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Thesis abstract  

Precision agriculture attempts to manage within-field spatial variability by applying suitable inputs at the 

appropriate time, place, and amount. To achieve this, delineation of field-specific management zones 

(MZs), representing significantly different yield potentials are required. To date, the effectiveness of 

utilising MZs in New Zealand has potentially been limited due to a lack of emphasis on the interactions 

between spatiotemporal factors such as soil texture, crop yield, and rainfall. To fill this research gap, this 

thesis aims to improve the process of delineating MZs by modelling spatiotemporal interactions between 

spatial crop yield and other complementary factors. 

Data was collected from five non-irrigated field sites in the Waikato region, based on the availability of 

several years of maize harvest data. To remove potential yield measurement errors and improve the 

accuracy of spatial interpolation for yield mapping, a customised filtering algorithm was developed. A 

supervised machine-learning approach for predicting spatial yield was then developed using several 

prediction models (stepwise multiple linear regression, feedforward neural network, CART decision tree, 

random forest, Cubist regression, and XGBoost). To provide insights into managing spatiotemporal yield 

variability, predictor importance analysis was conducted to identify important yield predictors. 

The spatial filtering method reduced the root mean squared errors of kriging interpolation for all available 

years (2014, 2015, 2017 and 2018) in a tested site, suggesting that the method developed in R programme 

was effective for improving the accuracy of the yield maps. For predicting spatial yield, random forest 

produced the highest prediction accuracies (R2 = 0.08 - 0.50), followed by XGBoost (R2 = 0.06 - 0.39). 

Temporal variables (solar radiation, growing degree days (GDD) and rainfall) were proven to be salient 

yield predictors. This research demonstrates the viability of these models to predict subfield spatial yield, 

using input data that is inexpensive and readily available to arable farms in New Zealand. The novel 

approach employed by this thesis may provide opportunities to improve arable farming input-use 

efficiency and reduce its environmental impact.  
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Chapter 1 Introduction, aims, and objectives 

1.1 Project support and overview 

The Foundation for Arable Research (FAR) is the sponsor of this PhD research project undertaken at 

Massey University, as a part of the Sustainable Farming Fund Project No. 407932 “Transforming Variability 

to Profitability” funded by the New Zealand’s Ministry for Primary Industries (MPI). Formed in 1995, FAR 

is an applied research organisation responsible to New Zealand arable growers. FAR collects an Arable 

Commodity Levy at the first point of sale for all cereal grain, and on maize seed, and then invests in 

research and technology transfer for the further development of the industry. The project was undertaken 

in conjunction with FAR to provide a method that would be suitable for utilising historical yield monitor 

data to help enable uptake of precision farming practices in New Zealand crop production. FAR provided 

the data and access to their research sites for conducting this study. 

 

1.2 Focus of study 

1.2.1 Small-scale production and production costs 

Arable production is an essential part of the New Zealand farming system, serving mainly the domestic 

market for compound livestock feed production (pellets). According to Statistics NZ (2018b), most of the 

arable land is planted in cereals (448,777 ha in total, which is 1.7% of the total farmed area in New 

Zealand), with over half a million tonnes of cereal products used by the pork, poultry, beef and dairy 

industries. Canterbury is the largest arable producing region, with approximately 52% of the arable land 

in the country, producing mainly wheat, barley and peas. Maize-grain crops are mostly grown in the North 

Island around the Waikato, Hawke's Bay, Manawatu-Wanganui, Gisborne and Bay of Plenty, with a total 

of 180,000 tonnes produced and 16,000 ha grown each year (Statistics NZ, 2018b). Driven by the growth 

of the domestic and international economy, in 2023, the arable sector is expected to grow at around 2% 

in export revenue per annum (MPI, 2018). 
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Given a domestic focus, New Zealand arable production typically operates on a small scale. For example, 

an average Australian arable farmer plants around 500 ha wheat, whereas a New Zealand farmer typically 

has less than 100 ha (Millner et al., 2013). The milling and the feed industry must rely on imports due to 

high domestic transport costs (Millner et al., 2013). On the individual field level, some crops such as maize 

are often produced from small blocks with an average size of 8 ha and then rotated with a forage crop or 

annual pasture during winter for livestock grazing (Beef + Lamb New Zealand, 2019). 

