ 1, satisfy (1.69).

Assume that the coefficients of the difference operator A(p, tm) in (1.46) satisfy (1.48)

and f(p, tm, U) satisfies (1.68). Then the nonlinear difference scheme (1.46) has a

unique solution.

Proof. On each time level tm, m ≥ 1, from Theorem 1.3.4, it follows that U(p, tm) and

U(p, tm), p ∈ Λ
h
, m ≥ 1, are two solutions of the nonlinear difference scheme (1.46).

For uniqueness of a solution, it is sufficient to prove that U(p, tm) = U(p, tm), p ∈ Λ
h
,

m ≥ 1. On the first time level t1, in the notation W (p, t1) = U(p, t1)−U(p, t1), p ∈ Λ
h
,

from (1.46), it follows that

(A(p, t1) + τ−1
1 I)W (p, t1) + f(p, t1, U)− f(p, t1, U) = 0, p ∈ Λh,

W (p, t1) = 0, p ∈ ∂Λh.
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From here, by using the mean-value theorem, we conclude that

(
A(p, t1) + (τ−1

1 + fu(p, t1, Q))I
)
W (p, t1) = 0, p ∈ Λh, W (p, t1) = 0, p ∈ ∂Λh,

(1.70)

where U(p, t1) ≤ Q(p, t1) ≤ U(p, t1). From (1.57) and (1.64), we conclude that

fu(p, t1, Q) satisfies (1.68). From (1.68) and (1.69), we obtain

τ−1
1 + fu(p, t1, Q) > 0.

From here and (1.70), by using Lemma 1.3.1, we conclude that W (p, t1) = 0, p ∈ Λh.

On the second time level t2, we have

(
A(p, t2) + (τ−1

2 + fu(p, t2, Q))I
)
W (p, t2) = 0, p ∈ Λh, W (p, t2) = 0, p ∈ ∂Λh,

where U(p, t2) ≤ Q(p, t2) ≤ U(p, t2), p ∈ Λ
h
. By the same argument as for W (p, t1) = 0,

p ∈ Λ
h
, we obtain W (p, t2) = 0, p ∈ Λ

h
. By induction on m, m ≥ 1, we can prove that

W (p, tm) = 0, p ∈ Λ
h
, m ≥ 1. Thus, we prove the theorem.

1.3.4 Convergence analysis of the monotone iterative method

Convergence analysis of the monotone iterative method on [0,T]

Here, we investigate convergence of the monotone iterative method of the whole

time interval [0, T ]. We now choose a stopping criterion for the monotone iterative

method (1.54) as follows: ∥∥∥K (·, tm, U (n)
)∥∥∥

Λh
≤ δ, m ≥ 1, (1.71)

where U (n)(p, tm), is generated by (1.54), and δ is a prescribed accuracy. We set up

U(p, tm) = U (nm)(p, tm), p ∈ Λ
h
, m ≥ 1, such that nm is minimal subject to (1.71). We

now prove the following theorem for the convergence of the iterative method (1.54),

(1.71).

Theorem 1.3.6. Let the mesh Λ
h

be connected (1.6), and τm, m ≥ 1, satisfy (1.69).

Assume that the coefficients of the difference operator A(p, tm) in (1.46) satisfy (1.48)

and f(p, tm, U) satisfies (1.68). Then the following estimate holds:

max
m≥1
‖U(·, tm)− U∗(·, tm)‖

Λ
h ≤ Tδ, (1.72)

where U(p, tm), p ∈ Λ
h
, m ≥ 1 is the approximate solution generated by (1.54), (1.71)

and U∗(p, tm), p ∈ Λ
h
, m ≥ 1, is the unique solution of the nonlinear difference scheme

(1.46). Furthermore, on each time level m ≥ 1, the sequences converge monotonically
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(1.57).

Proof. Theorem 1.3.3 gives the monotone convergence of the sequence {U (m)(p, tm)},
p ∈ Λ

h
, m ≥ 1. The existence and uniqueness of a solution of the nonlinear differ-

ence scheme (1.46) are proved in Theorems 1.3.4 and 1.3.5. We present the difference

problem for U(p, tm) = U
(nm)

(p, tm), p ∈ Λ
h
, m ≥ 1 in the form

(A(p, tm) + τ−1
m I)U(p, tm) + f(p, tm, U)− τ−1

m U(p, tm−1) = K(p, tm, U), p ∈ Λh,

U1(p, tm) = g(p, tm), p ∈ ∂Λh.

From (1.46), for U∗(p, tm), we have

(A(p, tm) + τ−1
m I)U∗(p, tm) + f(p, tm, U

∗)− τ−1
m U∗(p, tm−1) = 0, p ∈ Λh.

From here, for W (p, tm) = U(p, tm) − U∗(p, tm), p ∈ Λ
h

and using the mean-value

theorem, it follows that

(A(p, tm) + τ−1
m I)W (p, tm) + fu(p, tm, Q)W (p, tm) = K(p, tm, U

(nm)
)

+ τ−1
m W (p, tm−1),

p ∈ Λh, W (p, tm) = 0, p ∈ ∂Λh,

where U∗(p, tm) ≤ Q(p, tm) ≤ U(p, tm), p ∈ Λ
h
, m ≥ 1. From here, (1.68), (1.69) and

(1.71), by using (1.51), we obtain

∥∥W (·, tm)
∥∥

Λ
h ≤ τmδ +

∥∥W (·, tm−1)
∥∥

Λ
h .

Taking into account that
∥∥W (·, t0)

∥∥ = 0, by induction on m ≥ 1, we conclude that

‖W (·, tm)‖
Λ
h ≤ δ

m∑
s=1

τs ≤ δT.

Thus, we prove the theorem.

We now investigate convergence properties of the monotone iterative method (1.54)

on each time level.

Linear rate of convergence

We modify the monotone iterative method (1.54) by replacing c(p, tm) by the con-

stant c̃ as follows:

c̃ = max
(p,tm)∈Λ

h×Λ
τ
c(p, tm). (1.73)

Theorem 1.3.3 still holds if we replace c(p, tm) by c̃.
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Theorem 1.3.7. Suppose that the coefficients of the difference operator A(p, tm) in

(1.46) satisfy (1.48), f(p, tm, U) satisfies (1.53) and Λ
h

is connected (1.6). Then for

the sequence {U (n)(p, tm)}, p ∈ Λ
h
, m ≥ 1, generated by (1.54), (1.73), the following

estimate holds:

‖Z(n)(·, tm)‖
Λ
h ≤ qn−1

m ‖Z(1)(·, tm)‖
Λ
h , qm =

c̃

c̃+ τ−1
m
, (1.74)

where qm < 1 is the linear rate of convergence.

Proof. We consider the case of lower solution. Similar to (1.66), with assumption (1.73),

we conclude that

K(p, tm, U
(n−1)) = −

(
c̃− fu(p, tm, Q

(n−1))
)
Z(n−1)(p, tm), p ∈ Λh, (1.75)

where U (n−1)(p, tm) ≤ Q(n−1)(p, tm) ≤ U (n−1)(p, tm), p ∈ Λ
h
, m ≥ 1. From (1.59) and

(1.60), it follows that the partial derivative fu(p, tn, Q
(n−1)

) satisfies (1.53). From here,

(1.54), (1.73) and (1.75), we obtain that

(
A(p, tm) + (τ−1

m + c̃)I
)
Z(n)(p, tm) =

(
c̃− fu(p, tm, Q

(n−1))
)
Z(n−1)(p, tm), p ∈ Λh.

By using Lemma 1.3.1, it follows that∥∥∥Z(n)(·, tm)
∥∥∥

Λ
h ≤ qm

∥∥∥Z(n−1)(·, tm)
∥∥∥

Λ
h .

By induction on n, we can prove (1.74) for a lower sequence {U (n)(p, tm)}, p ∈ Λ
h
, m ≥

1. By a similar argument, we can prove (1.74) for {U (n)
(p, tm)}, p ∈ Λ

h
, m ≥ 1.

Quadratic rate of convergence

On each time level tm, m ≥ 1, we modify the monotone iterative method (1.54) by

replacing c(p, tm) by c(n−1)(p, tm), n ≥ 1, and calculating the sequence {U (n)(p, tm)},
p ∈ Λ

h
, m ≥ 1, as follows:(

A(p, tm) + (τ−1
m + c(n−1)(p, tm))I

)
Z(n)(p, tm) = −K(p, tm, U

(n−1)), p ∈ Λh, (1.76)

Z(1)(p, tm) = g(p, tm)− U (0)(p, tm), Z(n)(p, tm) = 0, n ≥ 2, p ∈ ∂Λh,

U(p, 0) = ψ(p), p ∈ Λ
h
, U(p, tm) = U (nm)(p, tm),

K(p, tm, U
(n−1)) = (A(p, tm) + τ−1

m I)U (n−1)(p, tm) + f(p, tm, U
(n−1))− τ−1

m U(p, tm−1),

Z(n)(p, tm) = U (n)(p, tm)− U (n−1)(p, tm), p ∈ Λ
h
, m ≥ 1,
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where the mesh function c(n−1)(p, tm) is given by

c(n−1)(p, tm) = max
U
{fu(p, tm, U)}, U (n−1)(p, tm) ≤ U(p, tm) ≤ U (n−1)

(p, tm). (1.77)

On each time level m ≥ 1, two sequences {U (n)
(p, tm)} and {U (n)(p, tm)}, p ∈ Λ

h
,

m ≥ 1, are in use for calculating c(n−1)(p, tm).

We introduce the notation

ξm = max
p∈Λ

h

[
max
U

{
|fuu(p, tm, U)| , U(p, tm) ∈ 〈Û(tm), Ũ(tm)〉, p ∈ Λ

h
}]

. (1.78)

We now prove the quadratic convergence of the monotone iterative method (1.76),

(1.77) in the following theorem.

Theorem 1.3.8. Suppose that the coefficients of the difference operator A(p, tm) in

(1.46) satisfy (1.48), and mesh Λ
h

is connected (1.6). Assume that f satisfies (1.53).

Then for the sequences {U (m)
(p, tm)} and {U (m)

(p, tm)}, p ∈ Λ
h
, m ≥ 1, generated by

(1.76), (1.77), the following estimate holds:∥∥∥W (n)(·, tm)
∥∥∥

Λ
h ≤ τmξm

∥∥∥W (n−1)(·, tm)
∥∥∥2

Λ
h , (1.79)

where W (n)(p, tm) = U
(n)

(p, tm) − U (n)(p, tm), p ∈ Λ
h
, m ≥ 1, and ξm is defined in

(1.78).

Proof. From (1.76) and (1.77), we obtain(
A(p, tm) + (τ−1

m + c(n−1)(p, tm))I
)
W (n)(p, tm) = G(n−1)(p, tm), p ∈ Λh, (1.80)

G(n−1)(p, tm) = c(n−1)(p, tm)W (n−1)(p, tm)−
(
f(p, tm, U

(n−1)
)− f(p, tm, U

(n−1))
)
,

W (n)(p, tm) = 0, p ∈ ∂Λh.

By using the mean-value theorem, we have

f(p, tm, U
(n−1)

)− f(p, tm, U
(n−1)) = fu(p, tm, Q

(n−1))W (n−1)(p, tm),

where U (n−1)(p, tm) ≤ Q(n−1)(p, tm) ≤ U (n−1)
(p, tm). From (1.77), we have

c(n−1)(p, tm) = fu(p, tm, Y
(n−1)),

where U (n−1)(p, tm) ≤ Y (n−1)(p, tm) ≤ U
(n−1)

(p, tm). We now present the right hand
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side of G(n−1)(p, tm) in (1.80) as follows:

G(n−1)(p, tm) =
(
fu(p, tm, Y

(n−1))− fu(p, tm, Q
(n−1))

)
W (n−1)(p, tm).

By applying the mean-value theorem, we have

fu(p, tm, Y
(n−1))− fu(p, tm, Q

(n−1)) =

fuu(p, tm, H
(n−1))

(
Y (n−1)(p, tm)−Q(n−1)(p, tm)

)
,

where H(n−1)(p, tm) lies between Q(n−1)(p, tm) and Y (n−1)(p, tm). Taking into account

that ∣∣∣Y (n−1)(p, tm)−Q(n−1)(p, tm)
∣∣∣ ≤ U (n−1)

(p, tm)− U (n−1)(p, tm).

In the notation (1.78), we estimate G(n−1)(p, tm) as follows:∥∥∥G(n−1)(·, tm)
∥∥∥

Λh
≤ ξm

∥∥∥W (n−1)(·, tm)
∥∥∥2

Λ
h .

From here, (1.80) and using (1.51), we conclude (1.79).

1.4 General overview of the thesis

In Chapter 2, the nonlinear difference scheme for approximating the elliptic prob-

lems is presented. For solving the nonlinear difference scheme, the point Jacobi and

point Gauss-Seidel iterative methods are constructed and their monotone properties

are proved. The uniqueness of a solution of the nonlinear difference scheme is given.

We prove that the numerical solution converges to the unique solution of the nonlinear

elliptic problem and estimate the L∞ discrete-norm of the error between the numer-

ical and exact solutions of the nonlinear difference scheme and the error between the

numerical solution and the exact solution of the elliptic problem. We prove that the

point monotone Gauss-Seidel method converges faster than the point monotone Ja-

cobi method. Initial upper and lower solutions to start the point monotone iterative

methods are constructed. Numerical experiments are presented.

In Chapter 3, for solving nonlinear systems of elliptic differential equations with

quasi-monotone nondecreasing and nonincreasing reaction functions, we present the

nonlinear difference scheme which approximates the nonlinear elliptic systems. We con-

struct the point monotone Jacobi and Gauss-Seidel methods for solving the nonlinear

difference scheme and prove their monotone properties. The existence and uniqueness

of a solution of the nonlinear difference scheme with quasi-monotone nondecreasing

and quasi-monotone nonincreasing reaction functions are proved. We prove that the
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numerical solution converges to the unique solution of the nonlinear elliptic problem

and estimate the L∞ discrete-norm of the error between the numerical and exact so-

lutions of the nonlinear difference scheme and the error between the numerical solu-

tion and the exact solution of the elliptic system. We prove that the point monotone

Gauss-Seidel methods converge faster than the point monotone Jacobi methods for the

quasi-monotone nondecreasing and quasi-monotone nonincreasing cases. Constructions

of initial upper and lower solutions to start the point monotone iterative methods are

presented.

In Chapter 4, for solving nonlinear systems of elliptic differential equations, we

construct the block monotone Jacobi and Gauss-Seidel methods with quasi-monotone

nondecreasing and nonincreasing reaction functions and prove their monotone prop-

erties. We prove that the numerical solution converges to the unique solution of the

nonlinear elliptic problem and estimate the L∞ discrete-norm of the error between

the numerical and exact solutions of the nonlinear difference scheme and the error be-

tween the numerical solution and the exact solution of the elliptic system. For the

quasi-monotone nondecreasing and nonincreasing cases, we prove that the block mono-

tone Gauss-Seidel methods converge faster than the block monotone Jacobi methods.

Numerical experiments are presented.

In Chapter 5, for solving nonlinear systems of parabolic differential equations, the

two classes of coupled parabolic systems with quasi-monotone nondecreasing and non-

increasing reaction functions are considered. We present a nonlinear difference scheme

which approximates the parabolic system. For solving the nonlinear difference scheme,

we construct the point monotone Jacobi and Gauss-Seidel methods and prove their

monotone properties on each time level. The existence and uniqueness of a solution of

the nonlinear difference scheme, for the quasi-monotone nondecreasing and nonincreas-

ing cases, are proved. We prove that the numerical solution converges to the unique

solution of the nonlinear parabolic problem and estimate the L∞ discrete-norm of the

error between the numerical and exact solutions of the nonlinear difference scheme, and

the error between the numerical solution and the exact solution of the parabolic prob-

lem. We prove that for the quasi-monotone nondecreasing and nonincreasing cases,

the point monotone Gauss-Seidel methods converge faster than the point monotone

Jacobi methods. For quasi-monotone nondecreasing and nonincreasing cases, on each

time level, we construct initial upper and lower solutions to start the point monotone

iterative methods. Numerical experiments are presented.

In Chapter 6, for solving the nonlinear parabolic systems with quasi-monotone

nondecreasing and nonincreasing reaction functions, we construct the block monotone

Jacobi and Gauss-Seidel iterative methods and prove their monotone properties on each

time level. For the quasi-monotone nondecreasing and nonincreasing cases, we prove
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that the numerical solution converges to the unique solution of the nonlinear parabolic

problem and estimate the L∞ discrete-norm of the error between the numerical and

exact solutions of the nonlinear difference scheme and the error between the numerical

solution and the exact solution of the parabolic problem. Numerical experiments are

presented.
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Chapter 2

Jacobi and Gauss-Seidel methods

for elliptic boundary value

problems

In this chapter, for solving nonlinear elliptic problems, based on the method of up-

per and lower solutions, we employ point monotone Jacobi and Gauss-Seidel iterative

methods. Some properties of solutions to the continuous problem are reviewed. Dif-

ference schemes which approximate the nonlinear continuous problem are presented.

In the view of the upper and lower solutions method, the point monotone Jacobi and

Gauss-Seidel methods are constructed. Convergence analysis of the point monotone

iterative methods are introduced. We construct initial upper and lower solutions to

start the monotone iterative methods. Numerical experiments illustrate the theoretical

results.

By comparing the numerical results in this chapter with [61], we conclude that

to attain the required stopping test, the numbers of iterations for the point monotone

methods are almost double of the numbers of iterations for the block monotone methods

in [61].

The numerical experiments give a motivation to investigate block monotone iterative

methods rather than point monotone iterative methods for solving nonlinear differential

problems.
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2.1 Properties of solutions to the nonlinear elliptic prob-

lem

We consider properties of the nonlinear elliptic boundary value problem

− Lu(x, y) + f(x, y, u) = 0, (x, y) ∈ ω, (2.1)

ω = {(x, y) : 0 < x < l1, 0 < y < l2}, u(x, y) = g(x, y), (x, y) ∈ ∂ω,

where l1 and l2 are constants and ∂ω is the boundary of ω. The differential operator L

is defined by

Lu(x, y) ≡ D(x)(x, y)uxx +D(y)(x, y)uyy + v(x)(x, y)ux + v(y)(x, y)uy, (2.2)

where D(x)(x, y) and D(y)(x, y) are positive functions. It is assumed that the functions

f(x, y), g(x, y), D(x)(x, y), D(y)(x, y), v(x)(x, y) and v(y)(x, y) are smooth in their re-

spective domains. It is clear that the differential operator Lu(x, y) in (2.2) is uniformly

elliptic which is a special case of (1.1) and the coefficient matrix[
D(x)(x, y) 0

0 D(y)(x, y)

]
,

is positive definite and bounded.

Two functions ũ(x, y) and û(x, y) are called ordered upper and lower solutions to

(2.1), if they satisfy the inequalities

û(x, y) ≤ ũ(x, y), (x, y) ∈ ω, (2.3a)

−Lû(x, y) + f(x, y, û) ≤ 0 ≤ −Lũ(x, y) + f(x, y, ũ), (x, y) ∈ ω, (2.3b)

û(x, y) ≤ g(x, y) ≤ ũ(x, y), (x, y) ∈ ∂ω. (2.3c)

For given ordered upper ũ(x, y) and lower û(x, y) solutions, a sector 〈û, ũ〉 is defined in

the form

〈û, ũ〉 = {u(x, y) : û(x, y) ≤ u(x, y) ≤ ũ(x, y), (x, y) ∈ ω} .

To ensure the existence of a solution to (2.1), in the sector 〈û, ũ〉, the function f(x, y, u)

is assumed to satisfy the constraint

fu(x, y, u) ≤ c(x, y), u(x, y) ∈ 〈û, ũ〉, (x, y) ∈ ω,
(
fu =

∂f

∂u

)
, (2.4)

where c is a nonnegative bounded function. The following theorem states the existence
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of a solution to problem (2.1).

Theorem 2.1.1. Let ũ(x, y), û(x, y) be ordered upper and lower solutions of (2.1), and

f satisfy (2.4). Then problem (2.1) has a solution u∗(x, y) ∈ 〈û, ũ〉.

The proof of the theorem is given in Theorem 3.2.1, [59].

For uniqueness of a solution to (2.1), the function f(x, y, u) is assumed to satisfy

the two-sided constraints

0 < fu(x, y, u) ≤ c(x, y), u(x, y) ∈ 〈û, ũ〉, (x, y) ∈ ω. (2.5)

Theorem 2.1.2. Let ũ, û be ordered upper and lower solutions of (2.1), and f satisfy

(2.5). Then problem (2.1) has a unique solution u∗(x, y) ∈ 〈û(x, y), ũ(x, y)〉.

The proof of the theorem is given in Theorem 3.3.1, [59].

2.2 The nonlinear difference scheme

On ω, we introduce a rectangular mesh Λ
h

= Λ
hx × Λ

hy
:

Λ
hx

= {xi, i = 0, 1, . . . , Nx; x0 = 0, xNx = l1; hx = xi+1 − xi},

Λ
hy

= {yj , j = 0, 1, . . . , Ny; y0 = 0, yNy = l2; hy = yj+1 − yj},

where xi and yj are equally spaced. By using the central difference approximations for

the first and second derivatives, we introduce the nonlinear difference scheme in the

form

AijUij + fij(Uij) = 0, (i, j) ∈ Ωh, Uij = gij , (i, j) ∈ ∂Ωh, (2.6)

where Ωh is the set of indices of interior mesh points in Λ
h
, ∂Ωh is the set of indices

of boundary mesh points in Λ
h

and the central difference approximations for the first

and second derivatives are given by

D2
xUij =

Ui−1,j − 2Uij + Ui+1,j

h2
x

, D2
yUij =

Ui,j−1 − 2Uij + Ui,j+1

h2
y

, (2.7)

D1
xUij =

Ui+1,j − Ui−1,j

2hx
, D1

yUij =
Ui,j+1 − Ui,j−1

2hy
.
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When no confusion arises, we write f(xi, yj , U(xi, yj)) = fij(Uij). The difference oper-

ator AijUij in (2.6) is defined by

AijUij = A(x)
ij Uij +A(y)

ij Uij , (2.8)

A(x)
ij Uij =

1

h2
x

[
−lijUi−1,j + 2D

(x)
ij Uij − rijUi+1,j

]
,

A(y)
ij Uij =

1

h2
y

[
−bijUi,j−1 + 2D

(y)
ij Uij − qijUi,j+1

]
,

lij =
D

(x)
ij

h2
x

−
v

(x)
ij

2hx
, rij =

D
(x)
ij

h2
x

+
v

(x)
ij

2hx
,

bij =
D

(y)
ij

h2
y

−
v

(y)
ij

2hy
, qij =

D
(y)
ij

h2
y

+
v

(y)
ij

2hy
.

To insure that lij , rij , bij and qij are positive, we choose the step sizes hx and hy, which

satisfy the inequalities

hx <
2D

(x)
ij

|v(x)
ij |

, hy <
2D

(y)
ij

|v(y)
ij |

, i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny − 1.

Remark 2.2.1. If the effect of convection v(x, y) dominates diffusion D(x, y) in (2.2)

to the extent that these conditions require prohibitively small hx and hy, then an upwind

difference scheme can be used to remove any restriction on hx and hy, that is,

D′xUij =


Ui+1,j−Uij

hx
, if v

(x)
ij ≤ 0,

Uij−Ui−1,j

hx
, if v

(x)
ij ≥ 0,

(2.9)

D′yUij =


Ui,j+1−Uij

hy
, if v

(y)
ij ≤ 0,

Uij−Ui,j−1

hy
, if v

(y)
ij ≥ 0.

(2.10)

We introduce the linear problem

AijWij + c∗ijWij = Φij , (i, j) ∈ Ωh, Wij = gij , (i, j) ∈ ∂Ωh, (2.11)

where c∗ij is a nonnegative mesh function. We formulate the maximum principle for the

difference operator Aij + c∗ij , (i, j) ∈ Ωh.

Lemma 2.2.2. If a mesh function Wij satisfies the conditions

AijWij + c∗ijWij ≥ 0 (≤ 0), (i, j) ∈ Ωh, Wij ≥ 0 (≤ 0), (i, j) ∈ ∂Ωh,

then Wij ≥ 0 (≤ 0), (i, j) ∈ Ω
h

= Ωh ∪ ∂Ωh.
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The proof of the lemma is given in Lemma 1.2.1, Chapter 1.

Two mesh functions Ũij and Ûij , (i, j) ∈ Ω
h

are called ordered upper and lower

solutions of (2.6), if they satisfy the inequalities

Ûij ≤ Ũij , (i, j) ∈ Ω
h
, (2.12a)

AijÛij + fij(Ûij) ≤ 0 ≤ AijŨij + fij(Ũij), (i, j) ∈ Ωh, (2.12b)

Ûij ≤ gij ≤ Ũij , (i, j) ∈ ∂Ωh. (2.12c)

For given ordered upper Ũij and lower Ûij , (i, j) ∈ Ω
h

solutions, a sector 〈Û , Ũ〉 is

defined as follows

〈Û , Ũ〉 =
{
Uij : Ûij ≤ Uij ≤ Ũij , (i, j) ∈ Ω

h
}
.

In the sector 〈Û , Ũ〉, we assume that the function f in (2.1) satisfies the constraint

∂fij(Uij)

∂u
≤ cij , Uij ∈ 〈Û , Ũ〉, (i, j) ∈ Ω

h
, (2.13)

where cij , (i, j) ∈ Ω
h

is a nonnegative bounded mesh function.

We introduce the notation

Γij(Uij) ≡ cijUij − fij(Uij), (i, j) ∈ Ω
h
, (2.14)

where cij is defined in (2.13), and prove a monotone property of Γij .

Lemma 2.2.3. Suppose that Uij and Vij, (i, j) ∈ Ω
h

are mesh functions in 〈Û , Ũ〉,
which satisfy Uij ≥ Vij, (i, j) ∈ Ω

h
, and (2.13) is satisfied. Then

Γij(Uij) ≥ Γij(Vij), (i, j) ∈ Ω
h
. (2.15)

Proof. From (2.14), we have

Γij(Uij)− Γij(Vij) = cij(Uij − Vij)− [fij(Uij)− fij(Vij)].

From here and using the mean-value theorem, we obtain

Γij(Uij)− Γij(Vij) =

(
cij −

∂fij(Qij)

∂u

)
(Uij − Vij) ,

where, Vij ≤ Qij ≤ Uij , (i, j) ∈ Ω
h
. From here, (2.13) and taking into account that

Uij ≥ Vij , , (i, j) ∈ Ω
h
, we conclude (2.15).
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2.3 The point monotone Jacobi and Gauss-Seidel iterative

methods

Write down the difference scheme (2.6) at an interior mesh point (i, j) ∈ Ωh in the form

dijUij − lijUi−1,j − rijUi+1,j − bijUi,j−1 − qijUi,j+1 = −fij(Uij), (i, j) ∈ Ωh, (2.16)

dij = lij + rij + bij + qij , lij , rij , bij , qij > 0, (2.17)

where lij , rij , bij and qij are defined in (2.8).

We now present the point monotone Jacobi and Gauss–Seidel methods for the non-

linear difference scheme (2.16). The upper {U (n)
ij } and lower {U (n)

ij }, (i, j) ∈ Ω
h

se-

quences of solutions are calculated by the following point Jacobi and Gauss–Seidel

methods

LijZ(n)
ij = −Kij(U (n−1)

ij ), (i, j) ∈ Ωh, n ≥ 1, (2.18)

Z
(1)
ij = gij − U (0)

ij , Z
(n)
ij = 0, n ≥ 2, (i, j) ∈ ∂Ωh,

LijZ(n)
ij ≡ (dij + cij)Z

(n)
ij − η

(
lijZ

(n)
i−1,j + bijZ

(n)
i,j−1

)
,

Z
(n)
ij = U

(n)
ij − U

(n−1)
ij , (i, j) ∈ Ω

h
,

Kij(U (n−1)
ij ) ≡ dijU (n−1)

ij − lijU (n−1)
i−1,j − rijU

(n−1)
i+1,j − bijU

(n−1)
i,j−1

− qijU (n−1)
i,j+1 + fij(U

(n−1)
ij ),

where Kij(U (n−1)
ij ), (i, j) ∈ Ωh is the residual of the nonlinear difference scheme (2.16)

on U
(n−1)
ij , (i, j) ∈ Ω

h
, and cij is defined in (2.13). For η = 0 and η = 1, we have,

respectively, the point Jacobi and Gauss-Seidel methods.

Theorem 2.3.1. Let Ũij and Ûij, (i, j) ∈ Ω
h

be ordered upper and lower solutions

(2.12). Suppose that the function f in (2.1) satisfies (2.13). Then the upper {U (n)
ij } and

lower {U (n)
ij }, (i, j) ∈ Ω

h
sequences generated by (2.18) with, respectively, U

(0)
ij = Ũij

and U
(0)
ij = Ûij, (i, j) ∈ Ω

h
converge monotonically from above to a maximal solution

U ij, (i, j) ∈ Ω
h
, and from below to a minimal solution U ij, (i, j) ∈ Ω

h
, that is,

U
(n−1)
ij ≤ U (n)

ij ≤ U ij ≤ U ij ≤ U
(n)
ij ≤ U

(n−1)
ij , (i, j) ∈ Ω

h
. (2.19)

Proof. Since U
(0)
ij , (i, j) ∈ Ωh is an initial upper solution, from (2.12b), it follows that

Kij(U
(0)
ij ) ≥ 0, (i, j) ∈ Ωh, and from (2.18), we have

(dij + cij)Z
(1)
ij − ηlijZ

(1)
i−1,j − ηbijZ

(1)
i,j−1 ≤ 0, (i, j) ∈ Ωh, (2.20)

Z
(1)
ij ≤ 0, (i, j) ∈ ∂Ωh.
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From here, η = 0, 1 and bi,1 > 0 in (2.17), for j = 1 in (2.20), we obtain

(di,1 + ci,1)Z
(1)
i,1 − ηli,1Z

(1)
i−1,1 ≤ 0, i = 1, 2, . . . , Nx− 1, Z

(1)
i,1 ≤ 0, i = 0, Nx. (2.21)

Taking into account that η = 0, 1, l1,1 > 0 in (2.17) and using the maximum principle

in Lemma 2.2.2, for i = 1 in (2.21), we have Z
(1)
1,1 ≤ 0. From here, l2,1 > 0 in (2.17) and

using the maximum principle in Lemma 2.2.2, for i = 2 in (2.21), we obtain Z
(1)
2,1 ≤ 0.

By induction on i, we can prove that Z
(1)
i,1 ≤ 0, i = 0, 1, . . . , Nx.

By a similar manner, for j = 2 in (2.20), we conclude that Z
(1)
i,2 ≤ 0, i =

0, 1, . . . , Nx. By induction on j, we can prove that

Z
(1)
ij ≤ 0, (i, j) ∈ Ω

h
. (2.22)

Similarly, for an initial lower solution U
(0)
ij , (i, j) ∈ Ω

h
, we have

Z
(1)
ij ≥ 0, (i, j) ∈ Ω

h
. (2.23)

We now prove that U
(1)
ij and U

(1)
ij , (i, j) ∈ Ω

h
are ordered upper and lower solutions

(2.12). Letting W
(n)
ij = U

(n)
ij − U

(n)
ij , (i, j) ∈ Ω

h
, using notation (2.14), from (2.18), we

conclude that

(dij + cij)W
(1)
ij − ηlijW

(1)
i−1,j − ηbijW

(1)
i,j−1 = rijW

(0)
i+1,j + qijW

(0)
i,j+1 + Γij(U

(0)
ij )− Γij(U

(0)
ij ),

(i, j) ∈ Ωh, W
(1)
ij = 0, (i, j) ∈ ∂Ωh.

From here, (2.16) and taking into account that U
(0)
ij ≥ U

(0)
ij , (i, j) ∈ Ω

h
, by Lemma

2.2.3, we conclude that

(dij + cij)W
(1)
ij − ηlijW

(1)
i−1,j − ηbijW

(1)
i,j−1 ≥ 0, (i, j) ∈ Ωh, W

(1)
ij = 0, (i, j) ∈ ∂Ωh.

(2.24)

From here, η = 0, 1 and li,1 > 0 in (2.17), for j = 1 in (2.24), we obtain

(di,1 + ci,1)W
(1)
i,1 − ηli,1W

(1)
i−1,1 ≥ 0, i = 1, 2, . . . , Nx − 1, W

(1)
i,1 = 0, i = 0, Nx.

From here, by Lemma 2.2.2, for i = 1, we have W
(1)
1,1 ≥ 0. From here, l2,1 > 0 in (2.17)

and using Lemma 2.2.2, for i = 2, we conclude that W
(1)
2,1 ≥ 0. By induction on i, we

can prove that W
(1)
i,1 ≥ 0, i = 0, 1, . . . , Nx.

By a similar manner, for j = 2 in (2.24), we can prove that W
(1)
i,2 ≥ 0, i =

0, 1, . . . , Nx. By induction on j, we can prove that

W
(1)
ij ≥ 0, (i, j) ∈ Ω

h
, (2.25)
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that is, we prove (2.12a). We now prove (2.12b). From (2.18) and using the mean-value

theorem, we conclude that

Kij(U
(1)
ij ) = −

(
cij −

∂fij(Q
(1)
ij )

∂u

)
Z

(1)
ij − rijZ

(1)
i+1,j − qijZ

(1)
i,j+1, (2.26)

where U
(1)
ij ≤ Q

(1)
ij ≤ U

(0)
ij , (i, j) ∈ Ωh. From (2.23) and (2.25), it follows that

∂fij(Q
(1)
ij )
/
∂u satisfies (2.13), and from (2.13), (2.17), (2.22) and (2.26), we conclude

that

Kij(U
(1)
ij ) ≥ 0, (i, j) ∈ Ωh,

which means that U
(1)
ij , (i, j) ∈ Ω

h
satisfies (2.12b). By a similar argument, we can

prove that

Kij(U (1)
ij ) ≤ 0, (i, j) ∈ Ωh,

which means that U
(1)
ij , (i, j) ∈ Ω

h
satisfies (2.12b). From the boundary condition on

∂Ωh in (2.18), it is clear that U
(1)
ij and U

(1)
ij satisfy (2.12c). Thus, we prove that U

(1)
ij

and U
(1)
ij , (i, j) ∈ Ω

h
are ordered upper and lower solutions (2.12).

Now, by induction on n, we can prove that {U (n)
ij }, (i, j) ∈ Ω

h
is a monotone

decreasing sequence of upper solutions and {U (n)
ij }, (i, j) ∈ Ω

h
is a monotone increasing

sequence of lower solutions.

We now prove that the sequence {U (n)
ij }, (i, j) ∈ Ω

h
converges monotonically from

above to a maximal solution U ij and the sequence {U (n)
ij }, (i, j) ∈ Ω

h
converges

monotonically from below to a minimal solution U ij . From (2.19), we conclude that

limU
(n)
ij = U ij and limU

(n)
ij = U ij as n→∞ exist and

lim
n→∞

Z
(n)
ij = 0, lim

n→∞
Z

(n)
ij = 0, (i, j) ∈ Ω

h
.

Similar to (2.26), we obtain

Kij(U
(n)
ij ) = −

(
cij −

∂fij(Q
(n)
ij )

∂u

)
Z

(n)
ij − rijZ

(n)
i+1,j − qijZ

(n)
i,j+1, (i, j) ∈ Ωh,

where U
(n)
ij ≤ Q

(n)
ij ≤ U

(n−1)
ij , (i, j) ∈ Ω

h
. By taking limit of the both sides, we conclude

that

Kij(U ij) = 0, (i, j) ∈ Ωh,

which means that U ij , (i, j) ∈ Ω
h

is a maximal solution to (2.6). Similarly, we can

prove that

Kij(U ij) = 0, (i, j) ∈ Ωh,
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which means that U ij , (i, j) ∈ Ω
h

is a minimal solution to (2.6). Thus, we prove the

theorem.

To prove the uniqueness of a solution to the nonlinear difference scheme (2.6), we

assume that the reaction function f in (2.1) satisfies the following two-sided constraint

0 < cij ≤
∂fij(Uij)

∂u
≤ cij , Uij ∈ 〈Û , Ũ〉, (i, j) ∈ Ω

h
, (2.27)

where cij and cij are positive bounded mesh functions.

Theorem 2.3.2. Let Ũij and Ûij, (i, j) ∈ Ω
h

be ordered upper and lower solutions

(2.12), and f in (2.1) satisfy (2.27). Then the nonlinear difference scheme (2.6) has a

unique solution.

Proof. To prove the uniqueness of a solution to the nonlinear difference scheme (2.6),

it suffices to check that U ij = U ij , (i, j) ∈ Ω
h
, where U ij and U ij , (i, j) ∈ Ω

h
are the

minimal and maximal solutions from (2.19). Letting Vij = U ij − U ij , (i, j) ∈ Ω
h
, from

(2.6), we have

LijVij + fij(U ij)− fij(U ij) = 0, (i, j) ∈ Ωh, Vij = 0, (i, j) ∈ ∂Ωh.

From here and using the mean-value theorem, we obtain(
Lij +

∂fij(Qij)

∂u

)
Vij = 0, (i, j) ∈ Ωh, Vij = 0, (i, j) ∈ ∂Ωh,

where U ij ≤ Qij ≤ U ij , (i, j) ∈ Ωh. From here and the left inequality in (2.27), by

using the maximum principle in Lemma (2.2.2), we conclude that

Vij = 0, (i, j) ∈ Ω
h
.

Thus, we prove the theorem.

2.4 Convergence analysis of the point monotone iterative

methods

A stopping test for the point monotone iterative methods (2.18) is chosen in the form∥∥∥K(U (n))
∥∥∥

Ωh
≤ δ,

∥∥∥K(U (n))
∥∥∥

Ωh
= max

(i,j)∈Ωh

∣∣∣Kij(U (n)
ij )

∣∣∣ , (2.28)

where δ is a prescribed accuracy and Kij(U (n)
ij ) is defined in (2.18).
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In the following lemma, we give a bound on the magnitude of the solution to the

linear problem (2.11).

Lemma 2.4.1. The following bound on the magnitude of the solution to the linear

problem (2.11) with a positive mesh function cij holds

‖W‖
Ω
h ≤ max

{
‖g‖∂Ωh , max

(i,j)∈Ωh

|Φ(ij)|
cij

}
, (2.29)

where

‖g‖∂Ωh = max
(i,j)∈∂Ωh

|gij |.

The proof of the lemma is given in Lemma 1.2.1, Chapter 1.

Theorem 2.4.2. Suppose that the two-sided constraint in (2.27) is satisfied. Then for

the sequence of solutions {U (n)
ij }, (i, j) ∈ Ω

h
, generated by the point monotone iterative

methods (2.18), (2.28), we have the following estimate∥∥∥U (nδ) − U∗
∥∥∥

Ω
h ≤ c−1δ,

where U∗ij, (i, j) ∈ Ω
h

is the unique solution of the nonlinear difference scheme (2.6),

cij, (i, j) ∈ Ωh is defined in (2.27), and nδ is the minimal number of iterations subject

to (2.28).

Proof. From (2.18), for U
(nδ)
ij and U∗ij , (i, j) ∈ Ω

h
, we have

AijU (nδ)
ij + fij(U

(nδ)
ij ) = Kij(U (nδ)

ij ), (i, j) ∈ Ωh, U
(nδ)
ij = gij , (i, j) ∈ ∂ωh,

AijU∗ij + fij(U
∗
ij) = 0, (i, j) ∈ Ωh, U∗ij = gij , (i, j) ∈ ∂Ωh.

Letting W
(nδ)
ij = U

(nδ)
ij −U∗ij , (i, j) ∈ Ω

h
, from here and using the mean-value theorem,

we obtain that

AijW (nδ)
ij +

∂fij(Q
(nδ)
ij )

∂u
W

(nδ)
ij = Kij(U (nδ)

ij ), (i, j) ∈ Ωh, W
(nδ)
ij = 0, (i, j) ∈ ∂Ωh,

where Q
(nδ)
ij lies between U

(nδ)
ij and U∗ij . From here and using (2.29), we conclude that

‖W (nδ)‖
Ω
h ≤ c−1

∥∥∥K(U (nδ))
∥∥∥

Ωh
.

From here and (2.28), we prove the theorem.

Theorem 2.4.3. Let the assumptions in Theorem 2.4.2 be satisfied. Then for the

sequence of solutions {U (n)
ij }, (i, j) ∈ Ω

h
, generated by (2.18), (2.28), the following
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estimate holds ∥∥∥U (nδ) − u∗
∥∥∥

Ω
h ≤ c−1(δ + ‖E(h)‖

Ω
h),

where u∗(x, y) is the exact solution to (2.1), Eij is the truncation error of the exact so-

lution u∗(x, y) on the nonlinear difference scheme (2.6), and nδ is the minimal number

of iterations subject to the stopping test (2.28).

Proof. We denote eij = U∗ij − u∗ij , (i, j) ∈ Ω
h
, where the mesh function U∗ij , (i, j) ∈ Ω

h
,

is the unique solution of the nonlinear difference scheme (2.6). From (2.6), by using

the mean-value theorem, we obtain that

Aijeij +
∂fij(Yij)

∂uα
eij = −Eij(h), (i, j) ∈ Ωh, eij = 0, (i, j) ∈ ∂Ωh,

where Yij lies between u∗ij and U∗ij . From here and (2.27), by Lemma 2.4.1, it follows

that

‖e‖
Ω
h ≤ c−1‖E(h)‖Ωh . (2.30)

We estimate
∥∥U (nδ) − u∗

∥∥
Ω
h as follows∥∥∥U (nδ) − U∗ + U∗ − u∗

∥∥∥
Ω
h ≤

∥∥∥U (nδ) − U∗
∥∥∥

Ω
h + ‖U∗ − u∗‖

Ω
h .

From here, (2.30) and using the estimate from Theorem 2.4.2, we prove the theorem.

2.5 Construction of initial upper and lower solutions

To start the monotone iterative methods (2.18), an initial iteration is needed. In this

section, we discuss the construction of initial iterations Ũij and Ûij , (i, j) ∈ Ω
h
.

2.5.1 Bounded functions

Assume that the functions f and g in (2.1) satisfy the following conditions:

f(x, y, 0) ≤ 0, g(x, y) ≥ 0, f(x, y, u) ≥ −M, u(x, y) ≥ 0, (x, y) ∈ ω, (2.31)

where M = const > 0.

We introduce the mesh function

Ûij = 0, (i, j) ∈ Ω
h
, (2.32)

and the linear problem

AijŨij = M, (i, j) ∈ Ωh, Ũij = gij , (i, j) ∈ ∂Ωh. (2.33)
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Lemma 2.5.1. Assume that the assumptions in (2.31) are satisfied. Then the mesh

functions from (2.32) and (2.33) are ordered lower and upper solutions (2.12).

Proof. Letting Wij = Ũij − Ûij , (i, j) ∈ Ω
h
, from (2.32) and (2.33), we have

AijWij = M, (i, j) ∈ Ωh, Wij = gij , (i, j) ∈ ∂Ωh,

where Aij is defined in (2.6). From here, (2.31) and the maximum principle in Lemma

2.2.2, we conclude that

Wij ≥ 0, (i, j) ∈ Ω
h
.

Thus, we prove (2.12a). Now we prove (2.12b). From (2.33), by the maximum principle

in Lemma 2.2.2, we obtain

Ũij ≥ 0, (i, j) ∈ Ω
h
. (2.34)

From (2.31), (2.33) and (2.34), we have

AijŨij + fij(Ũij) ≥ 0, (i, j) ∈ Ωh,

that is, Ũij , (i, j) ∈ Ωh satisfies (2.12b). From (2.33), it is clear that Ũij , (i, j) ∈ ∂Ωh

satisfies (2.12c). Thus, Ũij , (i, j) ∈ Ω
h

is an upper solution (2.12). From (2.31) and

(2.32), we conclude that

LijÛij + f(xi, yj , Û) ≤ 0, (i, j) ∈ Ωh, Ûij ≤ gij , (i, j) ∈ ∂Ωh,

hence, Ûij , (i, j) ∈ Ω
h

is a lower solution (2.12). Thus, Ûij and Ũij , (ij) ∈ Ω
h

from

(2.32) and (2.33) are ordered lower and upper solutions (2.12) to the nonlinear difference

scheme (2.6).

2.5.2 Constant upper and lower solutions

Assume that the functions f and g in (2.1) satisfy the conditions

f(x, y, 0) ≤ 0, g(x, y) ≥ 0, u(x, y) ≥ 0, (x, y) ∈ ω, (2.35)

and there exists a positive constant K, such that

f(x, y,K) ≥ 0, g(x, y) ≤ K, (x, y) ∈ ω. (2.36)

Introduce the constant mesh function

Ũij = K, (i, j) ∈ Ω
h
. (2.37)
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The following lemma states that the mesh functions from (2.32) and (2.37) are ordered

lower and upper solutions (2.12).

Lemma 2.5.2. Assume that (2.35) and (2.36) are satisfied. Then the mesh functions

from (2.32) and (2.37) are ordered lower and upper solutions (2.12).

Proof. Letting Wij = Ũij − Ûij , (i, j) ∈ Ω
h
, from (2.32) and (2.37), we conclude that

AijWij = 0, (i, j) ∈ Ωh, Wij > 0, (i, j) ∈ ∂Ωh.

From here and Lemma 2.2.2, we obtain that Wij ≥ 0, (i, j) ∈ Ω
h
. Thus, we prove

(2.12a). From (2.36) and (2.37), we have

AijŨij + fij(Ũij) ≥ 0, (i, j) ∈ Ωh, Ũij ≥ gij , (i, j) ∈ ∂Ωh.

Thus, Ũij , (i, j) ∈ Ω
h

from (2.37) satisfies (2.12b), (2.12c). From (2.32) and (2.35), we

obtain that

AijÛij + fij(Ûij) ≤ 0, (i, j) ∈ Ωh, Ûij ≤ gij , (i, j) ∈ ∂Ωh,

that is, Ûij , (i, j) ∈ Ω
h

from (2.32) satisfies (2.12b), (2.12c). Thus, we prove that Ûij

and Ũij , (i, j) ∈ Ω
h
, from (2.32) and (2.37) are ordered lower and upper solutions (2.12)

to the nonlinear difference scheme (2.6).

2.6 Applications

Here, we construct initial upper and lower solutions for two applied problems.

2.6.1 The enzyme kinetics model [9]

In the enzyme-substrate reaction scheme, if the effect of inhibition is taken into consid-

eration, then the scheme is governed by (2.1) with Lu(x, y) = 4u(x, y) and the reaction

function f is given by

f(u) =
σu

1 + au+ bu2
, u ≥ 0, (2.38)

where σ, a and b are positive constants. Problem (2.1) is reduced to

−4u+
σu

1 + au+ bu2
= 0, (x, y) ∈ ω, u(x, y) = g(x, y) ≥ 0, (x, y) ∈ ∂ω.

The nonlinear difference scheme (2.6) has the form

AijUij +
σUij

1 + aUij + bU2
ij

= 0, (i, j) ∈ Ωh, Uij = gij , (i, j) ∈ ∂Ωh, (2.39)
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where the difference operator Aij , (i, j) ∈ Ωh is defined in (2.6) with D = 1 and vij = 0,

(i, j) ∈ Ωh.

We now show that

Ũij = K, Ûij = 0, (i, j) ∈ Ω
h
, K = max

(i,j)∈∂Ωh
gij , (2.40)

are ordered upper and lower solutions to (2.39).

From (2.38) and g(x, y) ≥ 0, it follows (2.35). From (2.38) and (2.40), we conclude

that (2.36) is satisfied. Thus, Lemma 2.5.2 holds for Ũij and Ûij , (i, j) ∈ Ω
h

from

(2.40). From (2.38), we have

fu(x, y, u) =
σ(1− bu2)

(1 + au+ bu2)2
.

We assume that b < 1/K2, and hence, in the sector 〈Û , Ũ〉 = 〈0,K〉, we conclude that

0 <
σ(1− bK2)

(1 + aK + bK2)2
<
∂fij(Uij)

∂u
≤ σ, (i, j) ∈ Ω

h
, b <

1

K2
. (2.41)

The assumptions in (2.27) are satisfied with cij = σ(1 − bK2)
/

(1 + aK + bK2)2 and

cij = σ. From here, we conclude that Theorems 2.3.1 and 2.3.2 hold for the enzyme

kinetics model (2.39).

2.6.2 The chemical reactor model [42]

In the chemical reactor, when the isothermal reaction is irreversible, the temperature

is constant and the mass concentration is described by (2.1) with Lu(x, y) = 4u(x, y),

and the reaction function f in the form

f(u) = σup, u ≥ 0, (2.42)

where σ and p are positive constants with p ≥ 1. Problem (2.1) is reduced to

−4u+ σup = 0, (x, y) ∈ ω, u(x, y) = g(x, y) ≥ 0, (x, y) ∈ ∂ω.

The nonlinear difference scheme (2.6) has the form

AijUij + σUpij = 0, (i, j) ∈ Ωh, Uij = gij , (i, j) ∈ ∂Ωh, (2.43)
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where the difference operator Aij , (i, j) ∈ Ωh is defined in (2.6). We introduce the

linear problem

AijŨij = 0, (i, j) ∈ Ωh, Ũij = gij , (i, j) ∈ ∂Ωh. (2.44)

Now we show that Ûij and Ũij , (i, j) ∈ Ω
h

from, respectively, (2.32) and (2.44) are

ordered lower and upper solutions (2.12). Letting Wij = Ũij − Ûij , (i, j) ∈ Ω
h
, from

(2.32) and (2.44), we have

AijWij = 0, (i, j) ∈ Ωh.

From here, by using Lemma 2.2.2, we conclude that

Wij ≥ 0, (i, j) ∈ Ω
h
.

Thus, we prove (2.12a). From (2.44), by using Lemma 2.2.2, we obtain

Ũij ≥ 0, (i, j) ∈ Ω
h
. (2.45)

From (2.32), (2.42) and (2.44), we conclude that

AijŨij + fij(Ũij) = fij(Ũij) ≥ 0, (i, j) ∈ Ωh, Ũij ≥ 0, (i, j) ∈ ∂Ωh,

that is, Ũij , (i, j) ∈ Ω
h

satisfies (2.12b) and (2.12c). From (2.32) and (2.42), we have

AijÛij + fij(Ûij) = 0, (i, j) ∈ Ωh, Ûij ≤ gij , (i, j) ∈ ∂Ωh,

that is, Ûij = 0, (i, j) ∈ Ω
h

satisfies (2.12b) and (2.12c). Thus, we prove that Ûij

and Ũij , (i, j) ∈ Ω
h

from, respectively, (2.32) and (2.44) are ordered lower and upper

solutions (2.12) to (2.43).

From (2.42), in the sector 〈0, Ũ〉, we obtain

0 ≤ ∂fij(Uij)

∂u
≤ c, (i, j) ∈ Ω

h
,

where c = p σ
(

max
(i,j)∈Ω

h Ũij

)p−1
. From here, we conclude that Theorem 2.3.1 holds

for the chemical reactor model (2.43).
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2.7 Comparison of the point monotone Jacobi and Gauss–

Seidel methods

In the following theorem, we show that the point monotone Gauss–Seidel method with

η = 1 in (2.18) converges faster than the point monotone Jacobi method with η = 0 in

(2.18).

Theorem 2.7.1. Let Ũij and Ûij, (i, j) ∈ Ω
h
, be ordered upper and lower solutions

(2.12). Assume that the function f in (2.1) satisfies (2.13). Suppose that the sequences

{(U (n)
ij )J} and {(U (n)

ij )GS}, (i, j) ∈ Ω
h
, are, respectively, the sequences generated by the

point monotone Jacobi method with η = 0 in (2.18) and the point monotone Gauss–

Seidel method with η = 1 in (2.18), where (U
(0)
ij )J = (U

(0)
ij )GS = Ũij and (U

(0)
ij )J =

(U
(0)
ij )GS = Ûij, (i, j) ∈ Ω

h
, then

(U
(n)
ij )J ≤ (U

(n)
ij )GS ≤ (U

(n)
ij )GS ≤ (U

(n)
ij )J, (i, j) ∈ Ω

h
. (2.46)

Proof. Letting W
(n)
ij =

(
U

(n)
ij

)
GS
−
(
U

(n)
ij

)
J
, (i, j) ∈ Ω

h
, from (2.18), we obtain

AijW
(n)
ij = cijW

(n−1)
ij + ηlij

((
U

(n)
i−1,j

)
GS
−
(
U

(n−1)
i−1,j

)
J

)
+ rijW

(n−1)
i+1,j (2.47)

+ηbij

((
U

(n)
i,j−1

)
GS
−
(
U

(n−1)
i,j−1

)
J

)
+ qijW

(n−1)
i,j+1

−
[
fij((U

(n−1)
ij )GS)− fij((U

(n−1)
ij )J)

]
, (i, j) ∈ Ωh,

W
(n)
ij = 0, (i, j) ∈ ∂Ωh.

By using Theorem 2.3.1, we have
(
U

(n)
ij

)
GS
≤
(
U

(n−1)
ij

)
GS

. From here, η = 0, 1, (2.17)

and (2.47), we obtain

AijW
(n)
ij ≤ cijW

(n−1)
ij + ηlijW

(n−1)
i−1,j + rijW

(n−1)
i+1,j + ηbijW

(n−1)
i,j−1 + qijW

(n−1)
i,j+1

−
[
fij((U

(n−1)
ij )GS)− fij((U

(n−1)
ij )J)

]
, (i, j) ∈ Ωh,

W
(n)
ij = 0, (i, j) ∈ ∂Ωh.

Using notation (2.14), we write the above inequality in the form

AijW
(n)
ij ≤ ηlijW

(n−1)
i−1,j + rijW

(n−1)
i+1,j + ηbijW

(n−1)
i,j−1 + qijW

(n−1)
i,j+1 (2.48)

+Γij((U
(n−1)
ij )GS)− Γij((U

(n−1)
ij )J), (i, j) ∈ Ωh,

W
(n)
ij = 0, (i, j) ∈ ∂Ωh,
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where

Γij((U
(n−1)
ij )J) = cij(U

(n−1)
ij )J − fij((U

(n−1)
ij )J),

Γij((U
(n−1)
ij )GS) = cij(U

(n−1)
ij )GS − fij((U

(n−1)
ij )GS).

From η = 0, 1, (2.16) and the fact that
(
U

(0)
ij

)
GS

=
(
U

(0)
ij

)
J
, (i, j) ∈ Ω

h
, for n = 1 in

(2.48), we conclude that

AijW
(1)
ij ≤ 0, (i, j) ∈ Ωh, W

(1)
ij = 0, (i, j) ∈ ∂Ωh.

By using the maximum principle in Lemma 2.2.2, we obtain

W
(1)
ij ≤ 0, (i, j) ∈ Ω

h
.

From here, (2.16), using the monotone property (2.15), for n = 2 in (2.48), we conclude

that

AijW
(2)
ij ≤ 0, (i, j) ∈ Ωh, W

(2)
ij = 0, (i, j) ∈ ∂Ωh.

By using Lemma 2.2.2, we obtain that

W
(2)
ij ≤ 0, (i, j) ∈ Ω

h
.

By induction on n, we can prove that

W
(n)
ij ≤ 0, (i, j) ∈ Ω

h
, n ≥ 1.

Thus, we prove (2.46) for upper sequences. By a similar argument, we can prove (2.46)

for lower sequences.

2.8 Numerical experiments

Test 1

We consider the test problem

− (uxx + uyy) + σu(u− 1) = q(x, y), (0 < x < 1, 0 < y < 2), (2.49)

u(0, y) = sin(πy/2), u(1, y) = 0, u(x, 0) = u(x, 2) = 0.

The function

u(x, y) = (1− x2) sin(πy/2),
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is the analytical solution of the model problem (2.49), when σ = π2/4 and

q(x, y) = 2 sin(πy/2) + (π2/4)(1− x2)2 sin2(πy/2).

By using Lemma 2.5.2, it follows that for the model problem (2.49), the pair Ũij = K

and Ûij = 0, (i, j) ∈ Ω
h

are ordered upper and lower solutions, such that, (2.35) and

(2.36) are satisfied whenever π2

4 K(K − 1)− q(x, y) ≥ 0. For K ≥ 2, the last inequality

holds true, and we take Ũij = 2 and Ûij = 0, (i, j) ∈ Ω
h
.

Taking into account that fu(u) = σ(2u − 1), we conclude that fu ≤ 3π2/4, and,

hence, we choose cij = 3π2/4 in (2.13). The space step sizes hx and hy are taken as

hx = hy = 0.05. The stopping criterion of the monotone iterative methods (2.18) is

chosen as in [61]

‖U (n) − U (n)‖ ≤ δ, (2.50)

where the notation of the norm from (2.29) is in use, U
(n)
ij and U

(n)
ij , (i, j) ∈ Ω

h
are the

upper and lower sequences generated by (2.18), and δ is a prescribed accuracy. We set

δ = 10−5.

Under the same conditions, the test problem (2.49) was considered in [61] and solved

by the block monotone Jacobi and Gauss-Seidel methods.

In Tables 2.1, 2.3 and in Tables 2.2, 2.4, we present upper and lower approximate

solutions generated by, respectively, the point monotone methods (2.18) and the block

monotone methods from [61]. The exact solution and the required number of iterations

nδ to reach the stopping test (2.50) are given as well.

The numerical results confirm the theoretical estimates (2.19) and (2.46) obtained,

respectively, in Theorem 2.3.1 and Theorem 2.7.1.

Comparing our numerical results and the results from [61], we conclude that the

numbers of iterations nδ in the point monotone methods are almost double of the

numbers of iterations in the block monotone methods from [61]. That gives us a

motivation to investigate the block monotone approach for solving nonlinear differential

problems.

Since the exact solution for our test problem is known, we investigate the numerical

error E(N) and order of convergence γ(N) to the exact solution with respect to 1/N ,

Nx = Ny = N as follows

E(N) =

[
max

(i,j)∈ωh

∣∣∣U (nδ)
ij − u∗ij

∣∣∣] , γ(N) = log2

(
E(N)

E(2N)

)
,

where U
(nδ)
ij , (i, j) ∈ Ω

h
, is the numerical solution generated by (2.18), (2.50), u∗ is the

exact solution to the continuous problem and nδ is the minimal number of iterations

subject to (2.50).
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In Table 2.5, for different values of N (Nx = Ny = N), we present E(N) and γ(N).