The production of crops in small fields also constrains working efficiency. In some developed countries, 

small fields are merged into a large unit, which then allows larger machines to be used. In the US, a maize 

planter with over 16 rows is standard, whereas, in New Zealand, the fields are typically planted with 6-8 

rows planters. In this case, a US farmer can finish planting faster with less time turning around at the field 

boundaries, which may require extra fuel and labour for the same operation in New Zealand. Meanwhile, 

field merging exposes the effect of the underlying soil variability on yield, which provides a strong 

proposition for large crop farms to adopt variable rate technologies on planters to allow them to switch 

rates automatically across different soil types (Velandia et al., 2013). Also, a farm with large cropping areas 

over the years is more likely to receive benefits from undertaking variable rate applications than small 

blocks, as the costs of investment are spread over a large area to achieve a lower "dollar per hectare" cost 

(Godwin et al., 2003). Empirically, this is generally not the case for New Zealand due to small-scale 

production. 

Based on an economic modelling analysis by MPI (2012) between 2010-2012 for a typical Canterbury 

arable farm of mixed livestock and cropping activities, it was estimated there was a major increase of in 

the cost of fertiliser ($369 to $421 per ha) and electricity for powering the irrigation ($60 to $82 per ha), 

while other working costs remain relatively stable over the period. Given the uncertainty in returns, to 

maximise the profitability of crop production the industry must pursue higher input-use efficiencies, 

through adopting new technologies and practices from international counterparts and experimenting 

with different production systems. The precision farming philosophy, which emphasises managing spatial 
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field variability by applying the appropriate inputs “at the right amount, at the right place and the right 

time”, may provide an opportunity to improve the sustainability and profitability of arable production in 

New Zealand. 

 

1.2.2 Highly variable weather pattern 

As a country comprised of two long and narrow main islands, New Zealand has a unique temperate marine 

climate due to its location in the southwestern Pacific Ocean. New Zealand experiences evenly dispersed 

annual rainfall and mild annual temperature fluctuation, which provides the opportunity to grow a variety 

of arable crops successfully (NIWA, 2016). 

However, within seasonal spectrums, the weather pattern of New Zealand is highly variable compared to 

some continental climates, which tend to have more stable seasonal patterns or largely flat geological 

landscapes. Spatially, weather conditions vary between regions from extremely wet on the West Coast of 

the South Island (> 3000 mm median annual rainfall) to almost semi-arid in Central Otago and the 

Mackenzie Basin of inland Canterbury (700-800 mm median annual rainfall) (NIWA, 2016). To the west, 

the major crop production region of Canterbury can experience dry spells in summer, which makes crop 

production difficult without irrigation (Saunders & Saunders, 2012). 

Generally, more rain falls in winter than in summer for most regions of the country. However, given the 

combined effect of the sea, wind and mountains, some crop-growing regions can experience dramatic 

weather changes (e.g. rain and temperature) within days or even hours. These large temporal variations 

influence many aspects of crop management such as the timing of planting and fertiliser application. 

Therefore, to determine if the philosophy of precision farming applies to New Zealand crop production, 

there must be a consideration of local climate and weather conditions. 
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1.3 Need for research 

1.3.1 Slow uptake of precision farming practices 

The adoption of precision farming technologies started in the early 1990s with wide-spread adoption of 

geospatial yield monitoring systems on grain combine harvesters. However, there has been a persisting 

challenge in integrating yield maps into making field crop management decisions. In the US, 

Schimmelpfennig (2016) reported that yield monitors were the most widely adopted technology, with 

about half of all maize and soybean farms having yield monitors between 2010 and 2012; especially in 

large maize farms (70-80%). For all maize and soybean farms that adopted yield monitors, only about 25% 

performed actual yield mapping due to a lack of supporting services and agronomic guidance to interpret 

yield maps and make recommendations based on the maps (Griffin et al., 2008). 

There is no specific data on the uptake of the yield mapping practice in the New Zealand arable industry, 

but empirically, it is likely to be lower than that in the US due to smaller-scale production. With some 

automated technologies, such as GPS auto-steer on tractors and boom control systems on centre pivot 

irrigators, the uptake has been limited to large arable farms. Small arable growers often rely on 

contractors to uptake technologies when they renew their equipment and have less or no incentive to 

purchase expensive equipment. In comparison, yield monitors are common in most combine harvesters 

as they are mostly factory-fitted. However, many New Zealand farmers do not calibrate yield monitors for 

collecting accurate data, and some do not even transfer data to an office computer, which is a similar 

situation to that seen in the US (Griffin et al., 2007). 