The data in the table indicate that the numerical solution of the nonlinear difference

scheme (2.6) converges to the exact solution with second-order accuracy.

From the numerical experiments, we conclude that the sequence of solutions gener-

ated by (2.18) has a linear rate of convergence q, such that, q is defined in the form

q =
‖U (n)‖

Ω
h

‖U (n−1)‖
Ω
h

< 1, n ≥ 2.

Table 2.1: Solutions by the point monotone Jacobi method for Test 1.

Solution yj/xi 0 1/4 1/2 3/4 1 nδ

U ij 0.382683 0.358796 0.287050 0.167448 0

U ij 1/4 0.382683 0.358793 0.287045 0.167445 0

uij 0.382683 0.358766 0.287013 0.167424 0

U ij 0.707107 0.662967 0.530396 0.309403 0 1598 (U ij)

U ij 1/2 0.707107 0.662962 0.530389 0.309398 0 1566 (U ij)

uij 0.707107 0.662913 0.530330 0.309400 0

U ij 0.923880 0.866206 0.692994 0.404253 0

U ij 3/4 0.923880 0.866200 0.692984 0.404246 0

uij 0.923880 0.866137 0.692910 0.404197 0

U ij 1 0.937574 0.750089 0.437560 0

U ij 1 1 0.937568 0.750080 0.437553 0

uij 1 0.937500 0.750000 0.437500 0

Test 2

As the second test problem, we consider the enzyme kinetics model Section 2.6.1 in

the form

−D(uxx + uyy) +
σu

1 + au+ bu2
= 0, 0 < x < 1, 0 < y < 1, (2.51)

u(0, y) = 1, u(1, y) = 1, 0 ≤ y ≤ 1,

u(x, 0) = 1, u(x, 1) = 1, 0 ≤ x ≤ 1.

We choose a = 1, b = 0.1 and σ = 10. The upper solution Ũij = K and the lower

solution Ûij = 0 from (2.40). We choose K = 1. It is clear that b and K satisfy the
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Table 2.2: Solutions by the block monotone Jacobi method for Test 1.

Solution yj/xi 0 1/4 1/2 3/4 1 nδ

U ij 0.3832 0.3592 0.2874 0.1676 0

U ij 1/4 0.3822 0.3583 0.2867 0.1672 0

uij 0.3827 0.3588 0.2870 0.1674 0

U ij 0.7080 0.6638 0.5310 0.3097 0 953 (U ij)

U ij 1/2 0.7063 0.6621 0.5297 0.3090 0 922 (U ij)

uij 0.7071 0.6629 0.5303 0.3094 0

U ij 0.9250 0.8672 0.6937 0.4047 0

U ij 3/4 0.9229 0.8652 0.6921 0.4038 0

uij 0.9239 0.8661 0.6929 0.4042 0

U ij 1.0012 0.9386 0.7509 0.4380 0

U ij 0.9989 0.9365 0.7492 0.4370 0.437553 0

uij 1.000 0.9375 0.7500 0.4375 0

Table 2.3: Solutions by the point monotone Gauss-Seidel method for Test 1.

Solution yj/xi 0 1/4 1/2 3/4 1 nδ

U ij 0.382683 0.358795 0.287047 0.167447 0

U ij 1/4 0.382683 0.358794 0.287046 0.167446 0

uij 0.382683 0.358766 0.287013 0.167424 0

U ij 0.707107 0.662964 0.530392 0.309340 0 921 (U ij)

U ij 1/2 0.707107 0.662964 0.530391 0.309340 0 880 (U ij)

uij 0.707107 0.662913 0.530330 0.309359 0

U ij 0.923880 0.866203 0.692989 0.404249 0

U ij 3/4 0.923880 0.866202 0.692987 0.404242 0

uij 0.923880 0.866137 0.692909 0.404197 0

U ij 1 0.937571 0.750084 0.437556 0

U ij 1 1 0.937569 0,750083 0.437555 0

uij 1 0.937500 0.750000 0.437500 0
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Table 2.4: Solutions by the block monotone Gauss-Seidel method from [61] for Test 1.

Solution yj/xi 0 1/4 1/2 3/4 1 nδ

U ij 0.3831 0.3591 0.2873 0.1676 0

U ij 1/4 0.3825 0.3586 0.2868 0.1673 0

uij 0.3872 0.3588 0.2870 0.1674 0

U ij 0.7078 0.6636 0.5308 0.3096 0 505 (U ij)

U ij 1/2 0.7067 0.6626 0.5300 0.3092 0 508 (U ij)

uij 0.7071 0.6629 0.5303 0.3094 0

U ij 0.9247 0.8669 0.6935 0.4046 0

U ij 3/4 0.9234 0.8657 0.6926 0.4040 0

uij 0.9239 0.8661 0.6929 0.4042 0

U ij 1.0008 0.9383 0.7506 0.4379 0

U ij 0.9996 0.9371 0.7497 0,4373 0.437555 0

uij 1.0000 0.9375 0.7500 0.4375 0

Table 2.5: Order of convergence of the nonlinear scheme (2.6) for Test 1.

N 8 16 32 64 128

E 2.082e-03 5.280e-04 1.327e-04 3.376e-05 9.015e-06
γ 1.98 1.99 1.97 1.91

inequality b < 1/K2 in (2.41). From (2.41), the bounded cij = σ, (i, j) ∈ Ω
h

where cij

is defined in (2.27).

The exact solution for our test problem is unknown, and the numerical solution is

compared to a corresponding reference solution. We investigate the numerical error

and numerical order of convergence with respect to 1/N , Nx = Ny = N . We define the

numerical error E(N) and the order of convergence γ(N) of the numerical solution as

follows

E(N) =

[
max

(i,j)∈ωh

∣∣∣Ũij − Ũ refij

∣∣∣] , γ(N) = log2

(
E(N)

E(2N)

)
,

where Ũ refij is the reference solution. A stopping test for the monotone iterative methods

(2.18) is chosen in the form of (2.28). In our tests, we choose the reference solution

with Nref = 512 and δ = 10−6 in (2.28).

In Table 2.6, for different values of N (Nx = Ny = N), we present E(N) and γ(N).
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The data in the table indicate that the numerical solution of the nonlinear difference

scheme (2.6) converges to the reference solution with the second-order accuracy.

In Table 2.7, we present the number of iterations to find the approximate solution

for (2.51) by the point monotone point Jacobi method with η = 0 in (2.18) and the

point monotone Gauss-Seidel method with η = 1 in (2.18), with different values of

diffusion coefficient D and number of mesh points N . In Figure 2.1, we show the

convergence of numerical solutions, obtained by the point Gauss-Seidel method with

η = 1 in (2.18) and N = 128 to the reference solution Nref = 512, where the dashed

line represents the numerical solution and the solid blue line refers to the reference

solution with respect to x and fixed value of y. In the subgraph 2.1a, starting from the

initial lower solution Û = 0, we show the convergence of the numerical lower solutions

at nδ = 80 and nδ = 1000 to the reference solution. Similarly, starting from the initial

upper solution Ũ = 1, the subgraph 2.1b shows the convergence of the numerical upper

solutions at nδ = 80 and nδ = 1000 to the reference solution.

Table 2.6: Order of convergence of the nonlinear scheme (2.6) for Test 2.

N 16 32 64 128 256

E 3.916e-02 1.066e-02 2.866e-03 7.054e-04 1.434e-04
γ 1.88 1.89 2.02 2.30

Table 2.7: Numbers of iterations for Test 2. Over line and under line iterations refer
to, respectively, point monotone Jacobi Gauss-Seidel methods.

D \ N 16 32 64 128 256

1 671
339

2677
1342

10702
5355

42802
21405

172305
85600

10−1 142
77

543
278

2146
1081

8558
4287

34206
17102

10−2 20
15

58
34

209
110

811
412

3222
1620

10−3 6
6

12
10

28
19

88
49

329
170

10−4 3
3

5
4

7
7

15
12

40
25

10−5 2
2

3
3

4
4

5
5

9
8

10−6 2
2

2
2

3
2

3
3

4
4

10−7 2
2

2
2

2
2

2
2

3
3
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Figure 2.1: Convergence of lower and upper solutions to the reference solution for Test
2.

(a) Lower solutions. (b) Upper solutions.

2.9 Conclusions to Chapter 2

Theoretical results

Far solving nonlinear elliptic problems, we constructed and investigated monotone

properties of point Jacobi and Gauss-Seidel iterative methods. The nonlinear ellip-

tic problem (2.1) is approximated by using the central difference approximations for

the first and second derivatives. For solving the nonlinear difference scheme (2.6), the

point Jacobi and Gauss-Seidel iterative methods are constructed. We prove that the

sequences of upper and lower solutions, generated by the point iterative methods, con-

verge monotonically to the solutions of the nonlinear difference scheme. In Theorem

2.3.2, we prove the uniqueness of a solution under the conditions that the nonlinear

reaction function is bounded from below and above. By using the stopping test (2.28),

based on the norm of the residual, we prove that the numerical solution converges

to the unique solution of the nonlinear elliptic problem (2.6) and estimate the L∞

discrete-norm of the error between the numerical and exact solutions of the nonlinear

difference scheme (2.6) in Theorem 2.4.2 and between the numerical solution and the

exact solution of the elliptic problem (2.1) in Theorem 2.4.3. In Theorem 2.7.1, we

prove that the point monotone Gauss-Seidel method converges faster than the point

monotone Jacobi method. In Lemmas 2.5.1 and 2.5.2, under assumptions (2.31) and

(2.35) on the reaction function, we construct initial upper and lower solutions to start

the point monotone iterative methods.

Numerical results

The numerical experiments show that the numerical solution of the nonlinear differ-

ence scheme (2.6) converges to the reference solution with the second order accuracy.
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The numerical sequences of upper and lower solutions, generated by the point mono-

tone methods (2.18) with stopping (2.28), converge monotonically. The point monotone

Gauss-Seidel method with η = 1 in (2.18) converges faster than the point monotone Ja-

cobi method with η = 0 in (2.18) which confirms Theorem 2.7.1. The block monotone

methods from [61] converge faster than the corresponding point monotone methods

(2.18). In Test 2, for fixed diffusion coefficient D, the numbers of iterations increase

with increasing N . For fixed values of N and small values of D, the numbers of itera-

tions are independent of D.
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Chapter 3

Jacobi and Gauss-Seidel methods

for systems of elliptic problems

This chapter deals with numerical methods for solving nonlinear elliptic systems. We

derive the point monotone Jacobi and Gauss–Seidel methods for solving difference

schemes which approximate the coupled systems of elliptic problems. In the view of

the method of upper and lower solutions, two monotone upper and lower sequences

of solutions are constructed. Convergence estimates for the point monotone iterative

methods are introduced. Constructions of initial upper and lower solutions are pre-

sented. The sequences of solutions generated by the point monotone Gauss–Seidel

method converge faster than those generated by the Jacobi method.

3.1 Properties of solutions to systems of nonlinear elliptic

problems

We consider properties of systems of nonlinear elliptic boundary value problems

− Lαuα(x, y) + fα(x, y, u) = 0, (x, y) ∈ ω, (3.1)

ω = {(x, y) : 0 < x < l1, 0 < y < l2}, uα(x, y) = gα(x, y), (x, y) ∈ ∂ω, α = 1, 2,

where l1, l2 are positive constants, u = (u1, u2) and ∂ω is the boundary of ω. The

differential operators Lα, α = 1, 2, are defined by

Lαuα(x, y) ≡ D(x)
α (x, y)uα,xx +D(y)

α (x, y)uα,yy + v(x)
α (x, y)uα,x + v(x)

α (x, y)uα,y,

where D
(x)
α (x, y), D

(y)
α (x, y), α = 1, 2, are positive functions. It is assumed that the

functions fα(x, y, u), gα(x, y), D
(x)
α (x, y), D

(y)
α (x, y), v

(x)
α (x, y) and v

(y)
α (x, y), α = 1, 2,

are smooth in their respective domains.
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3.1.1 Quasi-monotone nondecreasing case

Two vector functions ũ(x, y) = (ũ1, ũ2) and û(x, y) = (û1, û2), are called ordered upper

and lower solutions to (3.1), if they satisfy the inequalities

û(x, y) ≤ ũ(x, y), (x, y) ∈ ω, (3.2a)

− Lαûα(x, y) + fα(x, y, û) ≤ 0 ≤ −Lαũα(x, y) + fα(x, y, ũ), (x, y) ∈ ω, (3.2b)

û(x, y) ≤ g(x, y) ≤ ũ(x, y), (x, y) ∈ ∂ω. (3.2c)

For a given ordered upper ũ and lower û solutions, a sector 〈û, ũ〉 is defined as follows

〈û, ũ〉 = {u(x, y) : û(x, y) ≤ u(x, y) ≤ ũ(x, y), (x, y) ∈ ω} .

In the sector 〈û, ũ〉, the functions fα(x, y, u), α = 1, 2, are assumed to satisfy the

constraint

∂fα(x, y, u)

∂uα
≤ cα(x, y), u ∈ 〈û, ũ〉, (x, y) ∈ ω, α = 1, 2, (3.3)

− ∂fα(x, y, u)

∂uα′
≥ 0, u ∈ 〈û, ũ〉, (x, y) ∈ ω, α′ 6= α, α, α′ = 1, 2, (3.4)

where cα(x, y), α = 1, 2, are nonnegative bounded functions. The functions fα(x, y, u),

α = 1, 2, are called quasi-monotone nondecreasing in 〈û, ũ〉, if they satisfy (3.4).

Theorem 3.1.1. Let ũ = (ũ1, ũ2) and û = (û1, û2) be ordered upper and lower solutions

(3.2). Assume that the functions fα(x, y, u), α = 1, 2, in (3.1) satisfy (3.3) and (3.4).

Then a solution to the nonlinear problem (3.1) exists.

The proof of the theorem is given in Theorem 8.4.1, [59].

We assume that the reaction functions fα, α = 1, 2, in (3.1) satisfy the conditions

0 < cα(x, y) ≤ ∂fα(x, y, u)

∂uα
≤ cα(x, y), (x, y) ∈ ω, u ∈ (−∞,∞), α = 1, 2, (3.5)

0 ≤ −∂fα(x, y, u)

∂uα′
≤ qαα′(x, y), (x, y) ∈ ω, u ∈ (−∞,∞), α′ 6= α, α, α′ = 1, 2,

(3.6)

0 < β = max
α=1,2

[
max

(x,y)∈ω

(
qαα′(x, y)

cα(x, y)

)]
< 1, (x, y) ∈ ω, u ∈ (−∞,∞), α′ 6= α,

α, α′ = 1, 2. (3.7)

Introduce the linear problem

Lαwα(x, y) + c∗α(x, y)wα(x, y) = φα(x, y), (x, y) ∈ ωh, (3.8)

wα(x, y) = gα(x, y), (x, y) ∈ ∂ωh, α = 1, 2,
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where c∗α(x, y), α = 1, 2, are positive bounded functions. We give a bound on the

magnitude of the solution to the linear problem (3.8) in the following lemma.

Lemma 3.1.2. The following bound on the magnitude of the solution to the linear

problem (3.8) holds

‖wα‖ω ≤ max

{
‖gα‖∂ω,

∥∥∥∥φαc∗α
∥∥∥∥
ω

}
, α = 1, 2, (3.9)

where

‖gα‖∂ω = max
(x,y)∈∂ω

|gα(x, y)|,
∥∥∥∥φαc∗α

∥∥∥∥
ω

= max
(x,y)∈ω

∣∣∣∣φα(x, y)

c∗α(x, y)

∣∣∣∣ .
The proof of the lemma is given in Lemma 1.2.1 from Chapter 1.

Theorem 3.1.3. Let assumptions (3.5)–(3.7) be satisfied. Then the continuous prob-

lem (3.1) has a unique solution.

Proof. The existence of solutions to the nonlinear problem (3.1) is given in Theorem

3.1.1. Suppose that u∗(x, y) = (u∗1(x, y), u∗2(x, y)) and u∗∗(x, y) = (u∗∗1 (x, y), u∗∗2 (x, y)),

(x, y) ∈ ω are two solutions to (3.1). Letting zα(x, y) = u∗α(x, y)− u∗∗α (x, y), (x, y) ∈ ω,

α = 1, 2, from (3.1) for zα(x, y), we have

− Lαzα(x, y) + fα(x, y, u∗α, u
∗
α′)−

fα(x, y, u∗∗α , u
∗
α′) + fα(x, y, u∗∗α , u

∗
α′)− fα(x, y, u∗∗α , u

∗∗
α′ ) = 0,

(x, y) ∈ ω, zα(x, y) = 0, (x, y) ∈ ∂ω, α = 1, 2.

From here and using the mean-value theorem, we obtain

− Lαzα(x, y) +
∂fα(x, y, qα, u

∗
α′)

∂uα
zα(x, y) = −∂fα(x, y, u∗∗α , kα′)

∂uα′
zα′(x, y), (x, y) ∈ ω,

zα(x, y) = 0, (x, y) ∈ ∂ω, α′ 6= α, α, α′ = 1, 2,

where the functions qα(x, y), kα(x, y) lie between u∗α(x, y) and u∗∗α (x, y), α = 1, 2. From

here and (3.5), by using estimate (3.9), we conclude that

‖zα‖ω ≤

∥∥∥∥∥(fα(u∗∗α , kα′))uα′
zα′(

fα(qα, u∗α′)
)
uα

∥∥∥∥∥
ω

≤

∥∥∥∥∥(fα(u∗∗α , kα′))uα′(
fα(qα, u∗α′)

)
uα

∥∥∥∥∥
ω

‖zα′‖ω.

Using (3.5)–(3.7), we obtain

‖zα‖ω ≤ β‖zα′‖ω.

Letting z = maxα=1,2 ‖zα‖ω, we have z(1 − β) ≤ 0. From here, (3.7) and taking into

account that z ≥ 0, we conclude that z = 0. Thus, we prove the theorem.
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3.1.2 Quasi-monotone nonincreasing case

Introduce the following notation:

Fα(x, y, uα, uα′) =

{
F1(x, y, u1, u2), α = 1,

F2(x, y, u1, u2), α = 2,
α′ 6= α. (3.10)

Two vector functions ũ(x, y) = (ũ1, ũ2) and û(x, y) = (û1, û2), are called ordered up-

per and lower solutions to (3.1) in the case of quasi-monotone nonincreasing reaction

functions fα, α = 1, 2, if they satisfy the inequalities

û(x, y) ≤ ũ(x, y), (x, y) ∈ ω, (3.11a)

− Lαûα(x, y) + fα(x, y, ûα, ũα′) ≤ 0 ≤ −Lαũα(x, y) + fα(x, y, ũα, ũα′), (x, y) ∈ ω,
(3.11b)

ûα(x, y) ≤ gα(x, y) ≤ ũα(x, y), (x, y) ∈ ∂ω, α′ 6= α, α, α′ = 1, 2. (3.11c)

For a given ordered upper ũ and lower û solutions, a sector 〈û, ũ〉 is defined as follows

〈û, ũ〉 = {u(x, y); û(x, y) ≤ u(x, y) ≤ ũ(x, y), (x, y) ∈ ω} .

In the sector 〈û, ũ〉, the vector function f(x, y, u) is assumed to satisfy the constraint

∂fα(x, y, u)

∂uα
≤ cα(x, y), u ∈ 〈û, ũ〉, (x, y) ∈ ω, α = 1, 2, (3.12)

− ∂fα(x, y, u)

∂uα′
≤ 0, u ∈ 〈û, ũ〉, (x, y) ∈ ω, α′ 6= α, α, α′ = 1, 2, (3.13)

where cα(x, y), α = 1, 2, are nonnegative bounded functions. The vector function

f(x, y, u) is called quasi-monotone nonincreasing in 〈û, ũ〉, if it satisfies (3.13).

Theorem 3.1.4. Let ũ = (ũ1, ũ2) and û = (û1, û2) be ordered upper and lower solutions

(3.11). Assume that the functions fα(x, y, u), α = 1, 2, in (3.1) satisfy (3.12) and

(3.13). Then a solution to the nonlinear problem (3.1) exists.

The proof of the theorem is given in Theorem 8.4.2, [59].

We assume that the reaction functions fα, α = 1, 2, in (3.1) satisfy the conditions

(3.5), (3.7) and

qαα′(x, y) ≤ −∂fα(x, y, u)

∂uα′
≤ 0, (x, y) ∈ ω, u ∈ (−∞,∞), α′ 6= α, α, α′ = 1, 2,

(3.14)

Theorem 3.1.5. Let assumptions (3.5), (3.7) and (3.14) be satisfied. Then the con-

tinuous problem (3.1) has a unique solution.
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Proof. The existence of a solution to the nonlinear problem (3.1) is given in Theorem

3.1.4. The proof of uniqueness of a solution repeats the proof of Theorem 3.1.3.

3.2 The nonlinear difference scheme

On ω, we introduce a rectangular mesh Λ
h

= Λ
hx × Λ

hy
:

Λ
hx

= {xi, i = 0, 1, . . . , Nx; x0 = 0, xNx = l1; hx = xi+1 − xi}, (3.15)

Λ
hy

= {yj , j = 0, 1, . . . , Ny; y0 = 0, yNy = l2; hy = yj+1 − yj}.

We denote by Ωh and ∂Ωh the sets of indices which correspond to interior and boundary

mesh points, such that

Ωh = {(i, j) : i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny − 1},

∂Ωh = {(i, j) : i = 0, Nx, j = 0, 1, . . . , Ny; i = 0, 1, . . . , Nx, j = 0, Ny}.

For (i, j) ∈ Ω
h

= Ωh ∪ ∂Ωh, we introduce the notation

Tα,ij(Uα,ij , Uα′,ij) =

{
T1,ij(U1,ij , U2,ij), α = 1,

T2,ij(U1,ij , U2,ij), α = 2,
α′ 6= α. (3.16)

By using the central difference approximations for the first and second derivatives on

the 5-point stencil, we introduce the nonlinear difference scheme

Aα,ijUα,ij + fα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, (3.17)

Uα,ij = gα,ij , (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

where fα,ij(Uα,ij , Uα′,ij) is defined by (3.16), Ωh is the set of indices of interior mesh

points in Λ
h
, ∂Ωh is the set of indices of the boundary mesh points in Λ

h
and the

central difference approximations for the first and second derivatives are given by

D2
xUα,ij =

Uα,i−1,j − 2Uα,ij + Uα,i+1,j

h2
x

, D2
yUα,ij =

Uα,i,j−1 − 2Uα,ij + Uα,i,j+1

h2
y

,

(3.18)

D1
xUα,ij =

Uα,i+1,j − Uα,i−1,j

2hx
, D1

yUα,ij =
Uα,i,j+1 − Uα,i,j−1

2hy
, α = 1, 2.
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The difference operators Aα,ijUα,ij , α = 1, 2, in (3.17) are defined by

Aα,ijUα,ij = A(x)
α,ijUα,ij +A(y)

α,ijUα,ij ,

A(x)
α,ijUα,ij =

1

h2
x

[
−lα,ijUα,i−1,j + 2D

(x)
α,ijUα,ij − rα,ijUα,i+1,j

]
,

A(y)
α,ijUα,ij =

1

h2
y

[
−bα,ijUα,i,j−1 + 2D

(y)
α,ijUα,ij − qα,ijUα,i,j+1

]
,

lα,ij =
D

(x)
α,ij

h2
x

−
v

(x)
α,ij

2hx
, rα,ij =

D
(x)
α,ij

h2
x

+
v

(x)
α,ij

2hx
,

bα,ij =
D

(y)
α,ij

h2
y

−
v

(y)
α,ij

2hy
, qα,ij =

D
(y)
α,ij

h2
y

+
v

(y)
α,ij

2hy
, α = 1, 2.

To insure that lα,ij , rα,ij , bα,ij and qα,ij , α = 1, 2, are positive, we choose

hx <
2D

(x)
α,ij

|v(x)
α,ij |

, hy <
2D

(y)
α,ij

|v(y)
α,ij |

.

Remark 3.2.1. If the effect of convection v(x, y) dominates diffusion D(x, y) to the

extent that these conditions require prohibitively small hx and hy, then an upwind dif-

ference scheme for the first derivatives can be used to remove any restriction on hx and

hy, that is, for α = 1, 2,

D′xUα,ij =


Uα,i+1,j−Uα,ij

hx
, if v

(x)
α,ij ≤ 0,

Uα,ij−Uα,i−1,j

hx
, if v

(x)
α,ij ≥ 0,

D′yUα,ij =


Uα,i,j+1−Uα,ij

hy
, if v

(y)
α,ij ≤ 0,

Uα,ij−Uα,i,j−1

hy
, if v

(y)
α,ij ≥ 0,

We introduce the linear version of problem (3.17) in the form

Aα,ijWα,ij + c∗α,ijWα,ij = Φα,ij , (i, j) ∈ Ωh, (3.19)

Wα,ij = gα,ij , (i, j) ∈ ∂Ωh, α = 1, 2,

where c∗α,ij , (i, j) ∈ Ω
h
, α = 1, 2, are nonnegative bounded functions. We formulate the

maximum principle for the difference operators Aα,ij + c∗α,ij , (i, j) ∈ Ωh, α = 1, 2.

Lemma 3.2.2. If Wα,ij, (i, j) ∈ Ω
h
, α = 1, 2, satisfy the conditions

Aα,ijWα,ij + c∗α,ijWα,ij ≥ 0 (≤ 0), (i, j) ∈ Ωh,

Wα,ij ≥ 0 (≤ 0), (i, j) ∈ ∂Ωh, α = 1, 2,
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then Wα,ij ≥ 0 (≤ 0), (i, j) ∈ Ω
h
, α = 1, 2.

The proof of the lemma is given in Lemma 1.2.1 from Chapter 1.

Remark 3.2.3. In this remark, we discuss the mean-value theorem for vector-valued

functions. Assume that Fα(x, y, uα, uα′), α
′ 6= α, α = 1, 2, are smooth functions, then

we have

Fα(x, y, uα, uα′)−Fα(x, y, wα, uα′) =
∂Fα(hα, uα′)

∂uα
[uα − wα], (3.20)

Fα(x, y, uα, uα′)−Fα(x, y, uα, wα′) =
∂Fα(uα, pα′)

∂uα′
[uα′ − wα′ ],

where hα(x, y), pα(x, y) lie between uα(x, y) and wα(x, y), α = 1, 2, and notation (3.10)

is in use.

3.2.1 Quasi-monotone nondecreasing case

Two vector mesh functions Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, are

called ordered upper and lower solutions of (3.17), if they satisfy the inequalities

Ûα,ij ≤ Ũα,ij , (i, j) ∈ Ω
h
, (3.21a)

Aα,ijÛα,ij + fα,ij(Ûij) ≤ 0 ≤ Aα,ijŨα,ij + fα,ij(Ũij), (i, j) ∈ Ωh, (3.21b)

Ûα,ij ≤ gα,ij ≤ Ũα,ij , (i, j) ∈ ∂Ωh, α = 1, 2. (3.21c)

For a given pair of ordered upper and lower solutions Ũij and Ûij , (i, j) ∈ Ω
h
, we define

the sector

〈Û , Ũ〉 =
{
Uij : Ûij ≤ Uij ≤ Ũij , (i, j) ∈ Ω

h
}
.

In the sector 〈Û , Ũ〉, we assume that the functions fα,ij , (i, j) ∈ Ω
h
, α = 1, 2, in (3.17),

satisfy the constraints

∂fα,ij(Uij)

∂uα
≤ cα,ij , U ∈ 〈Û , Ũ〉, (i, j) ∈ Ω

h
, α = 1, 2, (3.22)

− ∂fα,ij(Uij)

∂uα′
≥ 0, U ∈ 〈Û , Ũ〉, (i, j) ∈ Ω

h
, α′ 6= α, α, α′ = 1, 2, (3.23)

where cα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are nonnegative bounded functions in Ω

h
. We say

that the functions fα,ij(Uij), (i, j) ∈ Ω
h
, α = 1, 2, are quasi-monotone nondecreasing

in 〈Û , Ũ〉 if they satisfy (3.23).
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We introduce the notation

Γα,ij(Uα,ij , Vα′,ij) = cα,ijUα,ij − fα,ij(Uα,ij , Vα′,ij), (i, j) ∈ Ω
h
, (3.24)

α′ 6= α, α, α′ = 1, 2,

where cα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are nonnegative bounded functions, and notation

(3.16) is in use. We give a monotone property of Γα,ij(Uα,ij , Vα′,ij), (i, j) ∈ Ω
h
, α′ 6= α,

α, α′ = 1, 2 from (3.24).

Lemma 3.2.4. Suppose that Uij = (U1,ij , U2,ij) and Vij = (V1,ij , V2,ij), (i, j) ∈ Ω
h
, are

vector functions in 〈Û , Ũ〉, such that Uij ≥ Vij, (i, j) ∈ Ω
h
, and assume that (3.22) and

(3.23) are satisfied. Then

Γα,ij(Uα,ij , Uα′,ij) ≥ Γα,ij(Vα,ij , Vα′,ij), (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2. (3.25)

Proof. From (3.24), we have

Γα,ij(Uα,ij , Uα′,ij)− Γα,ij(Vα,ij , Vα′,ij) = cα,ij(Uα,ij − Vα,ij) (3.26)

−
[
fα,ij(Uα,ij , Uα′,ij)− fα,ij(Vα,ij , Uα′,ij)

]
−
[
fα,ij(Vα,ij , Uα′,ij)− fα,ij(Vα,ij , Vα′,ij)

]
,

(i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2.

Using the mean-value theorem (3.20), we obtain that

Γα,ij(Uα,ij , Uα′,ij)− Γα,ij(Vα,ij , Vα′,ij) =(
cα,ij −

(
fα,ij(Qα,ij , Uα′,ij)

)
uα

)
(Uα,ij − Vα,ij)−

(
fα,ij(Vα,ij , Yα′,ij)

)
uα′

(Uα′,ij − Vα′,ij),

Vα,ij ≤ Qα,ij , Yα,ij ≤ Uα,ij , (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2.

Taking into account that Uα,ij ≥ Vα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.22) and (3.23), we

conclude (3.25).

3.2.1.1 Applied problems

The gas-liquid interaction model

Consider the gas-liquid interaction model where a dissolved gas A and a dissolved

reactant B interact in a bounded diffusion medium ω (more details are given in [34]).

The chemical reaction scheme is given by A + k1B → k2P and is called the second

order reaction, where k1 and k2 are the rate constants and P is the product. Denote

by z1(x, y) and z2(x, y) the concentrations of the dissolved gas A and the reactant B.

Then the above reaction scheme is governed by (3.1) with Lαzα = Dα4zα, fα = σαz1z2,
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α = 1, 2, where σ1 is the rate constant, σ2 = k1σ1. By choosing a suitable positive

constant ρ1 > 0 and letting u1 = ρ1 − z1 ≥ 0, u2 = z2, we have

f1(u1, u2) = −σ1(ρ1 − u1)u2, f2(u1, u2) = σ2(ρ1 − u1)u2, (3.27)

and system (3.1) is reduced to

−Dα4uα + fα(u1, u2) = 0, (x, y) ∈ ω, α = 1, 2,

u1(x, y) = g∗1(x, y) ≥ 0, u2(x, y) = g2(x, y) ≥ 0, (x, y) ∈ ∂ω,

where g∗1 = ρ1 − g1 ≥ 0 and g1 ≥ 0 on ∂ω. The nonlinear difference scheme (3.17) for

the model is presented in the form

Aα,ijUα,ij + fα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

U1,ij = g∗1,ij , U2,ij = g2,ij , (i, j) ∈ ∂Ωh, (3.28)

where fα, α = 1, 2, are defined in (3.27), and

Aα,ijUα,ij = −Dα(D2
x +D2

y)Uα,ij , (i, j) ∈ Ωh, α = 1, 2,

where D2
x, D2

y are defined in (3.18). We introduce the linear problems

Aα,ijVα,ij = 0, (i, j) ∈ Ωh, α = 1, 2, (3.29)

V1,ij = g∗1,ij , V2,ij = g2,ij , (i, j) ∈ ∂Ωh.

We now show that

(Ũ1,ij , Ũ2,ij) = (ρ1, V2,ij), (Û1,ij , Û2,ij) = (V1,ij , 0), (i, j) ∈ Ω
h
, (3.30)

are ordered upper and lower solutions (3.21) to (3.28). Letting Wα,ij = Ũα,ij − Ûα,ij ,
(i, j) ∈ Ω

h
, α = 1, 2, from (3.27) and (3.29), we have

Aα,ijWα,ij = 0, (i, j) ∈ Ωh, α = 1, 2.

From here and using Lemma 3.2.2, we conclude that Wα,ij ≥ 0, (i, j) ∈ Ω
h
, α = 1, 2.

Thus, we prove (3.21a). From (3.27), (3.29) and (3.30), we obtain

Aα,ijŨα,ij + fα,ij(Ũα,ij , Ũα′,ij) = 0, (i, j) ∈ Ωh, α′ 6=, α, α, α′ = 1, 2,

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ûα′,ij) = 0, (i, j) ∈ Ωh, α′ 6=, α, α, α′ = 1, 2.

Hence, we conclude (3.21b). From (3.30), it follows (3.21c). Thus, we prove that Ũα,ij
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and Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.30) are ordered upper and lower solutions

(3.21). From (3.27), in the sector 〈Û , Ũ〉, we have

∂f1,ij

∂u1
(U1,ij , U2,ij) = σ1U2,ij ≤ σ1V2,ij , (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
(U1,ij , U2,ij) = σ2(ρ1 − U1,ij) ≤ σ2ρ1, (i, j) ∈ Ω

h
,

− ∂f1,ij

∂u2
(U1,ij , U2,ij) = σ1(ρ1 − U1,ij) ≥ 0, (i, j) ∈ Ω

h
,

− ∂f2,ij

∂u1
(U1,ij , U2,ij) = σ2U2,ij ≥ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (3.22) are satisfied with

c1,ij = σ1V2,ij , c2,ij = σ2ρ1, (i, j) ∈ Ω
h
.

From here, we conclude that fα, α = 1, 2, from (3.27) satisfy (3.22) and quasi-monotone

nondecreasing property (3.23).

Enzyme-substrate reaction diffusion model

In the enzyme–substrate reaction problem, the chemical reaction scheme is expressed

by

E + S 
 ES → E + P,

where E, S and P represent, respectively, enzyme, substrate and product. The usual

enzyme concentration law is given by

E + C = E0, (3.31)

where C = ES is the enzyme substrate complex, and E0 is the total enzyme (more

details are given in [41]). Let z1(x, y) and z2(x, y) be, respectively, the concentrations

of the enzyme and the substrate. Then the above reactant scheme is governed by

(3.1) with Lαzα = Dα4zα, α = 1, 2, f1(z1, z2) = a1z1z2 − b1(E0 − z2), f2(z1, z2) =

a2z1z2 − b2(E0 − z2), where aα, bα, α = 1, 2, are positive constants. Letting u1 = z1,

u2 = E0 − z2 ≥ 0, we have

f1(u1, u2) = a1u1(E0 − u2)− b1u2, f2(u1, u2) = −a2u1(E0 − u2) + b2u2. (3.32)

System (3.1) is reduced to

−Dα4uα + fα(uα, uα′) = 0, (x, y) ∈ ω, α′ 6= α, α, α′ = 1, 2,

u1(x, y) = g1(x, y) ≥ 0, u2(x, y) = g∗2(x, y), (x, y) ∈ ∂ω,
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where g1 ≥ 0 on ∂ω and g∗2 = E0 − g2 ≥ 0. The nonlinear difference scheme (3.17) for

the model is presented in the form

Aα,ijUα,ij + fα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, (3.33)

U1,ij = g1,ij , U2,ij = g∗2,ij , (i, j) ∈ ∂Ωh,

where fα, α = 1, 2, are defined in (3.32), and

Aα,ijUα,ij = −Dα(D2
x +D2

y)Uα,ij , (i, j) ∈ Ωh, α = 1, 2,

where D2
x, D2

y are defined in (3.18).

Introduce the linear problem

A1,ijVij = Φij , (i, j) ∈ Ωh, Vij = g1,ij , (i, j) ∈ ∂Ωh, (3.34)

where Φij , (i, j) ∈ Ω
h
, is any positive mesh function, such that Φij ≥ b1E0, (i, j) ∈ Ω

h
.

We now show that

(Ũ1,ij , Ũ2,ij) = (Vij , E0), (Û1,ij , Û2,ij) = (0, 0), (i, j) ∈ Ω
h
, (3.35)

are ordered upper and lower solutions (3.21) to (3.33). Letting Wα,ij = Ũα,ij − Ûα,ij ,
(i, j) ∈ Ω

h
, α = 1, 2. From (3.34) and (3.35), we conclude that

A1,ijW1,ij = Φij , (i, j) ∈ Ωh, W1,ij ≥ 0, (i, j) ∈ ∂Ωh,

A2,ijW2,ij = 0, (i, j) ∈ Ωh, W2,ij > 0, (i, j) ∈ ∂Ωh.

From here, by Lemma 3.2.2, we obtain that

Wα,ij ≥ 0, (i, j) ∈ Ω
h
, α = 1, 2. (3.36)

Thus, we prove (3.21a). From (3.32), (3.34) and (3.35), we have

A1,ijŨ1,ij + f1,ij(Ũ1,ij , Ũ2,ij) = Φij − b1E0 ≥ 0, (i, j) ∈ Ωh,

A2,ijŨ2,ij + f1,ij(Ũ1,ij , Ũ2,ij) = b2E0 > 0, (i, j) ∈ Ωh,

that is, Ũα,ij , (i, j) ∈ Ωh, α = 1, 2, from (3.35) satisfy (3.21b). From (3.32) and (3.35),

we have

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ûα′,ij) = 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

that is, Ûα,ij , (i, j) ∈ Ωh, α = 1, 2, satisfy (3.21b). From (3.36), it follows (3.21c) is

65



satisfied. Thus, we prove that (Ũ1,ij , Ũ2,ij) and (Û1,ij , Û2,ij), (i, j) ∈ Ω
h

from (3.35)

are ordered upper and lower solutions (3.21) to the nonlinear difference scheme (3.17).

From (3.32) and (3.35), in the sector 〈Û , Ũ〉, we have

∂f1,ij

∂u1
(U1,ij , U2,ij) = a1(E0 − U2,ij) ≤ a1E0, (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
(U1,ij , U2,ij) = a2U1,ij + b2 ≤ a2Vij + b2, (i, j) ∈ Ω

h
,

− ∂f1,ij

∂u2
(U1,ij , U2,ij) = a1U1,ij + b1 ≥ 0, (i, j) ∈ Ω

h
,

− ∂f2,ij

∂u1
(U1,ij , U2,ij) = a2(E0 − U2,ij) ≥ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (3.22) are satisfied with

c1,ij = a1E0, c2,ij = a2Vij + b2, (i, j) ∈ Ω
h
.

From here, we conclude that fα, α = 1, 2, from (3.32) satisfy (3.22) and quasi-monotone

nondecreasing property (3.23).

3.2.2 Quasi-monotone nonincreasing case

Two vector mesh functions Ũij = (Ũ1,ij , Ũ2,ij), Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, are called

ordered upper and lower solutions of (3.17), if they satisfy the inequalities

Ûα,ij ≤ Ũα,ij , (i, j) ∈ Ω
h
, (3.37a)

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ũα′,ij) ≤ 0 ≤ Aα,ijŨα,ij + fα,ij(Ũα,ij , Ûα′,ij), (i, j) ∈ Ωh,

(3.37b)

Ûα,ij ≤ gα,ij ≤ Ũα,ij , (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2, (3.37c)

where notation (3.16) is in use.

For a given pair of ordered upper and lower solutions Ũij and Ûij , (i, j) ∈ Ω
h
, we

define the sector

〈Û , Ũ〉 =
{
Uij : Ûij ≤ Uij ≤ Ũij , (i, j) ∈ Ω

h
}
.

In the sector 〈Û , Ũ〉, we assume that the functions fα,ij , (i, j) ∈ Ω
h
, α = 1, 2, in (3.17),
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satisfy the constraints

∂fα,ij(Uij)

∂uα
≤ cα,ij , U ∈ 〈Û , Ũ〉, (i, j) ∈ Ω

h
, α = 1, 2, (3.38)

− ∂fα,ij(Uij)

∂uα′
≤ 0, U ∈ 〈Û , Ũ〉, (i, j) ∈ Ω

h
, α′ 6= α, α, α′ = 1, 2, (3.39)

where cα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are nonnegative bounded functions in Ω

h
. We say that

the functions fα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are quasi-monotone nonincreasing in 〈Û , Ũ〉 if

they satisfy (3.39).

We give a monotone property of Γα,ij(Uα,ij , Uα′,ij), (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2,

from (3.24) in the quasi-monotone nonincreasing case (3.39).

Lemma 3.2.5. Suppose that Uij = (U1,ij , U2,ij) and Vij = (V1,ij , V2,ij), (i, j) ∈ Ω
h
, are

vector functions in 〈Û , Ũ〉, such that Uij ≥ Vij, (i, j) ∈ Ω
h
. Assume that (3.38) and

(3.39) are satisfied. Then

Γα,ij(Uα,ij , Vα′,ij) ≥ Γα,ij(Vα,ij , Uα′,ij), (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2. (3.40)

Proof. From (3.24), we have

Γα,ij(Uα,ij , Vα′,ij)− Γα(Vα,ij , Uα′,ij) = cα,ij(Uα,ij − Vα,ij)

−
[
fα,ij(Uα,ij , Vα′,ij)− fα,ij(Vα,ij , Vα′,ij)

]
+
[
fα,ij(Vα,ij , Uα′,ij)− fα,ij(Vα,ij , Vα′,ij)

]
,

(i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2.

Using the mean-value theorem (3.20), we obtain that

Γα,ij(Uα,ij , Vα′,ij)− Γα(Vα,ij , Uα′,ij) =(
cα,ij −

(
fα,ij(Qα,ij , Vα′,ij)

)
uα

)
(Uα,ij − Vα,ij) +

(
fα,ij(Vα,ij , Yα′,ij)

)
uα′

(Uα′,ij − Vα′,ij),

Vα,ij ≤ Qα,ij , Yα,ij ≤ Uα,ij , (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2.

Taking into account that Uα,ij ≥ Vα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.38) and (3.39), we

conclude (3.40).
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3.2.2.1 Applied problems

The gas-liquid interaction model

We now consider the gas-liquid model from Section 3.2.1.1 with the reaction func-

tions given in the original form

fα(u1, u2) = σαu1u2, α = 1, 2. (3.41)

System (3.1) is reduced to

−Dα4uα + fα(u1, u2) = 0, (x, y) ∈ ω,

uα(x, y) = gα(x, y) ≥ 0, (x, y) ∈ ∂ω, α = 1, 2.

The nonlinear difference scheme (3.17) for the model is presented in the form

Aα,ijUα,ij + fα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, (3.42)

Uα,ij = gα,ij , (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

where fα, α = 1, 2, are defined in (3.41), and

Aα,ijUα,ij = −Dα(D2
x +D2

y)Uα,ij , (i, j) ∈ Ωh, α = 1, 2,

where D2
x, D2

y are defined in (3.18).

We introduce the linear problems

Aα,ijVα,ij = 0, (i, j) ∈ Ωh, (3.43)

Vα,ij = gα,ij , (i, j) ∈ ∂Ωh, α = 1, 2.

We show that

(Ũ1,ij , Ũ2,ij) = (V1,ij , V2,ij), (Û1,ij , Û2,ij) = (0, 0), (i, j) ∈ Ω
h
, (3.44)

are ordered upper and lower solutions (3.37) to (3.42). Letting Wα,ij = Ũα,ij − Ûα,ij ,
(i, j) ∈ Ω

h
, α = 1, 2. From (3.42) and (3.43), we have

Aα,ijWα,ij = 0, (i, j) ∈ Ωh, α = 1, 2.

From here and using Lemma 3.2.2, we conclude that Wα,ij ≥ 0, (i, j) ∈ Ω
h
, α = 1, 2.
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Thus, we prove (3.37a). From (3.42)–(3.44), we obtain

Aα,ijŨα,ij + fα,ij(Ũα,ij , Ûα′,ij) = 0, (i, j) ∈ Ωh, α′ 6=, α, α, α′ = 1, 2,

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ũα′,ij) = 0, (i, j) ∈ Ωh, α′ 6=, α, α, α′ = 1, 2.

Hence, we conclude (3.37b). From (3.44), it follows (3.37c). Thus, we prove that the

mesh functions Ũα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.44) are ordered upper and

lower solutions (3.37). From (3.41), in the sector 〈Û , Ũ〉, we have

∂f1,ij

∂u1
(U1,ij , U2,ij) = σ1U2,ij ≤ σ1V2,ij , (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
(U1,ij , U2,ij) = σ2U1,ij ≤ σ2V1,ij , (i, j) ∈ Ω

h
,

− ∂f1,ij

∂u2
= −σ1U1,ij ≤ 0, (i, j) ∈ Ω

h
,

− ∂f2,ij

∂u1
= −σ2U2,ij ≤ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (3.38) are satisfied with

c1,ij = σ1V2,ij , c2,ij = σ2V1,ij , (i, j) ∈ Ω
h
.

From here, we conclude that fα, α = 1, 2, from (3.41) satisfy (3.38) and quasi-monotone

nonincreasing property (3.39).

The Volterra–Lotka competition model in ecology

The coexistence of the competing species in ecology is closely related to the existence

of a positive steady-state solution and the asymptotic behavior of the time-dependent

solution in relation to the steady-state solution. The Volterra–Lotka competition model

is governed by (3.1) with Lαuα = 4uα, and

fα(u1, u2) = −uα(aα − bαu1 − dαu2), α = 1, 2, (3.45)

where aα, bα and dα, α = 1, 2, are positive constants. System (3.1) is reduced to

−Dα4uα + fα(u1, u2) = 0, (x, y) ∈ ω, uα(x, y) = 0, (x, y) ∈ ∂ω, α = 1, 2.

The nonlinear difference scheme (3.17) for the model is presented in the form

Aα,ijUα,ij + fα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, (3.46)

Uα,ij = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,
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where fα, α = 1, 2, are defined in (3.45), and

Aα,ijUα,ij = −Dα(D2
x +D2

y)Uα,ij , (i, j) ∈ Ωh, α = 1, 2,

where D2
x, D2

y are defined in (2.8). We now show that

(Ũ1,ij , Ũ2,ij) =
(a1

b1
,
a2

d2

)
, (Û1,ij , Û2,ij) = (0, 0), (i, j) ∈ Ω

h
, (3.47)

are ordered upper and lower solutions (3.37) to (3.46). From (3.47), it follows (3.37a).

From (3.45) and (3.47), we obtain

A1,ijŨ1,ij + f1,ij(Ũ1,ij , Û2,ij) = 0, (i, j) ∈ Ωh,

A2,ijŨ2,ij + f2,ij(Û1,ij , Ũ2,ij) = 0, (i, j) ∈ Ωh.

Similarly, we obtain

A1,ijÛ1,ij + f1,ij(Û1,ij , Ũ2,ij) = 0, (i, j) ∈ Ωh,

A2,ijŨ2,ij + f2,ij(Ũ1,ij , Û2,ij) = 0, (i, j) ∈ Ωh.

Hence, we conclude (3.37b). From (3.47), it follows (3.37c). Thus, the mesh functions

Ũα,ij and Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.47) are ordered upper and lower solutions

(3.37). From (3.45), in the sector 〈Û , Ũ〉, we have

∂f1,ij

∂u1
(U1,ij , U2,ij) = −a1 + 2b1U1,ij + d1U2,ij ≤ 2a1 +

d1a2

d2
, (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
(U1,ij , U2,ij) = −a2 + b2U1,ij + 2d2U2,ij ≤ a2 +

a1b2
b1

, (i, j) ∈ Ω
h
,

− ∂f1,ij

∂u2
= −d1U1,ij ≤ 0, −∂f2,ij

∂u1
= −b2U2,ij ≤ 0, (i, j) ∈ Ω

h
.

Thus, assumptions (3.38) are satisfied with

c1,ij = 2a1 +
d1a2

d2
, c2,ij = a2 +

a1b2
b1

, (i, j) ∈ Ω
h
.

From here, we conclude that fα, α = 1, 2, from (3.45) satisfy (3.38) and quasi-monotone

nonincreasing property (3.39).
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3.3 The monotone Jacobi and Gauss-Seidel methods

At interior mesh points (xi, yj), (i, j) ∈ Ωh, the difference scheme (3.17) can be written

in the following form

dα,ijUα,ij − lα,ijUα,i−1,j − rα,ijUα,i+1,j − bα,ijUα,i,j−1 − qα,ijUα,i,j+1 = (3.48)

−fα,ij(Uα,ij , Uα′,ij), α′ 6= α, α, α′ = 1, 2,

dα,ij = lα,ij + rα,ij + bα,ij + qα,ij , lα,ij , rα,ij , bα,ij , qα,ij > 0, (3.49)

where lα,ij , rα,ij , bα,ij and qα,ij , α = 1, 2, are defined in (3.17).

3.3.1 Quasi-monotone nondecreasing case

The definition of the ordered upper Ũij and lower Ûij , (i, j) ∈ Ω
h

solutions (3.21) can

be written in the form

Ûα,ij ≤ Ũα,ij , (i, j) ∈ Ω
h
, (3.50a)

Kα,ij(Ûα,ij , Ûα′,ij) ≤ 0 ≤ Kα,ij(Ũα,ij , Ũα′,ij), (i, j) ∈ Ωh, (3.50b)

Ûα,ij ≤ gα,ij ≤ Ũα,ij , (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2, (3.50c)

where Kα,ij(Uα,ij , Uα′,ij), (i, j) ∈ Ωh, α = 1, 2, are the residuals of the nonlinear differ-

ence scheme (3.48) on Uα,ij , (i, j) ∈ Ωh, α = 1, 2, and notation (3.16) is in use.

We now present the point monotone Jacobi and Gauss-Seidel methods for the differ-

ence scheme (3.48). Upper {U (n)
α,ij} and lower {U (n)

α,ij}, (i, j) ∈ Ω
h
, α = 1, 2, sequences

of solutions are calculated by the following point Jacobi and Gauss-Seidel iterative

methods:

Lα,ijZ(n)
α,ij = −Kα,ij(U (n−1)

α,ij , U
(n−1)
α′,ij ), (i, j) ∈ Ωh, n ≥ 1, (3.51)

Z
(1)
α,ij = gα,ij − U (0)

α,ij , Z
(n)
α,ij = 0, n ≥ 2, (i, j) ∈ ∂Ωh,

Lα,ijZ(n)
α,ij = (dα,ij + cα,ij)Z

(n)
α,ij − η

(
lα,ijZ

(n)
α,i−1,j + bα,ijZ

(n)
α,i,j−1

)
,

Z
(n)
α,ij = U

(n)
α,ij − U

(n−1)
α,ij , (i, j) ∈ Ω

h
,

Kα,ij(U (n−1)
α,ij , U

(n−1)
α′,ij ) = dα,ijU

(n−1)
α,ij − lα,ijU (n−1)

α,i−1,j − rα,ijU
(n−1)
α,i+1,j

−bα,ijU (n−1)
α,i,j−1 − qα,ijU

(n−1)
α,i,j+1 + fα,ij(U

(n−1)
α,ij , U

(n−1)
α′,ij ),

α′ 6= α, α, α′ = 1, 2,

where Kα,ij(U (n−1)
α,ij , U

(n−1)
α′,ij ), (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, are the residuals of the

nonlinear difference scheme (3.48) on U
(n−1)
α,ij , (i, j) ∈ Ωh, α = 1, 2, and notation (3.16)

is in use. For η = 0 and η = 1, we have, respectively, the point Jacobi and Gauss-Seidel
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methods.

Remark 3.3.1. For quasi-monotone nondecreasing functions (3.38), upper and lower

solutions are independent, hence, by using (3.51), we calculate either the sequence

{U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
or the sequence {U (n)

1,ij , U
(n)
2,ij}, (i, j) ∈ Ω

h
.

Theorem 3.3.2. Let Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, be ordered

upper and lower solutions (3.50). Suppose that the functions fα, α = 1, 2, in (3.1)

satisfy (3.22) and (3.23). Then upper {U (n)
α,ij} and lower {U (n)

α,ij}, (i, j) ∈ Ω
h
, α = 1, 2,

sequences generated by (3.51) with, respectively, U
(0)
ij = Ũij and U

(0)
ij = Ûij, (i, j) ∈ Ω

h
,

converge monotonically from above to a maximal solution U ij, (i, j) ∈ Ω
h
, and from

below to a minimal solution U ij, (i, j) ∈ Ω
h
,

U
(n−1)
α,ij ≤ U (n)

α,ij ≤ Uα,ij ≤ Uα,ij ≤ U
(n)
α,ij ≤ U

(n−1)
α,ij (i, j) ∈ Ω

h
, α = 1, 2. (3.52)

If Sij = (S1,ij , S2,ij) is any other solution in 〈Û , Ũ〉, then

U ij ≤ Sij ≤ U ij , (i, j) ∈ Ω
h
. (3.53)

Proof. Since U
(0)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, are initial upper solutions (3.21), it follows

that Kα,ij(U
(0)
α,ij , U

(0)
α′,ij) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2. From here and (3.51), we

have

(dα,ij + cα,ij)Z
(1)
α,ij − ηlα,ijZ

(1)
α,i−1,j − ηbα,ijZ

(1)
α,i,j−1 ≤ 0, (i, j) ∈ Ωh, (3.54)

Z
(1)
α,ij ≤ 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here, η = 0, 1, bα,i,1 ≥ 0 in (3.48) and Z
(1)
α,i,0 ≤ 0, for j = 1 in (3.54), we obtain

(dα,i,1 + cα,i,1)Z
(1)
α,i,1 − ηlα,i,1Z

(1)
α,i−1,1 ≤ 0, i = 1, 2, . . . , Nx − 1,

Z
(1)
α,i,1 ≤ 0, i = 0, Nx, α = 1, 2. (3.55)

Taking into account that η = 0, 1, lα,1,1 > 0 in (3.48), Z
(1)
α,0,1 ≤ 0, by using the maximum

principle in Lemma 3.2.2, for i = 1 in (3.55), we have Z
(1)
α,1,1 ≤ 0, α = 1, 2. From here,

for i = 2 in (3.55), by Lemma 3.2.2, we have Z
(1)
α,2,1 ≤ 0, α = 1, 2. By induction on i,

we can prove that Z
(1)
α,i,1 ≤ 0, i = 0, 1, . . . , Nx, α = 1, 2.

By induction on j ≥ 1, we can prove that

Z
(1)
α,ij ≤ 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.56)
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Similarly, for initial lower solutions U
(0)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, we can prove that

Z
(1)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.57)

We now prove that U
(1)
α,ij and U

(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and lower

solutions (3.50). Letting W
(n)
α,ij = U

(n)
α,ij − U

(n)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, n ≥ 0, using

notation (3.24), from (3.51), we conclude that

Lα,ijW (1)
α,ij = rα,ijW

(0)
α,i+1,j + qα,ijW

(0)
α,i,j+1 + Γα,ij(U

(0)
α,ij , U

(0)
α′,ij)− Γα,ij(U

(0)
α,ij , U

(0)
α′,ij),

(i, j) ∈ Ωh, W
(1)
α,ij = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2.

From here, (3.48), (3.51) and taking into account that U
(0)
α,ij ≥ U

(0)
α,ij , (i, j) ∈ Ω

h
,

α = 1, 2, by Lemma 3.2.4, we obtain

(dα,ij + cα,ij)W
(1)
α,ij − ηlα,ijW

(1)
α,i−1,j − ηbα,ijW

(1)
α,i,j−1 ≥ 0, (i, j) ∈ Ωh, (3.58)

W
(1)
α,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here and taking into account that W
(1)
α,i,0 = 0, α = 1, 2, for j = 1 in (3.58), we

conclude that

(dα,i,1 + cα,i,1)W
(1)
α,i,1 − ηlα,i,1W

(1)
α,i−1,1 ≥ 0, i = 1, 2, . . . , Nx − 1,

W
(1)
α,i,1 = 0, i = 0, Nx, α = 1, 2.

Taking into account that W
(1)
α,0,1 = 0, α = 1, 2, by Lemma 3.2.2, for i = 1 in (5.50), we

have W
(1)
α,1,1 ≥ 0, α = 1, 2. From here, η = 0, 1, lα,2,1 > 0, α = 1, 2, in (3.48) and

using Lemma 3.2.2, for i = 2, we obtain that W
(1)
α,2,1 ≥ 0, α = 1, 2. By induction on i,

we can prove that

W
(1)
α,i,1 ≥ 0, i = 0, 1, . . . , Nx, α = 1, 2.

By induction on j ≥ 1, we can prove that

W
(1)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.59)

Thus, we prove (3.50a).

From (3.51) and using the mean-value theorem, we conclude that

Kα,ij(U
(1)
α,ij , U

(1)
α′,ij) = −

(
cα,ij −

(
fα,ij(Q

(1)
α,ij , U

(0)
α′,ij)

)
uα

)
Z

(1)
α,ij (3.60)

+
(
fα,ij(U

(0)
α,ij , Y

(1)
α′,ij)

)
uα′

Z
(1)
α′,ij − ηlα,ijZ

(1)
α,i−1,j − rα,ijZ

(1)
α,i+1,j

−ηbα,ijZ
(1)
α,i,j−1 − qα,ijZ

(1)
α,i,j+1, α′ 6= α, α, α′ = 1, 2,
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where U
(1)
α,ij ≤ Q

(1)
α,ij , Y

(1)
α,ij ≤ U

(0)
α,ij , (i, j) ∈ Ωh, α = 1, 2. From (3.57) and (3.59),

we conclude that
(
fα,ij(Q

(1)
α,ij , U

(0)
α′,ij)

)
uα

and
(
fα,ij(U

(0)
α,ij , Y

(1)
α′,ij)

)
uα′

satisfy (3.22) and

(3.23). From (3.22), (3.23), (3.48), (3.56) and (3.60), it follows that

Kα,ij(U
(1)
α,ij , U

(1)
α′,ij) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Thus, U
(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, satisfy (3.50b). By a similar manner, we can prove

that

Kα,ij(U (1)
α,ij , U

(1)
α′,ij) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

that is, U
(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, satisfy (3.50b). From the boundary conditions on

∂Ωh in (3.51), it follows that U
(1)
α,ij and U

(1)
α,ij , (i, j) ∈ ∂Ωh, α = 1, 2 satisfy (3.50c).