Growers have lacked a clear purpose for collecting yield monitor data, apart from monitoring crop 

moisture (80% of the total responded population to the USDA-ARMS survey), documenting yields (50%) 

and helping field trials (40%) (Griffin et al., 2007). From the research level, yield maps are often used for 

delineating management zones (Blackmore et al., 2003; Holmes & Jiang, 2018). However, yield maps 

appear to have limited value on their own because they provide no identification of why the yield had 

varied. With the advent of field sensing technologies, there is an opportunity to extract useful information 
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from various spatiotemporal factors such as soil, plant, and weather, which may help to improve the 

input-use efficiencies for a small-scale crop production system. 

 

1.3.2 Research trend in precision farming 

There has been considerable precision farming research globally, indicated by the number of papers 

presented at the International Conference on Precision Agriculture (ICPA) since the 1990s. The number of 

papers increased from only 43 papers presented at 1st ICPA (Minneapolis, USA) in 1992 to 233 papers 

presented at 5th ICPA in 2000. The number of participants increased from 173 in 1992 to about 700 in 

2000, with the number of participating countries increasing from 6 to around 30 over this time (Tremblay, 

2015).  In 2018, over 400 abstracts were submitted and reviewed for the 14th ICPA from over 30 countries 

(Rund, 2018). Cushnahan et al. (2017) investigated a large dataset of publications such as Elsevier’s 

Scopus, Google Scholar and Web of Science over the entire Precision Agriculture Journal catalogue and 

papers presented at the International Conference for Precision Agriculture (1998, 2000, 2008, 2010, 2012, 

2014, 2016), Proceedings of First Workshop in Soil Specific Crop Management (1993) and European 

Precision Agriculture Conferences. They found that the number of scientific publications related to data-

intensive technologies such as spectral sensors has dramatically increased (Figure 1-1). Despite the 

advance of spatial sensors, there is a lack of focus on temporal variations (McBratney et al., 2005). 

Practically, it is often difficult to prescribe crop management inputs using sensor-derived information 

without an understanding of potential constraints imposed by temporal factors such as rainfall and solar 

radiation on yield.  
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Figure 1-1 Increase of publications in precision farming technologies between 1996–2016 (Cushnahan et 
al., 2017) such as Electromagnetic Induction (EMI) and Wireless Sensor Networks (WSN). Some 
technologies such as LIDAR are used in GIS and research via digital terrain models and contribute to 
Precision Agriculture research without specifically having papers written on their use. 

 

1.4 Background concepts 

1.4.1 Precision farming 

Precision agriculture or precision farming is a farm management concept around optimising the use of 

inputs and improving outputs.  The term Precision Agriculture was first introduced in 1990 as the title of 

a workshop (held in Great Falls, Montana, the US, sponsored by Montana State University) by Pierre C. 

Robert (1941-2003), a professor at the University of Minnesota's Department of Soil Science. Robert and 

others actively promoted the idea of "site-specific crop management (SSCM)" or "farming by soil" (Lal & 

Stewart, 2015, p. 4) and suggested that variable management practices should be applied according to 

sub-field soil variability. In 1996, the workshop was officially named the International Conference on 

Precision Agriculture (ICPA). Precision agriculture and site-specific crop management have been used 

interchangeably in many research papers. However, precision agriculture has a broader meaning than 

SSCM, covering a broader set of agronomic practices such as soil sampling procedures, fertiliser and 
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chemical rate selection, the timing of applications and machinery selection (Robert, 1993). McBratney et 

al. (2005) noted that the focus of precision agriculture would evolve to the management of product quality 

and the environment as technology advances, rather than simply "farming by soil". 

Whelan (2011, p.3) noted, "Precision agriculture, in its current SSCM form, has a long history of innovators 

and pioneers with a single aim of improving agricultural management". He defined precision agriculture 

as "a philosophy aimed at increasing long term, site-specific and whole-farm production efficiency, 

productivity and profitability while minimising unintended impacts on the environment", and SSCM as "a 

form of precision agriculture whereby decisions on resource application and agronomic practices are 

improved to better match soil and crop requirements as they vary in the field". The US House of 

Representatives in 1997 defined precision agriculture as "integrated information- and production-based 

farming system that is designed to increase long term, site-specific and whole-farm production efficiency, 

productivity and profitability while minimising unintentional impacts on wildlife and the environment" 

(Zarco-Tejada et al., 2014). 