Thus, we prove that U
(1)
α,ij and U

(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and

lower solutions (3.50).

By induction on n, we can prove that {U (n)
α,ij}, (i, j) ∈ Ω

h
, α = 1, 2, are monotone

decreasing sequences of upper solutions and {U (n)
α,ij}, (i, j) ∈ Ω

h
, α = 1, 2, are monotone

increasing sequences of lower solutions which satisfy (3.52). From (3.52), it follows that

limU
(n)
α,ij = Uα,ij and limU

(n)
α,ij = Uα,ij , (i, j) ∈ Ω

h
, α = 1, 2, as n→∞ exist and

lim
n→∞

Z
(n)
α,ij = 0, lim

n→∞
Z

(n)
α,ij = 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.61)

Similar to (3.60), we have

Kα,ij(U
(n)
α,ij , U

(n)
α′,ij) = −

(
cα,ij −

(
fα,ij(Q

(n)
α,ij , U

(n−1)
α′,ij )

)
uα

)
Z

(n)
α,ij (3.62)

+
(
fα,ij(U

(n−1)
α,ij , Y

(n)
α′,ij)

)
uα′

Z
(n)
α′,ij − ηlα,ijZ

(n)
α,i−1,j

−rα,ijZ
(n)
α,i+1,j − ηbα,ijZ

(n)
α,i,j−1 − qα,ijZ

(n)
α,i,j+1,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

where

U
(n)
α,ij ≤ Q

(n)
α,ij , Y

(n)
α,ij ≤ U

(n−1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2.

By taking limit of both sides, we conclude that

Kα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Thus, Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are maximal solutions to the nonlinear difference

scheme (3.17). By a similar argument, we can prove that

Kα,ij(Uα,ij , Uα′,ij) = 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,
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that is, Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are minimal solutions to the nonlinear difference

scheme (3.17).

Now, we prove (3.53). We assume that Sij = (S1,ij , S2,ij), (i, j) ∈ Ω
h
, is another

solution in 〈Û , Ũ〉. We consider the sector 〈S, Ũ〉, which means that we treat Sij ,

(i, j) ∈ Ω
h
, as a lower solution. Since {S(n)

α,ij} = {Sα,ij}, (i, j) ∈ Ω
h
, α = 1, 2, is a

constant sequence for all n, then from (3.52), we conclude that Sα,ij ≤ Uα,ij , (i, j) ∈ Ω
h
,

α = 1, 2.

Now, we consider the sector 〈Û , S〉, which means that we treat Sij , (i, j) ∈ Ω
h
, as

an upper solution. Similarly, since {S(n)
α,ij} = {Sα,ij}, (i, j) ∈ Ω

h
, α = 1, 2, is a constant

sequence for all n, then from (3.52), we conclude that Uα,ij ≤ Sα,ij , (i, j) ∈ Ω
h
, α = 1, 2.

Thus, we prove (3.53).

3.3.2 Quasi-monotone nonincreasing case

The definition of the ordered upper Ũij and lower Ûij , (i, j) ∈ Ω
h

solutions (3.37) can

be written in the form

Ûα,ij ≤ Ũα,ij , (i, j) ∈ Ω
h
, (3.63a)

Kα,ij(Ûα,ij , Ũα′,ij) ≤ 0 ≤ Kα,ij(Ũα,ij , Ûα′,ij), (i, j) ∈ Ωh, (3.63b)

Ûα,ij ≤ gα,ij ≤ Ũα,ij , (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2, (3.63c)

where Kα,ij(Uα,ij , Uα′,ij), (i, j) ∈ Ωh, α = 1, 2, are the residuals of the nonlinear differ-

ence scheme (3.48) on Uα,ij , (i, j) ∈ Ωh, α = 1, 2, and notation (3.16) is in use.

In the case of quasi-monotone nonincreasing reaction functions, for solving the

nonlinear difference scheme (3.48), we introduce the point Jacobi and Gauss-Seidel

iterative methods in the forms

Lα,ijZ
(n)
α,ij = −Kα,ij(U

(n−1)
α,ij , U

(n−1)
α′,ij ), (i, j) ∈ Ωh, (3.64)

Lα,ijZ(n)
α,ij = −Kα,ij(U (n−1)

α,ij , U
(n−1)
α′,ij ), (i, j) ∈ Ωh,

Lα,ijZ(n)
α,ij = (dα,ij + cα,ij)Z

(n)
α,ij − η

(
lα,ijZ

(n)
α,i−1,j + bα,ijZ

(n)
α,i,j−1

)
,

Z
(n)
α,ij = U

(n)
α,ij − U

(n−1)
α,ij , (i, j) ∈ Ω

h
,

Z
(n)
α,ij =

{
gα,ij − U (0)

α,ij , n = 1,

0, n ≥ 2,
(i, j) ∈ ∂Ωh,

Kα,ij(Uα,ij , Uα′,ij) = dα,ijUα,ij − lα,ijUα,i−1,j − rα,ijUα,i+1,j − bα,ijUα,i,j−1

− qα,ijUα,i,j+1 + fα,ij(Uα,ij , Uα′,ij),

α′ 6= α, α, α′ = 1, 2,
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where Kα,ij(U (n−1)
α,ij , U

(n−1)
α′,ij ), (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, are the residuals of the

difference equations (3.48) on U
(n−1)
α,ij , (i, j) ∈ Ωh, α = 1, 2, and notation (3.16) is in use.

For η = 0 and η = 1, we have, respectively, the point Jacobi and point Gauss-Seidel

methods.

Remark 3.3.3. For quasi-monotone nonincreasing functions, upper and lower solu-

tions are coupled, hence, by using (3.64), we calculate either the sequence {U (n)
1,ij , U

(n)
2,ij},

(i, j) ∈ Ω
h

or the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
.

Theorem 3.3.4. Let the pair Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
,

be ordered upper and lower solutions (3.63). Assume that the functions fα, α =

1, 2, in (3.1) satisfy equations (3.38) and (3.39). Then the sequences {U (n)
1,ij , U

(n)
2,ij},

{U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
, generated by (3.64) with {U (0)

1,ij , U
(0)
2,ij} = {Ũ1,ij , Û2,ij} and

{U (0)
1,ij , U

(0)
2,ij} = {Û1,ij , Ũ2,ij}, (i, j) ∈ Ω

h
, converge monotonically to their respective

solutions (U1,ij , U2,ij) and (U1,ij , U2,ij), such that

U
(n−1)
α,ij ≤ U (n)

α,ij ≤ Uα,i ≤ Uα,ij ≤ U
(n)
α,ij ≤ U

(n−1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, (3.65)

If Sij = (S1,ij , S2,ij), (i, j) ∈ Ω
h
, is any other solution in 〈Û , Ũ〉, then

U ij ≤ Sij ≤ U ij , (i, j) ∈ Ω
h
. (3.66)

Proof. In the case of the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
, (U

(0)
1,ij , U

(0)
2,ij) = (Ũ1,ij , Û2,ij),

(i, j) ∈ Ω
h

are initial upper and lower solutions (3.63). Hence, it follows that the resid-

uals K1,ij(U
(n−1)
1,ij , U

(n−1)
2,ij ) ≥ 0, K2,ij(U

(n−1)
1,ij , U

(n−1)
2,ij ) ≤ 0, (i, j) ∈ Ωh, from (3.64), we

have

(d1,ij + c1,ij)Z
(1)
1,ij − ηl1,ijZ

(1)
1,i−1,j − ηb1,ijZ

(1)
1,i,j−1 ≤ 0, (i, j) ∈ Ωh, (3.67)

(d2,ij + c2,ij)Z
(1)
2,ij − ηl2,ijZ

(1)
2,i−1,j − ηb2,ijZ

(1)
2,i,j−1 ≥ 0, (i, j) ∈ Ωh,

Z
(1)
1,ij ≤ 0, Z

(1)
2,ij ≥ 0, (i, j) ∈ ∂Ωh.

For here, η = 0, 1, bα,i,1 > 0 in (3.49) and Z
(1)
1,i,0 ≤ 0, Z

(1)
2,i,0 ≥ 0, i = 0, Nx, for j = 1 in

(3.67), we obtain

(d1,ij + c1,ij)Z
(1)
1,i,1 − ηl1,i,1Z

(1)
1,i−1,1 ≤ 0, (i, j) ∈ Ωh, (3.68)

(d2,ij + c2,ij)Z
(1)
2,i,1 − ηl2,i,1Z

(1)
2,i−1,1 ≥ 0, (i, j) ∈ Ωh,

i = 1, 2, . . . , Nx − 1, Z
(1)
1,i,1 ≤ 0, Z

(1)
2,i,1 ≥ 0, i = 0, Nx.

Taking into account that η = 0, 1, lα,i,1 > 0 in (3.49), Z
(1)
1,0,1 ≤ 0, Z

(1)
2,0,1 ≥ 0, and
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using the maximum principle in Lemma 3.2.2, for i = 1 in (3.68), we have Z
(1)
1,1,1 ≤ 0,

Z
(1)
2,1,1 ≥ 0. From here, by using Lemma 3.2.2, for i = 2 in (3.68), we have Z

(1)
1,2,1 ≤

0, Z
(1)
2,2,1 ≥ 0. By induction on i and j, we can prove that

Z
(1)
1,ij ≤ 0, Z

(1)
2,ij ≥ 0, (i, j) ∈ Ω

h
. (3.69)

Similarly, for the sequence {U (1)
1,ij , U

(1)
2,ij}, (i, j) ∈ Ω

h
, from (3.64), we conclude that

Z
(1)
1,ij ≥ 0, Z

(1)
2,ij ≤ 0, (i, j) ∈ Ω

h
. (3.70)

We now prove that U
(1)
α,ij and U

(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and lower

solutions (3.63). Letting W
(1)
α,ij = U

(1)
α,ij − U

(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, using notation

(3.24), from (3.64), we conclude that

Lα,ijW (1)
α,ij = rα,ijW

(0)
α,i+1,j + qα,ijW

(0)
α,i,j+1 + Γα,ij(U

(0)
α,ij , U

(0)
α′,ij)− Γα,ij(U

(0)
α,ij , U

(0)
α′,ij),

(i, j) ∈ Ωh, W
(1)
α,ij = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2.

From here, (3.49) and taking into account that U
(0)
α,ij ≥ U

(0)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, by

using Lemma 3.2.5, we obtain

(dα,ij + cα,ij)W
(1)
α,ij − ηlα,ijW

(1)
α,i−1,j − ηbα,ijW

(1)
α,i,j−1 ≥ 0, (i, j) ∈ Ωh, (3.71)

W
(1)
α,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

Since W
(1)
α,i,0 = 0, α = 1, 2, for j = 1 in (3.71), it follows that

(dα,i,1 + cα,i,1)W
(1)
α,i,1 − ηlα,i,1W

(1)
α,i−1,1 ≥ 0, i = 1, 2, . . . , Nx − 1, (3.72)

W
(1)
α,i,1 = 0, i = 0, Nx, α = 1, 2.

From here, W
(1)
α,0,1 = 0, α = 1, 2, by using Lemma 3.2.2, for i = 1 in (3.72), we have

W
(1)
α,1,1 ≥ 0, α = 1, 2. From here, η = 0, 1, lα,2,1 > 0, α = 1, 2, in (3.49) and using

Lemma 3.2.2, for i = 2 in (3.2.2), we obtain W
(1)
α,2,1 ≥ 0, α = 1, 2. By induction on i

and j, we can prove

W
(1)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.73)

Thus, we prove (3.63a).
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From (3.64) and using the mean-value theorem (3.24), we conclude that

K1,ij(U
(1)
1,ij , U

(1)
2,ij) = −

(
c1,ij −

(
f1,ij(Q

(1)
1,ij , U

(1)
2,ij)

)
u1

)
Z

(1)
1,ij (3.74)

+
(
f1,ij(U

(0)
1,ij , Q

(1)
2,ij

)
)
u2
Z

(1)
2,ij − ηl1,ijZ

(1)
1,i−1,j − r1,ijZ

(1)
1,i+1,j

−ηb1,ijZ
(1)
1,i,j−1 − q1,ijZ

(1)
1,i,j+1, (i, j) ∈ Ωh,

where

U
(1)
1,ij ≤ Q

(1)
1,ij ≤ U

(0)
1,ij , U

(0)
2,ij ≤ Q

(1)
2,ij
≤ U (1)

2,ij , (i, j) ∈ Ω
h
.

From (3.69), (3.70) and (3.73), it follows that the partial derivatives
(
f1(Q

(1)
1,ij , U

(1)
2,ij)

)
u1

and
(
f1(U

(0)
1,ij , Q

(1)
2,ij

)
)
u2

satisfy (3.38) and (3.39). From here, (3.49), (3.69), (3.70) and

(3.74), we obtain that

K1,ij(U
(1)
1,ij , U

(1)
2,ij) ≥ 0, (i, j) ∈ Ωh. (3.75)

Similarly, we can prove that

K2,ij(U
(1)
1,ij , U

(1)
2,ij) ≤ 0, (i, j) ∈ Ωh. (3.76)

By a similar manner, for the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
, from (3.64), we can

prove that

K1,ij(U
(1)
1,ij , U

(1)
2,ij) ≤ 0, K2,ij(U

(1)
1,ij , U

(1)
2,ij) ≥ 0, (i, j) ∈ Ωh. (3.77)

From the boundary conditions on ∂Ωh in (3.64), it follows that U
(1)
α,ij , U

(1)
α,ij , (i, j) ∈ Ω

h
,

α = 1, 2, satisfy (3.63c). Thus, from here, (3.73), (3.75)–(3.77), we conclude that U
(1)
α,ij

and U
(1)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and lower solutions (3.63).

By induction on n, we can prove that {U (n)
α,ij}, (i, j) ∈ Ω

h
, α = 1, 2, are monotone

decreasing sequence of upper solutions and {U (n)
α,ij}, (i, j) ∈ Ω

h
, α = 1, 2, are monotone

increasing sequence of lower solutions which satisfy (3.65). From (3.65), it follows that

limU
(n)
α,ij = Uα,ij and limU

(n)
α,ij = Uα,ij , (i, j) ∈ Ω

h
, α = 1, 2, as n→∞ exist and

lim
n→∞

Z
(n)
α,ij = 0, lim

n→∞
Z

(n)
α,ij = 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.78)
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Similar to (3.74), for any n ≥ 1, we have

K1,ij(U
(n)
1,ij , U

(n)
2,ij) =−

(
c1,ij − f1,ij(Q

(n)
1,ij , U

(n)
2,ij)u1

)
Z

(n)
1,ij (3.79)

+ f1,ij(U
(n−1)
1,ij , Q(n)

2,ij
)u2Z

(n)
2,ij − ηl1,ijZ

(n)
1,i−1,j

− r1,ijZ
(n)
1,i+1,j − ηb1,ijZ

(n)
1,i,j−1 − q1,ijZ

(n)
1,i,j+1, (i, j) ∈ Ωh,

where

U
(n)
1,ij ≤ Q

(n)
1,ij ≤ U

(n−1)
1,ij , U

(n−1)
2,ij ≤ Q(n)

2,ij
≤ U (n)

2,ij , (i, j) ∈ Ω
h
.

By taking the limit of both sides and using (3.78), we obtain that

K1,ij(U1,ij , U2,ij) = 0, (i, j) ∈ Ωh. (3.80)

Similarly, we have

K2,ij(U1,ij , U2,ij) = 0, (i, j) ∈ Ωh. (3.81)

In a similar manner, we can prove that

K1,ij(U1,ij , U2,ij) = 0, K2,ij(U1,ij , U2,ij) = 0, (i, j) ∈ Ωh. (3.82)

Thus, from (3.80)–(3.82), we conclude that Uα,ij , Uα,ij , (i, j) ∈ Ωh, α = 1, 2, are,

respectively, maximal and minimal solutions to the nonlinear difference scheme (3.17).

Now, we prove (3.66). We assume that Sij = (S1,ij , S2,ij), (i, j) ∈ Ω
h
, is another

solution in 〈Û , Ũ〉. We consider the sector 〈S, Ũ〉, which means that we treat Sij ,

(i, j) ∈ Ω
h
, as a lower solution. Since {S(n)

α,ij} = {Sα,ij}, (i, j) ∈ Ω
h
, α = 1, 2, is a

constant sequence for all n, then from (3.65), we conclude that Sα,ij ≤ Uα,ij , (i, j) ∈ Ω
h
,

α = 1, 2. Now, we consider the sector 〈Û , S〉, which means that we treat Sij , (i, j) ∈ Ω
h
,

as an upper solution. Similarly, since {S(n)
α,ij} = {Sα,ij}, (i, j) ∈ Ω

h
, α = 1, 2, is a

constant sequence for all n, then from (3.65), we conclude that Uα,ij ≤ Sα,ij , (i, j) ∈ Ω
h
,

α = 1, 2. Thus, we prove (3.66).

3.4 Existence and uniqueness of solutions to the nonlinear

difference problem (3.17)

We give a bound on the magnitude of the solution to the linear problem (3.19).

Lemma 3.4.1. The following bound on the magnitude of the solution to the linear

problem (3.19) with positive functions cα,ij, (i, j) ∈ Ω
h
, α = 1, 2, holds

‖Wα‖Ωh ≤ max

{
‖gα‖∂Ωh ,

∥∥∥∥Φα

cα

∥∥∥∥
Ωh

}
, α = 1, 2, (3.83)
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where

‖gα‖∂Ωh = max
(i,j)∈∂Ωh

|gα,ij |,
∥∥∥∥Φα

cα

∥∥∥∥
Ωh

= max
(i,j)∈Ωh

∣∣∣∣Φα,ij

cα,ij

∣∣∣∣ .
The proof of the lemma is given in Lemma 1.2.1 from Chapter 1.

3.4.1 Quasi-monotone nondecreasing case

Theorem 3.4.2. Let Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, be ordered

upper and lower solutions (3.21). Suppose that the functions fα, α = 1, 2, in (3.1)

satisfy (3.22) and (3.23). Then a solution to the nonlinear difference problem (3.17)

exists.

Proof. From (3.52), it follows that Uα,ij and Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are solutions

to (3.17). Thus, we prove the theorem.

Theorem 3.4.3. Let assumptions (3.5)–(3.7) be satisfied. Then the nonlinear differ-

ence scheme (3.17) has a unique solution.

Proof. Suppose that U∗ij = (U∗1,ij , U
∗
2,ij) and U∗∗ij = (U∗∗1,ij , U

∗∗
2,ij), (i, j) ∈ Ω

h
are two

solutions to (3.17). Letting Vα,ij = U∗α,ij − U∗∗α,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.17), we

have

Aα,ijVα,ij + fα,ij(U
∗
α,ij , U

∗
α′,ij)− fα,ij(U∗∗α,ij , U∗α′,ij)

+ fα,ij(U
∗∗
α,ij , U

∗
α′,ij)− fα,ij(U∗∗α,ij , U∗∗α′,ij) = 0,

(i, j) ∈ Ωh, Vα,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here and using the mean-value theorem, we obtain

Aα,ijVα,ij +
∂fα,ij(Qα,ij , U

∗
α′,ij)

∂uα
Vα,ij = −

∂fα,ij(U
∗∗
α,ij , Yα′,ij)

∂uα′
Vα′,ij , (i, j) ∈ Ω,

Vα,ij = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

where Qα,ij , Yα,ij lie between U∗α,ij and U∗∗α,ij , (i, j) ∈ Ω
h
, α = 1, 2. From here, by using

estimate (3.83), we conclude that

‖Vα‖Ωh ≤

∥∥∥∥∥(fα(U∗∗α , Yα′))uα′
Vα′(

fα(Qα, U∗α′)
)
uα

∥∥∥∥∥
Ω
h

≤

∥∥∥∥∥(fα(U∗∗α , Yα′))uα′(
fα(Qα, U∗α′)

)
uα

∥∥∥∥∥
Ω
h

‖Vα′‖Ωh .

Then from here and (3.5)–(3.7), we obtain

‖Vα‖Ωh ≤ β‖Vα′‖Ωh .
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Letting v = maxα=1,2 ‖Vα‖Ωh , we have v(1− β) ≤ 0. From here, (3.7) and taking into

account that v ≥ 0, we conclude that v = 0. Thus, we prove the theorem.

3.4.2 Quasi-monotone nonincreasing case

Theorem 3.4.4. Let Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, be ordered

upper and lower solutions (3.37). Suppose that the functions fα, α = 1, 2, in (3.1)

satisfy (3.38) and (3.39). Then a solution to the nonlinear difference problem (3.17)

exists.

Proof. From (3.65), it follows that {U1,ij , U2,ij} and {U1,ij , U2,ij}, (i, j) ∈ Ω
h

are

solutions to (3.17). Thus, we prove the theorem.

Theorem 3.4.5. Let assumptions (3.5), (3.7) and (3.14) be satisfied. Then the non-

linear difference scheme (3.17) has a unique solution.

The proof of the theorem repeats the proof of Theorem 3.4.3.

3.5 Convergence analysis

3.5.1 Quasi-monotone nondecreasing case

A stopping test for the point monotone iterative methods (3.51) is chosen in the form

max
α=1,2

∥∥∥Kα(U (n)
α , U

(n)
α′ )

∥∥∥
Ωh
≤ δ, (3.84)∥∥∥Kα(U (n)

α , U
(n)
α′ )

∥∥∥
Ωh

= max
(i,j)∈Ωh

∣∣∣Kα,ij(U (n)
α,ij , U

(n)
α′,ij)

∣∣∣ , α′ 6= α, α, α′ = 1, 2,

where Kα,ij(U (n)
α,ij , U

(n)
α′,ij), (i, j) ∈ Ωh, α = 1, 2, are defined in (3.51) and δ is a prescribed

accuracy.

Theorem 3.5.1. Assume that the assumptions in Theorem 3.4.3 are satisfied. Then for

the sequences {U (n)
α,ij}, (i, j) ∈ Ω

h
, α = 1, 2, generated by the point monotone iterative

methods (3.51), (3.84), we have the estimate

max
α=1,2

∥∥∥U (nδ)
α − U∗α

∥∥∥
Ω
h ≤

1

(1− β)%
δ, % = min

α=1,2

{
min

(x,y)∈ω
cα(x, y)

}
> 0, (3.85)

where U∗α,ij, (i, j) ∈ Ω
h
, α = 1, 2, is the unique solution of the nonlinear difference

scheme (3.17), and nδ is a minimal number of iterations subject to the stopping test

(3.84).
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Proof. From (3.17), for U
(nδ)
α,ij and U∗α,ij , (i, j) ∈ Ω

h
, α = 1, 2, we have

Aα,ijU
(nδ)
α,ij + fα,ij(U

(nδ)
α,ij , U

(nδ)
α′,ij) = Kα,ij

(
U

(nδ)
α,ij , U

(nδ)
α′,ij

)
, (i, j) ∈ Ωh,

U
(nδ)
α,ij = gα,ij , (i, j) ∈ ∂Ωh, α = 1, 2,

Aα,ijU∗α,ij + fα,ij(U
∗
α,ij , U

∗
α′,ij) = 0, (i, j) ∈ Ωh,

U∗α,ij = gα,ij , (i, j) ∈ ∂Ωh, α = 1, 2.

Letting W
(nδ)
α,ij = U

(nδ)
α,ij − U∗α,ij , (i, j) ∈ Ω

h
, α = 1, 2, we have

Aα,ijW (nδ)
α,ij + fα,ij(U

(nδ)
α,ij , U

(nδ)
α′,ij)− fα,ij(U∗α,ij , U

(nδ)
α′,ij) + fα,ij(U

∗
α,ij , U

(nδ)
α′,ij)

− fα,ij(U∗α,ij , U∗α′,ij) = Kα,ij
(
U

(nδ)
α,ij , U

(nδ)
α′,ij

)
,

(i, j) ∈ Ωh, W
(nδ)
α,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here, by the mean-value theorem, we obtain

Aα,ijW (nδ)
α,ij +

(
fα,ij(Q

(nδ)
α,ij , U

(nδ)
α′,ij)

)
uα
W

(nδ)
α,ij = −

(
fα(U∗α,ij , Y

(nδ)
α′,ij )

)
uα′

W
(nδ)
α′,ij

+Kα,ij
(
U

(nδ)
α,ij , U

(nδ)
α′,ij

)
, (i, j) ∈ Ωh,

W
(nδ)
α,ij = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

where

U∗α,ij ≤ Q
(nδ)
α,ij , Y

(nδ)
α,ij ≤ U

(nδ)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2.

From here, (3.5), (3.6) and using (3.83), we conclude that

‖W (nδ)
α ‖

Ω
h ≤

∥∥∥∥∥∥∥
Kα
(
U

(nδ)
α , U

(nδ)
α′

)
(
fα(Q

(nδ)
α , U

(nδ)
α′ )

)
uα

∥∥∥∥∥∥∥
Ωh

+

∥∥∥∥∥∥∥
(
fα(U∗α, Y

(nδ)
α′ )

)
uα′(

fα(Q
(nδ)
α , U

(nδ)
α′ )

)
uα

∥∥∥∥∥∥∥
Ωh

∥∥∥W (nδ)
α′

∥∥∥
Ωh
.

Letting w(nδ) = maxα=1,2

∥∥∥W (nδ)
α

∥∥∥
Ω
h . From here, (3.5)–(3.7), we obtain

w(nδ) ≤ 1

%
max
α=1,2

∥∥∥Kα (U (nδ)
α , U

(nδ)
α′

)∥∥∥+ βw(nδ),

where % is defined in (3.85). From here and (3.84), we prove (3.85).

Theorem 3.5.2. Let the assumptions in Theorem 3.4.3 be satisfied. Then for the

sequences {U (n)
α,ij}, (i, j) ∈ Ω

h
, α = 1, 2, generated by the point monotone iterative
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methods (3.51), (3.84), the following estimate holds

max
α=1,2

∥∥∥U (nδ)
α − u∗α

∥∥∥
Ω
h ≤

1

(1− β)%

[
δ + max

α=1,2
‖Eα‖Ωh

]
, (3.86)

‖Eα‖Ωh = max
(i,j)∈Ω

h
|Eα,ij |, (3.87)

where u∗α(x, y), α = 1, 2, are the exact solutions to (3.1), Eα,ij, (i, j) ∈ Ωh, α = 1, 2,

are the truncation errors of the exact solutions u∗α(x, y), α = 1, 2, on the nonlinear

difference scheme (3.17), and nδ is the minimal number of iterations subject to the

stopping test (3.84).

Proof. We denote Eα,ij = u∗α,ij − U∗α,ij , (i, j) ∈ Ω
h
, α = 1, 2, where the mesh functions

U∗α,ij , (i, j) ∈ Ω
h
, α = 1, 2, are the unique solutions of the nonlinear difference scheme

(3.17). From (3.17), we obtain that

Aα,ijEα,ij + fα,ij(u
∗
α,ij , u

∗
α′,ij)− fα,ij(U∗α,ij , u∗α′,ij) + fα,ij(U

∗
α,ij , u

∗
α′,ij)

− fα,ij(U∗α,ij , U∗α′,ij) = Eα,ij ,

(i, j) ∈ Ωh, Eα,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

By the mean-value theorem, we have(
Aα,ij +

∂fα,ij(Qα,ij , u
∗
α′,ij)

∂uα

)
Eα,ij = −

∂fα,ij(U
∗
α,ij , Yα′,ij)

∂uα′
Eα′,ij + Eα,ij ,

(i, j) ∈ Ωh, Eα,ij = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

where Qα,ij , Yα,ij lie between u∗α,ij and Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2. From (3.5) and

(3.6), by using (3.83), it follows that

‖Eα‖Ωh ≤
∥∥∥∥qαα′cα

∥∥∥∥
Ω
h
‖Eα′‖Ωh +

∥∥∥∥Eαcα
∥∥∥∥

Ω
h
, α′ 6= α, α, α′ = 1, 2.

Letting e = maxα=1,2 ‖Eα‖Ωh , from (3.7), we have

e ≤ βe+ max
α=1,2

∥∥∥∥Eαcα
∥∥∥∥

Ω
h
, α = 1, 2.

From here, we conclude that

e ≤ 1

1− β
max
α=1,2

∥∥∥∥Eαcα
∥∥∥∥

Ω
h
, α = 1, 2. (3.88)
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We estimate maxα=1,2

∥∥∥U (nδ)
α − u∗α

∥∥∥
Ω
h as follows

max
α=1,2

‖U (nδ)
α − U∗α + U∗α − u∗α‖Ωh ≤ max

α=1,2
‖U (nδ)

α − U∗α‖Ωh + max
α=1,2

‖U∗α − u∗α‖Ωh .

From here, (3.85) and (3.88), we prove the theorem.

3.5.2 Quasi-monotone nonincreasing case

For the sequences {U (n)
1,ij , U

(n)
2,ij} and {U (n)

1,ij , U
(n)
2,ij}, (i, j) ∈ Ω

h
, generated by (3.64), we

introduce the notation

K = max

{∥∥∥K1

(
U

(n)
1 , U

(n)
2

)∥∥∥
(i,j)∈Ωh

;
∥∥∥K2

(
U

(n)
1 , U

(n)
2

)∥∥∥
(i,j)∈Ωh

}
, (3.89a)

for the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ωh, and

K = max

{∥∥∥K1

(
U

(n)
1 , U

(n)
2

)∥∥∥
(i,j)∈Ωh

;
∥∥∥K2

(
U

(n)
1 , U

(n)
2

)∥∥∥
(i,j)∈Ωh

}
, (3.89b)

for the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ωh, where the residuals Kα,ij

(
U

(n)
α,ij , U

(n)
α′,ij

)
,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, are defined in (3.64), and the notation of the norm

(3.83) is in use. A stopping test for the point monotone iterative methods (3.64) is

chosen in the form

K ≤ δ, (3.90)

where Kα, α = 1, 2, are defined in (3.89) and δ is a prescribed accuracy.

Theorem 3.5.3. Assume that the assumptions in Theorem 3.4.5 are satisfied. Then for

the sequences {U (n)
1,ij , U

(n)
2,ij}, {U

(n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
, generated by the point monotone

iterative methods (3.64), (3.90), we have the estimates

max
{
‖U (nδ)

1 − U∗1 ‖Ωh ; ‖U (nδ)
2 − U∗2 ‖Ωh

}
≤ 1

(1− β)%
δ, (3.91)

max
{
‖U (nδ)

1 − U∗1 ‖Ωh ; ‖U (nδ)
2 − U∗2 ‖Ωh

}
≤ 1

(1− β)%
δ,

% = min
α=1,2

{
min

(x,y)∈ω
cα(x, y)

}
> 0,

where U∗α,ij, (i, j) ∈ Ω
h
, α = 1, 2, are the unique solutions of the nonlinear difference

scheme (3.17), and nδ is a minimal number of iterations subject to (3.90).

Proof. We consider the case of the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈ Ω

h
. From (3.17), for

84



U
(nδ)
1,ij , U

(nδ)
2,ij and U∗α,ij , (i, j) ∈ Ω

h
, α = 1, 2, we have

A1,ijU
(nδ)
1,ij + f1,ij(U

(nδ)
1,ij , U

(nδ)
2,ij ) = K1,ij

(
U

(nδ)
1,ij , U

(nδ)
2,ij

)
, (i, j) ∈ Ωh,

A2,ijU
(nδ)
2,ij + f2,ij(U

(nδ)
1,ij , U

(nδ)
2,ij ) = K2,ij

(
U

(nδ)
1,ij , U

(nδ)
2,ij

)
, (i, j) ∈ Ωh,

U
(nδ)
1,ij = g1,ij , U

(nδ)
2,ij = g2,ij , (i, j) ∈ ∂Ωh,

Aα,ijU∗α,ij + fα,ij(U
∗
α,ij , U

∗
α′,ij) = 0, (i, j) ∈ Ωh,

U∗α,ij = gα,ij , (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

Letting W
(nδ)
1,ij = U

(nδ)
1,ij − U∗1,ij and W

(nδ)
2,ij = U∗2,ij − U

(nδ)
2,ij , (i, j) ∈ Ω

h
, we obtain

A1,ijW
(nδ)
1,ij + f1,ij(U

(nδ)
1,ij , U

(nδ)
2,ij )− f1,ij(U

∗
1,ij , U

(nδ)
2,ij ) + f1,ij(U

∗
1,ij , U

(nδ)
2,ij )

− f1,ij(U
∗
1,ij , U

∗
2,ij) = K1,ij

(
U

(nδ)
1,ij , U

(nδ)
2,ij

)
,

A2,ijW
(nδ)
2,ij + f2,ij(U

∗
1,ij , U

∗
2,ij)− f2,ij(U

∗
1,ij , U

(nδ)
2,ij ) + f2,ij(U

∗
1,ij , U

(nδ)
2,ij )

− f2,ij(U
(nδ)
1,ij , U

(nδ)
2,ij ) = −K2,ij

(
U

(nδ)
1,ij U

(nδ)
2,ij

)
,

(i, j) ∈ Ωh, U
(nδ)
1,ij = g1,ij , U

(nδ)
2,ij = g2,ij , (i, j) ∈ ∂Ωh.

From here, by the mean-value theorem, we obtain

A1,ijW
(nδ)
1,ij +

(
f1,ij(Q

(nδ)
1,ij , U

(nδ)
2,ij )

)
u1
W

(nδ)
1,ij =

(
f1(U∗1,ij , Y

(nδ)
2,ij )

)
u2
W

(nδ)
2,ij

+K1,ij

(
U

(nδ)
1,ij , U

(nδ)
2,ij

)
,

A2,ijW
(nδ)
2,ij +

(
f2,ij(U

∗
1,ij , Y

(nδ)
2,ij )

)
u2
W

(nδ)
2,ij =

(
f2(Q

(nδ)
1,ij , U

(nδ)
2,ij )

)
u1
W

(nδ)
1,ij

−K2,ij

(
U

(nδ)
1,ij , U

(nδ)
2,ij

)
,

(i, j) ∈ Ωh, W
(nδ)
1,ij = 0, W

(nδ)
2,ij = 0, (i, j) ∈ ∂Ωh,

where

U∗1,ij ≤ Q1,ij ≤ U
(nδ)
1,ij , U

(nδ)
2,ij ≤ Y2,ij ≤ U∗2,ij , (i, j) ∈ Ω

h
.

From here, (3.5), (3.14) and using (3.83), we obtain

‖W (nδ)
1 ‖

Ω
h ≤

∥∥∥∥∥∥∥
K1

(
U

(nδ)
1 , U

(nδ)
2

)
(
f1(Q

(nδ)
1 , U

(nδ)
2 )

)
u1

∥∥∥∥∥∥∥
Ωh

+

∥∥∥∥∥∥∥
(
f1(U∗1 , Y

(nδ)
2 )

)
u2(

f1(Q
(nδ)
1 , U

(nδ)
2 )

)
u1

∥∥∥∥∥∥∥
Ωh

∥∥∥W (nδ)
2

∥∥∥
Ωh
,
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‖W (nδ)
2 ‖

Ω
h ≤

∥∥∥∥∥∥∥
K2

(
U

(nδ)
1 , U

(nδ)
2

)
(
f2(U∗1 , Y

(nδ)
2 )

)
u2

∥∥∥∥∥∥∥
Ωh

+

∥∥∥∥∥∥∥
(
f2(Q

(nδ)
1 , U

(nδ)
2 )

)
u1(

f2(U∗1 , Y
(nδ)

2 )
)
u2

∥∥∥∥∥∥∥
Ωh

∥∥∥W (nδ)
1

∥∥∥
Ωh
.

Letting w(nδ) = max
{
‖W (nδ)

1 ‖
Ω
h , ‖W (nδ)

2 ‖
Ω
h

}
. From here, (3.5), (3.7) and (3.14), we

obtain

w(nδ) ≤ 1

%
max
α=1,2

∥∥∥Kα (U (nδ)
1 , U

(nδ)
2

)∥∥∥+ βw(nδ),

where % is defined in (3.91). From here and (3.90), we prove (3.91).

By a similar argument, we can prove (3.91) for the sequence {U (n)
1,ij , U

(n)
2,ij}, (i, j) ∈

Ω
h
.

Theorem 3.5.4. Let the assumptions in Theorem 3.5.3 be satisfied. Then for the

sequences {U (n)
1,ij , U

(n)
2,ij} and {U (n)

1,ij , U
(n)
2,ij}, (i, j) ∈ Ω

h
generated by the point monotone

iterative methods (3.64), (3.90), the following estimate holds

max
{
‖U (nδ)

1 − u∗1‖Ωh ; ‖U (nδ)
2 − u∗2‖Ωh

}
≤ 1

(1− β)%

[
δ + max

α=1,2
‖Eα‖Ωh

]
, (3.92)

max
{
‖U (nδ)

1 − u∗1‖Ωh ; ‖U (nδ)
2 − u∗2‖Ωh

}
≤ 1

(1− β)%

[
δ + max

α=1,2
‖Eα‖Ωh

]
,

‖Eα‖Ωh = max
(i,j)∈Ω

h
|Eα,ij |, α = 1, 2,

where u∗α(x, y), α = 1, 2, are the exact solutions to (3.1), Eα,ij, (i, j) ∈ Ωh, α = 1, 2,

are the truncation errors of the exact solutions u∗α(x, y), α = 1, 2, on the nonlinear

difference scheme (3.17), and nδ is the minimal number of iterations subject to the

stopping test (3.90).

The proof of the theorem repeats the proof of Theorem 3.5.2.

3.6 Constructions of initial upper and lower solutions

We discuss constructions of upper and lower solutions which are used as initial iterations

in the monotone iterative methods (3.51) and (3.64).
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3.6.1 Quasi-monotone nondecreasing case

3.6.1.1 Bounded functions

Assume that the functions fα(x, y, u) and gα(x, y), α = 1, 2, in (3.1) satisfy the following

conditions

−Mα ≤ fα(x, y,0) ≤ 0, uα(x, y) ≥ 0, (x, y) ∈ ω, (3.93)

gα(x, y) ≥ 0, (x, y) ∈ ∂ω, α = 1, 2,

where Mα = const > 0, α = 1, 2, and 0 is the zero vector (0,0).

We introduce the mesh functions

Ûα,ij = 0, (i, j) ∈ Ω
h
, α = 1, 2, (3.94)

and the mesh functions Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, which are solutions of the following

linear problems:

Aα,ijŨα,ij = Mα, (i, j) ∈ Ωh, Ũα,ij = gα,ij , (i, j) ∈ ∂Ωh, α = 1, 2, (3.95)

where Aα,ij , (i, j) ∈ Ωh, α = 1, 2, are defined in (3.17).

Lemma 3.6.1. Assume that the assumptions in (3.93) are satisfied. Then the mesh

functions from (3.94) and (3.95) are ordered lower and upper solutions (3.21).

Proof. Letting Wα,ij = Ũα,ij − Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.94) and (3.95), we

have

Aα,ijWα,ij = Mα, (i, j) ∈ Ωh, Wα,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here, Mα > 0, α = 1, 2, and using the maximum principle in Lemma 3.2.2, we

conclude that

Ũα,ij − Ûα,ij ≥ 0, (i, j) ∈ Ω
h
, α = 1, 2.

Thus, we prove (3.21a). From (3.93) and (3.95), we have

Aα,ijŨα,ij + fα,ij(Ũα,ij , Ũα′,ij) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Thus, Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.21b). From (3.93) and (3.94), we obtain

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ûα′,ij) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

that is, Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.21b). From (3.94) and (3.95), it follows

that Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.21c). Thus, Ûα,ij and Ũα,ij ,
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(i, j) ∈ Ω
h
, α = 1, 2, from (3.94) and (3.95) are ordered lower and upper solutions

(3.21) to the nonlinear difference scheme (3.17).

The gas-liquid interaction model

Consider the gas-liquid interaction model which is presented in Section 3.2.1.1.

Since the reaction functions f1(u1, u2) = −σ1(ρ1 − u1)u2, f2(u1, u2) = σ2(ρ1 − u1)u2,

satisfy the assumptions in (3.93), with any positive constants Mα, α = 1, 2. Hence,

by using Lemma 3.6.1, it follows that the mesh functions Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
,

α = 1, 2, from, respectively, (3.94) and (3.95) are ordered lower and upper solutions to

(3.28).

3.6.2 Constant upper and lower solutions

Assume that the functions fα(x, y, u) and gα(x, y), α = 1, 2, in (3.1) satisfy the condi-

tions

fα(x, y,0) ≤ 0, uα(x, y) ≥ 0, (x, y) ∈ ω, α = 1, 2, (3.96)

and there exist positive constants M1, M2 such that

fα(x, y,M) ≥ 0, (x, y) ∈ ω, 0 ≤ gα(x, y) ≤Mα, (i, j) ∈ ∂ω, α = 1, 2, (3.97)

where M = (M1,M2). Introduce the constant mesh functions

Ũα,ij = Mα, (i, j) ∈ Ω
h
, α = 1, 2. (3.98)

Lemma 3.6.2. Assume that (3.96) and (3.97) are satisfied. Then the mesh functions

from (3.94) and (3.98) are ordered lower and upper solutions (3.21).

Proof. From (3.94) and (3.98), we obtain (3.21a). From (3.97) and (3.98), we have

Aα,ijŨα,ij + fα,ij(Ũα,ij , Ũα′,ij) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Thus, Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.21b). From (3.94) and (3.96), we obtain

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ûα′,ij) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Hence, Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.21b). From (3.94) and (3.98), it follows

that Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.21c). Thus, we prove that Ûα,ij

and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.94) and (3.98) are ordered lower and upper

solutions (3.21) to the nonlinear difference scheme (3.17).

The gas-liquid interaction model
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Consider the gas-liquid interaction model which is presented in Section 3.2.1.1.

Since the reaction functions f1(u1, u2) = −σ1(ρ1 − u1)u2, f2(u1, u2) = σ2(ρ1 − u1)u2,

satisfy the assumptions in (3.96) and (3.97), with Mα, α = 1, 2 are given by

Mα = %α, α = 1, 2, %1 ≥ max
(i,j)∈∂Ωh

g∗1,ij , %2 ≥ max
(i,j)∈∂Ωh

g2,ij . (3.99)

By using Lemma 3.6.3, it follows that the mesh functions Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
,

α = 1, 2, from, respectively, (3.94) and (3.99) are ordered lower and upper solutions to

(3.28).

3.6.3 Quasi-monotone nonincreasing case

From the definition of upper and lower solutions (3.37) for quasi-monotone nonincreas-

ing functions, it follows that lower and upper solutions are coupled. Thus, we give

sufficient conditions for the existence of coupled lower and upper solutions.

3.6.3.1 Bounded functions

Assume that the functions fα(x, y, u) and gα(x, y), α = 1, 2, in (3.1) satisfy the following

conditions

−Mα ≤ fα(x, y, uα, 0α′) ≤ 0, fα(x, y, 0α, uα′) ≤ 0, uα(x, y) ≥ 0, (x, y) ∈ ω,
(3.100)

gα(x, y) ≥ 0, (x, y) ∈ ∂ω, α 6= α′, α = 1, 2,

where Mα = const > 0, α = 1, 2, and 0α means uα(x, y) = 0, (x, y) ∈ ω, α = 1, 2.

Let Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, be solutions of the linear problems (3.95) and the

mesh functions Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.94).

We show that Ũα,ij and Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.94) and (3.95) are

coupled pairs of ordered upper and lower solutions.

Lemma 3.6.3. Assume that (3.100) is satisfied. Then the mesh functions from (3.94)

and (3.95) are ordered lower and upper solutions (3.37).

Proof. From (3.95), by using the maximum principle in Lemma 3.2.2, we conclude that

Ũα,ij ≥ 0, (i, j) ∈ Ω
h
, α = 1, 2. From here and (3.94), it follows that Ũα,ij ≥ Ûα,ij ,

(i, j) ∈ Ω
h
, α = 1, 2. Hence, we prove (3.37a). From (3.94), (3.95) and (3.100), we have

Aα,ijŨα,ij + fα,ij(Ũα,ij , Ûα′,ij) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.
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From (3.94) and (3.100), we obtain

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ũα′,ij) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

From here, we conclude that Ũα,ij and Ûα,ij , (i, j) ∈ Ωh, α = 1, 2, satisfy (3.37b). From

(3.94) and (3.95), it follows that Ũα,ij and Ûα,ij , (i, j) ∈ Ωh, α = 1, 2, satisfy (3.37c).

Thus, Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.94) and (3.95) are ordered lower

and upper solutions (3.37) to the nonlinear difference scheme (3.17).

The gas-liquid interaction model

Consider the gas-liquid interaction model which is presented in Section 3.2.2.1.

Since the reaction functions fα(u1, u2) = σαu1u2, α = 1, 2, satisfy the assumptions in

(3.100), with any positive constants Mα, α = 1, 2. Hence, by using Lemma 3.6.3, it

follows that the mesh functions Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from, respectively,

(3.94) and (3.95) are ordered lower and upper solutions to (3.21).

3.6.4 Constant upper and lower solutions

Assume that the functions fα(x, y, u) and gα(x, y), α = 1, 2, in (3.1) satisfy the condi-

tions

fα(x, y,Mα, 0α′) ≥ 0, fα(x, y, 0α,Mα′) ≤ 0, uα(x, y) ≥ 0, (x, y) ∈ ω, (3.101)

0 ≤ gα(x, y) ≤Mα, (x, y) ∈ ∂ω, α′ 6= α, α, α′ = 1, 2,

where Mα, α = 1, 2, are positive constants, 0α means that uα(x, y) = 0, (x, y) ∈ ω,

α = 1, 2.

Lemma 3.6.4. Assume that the assumptions in (3.101) are satisfied. Then the mesh

functions from (3.94) and (3.98) are ordered lower and upper solutions (3.37).

Proof. From (3.94) and (3.98), we obtain (3.37a). From (3.94), (3.98) and (3.101) , we

have

Aα,ijŨα,ij + fα,ij(Ũα,ij , Ûα′,ij) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Aα,ijÛα,ij + fα,ij(Ûα,ij , Ûα′,ij) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Hence, Ũα,ij and Ûα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.37b). From (3.94) and (3.98),

it follows that Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, satisfy (3.37c). Thus, we prove

that Ûα,ij and Ũα,ij , (i, j) ∈ Ω
h
, α = 1, 2, from (3.94) and (3.98) are ordered lower and

upper solutions (3.37) to the nonlinear difference scheme (3.17).
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The Volterra-Lotka competition model

Consider the Volterra–Lotka competition model which is presented in Section 3.2.2.1.

The reaction functions fα(u1, u2) = −uα(aα − bαu1 − dαu2), α = 1, 2, satisfy the as-

sumptions in (3.101), with positive constants Mα, α = 1, 2, such that

Mα ≥ max
(i,j)∈∂ω

gα,ij , α = 1, 2.

Hence, by using Lemma 3.6.4, it follows that the mesh functions Ûα,ij and Ũα,ij , (i, j) ∈
Ω
h
, α = 1, 2, from, respectively, (3.94) and (3.98) are ordered lower and upper solutions

to (3.46).

3.7 Comparison of convergence rates of the point mono-

tone Jacobi and Gauss–Seidel methods

3.7.1 Quasi-monotone nondecreasing case

The following theorem shows that the point monotone Gauss–Seidel method with η = 1

in (3.51) converges faster than the point monotone Jacobi method with η = 0 in (3.51).

Theorem 3.7.1. Let Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, be ordered

upper and lower solutions (3.17), the functions fα, α = 1, 2, in (3.1) satisfy (3.22) and

(3.23). Suppose that the sequences {(U (n)
α,ij)J} and {(U (n)

α,ij)GS}, (i, j) ∈ Ω
h
, α = 1, 2, are

generated by the point monotone Jacobi method with η = 0 in (3.51) and by the point

monotone Gauss–Seidel method with η = 1 in (3.51), where (U
(0)
ij )J = (U

(0)
ij )GS = Ũij

and (U
(0)
ij )J = (U

(0)
ij )GS = Ûij, (i, j) ∈ Ω

h
. Then

(U
(n)
α,ij)J ≤ (U

(n)
α,ij)GS ≤ (U

(n)
α,ij)GS ≤ (U

(n)
α,ij)J, (i, j) ∈ Ω

h
, α = 1, 2. (3.102)

Proof. Letting W
(n)
α,ij =

(
U

(n)
α,ij

)
GS
−
(
U

(n)
α,ij

)
J
, (i, j) ∈ Ω

h
, α = 1, 2, from (3.51), we

have

(dα,ij + cα,ij)(W
(n)
α,ij) = cα,ijW

(n−1)
α,ij + ηlα,ij

(
(U

(n)
α,i−1,j)GS − (U

(n−1)
α,i−1,j)J

)
+ rα,ijW

(n−1)
α,i+1,j + ηbα,ij

(
(U

(n)
α,i,j−1)GS − (U

(n−1)
α,i,j−1)J

)
+ qα,ijW

(n−1)
α,i,j+1 − fα,ij

(
(U

(n−1)
α,ij )GS, (U

(n−1)
α′,ij )GS

)
+ fα,ij

(
(U

(n−1)
α,ij )J, (U

(n−1)
α′,ij )J

)
, (i, j) ∈ Ωh,

W
(n)
α,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here, η = 0, 1, (3.49) and taking into account (3.24) for
(
U

(n−1)
α,ij

)
GS
≤
(
U

(n)
α,ij

)
GS

,
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(i, j) ∈ Ω
h
, α = 1, 2, we obtain

(dα,ij + cα,ij)W
(n)
α,ij ≥ cα,ijW

(n−1)
α,ij + ηlα,ijW

(n−1)
α,i−1,j + rα,ijW

(n−1)
α,i+1,j (3.103)

+ ηbα,ijW
(n−1)
α,i,j−1 + qα,ijW

(n−1)
α,i,j+1

− fα,ij
(

(U
(n−1)
α,ij )GS, (U

(n−1)
α′,ij )GS

)
+ fα,ij

(
(U

(n−1)
α,ij )J, (U

(n−1)
α′,ij )J

)
, (i, j) ∈ Ωh,

W
(n)
α,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

For n = 1 in (3.103), in view of (U
(0)
α,ij)GS = (U

(0)
α,ij)J, (i, j) ∈ Ω

h
, α = 1, 2, and using

the maximum principle in Lemma 3.2.2, we conclude that

W
(1)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (3.104)

Using notation (3.24), for n = 2 in (3.103), we have

(dα,ij + cα,ij)W
(2)
α,ij ≥ ηlα,ijW

(1)
α,i−1,j + rα,ijW

(1)
α,i+1,j + ηbα,ijW

(1)
α,i,j−1

+ qα,ijW
(1)
α,i,j+1 + Γα,ij((U

(1)
α,ij)GS, (U

(1)
α′,ij)GS)

− Γα,ij((U
(1)
α,ij)J, (U

(1)
α′,ij)J), (i, j) ∈ Ωh,

W
(2)
α,ij = 0, (i, j) ∈ ∂Ωh, α = 1, 2,

From here, η = 0, 1, (3.49) and (3.104), by using Lemma 3.2.2, we obtain that

W
(2)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2.

By induction on n, we can prove that

W
(n)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2, n ≥ 1.

Thus, we prove (3.102) for the case of lower solutions. By the same manner, we can

prove (3.102) for the case of upper solutions.

3.7.2 Quasi-monotone nonincreasing case

In the case of quasi-monotone nonincreasing reaction functions, the following theorem

shows that the point monotone Gauss–Seidel method with η = 1 in (3.64) converges

faster than the block monotone Jacobi method with η = 0 in (3.64).

Theorem 3.7.2. Let Ũij = (Ũ1,ij , Ũ2,ij) and Ûij = (Û1,ij , Û2,ij), (i, j) ∈ Ω
h
, be ordered

upper and lower solutions (3.63). Assume that functions fα, α = 1, 2, satisfy (3.38) and
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(3.39). Suppose that the sequences {(U (n)
1,ij)P, (U

(n)
2,i )P} and {(U (n)

1,ij)P, (U
(n)
2,ij)P}, (i, j) ∈

Ω
h
, P = J or P = GS, are the sequences generated by the point monotone Jacobi method

with η = 0 in (3.64) or the point monotone Gauss–Seidel method with η = 1 in (3.64),

where (U
(0)
ij )J = (U

(0)
ij )GS = Ũij and (U

(0)
ij )J = (U

(0)
ij )GS = Ûij, (i, j) ∈ Ω

h
. Then

(U
(n)
α,ij)J ≤ (U

(n)
α,ij)GS ≤ (U

(n)
α,ij)GS ≤ (U

(n)
α,ij)J, (i, j) ∈ Ω

h
, α = 1, 2.

Proof. The proof of the theorem repeats the proof of Theorem 3.7.1, where Γα,ij , (i, j) ∈
Ω
h
, α = 1, 2, are written in the form

Γα,ij(U
(n)
α,ij , U

(n)
α′,ij) = cα,ijU

(n)
α,ij − fα,ij(U

(n)
α,ij , U

(n)
α′,ij),

Γα,ij(U
(n)
α,ij , U

(n)
α′,ij) = cα,ijU

(n)
α,ij − fα,ij(U

(n)
α,ij , U

(n)
α′,ij),

and the monotone property (3.25) for Γα,ij , (i, j) ∈ Ω
h
, α = 1, 2, is in use.

3.8 Numerical experiments

We present numerical experiments for numerical solutions of test problems with quasi-

monotone nondecreasing or nonincreasing reaction functions fα, α = 1, 2, in (3.1).

Exact solutions for our test problems are unknown, and numerical solutions are com-

pared to corresponding reference solutions. We investigate the numerical error and

numerical order of convergence with respect to 1/N , Nx = Ny = N . We define the

numerical error E(N) and the order of convergence γ(N) of the numerical solution

similar to the definition in ([37], p.79), in the following forms:

E(N) = max
α=1,2

[
max

(i,j)∈Ω
h

∣∣∣U (nδ)
α,ij − U

ref
α,ij

∣∣∣] , γ(N) = log2

(
E(N)

E(2N)

)
, (3.105)

where U
(nδ)
α,ij , (i, j) ∈ Ω

h
, α = 1, 2, are the approximate solutions generated by either

the monotone iterative methods (3.51), (3.84) or (3.64), (3.90), and U refα,ij , (i, j) ∈ Ω
h
,

α = 1, 2, are the reference solutions. In our tests, we choose the reference solutions

with N = 256 and δ = 10−5 in (3.84) and (3.90).

3.8.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions

(3.23), we consider the gas-liquid interaction model in 3.2.1.1, where Lαuα = Dα(uα,xx+
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uα,yy), α = 1, 2, in (3.1). The reaction functions are given by

f1(u1, u2) = −σ1(1− u1)u2, f2(u1, u2) = σ2(1− u1)u2, (3.106)

where uα ≥ 0, α = 1, 2, are concentrations of, respectively, the gas and liquid, and

σα = const > 0, α = 1, 2, are reaction rates. We choose the boundary conditions

g1(x, y) = 0, g2(x, y) = 1 in (3.1). The pairs (Ũ1, Ũ2) = (1, 1) and (Û1, Û2) = (0, 0)

are ordered upper and lower solutions. Indeed, all the assumptions in (3.93) and (3.96)

with Mα = 1, α = 1, 2, are satisfied. From here, on 〈Û , Ũ〉, we conclude the inequalities

∂f1,ij

∂u1
= σ1U2,ij ≤ 1, −∂f1,ij

∂u2
= σ1(1− U1,ij) ≥ 0, (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
= σ2(1− U1,ij) ≤ 1, −∂f2,ij

∂u1
= σ2U2,ij ≥ 0, (i, j) ∈ Ω

h
.

Thus, fα, α = 1, 2, satisfy (3.22) and (3.23) with cα = 1, α = 1, 2. We calcu-

late sequences of upper solutions generated by (3.51), (3.84) with the initial iteration

(Ũ1,ij , Ũ2,ij) = (1, 1), (i, j) ∈ Ω
h
. We take D1 = 1, D2 = 0.1, in (3.1) and σα = 1,

α = 1, 2, in (3.106).

In Table 3.1, for different values of N (Nx = Ny = N), we present E(N) and

γ(N) from (3.105). The data in the table indicate that the numerical solution of

the nonlinear difference scheme (3.17) converges to the reference solution with second-

order accuracy which confirms the theoretical error estimate for the central difference

scheme. Numbers of iterations nδ and execution times (CPU) are given in Table 3.2. The

computer used to run our codes has Windows 10 Enterprise operating system, Intel(R)

Core(TM) i5-6500 processor and 8GB installed memory (RAM). From these results, we

conclude that the point monotone Gauss-Seidel method converges faster than the point

monotone Jacobi method, which confirms Theorem 3.7.1; the point monotone Gauss–

Seidel method is approximately twice as fast as the point monotone Jacobi method.

In Figure 3.1, we show the convergence of numerical solutions, obtained by the point

Gauss-Seidel method with η = 1 in (3.51) and N = 128 to the reference solution

Nref = 256, where the dashed line represents the numerical solution and the solid blue

line refers to the reference solution with respect to x and fixed value of y = 0.5. In the

subgraph 3.1a, staring from the initial lower solution Û = 0, we show the convergence

of the numerical lower solution U2 at nδ = 100 and nδ = 2000 to the reference solution.

Similarly, starting from the initial upper solution Ũ = 1, the subgraph 3.1b shows the

convergence of the numerical upper solution U1 at nδ = 300 and nδ = 6000 to the

reference solution.

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions
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Table 3.1: Order of convergence of the nonlinear scheme (3.17) for Test 1 by using the
point monotone Gauss-Seidel method.

N 8 16 32 64 128

E 7.060e-03 1.798e-03 4.466e-04 1.065e-04 2.130e-05
γ 1.97 2.01 2.07 2.32

Table 3.2: Numbers of iterations nδ and CPU times for Test 1.

N 8 16 32 64 128

the point Jacobi method

nδ 190 771 3092 12378 49520
CPU(s) 0.01 0.07 1.09 16.15 261.28

the point Gauss-Seidel method

nδ 97 388 1548 6191 24762
CPU(s) 0.005 0.04 0.53 8.58 141.37

Figure 3.1: Convergence of lower and upper solutions calculated by the point monotone
Gauss-Seidel method (N = 128) to the reference solution for test 1.

(a) Lower solutions. (b) Upper solutions.

(3.23), we consider system (3.1) with Lαuα(x, y) = Dα(uα,xx+uα,yy), α = 1, 2, and the

reaction functions in the forms

f1(u1, u2) = σ1u1(1 + e−u2), f2(u1, u2) = σ2

(
1 +

1

1 + u1

)
u2, (3.107)

where σα, α = 1, 2, are positive constants. We choose the boundary conditions

gα(x, y) = 1, α = 1, 2, in (3.1). The pairs (Ũ1,ij , Ũ2,ij) = (1, 1) and (Û1,ij , Û2,ij) = (0, 0),

(i, j) ∈ Ω
h
, are ordered upper and lower solutions. Indeed, all the assumptions in (3.96)
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and (3.97) with Mα = 1, α = 1, 2, are satisfied. From here, on the sector 〈Û , Ũ〉, we

conclude the inequalities

σ1(1 + e−1) ≤ ∂f1

∂u1
= σ1(1 + e−u2) ≤ 2σ1, 0 ≤ −∂f1

∂u2
= σ1u1e

−u2 ≤ σ1,

3

2
σ2 ≤

∂f2

∂u2
= σ2(1 +

1

1 + u1
) ≤ 2σ2, 0 ≤ −∂f2

∂u1
=

σ2u2

(1 + u1)2
≤ σ2.

Thus, fα, α = 1, 2, satisfy (3.5)–(3.7) with c1 = σ1(1 + e−1), c2 = 3σ2/2, c1 = 2σ1,

c2 = 2σ2, q12 = σ1 and q21 = σ2. We calculate sequences of upper solutions generated

by (3.51), (3.84) with the initial iteration (Ũ1, Ũ2) = (1, 1). We take Dα = 0.1, α = 1, 2,

in (3.1) and σα = 1, α = 1, 2, in (3.107).

In Table 3.3, for different values of N , we present E(N) and γ(N) from (3.105).

The data in the table indicate that the numerical solution of the nonlinear difference

scheme (3.17) converges to the reference solution with second-order accuracy which

confirms the theoretical error estimate for the central difference scheme.

Numbers of iterations nδ and execution (CPU) times are given in Table 3.4. From

these results, we conclude that the point monotone Gauss-Seidel method converges

faster than the point monotone Jacobi method, which confirms Theorem 3.7.1. The

numerical data indicate that the point monotone Gauss–Seidel method is approximately

twice as fast as the point monotone Jacobi method.

Table 3.3: Order of convergence of the nonlinear scheme (3.17) for Test 2.

N 8 16 32 64 128

E 1.413e-02 3.800e-03 9.567e-04 2.294e-04 4.595e-05
γ 1.89 1.99 2.06 2.32

Table 3.4: Numbers of iterations nδ and CPU times for Test 2.

N 8 16 32 64 128

the point Jacobi method

nδ 89 353 1409 5632 22525
CPU(s) 0.02 0.05 0.70 10.90 174.46

the point Gauss-Seidel method

nδ 46 178 706 2818 11264
CPU(s) 0.01 0.02 0.37 5.78 92.29
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3.8.2 Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions

(3.39), we consider the Volterra-Lotka competition model which is presented in Section

3.2.2.1, where Lαuα = Dα(uα,xx + uα,yy), α = 1, 2, in (3.1) and the reaction functions

are given by

fα(u1, u2) = −uα(aα − bαu1 − dαu2), α = 1, 2. (3.108)

We choose the boundary conditions gα(x, y) = 1, α = 1, 2, in (3.1). The pairs

(Ũ1,ij , Ũ2,ij) = (a1/b1, a2/d2) and (Û1,ij , Û2,ij) = (0, 0), (i, j) ∈ Ω
h

are ordered up-

per and lower solutions. Indeed, all the assumptions in (3.101) are satisfied. From

here, on 〈Û , Ũ〉, we conclude the inequalities

∂f1,ij

∂u1
(U1,ij , U2,ij) = −a1 + 2b1U1,ij + d1U2,ij ≤ 2a1 +

d1a2

d2
, (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
(U1,ij , U2,ij) = −a2 + b2U1,ij + 2d2U2,ij ≤ a2 +

a1b2
b1

, (i, j) ∈ Ω
h
,

− ∂f1,ij

∂u2
= −d1U1,ij ≤ 0, −∂f2,ij

∂u1
= −b2U2,ij ≤ 0, (i, j) ∈ Ω

h
.

Thus, fα, α = 1, 2, satisfy (3.38), (3.39) with c1,ij = 2a1 + d1a2/d2 and c2,ij = a2 +

a1b2/b1, (i, j) ∈ Ω
h
. We calculate the sequence {U (n)

1,ij , U
(n)
2,ij}, (i, j) ∈ Ω

h
, generated by

(3.64), (3.90) with the initial iteration (Ũ1,ij , Û2,ij) = (a1/b1, 0), (i, j) ∈ Ω
h

. We take

D1 = 1, D2 = 0.1 in (3.1) and aα = 1, bα = 1 and dα = 1, α = 1, 2, in (3.108).

In Table 3.5, for different values of N , we present E(N) and γ(N) from (3.105).

The data in the table indicate that the numerical solution of the nonlinear difference

scheme (3.17) converges to the reference solution with the second-order accuracy which

confirms the theoretical error estimate for the central difference scheme. Numbers of

iterations nδ and execution (CPU) times are given in Table 3.6. From these results, we

conclude that the point monotone Gauss-Seidel method converges faster than the point

monotone Jacobi method, which confirms Theorem 3.7.2. The numerical data indicate

that the point monotone Gauss–Seidel method is approximately twice as fast as the

point monotone Jacobi method.

Table 3.5: Order of convergence of the nonlinear scheme (3.17) for Test 3.

N 8 16 32 64 128

E 6.193e-3 1.590e-3 3.960e-04 9.448e-05 1.890e-05
γ 1.96 2.01 2.07 2.32
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Table 3.6: Numbers of iterations nδ and CPU times for Test 3.

N 8 16 32 64 128

the point Jacobi method

nδ 157 626 2501 10002 40007
CPU(s) 0.02 0.08 1.11 17.31 287.70

the point Gauss–Seidel method

nδ 77 311 1249 5000 20002
CPU(s) 0.01 0.05 0.59 9.26 152.73

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions

(3.39), we consider the Belousov-Zhabotinskii reaction diffusion model ([59], some back-

ground to the model is also given in [65]), which includes the metal-ion-catalyzed ox-

idation by bromate ion of organic materials. the chemical reaction scheme is given

by

A1 + Y → X, X + Y → P1, A2 +X → 2X + Z, 2X → P2, Z → λY,

where A1 and A2 are constants which represent reactants, P1 and P2 are products,

λ is the stoichiometric factor, and X, Y and Z are, respectively, the concentrations

of the intermediates HBrO2 (bromous acid), Br− (bromide ion) and Ce(IV)(cerium).

A simplified system of two equations [39] of the above reactant scheme is governed

by (3.1) with Lαuα = Dα4uα, α = 1, 2, where u1 and u2 represent, respectively, the

concentrations X and Y . The reaction functions are given by

f1 = −u1(a− bu1 − σ1u2), f2 = σ2u1u2, (3.109)

where a, b, σα, α = 1, 2, are positive constants.

We choose the boundary conditions gα(x, y) = 1, α = 1, 2, in (3.1). The pairs

(Ũ1, Ũ2) = (M1,M2) and (Û1, Û2) = (0, 0) are ordered upper and lower solutions.

Indeed, all the assumptions in (3.101) are satisfied, where Mα, α = 1, 2, are chosen in

the following form:

M1 ≥ max

(
a

b
, max

(x,y)∈∂ω
g1(x, y)

)
, M2 ≥ max

(x,y)∈∂ω
g2(x, y).
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From here, on 〈Û , Ũ〉, we conclude the inequalities

∂f1,ij

∂u1
(U1,ij , U2,ij) = 2bU1,ij + σ1U2,ij − a ≤ 2bM1 + σ1M2, (i, j) ∈ Ω

h
,

∂f2,ij

∂u2
(U1,ij , U2,ij) = σ2U1,ij ≤ σ2M1, (i, j) ∈ Ω

h
,

−∂f1,ij

∂u2
(U1,ij , U2,ij) = −σ1U1,ij ≤ 0, (i, j) ∈ Ω

h
,

−∂f2,ij

∂u1
(U1,ij , U2,ij) = −σ2U2,ij ≤ 0, (i, j) ∈ Ω

h
.

Thus, fα, α = 1, 2, satisfy (3.38) and (3.39) with c1,ij = 2bM1 +σ1M2 and c2,ij = σ2M1,

(i, j) ∈ Ω
h
. We calculate the sequence {U (n)

1,ij , U
(n)
2,ij}, (i, j) ∈ Ω

h
, generated by (3.64),

(3.90) with the initial iteration (Ũ1,ij , Û2,ij) = (1, 0), (i, j) ∈ Ω
h
. We take D1 = 1,

D2 = 0.1 in (3.1), and a = 1, b = 1 and σα = 1, α = 1, 2, in (3.109).

In Table 3.7, for different values of N , we present E(N) and γ(N) from (3.105).

The data in the table indicate that the numerical solution of the nonlinear difference

scheme (3.17) converges to the reference solution with the second-order accuracy which

confirms the theoretical error estimate for the central difference scheme. Numbers of

iterations nδ and execution (CPU) times are given in Table 3.8. From these results, we

conclude that the point monotone Gauss-Seidel method converges faster than the point

monotone Jacobi method, which confirms Theorem 3.7.2. Numerical data indicate that

the point monotone Gauss–Seidel method is approximately twice as fast as the point

monotone Jacobi method.

Table 3.7: Order of convergence of the nonlinear scheme (3.17) for Test 4.

N 8 16 32 64 128

E 6.208e-3 1.587e-3 3.948e-04 9.416e-05 1.884e-05
γ 1.97 2.01 2.07 2.32

Table 3.8: Numbers of iterations nδ and CPU times for Test 4.

N 8 16 32 64 128

the point Jacobi method

nδ 145 566 2248 8980 35906
CPU(s) 0.08 0.06 0.74 11.58 200.21

the point Gauss–Seidel method

nδ 78 288 1129 4495 17958
CPU(s) 0.05 0.03 0.41 6.28 102.21
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3.9 Conclusions to Chapter 3

Theoretical results

For solving nonlinear elliptic systems with quasi-monotone nondecreasing and non-

increasing reaction functions, we constructed and investigated monotone properties of

point Jacobi and Gauss-Seidel iterative methods. The coupled system of nonlinear el-

liptic problems (3.1) is approximated by using the central difference approximations for

the first and second derivatives. For solving the nonlinear difference scheme (3.17) with

quasi-monotone nondecreasing (3.23) and quasi-monotone nonincreasing (3.39) reaction

functions, the point Jacobi and point Gauss-Seidel iterative methods for the coupled

system are constructed. In Theorems 3.3.2 and 3.3.4, we prove that the sequences

of upper and lower solutions, generated by the point iterative methods for problems

with quasi-monotone nondecreasing (3.23) and quasi-monotone nonincreasing (3.39)

reaction functions, converge monotonically to the solutions of the nonlinear difference

scheme. In Theorems 3.4.2, 3.4.3 and 3.4.4, 3.4.5, for, respectively, quasi-monotone

nondecreasing and nonincreasing cases, we prove the existence and uniqueness of a

solution under the conditions that the nonlinear reaction functions are bounded from

below and above. By using the stopping tests (3.84) and (3.90), based on the norms of

residuals, for quasi-monotone nondecreasing and nonincreasing cases, we prove that the

numerical solution converges to the unique solution of the nonlinear elliptic problem

(3.1) and estimate the L∞ discrete-norm of the error between the numerical and exact

solutions of the nonlinear difference scheme (3.17) in Theorems 3.5.1 and 3.5.3 and the

error between the numerical solution and the exact solution of the elliptic system (3.1)

in Theorems 3.5.2 and 3.5.4. We prove that the point monotone Gauss-Seidel meth-

ods converge faster than the point monotone Jacobi methods for the quasi-monotone

nondecreasing and quasi-monotone nonincreasing cases, respectively, in Theorems 3.7.1

and 3.7.2. In Lemmas 3.6.1, 3.6.2 and 3.6.3, 3.6.4, respectively, for the quasi-monotone

nondecreasing and quasi-monotone nonincreasing reaction functions, under assump-

tions (3.93), (3.96) and (3.100), (3.101), we construct initial upper and lower solutions

to start the point monotone iterative methods.

Numerical results

The numerical experiments show that the numerical solution of the nonlinear dif-

ference scheme (3.17) converges to the reference solution with second-order accuracy.

The numerical sequences of upper and lower solutions generated by the point mono-

tone methods (3.23) with stopping (3.84) and the point monotone methods (3.39) with

stoping (3.90) converge monotonically. The point monotone Gauss-Seidel method with

η = 1 in (3.23) and η = 1 in (3.64) converges faster than the point monotone Jacobi

method with η = 0 in (3.23) and η = 0 in (3.64) which confirm, respectively, Theorems
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3.7.1 and 3.7.2. The point monotone Gauss-Seidel method is approximately twice as

fast as the point monotone Jacobi method.
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Chapter 4

Block Jacobi and Gauss-Seidel

methods for systems of elliptic

problems

This chapter deals with numerical methods for solving nonlinear elliptic systems by

block iterative methods based on the Jacobi and Gauss–Seidel methods. The idea of

these methods is the decomposition technique which reduces a domain into a series of

nonoverlapping one dimensional intervals by slicing the domain into a finite number

of thin strips, and then solving a two-point boundary-value problem for each strip by

a standard computational scheme such as the Thomas algorithm [51]. In the view of

the method of upper and lower solutions, two monotone upper and lower sequences of

solutions are constructed. Convergence rates for the block monotone iterative methods

are estimated in similar way as in Section 3.5. Constructions of initial upper and

lower solutions are similar to Section 3.6. We show that the sequences of solutions

generated by the block monotone Gauss–Seidel method converges faster than by the

block monotone Jacobi method.

4.1 The block monotone Jacobi and Gauss-Seidel meth-

ods

We decompose the mesh Λ
h

= Λ
hx × Λ

hy
, which is defined in (3.15), into strips. For

xi = fixed, i = 0, 1, . . . , Nx, we introduce vertical strips Λ
h
i , in the form

Λ
h
i = {(xi, yj), j = 0, 1, . . . , Ny}, i = 0, 1, . . . , Nx. (4.1)

Figure 4.1 illustrates the decomposition of the domain Ω
h
.
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Figure 4.1: Fragment of the domain decomposition

For the value of i, we consider the following notation:

I ≡ I ∪ ∂I, I = {1, 2, . . . , Nx − 1}, ∂I = {0, Nx}. (4.2)

For the nonlinear difference scheme (3.48), (3.49), we define vectors and diagonal ma-

trices by

Uα,i = (Uα,i,1, . . . , Uα,i,Ny−1)T , i ∈ I, (4.3)

Fα,i(Uα,i, Uα′,i) =
(
fα,i,1(Uα,i,1, Uα′,i,1), . . . , fα,i,Ny−1(Uα,i,Ny−1, Uα′,i,Ny−1)

)T
,

Lα,i = diag(lα,i,1, . . . , lα,i,Ny−1), Rα,i = diag(rα,i,1, . . . , rα,i,Ny−1),

Bα,i = diag(bα,i,1, . . . , bα,i,Ny−1), Qα,i = diag(qα,i,1, . . . , qα,i,Ny−1),

Lα,i > O, Rα,i > O, Bα,i > O, Qα,i > O,

i ∈ I, α′ 6= α, α, α′ = 1, 2,

where the following notation is in use

Fα,i(Uα,i, Uα′,i) =

{
F1,i(U1,i, U2,i), α = 1,

F2,i(U1,i, U2,i), α = 2,
α′ 6= α, i ∈ I, (4.4)
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with symmetry Fα,i(Uα,i, Uα′,i) = Fα,i(Uα′,i, Uα,i). The terms Lα,1Uα,0 andRα,Nx−1Uα,Nx ,

α = 1, 2, are included in the boundaries.

Then the difference scheme (3.48), (3.49) can be presented in the form

Aα,iUα,i − Lα,iUα,i−1 −Rα,iUα,i+1 = −Fα,i(Uα,i, Uα′,i), i ∈ I, (4.5)

Uα,i,0 = gα,i,0, Uα,i,Ny = gα,i,Ny , i ∈ I, α = 1, 2,

with the tridiagonal matrices Aα,i, i ∈ I, α = 1, 2,

Aα,i =



dα,i,1 −qα,i,1 0

−bα,i,2 dα,i,2 −qα,i,2
. . .

. . .
. . .

−bα,i,Ny−2 dα,i,Ny−2 −qα,i,Ny−2

0 −bα,i,Ny−1 dα,i,Ny−1


.

The elements of the matrices Lα,i and Rα,i, i ∈ I, α = 1, 2, contain the coupling

coefficients of a mesh point (i, j) to, respectively, mesh points (i − 1, j) and (i + 1, j),

j = 1, 2, . . . , Ny − 1.

Remark 4.1.1. let A = [aij ] and B = [bij ] be two real n × r matrices. Then, A ≥
B(> B) if aij ≥ bij(> bij) for all 1 ≤ i ≤ n, 1 ≤ j ≤ r. if O is the null matrix and

A ≥ O(> O), we say that A is a nonnegative(positive) matrix.

Lemma 4.1.2. If H = [hij ] is a real, irreducibly diagonally dominant N × N matrix

with hij ≤ 0 for all i 6= j, and hii > 0 for all i = 1, 2, . . . , N , j = 1, 2, . . . , N , then

H−1 > O, (4.6)

where O is the N ×N null matrix.

The proof of the lemma is given in Corollary 3.20, [71].

4.1.1 Quasi-monotone nondecreasing case

In the case of the quasi-monotone nondecreasing functions fα, α = 1, 2, in (3.1), we

say that mesh functions

(Ũ1,i, Ũ2,i), (Û1,i, Û2,i), i ∈ I,
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are called ordered upper and lower solutions of (4.5), if they satisfy the inequalities

Ûα,i ≤ Ũα,i, i ∈ I, (4.7a)

Kα,i(Ûα,i, Ûα′,i) ≤ 0 ≤ Kα,i(Ũα,i, Ũα′,i), i ∈ I, (4.7b)

Kα,i(Uα,i, Vα′,i) ≡ Aα,iUα,i − Lα,iUα,i−1 −Rα,iUα,i+1 + Fα,i(Uα,i, Vα′,i),

Ûα,i ≤ gα,i ≤ Ũα,i, i ∈ ∂I, α′ 6= α, α, α′ = 1, 2, (4.7c)

where notation (4.4) is in use.

For a given pair of ordered upper and lower solutions (Ũ1,i, Ũ2,i), (Û1,i, Û2,i), i ∈ I,

we define the sector

〈Û , Ũ〉 =
{
Uα,i : Ûα,i ≤ Uα,i ≤ Ũα,i, i ∈ I, α = 1, 2

}
. (4.8)

Remark 4.1.3. Similar to Remark 3.2.3, we state the mean-value theorem for mesh

vector-functions. Assume that Fα(x, y, uα, uα′), (x, y, t) ∈ QT , α′ 6= α, α, α′ = 1, 2, are

smooth functions, then we have

Fα,i(Uα,i, Uα′,i)− Fα,i(Vα,i, Uα′,i) =
(
Fα,i(Qα,i, Uα′,i)

)
uα

[Uα,i − Vα,i], (4.9)

Fα,i(Uα,i, Uα′,i)− Fα,i(Uα,i, Vα′,i) =
(
Fα,i(Uα,i, Yα′,i)

)
uα′

[Uα′,i − Vα′,i],

where Qα,i and Yα,i lie between Uα,i and Vα,i, i ∈ I, α = 1, 2, and notation (4.4) is in

use. The partial derivatives (Fα,i)uα and (Fα,i)uα′ are the diagonal matrices

(Fα,i)uα = diag
((
fα,i,1(Qα,i,1, Uα′,i,1)

)
uα
, . . . ,

(
fα,i,Ny−1(Qα,i,Ny−1, Uα′,i,Ny−1)

)
uα

)
,

(4.10)

(Fα,i)uα′
= diag

((
fα,i,1(Uα,i,1, Yα′,i,1)

)
uα′

, . . . ,
(
fα,i,Ny−1(Uα,i,Ny−1, Yα′,i,Ny−1)

)
uα′

)
.

We rewrite notation (3.16) in vector form

Γα,i(Uα,i, Uα′,i) = Cα,iUα,i − Fα,i(Uα,i, Uα′,i), (4.11)

Cα,i = diag(cα,i,1, . . . , cα,i,Ny−1), i ∈ I, α′ 6= α, α, α′,

where cα,ij , (i, j) ∈ Ω
h
, α = 1, 2, are nonnegative bounded functions, and notation

(4.4) is in use. We give a monotone property of Γα,i(Uα,i, Uα′,i), i ∈ I, α = 1, 2.

Lemma 4.1.4. Let (3.22) and (3.23) hold, and Uα,i, Vα,i, i ∈ I, α = 1, 2, be any mesh

functions in 〈Û , Ũ〉 such that Uα,i ≥ Vα,i, i ∈ I, α = 1, 2. Then

Γα,i(Uα,i, Uα′,i) ≥ Γα,i(Vα,i, Vα′,i), i ∈ I, α′ 6= α, α, α′ = 1, 2. (4.12)
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Proof. From (4.11), we have

Γα,i(Uα,i, Uα′,i)− Γα,i(Vα,i, Vα′,i) = Cα,i[Uα,i − Vα,i]

− [Fα,i(Uα,i, Uα′,i)− Fα,i(Vα,i, Uα′,i)]

− [Fα,i(Vα,i, Uα′,i)− Fα,i(Vα,i, Vα′,i)],

i ∈ I, α′ 6= α, α, α′ = 1, 2.

Using the mean-value theorem (4.9), we obtain that

Γα,i(Uα,i, Uα′,i)− Γα,i(Vα,i, Vα′,i) =

(Cα,i − (Fα,i(Qα,i, Uα,i))uα) (Uα,i − Vα,i)− (Fα,i(Vα,i, Yα′,i))uα′
(
Uα′,i − Vα′,i

)
,

Vα,i ≤ Qα,i ≤ Yα,i ≤ Uα,i, i ∈ I, α′ 6= α, α, α′ = 1, 2,

where the partial derivatives are defined in (4.10). Taking into account that Uα,i ≥ Vα,i,
i ∈ I, α = 1, 2, from (3.22) and (3.23), we conclude (4.12).

We now construct block iterative methods for solving (4.5). Upper {U (n)
α,i} and lower

{U (n)
α,i}, i ∈ I, α = 1, 2, sequences of solutions are calculated by the following block

Jacobi and Gauss-Seidel iterative methods:

Aα,iZ
(n)
α,i − ηLα,iZ

(n)
α,i−1 + Cα,iZ

(n)
α,i = −Kα,i(U (n−1)

α,i , U
(n−1)
α′,i ), i ∈ I, (4.13)

Z
(n)
α,i =

{
gα,i − U (0)

α,i , n = 1,

0, n ≥ 2,
i ∈ ∂I,

Z
(n)
α,i = U

(n)
α,i − U

(n−1)
α,i , i ∈ I, α′ 6= α, α, α′ = 1, 2,

where Kα,i(U (n−1)
α,i , U

(n−1)
α′,i ), i ∈ I, α′ 6= α, α, α′ = 1, 2, are the residuals of the difference

scheme (4.5) on U
(n−1)
α,i , i ∈ I, α = 1, 2, which are defined in (4.7). If η = 0 and η = 1,

we have, respectively, the block Jacobi and block Gauss–Seidel iterative methods.

Remark 4.1.5. For quasi-monotone nondecreasing functions (3.23), upper and lower

solutions are independent, hence, by using (4.13), we calculate either the sequence

{U (n)
1,i , U

(n)
2,i }, i ∈ I or the sequence {U (n)

1,i , U
(n)
2,i }, i ∈ I.

Remark 4.1.6. The basic advantage of the block Jacobi iterative method (4.13) with

η = 0 is that the Thomas algorithm can be used for each subsystem (α, i), i ∈ I,

α = 1, 2, and all the subsystems can be computed in parallel.

The advantage of the block Gauss–Seidel method (4.13) with η = 1 is that the

Thomas algorithm for solving tridiagonal systems can be used for each subsystem (α, i),

I, α = 1, 2. Since U
(n)
α,0 , α = 1, 2, are given, and from (4.6), (Aα,i+Cα,i)

−1 > 0 , i ∈ I,

α = 1, 2, then the tridiagonal systems (4.13) for i = 1 are well-defined and can be solved
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for U
(n)
α,1 , α = 1, 2, by the Thomas algorithm. Now, the tridiagonal systems (4.13) for

i = 2 are well-defined and can be solved for U
(n)
α,2 , α = 1, 2, by the Thomas algorithm.

Thus, starting from i = 1 and finishing off with i = Nx−1, we solve only the tridiagonal

systems for U
(n)
α,i , i ∈ I, α = 1, 2.

Figure 4.2 illustrates the implementation of block Jacobi and Gauss-Seidel methods.

Figure 4.2: Implementation of the block Jacobi and Gauss-Seidel methods

Theorem 4.1.7. Let (Ũ1,i, Ũ2,i) and (Û1,i, Û1,i), i ∈ I, be ordered upper and lower

solutions (4.7) of (4.5). Suppose that the functions fα, α = 1, 2, in (3.1) satisfy (3.22)

and (3.23). Then upper {U (n)
α,i} and lower {U (n)

α,i}, i ∈ I, α = 1, 2, sequences generated

by (4.13) with, respectively, (U
(0)
1,i , U

(0)
2,i ) = (Ũ1,i, Ũ2,i) and (U

(0)
1,i , U

(0)
2,i ) = (Û1,i, Û2,i),

i ∈ I, converge monotonically from above to a maximal solution (U1,i, U2,i), i ∈ I, and

from below to a minimal solution (U1,i, U2,i), i ∈ I,

U
(n−1)
α,i ≤ U (n)

α,i ≤ Uα,i ≤ Uα,i ≤ U
(n)
α,i ≤ U

(n−1)
α,i i ∈ I, α = 1, 2. (4.14)

If Sα,i, i ∈ I, α = 1, 2, are any other solutions in 〈Û , Ũ〉, then

Uα,i ≤ Sα,i ≤ Uα,i, i ∈ I, α = 1, 2. (4.15)
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Proof. Letting W
(n)
α,i = U

(n)
α,i − U

(n)
α,i , i ∈ I, α = 1, 2, in notation (4.11), from (4.13), we

have

(Aα,i + Cα,i)W
(1)
α,i − ηLα,iW

(1)
α,i−1 = Rα,iW

(0)
α,i+1 + Γα,i(U

(0)
α,i, U

(0)
α′,i)− Γα,i(U

(0)
α,i, U

(0)
α′,i),

i ∈ I, W
(1)
α,i = 0, i ∈ ∂I, α′ 6= α, α, α′ = 1, 2.

Taking into account that U
(0)
α,i = Ûα,i ≤ U

(0)
α,i = Ũα,i, i ∈ I, Rα,i > O, i ∈ I, α = 1, 2,

from (4.3), using (4.12), it follows that

(Aα,i + Cα,i)W
(1)
α,i − ηLα,iW

(1)
α,i−1 ≥ 0, i ∈ I, W

(1)
α,i = 0, i ∈ ∂I, α = 1, 2.

(4.16)

Since W
(1)
α,0 = 0 and from (4.6), (Aα,1 + Cα,1)−1 > O, α = 1, 2, for i = 1 in (4.16), by

using (4.12), we conclude that W
(1)
α,1 ≥ 0, α = 1, 2. From here, η = 0, 1, Lα,2 > O,

α = 1, 2, from (4.3), and using (4.12), for i = 2, we obtain that W
(1)
α,2 ≥ 0, α = 1, 2. By

induction on i, we can prove that

W
(1)
α,i ≥ 0, i ∈ I, α = 1, 2.

Thus, we prove (4.7a). Since Ũα,i , i ∈ I, α = 1, 2, are upper solutions (4.7), it follows

that Kα,i(Ũα,i, Ũα′,i) ≥ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2. From here and (4.13), we have

(Aα,i + Cα,i)Z
(1)
α,i − ηLα,iZ

(1)
α,i−1 ≤ 0, i ∈ I, α = 1, 2. (4.17)

Taking into account that η = 0, 1, Lα,i ≥ O from (4.3), (Aα,i +Cα,i)
−1 > O from (4.6),

Z
(1)
α,0 ≤ 0, i ∈ I, α = 1, 2, for i = 1 in (4.17), we conclude that Z

(1)
α,1 ≤ 0, α = 1, 2. By

induction on i, we can prove that

Z
(1)
α,i ≤ 0, i ∈ I, α = 1, 2. (4.18)

Similarly, for initial lower solutions Uα,i, i ∈ I, α = 1, 2, we can prove that

Z
(1)
α,i ≤ 0, i ∈ I, α = 1, 2. (4.19)

From (4.13) and using notation (4.11), we have

Kα,i(U
(1)
α,i, U

(1)
α′,i) = −Rα,iZ

(1)
α,i+1 + Γα,i(U

(0)
α,i, U

(0)
α′,i)− Γα,i(U

(1)
α,i, U

(1)
α′,i), (4.20)

i ∈ I, α′ 6= α, α, α′ = 1, 2.
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Taking into account that Rα,i ≥ O, α = 1, 2, (4.18), by using 4.12, we conclude that

Kα,i(U
(1)
α,i, U

(1)
α′,i) ≥ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2.

Thus, U
(1)
α,i, i ∈ I, α = 1, 2, satisfy (4.7b). By a similar manner, we can prove

Kα,i(U (1)
α,i, U

(1)
α′,i) ≥ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2,

that is U
(1)
α,i, i ∈ I, α = 1, 2, satisfy (4.7b). From the boundary conditions on i ∈ ∂I in

(4.11), it follows that U
(1)
α,i and U

(1)
α,i, i ∈ I, α = 1, 2, satisfy (4.7c).

Thus, we prove that U
(1)
α,i and U

(1)
α,i, i ∈ I, α = 1, 2, are ordered upper and lower

solutions (4.7).

By induction on n, we can prove that {U (n)
α,i}, i ∈ I, α = 1, 2, are a monotone

decreasing sequence of upper solutions and {U (n)
α,i}, i ∈ I, α = 1, 2, are a monotone

increasing sequence of lower solutions which satisfy (4.14).

From (4.14), we conclude that limU
(n)
α,i = Uα,i and limU

(n)
α,i = Uα,i, i ∈ I, α = 1, 2,

as n→∞ exist, and

lim
n→∞

Z
(n)
α,i = 0, lim

n→∞
Z

(n)
α,i = 0, i ∈ I, α = 1, 2.

Similar to (4.20), for n ≥ 1, we conclude that

Kα,i(U
(n)
α,i , U

(n)
α′,i) = −Rα,iZ

(n)
α,i+1 + Γα,i(U

(n−1)
α,i , U

(n−1)
α′,i )− Γα,i(U

(n)
α,i , U

(n)
α′,i),

i ∈ I, α′ 6= α, α, α′ = 1, 2.

By taking the limit of both sides, (4.14) and using (4.11), we conclude that

Kα,i(Uα,i, Uα′,i) = 0, i ∈ I, α′ 6= α, α, α′ = 1, 2.

Thus, Uα,i, i ∈ I, α = 1, 2, are maximal solutions to the nonlinear difference scheme

(4.5). By a similar argument, we can prove

Kα,i(Uα,i, Uα′,i) = 0, i ∈ I, α′ 6= α, α, α′ = 1, 2,

that is, Uα,i, i ∈ I, α = 1, 2, are minimal solutions to the nonlinear difference scheme

(4.5).

Now, we prove (4.15). We assume that Sα,i, i ∈ I, α = 1, 2, are other solutions in

〈Û , Ũ〉. We consider the sector 〈S, Ũ〉, which means that we treat Sα,i, i ∈ I, α = 1, 2,

as lower solutions. Since {S(n)
α,i} = {Sα,i}, i ∈ I, α = 1, 2, is a constant sequence for all

n, then from (4.14), we conclude that Sα,i ≤ Uα,i, i ∈ I, α = 1, 2.
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Now, we consider the sector 〈Û , S〉, which means that we treat Sα,i, i ∈ I, α = 1, 2,

as upper solutions. Similarly, since {S(n)
α,i} = {Sα,i}, i ∈ I, α = 1, 2, is a constant

sequence for all n, then from (4.14), we conclude that Uα,i ≤ Sα,i, i ∈ I, α = 1, 2.

Thus, we prove (4.15).

4.1.2 Quasi-monotone nonincreasing case

In the case of the quasi-monotone nonincreasing functions fα, α = 1, 2, (3.39), we say

that mesh functions

(Ũ1,i, Ũ2,i), (Û1,i, Û2,i), i ∈ I,

are called ordered upper and lower solutions of (4.5), if they satisfy the inequalities

Ûα,i ≤ Ũα,i, i ∈ I, (4.21a)

Kα,i(Ûα,i, Ũα′,i) ≤ 0 ≤ Kα,i(Ũα,i, Ûα′,i), i ∈ I, (4.21b)

Ûα,i ≤ gα,i ≤ Ũα,i, i ∈ ∂I, α′ 6= α, α, α′ = 1, 2, (4.21c)

where Kα,i(Ûα,i, Ũα′,i), i ∈ I, α′ 6= α, α, α′ = 1, 2, are defined in (4.7).

Lemma 4.1.8. Let (3.38) and (3.39) hold, and (U1,i, U2,i), (V1,i, V2,i), i ∈ I be any

functions in the sector 〈Û , Ũ〉 (4.8) such that Uα,i ≥ Vα,i, i ∈ I, α = 1, 2. Then

Γα,i(Uα,i, Vα′,i) ≥ Γα,i(Vα,i, Uα′,i), i ∈ I, α′ 6= α, α, α′ = 1, 2. (4.22)

Proof. From (4.11), we have

Γα,i(Uα,i, Vα′,i)− Γα(Vα,i, Uα′,i) = Cα,i(Uα,i − Vα,i)

−
[
Fα,i(Uα,i, Vα′,i)− Fα,i(Vα,i, Vα′,i)

]
+
[
Fα,i(Vα,i, Uα′,i)− Fα,i(Vα,i, Vα′,i)

]
,

i ∈ I, α′ 6= α, α, α′ = 1, 2,

where notation (4.4) is in use. Using the mean-value theorem (4.9), we obtain that

Γα,i(Uα,i, Vα′,i)− Γα(Vα,i, Uα′,i) =(
Cα,i −

(
Fα,i(Qα,i, Vα′,i)

)
uα

)
(Uα,i − Vα,i) +

(
Fα,i(Vα,i, Yα′,i)

)
uα′

(Uα′,i − Vα′,i),

Vα,i ≤ Qα,i, Yα,i ≤ Uα,i, i ∈ I, α′ 6= α, α, α′ = 1, 2,

where the partial derivatives are defined in (4.10). Taking into account that Uα,i ≥ Vα,i,
i ∈ I, α = 1, 2, from (3.38) and (3.39), we conclude (4.22).

In the case of quasi-monotone nonincreasing reaction functions (3.39), for solving
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the nonlinear difference scheme (4.5), we introduce the block Jacobi and Gauss-Seidel

iterative methods in the forms

Aα,iZ
(n)
α,i − ηLα,iZ

(n)
α,i−1 + Cα,iZ

(n)
α,i = −Kα,i(U

(n−1)
α,i , U

(n−1)
α′,i ), i ∈ I, (4.23)

Aα,iZ
(n)
α,i − ηLα,iZ

(n)
α,i−1 + Cα,iZ

(n)
α,i = −Kα,i(U (n−1)

α,i , U
(n−1)
α′,i ), i ∈ I,

Z
(n)
α,i = U

(n)
α,i − U

(n−1)
α,i , i ∈ I,

Z
(n)
α,i =

{
gα,i − U (0)

α,i , n = 1,

0, n ≥ 2,
i ∈ ∂I,

where Kα,i(U (n−1)
α,i , U

(n−1)
α′,i ), i ∈ I, α′ 6= α, α, α′ = 1, 2, are the residuals of the difference

scheme (4.5) on U
(n−1)
α,i , i ∈ I, α = 1, 2, which are defined in (4.7). For η = 0 and η = 1

in (4.23), we have, respectively, the block Jacobi and block Gauss–Seidel methods.

Remark 4.1.9. For quasi-monotone nonincreasing functions fα, α = 1, 2, (3.39),

upper and lower solutions are coupled, hence, by using (4.23), we calculate either the

sequence {U (n)
1,i , U

(n)
2,i }, i ∈ I or the sequence {U (n)

1,i , U
(n)
2,i }, i ∈ I.

Remark 4.1.10. The basic advantages of the block Jacobi iterative method with η = 0

in (4.13) and the block Gauss–Seidel method with η = 1 in (4.13) are the Thomas

algorithm can be used for each subsystem (α, i), i ∈ I, α = 1, 2, as in the case of quasi-

monotone nondecreasing reaction functions, which are indicated in Remark 4.1.6.

Theorem 4.1.11. Let (Ũ1,i, Ũ2,i) and (Û1,i, Û2,i), i ∈ I be ordered upper and lower

solutions (4.7). Assume that the functions fα, α = 1, 2, in (3.1) satisfy equations

(3.38) and (3.39). Then the sequences {U (n)
1,i , U

(n)
2,i }, {U

(n)
1,i , U

(n)
2,i }, i ∈ I, generated

by the monotone methods (4.23) with {U (0)
1,i , U

(0)
2,i } = {Ũ1,i, Û2,i} and {U (0)

1,i , U
(0)
2,i } =

{Û1,i, Ũ2,i}, i ∈ I, converge monotonically to their respective solutions (U1,i, U2,i) and

(U1,i, U2,i), i ∈ I, such that (4.14) holds. If Sα,i, i ∈ I, α = 1, 2, are any other solution

in 〈Û , Ũ〉, then (4.15) holds.

Proof. In the case of the sequence {U (n)
1,i , U

(n)
2,i }, i ∈ I, (U

(0)
1,i , U

(0)
2,i ) = (Ũ1,i, Û2,i), i ∈ I,

are initial upper and lower solutions (4.21). Hence, it follows that K1,i(U
(0)
1,i , U

(0)
2,i ) ≥ 0,

K2,i(U
(0)
1,i , U

(0)
2,i ) ≤ 0, i ∈ I, from (4.23), we conclude that

(A1,i + C1,i)Z
(1)
1,i − ηL1,iZ

(1)
1,i−1 ≤ 0, i ∈ I,

(A2,i + C2,i)Z
(1)
2,i − ηL2,iZ

(1)
2,i−1 ≥ 0, i ∈ I,

Z
(1)
1,i ≤ 0, Z

(1)
2,i ≥ 0, i ∈ ∂I.

Taking into account that (Aα,i + Cα,i)
−1 > O from (4.6), η = 0, 1, Lα,i ≥ O, α = 1, 2

from (4.3), for i = 1, Z
(1)
1,0 ≤ 0, Z

(1)
2,0 ≥ 0, we conclude that Z

(1)
1,1 ≤ 0, Z

(1)
2,1 ≥ 0. By
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induction on i, we can prove that

Z
(1)
1,i ≤ 0, Z

(1)
2,i ≥ 0, i ∈ I. (4.24)

Similarly, for the sequence {U (n)
1,i , U

(n)
2,i }, i ∈ I, from (4.23), we conclude that

(A1,i + C1,i)Z
(1)
1,i − ηL1,iZ

(1)
1,i−1 ≥ 0, i ∈ I,

(A2,i + C2,i)Z
(1)
2,i − ηL2,iZ

(1)
2,i−1 ≤ 0, i ∈ I,

Z
(1)
1,i ≥ 0, Z

(1)
2,i ≤ 0, i ∈ ∂I.

Taking into account that (Aα,i + Cα,i)
−1 > O from (4.6), η = 0, 1, Lα,i ≥ O, α = 1, 2

from (4.3), for i = 1, Z
(1)
1,0 ≥ 0, Z

(1)
2,0 ≤ 0, we conclude that Z

(1)
1,1 ≥ 0, Z

(1)
2,1 ≤ 0. By

induction on i, we can prove that

Z
(1)
1,i ≥ 0, Z

(1)
2,i ≤ 0, i ∈ I. (4.25)

We now prove that U
(1)
α,i and U

(1)
α,i, i ∈ I, α = 1, 2, are ordered upper and lower solutions

(4.21). Letting W
(1)
α,i = U

(1)
α,i − U

(1)
α,i, i ∈ I, α = 1, 2, in notation (4.11), from (4.23), we

have

(Aα,i + Cα,i)W
(1)
α,i = ηLα,iW

(1)
α,i−1 +Rα,iW

(0)
α,i+1 + Γα,i(U

(0)
α,i, U

(0)
α′,i)− Γα,i(U

(0)
α,i, U

(0)
α′,i),

i ∈ I, W
(1)
α,i = 0, i ∈ ∂I, α′ 6= α, α, α′ = 1, 2.

From here with i = 1, taking into account that Lα,i > O, Rα,i > O from (4.3), η = 0, 1,

U
(0)
α,i = Ûα,i, U

(0)
α,i = Ũα,i, Ûα,i ≤ Ũα,i, i ∈ I, α = 1, 2, W

(1)
α,0 = 0 and (Aα,1 +Cα,1)−1 > O

from (4.6), we conclude that W
(1)
α,1 ≥ 0, α = 1, 2. For i = 2, taking into account that

W
(1)
α,1 ≥ 0, α = 1, 2 and using similar arguments as for i = 1, we prove that W

(1)
α,2 ≥ 0,

α = 1, 2. By induction on i, we can prove that

W
(1)
α,i ≥ 0, i ∈ I, α = 1, 2. (4.26)

Thus, we prove (4.21a).

From (4.23), we have

Kα,i(U
(1)
α,i, U

(1)
α′,i) = −Cα,iZ

(1)
α,i −Rα,iZ

(1)
α,i+1 + Fα,i(U

(1)
α,i, U

(1)
α′,i)− Fα,i(U

(0)
α,i, U

(0)
α′,i),

i ∈ I, α′ 6= α, α, α′ = 1, 2.
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From here, in notation (4.11), we obtain that

Kα,i(U
(1)
α,i, U

(1)
α′,i) = −Rα,iZ

(1)
α,i+1 + Γα,i(U

(0)
α,i, U

(0)
α′,i)− Γα,i(U

(1)
α,i, U

(1)
α′,i),

i ∈ I, α′ 6= α, α, α′ = 1, 2.

Taking into account that Rα,i ≥ O, by using (4.22), we conclude that

Kα,i(U
(1)
α,i, U

(1)
α′,i) ≥ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2. (4.27)

Similarly, we can prove

Kα,i(U (1)
α,i, U

(1)
α′,i) ≤ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2. (4.28)

From the boundary conditions with i ∈ ∂I in (4.23), it follows that U
(1)
α,i, U

(1)
α,i, i ∈ ∂I,

α = 1, 2, satisfy (4.7c). Thus, from here, (4.26)–(4.28), we conclude that U
(1)
α,i and U

(1)
α,i,

i ∈ I, α = 1, 2, are ordered upper and lower solutions (4.21).

By induction on n, we can prove that {U (n)
α,i}, i ∈ I, α = 1, 2, are monotone

decreasing sequence of upper solutions and {U (n)
α,i}, i ∈ I, α = 1, 2, are monotone

increasing sequence of lower solutions which satisfy (4.21).

From (4.14), we conclude that limU
(n)
α,i = Uα,i and limU

(n)
α,i = Uα,i i ∈ I, α = 1, 2,

as n→∞ exist, and

lim
n→∞

Z
(n)
α,i = 0, lim

n→∞
Z

(n)
α,i = 0, i ∈ I, α = 1, 2.

From here and (4.23), we conclude that

Kα,i(Uα,i, Uα′,i) = 0, Kα,i(Uα,i, Uα,i) = 0, i ∈ I, α′ 6= α, α, α′ = 1, 2,

which means that (U1,i, U2,i) and (U1,i, U2,i), i ∈ I, are solutions to the nonlinear

difference scheme (4.5).

The proof of (4.15) repeats the proof in Theorem 3.3.2, Chapter 3.
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4.2 Convergence analysis and constructions of initial it-

erates

4.2.1 The quasi-monotone nondecreasing case

A stopping test for the block monotone iterative methods (4.13) is chosen in the form∥∥∥Kα(U (n)
α , U

(n)
α′ )

∥∥∥
Ωh
≤ δ, (4.29)∥∥∥Kα(U (n)

α , U
(n)
α′ )

∥∥∥
Ωh

= max
i∈I

∣∣∣Kα,i(U (n)
α,i , U

(n)
α′,i)

∣∣∣ , α′ 6= α, α, α′ = 1, 2,

where Kα,i(U (n)
α,i , U

(n)
α′,i), i ∈ I, α = 1, 2, are defined in (4.7) and δ is a prescribed

accuracy.

Theorem 4.2.1. Assume that the assumptions in Theorem 3.4.3 are satisfied. Then

for the sequences {U (n)
α,i }, i ∈ I, α = 1, 2, generated by the block monotone iterative

methods (4.13), (4.29), we have the estimate (3.85) from Theorem 3.5.1 in Chapter 3.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.1 with Uα,i, i ∈ I,

α = 1, 2, rather than Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2.

Theorem 4.2.2. Let the assumptions in Theorem 3.4.3 be satisfied. Then for the

sequences {U (n)
α,i }, i ∈ I, α = 1, 2, generated by the block monotone iterative methods

(4.13), (4.29), the estimate (3.86) from Chapter 3, holds.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.2 with Uα,i, i ∈ I,

α = 1, 2, rather than Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2.

4.2.2 The quasi-monotone nonincreasing case

For the sequences {U (n)
1,i , U

(n)
2,i } and {U (n)

1,i , U
(n)
2,i }, i ∈ I, generated by (4.23), we intro-

duce the notation

K =


max

{∥∥∥K1

(
U

(n)
1 , U

(n)
2

)∥∥∥
I

;
∥∥∥K2

(
U

(n)
1 , U

(n)
2

)∥∥∥
I

}
for {U (n)

1,i , U
(n)
2,i },

max
{∥∥∥K1

(
U

(n)
1 , U

(n)
2

)∥∥∥
I

;
∥∥∥K2

(
U

(n)
1 , U

(n)
2

)∥∥∥
I

}
for {U (n)

1,i , U
(n)
2,i },

(4.30)

where the residuals Kα,i
(
U

(n)
α,i , U

(n)
α′,i

)
, i ∈ I, α′ 6= α, α, α′ = 1, 2, are defined in (4.7).

A stopping test for the block monotone iterative methods (4.23) is chosen in the form

K ≤ δ, (4.31)

where K is defined in (4.30).
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Theorem 4.2.3. Assume that the assumptions in Theorem 3.4.5 are satisfied. Then

for the sequences {U (n)
1,i , U

(n)
2,i }, {U

(n)
1,i , U

(n)
2,i }, i ∈ I, generated by the block monotone

iterative methods (4.23), (4.31), we have the estimate (3.91) from Chapter 3 holds.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.3 with Uα,i, i ∈ I,

α = 1, 2, rather than Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2.

Theorem 4.2.4. Let the assumptions in Theorem 3.5.3 be satisfied. Then for the se-

quences {U (n)
1,i , U

(n)
2,i } and {U (n)

1,i , U
(n)
2,i }, i ∈ I, generated by the block monotone iterative

methods (4.23), (4.31), we have the estimate (3.92) from Chapter 3 holds.

Proof. The proof of the theorem repeats the proof of Theorem 3.5.4 from Chapter 3

with Uα,i, i ∈ I, α = 1, 2, rather than Uα,ij , (i, j) ∈ Ω
h
, α = 1, 2.

4.2.3 Constructions of initial upper and lower iterates

In Section 3.6, for quasi-monotone nondecreasing and quasi-monotone nonincreasing

reaction functions, we consider the constructions of initial upper and lower solutions in

the cases of bounded reaction functions and constant initial iterates.

Constructions of initial iterates only depend on properties of corresponding reaction

functions fα, α = 1, 2. Hence, the constructed initial iterates from Section 3.6 can be

used as starting iterates for the block monotone iterative methods (4.13) and (4.23).

4.3 Comparison of convergence rates of the block mono-

tone Jacobi and Gauss–Seidel methods

4.3.1 The quasi-monotone nondecreasing case

In the case of quasi-monotone nondecreasing reaction functions (3.23), the following

theorem shows that the block monotone Gauss–Seidel method with η = 1 in (4.13)

converges faster than the block monotone Jacobi method with η = 0 in (4.13).

Theorem 4.3.1. Let (Ũ1,i, Ũ2,i) and (Û1,i, Û2,i), i ∈ I, be ordered upper and lower

solutions (4.7), and the functions fα, α = 1, 2, in (3.1) satisfy (3.22) and (3.23).

Suppose that the sequences {(U (n)
α,i )J} and {(U (n)

α,i )GS}, i ∈ I, α = 1, 2, are generated

by the block monotone Jacobi method with η = 0 in (4.13) and by the block mono-

tone Gauss–Seidel method with η = 1 in (4.13), where (U
(0)
α,i)J = (U

(0)
α,i)GS = Ũα,i and

(U
(0)
α,i)J = (U

(0)
α,i)GS = Ûα,i, i ∈ I, α = 1, 2. Then

(U
(n)
α,i )J ≤ (U

(n)
α,i )GS ≤ (U

(n)
α,i )GS ≤ (U

(n)
α,i )J, i ∈ I, α = 1, 2. (4.32)
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Proof. Letting W
(n)
α,i = (U

(n)
α,i )J − (U

(n)
α,i )GS, i ∈ I, α = 1, 2, from (4.13), we have

Aα,iW
(n)
α,i + Cα,iW

(n)
α,i = ηLα,i

(
(U

(n)
α,i−1)J − (U

(n−1)
α,i−1 )GS

)
+Rα,iW

(n−1)
α,i+1

+ Γα,i

(
(U

(n−1)
α,i )J, (U

(n−1)
α′,i )J

)
− Γα,i

(
(U

(n−1)
α,i )GS, (U

(n−1)
α′,i )GS

)
,

i ∈ I, W
(n)
α,i = 0, i ∈ ∂I, α′ 6= α, α, α′ = 1, 2.

From here and taking into account that
(
U

(n−1)
α,i

)
GS
≤
(
U

(n)
α,i

)
GS

, i ∈ I, α = 1, 2, it

follows that

Aα,iW
(n)
α,i + Cα,iW

(n)
α,i = ηLα,iW

(n)
α,i−1 +Rα,iW

(n−1)
α,i+1 + Γα,i

(
(U

(n−1)
α,i )J, (U

(n−1)
α′,i )J

)
− Γα,i

(
(U

(n−1)
α,i )GS, (U

(n−1)
α′,i )GS

)
, (4.33)

i ∈ I, W
(n)
α,i = 0, i ∈ ∂I, α′ 6= α, α, α′ = 1, 2.

Taking into account that (Aα,i + Cα,i)
−1 > O from (4.6), Lα,i ≥ O, Rα,i ≥ O, i ∈ I,

α = 1, 2, from (4.3), η = 0, 1, (U
(0)
α,i)GS = (U

(0)
α,i)J, W

(0)
α,i = 0, i ∈ I, α = 1, 2, and using

the monotone property (4.12), we conclude for n = 1 in (4.33) that

W
(1)
α,i ≥ 0, i ∈ I, α = 1, 2.

Similarly, from here and (4.33) with n = 2, we obtain that W
(2)
α,i ≥ 0, i ∈ I, α = 1, 2.

By induction on n, we can prove that W
(n)
α,i ≥ 0, i ∈ I, α = 1, 2. Thus, we prove

(4.32) for upper solutions. By following the same manner, we can prove (4.32) for

lower solutions.

4.3.2 The quasi-monotone nonincreasing case

In the case of quasi-monotone nonincreasing reaction functions (3.39), the following

theorem shows that the block monotone Gauss–Seidel method with η = 1 in (4.13)

converges faster than the block monotone Jacobi method with η = 0 in (4.13).

Theorem 4.3.2. Let (Ũ1,i, Û2,i) and (Û1,i, Ũ2,i), i ∈ I be ordered upper and lower

solutions (4.21), and the functions fα, α = 1, 2, in (3.1) satisfy (3.38) and (3.39).

Suppose that the sequences {(U (n)
α,i )J} and {(U (n)

α,i )GS}, i ∈ I, α = 1, 2, are generated

by the block monotone Jacobi method with η = 0 in (4.23) and by the block mono-

tone Gauss–Seidel method with η = 1 in (4.23), where (U
(0)
α,i)J = (U

(0)
α,i)GS = Ũα,i and

(U
(0)
α,i)J = (U

(0)
α,i)GS = Ûα,i, i ∈ I, α = 1, 2. Then (4.32) holds.

Proof. The proof of the theorem repeats the proof of Theorem 4.3.1, where Γα,i, i ∈ I,
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α = 1, 2, are written in the form

Γα,i(U
(n)
α,i , U

(n)
α′,i) = Cα,iU

(n)
α,i − Fα,i(U

(n)
α,i , U

(n)
α′,i),

Γα,i(U
(n)
α,i , U

(n)
α′,i) = Cα,iU

(n)
α,i − Fα,i(U

(n)
α,i , U

(n)
α′,i),

and the monotone property (4.22) for Γα,i, i ∈ I, α = 1, 2, is in use.

4.4 Numerical experiments

We present numerical experiments for test problems with quasi-monotone nondecreas-

ing (4.7) and quasi-monotone nonincreasing (4.21) reaction functions fα, α = 1, 2, in

(3.1). Exact solutions for our test problems are unknown, and numerical solutions

are compared to corresponding reference solutions. The approximate solutions U
(nm)
α,i,m,

i ∈ I, α = 1, 2, m ≥ 1, are generated by either the block monotone methods (4.13),

(4.29) or the block monotone methods (4.23), (4.31). In our tests, we choose the refer-

ence solutions with N = 256 and δ = 10−5 in (4.29) and (4.31). The reference solutions

are calculated by the corresponding block method.

4.4.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions

(3.23), we consider Test 1 from Section 3.8.1 with the same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative

method (4.13), (4.29) and the initial iteration (Ũ1,i, Ũ2,i) = (1, 1), i ∈ I.

In Table 4.1, we give number of iterations nδ and execution (CPU) times for the block

iterative methods and for the point monotone iterative methods from Table 3.2. From

these results, we conclude that the block monotone Gauss-Seidel method converges

faster than the block monotone Jacobi method, which confirms Theorem 4.3.1. Nu-

merical data indicate that the block monotone Gauss–Seidel method is approximately

twice as fast as the block monotone Jacobi method. The data in Table 4.1 show that

the block monotone methods converge faster than the corresponding point monotone

methods.
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Table 4.1: Number of iterations nδ and CPU times for Test 1.

N 8 16 32 64 128

the block Jacobi method

nδ 101 397 1577 6299 25189
CPU(s) 0.02 0.11 0.91 14.17 225.99

the block Gauss–Seidel method

nδ 51 180 762 3084 12370
CPU(s) 0.01 0.06 0.47 7.34 117.62

the point Jacobi method

nδ 190 771 3092 12378 49520
CPU(s) 0.01 0.07 1.09 16.15 261.28

the point Gauss–Seidel method

nδ 97 388 1548 6191 24762
CPU(s) 0.005 0.04 0.53 8.58 141.37

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions

(3.23), we consider Test 2 from Section 3.8.1 with the same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative

method (4.13), (4.29) and the initial iteration (Ũ1,i, Ũ2,i) = (1, 1), i ∈ I.

In Table 4.2, we give numbers of iterations nδ and execution (CPU) times for the

block iterative methods and for the point monotone iterative methods from Table 3.4.

From these results, we conclude that the block monotone Gauss-Seidel method con-

verges faster than the block monotone Jacobi method, which confirms Theorem 4.3.1.

Numerical data indicate that the block monotone Gauss–Seidel method is approxi-

mately twice as fast as the block monotone Jacobi method. The data in Table 4.2

show that the block monotone methods converge faster than the corresponding point

monotone methods. In Figure 4.3, we show the convergence of numerical solutions,

obtained by the block Gauss-Seidel method with η = 1 in (4.13) and N = 64 to the

reference solution Nref = 256, where the dashed line represents the numerical solution

and the solid blue line refers to the reference solution with respect to x and fixed value

of y = 0.5. In the subgraph 4.3a, staring from the initial lower solution Û = 0, we

show the convergence of the numerical lower solutions at nδ = 60 and nδ = 400 to

the reference solution. Similarly, starting from the initial upper solution Ũ = 1, the

subgraph 4.3b shows the convergence of the numerical upper solutions at nδ = 60 and

nδ = 400 to the reference solution.
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Table 4.2: Number of iterations nδ and CPU times for Test 2.

N 8 16 32 64 128

the block Jacobi method

nδ 48 181 709 2820 11266
CPU(s) 0.01 0.04 0.4 5.74 88.26

the block Gauss–Seidel method

nδ 41 86 403 1645 6612
CPU(s) 0.05 0.06 0.28 3.41 55.39

the point Jacobi method

nδ 89 353 1409 5632 22525
CPU(s) 0.02 0.05 0.70 10.90 174.46

the point Gauss-Seidel method

nδ 46 178 706 2818 11264
CPU(s) 0.01 0.02 0.37 5.78 92.29

Figure 4.3: Convergence of lower and upper solutions to the reference solution for Test
2.

(a) Lower solutions. (b) Upper solutions.

4.4.2 Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions

(3.39), we consider the Volterra–Lotka competition model from Section 3.8.1 with the

same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative

method (4.23), (4.31) and the initial iteration (Ũ1,i, Û2,i) = (1, 0), i ∈ I.

In Table 4.3, we give numbers of iterations nδ and execution (CPU) times for the

block monotone iterative methods and for the point monotone iterative methods from
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Table 3.6. From these results, we conclude that the block monotone Gauss-Seidel

method converges faster than the block monotone Jacobi method, which confirms The-

orem 4.3.2. Numerical data indicate that the block monotone Gauss–Seidel method is

approximately twice as fast as the block monotone Jacobi method. The data in Ta-

bles 4.3 show that the block monotone methods converge faster than the corresponding

point monotone methods.

Table 4.3: Number of iterations nδ and CPU times for Test 3.