McBratney et al. (1997, p. 141) pointed out "application of the theories of precision agriculture to the 

practicalities of broad-acre farming relies on the successful handling of the ramifications of uncertainty in 

the information." This highlights precision agriculture as a data-driven approach for informing decision 

making in agricultural production systems. Cook and Bramley (1998) explained that by controlling inputs 

precisely, precision agriculture would increase the likelihood of benefit (such as reducing fertiliser use and 

improve yield) and decrease the risk of detrimental effects (such as reducing nitrate and pesticide 

leaching). They illustrated precision agriculture management in a 4-stage circle (Figure 1-2): 

o A farmer may observe some low yielding areas on yield maps.  

o By measuring exchangeable sodium percentage in the soil, this issue can be interpreted 

as poor water availability in the root zone.  

o Then a potential solution by applying gypsum is evaluated,  

o The circle continues after implementing this solution by gathering new information.  
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Figure 1-2 A 4-stage cycle of increased precision (Cook & Bramley, 1998) 

 

To narrow the scope of this research, precision farming is strictly defined as a philosophy to manage 

subfield variability by fine-tuning the crop management inputs such as seed, lime and fertilisers. Because 

this research is funded by FAR, it focuses on the precision farming application on arable production.  

 

1.4.2 Geospatial yield monitoring 

Geospatial yield monitoring is primarily used in grain production, but also forage and bulk crops such as 

beets and potatoes. In a grain production system, geospatial yield monitoring measures crop yield during 

the harvest using a system fitted to the combine harvester. The system combines different sensors to 

measure the harvested grain mass flow, moisture content, and speed to determine total grain harvested. 

Yield is then derived from these parameters. Yield monitoring works alongside a differential global 

positioning system (DGPS) to record yield and other spatially variable information across a field such as 

geographic location (latitude and longitude), time and elevation of each yield data point. This allows a 

grain yield map to be created, which provides information on spatial yield variability and supports 

management decisions for producers (Lal & Stewart, 2015). 
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Geospatial yield monitoring is an essential component in precision farming and is often considered as the 

first step in the uptake of precision farming practices (Lowenberg-DeBoer & Erickson, 2019). This is 

because of two important aspects: 

1. Yield monitors collect spatially dense data with a relatively low cost, allowing characterisation 

of spatial and temporal yield variability. Based on the yield variability, variable rates of crop 

management inputs such as seed and fertilisers may be applied to match the yield potential at 

different locations of the field, using specialised equipment.  

2. Yield monitor data and yield maps provide a tool for evaluating the effectiveness of the 

management such as calculating and contrasting spatial gross margin before and after 

undertaking management. Yield maps can also be used to guide field scouting, design soil 

sampling schemes, and calculate nutrient requirements to inform variable-rate fertiliser 

applications. 

However, the use of yield data and yield maps in commercial crop production remains a challenge. For 

example, post-processing of data is often required to remediate various systemic and human errors 

(reviewed in section 2.3.1.1.1) to correlate yield data with other data layers. Also, given the temporal 

variations of yield, a single-year yield map on its own has limited value for management due to its inability 

to expose the long-term underlying causes of yield variability associated with soil and seasonal weather 

patterns. Yield maps collected from multiple years tend to show a more stable yield pattern, providing a 

basis for spatially varying yield goals for crop management within-field. FAR has been working with maize 

growers in the North Island of New Zealand to retrieve the yield monitor data from their combine 

harvesters. Some of this data has been provided by FAR to be analysed as part of the research presented 

in this thesis. 

1.4.3 Site-specific crop management zones 

One key aspect of precision farming or SSCM involves delineating management zones (MZs), which are 

defined as "sub-regions of a field that express a homogeneous combination of yield-limiting factors for 
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which a single crop input is appropriate" (Doerge, 1999, p. 2). As compared to the traditional whole-field 

management approach, in which each field is treated as a homogeneous area, SSCM considers the spatial 

variability in soil and topography within each field and customises inputs according to that variability. This 

SSCM approach should result in a more efficient application of inputs, which can reduce agronomic, 

economic costs and hidden environmental costs from potential unused nutrient losses to the environment 

through leaching, runoff, and gaseous emissions (Bongiovanni & Lowenberg-DeBoer, 2004).  

The delineation of MZs has been largely constrained by the available data collection methods that are 

often time-consuming and expensive to undertake. For example, for fertiliser application 

recommendation, the spatial variability of soil fertility has been recognised through georeferenced soil 

sampling and soil test results, which suggests a need to conduct more intensive spatial soil sampling and 

vary application rates to improve fertiliser application efficiency (Kaul & Grafton, 2017). In New Zealand, 

soil tests are expensive and cost around NZ$50 per standard test for soil NPK (Ravensdown Ltd, 2019). 