N 8 16 32 64 128

the block Jacobi method

nδ 84 327 1301 5196 20776
CPU(s) 0.02 0.05 0.58 8.80 142.48

the block Gauss–Seidel method

nδ 48 147 617 2493 9994
CPU(s) 0.01 0.02 0.28 4.39 71.55

the point Jacobi method

nδ 155 623 2498 9999 40003
CPU(s) 0.03 0.17 1.29 18.61 281

the point Gauss–Seidel method

nδ 80 314 1251 5002 20004
CPU(s) 0.02 0.08 0.68 10.12 148.51

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions

(3.39), we consider the Belousov-Zhabotinskii reaction diffusion model from Section

3.8.2 with the same data sets.

We calculate sequences of upper solutions generated by the block monotone iterative

methods (4.23), (4.31) and the initial iteration (Ũ1,i, Û2,i) = (1, 0), i ∈ I.

In Table 4.4, we give numbers of iterations nδ and execution (CPU) for the block

monotone iterative methods and for the point monotone iterative methods from table

3.8. From these results, we conclude that the block monotone Gauss-Seidel method

converges faster than the block monotone Jacobi method, which confirms Theorem

4.3.2. Numerical data indicate that the block monotone Gauss–Seidel method is ap-

proximately twice as fast as the block monotone Jacobi method. The data in Table 4.4

show that the block monotone methods converge faster than the corresponding point

monotone methods.
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Table 4.4: Number of iterations nδ and CPU times for Test 4.

N 8 16 32 64 128

the block Jacobi method

nδ 80 289 1131 4500 17973
CPU(s) 0.006 0.06 0.63 9.72 153.84

the block Gauss–Seidel method

nδ 40 138 559 2242 8974
CPU(s) 0.004 0.03 0.26 3.95 63.86

the point Jacobi method

nδ 157 626 2501 10002 40007
CPU(s) 0.02 0.08 1.11 17.31 287.70

the point Gauss–Seidel method

nδ 77 311 1249 5000 20002
CPU(s) 0.01 0.05 0.59 9.26 152.73

4.5 Numerical experiments with convective terms

In the case when the elliptic problem (3.1) contains the convective terms, the implemen-

tation of the block monotone Gauss-Seidel method depends on approximations of the

partial derivatives uα,x and on the signs of the coefficients v
(x)
α , α = 1, 2, in convective

terms.

If the central difference approximations (2.7) are in use, then the implementation

of the block Gauss-Seidel method can be started from either i = 0 or i = Nx, that is,

it can be started from either vertical sides of the computational domain.

When the one-sided difference approximations (2.9) are in use, we consider the

following cases:

(i) If v
(x)
α ≥ 0, α = 1, 2, then the backward difference approximations from (2.9) are

in use, and the implementation of the block Gauss-Seidel method (4.13) is started

from the left vertical side.

(ii) If v
(x)
α ≤ 0, α = 1, 2, then the forward difference approximations from (2.9) are

in use, and the implementation of the block Gauss-Seidel method is started from
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the right vertical side

Aα,iZ
(n)
α,i −Rα,iZ

(n)
α,i−1 + Cα,iZ

(n)
α,i = −Kα,i(U (n−1)

α,i , U
(n−1)
α′,i ), i = I, I − 1, . . . , 1,

(4.34)

Z
(n)
α,i =

{
gα,i − U (0)

α,i , n = 1,

0, n ≥ 2,
i ∈ ∂I,

Z
(n)
α,i = U

(n)
α,i − U

(n−1)
α,i , i ∈ I, α′ 6= α, α, α′ = 1, 2.

(iii) If, for example, v
(x)
1 ≥ 0 and v

(x)
2 ≤ 0, then the backward difference approximation

from (2.9) for u1,x and the forward difference approximation from (2.9) for u2,x

are in use. The implementation of the block Gauss-Seidel method is started from

the left vertical side for Z
(n)
1,i , i = 1, 2, . . . , I, (4.13) and from the right vertical

side for Z
(n)
2,i , i = I, I − 1, . . . , 1.

As a test problem with convective terms, we consider Test 2 from Section 3.8.1 with

the constant coefficients v
(x)
1 = v, v

(x)
2 = v and v

(y)
α = 0, α = 1, 2, in the elliptic

problem (3.1). We choose the constant diffusion coefficients D1 = D, D2 = D, the

initial iteration (Ũ1,i; Ũ2,i) = (1; 1), i ∈ I and calculate sequences of upper solutions

generated by the block monotone Gauss-Seidel method with η = 1 in (4.13) and the

stopping test (4.29).

In Table 4.5, for v = 1, 10, 100, different values of N and D = 1, 10−1, 10−2, 10−3,

by using the central difference approximations for uα,x, α = 1, 2, we present numbers

of iterations nδ to satisfy the stopping test (4.29). From the numerical data in Table

4.5, we conclude that for fixed value of D, numbers of iterations are independent of the

coefficient v in the convective terms, and for N = fixed, numbers of iterations decrease

when D decreases.

In Table 4.6, for v = 1, 10, 100, different values of N and D = 1, 10−1, 10−2,

10−3, by using the backward difference approximations for uα,x, α = 1, 2, numbers of

iterations nδ are given. From the numerical data in Table 4.6, we conclude that for

fixed values of D and N , numbers of iterations for D = O(1) decrease very fast when

the coefficient v in the convective terms increases; number of iterations for sufficiently

small values of D is almost independent of v; for fixed values of N and v, numbers

of iterations decrease when D decreases. From the numerical data in Tables 4.5 and

4.6 , we can conclude that for D = 1 and v = 1, numbers of iterations are almost the

same for both the central and backward difference approximations of uα,x, α = 1, 2.

For D ≤ 10−1 and v = 1, 10, 100, numbers of iterations for the backward difference

approximations are less than for the central difference approximations. Thus, when

the convective terms dominate the diffusion terms, the block monotone Gauss-Seidel
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method with the one-sided difference approximations of the first partial derivatives are

more efficient than the block monotone Gauss-Seidel method with the central difference

approximations.

Table 4.5: Number of iterations by using the central difference approximations.

D/N 16 32 64 128 256

v = 1, 10, 100

1 141 598 2422 9715 38886

10−1
74 343 1400 5623 22516

10−2
26 54 240 976 3919

10−3
13 20 34 97 406

Table 4.6: Number of iterations by using the backward difference approximations.

D/N 16 32 64 128 256

v = 1

1 141 595 2403 9627 38511

10−1
55 251 992 3897 15399

10−2
31 54 114 347 1159

10−3
14 15 18 24 42

v = 10

1 80 338 1314 5132 20229

10−1 51 63 137 349 1282

10−2 16 18 22 31 51

10−3 16 16 17 19 21

v = 100

1 51 101 268 349 1307

10−1 19 22 28 37 60

10−2 18 19 21 22 26

10−3 18 19 20 21 22
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4.6 Conclusions to Chapter 4

Theoretical results

For solving nonlinear elliptic systems with quasi-monotone nondecreasing and non-

increasing reaction functions, we construct and investigate monotone properties of block

Jacobi and block Gauss-Seidel iterative methods. For solving the nonlinear difference

scheme (3.17) with quasi-monotone nondecreasing (3.23) and quasi-monotone nonin-

creasing (3.39) reaction functions, the block Jacobi and block Gauss-Seidel iterative

methods are constructed. In Theorems 4.1.7 and 4.1.11, we prove that the sequences

of upper and lower solutions, generated by the block monotone iterative methods for

problems with quasi-monotone nondecreasing (3.23) and quasi-monotone nonincreas-

ing (3.39) reaction functions, converge monotonically to the solutions of the nonlinear

difference scheme. By using the stopping test (4.29) and (4.31), based on the norms of

residuals, respectively, for the quasi-monotone nondecreasing and nonincreasing cases,

we prove that the numerical solution converges to the unique solution of the nonlin-

ear elliptic problem (3.1) and estimate the L∞ discrete-norm of the error between the

numerical and exact solutions of the nonlinear difference scheme (3.17) in Theorems

4.2.1 and 3.5.2, and the error between the numerical solution and the exact solution of

the elliptic system (3.1) in Theorems 4.2.3 and 4.2.4. We prove that the block mono-

tone Gauss-Seidel methods converge faster than the block monotone Jacobi methods

in Theorems 4.3.1 and 4.3.2, respectively, for the quasi-monotone nondecreasing and

nonincreasing reaction cases. The construction methods of initial iterates from Section

3.6 depend only on properties of corresponding reaction functions and can be used as

starting iterates for the block iterative methods (4.13) and (4.23).

Numerical results

The numerical sequences of solutions generated by block monotone methods (4.13)

with stopping (4.29) and the block monotone methods (4.23) with stopping (4.31) con-

verge monotonically. The block monotone Gauss-Seidel methods with η = 1 in (4.13)

and (4.23) converge faster than the block monotone Jacobi methods with η = 0 in (4.13)

and (4.23) which confirm, respectively, Theorems 4.3.1 and 4.3.2. The block monotone

Gauss-Seidel methods are approximately twice as fast as the block Jacobi methods. For

fixed diffusion coefficient D, the numbers of iterations nδ increase with increasing N .

The block monotone methods converge faster than the corresponding point monotone

methods. The number of iterations nδ and CPU times for the block Jacobi methods

are very close to the data for the point Gauss-Seidel methods. When the convective

terms dominate the diffusion terms, the block monotone Gauss-Seidel method with the

one-sided difference approximations of the first derivatives are more efficient than the

block monotone Gauss-Seidel method with the central difference approximations.
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Chapter 5

Jacobi and Gauss-Seidel methods

for systems of parabolic problems

This chapter deals with investigating numerical methods for solving coupled system of

nonlinear parabolic problems by point iterative methods based on Jacobi and Gauss–

Seidel methods. In the view of the method of upper and lower solutions, two monotone

upper and lower sequences of solutions are constructed. Convergence rates for the point

monotone iterative methods are estimated. We show that the sequences of solutions

generated by the point monotone Gauss–Seidel method converge faster than by the

point monotone Jacobi method. Constructions of initial upper and lower solutions are

presented.

5.1 Properties of solutions to systems of nonlinear parabolic

problems

We consider the system of nonlinear parabolic problems in the form

uα,t − Lαuα(x, y, t) + fα(x, y, t, u) = 0, (x, y, t) ∈ QT = ω × (0, T ], (5.1)

ω = {(x, y) : 0 < x < l1, 0 < y < l2},

uα(x, y, t) = gα(x, y, t), (x, y, t) ∈ ∂QT = ∂ω × (0, T ],

uα(x, y, 0) = ψα(x, y), (x, y) ∈ ω, α = 1, 2,

where u = (u1, u2), ∂ω is the boundary of ω and l1, l2 are positive constants. The

differential operators Lα, α = 1, 2, are defined by

Lαuα(x, y, t) ≡ D(x)
α (x, y, t)uα,xx +D(y)

α (x, y, t)uα,yy + v(x)
α (x, y, t)uα,x + v(y)

α (x, y, t)uα,y,
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where D
(x)
α (x, y, t), D

(y)
α (x, y, t), α = 1, 2, are positive functions. It is assumed that the

functions fα(x, y, t, u), gα(x, y, t), D
(x)
α (x, y, t), D

(y)
α (x, y, t), v

(x)
α (x, y, t) and v

(y)
α (x, y, t),

α = 1, 2, are smooth in their respective domains.

5.1.1 Quasi-monotone nondecreasing case

Two vector functions ũ = (ũ1, ũ2) and û = (û1, û2), are called ordered upper and lower

solutions to (5.1), if they satisfy the inequalities

û(x, y, t) ≤ ũ(x, y, t), (x, y, t) ∈ QT , (5.2a)

ûα,t − Lαûα + fα(x, y, t, û) ≤ 0 ≤ ũα,t − Lαũα + fα(x, y, t, ũ), (x, y, t) ∈ QT , (5.2b)

û(x, y, t) ≤ g(x, y, t) ≤ ũ(x, y, t), (x, y, t) ∈ ∂QT , (5.2c)

û(x, y, 0) ≤ ψ(x, y) ≤ ũ(x, y, 0), (x, y) ∈ ω, α = 1, 2,

For given ordered upper ũ and lower û solutions, a sector 〈û, ũ〉 is defined as follows

〈û, ũ〉 =
{
u(x, y, t) : û(x, y, t) ≤ u(x, y, t) ≤ ũ(x, y, t), (x, y, t) ∈ QT

}
. (5.3)

In the sector 〈û, ũ〉, the functions fα(x, y, t, u), α = 1, 2, are assumed to satisfy the

constraints

0 ≤ ∂fα(x, y, t, u)

∂uα
≤ cα(x, y, t), u ∈ 〈û, ũ〉, (x, y, t) ∈ QT , α = 1, 2, (5.4)

− ∂fα(x, y, t, u)

∂uα′
≥ 0, u ∈ 〈û, ũ〉, (x, y, t) ∈ QT , α′ 6= α, α, α′ = 1, 2, (5.5)

where cα(x, y, t), α = 1, 2, are nonnegative bounded functions. The reaction functions

fα(x, y, t, u), α = 1, 2, are called quasi-monotone nondecreasing in 〈û, ũ〉, if they satisfy

(5.5).

Theorem 5.1.1. Let ũ = (ũ1, ũ2) and û = (û1, û2) be ordered upper and lower solutions

(5.2). Assume that the functions fα(x, y, t, u), α = 1, 2, in (5.1) satisfy (5.5). Then

problem (5.1) has a unique solution in the sector 〈û, ũ〉.

The proof of the theorem is given in Theorem 8.3.1, [59].

5.2 Quasi-monotone nonincreasing case

Introduce the following notation:

Fα(x, y, t, uα, uα′) =

{
F1(x, y, t, u1, u2), α = 1,

F2(x, y, t, u1, u2), α = 2.
(5.6)
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Two mesh functions ũα(x, y, t) and ûα(x, y, t), α = 1, 2, are called ordered upper and

lower solutions to (5.1) in the case of quasi-monotone nonincreasing reaction functions

fα, α = 1, 2, if they satisfy the inequalities

ûα(x, y, t) ≤ ũα(x, y, t), (x, y, t) ∈ QT , (5.7a)

ûα,t − Lαûα + fα(x, y, t, ûα, ũα′) ≤ 0, (x, y, t) ∈ QT , (5.7b)

ũα,t − Lαũα + fα(x, y, t, ũα, ûα′) ≥ 0, (x, y, t) ∈ QT ,

ûα(x, y, t) ≤ gα(x, y, t) ≤ ũα(x, y, t), (x, y, t) ∈ ∂QT , (5.7c)

ûα(x, y, 0) ≤ ψα(x, y) ≤ ũα(x, y, 0), (x, y) ∈ ω, α′ 6= α, α, α′ = 1, 2,

where notation (5.6) is in use.

In the sector 〈û, ũ〉 from (5.3), the functions fα(x, y, t, u), α = 1, 2, are assumed to

satisfy (5.4) and the constraint

−∂fα(x, y, t, u)

∂uα′
≤ 0, u ∈ 〈û, ũ〉, (x, y, t) ∈ QT , α′ 6= α, α, α′ = 1, 2. (5.8)

The reaction functions fα(x, y, t, u), α = 1, 2, are called quasi-monotone nonincreasing

in 〈û, ũ〉, if they satisfy (5.8).

Theorem 5.2.1. Let ũ = (ũ1, ũ2) and û = (û1, û2) be ordered upper and lower solutions

(5.7). Assume that the functions fα(x, y, t, u), α = 1, 2, in (5.1) satisfy (5.4) and (5.8).

Then problem (5.1) has a unique solution in the sector 〈û, ũ〉.

The proof of the theorem is given in Theorem 8.3.2, [59].

5.3 The nonlinear difference scheme

On ω and [0, T ], we introduce a rectangular mesh Ah = Λ
hx × Λ

hy
and Λ

τ
, such that

Λ
hx

= {xi, i = 0, 1, . . . , Nx; x0 = 0, xNx = l1; hx = xi+1 − xi}, (5.9)

Λ
hy

= {yj , j = 0, 1, . . . , Ny; y0 = 0, yNy = l2; hy = yj+1 − yj},

Λ
τ

= {tm, m = 0, 1, . . . , Nτ ; t0 = 0, tNτ = T ; τ = tm − tm−1}.

We denote by Ωh, ∂Ωh and Ωτ the sets of indices which correspond to interior space

mesh points, boundary space mesh points and time mesh points, such that

Ωh = {(i, j) : i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny − 1},

∂Ωh = {(i, j) : i = 0, Nx, j = 0, 1, . . . , Ny; i = 0, 1, . . . , Nx, j = 0, Ny},

Ω
τ

= {m : m = 0, 1, . . . , Nτ}.
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For (i, j,m) ∈ Ω
h × Ω

τ
= (Ωh ∪ ∂Ωh)× Ω

τ
, we introduce the notation

Tα,ij,m(Uα,ij,m, Uα′,ij,m) =

{
T1,ij,m(U1,ij,m, U2,ij,m), α = 1,

T2,ij,m(U1,ij,m, U2,ij,m), α = 2.
(5.10)

By using the central difference approximations for the first and second derivatives on

the 5-point stencil, we introduce the nonlinear two-time levels difference scheme

(
Aα,ij,m + τ−1

)
Uα,ij,m + fα,ij,m(Uα,ij,m, Uα′,ij,m)− τ−1Uα,ij,m−1 = 0, (5.11)

(i, j,m) ∈ Ωhτ = Ωh × Ωτ , Uα,ij,m = gα,ij,m, (i, j,m) ∈ ∂Ωhτ = ∂Ωh × Ωτ ,

Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
,

where fα,ij,m(Uα,ij,m, Uα′,ij,m), α′ 6= α, α, α′ = 1, 2, are defined by (5.10) and the central

difference approximations for the first and second derivatives are given by

D2
xUα,ij,m =

Uα,i−1,j,m − 2Uα,ij,m + Uα,i+1,j,m

h2
x

, (5.12)

D2
yUα,ij,m =

Uα,i,j−1,m − 2Uα,ij,m + Uα,i,j+1,m

h2
y

,

D1
xUα,ij,m =

Uα,i+1,j,m − Uα,i−1,j,m

2hx
,

D1
yUα,ij,m =

Uα,i,j+1,m − Uα,i,j−1,m

2hy
, α = 1, 2, m ≥ 1.

The difference operators Aα,ij,mUα,ij,m, α = 1, 2, in (5.11), are defined by

Aα,ij,mUα,ij,m = A(x)
α,ij,mUα,ij,m +A(y)

α,ij,mUα,ij,m, (5.13)

A(x)
α,ij,mUα,ij,m = −lα,ij,mUα,i−1,j,m +

2D
(x)
α,ij,mUα,ij,m

h2
x

− rα,ij,mUα,i+1,j,m,

A(y)
α,ij,mUα,ij,m = −bα,ij,mUα,i,j−1,m +

2D
(y)
α,ij,mUα,ij,m

h2
y

− qα,ij,mUα,i,j+1,m,

lα,ij,m =
D

(x)
α,ij,m

h2
x

−
v

(x)
α,ij,m

2hx
, rα,ij,m =

D
(x)
α,ij,m

h2
x

+
v

(x)
α,ij,m

2hx
,

bα,ij,m =
D

(y)
α,ij,m

h2
y

−
v

(y)
α,ij,m

2hy
, qα,ij,m =

D
(y)
α,ij,m

h2
y

+
v

(y)
α,ij,m

2hy
, α = 1, 2, m ≥ 1.

To ensure that lα,ij,m, rα,ij,m, bα,ij,m and qα,ij , α = 1, 2, are positive, we choose space

step sizes hx and hy such that

hx <
2D

(x)
α,ij,m

|v(x)
α,ij |

, hy <
2D

(y)
α,ij,m

|v(y)
α,ij,m|

. (5.14)
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Remark 5.3.1. If the effect of convection dominates diffusion to the extent that these

conditions require prohibitively small hx and hy, then an upwind difference scheme for

the first derivatives can be used to remove any restrictions on hx and hy, that is, for

α = 1, 2,

D′xUα,ij,m =


Uα,i+1,j,m−Uα,ij,m

hx
, if v

(x)
α,ij,m ≤ 0,

Uα,ij,m−Uα,i−1,j,m

hx
, if v

(x)
α,ij,m ≥ 0,

D′yUα,ij,m =


Uα,i,j+1,m−Uα,ij,m

hy
, if v

(y)
α,ij,m ≤ 0,

Uα,ij,m−Uα,i,j−1,m

hy
, if v

(y)
α,ij,m ≥ 0.

On each time level tm, m ≥ 1, we introduce the linear version of problem (5.11)(
Aα,ij,m + τ−1 + c∗α,ij,m

)
Wα,ij,m = ϕα,ij,m, (i, j) ∈ Ωh, (5.15)

Uα,ij,m = gα,ij,m, (i, j) ∈ ∂Ωh, α = 1, 2,

where c∗α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are nonnegative bounded mesh functions. In

the following lemma, we formulate the maximum principle for the difference operators

Aα,ij,m + τ−1 + c∗α,ij,m, α = 1, 2.

Lemma 5.3.2. If Wα,ij,m, α = 1, 2, satisfy the conditions

(
Aα,ij,m + τ−1 + c∗α,ij,m

)
Wα,ij,m ≥ 0 (≤ 0), (i, j) ∈ Ωh,

Wα,ij,m ≥ 0 (≤ 0), (i, j) ∈ ∂Ωh,

then Wα,ij,m ≥ 0 (≤ 0), (i, j) ∈ Ω
h
.

The proof is given in Lemma 1.2.1 from Chapter 1.

Remark 5.3.3. In this remark, we state the mean-value theorem for vector-valued

functions. Assume that fα(x, y, t, uα, uα′), α
′ 6= α, α, α′ = 1, 2, are smooth functions,

then we have

fα(x, y, t, uα, uα′)− fα(x, y, t, wα, uα′) = (fα(x, y, t, qα, uα′))uα [uα − wα], (5.16)

fα(x, y, t, uα, uα′)− fα(x, y, t, uα, wα′) = (fα(x, y, t, uα, hα′)uα′
[uα′ − wα′ ],

where qα(x, y, t) and hα(x, y, t) lie between uα(x, y, t) and wα(x, y, t), (x, y, t) ∈ QT ,

α = 1, 2, and notation (5.10) is in use.
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5.3.1 Quasi-monotone nondecreasing case

On each time level tm ∈ Ωτ , m ≥ 1, two vector mesh functions

Ũij,m = (Ũ1,ij,m, Ũ2,ij,m), Ûij,m = (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
,

are called ordered upper and lower solutions of (5.10), if they satisfy the inequalities

Ûα,ij,m ≤ Ũα,ij,m, (i, j) ∈ Ω
h
, (5.17a)(

Aα,ij,m + τ−1
)
Ûα,ij,m + fα,ij,m(Ûij,m)− τ−1Ûα,ij,m−1 ≤ 0, (i, j) ∈ Ωh, (5.17b)(

Aα,ij,m + τ−1
)
Ũα,ij,m + fα,ij,m(Ũij,m)− τ−1Ũα,ij,m−1 ≥ 0, (i, j) ∈ Ωh,

Ûα,ij,m ≤ gα,ij,m ≤ Ũα,ij,m, (i, j) ∈ ∂Ωh, (5.17c)

Ûα,ij,0 ≤ ψα,ij ≤ Ũα,ij,0, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

For a given pair of ordered upper and lower solutions Ũij,m and Ûij,m, (i, j) ∈ Ω
h
,

m ≥ 1, we define the sector

〈Ûm, Ũm)〉 =
{
Uij,m : Ûij,m ≤ Uij,m ≤ Ũij,m, (i, j) ∈ Ω

h
, m ≥ 1

}
. (5.18)

In the sector 〈Ûm, Ũm〉 from (5.18), we assume that the functions fα,ij,m, (i, j) ∈ Ω
h
,

α = 1, 2, m ≥ 1, satisfy the constraints

∂fα,ij,m(Uij,m)

∂uα
≤ cα,ij,m, U ∈ 〈Ûm, Ũm〉, (i, j) ∈ Ω

h
, α = 1, 2, (5.19)

− ∂fα,ij,m
∂uα′

≥ 0, U ∈ 〈Ûm, Ũm〉, (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2, (5.20)

where cα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are nonnegative bounded functions. We

say that the functions fα,ij,m(Uij,m), (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are quasi-monotone

nondecreasing in the sector 〈Ûm, Ũm〉 from (5.18) if they satisfy (5.20).

Remark 5.3.4. For quasi-monotone nondecreasing functions (5.20), upper and lower

solutions (5.17) are independent.

We introduce the notation

Γα,ij,m(Uα,ij,m, Uα′,ij,m) = cα,ij,mUα,ij,m − fα,ij,m(Uα,ij,m, Uα′,ij,m), (5.21)

(i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

where cα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are defined in (5.19) and notation (5.10) is

in use. We give a monotone property of Γα,ij,m(Uα,ij,m, Uα′,ij,m), (i, j) ∈ Ω
h
, α′ 6= α,

α, α′ = 1, 2, m ≥ 1.
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Lemma 5.3.5. Suppose that Uij,m = (U1,ij,m, U2,ij,m) and Vij,m = (V1,ij,m, V2,ij,m),

(i, j) ∈ Ω
h
, m ≥ 1, are two vector functions in the sector 〈Ûm, Ũm〉 from (5.18), such

that Uij,m ≥ Vij,m, (i, j) ∈ Ω
h
, m ≥ 1, and (5.19), (5.20) are satisfied. Then

Γα,ij,m(Uα,ij,m, Uα′,ij,m) ≥ Γα,ij,m(Vα,ij,m, Vα′,ij,m), (i, j) ∈ Ω
h
, α′ 6= α, (5.22)

α, α′ = 1, 2, m ≥ 1.

Proof. From (5.21), we have

Γα,ij,m(Uα,ij,m, Uα′,ij,m)− Γα,ij,m(Vα,ij,m, Vα′,ij,m) =

cα,ij,m(Uα,ij,m − Vα,ij,m)−
[
fα,ij,m(Uα,ij,m, Uα′,ij,m)− fα,ij,m(Vα,ij,m, Uα′,ij,m)

]
−[

fα,ij,m(Vα,ij,m, Uα′,ij,m)− fα,ij,m(Vα,ij,m, Vα′,ij,m)
]
, (i, j) ∈ Ω

h
,

α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Using the mean-value theorem (5.16), we have

Γα,ij,m(Uα,ij,m, Uα′,ij,m)− Γα,ij,m(Vα,ij,m, Vα′,ij,m) =(
cα,ij,m −

(
fα,ij,m(Qα,ij,m, Uα′,ij,m)

)
uα

)
(Uα,ij,m − Vα,ij,m)−(

fα,ij,m(Vα,ij,m, Yα′,ij,m)
)
uα′

(Uα′,ij,m − Vα′,ij,m),

Vα,ij,m ≤ Qα,ij,m, Yα,ij,m ≤ Uα,ij,m, (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Taking into account that Uα,ij,m ≥ Vα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.19)

and (5.20), we conclude (5.22).

5.3.1.1 Applied problems

The gas-liquid interaction model

In section 3.2.1.1, we consider the steady-state gas-liquid interaction model. Here,

we consider the time-dependent gas-liquid interaction model in the form

uα,t −Dα4uα + fα(u1, u2) = 0, (x, y, t) ∈ QT ,

u1(x, y, t) = g∗1(x, y, t) ≥ 0, u2(x, y, t) = g2(x, y, t) ≥ 0, (x, y, t) ∈ ∂QT ,

uα(x, y, 0) = ψα(x, y), (x, y) ∈ ω, α = 1, 2,

where the reaction functions fα, α = 1, 2, are defined in (3.27), g∗1 = ρ1−g1 ≥ 0, g2 ≥ 0

on ∂ω and ψα ≥ 0, α = 1, 2, in ωh. The nonlinear difference scheme (5.11) for the
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model is presented in the form

(Aα,ij,m + τ−1)Uα,ij,m + fα,ij,m(Uα,ij,m, Uα′,ij,m)− τ−1Uα,ij,m−1 = 0, (i, j) ∈ Ωh,

U1,ij,m = g∗1,ij,m, U2,ij,m = g2,ij,m, (i, j) ∈ ∂Ωh, m ≥ 1, (5.23)

Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2,

where fα, α = 1, 2, are defined in (3.27), and

Aα,ij,mUα,ij,m = −Dα(D2
x +D2

y)Uα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1,

where D2
x, D2

y are defined in (5.12). Introduce the following mesh functions

Ũα,ij,m =

{
ψα,ij , m = 0,

Kα, m ≥ 1,
(i, j) ∈ Ω

h
, α = 1, 2, (5.24)

Ûα,ij,m =

{
ψα,ij , m = 0,

0, m ≥ 1,
(i, j) ∈ Ω

h
, α = 1, 2,

where Kα, α = 1, 2, satisfy the conditions

K1 ≥ max

(
max

(x,y,t)∈∂QT
g∗1(x, y, t),max(ρ1, max

(x,y)∈ω
ψ1(x, y)

)
,

K2 ≥ max

(
max

(x,y,t)∈∂QT
g2(x, y, t), max

(x,y)∈ω
ψ2(x, y)

)
.

We now show that these mesh functions are ordered upper and lower solutions (5.17)

to (5.23).

From (5.24), we conclude (5.17a). From (3.27) and (5.24), for m = 1, we have

(A1,ij,1 + τ−1)Ũ1,ij,1 + f1,ij,1(Ũ1,ij,1, Ũ2,ij,1)− τ−1Ũ1,ij,0 =

(A1,ij,1 + τ−1)K1 − σ1(ρ1 −K1)K2 − τ−1ψ1,ij =

τ−1(K1 − ψ1,ij)− σ1(ρ1 −K1)K2 ≥ 0.

From (3.27) and (5.24), for m = 2, we have

(A1,ij,1 + τ−1)Ũ1,ij,2 + f1,ij,2(Ũ1,ij,2, Ũ2,ij,2)− τ−1Ũ1,ij,1 =

(A1,ij,1 + τ−1)K1 − σ1(ρ1 −K1)K2 − τ−1K1 =

− σ1(ρ1 −K1)K2 ≥ 0.
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By induction on m ≥ 1, we can prove that

(
Aα,ij,m + τ−1

)
Ũα,ij,m + fα,ij,m(Ũα,ij,m, Ũα′,ij,m)− τ−1Ũα,ij,m−1 ≥ 0, (i, j) ∈ Ωh,

α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Similarly, we can prove that

(
Aα,ij,m + τ−1

)
Ûα,ij,m + fα,ij,m(Ûα,ij,m, Ûα′,ij,m)− τ−1Ûα,ij,m−1 ≤ 0, (i, j) ∈ Ωh,

α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Hence, we conclude (5.17b). From (5.24), it follows (5.17c). Thus, we prove that

Ũα,ij,m and Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.24) are ordered upper and

lower solutions (5.17). From (3.27), in the sector 〈Ûm, Ũm〉, for m ≥ 1, we have

∂f1,ij,m

∂u1
(U1,ij,m, U2,ij,m) = σ1U2,ij,m ≤ σ1K2, (i, j) ∈ Ω

h
,

∂f2,ij,m

∂u2
(U1,ij,m, U2,ij,m) = σ2(%1 − U1,ij,m) ≤ σ2ρ1, (i, j) ∈ Ω

h
,

− ∂f1,ij,m

∂u2
= σ1(%1 − U1,ij,m) ≥ 0, −∂f2,ij,m

∂u1
= σ2U2,ij,m ≥ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (5.19) are satisfied with

c1,ij,m = σ1K2, c2,ij,m = σ2ρ1, (i, j) ∈ Ω
h
, m ≥ 1.

From here, we conclude that fα, α = 1, 2, from (3.27) satisfy (5.19) and possess quasi-

monotone nondecreasing property (5.20).

The Volterra-Lotka cooperation model

Consider the Volterra-Lotka cooperation model in an ecological system (more details

are given in [59]). The model is governed by (5.1) with Lαuα = 4uα, α = 1, 2, and

f1 = −u1(1− u1 + a1u2), f2 = −u2(1 + a2u1 − u2), (5.25)

where u1 and u2 are the populations of two cooperating species, the parameters aα,

α = 1, 2, are positive constants which describe the interaction of the two species, which

satisfy the inequality

a1 <
1

a2
. (5.26)
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System (5.1) is reduced to

uα,t −Dα4uα + fα(u1, u2) = 0, (x, y, t) ∈ QT ,

uα(x, y, t) = 0, (x, y, t) ∈ ∂QT , uα(x, y, 0) = ψα(x, y), (x, y) ∈ ω, α = 1, 2.

The nonlinear difference scheme (5.11) for the model is presented in the form

(
Aα,ij,m + τ−1

)
Uα,ij,m + fα,ij,m(Uα,ij,m, Uα′,ij,m)− τ−1Uα,ij,m−1 = 0, (i, j) ∈ Ωh,

Uα,ij,m = 0, (i, j) ∈ ∂Ωh, m ≥ 1, Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, (5.27)

α′ 6= α, α, α′ = 1, 2,

where fα, α = 1, 2, are defined in (5.25), and

Aα,ij,mUα,ij,m = −Dα(D2
x +D2

y)Uα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1,

where D2
x, D2

y are defined in (5.12). Introduce the following mesh functions

(Ũ1,ij,m, Ũ2,ij,m) = (M1,M2), (Û1,ij,m, Û2,ij,m) = (0, 0), (i, j) ∈ Ω
h
, m ≥ 1, (5.28)

M1 = a1M2 + 1,

M2 ≥ max
{ a2 + 1

1− a1a2
, max

(i,j)∈Ω
h
ψ2,ij , max

(i,j)∈Ω
h
g2,ij ,

1

a1

(
max

(i,j)∈Ω
h
ψ1,ij − 1

)
,

1

a1

(
max

(i,j)∈Ω
h
g1,ij − 1

)}
.

We now show that these mesh functions are ordered upper and lower solutions (5.17)

to (5.27). From (5.28), it follows (5.17a). From (5.25), (5.26) and (5.28), we have

(
Aα,ij,m + τ−1

)
Ũα,ij,m + fα,ij,m(Ũα,ij,m, Ũα′,ij,m)− τ−1Ũα,ij,m−1 ≥ 0,(

Aα,ij,m + τ−1
)
Ûα,ij,m + fα,ij,m(Ûα,ij,m, Ûα′,ij,m)− τ−1Ûα,ij,m−1 ≤ 0,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Hence, we conclude (5.17b). From (5.28), it follows (5.17c). Thus, Ũα,ij,m and Ûα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.28) are ordered upper and lower solutions (5.17).
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From (5.25), in the sector 〈Ûm, Ũm〉, for m ≥ 1, we have

∂f1,ij,m

∂u1
(U1,ij,m, U2,ij,m) = 2U1,ij,m − a1U2,ij,m − 1 ≤ 2M1, (i, j) ∈ Ω

h
,

∂f2,ij,m

∂u2
(U1,ij,m, U2,ij,m) = 2U2,ij,m − a2U1,ij,m − 1 ≤ 2M2, (i, j) ∈ Ω

h
,

− ∂f1,ij,m

∂u2
= a1U1,ij,m ≥ 0, −∂f2,ij,m

∂u1
= a2U2,ij,m ≥ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (5.19) are satisfied with

c1,ij,m = 2M1, c2,ij,m = 2M2, (i, j) ∈ Ω
h
, m ≥ 1.

From here, we conclude that fα, α = 1, 2, from (5.25) satisfy (5.19) and possess quasi-

monotone nondecreasing property (5.20).

5.3.2 Quasi-monotone nonincreasing case

On each time level tm ∈ Ωτ , m ≥ 1, two vector mesh functions

Ũij,m = (Ũ1,ij,m, Ũ2,ij,m), Ûij,m = (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
,

are called ordered upper and lower solutions of (5.10), if they satisfy the inequalities

Ûα,ij,m ≤ Ũα,ij,m, (i, j) ∈ Ω
h
, (5.29a)(

Aα,ij,m + τ−1
)
Ũα,ij,m + fα,ij,m(Ũα,ij,m, Ûα′,ij,m)− τ−1Ũα,ij,m−1 ≥ 0, (i, j) ∈ Ωh,

(5.29b)(
Aα,ij,m + τ−1

)
Ûα,ij,m + fα,ij,m(Ûα,ij,m, Ũα′,ij,m)− τ−1Ûα,ij,m−1 ≤ 0, (i, j) ∈ Ωh,

Ûα,ij,m ≤ gα,ij,m ≤ Ũα,ij,m, (i, j) ∈ ∂Ωh, (5.29c)

Ûα,ij,0 ≤ ψα,ij ≤ Ũα,ij,0, (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where notation (5.10) is in use.

In the sector 〈Ûm, Ũm〉 from (5.18), we assume that the functions fα,ij,m, (i, j) ∈ Ω
h
,

α = 1, 2, m ≥ 1, in (5.11), satisfy (5.19) and the constraint

−∂fα,ij,m(Uα,ij,m)

∂uα′
≤ 0, U ∈ 〈Ûm, Ũm〉, (i, j) ∈ Ω

h
, α′ 6= α, α, α′ = 1, 2. (5.30)

We say that the functions fα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are quasi-monotone

nonincreasing in the sector 〈Ûm, Ũm〉 if they satisfy (5.30).

Remark 5.3.6. For quasi-monotone nonincreasing functions fα, α = 1, 2, (5.30),

upper and lower solutions (5.29) are coupled.
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We give a monotone property of Γα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.21)

in the quasi-monotone nonincreasing case.

Lemma 5.3.7. Suppose that Uij,m = (U1,ij,m, U2,ij,m) and Vij,m = (V1,ij,m, V2,ij,m),

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are two vector functions in 〈Ûm, Ũm〉, such that Uij,m ≥

Vij,m, (i, j) ∈ Ω
h
, m ≥ 1, and (5.19) and (5.30) are satisfied. Then

Γα(U1,ij,m, V2,ij,m) ≥ Γα(V1,ij,m, U2,ij,m), (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1. (5.31)

Proof. From (5.21), we have

Γα,ij,m(U1,ij,m, V2,ij,m)− Γα,ij,m(V1,ij,m, U2,ij,m) = (5.32)

cα,ij,m(Uα,ij,m − Vα,ij,m)− [fα,ij,m(U1,ij,m, V2,ij,m)− fα,ij,m(V1,ij,m, V2,ij,m)]

+ [fα,ij,m(V1,ij,m, U2,ij,m)− fα,ij,m(V1,ij,m, V2,ij,m)] .

Using the mean-value theorem (5.16), we obtain

Γα,ij,m(Uα,ij,m, Vα′,ij,m)− Γα,ij,m(Vα,ij,m, Uα′,ij,m) =(
cα,ij,m −

(
fα,ij,m(Qα,ij,m, Vα′,ij,m)

)
uα

)
(Uα,ij,m − Vα,ij,m)+(

fα,ij,m(Vα,ij,m, Yα′,ij,m)
)
uα′

(Uα′,ij,m − Vα′,ij,m),

Vα,ij,m ≤ Qα,ij,m, Yα,ij,m ≤ Uα,ij,m, (i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Taking into account that Uα,ij,m ≥ Vα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.19)

and (5.30), we conclude (5.31).

5.3.2.1 Applied problems

The Belousov-Zhabotinskii reaction diffusion system

The Belousov-Zhabotinskii reaction diffusion model includes the metal-ion-catalyzed

oxidation by bromate ion of organic materials ([59], some background to the model is

also given in [65]). The chemical reaction scheme is given by

A1 + Y → X, X + Y → P1, A2 +X → 2X + Z, 2X → P2, Z → λY,

where A1 and A2 are constants which represent reactants, P1 and P2 are products,

λ is the stoichiometric factor, and X, Y and Z are, respectively, the concentrations

of the intermediates HBrO2 (bromous acid), Br− (bromide ion) and Ce(IV)(cerium).

A simplified system of two equations of the above reactant scheme is governed by

(5.1) with Lαuα = Dα4uα, α = 1, 2, where u1 and u2 represent, respectively, the
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concentrations of X and Y [39]. The reaction functions are given by

f1 = −u1(a− bu1 − σ1u2), f2 = σ2u1u2, (5.33)

where a, b, σα, α = 1, 2, are positive constants. System (5.1) is reduced to

uα,t −Dα4uα + fα(u1, u2) = 0, (x, y, t) ∈ QT ,

uα(x, y, t) = gα(x, y, t) ≥ 0, (x, y, t) ∈ ∂QT ,

uα(x, y, 0) = ψα(x, y) ≥ 0, (x, y) ∈ ω, α = 1, 2.

The nonlinear difference scheme (5.11) for the model is presented in the form

(Aα,ij,m + τ−1)Uα,ij,m + fα,ij,m(Uα,ij,m, Uα′,ij,m)− τ−1Uα,ij,m−1 = 0, (i, j) ∈ Ωh,

Uα,ij,m = gα,ij,m, (i, j) ∈ ∂Ωh, Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, (5.34)

α′ 6= α, α, α′ = 1, 2, m ≥ 1.

where fα, α = 1, 2, are defined in (5.33), and

Aα,ij,mUα,ij,m = −Dα(D2
x +D2

y)Uα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1,

where D2
x, D2

y are defined in (5.12). We introduce the mesh functions

Ũα,ij,m =

{
ψα,ij , m = 0,

Kα, m ≥ 1,
(i, j) ∈ Ω

h
, α = 1, 2, (5.35)

Ûα,ij,m =

{
ψα,ij , m = 0,

0, m ≥ 1,
(i, j) ∈ Ω

h
, α = 1, 2,

where Kα, α = 1, 2, satisfy the conditions

K1 ≥ max

(
a/b, max

(x,y,t)∈∂QT
g1(x, y, t), max

(x,y)∈ω
ψ1(x, y)

)
,

K2 ≥ max

(
max

(x,y,t)∈∂QT
g2(x, y, t), max

(x,y)∈ω
ψ2(x, y)

)
.

We now show that these mesh functions are ordered upper and lower solutions (5.29)
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to (5.34). From (5.35), it follows (5.29a). From (5.33) and (5.35), for m = 1, we have

(
A1,ij,1 + τ−1

)
Ũ1,ij,1 + f1,ij,1(Ũ1,ij,1, Û2,ij,1)− τ−1Ũ1,ij,0 =

τ−1K1 −K1(a− bK1)− τ−1ψ1,ij ≥ 0,(
A2,ij,1 + τ−1

)
Ũ2,ij,1 + f2,ij,1(Û1,ij,1, Ũ2,ij,1)− τ−1Ũ2,ij,0 =

τ−1K2 − τ−1ψ2,ij ≥ 0, (i, j) ∈ Ωh.

From (5.33) and (5.35), for m = 2, we obtain

(
Aα,ij,2 + τ−1

)
Ũα,ij,2 + fα,ij,2(Ũα,ij,2, Ûα′,ij,2)− τ−1Ũ1,ij,1 = 0, (i, j) ∈ Ωh,

α′ 6= α, α, α′ = 1, 2.

By induction on m, m ≥ 1, we can prove that

(
Aα,ij,m + τ−1

)
Ũα,ij,m + fα,ij,m(Ũα,ij,m, Ûα′,ij,m)− τ−1Ũα,ij,m−1 ≥ 0, (i, j) ∈ Ωh,

α′ 6= α, α, α′ = 1, 2.

From (5.33) and (5.35), for m = 1, we have

(
Aα,ij,1 + τ−1

)
Ûα,ij,1 + fα,ij,1(Ûα,ij,1, Ũα′,ij,1)− τ−1Ûα,ij,0 = −τ−1ψα,ij ≤ 0,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

From (5.33) and (5.35), for m = 2, we obtain

(
Aα,ij,2 + τ−1

)
Ûα,ij,2 + fα,ij,2(Ûα,ij,2, Ũα′,ij,2)− τ−1Ûα,ij,1 = −τ−1Kα ≤ 0,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

By induction on m, m ≥ 1, we can prove that

(
Aα,ij,m + τ−1

)
Ûα,ij,m + fα,ij,m(Ûα,ij,m, Ũα′,ij,m)− τ−1Ûα,ij,m−1 ≤ 0, (i, j) ∈ Ωh,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Hence, we conclude (5.29b). From (5.35), it follows (5.29c). Thus, Ũα,ij,m and Ũα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.35) are ordered upper and lower solutions (5.29).
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From (5.33), in the sector 〈Ûm, Ũm〉, for m ≥ 1, we have

∂f1,ij,m

∂u1
(U1,ij,m, U2,ij,m) = 2bU1,ij,m + σ1U2,ij,m − a ≤ 2bK1 + σ1K2, (i, j) ∈ Ω

h
,

∂f2,ij,m

∂u2
(U1,ij,m, U2,ij,m) = σ2U1,ij,m ≤ σ2K1, (i, j) ∈ Ω

h
,

− ∂f1,ij,m

∂u2
(U1,ij,m, U2,ij,m) = −σ1U1,ij,m ≤ 0, (i, j) ∈ Ω

h
,

− ∂f2,ij,m

∂u1
(U1,ij,m, U2,ij,m) = −σ2U2,ij,m ≤ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (5.19) are satisfied with

c1,ij,m = 2bK1 + σ1K2, c2,ij,m = σ2K1, (i, j) ∈ Ω
h
, m ≥ 1.

From here, we conclude that fα, α = 1, 2, from (5.33) satisfy (5.19) and possess quasi-

monotone nonincreasing property (5.30).

Enzyme-substrate reaction diffusion model

In section 3.2.1.1, we consider the steady-state enzyme substrate reaction diffusion

model. Here, we consider the time-dependent enzyme substrate reaction diffusion model

with the reaction functions given in the original form [59]

f1 = a1u1u2 − b1(E0 − u2), f2 = a2u1u2 − b2(E0 − u2). (5.36)

System (5.1) is reduced to

uα,t −Dα4uα + fα(u1, u2) = 0, (x, y, t) ∈ QT , (5.37)

uα(x, y, t) = gα(x, y, t) ≥ 0, (x, y, t) ∈ ∂QT ,

uα(x, y, 0) = ψα(x, y), (x, y) ∈ ω, α = 1, 2,

E0 ≥ max
(x,y)∈ω

ψ2(x, y),

where the reaction functions fα, α = 1, 2, are defined in (5.36) and E0 is defined in

(3.31). The nonlinear difference scheme (5.11) for the model is presented in the form

(Aα,ij,m + τ−1)Uα,ij,m + fα,ij,m(Uα,ij,m, Uα′,ij,m)− τ−1Uα,ij,m−1 = 0, (i, j) ∈ Ωh,

Uα,ij,m = gα,ij,m ≥ 0, (i, j) ∈ ∂Ωh, Uα,ij,0 = ψα,ij ≥ 0, (i, j) ∈ Ω
h
, (5.38)

α′ 6= α, α, α′ = 1, 2, m ≥ 1.
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where fα, α = 1, 2, are defined in (5.36), and

Aα,ij,mUα,ij,m = −Dα(D2
x +D2

y)Uα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1,

where D2
x, D2

y are defined in (5.12). Denote by Vij,m, (i, j) ∈ Ω
h
, m ≥ 1, solutions to

the linear problems

(A1,ij,m + τ−1)Vij,m = τ−1Vij,m−1 +M0, (i, j) ∈ Ωh, (5.39)

Vij,m = g1,ij,m, (i, j) ∈ ∂Ωh, Vij,0 = ψ1,ij , (i, j) ∈ Ω
h
, m ≥ 1,

M0 = const > b1E0.

We show that the functions

(Ũ1,ij,m, Ũ2,ij,m) = (Vij,m, E0), (Û1,ij,m, Û2,ij,m) = (0, 0), (i, j) ∈ Ω
h
, m ≥ 1,

(5.40)

are ordered upper and lower solutions (5.29) to (5.38). Firstly, we prove that Vij,m ≥ 0,

(i, j) ∈ Ω
h
, m ≥ 1. From (5.39), for m = 1, we obtain that

(A1,ij,1 + τ−1)Vij,1 = τ−1ψ1,ij +M0, (i, j) ∈ Ωh,

Vij,1 = g1,ij,1, (i, j) ∈ ∂Ωh, Vij,0 = ψ1,ij , i, j ∈ Ω
h
.

Taking into account that ψ1,ij ≥ 0, (i, j) ∈ Ω
h
, we have

(A1,ij,1 + τ−1)Vij,m ≥ 0, (i, j) ∈ Ωh,

Vij,1 = g1,ij,1, (i, j) ∈ ∂Ωh, Vij,0 = ψ1,ij , (i, j) ∈ Ω
h
.

Using the maximum principle in Lemma 5.4.1, we obtain

Vij,1 ≥ 0, (i, j) ∈ Ω
h
.

From here and (5.39), for m = 2, by using the maximum principle in Lemma 5.4.1, we

have

Vij,2 ≥ 0, (i, j) ∈ Ω
h
.

By induction on m, m ≥ 1, we can prove that

Vij,m ≥ 0, (i, j) ∈ Ω
h
, m ≥ 1.

From here, taking into account that the total enzyme E0 > 0 and (5.39), it follows

that the upper and lower solutions from (5.40) satisfy (5.29a). From (5.36), (5.39) and
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(5.40), for α = 1, we have

(
A1,ij,m + τ−1

)
Ũ1,ij,m + f1,ij,m(Ũ1,ij,m, Û2,ij,m)− τ−1Ũ1,ij,m−1 = M0 − b1E0 ≥ 0,

(i, j) ∈ Ωh, m ≥ 1.

From (5.36), (5.37) and (5.40), for α = 2 and m = 1, we obtain

(
A2,ij,1 + τ−1

)
Ũ2,ij,1 + f2,ij,1(Û1,ij,1, Ũ2,ij,1)− τ−1Ũ2,ij,0 = τ−1(E0 − ψ2,ij) ≥ 0,

(i, j) ∈ Ωh.

For m = 2, it follows that

(
A2,ij,2 + τ−1

)
Ũ2,ij,2 + f2,ij,2(Û1,ij,2, Ũ2,ij,2)− τ−1Ũ2,ij,1 = 0, (i, j) ∈ Ωh.

By induction on m, m ≥ 1, we can prove that

(
A2,ij,m + τ−1

)
Ũ2,ij,m+f2,ij,2(Û1,ij,m, Ũ2,ij,m)− τ−1Ũ2,ij,m−1 ≥ 0, (i, j) ∈ Ωh, m ≥ 1.

From (5.36) and (5.40), for α = 1 and m = 1 , we have

(
A1,ij,1 + τ−1

)
Û1,ij,1 + f1,ij,1(Û1,ij,1, Ũ2,ij,1)− τ−1Û1,ij,0 = −τ−1ψ1,ij ≤ 0, (i, j) ∈ Ωh.

For m = 2, we have

(
A1,ij,2 + τ−1

)
Û1,ij,2 + f1,ij,2(Û1,ij,2, Ũ2,ij,2)− τ−1Û1,ij,1 = 0, (i, j) ∈ Ωh.

By induction on m, m ≥ 1, we can prove that

(
A1,ij,m + τ−1

)
Û1,ij,m + f1,ij,m(Û1,ij,m, Ũ2,ij,m)− τ−1Û1,ij,m−1 ≤ 0, (i, j) ∈ Ωh,

m ≥ 1.

From (5.36) and (5.40), for α = 2 and m = 1, we have

(
A2,ij,1 + τ−1

)
Û2,ij,1 + f2,ij,1(Ũ1,ij,1, Û2,ij,1)− τ−1Û2,ij,0 = −(b2E0 + τ−1ψ2,ij) ≤ 0,

(i, j) ∈ Ωh.

For m = 2, it follows that

(
A2,ij,2 + τ−1

)
Û2,ij,2 + f2,ij,2(Ũ1,ij,2, Û2,ij,2)− τ−1Û2,ij,1 = −b2E0 ≤ 0, (i, j) ∈ Ωh.
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By induction on m, m ≥ 1, we can prove that

(
A2,ij,m + τ−1

)
Û2,ij,m + f2,ij,m(Ũ1,ij,m, Û2,ij,m)− τ−1Û2,ij,m−1 ≤ 0, (i, j) ∈ Ωh,

m ≥ 1.

Hence, we conclude (5.29b). From (5.40), it follows (5.29c). Thus, Ũα,ij,m and Ũα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.40) are ordered upper and lower solutions (5.29).

From (5.36), in the sector 〈Ûm, Ũm〉, for m ≥ 1, we have

∂f1,ij,m

∂u1
(U1,ij,m, U2,ij,m) = a1U2,ij,m ≤ a1E0, (i, j) ∈ Ω

h
,

∂f2,ij,m

∂u2
(U1,ij,m, U2,ij,m) = a2U1,ij,m + b2 ≤ a2Vij,m + b2, (i, j) ∈ Ω

h
,

− ∂f1,ij,m

∂u2
(U1,ij,m, U2,ij,m) = −(a1U1,ij,m + b1) ≤ 0, (i, j) ∈ Ω

h
,

− ∂f2,ij,m

∂u1
(U1,ij,m, U2,ij,m) = −a2U2,ij,m ≤ 0, (i, j) ∈ Ω

h
.

Thus, the assumptions in (5.19) are satisfied with

c1,ij,m = a1E0, c2,ij,m = a2Vij,m + b2, (i, j) ∈ Ω
h
, m ≥ 1.

From here, we conclude that fα, α = 1, 2, from (5.36) satisfy (5.19) and possess quasi-

monotone nonincreasing property (5.30).

5.4 The point monotone Jacobi and Gauss-Seidel meth-

ods

On each time level m ≥ 1, at interior mesh points (i, j) ∈ Ωh, the difference scheme

(5.11), (5.13) can be written in the following form

dα,ij,mUα,ij,m − lα,ij,mUα,i−1,j,m − rα,ij,mUα,i+1,j,m − bα,ij,mUα,i,j−1,m (5.41a)

− qα,ij,mUα,i,j+1,m + τ−1Uα,ij,m = −fα,ij,m(Uα,ij,m, Uα′,ij,m) + τ−1Uα,ij,m−1,

(i, j) ∈ Ωh,

Uα,ij,m = gα,ij,m, (i, j) ∈ ∂Ωh, m ≥ 1, Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
,

α′ 6= α, α, α′ = 1, 2,

dα,ij,m = lα,ij,m + rα,ij,m + bα,ij,m + qα,ij,m, lα,ij,m, rα,ij,m, bα,ij,m, qα,ij,m > 0,

(5.41b)
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where lα,ij,m, rα,ij,m, bα,ij,m and qα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, are defined in

(5.13).

In the following lemma, we formulate the maximum principle for the difference

operators dα,ij,m + τ−1 + c∗α,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1.

Lemma 5.4.1. If Wα,ij,m, α = 1, 2, satisfy the conditions

(
dα,ij,m + τ−1 + c∗α,ij,m

)
Wα,ij,m ≥ 0 (≤ 0), (i, j) ∈ Ωh,

Wα,ij,m ≥ 0 (≤ 0), (i, j) ∈ ∂Ωh, α = 1, 2 m ≥ 1,

then Wα,ij,m ≥ 0 (≤ 0), (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

The proof is given in Lemma 1.2.1 from Chapter 1.

5.4.1 Quasi-monotone nondecreasing case

The definition of the ordered upper Ũα,ij,m and lower Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2,

m ≥ 1, solutions (5.17) can be written in the form

Ûα,ij,m ≤ Ũα,ij,m, (i, j) ∈ Ω
h
, (5.42a)

Kα,ij,m(Ûα,ij,m, Ûα,ij,m−1, Ûα′,ij,m) ≤ 0 ≤ Kα,ij,m(Ũα,ij,m, Ũα,ij,m−1, Ũα′,ij,m), (5.42b)

Kα,ij,m(Uα,ij,m, Uα,ij,m−1, Uα′,ij,m) ≡

(dα,ij,m + τ−1)Uα,ij,m − lα,ij,mUα,i−1,j,m − rα,ij,mUα,i+1,j,m − bα,ij,mUα,i,j−1,m

− qα,ij,mUα,i,j+1,m + fα,ij,m(Uα,ij,m, Uα′,ij,m)− τ−1Uα,ij,m−1,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

Ûα,ij,m ≤ gα,ij,m ≤ Ũα,ij,m, (i, j) ∈ ∂Ωh, m ≥ 1, (5.42c)

Ûα,ij,0 ≤ ψα,ij ≤ Ũα,ij,0, (i, j) ∈ Ω
h
, α = 1, 2,

where Kα,ij,m(Uα,ij,m, Uα,ij,m−1, Uα′,ij,m), (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, are the residuals

of the nonlinear difference scheme (5.41) on Uα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, and

notation (5.10) is in use.

On each time level m ≥ 1, we present the point Jacobi and Gauss-Seidel methods

for the difference scheme (5.41). Upper {U (n)
α,ij,m} and lower {U (n)

α,ij,m}, (i, j) ∈ Ω
h
,

α = 1, 2, m ≥ 1, sequences of solutions are calculated by the following point Jacobi
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and Gauss-Seidel iterative methods:

Lα,ij,mZ(n)
α,ij,m = −Kα,ij,m(U

(n−1)
α,ij,m, Uα,ij,m−1, U

(n−1)
α′,ij,m), (i, j) ∈ Ωh, n ≥ 1, (5.43)

Z
(1)
α,ij,m = gα,ij,m − U (0)

α,ij,m, Z
(n)
α,ij,m = 0, n ≥ 2, (i, j) ∈ ∂Ωh,

Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, Uα,ij,m = U

(nm)
α,ij,m,

Lα,ij,mZ(n)
α,ij,m ≡ (dα,ij,m + cα,ij,m)Z

(n)
α,ij,m

− η
(
lα,ij,mZ

(n)
α,i−1,j,m + bα,ij,mZ

(n)
α,i,j−1,m

)
+ τ−1Z

(n)
α,ij,m,

Z
(n)
α,ij,m = U

(n)
α,ij,m − U

(n−1)
α,ij,m, (i, j) ∈ Ω

h
, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where Kα,ij,m(U
(n−1)
α,ij,m, Uα,ij,m−1, U

(n−1)
α′,ij,m), (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are

the residuals of the nonlinear difference scheme (5.41) on U
(n−1)
α,ij,m, (i, j) ∈ Ωh, α = 1, 2,

m ≥ 1, which are defined in (5.42) and notation (5.10) is in use. The mesh functions

Uα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are the approximate solutions on time level m ≥ 1,

where nm is a number of iterations on time level m ≥ 1. For η = 0 and η = 1, we have,

respectively, the point Jacobi and Gauss-Seidel methods.

Remark 5.4.2. For quasi-monotone nondecreasing functions (5.19), upper and lower

solutions are independent, hence, by using (5.43), we calculate either the sequence

{U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, or the sequence {U (n)

1,ij,m, U
(n)
2,ij,m}, (i, j) ∈ Ω

h
,

m ≥ 1.

Theorem 5.4.3. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, be

ordered upper and lower solutions (5.42). Suppose that the functions fα, α = 1, 2, in

(5.1) satisfy (5.19) and (5.20). Then upper {U (n)
α,ij,m} and lower {U (n)

α,ij,m}, (i, j) ∈ Ω
h
,

α = 1, 2, m ≥ 1, sequences generated by (5.43) with, respectively, U
(0)
α,ij,m = Ũα,ij,m and

U
(0)
α,ij,m = Ûα,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, converge monotonically, such that,

U
(n−1)
α,ij,m ≤ U

(n)
α,ij,m ≤ U

(n)
α,ij,m ≤ U

(n−1)
α,ij,m (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1. (5.44)

Proof. Since U
(0)
α,ij,1, (i, i) ∈ Ω

h
, α = 1, 2, are upper solutions (5.42) with respect to

Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, α = 1, 2, it follows that Kα,ij,1(U

(0)
α,ij,1, ψα,ij , U

(0)
α′,ij,1) ≥ 0,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2. From here and (5.43), we have

(dα,ij,1 + τ−1 + cα,ij,1)Z
(1)
α,ij,1 − ηlα,ij,1Z

(1)
α,i−1,j,1 − ηbα,ij,1Z

(1)
α,i,j−1,1 ≤ 0, (5.45)

(i, j) ∈ Ωh, Z
(1)
α,ij,1 ≤ 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here, η = 0, 1, bα,i,1,1 > 0, α = 1, 2, in (5.41b) and Z
(1)
α,i,0,1 ≤ 0, i = 1, 2 . . . , Nx−1,
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α = 1, 2, for j = 1 in (5.45), we obtain

(dα,i,1,1 + (τ−1 + cα,i,1,1)I)Z
(1)
α,i,1,1 − ηlα,i,1,1Z

(1)
α,i−1,1,1 ≤ 0, i = 1, 2, . . . , Nx − 1,

Z
(1)
α,i,1,1 ≤ 0, i = 0, Nx, α = 1, 2. (5.46)

Taking into account that η = 0, 1, lα,1,1,1 > 0, α = 1, 2, from (5.41b), Z
(1)
α,0,1,1 ≤ 0,

α = 1, 2, for i = 1 in (5.46), by using the maximum principle in Lemma 5.4.1, we

have Z
(1)
α,1,1,1 ≤ 0, α = 1, 2. From here, for i = 2 in (5.46), by Lemma 5.4.1, we

have Z
(1)
α,2,1,1 ≤ 0, α = 1, 2. By induction on i, we can prove that Z

(1)
α,i,1,1 ≤ 0,

i = 0, 1, . . . , Nx, α = 1, 2.

By induction on j ≥ 1, we can prove that

Z
(1)
α,ij,1 ≤ 0, (i, j) ∈ Ω

h
, α = 1, 2. (5.47)

Similarly, for initial lower solutions U
(0)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, we can prove that

Z
(1)
α,ij,1 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (5.48)

We now prove that U
(1)
α,ij,1 and U

(1)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and

lower solutions (5.42). Letting W
(1)
α,ij,1 = U

(1)
α,ij,1 − U

(1)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, using

notation (5.21) and taking into account that W
(1)
α,ij,0 = 0, (i, j) ∈ Ω

h
, α = 1, 2, from

(5.43), we conclude that

Lα,ij,1W (1)
α,ij,1 = rα,ij,1W

(0)
α,i+1,j,1 + qα,ij,1W

(0)
α,i,j+1,1 + Γα,ij,1(U

(0)
α,ij,1, U

(0)
α′,ij,1)

− Γα,ij,1(U
(0)
α,ij,1, U

(0)
α′,ij,1), (i, j) ∈ Ωh,

W
(1)
α,ij,1 = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2.

From here, (5.41b), (5.43) and taking into account that U
(0)
α,ij,1 ≥ U

(0)
α,ij,1, (i, j) ∈ Ω

h
,

α = 1, 2, by using (5.22), we obtain

(dα,ij,1 + τ−1 + cα,ij,1)W
(1)
α,ij,1 − ηlα,ij,1W

(1)
α,i−1,j,1 − ηbα,ij,1W

(1)
α,i,j−1,1 ≥ 0, (i, j) ∈ Ωh,

W
(1)
α,ij,1 = 0, (i, j) ∈ ∂Ωh, α = 1, 2. (5.49)

From here and taking into account that W
(1)
α,i,0,1 = 0, i = 1, 2, . . . , Nx − 1, α = 1, 2, for

j = 1 in (5.49), it follows that

(dα,i,1,1 + τ−1 + cα,i,1,1)W
(1)
α,i,1,1 − ηlα,i,1,1W

(1)
α,i−1,1,1 ≥ 0, i = 1, 2, . . . , Nx − 1, (5.50)

W
(1)
α,i,1,1 = 0, i = 0, Nx, α = 1, 2.
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Taking into account that W
(1)
α,0,1,1 = 0, α = 1, 2, by Lemma 5.4.1, for i = 1 in (5.50),

we have W
(1)
α,1,1,1 ≥ 0, α = 1, 2. From here, η = 0, 1, lα,2,1,1 > 0, α = 1, 2, in (5.41b)

and using Lemma 5.4.1, for i = 2, we obtain that W
(1)
α,2,1,1 ≥ 0, α = 1, 2. By induction

on i, we can prove that

W
(1)
α,i,1,1 ≥ 0, i = 0, 1, . . . , Nx, α = 1, 2.

By induction on j ≥ 1, we can prove that

W
(1)
α,ij,1 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (5.51)

Thus, we prove (5.42a).

From (5.43) and using notation (5.21), we conclude that

Kα,ij,1(U
(1)
α,ij,1, ψα,ij , U

(1)
α′,ij,1) = −ηlα,ij,1Z

(1)
α,i−1,j,1 − rα,ij,1Z

(1)
α,i+1,j,1 (5.52)

− ηbα,ij,1Z
(1)
α,i,j−1,1 − qα,ij,1Z

(1)
α,i,j+1,1

+ Γα,ij,1(U
(0)
α,ij,1, U

(0)
α′,ij,1)− Γα,ij,1(U

(1)
α,ij,1, U

(1)
α′,ij,1)

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

From η = 0, 1, (5.41b) and (5.47), by using (5.22), we obtain that

Kα,ij,1(U
(1)
α,ij,1, ψα,ij , U

(1)
α′,ij,1) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Thus, U
(1)
α,ij,1, (i, j) ∈ Ωh, α = 1, 2, satisfy (5.42b). By a similar manner, we can prove

that

Kα,ij,1(U
(1)
α,ij,1, ψα,ij , U

(1)
α′,ij,1) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Hence, U
(1)
α,ij,1, (i, j) ∈ Ωh, α = 1, 2, satisfy (5.42b). From the boundary and initial

conditions in (5.43), it follows that U
(1)
α,ij,1 and U

(1)
α,ij,1 satisfy (5.42c).

Thus, we prove that U
(1)
α,ij,1 and U

(1)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and

lower solutions (5.42). By induction on n ≥ 1, we can prove (5.44) on the first time

level m = 1.

On the second time level m = 2, taking into account that U
(0)
α,ij,2 = Ũα,ij,2, (i, j) ∈

Ω
h
, α = 1, 2, from (5.42), we obtain

Kα,ij,2(Ũα,ij,2, Uα,ij,1, Ũα′,ij,2) =

(dα,ij,2 + τ−1)Ũα,ij,2 − lα,ij,2Ũα,i−1,j,2 − rα,ij,2Ũα,i+1,j,2 − bα,ij,2Ũα,i,j−1,2

− qα,ij,2Ũα,i,j+1,2 + fα,ij,2(Ũα,ij,2, Ũα′,ij,2)− τ−1Ũα,ij,1,
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where Uα,ij,1, (i, j) ∈ Ω
h
, α = 1, 2, are the approximate solutions on the first time

level m = 1, which are defined in (5.43). From here and taking into account that from

(5.44), Uα,ij,1 ≤ Ũα,ij,1, (i, j) ∈ Ω
h
, α = 1, 2, it follows that

Kα,ij,2(Ũα,ij,2, Uα,ij,1, Ũα′,ij,2) ≥ Kα,ij,2(Ũα,ij,2, Ũα,ij,1, Ũα′,ij,2) ≥ 0, (5.53)

(i, j) ∈ Ωh, α = 1, 2, α′ 6= α, α, α′ = 1, 2,

which means that U
(0)
α,ij,2 = Ũα,ij,2, (i, j) ∈ Ω

h
, α = 1, 2, are upper solutions with

respect to Uα,ij,1, (i, j) ∈ Ω
h
, α = 1, 2. Similarly, we can obtain that

Kα,ij,2
(
Ûα,ij,2, Uα,ij,1, Ûα′,ij,2

)
≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

which means that U
(0)
α,ij,2 = Ûα,ij,2, (i, j) ∈ Ω

h
, α = 1, 2, are lower solutions with respect

to Uα,ij,1, (i, j) ∈ Ω
h
, α = 1, 2. From here, (5.43) and (5.53), on the second time level

m = 2, we have

(dα,ij,2 + τ−1 + cα,ij,2)Z
(1)
α,ij,2 − ηlα,ij,2Z

(1)
α,i−1,j,2 − ηbα,ij,2Z

(1)
α,i,j−1,2 ≤ 0, (5.54)

(i, j) ∈ Ωh, Z
(1)
α,ij,1 ≤ 0, (i, j) ∈ ∂Ωh, α = 1, 2.

From here, η = 0, 1, bα,i,1,2 > 0, α = 1, 2, in (5.41b) and Z
(1)
α,i,0,2 ≤ 0, i = 1, 2 . . . , Nx−1,

α = 1, 2, for j = 1 in (5.54), we obtain

(dα,i,1,2 + τ−1 + cα,i,1,2)Z
(1)
α,i,1,2 − ηlα,i,1,2Z

(1)
α,i−1,1,2 ≤ 0, i = 1, 2, . . . , Nx − 1,

Z
(1)
α,i,1,2 ≤ 0, i = 0, Nx, α = 1, 2. (5.55)

Taking into account that η = 0, 1, lα,1,1,2 > 0, α = 1, 2, in (5.41b), Z
(1)
α,0,1,2 ≤ 0,

α = 1, 2, for i = 1 in (5.55), by using the maximum principle in Lemma 5.4.1, we

have Z
(1)
α,1,1,2 ≤ 0, α = 1, 2. From here, for i = 2 in (5.55), by Lemma 5.4.1, we

have Z
(1)
α,2,1,2 ≤ 0, α = 1, 2. By induction on i, we can prove that Z

(1)
α,i,1,2 ≤ 0,

i = 0, 1, . . . , Nx, α = 1, 2.

By induction on j ≥ 1, we can prove that

Z
(1)
α,ij,2 ≤ 0, (i, j) ∈ Ω

h
, α = 1, 2.

Similarly, for initial lower solutions U
(0)
α,ij,2, (i, j) ∈ Ω

h
, α = 1, 2, we can prove that

Z
(1)
α,ij,2 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2.

The proof that U
(1)
α,ij,2 and U

(1)
α,ij,2, (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and lower
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solutions (5.42) repeats the proof on the first time level m = 1. By induction on m ≥ 1,

we can prove (5.44) for m ≥ 1.

5.4.2 Quasi-monotone nonincreasing case

In the case of quasi-monotone nonincreasing functions (5.30), on each time level m ≥ 1,

we say that mesh functions

(Ũ1,ij,m, Ũ2,ij,m), (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1,

are ordered upper and lower solutions of (5.41), if they satisfy the inequalities

Ûα,ij,m ≤ Ũα,ij,m, (i, j) ∈ Ω
h
, (5.56a)

Kα,ij,m(Ûα,ij,m, Ûα,ij,m−1, Ũα′,ij,m) ≤ 0 ≤ Kα,ij,m(Ũα,ij,m, Ũα,ij,m−1, Ûα′,ij,m), (5.56b)

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

Ûα,ij,m ≤ gα,ij,m ≤ Ũα,ij,m, (i, j) ∈ ∂Ωh, m ≥ 1, (5.56c)

Ûα,ij,0 ≤ ψα,ij ≤ Ũα,ij,0, (i, j) ∈ Ω
h
, α = 1, 2,

where Kα,ij,m(Uα,ij,m, Uα,ij,m−1, Uα′,ij,m), (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, are the residuals

of the nonlinear difference scheme (5.41) on Uα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, which

are defined in (5.42) and notation (5.10) is in use.

We now present the point Jacobi and block Gauss–Seidel methods for the nonlinear

difference scheme (5.41) when the reaction functions fα, α = 1, 2, are quasi-monotone

nonincreasing (5.30).

For solving the nonlinear difference scheme (5.41), on each time level tm, m ≥ 1,

we construct the point iterative Jacobi and point iterative Gauss-Seidel methods in the

forms

Lα,ij,mZ
(n)
α,ij,m = −Kα,ij,m(U

(n−1)
α,ij,m, Uα,ij,m−1, U

(n−1)
α′,ij,m), (5.57)

Lα,ij,mZ(n)
α,ij,m = −Kα,ij,m(U

(n−1)
α,ij,m, Uα,ij,m−1, U

(n−1)
α′,ij,m), (i, j) ∈ Ωh, n ≥ 1,

Z
(1)
α,ij,m = gα,ij,m − U (0)

α,ij,m, Z
(n)
α,ij,m = 0, n ≥ 2, (i, j) ∈ ∂Ωh,

Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, Uα,ij,m = U

(nm)
α,ij,m,

Z
(n)
α,ij,m = U

(n)
α,ij,m − U

(n−1)
α,ij,m, (i, j) ∈ Ω

h
, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where the difference operators Lα,ij,mZ(n)
α,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, are defined in

(5.43), Kα,ij,m(U
(n−1)
α,ij,m, Uα,ij,m−1, U

(n−1)
α′,ij,m), (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are

the residuals of the nonlinear difference scheme (5.41) on U
(n−1)
α,ij,m, (i, j) ∈ Ωh, α = 1, 2,

m ≥ 1, which are defined in (5.42) and notation (5.10) is in use. The mesh functions
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Uα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are the approximate solutions on time level m ≥ 1,

where nm is a number of iterations on time level m ≥ 1. For η = 0 and η = 1, we have,

respectively, the point Jacobi and Gauss-Seidel methods.

Remark 5.4.4. For quasi-monotone nonincreasing functions fα, α = 1, 2, (5.30), up-

per and lower solutions are coupled, hence, by using (5.57), we calculate either the

sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, or the sequence {U (n)

1,ij,m, U
(n)
2,ij,m},

(i, j) ∈ Ω
h
, m ≥ 1.

In the following theorem, we prove the monotone property of the point iterative

methods (5.57).

Theorem 5.4.5. Suppose that (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥

1, are ordered upper and lower solutions (5.56) to (5.41). Suppose that fα, α =

1, 2, in (5.1) satisfy (5.19) and (5.30). Then the sequences {U (n)
1,ij,m, U

(n)
2,ij,m} and

{U (n)
1,ij,m, U

(n−1)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, generated by (5.57), with (U

(0)
1,ij,m, U

(0)
2,ij,m) =

(Ũ1,ij,m, Û2,ij,m) and (U
(0)
1,ij,m, U

(0)
2,ij,m) = (Û1,ij,m, Ũ2,ij,m), (i, j) ∈ Ω

h
, m ≥ 1, converge

monotonically, such that,

U
(n−1)
α,ij,m ≤ U

(n)
α,i,m ≤ U

(n)
α,ij,m ≤ U

(n−1)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1. (5.58)

Proof. On the first time level m = 1, in the case of the sequence {U (n)
1,ij,1, U

(n)
2,ij,1},

(U
(0)
1,ij,1, U

(0)
2,ij,1) = (Ũ1,ij,1, Û2,ij,1), (i, j) ∈ Ω

h
, are initial upper and lower solutions

(5.56) with respect to Uα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, α = 1, 2. Hence, it follows that

K1,ij,1

(
Ũ1,ij,1, ψ1,ij , Û2,ij,1

)
≥ 0, (i, j) ∈ Ωh, and K2,ij,1

(
Ũ1,ij,1, ψ2,ij , Û2,ij,1

)
≤ 0,

(i, j) ∈ Ωh. From here and (5.57), we have

(d1,ij,1 + τ−1 + c1,ij,1)Z
(1)
1,ij,1 − ηl1,ij,1Z

(1)
1,i−1,j,1 − ηb1,ij,1Z

(1)
1,i,j−1,1 ≤ 0, (5.59)

(d2,ij,1 + (τ−1 + c2,ij,1))Z
(1)
2,ij,1 − ηl2,ijZ

(1)
2,i−1,j,1 − ηb2,ij,1Z

(1)
2,i,j−1,1 ≥ 0, (i, j) ∈ Ωh,

Z
(1)
1,ij,1 ≤ 0, Z

(1)
2,ij,1 ≥ 0, (i, j) ∈ ∂Ωh.

For here, η = 0, 1, bα,i,1,1 > 0 in (5.41b) and Z
(1)
1,i,0,1 ≤ 0, Z

(1)
2,i,0,1 ≥ 0, i = 0, Nx, for

j = 1 in (5.59), we obtain

(d1,ij,1 + τ−1 + c1,ij,1)Z
(1)
1,i,1,1 − ηl1,i,1,1Z

(1)
1,i−1,1,1 ≤ 0, (i, j) ∈ Ωh, (5.60)

(d2,ij,1 + (τ−1 + c2,ij,1))Z
(1)
2,i,1,1 − ηl2,i,1,1Z

(1)
2,i−1,1,1 ≥ 0, (i, j) ∈ Ωh,

i = 1, 2, . . . , Nx − 1, Z
(1)
1,i,1,1 ≤ 0, Z

(1)
2,i,1,1 ≥ 0, i = 0, Nx.

Taking into account that η = 0, 1, lα,i,1,1 > 0 in (5.41b), Z
(1)
1,0,1,1 ≤ 0, Z

(1)
2,0,1,1 ≥ 0, and

using the maximum principle in Lemma 5.4.1, for i = 1 in (5.60), we have Z
(1)
1,1,1,1 ≤ 0,
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Z
(1)
2,1,1,1 ≥ 0. From here, by using Lemma 5.4.1, for i = 2 in (5.60), we have Z

(1)
1,2,1,1 ≤

0, Z
(1)
2,2,1,1 ≥ 0. By induction on i and j, we can prove that

Z
(1)
1,ij,1 ≤ 0, Z

(1)
2,ij,1 ≥ 0, (i, j) ∈ Ω

h
. (5.61)

Similarly, for (U
(1)
1,ij,1, U

(1)
2,ij,1), (i, j) ∈ Ω

h
, from (5.57), we can prove that

Z
(1)
1,ij,1 ≥ 0, Z

(1)
2,ij,1 ≤ 0, (i, j) ∈ Ω

h
. (5.62)

We now prove that U
(1)
α,ij,1 and U

(1)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and

lower solutions (5.56). Letting W
(1)
α,ij,1 = U

(1)
α,ij,1 − U

(1)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, using

notation (5.21), from (5.57), we conclude that

Lα,ij,1W (1)
α,ij = rα,ij,1W

(0)
α,i+1,j,1 + qα,ij,1W

(0)
α,i,j+1,1 + Γα,ij,1(U

(0)
α,ij,1, U

(0)
α′,ij,1)

− Γα,ij,1(U
(0)
α,ij,1, U

(0)
α′,ij,1), (i, j) ∈ Ωh,

W
(1)
α,ij,1 = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2.

From here, (5.41b) and taking into account that U
(0)
α,ij,1 ≥ U

(0)
α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2,

by using (5.31), we obtain

(dα,ij,1 + τ−1 + cα,ij,1)W
(1)
α,ij,1 − ηlα,ij,1W

(1)
α,i−1,j,1 − ηbα,ij,1W

(1)
α,i,j−1,1 ≥ 0, (i, j) ∈ Ωh,

(5.63)

W
(1)
α,ij,1 = 0, (i, j) ∈ ∂Ωh, α = 1, 2.

Since W
(1)
α,i,0,1 = 0, α = 1, 2, for j = 1 in (5.63), it follows that

(dα,i,1,1 + cα,i,1,1)W
(1)
α,i,1,1 − ηlα,i,1,1W

(1)
α,i−1,1,1 ≥ 0, i = 1, 2, . . . , Nx − 1, (5.64)

W
(1)
α,i,1,1 = 0, i = 0, Nx, α = 1, 2.

From here, W
(1)
α,0,1,1 = 0, α = 1, 2, for i = 1 in (5.64), by using Lemma 5.4.1, we have

W
(1)
α,1,1,1 ≥ 0, α = 1, 2. From here, η = 0, 1, lα,2,1,1 > 0, α = 1, 2, in (5.41b), for i = 2 in

(5.64), by using Lemma 5.4.1, we obtain W
(1)
α,2,1,1 ≥ 0, α = 1, 2. By induction on i and

j, we can prove that

W
(1)
α,ij ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. (5.65)

Thus, we prove (5.56a) on the first time level m = 1.
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From (5.57) and using notation (5.21), we conclude that

Kα,ij,1(U
(1)
α,ij,1, ψα,ij , U

(1)
α′,ij,1) = −rα,ij,1Z

(1)
α,i+1,j,1 − qα,ij,1Z

(1)
α,i+1,j,1 (5.66)

+ Γα,ij,1(U
(0)
α,ij,1, U

(0)
α′,ij,1)− Γα,ij,1(U

(1)
α,ij,1, U

(1)
α′,ij,1),

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

From here, (5.41b) and (5.61), by using (5.31), we obtain that

Kα,ij,1(U
(1)
α,ij,1, ψα,ij , U

(1)
α′,ij,1) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2. (5.67)

Similarly, we can prove that

Kα,ij,1(U
(1)
α,ij,1, ψα,ij , U

(1)
α′,ij,1) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2. (5.68)

From the boundary and initial conditions in (5.57), it follows that U
(1)
α,ij,1, U

(1)
α,ij,1, satisfy

(5.56c). Thus, from here, (5.65), (5.67) and (5.68), we conclude that U
(1)
α,ij,1 and U

(1)
α,ij,1,

(i, j) ∈ Ω
h
, α = 1, 2, are ordered upper and lower solutions (5.56).

By induction on n, we can prove that {U (n)
α,ij,1}, (i, j) ∈ Ω

h
, α = 1, 2, are monotone

decreasing sequences of upper solutions and {U (n)
α,ij,1}, (i, j) ∈ Ω

h
, α = 1, 2, are mono-

tone increasing sequences of lower solutions which satisfy (5.58) on the first time level

m = 1.

On the second time level m = 2, for the sequence {U (n)
1,ij,2, U

(n)
2,ij,2}, (i, j) ∈ Ω

h
, we

have U
(0)
1,ij,2 = Ũ1,ij,2 and U

(0)
2,ij,2 = Û2,ij,2, (i, j) ∈ Ω

h
. From (5.42), we obtain that

K1,ij,2(Ũ1,ij,2, U1,ij,1, Û2,ij,2) =

(d1,ij,2 + τ−1)Ũ1,ij,2 − l1,ij,2Ũ1,i−1,j,2 − r1,ij,2Ũ1,i+1,j,2 − b1,ij,2Ũ1,i,j−1,2

− q1,ij,2Ũ1,i,j+1,2 + f1,ij,2(Ũ1,ij,2, Û2,ij,2)− τ−1U1,ij,1,

K2,ij,2(Ũ1,ij,2, U2,ij,1, Û2,ij,2) =

(d2,ij,2 + τ−1)Û2,ij,2 − l2,ij,2Û2,i−1,j,2 − r2,ij,2Û2,i+1,j,2 − b2,ij,2Û2,i,j−1,2

− q2,ij,2Û2,i,j+1,2 + f2,ij,2(Ũ1,ij,2, Û2,ij,2)− τ−1U2,ij,1,

where U1,ij,1 and U2,ij,1, (i, j) ∈ Ω
h
, are the approximate solutions on the first time

level m = 1, which are defined in (5.57). From here and taking into account that from
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(5.58), U1,ij,1 ≤ Ũ1,ij,1 and Û2,ij,1 ≤ U2,ij,1, (i, j) ∈ Ω
h
, it follows that

K1,ij,2(Ũ1,ij,2, U1,ij,1, Û2,ij,2) ≥ K1,ij,2(Ũ1,ij,2, Ũ1,ij,1, Û2,ij,2) ≥ 0, (i, j) ∈ Ωh, (5.69)

K2,ij,2(Ũ1,ij,2, U2,ij,1, Û2,ij,2) ≤ K2,ij,2(Ũ1,ij,2, Û2,ij,1, Û2,ij,2) ≤ 0, (i, j) ∈ Ωh,

which means that U
(0)
1,ij,2 = Ũ1,ij,2 and U

(0)
2,ij,2 = Û2,ij,2, (i, j) ∈ Ω

h
are upper and lower

solutions with respect to U1,ij,1 and U2,ij,1, (i, j) ∈ Ω
h
.

Similarly, we can obtain that

K1,ij,2

(
Û1,ij,2, U1,ij,1, Ũ2,ij,2

)
≤ 0, K2,ij,2

(
Û1,ij,2, U2,ij,1, Ũ2,ij,2

)
≥ 0, (i, j) ∈ Ωh,

which means that Ũ2,ij,2 and Û1,ij,2, (i, j) ∈ Ω
h
, are upper and lower solutions with

respect to U2,ij,1 and U1,ij,1, (i, j) ∈ Ω
h
. From here, (5.57) and (5.69), on the second

time level m = 2, we have

(d1,ij,2 + τ−1 + c1,ij,2)Z
(1)
1,ij,2 − ηl1,ij,2Z

(1)
1,i−1,j,2 − ηb1,ij,2Z

(1)
1,i,j−1,2 ≤ 0, (5.70)

(d2,ij,2 + τ−1 + c2,ij,2)Z
(1)
2,ij,2 − ηl2,ijZ

(1)
2,i−1,j,2 − ηb2,ij,2Z

(1)
2,i,j−1,2 ≥ 0, (i, j) ∈ Ωh,

Z
(1)
1,ij,2 ≤ 0, Z

(1)
2,ij,2 ≥ 0, (i, j) ∈ ∂Ωh.

For here, η = 0, 1, bα,i,1,2 > 0 in (5.41b) and Z
(1)
1,i,0,2 ≤ 0, Z

(1)
2,i,0,2 ≥ 0, i = 0, Nx, for

j = 1 in (5.70), we obtain

(d1,i,1,2 + (τ−1 + c1,i,1,2))Z
(1)
1,i,1,2 − ηl1,i,1,2Z

(1)
1,i−1,1,2 ≤ 0, (i, j) ∈ Ωh, (5.71)

(d2,i,1,2 + (τ−1 + c2,i,1,2))Z
(1)
2,i,1,2 − ηl2,i,1,2Z

(1)
2,i−1,1,2 ≥ 0, (i, j) ∈ Ωh,

i = 1, 2, . . . , Nx − 1, Z
(1)
1,i,1,2 ≤ 0, Z

(1)
2,i,1,2 ≥ 0, i = 0, Nx.

Taking into account that η = 0, 1, lα,i,1,2 > 0 in (5.41b), Z
(1)
1,0,1,2 ≤ 0, Z

(1)
2,0,1,2 ≥ 0, and

using the maximum principle in Lemma 5.4.1, for i = 1 in (5.71), we have Z
(1)
1,1,1,2 ≤ 0,

Z
(1)
2,1,1,2 ≥ 0. From here, by using Lemma 5.4.1, for i = 2 in (5.71), we have Z

(1)
1,2,1,2 ≤

0, Z
(1)
2,2,1,2 ≥ 0. By induction on i and j, we can prove that

Z
(1)
1,ij,2 ≤ 0, Z

(1)
2,ij,2 ≥ 0, (i, j) ∈ Ω

h
.

Similarly, for the sequence {U (1)
1,ij,2, U

(1)
2,ij,2}, (i, j) ∈ Ω

h
, from (5.57), we can prove that

Z
(1)
1,ij,2 ≥ 0, Z

(1)
2,ij,2 ≤ 0, (i, j) ∈ Ω

h
.

The proof, that U
(1)
α,ij,2 and U

(1)
α,ij,2, (i, j) ∈ Ω

h
, α = 1, 2, are ordered upper and lower
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solutions (5.56), repeats the proof on the first time level m = 1. By induction on m,

we can prove (5.58) for m ≥ 1. In a similar manner, we can prove the theorem for the

sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1.

5.5 Existence and uniqueness of a solution to the nonlin-

ear difference scheme (5.41)

We give estimates of the solution to the linear problem (5.15).

Lemma 5.5.1. The following estimates of the solution to the linear problem (5.15)

hold

‖Wα,m‖Ωh ≤ max

{
‖gα,m‖∂Ωh , max

(i,j)∈Ωh

|ϕα,ij,m|
c∗α,ij,m + τ−1

}
, α = 1, 2, (5.72)

where

‖Wα,m‖Ωh = max
(i,j)∈Ω

h
|Wα,ij,m|, ‖gα,m‖∂Ωh = max

(i,j)∈∂Ωh
|gα,ij,m|.

The proof of the lemma is given in Lemma 1.2.1, Chapter 1.

5.5.1 Quasi-monotone nondecreasing case

In the following theorem, we prove the existence of a solution to the nonlinear difference

scheme (5.41) based on Theorem 5.4.3.

Theorem 5.5.2. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, α = 1, 2, m ≥

1, be ordered upper and lower solutions (5.42) to (5.41). Suppose that fα, α = 1, 2,

in (5.1) satisfy (5.19) and (5.20). Then a solution of the nonlinear difference scheme

(5.41) exists in the sector 〈Ûm, Ũm〉, m ≥ 1, from (5.18).

Proof. We consider the case of upper solutions based on the point Gauss–Seidel method

with η = 1 in (5.43). On the first time level m = 1, from (5.44), we conclude that

limn→∞ U
(n)
α,ij,1 = V α,ij,1, (i, j) ∈ Ω

h
, α = 1, 2, exist and

V α,ij,1 ≤ U
(n)
α,ij,1 ≤ U

(n−1)
α,ij,1 ≤ Ũα,ij,1, lim

n→∞
Z

(n)
α,ij,1 = 0, (i, j) ∈ Ω

h
, α = 1, 2,

(5.73)

where U
(0)
α,ij,1 = Ũα,ij,1, (i, j) ∈ Ω

h
, α = 1, 2. From (5.42) and (5.43), we have

Kα,ij,1(U
(n)
α,ij,1, ψα,ij , U

(n)
α′,ij,1) = −(cα,ij,1Z

(n)
α,ij,1 + rα,ij,1Z

(n)
α,i+1,j,1 + qα,ij,1Z

(n)
α,i,j+1,1)

+ fα,ij,1(U
(n)
α,ij,1, U

(n)
α′,ij,1)− fα,ij,1(U

(n−1)
α,ij,1 , U

(n−1)
α′,ij,1),

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.
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By the mean-value theorem (5.16), we have

Kα,ij,1(U
(n)
α,ij,1, ψα,ij , U

(n)
α′,ij,1) = −[cα,ij,1 − (fα,ij,1)uα ]Z

(n)
α,ij,1

− (fα,ij,1)uα′Z
(n)
α′,ij,1 − rα,ij,1Z

(n)
α,i+1,j,1

− qα,ij,1Z
(n)
α,i,j+1,1,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

(fα,ij,1)uα = (fα,ij,1(Q
(n)
α,ij,1, U

(n)
α′,ij,1))uα , (fα,ij,1)uα′ = (fα,ij,1(U

(n)
α,ij,1, Y

(n)
α′,ij,1))uα′ ,

U
(n)
α,ij,1 ≤ Q

(n)
α,ij,1 ≤ U

(n−1)
α′,ij,1, U

(n)
α,ij,1 ≤ Y

(n)
α,ij,1 ≤ U

(n−1)
α′,ij,1.

By taking limits of the both sides and using (5.73), we conclude that

Kα,ij,1(V α,ij,1, ψα,ij , V α′,ij,1) = 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Thus, V α,ij,1, (i, j) ∈ Ω
h
, α = 1, 2, solve (5.41) on the first time level m = 1.

By the assumption of the theorem that Ũα,ij,2, (i, j) ∈ Ω
h
, α = 1, 2, are upper

solutions and from (5.73), it follows that Ũα,ij,2, (i, j) ∈ Ω
h
, α = 1, 2, are upper

solutions with respect to V α,ij,1, (i, j) ∈ Ω
h
, α = 1, 2. Indeed, from (5.73), it follows

that V α,ij,1 ≤ Ũα,ij,1, (i, j) ∈ Ω, α = 1, 2, and we have

Kα,ij,2(Ũα,ij,2, Uα,ij,1, Ũα′,ij,2) = (dα,ij,2 + τ−1)Ũα,ij,2 − lα,ij,2Ũα,i−1,j,2 − rα,ij,2Ũα,i+1,j,2

− bα,ij,2Ũα,i,j−1,2 − qα,ij,2Ũα,i,j+1,2

+ fα,ij,2(Ũα,ij,2, Ũα′,ij,2)− τ−1Uα,ij,1,

≥ Kα,ij,2(Ũα,ij,2, Ũα,ij,1, Ũα′,ij,2) ≥ 0,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2.

Using a similar argument as in (5.73), we can prove that the limits

lim
n→∞

U
(n)
α,ij,2 = V α,ij,2, (i, j) ∈ Ω

h
, α = 1, 2,

exist and solve (5.41) on the second time level m = 2.

By induction on m ≥ 1, we can prove that

lim
n→∞

U
(n)
α,ij,m = V α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1,

are solutions of the nonlinear difference scheme (5.41). Similarly, we can prove that

V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, defined by

lim
n→∞

U
(n)
α,ij,m = V α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1,
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are solutions to the nonlinear difference scheme (5.41).

We now assume that in the sector 〈Ûm, Ũm〉 from (5.18), the reaction functions fα,

α = 1, 2, satisfy the two-sided constrains

cα,ij,m ≤
∂fα,ij,m(U1,ij,m, U2,ij,m)

∂uα
≤ cα,ij,m, Uα,ij,m ∈ 〈Ûm, Ũm〉, (5.74)

0 ≤ −∂fα,ij,m(U1,ij,m, U2,ij,m)

∂uα′
≤ qα,ij,m, Uα,ij,m ∈ 〈Ûm, Ũm〉, (5.75)

(i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2,

where cα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are defined in (5.19), qα,ij,m and cα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are, respectively, nonnegative bounded and bounded

functions. It is assumed that the time step τ satisfies the assumption

τ < max
m≥1

1

βm
, (5.76)

βm = max (0, qm − cm) =


0, if qm − cm ≤ 0,

qm − cm, if qm − cm > 0,

cm = min
α=1,2

[
min

(i,j)∈Ω
h
cα,ij,m

]
, qm = max

α=1,2
‖qα,m‖Ωh ,

where the notation of the discrete norm from (5.72) is in use. When βm = 0, m ≥ 1,

then there is no restriction on τ .

Theorem 5.5.3. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, be

ordered upper and lower solutions (5.42) to (5.41). Suppose that functions fα, α = 1, 2,

in (5.1) satisfy (5.74), (5.75), and assumption (5.76) on the time step τ is satisfied.

Then the nonlinear difference scheme (5.41) has a unique solution.

Proof. Firstly, we show that if V ∗α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are any other

solutions in 〈Ûm, Ũm〉, then

V α,ij,m ≤ V ∗α,ijj,m ≤ V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, (5.77)

where V α,ij,m and V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are the solutions to the nonlinear

difference scheme (5.41), which are defined in Theorem 5.5.2. Using (V ∗1,ij,m, V
∗

2,ij,m)

and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, as initial upper and lower iterations, the

sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, remains unchanged and converges to

the solution (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1. Taking into account that the sequence
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{U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, with

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (V ∗1,ij,m, V

∗
2,ij,m), (i, j) ∈ Ω

h
, m ≥ 1,

consists of the single element (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, from (5.44), it follows

that

V ∗α,ij,m ≥ V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1. (5.78)

Similarly, by using (Ũ1,ij,m, Ũ1,ij,m) and (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, as initial

upper and lower iterations, the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, remains

unchanged and converges to the solution (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1. Taking

into account that the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, with

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (V ∗1,ij,m, V

∗
2,ij,m), (i, j) ∈ Ω

h
, m ≥ 1,

consists of the single element (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, from (5.44), it follows

that

V ∗α,ij,m ≤ V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

From here and (5.78), we conclude (5.77).

Taking into account (5.77), for the uniqueness of a solution to the nonlinear differ-

ence scheme (5.41), it suffices to prove that

V α,ij,m = V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, ,m ≥ 1.

From (5.44) and Theorem 5.5.2, we have

U
(n)
α,ij,m ≤ V α,ij,m ≤ V α,ij,m ≤ U

(n)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1. (5.79)

Letting Wα,ij,m = V α,ij,m − V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.11), by using

the mean-value theorem (5.16), we obtain for m ≥ 1

(
Aα,ij,m + (τ−1 + (fα,ij,m(Qα,ij,m, V α′,ij,m))uα)

)
Wα,ij,m = (5.80)

− (fα,ij,m(V α,ij,m, Yα′,ij,m))uα′Wα′,ij,m +
1

τ
Wα,ij,m−1, (i, j) ∈ Ωh,

Wα,ij,m = 0, (i, j) ∈ ∂ωh, α′ 6= α, α, α′ = 1, 2,

V α,ij,m ≤ Qα,ij,m, Yα,ij,m ≤ V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2.

From here and (5.79), it follows that the partial derivatives satisfy (5.74) and (5.75).

From here for α = 1, (5.74), (5.75), taking into account that Wα,ij,0 = 0, (i, j) ∈ Ω
h
,
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α = 1, 2 and using (5.72), we conclude that

w1 ≤
τq1

1 + τc1

w1, wm = max
α=1,2

‖Wα,m‖Ωh , m ≥ 1.

From the above inequality, by the assumption on τ in (5.76) and w1 ≥ 0, we conclude

that w1 = 0. On the second time level m = 2, taking into account that w1 = 0, by the

similar manner, we conclude that w2 = 0. Now, by induction on m, m ≥ 1, we can

prove that wm = 0, m ≥ 1. Thus, we prove the theorem.

5.5.2 Quasi-monotone nonincreasing case

In the following theorem, we prove the existence of a solution to (5.41) based on The-

orem 5.4.5.

Theorem 5.5.4. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1j,i,m, Û2,ij,m), (i, j) ∈ Ω
h
, α = 1, 2, m ≥

1, be ordered upper and lower solutions (5.56) to (5.41). Suppose that fα, α = 1, 2,

in (5.1) satisfy (5.19) and (5.30). Then a solution of the nonlinear difference scheme

(5.41) exists in the sector 〈Ûm, Ũm〉, m ≥ 1, from (5.18).

Proof. We consider a sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, generated by the

point monotone Gauss-Seidel method with η = 1 in (5.57).

On the first time level m = 1, from (5.58), we conclude that limn→∞ U
(n)
1,ij,1 = V 1,ij,1

and limn→∞ U
(n)
2,ij,1 = V 2,ij,1, (i, j) ∈ Ω

h
, exist and

V 1,ij,1 ≤ U
(n)
1,ij,1 ≤ U

(n−1)
1,ij,1 ≤ Ũ1,ij,1, lim

n→∞
Z

(n)
1,ij,1 = 0, (i, j) ∈ Ω

h
, (5.81)

Û2,ij,1 ≤ U (n−1)
2,ij,1 ≤ U

(n)
2,ij,1 ≤ V 2,ij,1, lim

n→∞
Z

(n)
2,ij,1 = 0, (i, j) ∈ Ω

h
,

where U
(0)
1,ij,1 = Ũ1,ij,1 and U

(0)
2,ij,1 = Û2,ij,1, (i, j) ∈ Ω

h
. From (5.57), for α = 1, we have

K1,ij,1(U
(n)
1,ij,1, ψ1,ij , U

(n)
2,ij,1) = −(c1,ij,1Z

(n)
1,ij,1 + r1,ij,1Z

(n)
1,i+1,j,1) + q1,ij,1Z

(n)
1,i,j+1,1)

+ f1,ij,1(U
(n)
1,ij,1, U

(n)
2,ij,1)− f1,ij,1(U

(n−1)
1,ij,1 , U

(n−1)
2,ij,1 ),

(i, j) ∈ Ωh.
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By the mean-value theorem (5.16), we have

K1,ij,1(U
(n)
1,ij,1, ψ1,ij , U

(n)
2,ij,1) = [c1,ij,1 − (f1,ij,1)u1)]Z

(n)
1,ij,1

− (f1,ij,1)u2Z
(n)
2,ij,1 − r1,ij,1Z

(n)
1,i+1,j,1 − q1,ij,1Z

(n)
1,i,j+1,1,

(i, j) ∈ Ω,

(f1,ij,1)u1 = (f1,ij,1(Q
(n)
1,ij,1, U

(n)
2,ij,1))u1 , (f1,ij,1)u2 = (f1,i,1(U

(n)
1,ij,1, Y

(n)
2,ij,1))u2 ,

U
(n)
1,ij,1 ≤ Q

(n)
1,ij,1 ≤ U

(n−1)
1,ij,1 , U

(n−1)
2,ij,1 ≤ Y

(n)
2,ij,1 ≤ U

(n)
2,ij,1.

From (5.81), by taking limit of the both sides, we conclude that

K1,ij,1(V 1,ij,1, ψ1,ij , V 2,ij,1) = 0, (i, j) ∈ Ωh.

Similarly, we can prove that

K2,ij,1(V 1,ij,1, ψ2,ij , V 2,ij,1) = 0, (i, j) ∈ Ωh.

Thus, (V 1,ij,1, V 2,ij,1), (i, j) ∈ Ω
h
, solve (5.41) on the first time level m = 1.

By the assumptions of the theorem that Ũ1,ij,2, and Û2,ij,2, (i, j) ∈ Ω
h
, are upper

and lower solutions and from (5.56), it follows that Ũ1,ij,2, and Û2,ij,2, (i, j) ∈ Ω
h
, are

upper and lower solutions solutions with respect to V 1,ij,1, and V 2,ij,1, (i, j) ∈ Ω
h
.

Indeed, from (5.81), it follows that V 1,ij,1 ≤ Ũ1,ij,1, V 2,ij,1 ≥ Û2,ij,1, (i, j) ∈ Ω
h
. From

here and (5.41), we have

K1,ij,2(Ũ1,ij,2, V 1,ij,1, Û2,ij,2) = (d1,ij,2 + τ−1)Ũ1,ij,2 − l1,ij,2Ũ1,i−1,j,2 − r1,ij,2Ũ1,i+1,j,2

− b1,ij,2Ũ1,i,j−1,2 − q1,ij,2Ũ1,i,j+1,2

+ f1,ij,2(Ũ1,ij,2, Û2,ij,2) + τ−1V 1,ij,1

≥ K1,ij,2(Ũ1,ij,2, Ũ1,ij,1, Û2,ij,2) ≥ 0, (i, j) ∈ Ωh,

K2,ij,2(Ũ1,ij,2, V 2,ij,1, Û2,ij,2) = (d2,ij,2 + τ−1)Û2,ij,2 − l2,ij,2Û2,i−1,j,2 − r2,ij,2Û2,i+1,j,2

− b2,ij,2Û2,i,j−1,2 − q2,ij,2Û2,i,j+1,2

+ f2,ij,2(Ũ1,ij,2, Û2,ij,2) + τ−1V 2,ij,1

≤ K2,ij,2(Ũ1,ij,2, Û2,ij,1, Û2,ij,2) ≤ 0, (i, j) ∈ Ωh,

which means that Ũ1,ij,2 and Û2,ij,2, (i, j) ∈ Ω
h
, are upper and lower solutions with

respect to V 1,ij,1 and V 2,ij,1, (i, j) ∈ Ω
h
.
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Using a similar argument as in (5.81), we can prove that the limits

lim
n→∞

U
(n)
1,ij,2 = V 1,ij,2, lim

n→∞
U

(n)
2,ij,2 = V 2,ij,2 (i, j) ∈ Ω

h
,

exist and (V 1,ij,2, V 2,ij,2), (i, j) ∈ Ω
h
, solves (5.41) on the second time level m = 2.

By induction on m ≥ 1, we can prove that

lim
n→∞

U
(n)
1,ij,m = V 1,ij,m, lim

n→∞
U

(n)
2,ij,m = V 2,ij,m, (i, j) ∈ Ω

h
, m ≥ 1.

Thus, (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, are solutions of the nonlinear difference

scheme (5.41).

Similarly, for a sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, we can prove that

lim
n→∞

U
(n)
1,ij,m = V 1,ij,m, lim

n→∞
U

(n)
2,ij,m = V 2,ij,m, (i, j) ∈ Ω

h
, m ≥ 1,

and (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, are solutions of the nonlinear difference

scheme (5.41).

We now assume that in the sector 〈Ûm, Ũm〉, m ≥ 1, the reaction functions fα,

α = 1, 2, satisfy (5.74) and the two-sided constrains

qα,ij,m ≤ −
∂fα,ij,m(U1,ij,m, U2,ij,m)

∂uα′
≤ 0, Uα,ij,m ∈ 〈Ûm, Ũm〉, (5.82)

(i, j) ∈ Ω
h
, α′ 6= α, α, α′ = 1, 2,

where cα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are defined in (5.19), qα,ij,m and cα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are, respectively, nonpositive bounded and bounded

functions.

Theorem 5.5.5. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, be

ordered upper and lower solutions (5.56) to (5.41). Suppose that functions fα, α = 1, 2,

in (5.1) satisfy (5.74), (5.82), and assumption (5.76) on the time step τ is satisfied.

Then the nonlinear difference scheme (5.41) has a unique solution.

Proof. Firstly, we show that if V ∗α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are any other

solutions in 〈Ûm, Ũm〉, m ≥ 1, then

V α,ij,m ≤ V ∗α,ij,m ≤ V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, (5.83)

where (V 1,ij,m, V 2,ij,m) and (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, are the solutions

to the nonlinear difference scheme (5.41), which are defined in Theorem 5.5.4. Using
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(Ũ1,ij,m, Û2,ij,m) and (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, as initial iterations, the se-

quence {U (n)
1,ij,m, U

(n)
2,ij,m} , (i, j) ∈ Ω

h
, m ≥ 1, remains unchanged and converges to the

solution (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1. Taking into account that the sequence

{U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, with

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (V ∗1,ij,m, V

∗
2,ij,m), (i, j) ∈ Ω

h
, m ≥ 1,

consists of the single element (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, from (5.58), it follows

that

V ∗1,ij,m ≤ V 1,ij,m, V ∗2,ij,m ≥ V 2,ij,m, (i, j) ∈ Ω
h
, m ≥ 1. (5.84)

Similarly, by using (Û1,ij,m, Ũ2,ij,m) and (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, as initial

iterations, the sequence {U (n)
1,ij,m, U

(n)
2,ij,m} , (i, j) ∈ Ω

h
, m ≥ 1, remains unchanged and

converges to the solution (V 1,ij,m, V 2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1. Taking into account

that the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, with

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (V ∗1,ij,m, V

∗
2,ij,m), (i, j) ∈ Ω

h
, m ≥ 1,

consists of the single element (V ∗1,ij,m, V
∗

2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, from (5.58), it follows

that

V ∗1,ij,m ≥ V 1,ij,m, V ∗2,ij,m ≤ V 2,ij,m, (i, j) ∈ Ω
h
, m ≥ 1.

From here and (5.84), we conclude (5.83).

Taking into account (5.83), for the uniqueness of a solution to the nonlinear differ-

ence scheme (5.41), it suffices to prove that

V α,ij,m = V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

From (5.58) and Theorem 5.5.4, we have

U
(n)
α,ij,m ≤ V α,ij,m ≤ V α,ij,m ≤ U

(n)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1. (5.85)

Letting Wα,ij,m = V α,ij,m − V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.11), by using

the mean-value theorem (5.16), we obtain for m ≥ 1

(
Aα,ij,m + (τ−1 + (fα,ij,m(Qα,ij,m, V α′,ij,m))uα)

)
Wα,ij,m = (5.86)

− (fα,ij,m(V α,ij,m, Yα′,ij,m))uα′Wα′,ij,m +
1

τ
Wα,ij,m−1, (i, j) ∈ Ωh,

Wα,ij,m = 0, (i, j) ∈ ∂Ωh, α′ 6= α, α, α′ = 1, 2,

V α,ij,m ≤ Qα,ij,m, Yα,ij,m ≤ V α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2.

160



From here and (5.85), it follows that the partial derivatives satisfy (5.74), (5.82). From

here for m = 1, (5.74), (5.82), taking into account that Wα,ij,0 = 0, (i, j) ∈ Ω
h
, α = 1, 2,

and using (5.72), we conclude that

w1 ≤
τq1

1 + τc1

w1, wm = max
α=1,2

‖Wα,m‖Ωh .

From here, by the assumption on τ in (5.76) and w1 ≥ 0, we conclude that w1 = 0. On

the second time level m = 2, taking into account that w1 = 0, by the similar manner,

we conclude that w2 = 0. Now, by induction on m ≥ 1, we can prove that wm = 0,

m ≥ 1. Thus, we prove the theorem.

5.6 Comparison of convergence of the point monotone Ja-

cobi and Gauss–Seidel methods

5.6.1 Quasi-monotone nondecreasing case

The following theorem shows that the point monotone Gauss–Seidel method with η = 1

in (5.43) converges faster than the point monotone Jacobi method with η = 0 in (5.43).

Theorem 5.6.1. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, be

ordered upper and lower solutions (5.42) to (5.41), the functions fα, α = 1, 2, in (5.1)

satisfy (5.19) and (5.20). Suppose that the sequences {(U (n)
α,ij,m)J} and {(U (n)

α,ij,m)GS},
(i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, are generated by the point monotone Jacobi method with

η = 0 in (5.43) and by the point monotone Gauss–Seidel method with η = 1 in (5.43),

where (U
(0)
ij,m)J = (U

(0)
ij,m)GS = Ũij and (U

(0)
ij,m)J = (U

(0)
ij,m)GS = Ûij,m, (i, j) ∈ Ω

h
, m ≥ 1.

Then

(U
(n)
α,ij,m)J ≤ (U

(n)
α,ij,m)GS ≤ (U

(n)
α,ij,m)GS ≤ (U

(n)
α,ij,m)J, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1.

(5.87)

Proof. Letting W
(n)
α,ij,m =

(
U

(n)
α,ij,m

)
GS
−
(
U

(n)
α,ij,m

)
J
, (i, j) ∈ Ω

h
, m ≥ 1, α = 1, 2, from

(5.43) and using notation (5.21), we have

(dα,ij,m + τ−1 + cα,ij,m)(W
(n)
α,ij,m) =

ηlα,ij,m

(
(U

(n)
α,i−1,j,m)GS − (U

(n−1)
α,i−1,j,m)J

)
+ rα,ij,mW

(n−1)
α,i+1,j,m

+ ηbα,ij,m

(
(U

(n)
α,i,j−1,m)GS − (U

(n−1)
α,i,j−1,m)J

)
+ qα,ij,mW

(n−1)
α,i,j+1,m

+ Γα,ij,m

(
(U

(n−1)
α,ij,m), U

(n−1)
α′,ij,m)

)
GS
− Γα,ij,m

(
(U

(n−1)
α,ij,m), U

(n−1)
α′,ij,m)

)
J

+ τ−1
(
(Uα,ij,m−1)GS − (Uα,ij,m−1)J

)
, (i, j) ∈ Ωh,

W
(n)
α,ij,m = 0, (i, j) ∈ ∂Ωh, m ≥ 1, Wα,ij,0 = 0, (i, j) ∈ Ω

h
, α = 1, 2.
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From here and taking into account that
(
U

(n−1)
α,ij,m

)
GS
≤
(
U

(n)
α,ij,m

)
GS

, (i, j) ∈ Ω
h
, α = 1, 2,

m ≥ 1, we obtain

(dα,ij,m + τ−1 + cα,ij,m)W
(n)
α,ij,m ≥ ηlα,ij,mW

(n−1)
α,i−1,j,m + rα,ij,mW

(n−1)
α,i+1,j,m (5.88)

+ ηbα,ij,mW
(n−1)
α,i,j−1,m + qα,ij,mW

(n−1)
α,i,j+1,m

+ Γα,ij,m

(
(U

(n−1)
α,ij,m), U

(n−1)
α′,ij,m)

)
GS

− Γα,ij,m

(
(U

(n−1)
α,ij,m), U

(n−1)
α′,ij,m)

)
J

+ τ−1
(
(Uα,ij,m−1)GS − (Uα,ij,m−1)J

)
, (i, j) ∈ Ωh,

W
(n)
α,ij,m = 0, (i, j) ∈ ∂Ωh, m ≥ 1, Wα,ij,0 = 0, (i, j) ∈ Ω

h
, α = 1, 2.

Taking into account that η = 0, 1, (5.41b) and (U
(0)
α,ij,m)GS = (U

(0)
α,ij,m)J, (i, j) ∈ Ω

h
,

α = 1, 2, m ≥ 1, for n = 1 in (5.88), on the first time level m = 1, by using the

maximum principle in Lemma 5.4.1, we conclude that

W
(1)
α,ij,1 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2.

Similarly, from here, η = 0, 1, (5.41b) and (5.88) with n = 2, by using (5.22) and

Lemma 5.4.1, we obtain that W
(2)
α,ij,1 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. By induction on n,

n ≥ 1, we can prove that W
(n)
α,ij,1 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2.

On the second time level m = 2, taking into account that W
(0)
α,ij,2 = 0 and Wα,ij,1 ≥

0, (i, j) ∈ Ω
h
, α = 1, 2, from (5.41b) and (5.22), by using Lemma (5.4.1), we have

W
(1)
α,ij,2 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2.

Similarly, from here and (5.88) with n = 2, by using (5.31), on the second time level

m = 2, we obtain that W
(2)
α,ij,2 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2. By induction on n, we can

prove that W
(n)
α,ij,2 ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2.

By induction on m ≥ 1, we can prove that

W
(n)
α,ij,m ≥ 0, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1.

Thus, we prove (5.87) for the case of lower solutions. By the same manner, we can

prove (5.87) for the case of upper solutions.

5.6.2 Quasi-monotone nonincreasing case

Theorem 5.6.2. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, be

ordered upper and lower solutions (5.56) to (5.41). Suppose that the functions fα,
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α = 1, 2, in (5.1) satisfy (5.19) and (5.30). The sequences
{

(U
(n)
1,ij,m)J, (U

(n)
2,ij,m)J

}
,{

(U
(n)
1,ij,m)J, (U

(n)
2,ij,m)J

}
and

{
(U

(n)
1,ij,m)GS, (U

(n)
2,ij,m)GS

}
,
{

(U
(n)
1,ij,m)GS, (U

(n)
2,ij,m)GS

}
, (i, j) ∈

Ω
h
, α = 1, 2, m ≥ 1, are, respectively, the sequences generated by the point monotone

Jacobi method with η = 0 in (5.57), and the point monotone Gauss–Seidel method with

η = 1 in (5.57), where (U
(0)
α,ij,m)J = (U

(0)
α,ij,m)GS = Ũα,ij,m and (U

(0)
α,ij,m)J = (U

(0)
α,i,m)GS =

Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1. Then the inequalities in (5.87) hold true.

Proof. The proof of the theorem repeats the proof of Theorem 5.6.1, where Γα,ij,m,

i ∈ Ω
h
, α = 1, 2, m ≥ 1, are now written in the form

Γα,ij,m(U
(n)
α,ij,m, U

(n)
α′,ij,m) = cα,ij,mU

(n)
α,ij,m − fα,ij,m(U

(n)
α,ij,m, U

(n)
α′,ij,m),

Γα,ij,m(U
(n)
α,ij,m, U

(n)
α′,ij,m) = cα,ij,mU

(n)
α,ij,m − fα,ij,m(U

(n)
α,ij,m, U

(n)
α′,ij,m),

and the monotone properties (5.31) for Γα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are in

use.

5.7 Convergence analysis of the point monotone iterative

methods

5.7.1 Quasi-monotone nondecreasing case

Instead of (5.74), we now assume that for m ≥ 1,

qm ≤
∂fα,ij,m(U1,ij,m, U2,ij,m)

∂uα
≤ cα,ij,m, Uα,ij,m ∈ 〈Ûm, Ũm〉, (i, j) ∈ Ω

h
, α = 1, 2,

(5.89)

where qm is defined in (5.76).

Remark 5.7.1. The assumption ∂fα/∂uα ≥ qm ≥ 0 in (5.89) can always be obtained

by a change of variables. Indeed, we introduce the functions zα(x, y, t) = e−λtuα(x, y, t),

α = 1, 2, where λ is a constant. Now, z = (z1, z2) satisfies (5.1) with

f̃α = λzα + e−λtfα(x, y, t, eλtzα), α = 1, 2,

instead of fα, α = 1, 2, and we have

∂f̃α
∂zα

= λ+
∂fα
∂uα

,
∂f̃α
∂zα′

=
∂fα
∂uα′

, α′ 6= α, α, α′ = 1, 2.

Thus, if λ ≥ maxm≥1(qm, |cm|), where qm and cm are defined in (5.76), then from here

and (5.74), we conclude that ∂f̃α/∂zα, α = 1, 2, satisfy (5.89).
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A stopping test for the point monotone iterative methods (5.43) is chosen in the

form

max
α=1,2

[
max

(i,j)∈Ωh

∣∣∣Kα,ij,m(U
(n)
α,ij,m, Uα,ij,m−1, U

(n)
α′,ij,m)

∣∣∣] ≤ δ, (5.90)

where Kα,ij,m(U
(n)
α,ij,m, Uα,ij,m−1, U

(n)
α′,ij,m), (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are

residuals of the nonlinear difference scheme (5.11), U
(n)
α,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1,

are generated by (5.43), and δ is a prescribed accuracy. On each time level m ≥ 1,

we set up Uα,ij,m = U
(nm)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, such that nm is the minimal

number of iterations subject to (5.90).

Theorem 5.7.2. Suppose that the assumptions in Theorem 5.5.3 are satisfied. Then

for the sequences {U (n)
α,ij,m}, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, generated by the point

monotone iterative methods (5.43), (5.90), we have the estimate

max
m≥1

max
α=1,2

‖Uα,m − U∗α,m‖Ωh ≤ Tδ, (5.91)

where Uα,ij,m = U
(nm)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, and U∗α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2,

m ≥ 1, are the unique solutions to the nonlinear difference scheme (5.11) and T is the

final time.