New Zealand arable farmers often spend NZ$10/ha per year on soil tests before planting crops and most 

cannot afford high-resolution soil sampling for detailed nutrient mapping. This situation is being improved 

by advances in sensor technology, making large data sets available for delineating MZs and interpreting 

yield variability (Kamilaris et al., 2017). 

MZs can be delineated based on soil properties such as soil electrical conductivity (EC) and soil organic 

matter (OM) content, as well as crop sensing and remote sensing imagery. Other common approaches 

included yield mapping followed by elevation difference across a field (Khosla et al., 2010). Farmer 

knowledge and past management experience are also proven as a valuable input in delineating MZs 

(Fleming et al., 2004; Martínez-Casasnovas & Arnó, 2018). Zonal sampling can be undertaken for each MZ 

that informs variable rate applications of inputs such as seed and fertilisers, for these zones. For example, 

significant differences in soil fertility may result in the potential to vary the rates of fertiliser between 

different MZs. The inputs can then be applied automatically across the field using a variable rate 
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technology such as a precision planter, leading to a potential improvement to input-use efficiencies and 

cost-savings (Figure 1-3). 

These current advances in technology are gradually turning MZ maps into commercially viable agricultural 

products for large-scale adoption. Based on a MZ map that is produced digitally, the specific rate of crop 

input can be applied to each MZ using computer-controlled variable-rate technologies (VRT), leading to 

SSCM (Figure 1-3). For example, maize precision planters can alter the seeding rate on the go 

automatically based on prescription maps developed in GIS mapping software to determine the 

population to be planted in different MZs in the field (Holmes & Jiang, 2018). 

  

Figure 1-3 Conceptual framework of SSCM (solid lines represent the flow of information in SSCM; dotted 
lines represent the validation processes required to justify the effectiveness of the MZs delineated) 

 



12 | P a g e  
 

1.5 Principles adopted 

Spatial information derived from field sensors needs to be handled and systematically processed with the 

help of computers and Geographic Information Systems (GIS). GIS has now become an essential tool for 

handling spatial data in many aspects of agriculture, from farm management and resource conservation 

to a broad range of agribusiness applications. Advances in computing power make it possible to analyse 

and utilise large, high-resolution data sets. 

With the increase of computer power over the years, the advent of machine learning algorithms has 

provided new opportunities to extract useful information from sensor-derived data. Machine learning is 

a subfield of artificial intelligence, defined as giving a machine the ability to learn from the data without 

being explicitly programmed. There are two major types of machine learning: supervised and 

unsupervised. Supervised learning describes a technique that involves a model extracting knowledge by 

learning from single or multi-variate relationships based on single or multiple factors in the dataset and 

making predictions using labelled data. Unsupervised learning describes a technique that involves a model 

extracting knowledge by identifying similar patterns in single or multivariate space based on unlabelled 

data. 

The delineation of MZs is generally achieved using unsupervised learning techniques such as clustering, 

density estimation and self-organising map, which all partition the data into different sub-regions 

(Guastaferro et al., 2010; Leroux et al., 2018; Pantazi et al., 2015). The MZs delineated are often separated 

by some hard and static boundaries (therefore called "static MZs") based on within-field soil variabilities 

such as soil water and nutrient content. 

However, this "static" approach emphasises long-term within-field variability but is unable to address the 

temporal variability of yield from one year to another (Fraisse et al., 2001). In countries with more variable 

climates such as New Zealand, farmers may not experience a consistent yield pattern from one year to 

another. This highlights the need to emphasize the temporal and dynamic nature of yield within-field in 

New Zealand arable systems. 
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Therefore, this research seeks to predict spatial yield by incorporating meteorological data such as 

precipitation, solar radiation and air/soil temperature, which are two fundamentals for crop growth, into 

the machine learning model. Once the functional relationship between crop yield potential (the response 

variable 𝑌) and these attributes (the predictors 𝑋1, 𝑋2, 𝑋3, …) is established, the models should be able to 

make yield predictions at the subfield level (Figure 1-4). There has been considerable interest in applying 

supervised machine learning techniques for accurate crop yield prediction and for estimating nitrogen 

requirements for crop growth (Chlingaryan et al., 2018). However, the number of studies focusing on 

predicting yield variability at the subfield level has been very limited. 