Proof. Letting Wα,ij,m = Uα,ij,m−U∗α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.11), by

using the mean-value theorem (5.16), we obtain

(
Aα,ij,m + τ−1 + (fα,ij,m(Qα,ij,m, Uα′,ij,m))uα

)
Wα,ij,m =

− (fα,ij,m(U∗α,ij,m, Yα′,ij,m))uα′Wα′,ij,m +Kα,ij,m(Uα,ij,m, Uα,ij,m−1, Uα′,ij,m)

+ τ−1Wα,ij,m−1,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2,

Wα,ij,m = 0, (i, j) ∈ ∂Ω, m ≥ 1, Wα,ij,0 = 0, (i, j) ∈ Ω
h
, α = 1, 2,

where Qα,ij,m and Yα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, lie between U∗α,ij,m and Uα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, and the partial derivatives satisfy (5.75) and (5.89). From

here, (5.75) and (5.89), by using (5.72), we obtain that

wm ≤
1

τ−1 + qm

(
qmwm + δ + τ−1wm−1

)
, wm = max

α=1,2
‖Wα,m‖Ωh , m ≥ 1.

Solving this inequality for wm, we have

wm ≤ τδ + wm−1, m ≥ 1. (5.92)

Since w0 = 0, for m = 1 in (5.92), we have w1 ≤ τδ. For m = 2, it follows that
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w2 ≤ δ(τ + τ), and by induction on m ≥ 1, we can prove that

wm ≤ δ
m∑
l=1

τ.

Since
∑m

l=1 τ ≤ T , we prove (5.91).

Theorem 5.7.3. Let the assumptions in Theorem 5.7.2 be satisfied. Then for the

sequence of solutions {U (n)
α,ij,m}, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, generated by (5.43),

(5.90), the following estimate holds

max
m≥1

max
α=1,2

‖Uα,m − u∗α,m‖Ωh ≤ T (δ + max
m≥1

Em), (5.93)

Em = max
α=1,2

‖Eα,m‖Ωh , m ≥ 1,

where Uα,ij,m = U
(nm)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, u∗α(x, y, t), α = 1, 2, are the exact

solutions to (5.1), and Eα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are the truncation errors

of the exact solutions on the nonlinear difference scheme (5.11).

Proof. We denote Vα,ij,m = U∗α,ij,m−u∗α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, where U∗α,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are the unique solutions of the nonlinear difference scheme

(5.11). From (5.11), by using the mean-value theorem (5.16), we obtain that

(
Aα,ij,m + τ−1 + (fα,ij,m(Qα,ij,m, U

∗
α′,ij,m))uα

)
Vα,ij,m =

− (fα,ij,m(u∗α,ij,m, Yα′,ij,m))uα′Vα′,ij,m +
1

τ
Vα′,ij,m−1 − Eα,ij,m, (i, j) ∈ Ωh,

Vα,ij,m = 0, (i, j) ∈ ∂Ωh, Vα,ij,0 = 0, (i, j) ∈ Ω
h
,

α′ 6= α, α, α′ = 1, 2,

where Qα,ij,m and Yα,ij,m lie between U∗α,ij,m and u∗α,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

From here, (5.75), (5.89) and using (5.72), it follows that

vm ≤
1

τ−1 + qm
(qmvm + τ−1vm−1 + Em), vm = max

α=1,2
‖Vα,m‖Ωh , m ≥ 1.

Solving for vm, we obtain

vm ≤ vm−1 + τEm.

From here, taking into account that v0 = 0, by induction on m ≥ 1, we obtain that

vm ≤
m∑
l=1

τEl.
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Since
∑m

l=1 τ ≤ T , where T is the final time, we have

vm ≤ T max
m≥1

Em, m ≥ 1. (5.94)

We now estimate the left hand side in (5.93) as follows

‖Uα,m ± U∗α,m − u∗α,m‖Ωh ≤ ‖Uα,m − U
∗
α,m‖Ωh + ‖U∗α,m − u∗α,m‖Ωh .

From here, (5.91) and (5.94), we prove (5.93).

5.7.2 Quasi-monotone nonincreasing case

Stopping tests for the sequences {U (n)
1,ij,m, U

(n)
2,ij,m} and {U (n)

1,ij,m, U
(n)
2,ij,m}, (i, j) ∈ Ω

h
,

m ≥ 1, generated by the point monotone iterative methods (5.57), are chosen in the

forms

max
{

max
(i,j)∈Ωh

K1,ij,m(U
(n)
1,ij,m, U1,ij,m−1, U

(n)
2,ij,m);

max
(i,j)∈Ωh

K2,ij,m(U
(n)
1,ij,m, U2,ij,m−1, U

(n)
2,ij,m)

}
≤ δ, (5.95a)

max
{

max
(i,j)∈Ωh

K1,ij,m(U
(n)
1,ij,m, U1,ij,m−1, U

(n)
2,ij,m);

max
(i,j)∈Ωh

K2,ij,m(U
(n)
1,ij,m, U2,ij,m−1, U

(n)
2,ij,m)

}
≤ δ, (5.95b)

where Kα,ij,m(U
(n)
α,ij,m, Uα,ij,m−1, U

(n)
α′,ij,m), (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are

residuals of the nonlinear difference scheme (5.41), which are defined in (5.42), and δ

is a prescribed accuracy. On each time level m ≥ 1, we set up

(U1,ij,m, U2,ij,m) = (U
(nm)
1,ij,m, U

(nm)
1,ij,m), (U1,ij,m, U2,ij,m) = (U

(nm)
1,ij,m, U

(nm)
1,ij,m),

(i, j) ∈ Ω
h
, m ≥ 1,

such that nm is the minimal number of iterations subject to (5.95).

Theorem 5.7.4. Let Ũα,ij,m and Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, be ordered upper

and lower solutions (5.56) to (5.41). Suppose that the functions fα, α = 1, 2, satisfy

(5.82) and (5.89), and assumption (5.76) on the time step τ holds. Then for sequences

{U (n)
1,ij,m, U

(n)
2,ij,m} and {U (n)

1,ij,m, U
(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, generated by (5.57), (5.95)
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with

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (Ũ1,ij,m, Û2,ij,m), (U

(0)
1,ij,m, U

(0)
2,ij,m) = (Û1,ij,m, Ũ2,ij,m),

(i, j) ∈ Ω
h
, m ≥ 1,

the following estimates hold

max
m≥1

{
max

[
‖U1,m − U∗1,m‖Ωh ; ‖U2,m − U∗2,m‖Ωh

]}
≤ Tδ, (5.96)

max
m≥1

{
max

[
‖U1,m − U∗1,m‖Ωh ; ‖U2,m − U∗2,m‖Ωh

]}
≤ Tδ,

where Uα,ij,m = U
(nm)
α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2, m ≥ 1, and U∗α,ij,m, (i, j) ∈ Ω

h
, α = 1, 2,

m ≥ 1, are the unique solutions to the nonlinear difference scheme (5.41).

Proof. We consider the case of the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1,

that is, the point monotone iterative methods (5.57), (5.95) generate the numerical

solutions (U1,ij,m, U2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1. Letting W1,ij,m = U1,ij,m − U∗1,ij,m,

W2,ij,m = U2,ij,m − U∗2,ij,m, (i, j) ∈ Ω
h
, m ≥ 1, from (5.11), by using the mean-value

theorem (5.16), we obtain

(
A1,ij,m + τ−1 + (f1,ij,m(Q1,ij,m, U2,ij,m))u1

)
W1,ij,m =

− (f1,ij,m(U∗1,ij,m, Y2,ij,m))u2W2,ij,m +K1,ij,,m(U1,ij,m, U1,ij,m−1, U2,ij,m)

+ τ−1W1,ij,m−1,(
A2,ij,m + τ−1 + (f2,ij,m(U1,ij,m, Q2,ij,m))u2

)
W2,ij,m =

− (f2,ij,m(Y1,ij,m, U
∗
2,ij,m))u1W1,ij,m +K2,ij,,m(U1,ij,m, U2,ij,m−1, U2,ij,m)

+ τ−1W2,ij,m−1, (i, j) ∈ Ωh, m ≥ 1,

U∗1,ij,m ≤ Q1,ij,m, Y1,ij,m ≤ U1,ij,m, U2,ij,m ≤ Q2,ij,m, Y2,ij,m ≤ U∗2,ij,m,

where the partial derivatives satisfy (5.82) and (5.89). From here, (5.82), (5.89) and

using (5.72), we obtain

wm ≤
1

τ−1 + qm
(qmwm + δ + τ−1wm−1), wm = max

α=1,2
‖Wα,m‖Ωh , m ≥ 1.

Solving this inequality for wm, we have

wm ≤ τδ + wm−1, m ≥ 1.

167



From here, taking into account that w0 = 0, by induction on m ≥ 1, we obtain that

wm ≤ δ
m∑
l=1

τ.

Since
∑m

l=1 τ ≤ T , we prove the theorem for the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
,

m ≥ 1. The case of the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, is proved in a

similar manner.

Theorem 5.7.5. Let the assumptions in Theorem 5.7.4 be satisfied. Then for sequences

{U (n)
1,ij,m, U

(n)
2,ij,m} and {U (n)

1,ij,m, U
(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, generated by (5.57), (5.95)

with

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (Ũ1,ij,m, Û2,ij,m), (U

(0)
1,ij,m, U

(0)
2,ij,m) = (Û1,ij,m, Ũ2,ij,m),

(i, j) ∈ Ω
h
, m ≥ 1,

the following estimates hold

max
m≥1

max
[
‖U1,m − u∗1,m‖Ωh , ‖U2,m − u∗2,m‖Ωh

]
≤ T (δ + max

m≥1
Em),

max
m≥1

max
[
‖U1,m − u∗1,m‖Ωh , ‖U2,m − u∗2,m‖Ωh

]
≤ T (δ + max

m≥1
Em),

Em = max
α=1,2

‖Eα,m‖Ωh , m ≥ 1,

where u∗α(x, y, t), α = 1, 2, are the exact solutions to (5.1), and Eα,ij,m, (i, j) ∈ Ω
h
,

α = 1, 2, m ≥ 1, are the truncation errors of the exact solutions on the nonlinear

difference scheme (5.41).

Proof. The proof of this theorem repeats the proof of Theorem 5.7.3.

5.8 Construction of initial upper and lower solutions

We discuss constructions of upper and lower solutions which are used as initial iterations

in the monotone iterative methods (5.43) and (5.57).
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5.8.1 Quasi-monotone nondecreasing case

5.8.1.1 Bounded reaction functions

We assume that functions fα, gα and ψα, α = 1, 2, in (5.1) satisfy the conditions

fα(x, y, t,0) ≤ 0, −Kα ≤ fα(x, y, t, u), uα(x, y, t) ≥ 0, (x, y, t) ∈ QT , (5.97)

gα(x, y, t) ≥ 0, (x, y, t) ∈ ∂QT , ψα(x, y) ≥ 0, (x, y) ∈ ω, α = 1, 2,

where Kα = const > 0, α = 1, 2, and 0 is the zero vector (0, 0). We introduce the mesh

functions

Ûα,ij,m = 0, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, (5.98)

and the mesh functions Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, which are solutions of the

linear problems

Aα,ij,mŨα,ij,m = τ−1Ũα,ij,m−1 +Kα, (i, j) ∈ Ωh, (5.99)

Ũα,ij,m = gα,ij,m, (i, j) ∈ ∂Ωh, Ũα,ij,0 = ψα,ij , (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1,

where the difference operators Aα,ij,m, (i, j) ∈ Ωh, α = 1, 2, m ≥ 1, are defined

in (5.13). We show that under assumptions (5.97), Ũα,ij,m and Ûα,ij,m, (i, j) ∈ Ω
h
,

α = 1, 2, m ≥ 1, are ordered upper and lower solutions (5.42) to (5.11). From (5.97)–

(5.99), by using Lemma 5.4.1, we conclude that Ũα,ij,1 ≥ 0, (i, j) ∈ Ω
h
, α = 1, 2,

and

0 = Ûα,ij,1 ≤ Ũα,ij,1, (i, j) ∈ Ω
h
, α = 1, 2.

By induction on m, we can prove that

0 = Ûα,ij,m ≤ Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

By using (5.99), the residuals of the difference equations (5.11) on Ũα,ij,m, (i, j) ∈ Ωh,

α = 1, 2, can be presented in the form

Kα,ij,m(Ũα,ij,m, Ũα,ij,m−1, Ũα′,ij,m) = Kα + fα,ij,m(Ũα,ij,m, Ũα′,ij,m),

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Using (5.97), we obtain that

Kα,ij,m(Ũα,ij,m, Ũα,ij,m−1, Ũα′,ij,m) ≥ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1.
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From here and taking into account that

Kα,ij,m(Ûα,ij,m, Ûα,ij,m−1, Ûα′,ij,m) ≤ 0, (i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.98), we conclude that Ûα,ij,m from

(5.98) and Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.99) are ordered lower and

upper solutions (5.42) to (5.11).

5.8.1.2 Constant upper and lower solutions

We now assume that functions fα, gα and ψα, α = 1, 2, in (5.1) satisfy the conditions

fα(x, y, t,0) ≤ 0, fα(x, y, t,K) ≥ 0, uα(x, y, t) ≥ 0, (x, y, t) ∈ QT , (5.100)

0 ≤ gα(x, y, t) ≤ Kα, (x, y, t) ∈ ∂QT , 0 ≤ ψα(x, y) ≤ Kα, (x, y) ∈ ω,

where K = (K1,K2) and Kα, α = 1, 2, are positive constants. On each time level

m ≥ 1, we introduce the constant mesh functions

Ũα,ij,m = Kα, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1. (5.101)

From (5.98) and (5.101), on each time level m ≥ 1, we have

Kα,ij,m(Ûα,ij,m, Ûα,ij,m−1, Ûα′,ij,m) = 0, Kα,ij,m(Ũα,ij,m, Ũα,ij,m−1, Ũα′,ij,m) ≥ 0,

(i, j) ∈ Ωh, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Thus, under assumptions (5.100), Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.98) and

Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.101) are ordered lower and upper solutions

(5.42) to (5.11).

5.8.2 Quasi-monotone nonincreasing case

5.8.2.1 Bounded reaction functions

We assume that functions fα, gα and ψα, α = 1, 2, in (5.1) satisfy the conditions

fα(x, y, t, 0α, uα′) ≤ 0, −Kα ≤ fα(x, y, t, uα, 0α′), uα(x, y, t) ≥ 0, (5.102)

(x, y, t) ∈ QT , gα(x, y, t) ≥ 0, (x, y, t) ∈ ∂QT , ψα(x, y) ≥ 0, (x, y) ∈ ω,

where Kα = const > 0, α = 1, 2, the notation 0α, α = 1, 2, means that uα = 0, α = 1, 2,

and notation (5.10) is in use.

We show that under assumptions (5.102), Ûα,ij,m and Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2,

m ≥ 1, from, respectively, (5.98) and (5.99) are ordered lower and upper solutions
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(5.56) to (5.11). From (5.98), (5.99) and (5.102), by using Lemma 5.4.1, we conclude

that Ũα,ij,1 ≥ 0, α = 1, 2, and

0 = Ûα,ij,1 ≤ Ũα,ij,1, (i, j) ∈ Ω
h
, α = 1, 2.

By induction on m ≥ 1, we can prove that

0 = Ûα,ij,m ≤ Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1. (5.103)

Consider the case of the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, where

(U
(0)
1,ij,m, U

(0)
2,ij,m) = (Ũ1,ij,m, Û2,ij,m), (i, j) ∈ Ω

h
, m ≥ 1.

By using (5.99), the residual of the first difference equation in (5.11) on (Ũ1,ij,m, Û2,ij,m),

(i, j) ∈ Ω
h
, m ≥ 1, can be presented in the form

K1,ij,m(Ũ1,ij,m, Ũ1,ij,m−1, Û2,ij,m) = K1 + f1,ij,m(Ũ1,ij,m, Û2,ij,m), (i, j) ∈ Ωh, m ≥ 1.

From here, (5.98) and (5.102), we conclude that

K1,ij,m(Ũ1,ij,m, Ũ1,ij,m−1, Û2,ij,m) ≥ 0, (i, j) ∈ Ωh, m ≥ 1.

From (5.98), (5.102) and (5.103), for the residual of the second difference equation in

(5.11) on (Ũ1,ij,m, Û2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, it follows the inequalities

K2,ij,m(Ũ1,ij,m, Û2,ij,m−1, Û2,ij,m) ≤ 0, (i, j) ∈ Ωh, m ≥ 1.

Similarly, for the case (Û1,ij,m, Ũ2,ij,m), (i, j) ∈ Ω
h
, m ≥ 1, we have

K1,ij,m(Û1,ij,m, Û1,ij,m−1, Ũ2,ij,m) ≤ 0, K2,ij,m(Û1,ij,m, Ũ2,ij,m−1, Ũ2,ij,m) ≥ 0,

(i, j) ∈ Ωh, m ≥ 1.

Thus, Ûα,ij,m and Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from, respectively, (5.98) and

(5.99) are ordered lower and upper solutions (5.56) to (5.11).
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5.8.2.2 Constant upper and lower solutions

We now assume that functions fα, gα and ψα, α = 1, 2, in (5.1) satisfy the conditions

fα(x, y, t, 0α, uα′) ≤ 0, fα(x, y, t,Kα, 0α′) ≥ 0, uα(x, y, t) ≥ 0, (5.104)

(x, y, t) ∈ QT , 0 ≤ gα(x, y, t) ≤ Kα, (x, y, t) ∈ ∂QT ,

0 ≤ ψα(x, y) ≤ Kα, (x, y) ∈ ω,

where Kα = const > 0, α = 1, 2, and notation (5.10) is in use.

We show that under assumptions (5.104), Ûα,ij,m and Ũα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2,

m ≥ 1, from, respectively, (5.98) and (5.101) are ordered lower and upper solutions

(5.56) to (5.11). From (5.98), (5.101) and (5.104), for the case of (Ũ1,ij,m, Û2,ij,m),

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, we have

K1,ij,m(Ũ1,ij,m, Ũ1,ij,m−1, Û2,ij,m) ≥ 0, K2,ij,m(Ũ1,ij,m, Û2,ij,m−1, Û2,ij,m) ≤ 0,

(i, j) ∈ Ωh, m ≥ 1.

Similarly, for the case (Û1,ij,m, Ũ2,ij,m), (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, we have

K1,ij,m(Û1,ij,m, Û1,ij,m−1, Ũ2,ij,m) ≤ 0, K2,ij,m(Û1,ij,m, Ũ2,ij,m−1, Ũ2,ij,m) ≥ 0,

(i, j) ∈ Ωh, m ≥ 1.

Thus, under assumptions (5.104), Ûα,ij,m and Ûα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1,

from, respectively, (5.98) and (5.101) are ordered lower and upper solutions (5.56) to

(5.11).

5.9 Numerical experiments

We present numerical experiments, implemented by the point monotone Jacobi and

Gauss-Seidel methods, for test problems with quasi-monotone nondecreasing (5.20) and

quasi-monotone nonincreasing (5.30) reaction functions fα, α = 1, 2, in (5.1). Exact

solutions of our test problems are unknown, and numerical solutions are compared to

corresponding reference solutions. In our tests, we choose the reference solutions with

N = 256 and δ = 10−5 in the stopping tests (5.90) and (5.95). The reference solutions

are calculated by the corresponding block method.

5.9.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions
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(5.20), we consider the Volterra-Lotka cooperating model from Section 5.3.1.1, where

Lαuα = Dα(uα,xx + uα,yy), α = 1, 2, in (5.1). The reaction functions are given by

f1(u1, u2) = −u1(1− u1 + a1u2), f2(u1, u2) = −u2(1 + a2u1 − u2), (5.105)

where uα ≥ 0, α = 1, 2, are the populations of two species with a symbiotic relationship

and aα, α = 1, 2, are positive constants which describe the interaction of the two species.

As ordered upper and lower solutions, we choose the pairs (Ũ1, Ũ2) = (M1,M2) and

(Û1, Û2) = (0, 0). Then all the assumptions in (5.100) with M1 = 3 and M2 = 2, are

satisfied. From here, in the sector 〈0,M〉, M = (M1,M2), we conclude the inequalities

∂f1

∂u1
= 2u1 − a1u2 − 1 ≤ 2M1 = 6, −∂f1

∂u2
= a1u1 ≥ 0,

∂f2

∂u2
= 2u2 − a2u1 − 1 ≤ 2M2 = 4, −∂f2

∂u1
= a2u2 ≥ 0.

Thus, fα, α = 1, 2, satisfy (5.19) and (5.20) with c1 = 6 and c2 = 4. We choose

the initial iteration (Ũ1,ij , Ũ2,ij) = (3, 2), (i, j) ∈ Ω
h

and calculate sequences of upper

solutions generated by (5.43), (5.90). We take D1 = 0.7, D2 = 1, a1 = 0.5, a2 = 1,

gα(x, y, t) = 0, (x, y, t) ∈ ∂QT , α = 1, 2, and ψα(x, y) = 1, (x, y) ∈ ω̄, α = 1, 2, in (5.1).

In Table 5.1, for different values of N , T = 2 and τ = 0.01, we present average

numbers of iterations nδ per a time step and corresponding CPU times for the point

monotone methods (5.43). From these results, we conclude that the point monotone

Gauss-Seidel method converges faster than the point monotone Jacobi methods, which

confirms Theorem 5.6.1; the point monotone Gauss–Seidel method is approximately

twice as fast as the point monotone Jacobi method.

Table 5.1: Average numbers of iterations nδ and CPU times for Test 1.

N 8 16 32 64 128

the point Jacobi method

nδ 11.98 35.88 135.27 533.09 2958.82
CPU(s) 0.13 0.91 13.42 212.16 1287.19

the point Gauss-Seidel method

nδ 6.99 19.50 69.27 268.10 1680.77

CPU(s) 0.12 0.56 7.34 115.24 733.43

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions

(5.20), we consider the time dependent case of Test 2 from Section 3.8.1 with the same

data sets and initial functions ψα(x, y) = sin(πx) sin(πy), (x, y) ∈ ω, α = 1, 2.
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We choose the initial iteration (Ũ1,ij , Ũ2,ij) = (1, 1), (i, j) ∈ Ω
h

and calculate se-

quences of upper solutions generated by the point monotone iterative methods (5.43),

(5.90).

In Table 5.2, for different values of N , τ = 0.5 and τ = 0.01, we give average

numbers of iterations nδ and execution (CPU) times for the point iterative methods

(5.43). From these results, we conclude that the point monotone Gauss-Seidel method

converges faster than the point monotone Jacobi method, which confirms Theorem

5.6.1; the point monotone Gauss–Seidel method is approximately twice as fast as the

point monotone Jacobi method.

Table 5.2: Average numbers of iterations nδ and CPU times for Test 2.

N 8 16 32 64 128

the point Jacobi method

nδ 7.62 17.36 52.80 193.92 752
CPU(s) 0.07 0.13 1.44 20.31 325.65

the point Gauss–Seidel method

nδ 5.86 11.24 29.46 99.78 379.78
CPU(s) 0.06 0.09 0.82 11.26 173.81

5.9.2 Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions

(5.30), we consider the Belousov-Zhabotinskii reaction diffusion model which is pre-

sented in Section 5.3.2.1, where Lαuα = Dα(uα,xx + uα,yy), α = 1, 2, in (5.1) and the

reaction functions are given by

f1 = −u1(a− bu1 − σ1u2), f2 = σ2u1u2. (5.106)

where σα, α = 1, 2, a and b are positive constants. We choose the following boundary

and initial conditions gα(x, y) = 1, (x, y) ∈ ∂ωh, ψα(x, y) = 0, (x, y) ∈ ω, α = 1, 2, in

(5.1).

The pairs (Ũ1,ij , Ũ2,ij) = (K1,K2) and (Û1,ij,m, Û2,ij,m) = (0, 0), (i, j) ∈ Ω
h
, m ≥ 1,

are ordered upper and lower solutions. Indeed, all the assumptions in (5.104) are
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satisfied. From here, on 〈Û , Ũ〉, we conclude the inequalities

∂f1,ij,m

∂u1
(U1,ij,m, U2,ij,m) = 2bU1,ij,m + σ1U2,ij,m − a ≤ 2bK1 + σ1K2, (i, j) ∈ Ω

h
,

∂f2,ij,m

∂u2
(U1,ij,m, U2,ij,m) = σ2U1,ij,m ≤ σ2K1, (i, j) ∈ Ω

h
,

− ∂f1,ij,m

∂u2
(U1,ij,m, U2,ij,m) = −σ1U1,ij,m ≤ 0, (i, j) ∈ Ω

h
,

− ∂f2,ij,m

∂u1
(U1,ij,m, U2,ij,m) = −σ2U2,ij,m ≤ 0, (i, j) ∈ Ω

h
.

Thus, fα, α = 1, 2, satisfy (5.19) and (5.30) with c1,ij,m = 2bK1 + σ1K2 and c2,ij,m =

σ2K1, (i, j) ∈ Ω
h
, m ≥ 1. We choose the initial iteration (Ũ1,ij,m, Û2,ij,m) = (K1, 0),

(i, j) ∈ Ω
h

and calculate the sequence {U (n)
1,ij,m, U

(n)
2,ij,m}, (i, j) ∈ Ω

h
, m ≥ 1, generated

by (5.57), (5.95). We take Dα = 1, α = 1, 2, in (5.1), a = 1, b = 1 and σα = 1, α = 1, 2,

in (5.106).

In Table 5.3, for different values of N , T = 1 and τ = 0.01, we give average numbers

of iterations nδ and execution (CPU) times for the point monotone iterative methods

(5.57). From these results, we conclude that the point monotone Gauss-Seidel method

converges faster than the point monotone Jacobi method, which confirms Theorem

5.6.2; the point monotone Gauss–Seidel method is approximately twice as fast as the

point monotone Jacobi method.

In Figure 5.1, we show the convergence of numerical solutions, obtained by the

point Gauss-Seidel method with η = 1 in (5.57) and N = 64 to the reference solution

Nref = 256, where the dashed line represents the numerical solution and the solid

blue line refers to the reference solution with respect to x and fixed value of y = 0.5.

In subgraph 5.1a, staring from the initial lower solution Û2,10 = 0, on the time level

t10 = 0.1, we show the convergence of the numerical lower solutions U
(n)
2,10 at n = 2 and

n = 600 to the reference solution. Similarly, starting from the initial upper solution

Ũ1,10 = 1, on the time level t10 = 0.1, subgraph 5.1b shows the convergence of the

numerical upper solutions U
(n)
1,10 at n = 5 and n = 300 to the reference solution.

Table 5.3: Average numbers of iterations nδ and CPU times for Test 3.

N 8 16 32 64 128

the point Jacobi method

nδ 15.34 50.83 196.43 779.99 3115.91
CPU(s) 0.15 0.66 9.64 155.46 1612.87

the point Gauss–Seidel method

nδ 9.21 27.16 100.04 391.93 1624.43
CPU(s) 0.08 0.37 5.19 80.32 741.89
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Figure 5.1: Convergence of lower and upper solutions to the reference solution for Test
3.

(a) Lower solutions. (b) Upper solutions.

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions

(5.30), we consider the time dependent case of Test 3 from Section 3.8.2 with the same

data sets and initial functions ψα(x, y) = sin(πx) sin(πy), (x, y) ∈ ωh, α = 1, 2.

We choose the initial iteration (Ũ1,ij , Û2,ij) = (1, 0), (i, j) ∈ Ω
h

and calculate se-

quences of upper solutions generated by the point monotone iterative method (5.57),

(5.95).

In Table 5.4, for different values of N , T = 0.5 and τ = 0.01, we give average

numbers of iterations nδ and execution (CPU) times for the point iterative method

(5.57). From these results, we conclude that the point monotone Gauss-Seidel method

converges faster than the point monotone Jacobi method, which confirms Theorem

5.6.2; the point monotone Gauss–Seidel method is approximately twice as fast as the

point monotone Jacobi method.

Table 5.4: Average numbers of iterations nδ and CPU times for Test 4.

N 8 16 32 64 128

the point Jacobi method

nδ 21.14 74.58 287.66 1139.54 4547.02
CPU(s) 0.09 0.49 7.14 112.98 1889.27

the point Gauss–Seidel method

nδ 12.70 39.66 146.32 572.46 2276.22
CPU(s) 0.07 0.27 3.77 57.85 942.17
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5.10 Conclusions to Chapter 5

Theoretical results

For solving nonlinear parabolic systems with quasi-monotone nondecreasing and

nonincreasing reaction functions, we construct and investigate monotone properties of

point Jacobi and point Gauss-Seidel iterative methods. The coupled system of non-

linear parabolic problems (5.1) is approximated by the nonlinear implicit difference

scheme, where for the spatial derivatives, the central difference approximations are in

use. For solving the nonlinear difference scheme (5.11) with quasi-monotone nonde-

creasing (5.20) and quasi-monotone nonincreasing (5.30) reaction functions, the point

Jacobi and point Gauss-Seidel iterative methods are constructed. In Theorems 5.4.3

and 5.4.5, on each time level, we prove that the sequences of upper and lower solutions,

generated by the point monotone iterative methods for problems with quasi-monotone

nondecreasing (5.20) and quasi-monotone nonincreasing (5.30) reaction functions, con-

verge monotonically. In Theorems 5.5.2 and 5.5.3, respectively, for quasi-monotone

nondecreasing and nonincreasing cases, we prove the existence and uniqueness of a so-

lution of the nonlinear difference scheme (5.11). Taking into account the fact that on

each time level, in general, the nonlinear discrete problems can be solved only inex-

actly, we introduce the stopping tests on each time level. By using the stopping test

(5.90) and (5.95), based on the norms of residuals, respectively, for the quasi-monotone

nondecreasing and nonincreasing cases, we prove that the numerical solution converges

to the unique solution of the nonlinear difference scheme and estimate the L∞ discrete-

norm of the error between the numerical and exact solutions of the nonlinear difference

scheme (5.11) in Theorems 5.7.2 and 5.7.3, and the error between the numerical solution

and the exact solution of the parabolic problem (5.1) in Theorems 5.7.4 and 5.7.5. We

prove that the point monotone Gauss-Seidel methods converge faster than the point

monotone Jacobi methods for the quasi-monotone nondecreasing and nonincreasing,

respectively, in Theorems 5.6.1 and 5.6.2. For quasi-monotone nondecreasing and non-

increasing cases, on each time level, we construct initial upper and lower solutions to

start the point monotone iterative methods.

Numerical results

The numerical sequences of upper and lower solutions, generated by the point

monotone iterative methods (5.43) and (5.57) with stopping tests (5.90) and (5.95),

respectively, for the quasi-monotone nondecreasing and nonincreasing cases, converge

monotonically. The point monotone Gauss-Seidel methods with η = 1 in (5.43) and

η = 1 in (5.57) converge faster than the point monotone Jacobi methods with η = 0

in (5.43) and η = 0 in (5.57) which confirm, respectively, Theorems 5.6.1 and 5.6.2.

The point monotone Gauss-Seidel methods are approximately twice as fast as the point

monotone Jacobi methods.
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Chapter 6

Block Jacobi and Gauss-Seidel

methods for systems of parabolic

problems

This chapter deals with numerical methods for solving nonlinear parabolic systems by

block iterative methods based on the Jacobi and Gauss Seidel methods. The idea of

these methods is the decomposition technique which on each time level reduces a domain

into a series of nonoverlapping one dimensional intervals by slicing the domain into a

finite number of thin strips, and then solving a two-point boundary-value problem

for each strip by a standard computational scheme such as the Thomas algorithm

[48]. In the view of the method of upper and lower solutions, on each time level, two

monotone upper and lower sequences of solutions are constructed. Convergence rates

for the block monotone iterative methods are estimated in similar way as in Section

5.7. Constructions of initial upper and lower solutions are similar to Section 5.8. We

show that the sequences of solutions generated by the block monotone Gauss-Seidel

method converges faster than by the block monotone Jacobi method.

6.1 The block monotone Jacobi and Gauss-Seidel meth-

ods

On each time level m ≥ 1, we decompose the mesh Λ
h

= Λ
hx × Λ

hy
, from (5.9), into

vertical strips similar to (4.1).

For the nonlinear difference scheme (5.11), on each time level m ≥ 1, we define
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vectors and diagonal matrices by

Uα,i,m = (Uα,i,1,m, . . . , Uα,i,Ny−1,m)T , i ∈ I = {0, 1, . . . , Nx}, (6.1)

Fα,i,m(U1,i,m, U2,i,m) =

(fα,i,1,m(U1,i,1,m, U2,i,1,m), . . . , fα,i,Ny−1,m(U1,i,Ny−1,m, U2,i,Ny−1,m))T ,

Lα,i,m = diag(lα,i,1,m, . . . , lα,i,Ny−1,m), Rα,i,m = diag(rα,i,1,m, . . . , rα,i,Ny−1,m),

i ∈ I = {1, 2, . . . , Nx − 1}, α′ 6= α, α, α′ = 1, 2,

ψα,i = (ψα,i,0, . . . , ψα,i,Ny)
T , i ∈ I, α = 1, 2.

where the following notation is in use

Fα,i,m(Uα,i,m, Uα′,i,m) =

{
F1,i,m(U1,i,m, U2,i,m), α = 1,

F2,i,m(U1,i,m, U2,i,m), α = 2,
i ∈ I, m ≥ 1, (6.2)

with symmetry Fα,i,m(Uα,i,m, Uα′,i,m) = Fα,i,m(Uα′,m, Uα,i,m). The terms Lα,1,mUα,0,m

and Rα,Nx−1Uα,Nx,m are included in the boundaries. Thus, the difference scheme (5.11),

(5.13) can be presented in the form

Aτα,i,mUα,i,m − Lα,i,mUα,i−1,m −Rα,i,mUα,i+1,m = (6.3)

− Fα,i,m(Uα,i,m, Uα′,i,m) + τ−1Uα,i,m−1, i ∈ I, α′ 6= α, α, α′ = 1, 2,

Aτα,i,mUα,i,m = (Aα,i,m + τ−1I)Uα,i,m,

Uα,i,m = gα,i,m, i ∈ ∂I, m ≥ 1, Uα,i,0 = ψα,i, i ∈ I, α = 1, 2,

where I is the identity matrix, and the tridiagonal matrices Aα,i,m, i ∈ I, α = 1, 2,

m ≥ 1, are defined by

Aα,i,m =



dα,i,1,m −qα,i,1,m 0

−bα,i,2,m dα,i,2,m −qα,i,2,m

. . .
. . .

. . .

−bα,i,Ny−2,m dα,i,Ny−2,m −qα,i,Ny−2,m

0 −bα,i,Ny−1,m dα,i,Ny−1,m



.

The elements of the matrices Lα,i,m and Rα,i,m, i ∈ I, α = 1, 2, m ≥ 1, contain the

coupling coefficients of a mesh point (i, j,m) to, respectively, mesh points (i− 1, j,m)

and (i+ 1, j,m), j = 1, 2, . . . , Ny − 1.
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6.1.1 Quasi-monotone nondecreasing case

In the case of the quasi-monotone nondecreasing functions fα, α = 1, 2, (5.20), we say

that mesh functions

(Ũ1,i,m, Ũ2,i,m), (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1,

are ordered upper and lower solutions of (6.3), if they satisfy the inequalities

Ûα,i,m ≤ Ũα,i,m, i ∈ I, (6.4a)

Kα,i,m(Ûα,i,m, Ûα,i,m−1, Ûα′,i,m) ≤ 0 ≤ Kα,i,m(Ũα,i,m, Ũα,i,m−1, Ũα′,i,m), i ∈ I, (6.4b)

Kα,i,m(Uα,i,m, Uα,i,m−1, Uα′,i,m) ≡ Aτα,i,mUα,i,m − Lα,i,mUα,i−1,m −Rα,i,mUα,i+1,m

+ Fα,i,m(Uα,i,m, Uα′,i,m)− τ−1Uα,i,m−1,

α′ 6= α, α, α′ = 1, 2,

Ûα,i,m ≤ gα,i,m ≤ Ũα,i,m, i ∈ ∂I, m ≥ 1, Ûα,i,0 ≤ ψα,i ≤ Ũα,i,0, i ∈ I, α = 1, 2,

(6.4c)

where notation (6.2) is in use. On each time level m ≥ 1, for a given pair of ordered

upper and lower solutions (Ũ1,i,m, Ũ2,i,m), (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1, we define the

sectors

〈Ûm, Ũm〉 =
{
Uα,i,m : Ûα,i,m ≤ Uα,i,m ≤ Ũα,i,m, i ∈ I, α = 1, 2, m ≥ 1

}
.

(6.5)

Remark 6.1.1. Similar to Remark 5.3.3 from Chapter 5, we state the mean-value

theorem for vector-valued mesh functions. Assume that fα(x, y, t, uα, uα′), (x, y, t) ∈
QT , α′ 6= α, α, α′ = 1, 2, are smooth functions, then we have

Fα,i,m(Uα,i,m, Uα′,i,m)− Fα,i,m(Vα,i,m, Uα′,i,m) = (6.6)(
Fα,i,m(Qα,i,m, Uα′,i,m)

)
uα

[Uα,i,m − Vα,i,m],

Fα,i,m(Uα,i,m, Uα′,i,m)− Fα,i,m(Uα,i,m, Vα′,i,m) =(
Fα,i,m(Uα,i,m, Yα′,i,m)

)
uα′

[Uα′,i,m − Vα′,i,m],

where Qα,i,m and Yα,i,m lie between Uα,i,m and Vα,i,m, i ∈ I, α = 1, 2, m ≥ 1, and

notation (6.2) is in use.
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The notation (Fα,i,m)uα and (Fα,i,m)uα′ stands for the diagonal matrices

(
Fα,i,m(Qα,i,m, Uα′,i,m)

)
uα

= (6.7)

diag
((
fα,i,1,m(Qα,i,1,m, Uα′,i,m)

)
uα
, . . . ,

(
fα,i,Ny−1,m(Qα,i,Ny−1,m, Uα′,i,Ny−1,m)

)
uα

)
,(

Fα,i,m(Uα,i,m, Yα′,i,m)
)
uα′

=

diag
((
fα,i,1,m(Uα,i,1,m, Yα′,i,m)

)
uα′

, . . . ,
(
fα,i,Ny−1,m(Uα,i,Ny−1,m, Yα′,i,Ny−1,m)

)
uα′

)
.

We rewrite (5.21) in the vector form

Γα,i,m(Uα,i,m, Uα′,i,m) = Cα,i,mUα,i,m − Fα,i,m(Uα,i,m, Uα′,i,m), (6.8)

Cα,i,m = diag(cα,i,1,m, . . . , cα,i,Ny−1,m), i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where cα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, are nonnegative bounded functions, and

notation (6.2) is in use. We give a monotone property of Γα,i,m(Uα,i,m, Uα′,i,m), i ∈ I,

α′ 6= α, α, α′ = 1, 2, m ≥ 1.

Lemma 6.1.2. Suppose that (U1,i,m, U2,ij,m) and (V1,i,m, V2,i,m), (i, j) ∈ Ω
h
, m ≥ 1,

are two vector functions in the sector 〈Ûm, Ũm〉 from (5.18), such that Uα,i,m ≥ Vα,i,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, and (5.19), (5.20) are satisfied. Then

Γα,i,m(Uα,i,m, Uα′,i,m) ≥ Γα,i,m(Vα,i,m, Vα′,i,m), i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

(6.9)

Proof. From (6.8),

Γα,i,m(Uα,i,m, Uα′,i,m)− Γα,i,m(Vα,i,m, Vα′,i,m) = Cα,i,m(Uα,i,m − Vα,i,m)

− [Fα,i,m(Uα,i,m, Uα′,i,m)− Fα,i,m(Vα,i,m, Uα′,i,m)]

− [Fα,i,m(Vα,i,m, Uα′,i,m)− Fα,i,m(Vα,i,m, Vα′,i,m)].

Using the mean-value theorem (6.6), we have

Γα,i,m(Uα,i,m, Uα′,i,m)− Γα,i,m(Vα,i,m, Vα′,i,m) =

(Cα,i,m − (Fα,i,m)uα)(Uα,i,m − Vα,i,m)− (Fα,i,m)uα′ (Uα′,i,m − Vα′,i,m),

where (Fα,i,m)uα and (Fα,i,m)uα′ are defined in (6.7). From here, (5.19), (5.20) and the

assumptions of the lemma that Uα,i,m ≥ Vα,i,m, i ∈ I, α = 1, 2, m ≥ 1, we conclude

(6.9).

Based on the method of upper and lower solutions, we now present the block Jacobi

and block Gauss–Seidel methods for the nonlinear difference scheme (6.3) when the

181



reaction functions fα, α = 1, 2, are quasi-monotone nondecreasing (5.20). On each

time level tm, m ≥ 1, the upper {U (n)
α,i,m} and lower {U (n)

α,i,m}, i ∈ I, α = 1, 2, m ≥ 1,

solutions are calculated by the following block Jacobi and block Gauss-Seidel iterative

methods:

(Aτα,i,m + Cα,i,m)Z
(n)
α,i,m − ηLα,i,mZ

(n)
α,i−1,m = −Kα,i,m

(
U

(n−1)
α,i,m , Uα,i,m−1, U

(n−1)
α′,i,m

)
,

i ∈ I, α′ 6= α, α, α′ = 1, 2, (6.10)

Z
(n)
α,i,m =

{
gα,i,m − U (0)

α,i,m, n = 1,

0, n ≥ 2,
i ∈ ∂I, m ≥ 1,

Uα,i,0 = ψα,i, i ∈ I, Uα,i,m = U
(nm)
α,i,m, α = 1, 2,

where Kα,i,m
(
U

(n−1)
α,i,m , Uα,i,m−1, U

(n−1)
α′,i,m

)
, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are defined in

(6.4), 0 is a zero column vector with Nx − 1 components and Uα,i,m, i ∈ I, α = 1, 2,

m ≥ 1, are the approximate solutions on time level m ≥ 1, where nm is a number of

iterations on time level m ≥ 1. For η = 0 and η = 1, we have, respectively, the block

Jacobi and block Gauss–Seidel methods.

Remark 6.1.3. For quasi-monotone nondecreasing functions (5.20), upper and lower

solutions are independent, hence, by using (6.10), we calculate either the sequence

{U (n)
1,i , U

(n)
2,i }, i ∈ I or the sequence {U (n)

1,i , U
(n)
2,i }, i ∈ I.

Remark 6.1.4. Basic advantages of the block Jacobi iterative method with η = 0 in

(6.10) and the block Gauss–Seidel method with η = 1 in (6.10), are that on each time

level m ≥ 1, the Thomas algorithm can be used for solving each subsystem (α, i), i ∈ I,

α = 1, 2, as in the case of elliptic systems with quasi-monotone nondecreasing reaction

functions, which are indicated in Remark 4.1.6.

Theorem 6.1.5. Let (Ũ1,i,m, Ũ2,i,m) and (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1, be ordered

upper and lower solutions (6.4) to (6.3). Suppose that the functions fα, α = 1, 2, in

(5.1) satisfy (5.19) and (5.20). Then the upper {U (n)
α,i,m} and lower {U (n)

α,i,m}, i ∈ I,

α = 1, 2, m ≥ 1, sequences generated by (6.10) with, respectively, (U
(0)
1,i,m, U

(0)
2,i,m) =

(Ũ1,i,m, Ũ2,i,m) and (U
(0)
1,i,m, U

(0)
2,i,m) = (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1, converge monoton-

ically, such that,

U
(n−1)
α,i,m ≤ U

(n)
α,i,m ≤ U

(n)
α,i,m ≤ U

(n−1)
α,i,m , i ∈ I, α = 1, 2, m ≥ 1. (6.11)

Proof. Since U
(0)
α,i,1, i ∈ I, α = 1, 2, are upper solutions (6.4) with respect to Uα,i,0 =

ψα,i, i ∈ I, α = 1, 2, it follows that Kα,i,1(U
(0)
α,i,1, ψα,i, U

(0)
α′,i,1) ≥ 0, i ∈ I, α′ 6= α,
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α, α′ = 1, 2. From here and (6.10), we have

(
Aτα,i,1 + Cα,i,1

)
Z

(1)
α,i,1 ≤ ηLα,i,1Z

(1)
α,i−1,1, i ∈ I, α = 1, 2. (6.12)

Taking into account that
(
Aτα,i,1 + Cα,i,1

)−1
> O from (4.6), η = 0, 1, Lα,i,1 > O from

(5.41b) and Z
(1)
α,0,1 ≤ 0, i ∈ I, α = 1, 2, for i = 1 in (6.12), we conclude that Z

(1)
α,1,1 ≤ 0,

α = 1, 2. By induction on i, we can prove that

Z
(1)
α,i,1 ≤ 0, i ∈ I, α = 1, 2. (6.13)

Similarly, for the lower solutions U
(0)
α,i,1 = Ûα,i,1, i ∈ I, α = 1, 2, we can prove that

Z
(1)
α,i,1 ≥ 0, i ∈ I, α = 1, 2. (6.14)

We now prove that U
(1)
α,i,1 and U

(1)
α,i,1, i ∈ I, α = 1, 2, are ordered upper and lower

solutions (5.17) with respect to the vectors Uα,i,0 = ψα,i, i ∈ I, α = 1, 2. Letting

W
(1)
α,i,1 = U

(1)
α,i,1 − U

(1)
α,i,1, i ∈ I, α = 1, 2, in notation (5.21), from (6.10), we have

(
Aτα,i,1 + Cα,i,1

)
W

(1)
α,i,1 − ηLα,i,1W

(1)
α,i−1,1 = Rα,i,1W

(0)
α,i+1,1 + Γα,i,1(U

(0)
α,i,1, U

(0)
α′,i,1)

− Γα,i,1(U
(0)
α,i,1, U

(0)
α′,i,1),

i ∈ I, α′ 6= α, α, α′ = 1, 2, W
(1)
α,i,1 = 0, i ∈ ∂I, α = 1, 2.

Taking into account that U
(0)
α,i,1 = Ûα,i,1 ≤ U

(0)
α,i,1 = Ũα,i,1, i ∈ I, Rα,i,1 > O, i ∈ I,

α = 1, 2, from (5.41b), and using (6.9), it follows that

(Aτα,i,1 + Cα,i,1)W
(1)
α,i,1 − ηLα,i,1W

(1)
α,i−1,1 ≥ 0, i ∈ I, W

(1)
α,i,1 = 0, i ∈ ∂I, α = 1, 2.

(6.15)

Since W
(1)
α,0,1 = 0 and (Aτα,1,1 + Cα,1,1)−1 > O, α = 1, 2, from (4.6), for i = 1 in (6.15),

we conclude that W
(1)
α,1,1 ≥ 0, α = 1, 2. From here, (Aτα,2,1 + Cα,2,1)−1 > O, η = 0, 1,

Lα,2,1 > O, α = 1, 2 in (5.41b), for i = 2, we obtain that W
(1)
α,2,1 ≥ 0, α = 1, 2. By

induction on i, we can prove that

W
(1)
α,i,1 ≥ 0, i ∈ I, α = 1, 2.
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Thus, we prove (6.4a). From (6.10) and using notation (6.8), we conclude that

Kα,i,1(U
(1)
α,i,1, ψα,i, U

(1)
α′,i,1) = −Rα,i,1Z

(1)
α,i+1,1 + Γα,i,1(U

(0)
α,i,1, U

(0)
α′,i,1) (6.16)

− Γα,i,1(U
(1)
α,i,1, U

(1)
α′,i,1),

i ∈ I, α′ 6= α, α, α′ = 1, 2.

From here, (6.13), Rα,i,1 > O, i ∈ I, α = 1, 2, in (5.41b), by using (6.9), we obtain

Kα,i,1(U
(1)
α,i,1, ψα,i, U

(1)
α′,i,1) ≥ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2.

Thus, U
(1)
α,i,1, i ∈ I, α = 1, 2, satisfy (6.4b). By a similar manner, we can prove that

Kα,i,1(U
(1)
α,i,1, ψα,i, U

(1)
α′,i,1) ≤ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2.

Hence, U
(1)
α,i,1, i ∈ I, α = 1, 2, satisfy (6.4b). From the boundary conditions in (6.10),

it follows that U
(1)
α,i,1 and U

(1)
α,i,1, i ∈ I, α = 1, 2, satisfy (6.4c).

Thus, we prove that U
(1)
α,i,1 and U

(1)
α,i,1, i ∈ I, α = 1, 2, are ordered upper and lower

solutions (6.4). By induction on n ≥ 1, we can prove (6.11) on the first time level

m = 1.

On the second time level m = 2, taking into account that U
(0)
α,i,2 = Ũα,i,2, i ∈ I,

α = 1, 2, from (6.3), we obtain

Kα,i,2
(
Ũα,i,2, Uα,i,1, Ũα′,i,2

)
=

Aτα,i,2Ũα,i,2 − Lα,i,2Ũα,i−1,2 −Rα,i,2Ũα,i+1,2 + Fα,i,2(Ũα,i,2, Ũα′,i,2)− τ−1Uα,i,1,

i ∈ I, α′ 6= α, α, α′ = 1, 2,

where Uα,i,1, i ∈ I, α = 1, 2, are the approximate solutions on the first time level

m = 1, which defined in (6.10). From here and taking into account that from (6.11),

Uα,i,1 ≤ Ũα,i,1, i ∈ I, α = 1, 2, it follows that

Kα,i,2
(
Ũα,i,2, Uα,i,1, Ũα′,i,2

)
≥ Kα,i,2

(
Ũα,i,2, Ũα,i,1, Ũα′,i,2

)
≥ 0, (6.17)

i ∈ I, α′ 6= α, α, α′ = 1, 2,

which means that U
(0)
α,i,2 = Ũα,i,2, i ∈ I, α = 1, 2, are upper solutions with respect to

Uα,i,1, i ∈ I, α = 1, 2. Similarly, we can obtain that

Kα,i,2
(
Ûα,i,2, Uα,i,1, Ûα′,i,2

)
≤ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2,

which means that U
(0)
α,i,2 = Ûα,i,2, i ∈ I, α = 1, 2, are lower solutions with respect to
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Uα,i,1, i ∈ I, α = 1, 2. From here, (6.10) and (6.17), on the second time level m = 2,

we have (
Aτα,i,2 + Cα,i,2

)
Z

(1)
α,i,2 ≤ ηLα,i,2Z

(1)
α,i−1,2, i ∈ I, α = 1, 2. (6.18)

Taking into account that η = 0, 1, Lα,i,2 > O from (5.41b), (Aτα,i,2 + Cα,i,2)−1 > O,

i ∈ I, α = 1, 2, and Z
(1)
α,0,2 ≤ 0, for i = 1 in (6.18), it follows that Z

(1)
α,1,2 ≤ 0, α = 1, 2.

From here and (6.18) with i = 2, we conclude that Z
(1)
α,2,2 ≤ 0, α = 1, 2. By induction

on i, we can prove that

Z
(1)
α,i,2 ≤ 0, i ∈ I, α = 1, 2. (6.19)

Similarly, for initial lower solutions Uα,i,2, i ∈ I, α = 1, 2, we can prove that

Z
(1)
α,i,2 ≥ 0, i ∈ I, α = 1, 2. (6.20)

The proof that U
(1)
α,i,2 and U

(1)
α,i,2, i ∈ I, α = 1, 2, are ordered upper and lower solutions

(6.4) repeats the proof on the first time level m = 1. By induction on m, we can prove

(6.11) for m ≥ 1.

6.1.2 Quasi-monotone nonincreasing case

In the case of the quasi-monotone nonincreasing functions (5.30) , on each time level

m ≥ 1, we say that mesh functions

(Ũ1,i,m, Ũ2,i,m), (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1,

are ordered upper and lower solutions to (6.3), if they satisfy the inequalities

Ûα,i,m ≤ Ũα,i,m, i ∈ I, (6.21a)

Kα,i,m(Ûα,i,m, Ûα,i,m−1, Ũα′,i,m) ≤ 0 ≤ Kα,i,m(Ũα,i,m, Ũα,i,m−1, Ûα′,i,m), i ∈ I,
(6.21b)

Ûα,i,m ≤ gα,i,m ≤ Ũα,i,m, i ∈ ∂I, m ≥ 1, Ûα,i,0 ≤ ψα,i ≤ Ũα,i,0, i ∈ I, α = 1, 2,

(6.21c)

where Kα,i,m(Uα,i,m, Uα,i,m−1, Uα′,i,m), i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are defined in

(6.4).

Lemma 6.1.6. Let (5.19) and (5.30) hold, and Uα,i,m, Vα,i,m, i ∈ I, α = 1, 2, m ≥ 1,

be two mesh functions in 〈Ûm, Ũm〉 such that Uα,i,m ≥ Vα,i,m, i ∈ I, α = 1, 2, m ≥ 1.

Then

Γα,i,m(Uα,i,m, Vα′,i,m) ≥ Γα,i,m(Vα,i,m, Uα′,i,m), i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1.

(6.22)
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Proof. From (6.8), we have

Γα,i,m(Uα,i,m, Vα′,i,m)− Γα,i,m(Vα,i,m, Uα′,i,m) = Cα,i,m(Uα,i,m − Vα,i,m)

− [Fα,i,m(Uα,i,m, Vα′,i,m)− Fα,i,m(Vα,i,m, Vα′,i,m)]

+ [Fα,i,m(Vα,i,m, Uα′,i,m)− Fα,i,m(Vα,i,m, Vα′,i,m)],

where notation (6.2) is in use. Using the mean-value theorem (5.16), we have

Γα,i,m(Uα,i,m, Vα′,i,m)− Γα,i,m(Vα,i,m, Uα′,i,m) =(
Cα,i,m −

(
Fα,i,m(Qα,i,m, Vα′,i,m)

)
uα

)
(Uα,i,m − Vα,i,m)

+
(
Fα,i,m(Vα,i,m, Yα′,i,m)

)
uα′

(Uα′,i,m − Vα′,i,m),

Vα,i,m ≤ Qα,i,m, Yα,i,m ≤ Uα,i,m, i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where (Fα,i,m)uα and (Fα,i,m)uα′ are defined in (6.6). From here, (5.19), (5.30) and the

assumptions of the lemma, we conclude (6.22).

We now present the block Jacobi and block Gauss–Seidel methods for the nonlinear

difference scheme (6.3) when the reaction functions fα, α = 1, 2, are quasi-monotone

nonincreasing (5.30).

For solving the nonlinear difference scheme (6.3), on each time level tm, m ≥ 1, we

construct the block iterative Jacobi and block iterative Gauss-Seidel methods in the

forms

(Aτα,i,m + Cα,i,m)Z
(n)
α,i,m − ηLα,i,mZ

(n)
α,i−1,m = −Kα,i,m

(
U

(n−1)
α,i,m , Uα,i,m−1, U

(n−1)
α′,i,m

)
,

(Aτα,i,m + Cα,i,m)Z
(n)
α,i,m − ηLα,i,mZ

(n)
α,i−1,m = −Kα,i,m

(
U

(n−1)
α,i,m , Uα,i,m−1, U

(n−1)
α′,i,m

)
,

i ∈ I, (6.23)

Z
(n)
α,i,m =

{
gα,i,m − U (0)

α,i,m, n = 1,

0, n ≥ 2,
i = ∂I,

Uα,i,0 = ψα,i, i ∈ I, Z
(n)
α,i,m = U

(n)
α,i,m − U

(n−1)
α,i,m , Uα,i,m = U

(nm)
α,i,m,

α′ 6= α, α, α′ = 1, 2, m ≥ 1,

where the residuals Kα,i,m
(
U

(n−1)
α,i,m , Uα,i,m−1, U

(n−1)
α′,i,m

)
, i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1,

are defined in (6.4), 0 is zero vector with Nx−1 components. The vectors Uα,i,m, i ∈ I,

α = 1, 2, m ≥ 1, are the approximate solutions on time level m ≥ 1, where nm is a

number of iterations on time level m ≥ 1. For η = 0 and η = 1, we have, respectively,

the block Jacobi and block Gauss–Seidel methods.

Remark 6.1.7. For quasi-monotone nonincreasing functions fα, α = 1, 2, (5.30),
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upper and lower solutions are coupled, hence, by using (6.23), we calculate either the

sequence {U (n)
1,i,m, U

(n)
2,i,m}, i ∈ I, m ≥ 1, or the sequence {U (n)

1,i,m, U
(n)
2,i,m}, i ∈ I, m ≥ 1.

Remark 6.1.8. Basic advantages of the block Jacobi method with η = 0 in (6.23) and

the block Gauss–Seidel method with η = 1 in (6.23) are that on each time level m ≥ 1,

the Thomas algorithm can be used for solving each subsystem (α, i), i ∈ I, α = 1, 2, as

in the case of elliptic systems with quasi-monotone nondecreasing reaction functions,

which are indicated in Remark 4.1.6.

In the following theorem, we prove the monotone property of the block iterative

methods (6.23).

Theorem 6.1.9. Let (Ũ1,i,m, Ũ2,i,m) and (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1, be ordered

upper and lower solutions (6.21) to (6.3). Suppose that fα, α = 1, 2, in (5.1) satisfy

(5.19) and (5.30). Then the sequences {U (n)
1,i,m, U

(n)
2,i,m} and {U (n)

1,i,m, U
(n)
2,i,m}, i ∈ I, m ≥

1, generated by (6.23), with (U
(0)
1,i,m, U

(0)
2,i,m) = (Ũ1,i,m, Û2,i,m) and (U

(0)
1,i,m, U

(0)
2,i,m) =

(Û1,i,m, Ũ2,i,m), i ∈ I, m ≥ 1, are ordered upper and lower solutions and converge

monotonically, such that,

U
(n−1)
α,i,m ≤ U

(n)
α,i,m ≤ U

(n)
α,i,m ≤ U

(n−1)
α,i,m , i ∈ I, α = 1, 2, m ≥ 1. (6.24)

Proof. On first time levelm = 1, in the case of the sequence {U (n)
1,i,1, U

(n)
2,i,1}, (U

(0)
1,i,1, U

(0)
2,i,1) =

(Ũ1,i,1, Û2,i,1), i ∈ I, are initial upper and lower solution (6.21) with respect to Uα,i,0 =

ψα,i, i ∈ I, α = 1, 2. Hence, it follows that K1,i,1

(
Ũ1,i,1, ψ1,i, Û2,i,1

)
≥ 0, i ∈ I, and

K2,i,1

(
Ũ1,i,1, ψ2,i, Û2,i,1

)
≤ 0, i ∈ I. From here and (6.23), we have

(Aτ1,i,1 + C1,i,1)Z
(1)
1,i,1 ≤ ηL1,i,1Z

(1)
1,i−1,1, i ∈ I, (6.25)

(Aτ2,i,1 + C2,i,1I)Z
(1)
2,i,1 ≥ ηL2,i,1Z

(1)
2,i−1,1, i ∈ I,

Z
(1)
1,i,1 ≤ 0, Z

(1)
2,i,1 ≥ 0, i ∈ ∂I, Z

(1)
1,i,0 = 0.

Taking into account that η = 0, 1, L1,1,1 > O from (5.41b) and Z
(1)
1,0,1 ≤ 0, Z

(1)
2,0,1 ≥ 0,

for i = 1 in (6.25), we have
(
Aτ1,1,1 + C1,1,1

)
Z

(1)
1,1,1 ≤ 0,

(
Aτ2,1,1 + C2,1,1

)
Z

(1)
2,1,1 ≥ 0.

From here and taking into account that (Aτα,1,1 + Cα,1,1)−1 > O, α = 1, 2, where O is

the (Ny− 1)× (Ny− 1) null matrix, it follows that Z
(1)
1,1,1 ≤ 0, Z

(1)
2,1,1 ≥ 0. By induction

on i, we can prove that

Z
(1)
1,i,1 ≤ 0, Z

(1)
2,i,1 ≥ 0, i ∈ I. (6.26)
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Similarly, for the sequence {U (n)
1,i,1, U

(n)
2,i,1}, from (6.23), we can prove that

Z
(1)
1,i,1 ≥ 0, Z

(1)
2,i,1 ≤ 0, i ∈ I. (6.27)

We now prove that U
(1)
α,i,1 and U

(1)
α,i,1, i ∈ I, α = 1, 2, are ordered upper and lower

solutions (6.21). Let W
(1)
α,i,1 = U

(1)
α,i,1 − U

(1)
α,i,1, i ∈ I, α = 1, 2. Using notation (6.8),

from (6.23), we have

(Aτα,i,1 + Cα,i,1)W
(1)
α,i,1 = ηLα,i,1W

(1)
α,i−1,1 +Rα,i,1W

(0)
α,i+1,1 + Γα,i,1(U

(0)
α,i,1, U

(0)
α′,i,1)

− Γα,i,1(U
(0)
α,i,1, U

(0)
α′,i,1), i ∈ I

W
(1)
α,i,1 = 0, i ∈ ∂I, Wα,i,0 = 0, i ∈ I, α′ 6= α, α, α′ = 1, 2.

From (6.22), taking into account that η = 0, 1, Rα,i,1 > O, i ∈ I from (5.41b) and

W
(0)
α,i,1 ≥ 0, i ∈ I, α = 1, 2, we conclude that

(Aτα,i,1 + Cα,i,1)W
(1)
α,i,1 ≥ ηLα,i,1W

(1)
α,i−1,1, i ∈ I, (6.28)

W
(1)
α,i,1 = 0, i ∈ ∂I, W

(1)
α,i,0 = 0, i ∈ I, α = 1, 2.

Taking into account that W
(1)
α,0,1 = 0 and (Aτα,i,1 + Cα,i,1)−1 > O, i ∈ I, α = 1, 2, for

i = 1 in (6.28), we have W
(1)
α,1,1 ≥ 0, α = 1, 2. From here, for i = 2 in (6.28), by a

similar manner, we obtain W
(1)
α,2,1 ≥ 0, α = 1, 2. By induction on i, we can prove that

W
(1)
α,i,1 ≥ 0, i ∈ I, α = 1, 2. (6.29)

Thus, we prove (6.21a) on the first time level m = 1.

From (6.23) and using (6.22), we obtain

Kα,i,1(U
(1)
α,i,1, ψα,i, U

(1)
α′,i,1) = −Rα,i,1Z

(1)
α,i+1,1 + Γα,i,1(U

(0)
α,i,1, U

(0)
α′,i,1) (6.30)

− Γα,i,1(U
(1)
α,i,1, U

(1)
α′,i,1),

i ∈ I, α′ 6= α, α, α′ = 1, 2.

Taking into account that R1,i,1 > O, i ∈ I in (5.41b), from (6.26), (6.27) and (6.30),

by using (6.22), we conclude that

Kα,i,1
(
U

(1)
α,i,1, ψα,i, U

(1)
α′,i,1

)
≥ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2. (6.31)

Similarly, we can prove that

Kα,i,1
(
U

(1)
α,i,1, ψα,i, U

(1)
α′,i,1

)
≤ 0, i ∈ I, α′ 6= α, α, α′ = 1, 2. (6.32)

188



Thus, (6.31) and (6.32) satisfy (6.21b). From the boundary and initial conditions in

(6.23), it follows that U
(1)
α,i,1 and U

(1)
α,i,1, satisfy (6.21c). Thus, from here, (6.29), (6.31)

and (6.32), we conclude that U
(1)
α,i,1 and U

(1)
α,i,1, i ∈ I, α = 1, 2, are ordered upper and

lower solutions (6.21).

By induction on n, we can prove that U
(n)
α,i,1, i ∈ I, α = 1, 2, are monotone decreasing

sequences of upper solutions and U
(n)
α,i,1, i ∈ I, α = 1, 2, are monotone increasing

sequences of lower solutions which satisfy (6.24).

On the second time level m = 2, for the sequence {U (n)
1,i,2, U

(n)
2,i,2}, i ∈ I, we have

U
(0)
1,i,2 = Ũ1,i,2 and U

(0)
2,i,2 = Û2,i,2, i ∈ I. From (6.3), we obtain that

K1,i,2(Ũ1,i,2, U1,i,1, Û2,i,2) = Aτ1,i,2Ũ1,i,2 − L1,i,2Ũ1,i−1,2 −R1,i,2Ũ1,i+1,2

+ F1,i,2(Ũ1,i,2, Û2,i,2)− τ−1U1,i,1,

K2,i,2(Ũ1,i,2, U2,i,1, Û2,i,2) = Aτ2,i,2Û2,i,2 − L2,i,2Û2,i−1,2 −R2,i,2Û2,i+1,2

+ F2,i,2(Ũ1,i,2, Û2,i,2)− τ−1U2,i,1,

where U1,i,1 and U2,i,1, i ∈ I, are the approximate solutions on the first time level

m = 1, which are defined in (6.23). From here and taking into account that from

(6.24), U1,i,1 ≤ Ũ1,i,1 and Û2,i,1 ≤ U2,i,1, i ∈ I, it follows that

K1,i,2

(
Ũ1,i,2, U1,i,1, Û2,i,2

)
≥ K1,i,2

(
Ũ1,i,2, Ũ1,i,1, Û2,i,2

)
≥ 0, (6.33)

K2,i,2

(
Ũ1,i,2, U2,i,1, Û2,i,2

)
≤ K2,i,2

(
Ũ1,i,2, Û2,i,1, Û1,i,2

)
≤ 0, i ∈ I,

which means that U
(0)
1,i,2 = Ũ1,i,2 and U

(0)
2,i,2 = Û2,i,2, i ∈ I are upper and lower solutions

with respect to U1,i,1 and U2,i,1, i ∈ I.

Similarly, we can prove that

K1,i,2

(
Û1,i,2, U1,i,1, Ũ2,i,2

)
≤ 0, K2,i,2

(
Û1,i,2, U2,i,1, Ũ2,i,2

)
≥ 0, i ∈ I,

which means that Ũ2,i,2 and Û1,i,2, i ∈ I, are upper and lower solutions with respect to

U2,i,1 and U1,i,1, i ∈ I. From here, (6.23) and (6.33), on the second time level m = 2,

we have

(Aτ1,i,2 + C1,i,2)Z
(1)
1,i,2 ≤ ηL1,i,2Z

(1)
1,i−1,2, i ∈ I, (6.34)

(Aτ2,i,2 + C2,i,2)Z
(1)
2,i,2 ≥ ηL2,i,2Z

(1)
2,i−1,2, i ∈ I,

Z
(1)
1,i,2 ≤ 0, Z

(1)
2,i,2 ≥ 0, i ∈ ∂I.
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Taking into account that η = 0, 1, Lα,i,2 > O from (5.41b),
(
Aτα,i,2 + Cα,i,2

)−1
> O,

i ∈ I, α = 1, 2, and Z
(1)
1,0,2 ≤ 0, Z

(1)
2,0,2 ≥ 0, for i = 1 in (6.34), we conclude that

Z
(1)
1,1,2 ≤ 0, Z

(1)
2,1,2 ≥ 0. From here, in a similar manner, for i = 2 in (6.34), we conclude

that Z
(1)
1,2,2 ≤ 0, Z

(1)
2,2,2 ≥ 0. By induction on i, we can prove that

Z
(1)
1,i,2 ≤ 0, Z

(1)
2,i,2 ≥ 0, i ∈ I.

The proof, that U
(1)
α,i,2 and U

(1)
α,i,2, i ∈ I, α = 1, 2, are ordered upper and lower solutions

(6.21), repeats the proof on the first time level m = 1. By induction on n, we can

prove that U
(n)
α,i,2, i ∈ I, α = 1, 2, are monotone decreasing sequence of upper solutions

and U
(n)
α,i,2, i ∈ I, α = 1, 2, are monotone increasing sequence of lower solutions which

satisfy (6.24). By induction on m, we can prove (6.24) for m ≥ 1. In a similar manner,

we can prove the theorem for the sequence {U (n)
1,i,m, U

(n)
2,i,m}, i ∈ I, m ≥ 1.

6.1.3 Existence and uniqueness of a solution to the nonlinear differ-

ence scheme (6.3)

In Section 5.5, for quasi-monotone nondecreasing reaction functions fα, α = 1, 2, (5.20),

we prove the existence and uniqueness of a solution to the nonlinear difference scheme

(5.41) in, respectively, Theorems 5.5.2 and 5.5.3. The proofs of these results are based

on the monotone properties of the point iterative sequences (5.44) in Theorem 5.4.3 and

the maximum principle in Lemma 5.4.1. In a similar manner, we prove the existence

and uniqueness of a solution by using the monotone properties of the block iterative

sequences (6.11) in Theorem 6.1.5 and property (4.6) of irreducibly diagonally dominant

matrices in Lemma 4.1.2, Chapter 4.

In the case of quasi-monotone nonincreasing reaction functions (5.30), we prove the

existence and uniqueness of a solution to (5.11) in, respectively, Theorems 5.5.4 and

5.5.5 in Chapter 5. As in the quasi-monotone nondecreasing case, the proofs are based

on the monotone properties of the point iterative sequences (5.58) in Theorem 5.4.5

and Lemma 5.4.1 in Chapter 4.

In a similar manner, these results can be proved by using the monotone properties

of the block iterative sequences (6.24) in Theorem 6.1.9 and Lemma (4.1.2).

6.2 Comparison of convergence of the block monotone Ja-

cobi and block monotone Gauss–Seidel methods

We compare the convergence rates of the block monotone Jacobi and block monotone

Gauss–Seidel methods.
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6.2.1 Quasi-monotone nondecreasing case

In the case of quasi-monotone nondecreasing reaction functions (5.20), the following

theorem shows that the block monotone Gauss–Seidel method with η = 1 in (6.10),

converges faster than the block monotone Jacobi method with η = 0 in (6.10).

Theorem 6.2.1. Let (Ũ1,i,m, Ũ2,i,m) and (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1, be ordered upper

and lower solutions (6.4) of the nonlinear difference scheme (6.3). Suppose that fα, α =

1, 2, in (5.1) satisfy (5.19) and (5.20). The sequences
{

(U
(n)
α,i,m)J

}
and

{
(U

(n)
α,i,m)GS

}
,

i ∈ I, α = 1, 2, m ≥ 1, are, respectively, the sequences generated by the block monotone

Jacobi method with η = 0 in (6.10), and the block monotone Gauss–Seidel method with

η = 1 in (6.10), where (U
(0)
α,i,m)J = (U

(0)
α,i,m)GS = Ũα,i,m and (U

(0)
α,i,m)J = (U

(0)
α,i,m)GS =

Ûα,i,m, i ∈ I, α = 1, 2, m ≥ 1. Then the following inequalities hold

(U
(n)
α,i,m)J ≤ (U

(n)
α,i,m)GS ≤ (U

(n)
α,i,m)GS ≤ (U

(n)
α,i,m)J, i ∈ I, α = 1, 2, m ≥ 1. (6.35)

Proof. Letting W
(n)
α,i,m =

(
U

(n)
α,i,m

)
J
−
(
U

(n)
α,i,m

)
GS

, i ∈ I, α = 1, 2, m ≥ 1, from (6.10)

and using notation (6.8), we have

Aτα,i,mW
(n)
α,i,m + Cα,i,mW

(n)
α,i,m = ηLα,i,m

(
(U

(n−1)
α,i−1,m)J − (U

(n)
α,i−1,m)GS

)
+Rα,i,mW

(n−1)
α,i+1,m

+ Γα,i,m

(
U

(n−1)
α,i,m , U

(n−1)
α′,i,m

)
J
− Γα,i,m

(
U

(n−1)
α,i,m , U

(n−1)
α′,i,m

)
GS

+ τ−1
(
(Uα,i,m−1)J − (Uα,i,m−1)GS

)
, i ∈ I,

W
(n)
α,i,m = 0, i ∈ ∂I, m ≥ 1, Wα,i,0 = 0, i ∈ I, α = 1, 2.

From here and taking into account that
(
U

(n)
α,i,m

)
GS
≤
(
U

(n−1)
α,i,m

)
GS

, i ∈ I, α = 1, 2,

m ≥ 1, in (6.11), it follows that

Aτα,i,mW
(n)
α,i,m + Cα,i,mW

(n)
α,i,m ≥ ηLα,i,mW

(n−1)
α,i,m +Rα,i,mW

(n−1)
α,i+1,m (6.36)

+ Γα,i,m

(
U

(n−1)
α,i,m , U

(n−1)
α′,i,m

)
J

− Γα,i,m

(
U

(n−1)
α,i,m , U

(n−1)
α′,i,m

)
GS

+ τ−1
(
(Uα,i,m−1)J − (Uα,i,m−1)GS

)
, i ∈ I,

W
(n)
α,i,m = 0, i ∈ ∂I, m ≥ 1, Wα,i,0 = 0, i ∈ I, α = 1, 2.

Taking into account that η = 0, 1, (Aτα,i,1 + Cα,i,1)−1 > O from (4.6), Lα,i,1 > O,

Rα,i,1 > O, i ∈ I from (5.41b), (U
(0)
α,i,1)GS = (U

(0)
α,i,1)J, i ∈ I, α = 1, 2, for n = 1 in

(6.36), on the first time level m = 1, we conclude that

W
(1)
α,i,1 ≥ 0, i ∈ I, α = 1, 2.
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Similarly, from here and (6.36) with n = 2, by using (6.9), we obtain that W
(2)
α,i,1 ≥ 0,

i ∈ I, α = 1, 2. By induction on n, we can prove that W
(n)
α,i,1 ≥ 0, i ∈ I, α = 1, 2.

On the second time level m = 2, taking into account that (Aτα,i,2 + Cα,i,2)−1 > O

from (4.6), Lα,i,2 > O, Rα,i,2 > O, i ∈ I from (5.41b), W
(0)
α,i,2 = 0 and Wα,i,1 ≥ 0,

i ∈ Ω
h
, α = 1, 2, from (6.36) and using (6.9), we have

W
(1)
α,i,2 ≥ 0, i ∈ I, α = 1, 2.

Similarly, from here and (6.36) with n = 2, by using (6.9), on the second time level

m = 2, we obtain that W
(2)
α,i,2 ≥ 0, i ∈ I, α = 1, 2. By induction on n, we can prove

that W
(n)
α,i,2 ≥ 0, i ∈ I, α = 1, 2.

By induction on m ≥ 1, we can prove that

W
(n)
α,i,m ≥ 0, i ∈ I, α = 1, 2, m ≥ 1.

Thus, we prove (6.35) for upper solutions. By the same manner, we can prove (6.35)

for lower solutions.

6.2.2 Quasi-monotone nonincreasing case

Theorem 6.2.2. Let (Ũ1,ij,m, Ũ2,ij,m) and (Û1,ij,m, Û2,i,m), i ∈ I, m ≥ 1, be ordered

upper and lower solutions (6.21) of the nonlinear difference scheme (6.3). Suppose that

fα, α = 1, 2, in (5.1) satisfy (5.19) and (5.30). The sequences
{

(U
(n)
1,i,m)J, (U

(n)
2,i,m)J

}
,{

(U
(n)
1,i,m)J, (U

(n)
2,i,m)J

}
and

{
(U

(n)
1,i,m)GS, (U

(n)
2,i,m)GS

}
,
{

(U
(n)
1,i,m)GS, (U

(n)
2,i,m)GS

}
, i ∈ I, α =

1, 2, m ≥ 1, are, respectively, the sequences generated by the block monotone Jacobi

method with η = 0 in (6.23), and the block monotone Gauss–Seidel method with η = 1

in (6.23), where (U
(0)
α,i,m)J = (U

(0)
α,i,m)GS = Ũα,i,m and (U

(0)
α,i,m)J = (U

(0)
α,i,m)GS = Ûα,i,m,

i ∈ I, α = 1, 2, m ≥ 1. Then the inequalities in (6.35) hold true.

Proof. The proof of the theorem repeats the proof of Theorem 6.2.1, where Γα,i,m,

i ∈ I, α = 1, 2, m ≥ 1, are now written in the form

Γα,i,m(U
(n)
α,i,m, U

(n)
α′,i,m) = Cα,i,mU

(n)
α,i,m − Fα,i,m(U

(n)
α,i,m, U

(n)
α′,i,m),

Γα,i,m(U
(n)
α,i,m, U

(n)
α′,i,m) = Cα,i,mU

(n)
α,i,m − Fα,i,m(U

(n)
α,i,m, U

(n)
α′,i,m),

and the monotone property (6.22) for Γα,i,m, i ∈ I, α = 1, 2, m ≥ 1, is in use.
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6.3 Convergence analysis of the block monotone iterative

methods

6.3.1 Quasi-monotone nondecreasing reaction functions

A stopping test for the block monotone iterative methods (6.10) is chosen in the form

max
α=1,2

[
max
i∈I

∣∣∣Kα,i,m(U
(n)
α,i,m, Uα,i,m−1, U

(n)
α′,i,m)

∣∣∣] ≤ δ, (6.37)

where Kα,i,m(U
(n)
α,i,m, Uα,i,m−1, U

(n)
α′,i,m), i ∈ I, α′ 6= α, α, α′ = 1, 2, m ≥ 1, are residuals

of the nonlinear difference scheme (6.3), U
(n)
α,i,m, i ∈ I, α = 1, 2, m ≥ 1, are generated

by (6.10), and δ is a prescribed accuracy. On each time level m ≥ 1, we set up

Uα,i,m = U
(nm)
α,i,m, i ∈ I, α = 1, 2, m ≥ 1, such that nm is the minimal number of

iterations subject to (6.37).

Theorem 6.3.1. Let Ũα,i,m and Ûα,i,m, i ∈ I, α = 1, 2, m ≥ 1, be ordered upper and

lower solutions (6.4) of (6.3). Suppose that the functions fα, α = 1, 2, satisfy (5.82)

and (5.89). Assume that assumption (5.76) on the time step τ holds, where qα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.82). Then for sequences {U (n)

1,i,m, U
(n)
2,i,m} and

{U (n)
1,i,m, U

(n)
2,i,m}, i ∈ I, m ≥ 1, generated by (6.10), (6.37) with

(U
(0)
1,i,m, U

(0)
2,i,m) = (Ũ1,i,m, Ũ2,i,m), (U

(0)
1,i,m, U

(0)
2,i,m) = (Û1,i,m, Û2,i,m), i ∈ I, m ≥ 1,

the following estimates hold

max
m≥1

max
α=1,2

‖Uα,m − U∗α,m‖Ωh ≤ Tδ, (6.38)

where Uα,i,m = U
(nm)
α,i,m, i ∈ I, α = 1, 2, m ≥ 1, and U∗α,i,m, i ∈ I, α = 1, 2, m ≥ 1, are

the unique solutions to the nonlinear difference scheme (6.3).

Proof. The proof of the theorem repeats the proof of Theorem 5.7.2 from Chapter 5

with Uα,i,m, i ∈ I, α = 1, 2, m ≥ 1, rather than Uα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

Theorem 6.3.2. Let the assumptions in Theorem 6.3.1 be satisfied. Then for the

sequence of solutions {U (n)
α,i,m}, i ∈ I, α = 1, 2, m ≥ 1, generated by (6.10), (6.37), the

following estimate holds

max
m≥1

max
α=1,2

‖Uα,m − u∗α,m‖ωh ≤ T (δ + max
m≥1

Em), (6.39)

Em = max
α=1,2

‖Eα,m‖ωh , m ≥ 1,
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where Uα,i,m = U
(nm)
α,i,m, i ∈ I, α = 1, 2, m ≥ 1, u∗α(x, y, t), α = 1, 2, are the exact

solutions to (5.1), and Eα,i,m, i ∈ I, α = 1, 2, m ≥ 1, are the truncation errors of the

exact solutions on the nonlinear difference scheme (5.11).

Proof. The proof of the theorem repeats the proof of Theorem 5.7.3 from Chapter 5

with Uα,i,m, i ∈ I, α = 1, 2, m ≥ 1, rather than Uα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

6.3.2 Quasi-monotone nonincreasing case

Stopping tests for the sequences {U (n)
1,i,m, U

(n)
2,i,m} and {U (n)

1,i,m, U
(n)
2,i,m}, i ∈ I, m ≥ 1,

generated by the block monotone iterative methods (6.23), are chosen in the forms

max

{
max
i∈I
K1,i,m(U

(n)
1,i,m, U1,i,m−1, U

(n)
2,i,m); max

i∈I
K2,i,m(U

(n)
1,i,m, U2,i,m−1, U

(n)
2,i,m)

}
≤ δ,

(6.40)

max

{
max
i∈I
K1,i,m(U

(n)
1,i,m, U1,i,m−1, U

(n)
2,i,m); max

i∈I
K2,i,m(U

(n)
1,i,m, U2,i,m−1, U

(n)
2,i,m)

}
≤ δ,

where Kα,i,m(U
(n)
α,i,m, Uα,i,m−1, U

(n)
α′,i,m), i ∈ I, α′ 6= α, α, α′ = 1, 2, are residuals of the

nonlinear difference scheme (6.3), which are defined in (6.4), and δ is a prescribed

accuracy. On each time level m ≥ 1, we set up

(U1,i,m, U2,i,m) = (U
(nm)
1,i,m, U

(nm)
1,i,m), (U1,i,m, U2,i,m) = (U

(nm)
1,i,m, U

(nm)
1,i,m), i ∈ I, m ≥ 1,

such that nm is the minimal number of iterations subject to (6.40).

Theorem 6.3.3. Let Ũα,i,m and Ûα,i,m, i ∈ I, α = 1, 2, m ≥ 1, be ordered upper and

lower solutions (6.21) of (6.3). Suppose that the functions fα, α = 1, 2, satisfy (5.82)

and (5.89). Assume that assumption (5.76) on the time step τ holds, where qα,ij,m,

(i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1, from (5.82). Then for sequences {U (n)

1,i,m, U
(n)
2,i,m} and

{U (n)
1,i,m, U

(n)
2,i,m}, i ∈ I, m ≥ 1, generated by (6.23), (6.40) with

(U
(0)
1,i,m, U

(0)
2,i,m) = (Ũ1,i,m, Û2,i,m), (U

(0)
1,i,m, U

(0)
2,i,m) = (Û1,i,m, Ũ2,i,m), i ∈ I, m ≥ 1,

the following estimates hold

max
m≥1

{
max

[
‖U1,m − U∗1,m‖Ωh ; ‖U2,m − U∗2,m‖Ωh

]}
≤ Tδ, (6.41)

max
m≥1

{
max

[
‖U1,m − U∗1,m‖Ωh ; ‖U2,m − U∗2,m‖Ωh

]}
≤ Tδ,

where Uα,i,m = U
(nm)
α,i,m, i ∈ I, α = 1, 2, m ≥ 1, and U∗α,i,m, i ∈ I, α = 1, 2, m ≥ 1, are

the unique solutions to the nonlinear difference scheme (5.11).
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Proof. The proof of the theorem repeats the proof of Theorem 5.7.4 from Chapter 5

with Uα,i,m, i ∈ I, α = 1, 2, m ≥ 1, rather than Uα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

Theorem 6.3.4. Let the assumptions in Theorem 6.3.3 be satisfied. Then for sequences

{U (n)
1,i,m, U

(n)
2,i,m} and {U (n)

1,i,m, U
(n)
2,i,m}, i ∈ I, m ≥ 1, generated by (6.23), (6.40) with

(U
(0)
1,i,m, U

(0)
2,i,m) = (Ũ1,i,m, Û2,i,m), (U

(0)
1,i,m, U

(0)
2,i,m) = (Û1,i,m, Ũ2,i,m), i ∈ I, m ≥ 1,

the following estimates hold

max
m≥1

max
[
‖U1,m − u∗1,m‖Ωh , ‖U2,m − u∗2,m‖Ωh

]
≤ T (δ + max

m≥1
Em),

max
m≥1

max
[
‖U1,m − u∗1,m‖Ωh , ‖U2,m − u∗2,m‖Ωh

]
≤ T (δ + max

m≥1
Em),

Em = max
α=1,2

‖Eα,m‖Ωh , m ≥ 1,

where u∗α(x, y, t), α = 1, 2, are the exact solutions to (5.1), and Eα,i,m, i ∈ I, α = 1, 2,

m ≥ 1, are the truncation errors of the exact solutions on the nonlinear difference

scheme (5.11).

Proof. The proof of the theorem repeats the proof of Theorem 5.7.5 from Chapter 5

with Uα,i,m, i ∈ I, α = 1, 2, m ≥ 1, rather than Uα,ij,m, (i, j) ∈ Ω
h
, α = 1, 2, m ≥ 1.

6.4 Construction of initial upper and lower solutions

In Section 5.8, for quasi-monotone nondecreasing and quasi-monotone nonincreasing

reaction functions, we develop the methods of construction of initial upper and lower

solutions in the cases of bounded reaction functions and constant initial iterates.

Since these methods depend on only properties of corresponding reaction functions

fα, α = 1, 2, hence, the constructed initial iterates from Section 5.8 can be used as

starting iterates for the block monotone iterative methods (6.10) and (6.23).

6.5 Numerical experiments

We present numerical experiments, implemented by the block monotone Jacobi and

Gauss-Seidel methods, for test problems with quasi-monotone nondecreasing (5.20) and

quasi-monotone nonincreasing (5.30) reaction functions fα, α = 1, 2, in (5.1). Exact

solutions for our test problems are unknown, and numerical solutions are compared to

corresponding reference solutions. The approximate solutions U
(nm)
α,i,m, i ∈ I, α = 1, 2,

m ≥ 1, are generated by either the block monotone methods (6.10), (6.37) or the block

monotone methods (6.23), (6.40). In our tests, we choose the reference solutions with
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N = 256 and δ = 10−5 in (4.29) and (4.31). The reference solutions are calculated by

the corresponding block method.

6.5.1 Quasi-monotone nondecreasing case

Test 1

As the first test problem with quasi-monotone nondecreasing reaction functions

(5.20), we consider the Volterra-Lotka competition model from Section 5.3.1.1 with the

same data sets. We choose the initial iteration (Ũ1,i,m, Ũ2,i,m) = ({1}, {1}), i ∈ I,

m ≥ 1, where {1} is the vector with I components of ones and calculate sequences of

upper solutions generated by the block monotone iterative method (6.10), (6.37).

In Table 6.1, for different values of N , T = 2 and τ = 0.01, we give numbers

of iterations nδ and execution (CPU) times for the block monotone iterative methods

and for the point monotone iterative methods from Table 5.1. From these results, we

conclude that the block monotone Gauss-Seidel method converges faster than the block

monotone Jacobi method, which confirms Theorem 6.2.1; the block monotone Gauss–

Seidel method is approximately twice as fast as the block monotone Jacobi method and

the block monotone methods converge faster than the corresponding point monotone

methods.

Table 6.1: Average numbers of iterations nδ and CPU times for Test 1.

N 8 16 32 64 128

the block Jacobi method

nδ 9.12 23.18 82.89 321.67 1797.83
CPU(s) 0.15 0.80 10.92 181.16 824.01

the block Gauss–Seidel method

nδ 6.22 14.14 38.20 158.08 894.23
CPU(s) 0.15 0.49 5.07 84.83 437.52

the point Jacobi method

nδ 11.98 35.88 135.27 533.09 2958.82
CPU(s) 0.13 0.91 13.42 212.16 1287.19

the point Gauss-Seidel method

nδ 6.99 19.50 69.27 268.10 1680.77

CPU(s) 0.12 0.56 7.34 115.24 733.43

Test 2

As the second test problem with quasi-monotone nondecreasing reaction functions

(5.20), we consider Test 2 from Section 5.9.1 with the same data sets. We choose the

initial iteration (Ũ1,i,m, Ũ2,i,m) = ({1}, {1}), i ∈ I, m ≥ 1 and calculate sequences of

upper solutions generated by the block monotone iterative method (6.10), (6.37).
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In Table 6.2, for different values of N , T = 0.5, τ = 0.01, we give numbers of

iterations nδ and execution (CPU) times for the block monotone iterative methods and

for the point monotone iterative methods from Table 5.2. From these results, we

conclude that the block monotone Gauss-Seidel method converges faster than the block

monotone Jacobi method, which confirms Theorem 6.2.1; the block monotone Gauss–

Seidel method is approximately twice as fast as the block monotone Jacobi method

when the number of mesh points N is higher and the block monotone methods converge

faster than the corresponding point monotone methods. Also from Table 6.2, it can

be noticed that the data for the block Jacobi method are very close to the data of the

point Gauss-Seidel method.

In Figure 6.1, we show the convergence of numerical solutions, obtained by the

block Gauss-Seidel method with η = 1 in (6.10) and N = 64 to the reference solution

Nref = 256, where the dashed line represents the numerical solution and the solid blue

line refers to the reference solution with respect to x and fixed value of y = 0.5. In

subgraph 6.1a, starting from the initial lower solution Û1,i,5 = {0}, i ∈ I, on the time

level t5 = 0.05, we show the convergence of the numerical lower solutions U
(n)
1,i,5, i ∈ I,

at n = 200 to the reference solution. Similarly, starting from the initial upper solution

Ũ1,i,5 = {1}, i ∈ I, on the time level t5 = 0.05, subgraph 6.1b shows the convergence

of the numerical upper solutions U
(n)
1,i,5, i ∈ I, at n = 100 to the reference solution.

Table 6.2: Average numbers of iterations nδ and CPU times for Test 2.

N 8 16 32 64 128

the block Jacobi method

nδ 5.76 12.20 29.36 99.66 379.66
CPU(s) 0.07 0.12 0.88 12.31 185.05

the block Gauss–Seidel method

nδ 4.62 9.54 21.16 40.28 181.54
CPU(s) 0.04 0.09 0.72 5.01 92.23

the point Jacobi method

nδ 7.62 17.36 52.80 193.92 752
CPU(s) 0.07 0.13 1.44 20.31 325.65

the point Gauss–Seidel method

nδ 5.86 11.24 29.46 99.78 379.78
CPU(s) 0.06 0.09 0.82 11.26 173.81

6.5.2 Quasi-monotone nonincreasing case

Test 3

As the first test problem with quasi-monotone nonincreasing reaction functions

197



Figure 6.1: Convergence of lower and upper solutions to the reference solution for Test
2.

(a) Lower solutions. (b) Upper solutions.

(5.30), we consider Test 3 from Section 5.9.2 with the same data sets. We choose the

initial iteration (Ũ1,i,m, Ũ2,i,m) = ({1}, {0}), i ∈ I, m ≥ 1 and calculate the sequence

{U (n)
1,i,m, U

(n)
2,i,m}, i ∈ I, m ≥ 1, generated by the block monotone iterative method

(6.23), (6.40).

In Table 6.3, for different values of N , T = 1 and τ = 0.01, we give average

numbers of iterations nδ and execution (CPU) times for the block monotone iterative

methods (6.23) and for the point monotone iterative methods from Table 5.3. From

these results, we conclude that the block monotone Gauss-Seidel method converges

faster than the block monotone Jacobi method, which confirms Theorem 6.2.2; the block

monotone Gauss–Seidel method is approximately twice as fast as the block monotone

Jacobi method when we have higher number of mesh points N and the block monotone

methods converge faster than the corresponding point monotone methods. Also from

Table 6.3, it can be noticed that the data for the block Jacobi method are very close

to the data of the point Gauss-Seidel method.

Test 4

As the second test problem with quasi-monotone nonincreasing reaction functions

(5.30), we consider Test 4 from Section 5.9.2 with the same data sets. We choose the

initial iteration (Ũ1,i,m, Ũ2,i,m) = ({1}, {0}), i ∈ I, m ≥ 1 and calculate the sequence

{U (n)
1,i,m, U

(n)
2,i,m}, i ∈ I, m ≥ 1, generated by the block monotone iterative method

(6.23), (6.40).

In Table 6.4, for different values of N , T = 0.5, τ = 0.01, we give numbers of

iterations nδ and execution (CPU) times for the block monotone iterative methods and

for the point monotone iterative methods from Table 5.4. From these results, we

conclude that the block monotone Gauss-Seidel method converges faster than the block
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Table 6.3: Average numbers of iterations nδ and CPU times for Test 3.

N 8 16 32 64 128

the block Jacobi method

nδ 9.33 27.17 100.04 391.75 1559.75
CPU(s) 0.10 0.39 5.52 86.52 737.94

the block Gauss–Seidel method

nδ 8.53 16.58 46.09 192.55 776.80
CPU(s) 0.07 0.24 2.66 44.55 397.53

the point Jacobi method

nδ 15.34 50.83 196.43 779.99 3115.91
CPU(s) 0.15 0.66 9.64 155.46 1612.87

the point Gauss–Seidel method

nδ 9.21 27.16 100.06 391.93 1624.43
CPU(s) 0.08 0.37 5.19 80.32 741.89

monotone Jacobi method, which confirms Theorem 6.2.2; the block monotone Gauss–

Seidel method is approximately twice as fast as the block monotone Jacobi method

when we have higher number of mesh points N and the block monotone methods

converge faster than the corresponding point monotone methods. Also from Table 6.4,

it can be noticed that the data for the block Jacobi method are very close to the data

of the point Gauss-Seidel method.

Table 6.4: Average numbers of iterations nδ and CPU times for Test 4.

N 8 16 32 64 128

the block Jacobi method

nδ 12.74 39.68 146.32 572.32 2276.06
CPU(s) 0.09 0.29 4.23 65.75 1047.561

the block Gauss–Seidel method

nδ 10.10 22.71 67.42 281.08 1133.24
CPU(s) 0.07 0.18 1.92 32.40 530.07

the point Jacobi method

nδ 21.14 74.58 287.66 1139.54 4547.02
CPU(s) 0.09 0.49 7.14 112.98 1889.27

the point Gauss–Seidel method

nδ 12.70 39.66 146.32 572.46 2276.22
CPU(s) 0.07 0.27 3.77 57.85 942.17
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6.6 Conclusions to Chapter 6

Theoretical results

For solving nonlinear parabolic systems with quasi-monotone nondecreasing and

nonincreasing reaction functions, we construct and investigate monotone properties of

block Jacobi and block Gauss-Seidel iterative methods. For solving the nonlinear dif-

ference scheme (6.3) with quasi-monotone nondecreasing and nonincreasing reaction

functions, the block Jacobi and block Gauss-Seidel iterative methods are constructed.

In Theorems 6.1.5 and 6.1.9, on each time level, we prove that the sequences of upper

and lower solutions, generated by the block monotone iterative methods for problems

with quasi-monotone nondecreasing (5.20) and quasi-monotone nonincreasing (5.30)

reaction functions, converge monotonically. The existence and uniqueness of a solution

of the nonlinear difference scheme (6.3) are proved in Chapter 5. Taking into account

the fact that on each time level, in general, the nonlinear discrete problems can be

solved only inexactly, we introduce the stopping tests on each time level. By using the

stopping tests (6.37) and (6.40), respectively, for the quasi-monotone nondecreasing

and nonincreasing cases, we prove that the numerical solution converges to the unique

solution of the nonlinear parabolic problem (5.1) and estimate the L∞ discrete-norm of

the error between the numerical and exact solutions of the nonlinear difference scheme

(6.3) in Theorems 6.3.1 and 6.3.3, and the error between the numerical solution and

the exact solution of the parabolic problem (5.1) in Theorems 6.3.2 and 6.3.4. The

construction methods of initial iterates from Section 5.8.2 depend only on properties

of corresponding reaction functions and can be used as starting iterates for the block

iterative methods (6.10) and (6.23).

Numerical results

The numerical sequences of upper and lower solutions, generated by the block mono-

tone iterative methods (6.10) and (6.23) with the stopping tests (6.37) and (6.40),

respectively, for the quasi-monotone nondecreasing and nonincreasing cases, converge

monotonically. The block monotone Gauss-Seidel methods with η = 1 in (6.10) and

η = 1 in (4.13) converge faster than the block monotone Jacobi methods with η = 0

in (6.10) and η = 0 in (6.23) which confirm, respectively, Theorems 6.2.1 and 6.2.2.

The block Gauss-Seidel methods are approximately twice as fast as the block Jacobi

methods. The block monotone methods converge faster than the corresponding point

monotone methods. The number of iteration nδ and execution CPU time for the block

Jacobi methods are very close to the data for the point Gauss-Seidel method.
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Chapter 7

Conclusion

In Chapter 1, we review nonlinear elliptic and parabolic problems. Nonlinear difference

schemes which approximate elliptic and parabolic problems are presented. For the

linear versions of the difference problems, we prove the maximum principle and error

estimation. For elliptic and parabolic problems, the iterative methods for solving the

nonlinear difference schemes, are constructed. The monotone property of the sequences

of solutions, generated by the monotone iterative methods, are proved. Existence and

uniqueness of solutions of the nonlinear elliptic and parabolic difference schemes are

given. The error between the numerical and exact solutions of the nonlinear difference

schemes, for elliptic and parabolic cases, are estimated. Linear and quadratic rates of

convergence of the iterative sequences of upper and lower solutions, are discussed.

In Chapter 2, the nonlinear difference scheme for approximating the elliptic prob-

lems is presented. For solving the nonlinear difference scheme, the point Jacobi and

point Gauss-Seidel iterative methods are constructed. The monotone properties of the

sequences of upper and lower solutions, generated by the point iterative methods, are

proved. The uniqueness of a solution of the nonlinear difference scheme is given. By

using the stopping test, we prove that the numerical solution converges to the unique

solution of the nonlinear elliptic problem and estimate the L∞ discrete-norm of the

error between the numerical and exact solutions of the nonlinear difference scheme and

the error between the numerical solution and the exact solution of the elliptic prob-

lem. We prove that the point monotone Gauss-Seidel method converges faster than the

point monotone Jacobi method. Initial upper and lower solutions to start the point

monotone iterative methods are constructed.

From the numerical experiments, we conclude i) the numerical solution converges to

the reference solution with second order accuracy; ii) the numerical sequences of upper

and lower solutions, generated by the point monotone methods, converge monotonically;

iii) the point monotone Gauss-Seidel method converges faster than the point monotone

Jacobi method; iv) the block monotone methods from [61] converge faster than the
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corresponding point monotone methods.

In Chapter 3, we construct and investigate the point monotone Jacobi and Gauss-

Seidel methods for solving nonlinear systems of elliptic differential equations. The

two classes of coupled elliptic systems with quasi-monotone nondecreasing and quasi-

monotone nonincreasing reaction functions are considered. We present the nonlinear

difference scheme which approximates the nonlinear elliptic systems. We prove the

monotone properties of the sequences of upper and lower solutions, generated by the

point iterative methods for the quasi-monotone nondecreasing and nonincreasing cases.

The existence and uniqueness of a solution of the nonlinear difference scheme with

quasi-monotone nondecreasing and quasi-monotone nonincreasing reaction functions

are proved. By using the stopping tests, based on the norms of the residuals of the

nonlinear difference scheme, we prove that the numerical solution converges to the

unique solution of the nonlinear elliptic problem and estimate the L∞ discrete-norm of

the error between the numerical and exact solutions of the nonlinear difference scheme

and the error between the numerical solution and the exact solution of the elliptic

system. We prove that the point monotone Gauss-Seidel methods converge faster than

the point monotone Jacobi methods for the quasi-monotone nondecreasing and quasi-

monotone nonincreasing cases. Constructions of initial upper and lower solutions to

start the point monotone iterative methods are presented.

From the numerical experiments, we conclude i) the numerical solution of the non-

linear difference scheme converges to the reference solution with second-order accuracy;

ii) the numerical sequences of upper and lower solutions, generated by the point mono-

tone methods, converge monotonically; iii) the point monotone Gauss-Seidel meth-

ods converge faster than the point monotone Jacobi methods; iv) the point monotone

Gauss-Seidel methods are approximately twice as fast as the point monotone Jacobi

methods.

In Chapter 4, we construct and investigate the block monotone Jacobi and Gauss-

Seidel methods for solving nonlinear systems of elliptic differential equations. The two

classes of coupled elliptic systems with quasi-monotone nondecreasing and nonincreas-

ing reaction functions are considered. The block monotone iterative methods are based

on the decomposition technique which reduces a domain into a series of nonoverlapping

one dimensional intervals by slicing the domain into a finite number of thin strips, and

then solving a two-point boundary-value problem for each strip by a standard computa-

tional scheme such as the Thomas algorithm. The monotone properties of the sequences

of upper and lower solutions, generated by the block monotone iterative methods are

proved. By using the stopping tests, based on the norms of residuals, for the quasi-

monotone nondecreasing and nonincreasing cases, we prove that the numerical solution

converges to the unique solution of the nonlinear elliptic problem and estimate the L∞
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discrete-norm of the error between the numerical and exact solutions of the nonlinear

difference scheme and the error between the numerical solution and the exact solution

of the elliptic system. For the quasi-monotone nondecreasing and nonincreasing cases,

we prove that the block monotone Gauss-Seidel methods converge faster than the block

monotone Jacobi methods. These theoretical results were published in [1].

From the numerical experiments, we conclude that i) the numerical sequences of

solutions, generated by block monotone methods with the stopping tests, converge

monotonically; ii) the block monotone Gauss-Seidel methods converge faster than the

block monotone Jacobi methods; iii) the block monotone Gauss-Seidel methods are ap-

proximately twice as fast as the block Jacobi methods; iv) the block monotone methods

converge faster than the corresponding point monotone methods; v) the numbers of it-

erations nδ and CPU times for the block Jacobi methods are very close to the data

for the point Gauss-Seidel methods; vi) when the convective terms dominate the dif-

fusion terms, the block monotone Gauss-Seidel method with the one-sided difference

approximations of the first partial derivatives are more efficient than the block mono-

tone Gauss-Seidel method with the central difference approximations. The materials

on Chapter 4 in the quasi-monotone nondecreasing case were published in [5] and for

quasi-monotone nondecreasing and nonincreasing cases, the results are submitted for

publication in [3].

In Chapter 5, for solving nonlinear systems of parabolic differential equations, we

construct and investigate the point monotone Jacobi and Gauss-Seidel methods. The

two classes of coupled parabolic systems with quasi-monotone nondecreasing and non-

increasing reaction functions are considered. We prove that, on each time level, the

sequences of upper and lower solutions, generated by the point iterative methods, con-

verge monotonically. The existence and uniqueness of a solution of the nonlinear differ-

ence scheme, for the quasi-monotone nondecreasing and nonincreasing cases, are proved.

By using the stopping tests, based on the norms of residuals, for the quasi-monotone

nondecreasing and nonincreasing reaction functions, we prove that the numerical solu-

tion converges to the unique solution of the nonlinear parabolic problem and estimate

the L∞ discrete-norm of the error between the numerical and exact solutions of the

nonlinear difference scheme, and the error between the numerical solution and the the

exact solution of the parabolic problem. We prove that for the quasi-monotone nonde-

creasing and nonincreasing cases, the point monotone Gauss-Seidel methods converge

faster than the point monotone Jacobi methods. For quasi-monotone nondecreasing and

nonincreasing cases, on each time level, we construct initial upper and lower solutions

to start the point monotone iterative methods.

From the numerical experiments, we conclude that i) the numerical sequences of

upper and lower solutions, generated by the point monotone iterative methods, for the
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quasi-monotone nondecreasing and nonincreasing cases, on each time level, converge

monotonically; ii) the point monotone Gauss-Seidel methods converge faster than the

point monotone Jacobi methods; iii) the point monotone Gauss-Seidel methods are

approximately twice as fast as the point monotone Jacobi methods.

In Chapter 6, we construct and investigate the block monotone Jacobi and Gauss-

Seidel iterative methods for solving the nonlinear parabolic systems with quasi-monotone

nondecreasing and nonincreasing reaction functions. We prove that on each time level,

the sequences of upper and lower solutions, generated by the block monotone iterative

methods, converge monotonically. By using the stopping tests, based on the norms

of residuals, for the quasi-monotone nondecreasing and nonincreasing cases, we prove

that the numerical solution converges to the unique solution of the nonlinear parabolic

problem and estimate the L∞ discrete-norm of the error between the numerical and

exact solutions of the nonlinear difference scheme and the error between the numerical

solution and the exact solution of the parabolic problem. These theoretical results were

published in [2].

From the numerical experiments, we conclude that i) the numerical sequences of

upper and lower solutions, generated by the block monotone iterative methods, for the

quasi-monotone nondecreasing and nonincreasing cases, on each time level, converge

monotonically; ii) the block monotone Gauss-Seidel methods converge faster than the

block monotone Jacobi methods; iii) the block Gauss-Seidel methods are approximately

twice as fast as the block Jacobi methods; iv) the block monotone methods converge

faster than the corresponding point monotone methods; v) the average numbers of itera-

tions and execution times for the block Jacobi methods are very close to the data for the

point Gauss-Seidel method. The materials of this chapter for the quasi-monotone non-

decreasing case has been accepted for publication in [6] and for both the quasi-monotone

nondecreasing and nonincreasing cases, the results are submitted for publication in [4].

The main goal of the thesis is to develop numerical methods, based on the monotone

point and block Jacobi and Gauss-Seidel iterative methods, for solving elliptic and

parabolic equations and systems of equations.

The brief conclusions from our theoretical results, obtained in the thesis, are the

following:

1. We prove that the iterative sequences of numerical solutions, generated by the

point and block monotone iterative methods, converge monotonically.

2. We estimate the L∞ discrete-norm between the numerical and exact solutions

of the nonlinear difference schemes and the error between the numerical solution

and the exact solution of the corresponding continuous problem.
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3. The existence and uniqueness of a solution of the nonlinear difference schemes

are proved.

4. We prove that the point and block monotone Gauss-Seidel methods converge

faster than the corresponding point and block monotone Jacobi methods.

The brief findings from our numerical experiments, obtained in the thesis, are the

following:

1. The numerical sequences of solutions, generated by the point and block monotone

methods, converge monotonically.

2. The point and block monotone Gauss-Seidel methods converge faster than the

point and block monotone Jacobi methods.

3. The point and block monotone Gauss-Seidel methods, respectively, are approxi-

mately twice as fast as the corresponding point and block monotone Jacobi meth-

ods.

4. The block monotone methods converge faster than the corresponding point mono-

tone methods.

5. The numbers of iterations and execution times for the block Jacobi methods are

very close to the data for the point Gauss-Seidel methods.

6. When the convective terms dominate the diffusion terms, the block monotone

Gauss-Seidel method with the one-sided difference approximations of the first par-

tial derivatives are more efficient than the block monotone Gauss-Seidel method

with the central difference approximations.

205



Bibliography

[1] M. Al-Sultani, Block monotone iterative methods for solving coupled systems of

nonlinear elliptic problems, arXiv:1804.02779 [math.NA], (2018).

[2] , Numerical solution of nonlinear parabolic systems by block monotone itera-

tions, arXiv:1905.03599 [math.NA], (2019).

[3] M. Al-Sultani and I. Boglaev, Block monotone iterative methods for solving

coupled systems of nonlinear elliptic problems, submitted for publication in Int. J.

Numer. Anal. Mod.

[4] , Numerical solution of nonlinear parabolic systems by block monotone meth-

ods, submitted for publication in J. Comput. Appl. Math.

[5] , Numerical solution of nonlinear elliptic systems by block monotone itera-

tions, ANZIAM J., 60 (2019), pp. C79–C94.

[6] , Block monotone iterations for solving coupled systems of nonlinear parabolic

equations, ANZIAM J., 61 (2020), pp. 166–180.

[7] N. R. Amundson and D. Luss, Qualitative and quantitative observations on the

tubular reactor, Can. J. Chem. Eng., 46 (1968), pp. 424–433.

[8] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population

genetics, combustion, and nerve propagation, in partial differential equations and

related topics, Springer, 446 (1975), pp. 5–49.

[9] H. T. Banks, Modeling and control in the biomedical science: Notes in biomath-

ematics, Springer-Verlag, New York, 1975.

[10] J. W. Bebernes and K. Schmitt, On the existence of maximal and minimal

solutions for parabolic partial differential equations, Proc. Amer. Math. Soc., 73

(1979), pp. 211–218.

[11] B. P. Belousov, A periodic reaction and its mechanism, Ref. Radiat. Med.,

(1959), p. 145.

206



[12] S. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary

value problems, mathematics in science and engineering, Academic Press, New

York, NY, USA, 10 (1974).

[13] I. Boglaev, A block monotone domain decomposition algorithm for a nonlinear

convective-diffusion problem, J. Comput. Appl. Math, 173 (2005), pp. 259–277.

[14] , A block monotone domain decomposition algorithm for a nonlinear singularly

perturbed parabolic problem, Int. J. Numer. Anal. Model., 3 (2006), pp. 211–231.

[15] , Monotone algorithms for solving nonlinear monotone difference schemes of

parabolic type in the canonical form, J. Numer. Math., 14 (2006), pp. 247–266.

[16] , Monotone iterates for solving nonlinear monotone difference schemes, Com-

puting, 78 (2006), pp. 17–30.

[17] , Monotone iterates for solving coupled systems of nonlinear elliptic equations,

in International Conference on Finite Difference Methods, Rousse, 2007, Rousse

University, Theory and Applications, p. 9.

[18] , On a block monotone domain decomposition algorithm for a nonlinear

reaction-diffusion problem, J. Comput. Anal. Appl., 9 (2007), pp. 55–75.

[19] , Monotone iterates for solving systems of semilinear elliptic equations and

applications, ANZIAM J (E), (2008), pp. C591–C608.

[20] , Numerical solutions of coupled systems of nonlinear elliptic equations, J.

Comput. Anal. Appl., (2010).

[21] , Monotone iterates with quadratic convergence rate for solving semilinear

parabolic problems, Int. J. Numer. Anal. Mod., 2 (2011), pp. 109–123.

[22] , Monotone relaxation iterates and applications to semilinear singularly per-

turbed problems, Int. J. Numer. Anal. Mod., 2 (2011), pp. 402–414.

[23] , Numerical solutions of nonlinear parabolic problems by monotone Jacobi and

Gauss-Seidel methods, Int. J. Numer. Anal. Mod. (B), 8 (2011), pp. 599–614.

[24] , On modified accelerated monotone iterates for solving semilinear parabolic

problems, Appl. Numer. Math., 62 (2012), pp. 1849–1863.

[25] , Inexact block monotone methods for solving nonlinear elliptic problems, J.

Comput. Appl. Math., 269 (2014), pp. 109–117.

[26] , Monotone iterative ADI method for semilinear parabolic problems, Appl.

Numer. Math., 55 (2015), pp. 647–676.

207



[27] , Monotone iterative ADI method for solving coupled systems of nonlinear

parabolic equations, Appl. Numer. Math., 108 (2016), pp. 204–222.

[28] , A parameter uniform numerical method for a nonlinear elliptic reaction-

diffusion problem, J. Comput. Appl. Math., 350 (2019), pp. 178–194.

[29] , Inexact monotone methods for solving nonlinear elliptic problems, J. Com-

put. Appl. Math., 2014 (269), pp. 109–117.

[30] I. Boglaev and S. Pack, Block monotone domain decomposition methods for

a nonlinear anisotropic convection-diffusion equation, ANZIAM J. (E), 49 (2008),

pp. C493–C512.

[31] G. Choudury and P. Korman, On computation of solutions of fully nonlinear

elliptic problems, J. Comput. Appl. Math., 41 (1992), p. 301.

[32] D. S. Cohen, Positive solutions of nonlinear eigenvalue problems: applications to

nonlinear reactor dynamics, Arch. Rat. Mech. Anal., 26 (1967), pp. 305–315.

[33] C. Cosner and A. C. Lazer, Stable coexistence states in the Volterra-Lotka

competition model with diffusion, SIAM J. Appl. Math., 44 (1984), pp. 1112–1132.

[34] P. V. Danckwerts, Gas-liquid reactions, McGraw-Hill Book Co., New York,

1970.

[35] G. S. Dragoni, Il problema dei valori ai limiti studiato in grande per gli integrali

di una equazione differenziale del secondo ordine, Giornale di Mat (Battaglini), 69

(1931), pp. 77–112.

[36] , Il problema dei valori ai limiti studiato in grande per le equazioni differenziali

del secondo ordine, Math.Ann, 105 (1931), pp. 133–143.

[37] P. A. Farrel, A. F. Hegarty, J. J. H. Miller, E. O’Riordan, and

G. I. Shishkin, Robust computational techniques for boundary layers, CRC Press,

United States, 2000.

[38] W. Feng and X. Lu, Some coexistence and extinction results for a 3-species

ecological system, Differ. Integral. Equ., 8 (1995), pp. 617–629.

[39] R. J. Field and R. M. Noyes, Oscillations in chemical systems, Computing,

60 (1974), pp. 1877–1884.

[40] G. E. Forsythe and W. R. Wasow, Finite Difference Methods for Partial

Differential Equations, John Wiley, New York, 1964.

208



[41] A. C. Fowler, Convective diffusion on an enzyme reaction, SIAM J. Appl. Math.,

33 (1977), pp. 289–297.

[42] D. A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, J.

P. Appleton, transl. and ed., Plenum, New York, 1969.

[43] D. Greenspan and S. V. Parter, Mildly nonlinear elliptic partial differential

equations and their numerical solution. II, Numer. Math., 7 (1965), pp. 129–146.

[44] D. Hoff, Stability and convergence of finite difference methods for systems of

nonlinear reaction-diffusions, SIAM J. Numer. Anal., 15 (1978), pp. 1161–1177.

[45] J. P. Kernevez, Enzyme Mathematics, North-Holland, Amsterdam-New York,

1980.

[46] V. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone iterative tech-

niques for nonlinear differential equations, Pitman Publishing Company, Boston,

London, Melbourne, 1985.

[47] V. Lakshmikantham and A. S. Vatsala, Stability results for solutions of reac-

tion diffusion systems by the method of quasisolutions, Applicable Anal., 12 (1981),

pp. 229–255.

[48] A. Lazer, A. Leung, and D. Murio, Monotone scheme for finite differ-

ence equations concerning steady-state prey-predator interactions, J. Comp. Appl.

Math., 8 (1982), pp. 243–252.

[49] A. Leung and P. H. Rabinowitz, Monotone schemes for semilinear elliptic

systems related to ecology, Math. Appl. Sci., 4 (1982), pp. 272–285.

[50] X. Lu, Monotone method and convergence acceleration for finite-difference solu-

tions of parabolic problems with time delays, Numer. Methods Partial Differ. Equ.,

11 (1995), p. 591.

[51] K. W. Morton and D. F. Mayers, Numerical solution of partial differential

equations, Cambridge University Press, 2 ed., 2005.
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ferentialgleichungen, Math. Zeitschrift, 26 (1926), pp. 619–649.

[53] C. V. Pao, Nonexistence of global solutions and bifurcation analysis for a boundary

value problem of parabolic type, Proc. Amer. Math. Soc., 65 (1977), pp. 245–251.

[54] , Asymptotic behavior and nonexistence of global solutions of a class of non-

linear boundary value problems of parabolic type, J. Math. Anal. Appl., 65 (1978),

pp. 616–637.

209



[55] , Monotone iterative methods for finite difference system of reaction-diffusion

equations, Numer. Math., 46 (1985), pp. 571–586.

[56] , Numerical solutions for some coupled systems of nonlinear boundary value

problems, Numer. Math., 51 (1987), pp. 381–394.

[57] , Convergence of coupled systems of nonlinear finite difference elliptic equa-

tions, Diff. Integ. Eqs., 3 (1990), pp. 783–798.

[58] , Numerical methods for coupled systems of nonlinear parabolic boundary-value

problems, J. Math. Anal. Appl., 151 (1990), pp. 581–608.

[59] , Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992.

[60] , Positive solutions and dynamics of a finite difference reaction-diffusion sys-

tem, Numer. Methods Partial Diff. Eqs., 9 (1993), pp. 285–311.

[61] , Block monotone iterative methods for numerical solutions of nonlinear ellip-

tic equations, Numer. Math., 72 (1995), pp. 239–262.

[62] C. V. Pao and X. Lu, Block monotone iterations for numerical solutions of

fourth order nonlinear elliptic boundary value problems, SIAM J. Sci. Comput., 25

(2003), pp. 164–185.

[63] , Block monotone iterative method for semilinear parabolic equations with non-

linear boundary conditions, SIAM J. Numer. Anal., 47 (2010), pp. 4581–4606.

[64] S. V. Parter, Mildly nonlinear elliptic partial differential equations and their

numerical solution, I, Numer. Math., 7 (1965), pp. 113–128.

[65] A. Pechenkinr, B P Belousov and his reaction, J. Biosci., 34 (2009), pp. 365–371.

[66] O. Perron, Ein neuer Existenzbeweis für die Integrale der Differentialgleichung

y′ = f(x, y), Math. Ann., 76 (1915), pp. 471–484.
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