FAR has developed an online data management system called ProductionWise® 

(https://productionwise.co.nz/) from 2018 to help farmers keep records and FAR advisors to 

communicate with farmers. However, ProductionWise® mainly focuses on keeping farm and field records 

with no predictive power. The data used in this research and the prediction models could be additionally 

integrated into this system to provide spatial yield predictions and encourage variable rate applications 

to be undertaken using precision farming technologies. 
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Figure 1-4 Proposed analysis framework by machine learning (blue lines represent the conventional use 
of the data for delineating MZs; the red lines represent the proposed analysis method) 
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1.6 Research aim 

Yield is the main driver of revenues for arable farmers. Establishing zones where revenues and expenses 

can be managed and optimised according to field yield potential or site-specific crop management zones 

(MZs) is a key concept in precision farming. However, little has been done to find appropriate methods to 

delineate zones for practical use in New Zealand from a variety of spatiotemporal information for crop 

management. 

This research aims to help address this issue by providing a practical and scalable method to identify MZs 

using machine learning techniques and existing sensor-derived data, to determine if the spatial yield can 

be predicted for delineating dynamic management zones. 

This research hypothesized that: 

The process of delineating site-specific management zones can be improved by modelling 

spatiotemporal interactions between spatial crop yield and other complementary factors.  

To achieve this aim, this research is divided into several objectives:  

o To develop a filtering algorithm to improve maize yield mapping precision. 

o To identify appropriate spatiotemporal yield predictors by examining historical yield 

maps, delineating subfield management zones, and undertaking soil sampling. 

o To determine the viability of predicting dynamic maize yield at the subfield spatial scale 

using supervised machine learning algorithms. 

Meeting these aims will provide insights into managing field variability and the ability to improve the 

efficiency of on-farm resource use. Major inputs, such as seeds and fertilisers could be better utilised, and 

long-term production sustainability and profitability could be improved. 
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1.7 Thesis overview and chapter outline   

This thesis includes the following chapters:  

Chapter 1 introduces the aims and objectives of this research. This research is funded by FAR and centres 

on how to combine field sensor technologies and artificial intelligence for predicting yield variability 

within-field, which may benefit crop management prescription such as mid-season fertiliser application. 

This research seeks to answer this main question: 

Is it possible to improve the process of delineating site-specific management zones by modelling 

spatiotemporal interactions between spatial crop yield and other complementary factors? 

Chapter 2 reviews previous studies and identifies the issues associated with yield sensor data collection 

and remediation, applications of sensor data and validation, and statistical methods for mapping spatial 

point data and developing site-specific crop management zones. 

Chapter 3 describes the study location, data collection and analysis methods used for this research. 

Several study sites with consistent management histories were selected. To investigate the yield 

variability within-field, yield monitor data over several years was collected, filtered, mapped and 

delineated into zones. To explain soil variability, soil core sampling was undertaken based on a delineated 

zone map, followed by soil texture analysis. Satellite multispectral images (RGB and NIR) were collected 

and used to verify the effect of soil variability on crop and yield. Temporal data (rainfall, solar radiation, 

soil temperature) collected from nearby weather stations were incorporated into the process of 

predicting spatial yield. Then several machine learning algorithms (SMLR, FFNN, CART, RF, XGBoost and 

Cubist) were implemented to predict yield and evaluated in terms of prediction accuracies. 

Chapter 4 describes the results of the analyses undertaken in Chapter 3. The quality of yield maps after 

spatial filtering was evaluated using geostatistics. The delineated MZ maps based on yield, soil 

EC/elevation and crop images showed similarity in their spatial patterns and strong associations between 

this information. The results of soil texture analysis reveal potentially significant spatial variation in 
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subsurface features across a short spatial distance and were found highly positively correlated to the soil 

EC at the soil surface. The modelled results demonstrated the viability of predicting spatial yield at the 

subfield scale based on inputs from a mix of spatiotemporal variables, which could lead to delineating 

dynamic MZs and more precise prescription of crop management inputs.  

Chapter 5 discusses the results presented in Chapter 4 and explains what they mean for precision 

agriculture use in arable crops in New Zealand. 

Finally, Chapter 6 presents the main findings of the study and the limitations of the work and makes 

suggestions for future research. 
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Chapter 2 Literature review 

2.1 Introduction  

Increasing crop farming expenses, environmental concerns and the uncertainty of commodity markets 

have driven arable farmers to search for greater input-use efficiency as well as alternative crops, markets, 

and production systems. One of the ways of improving input use efficiency is to vary the application of 

inputs such as irrigated water and fertilisers according to soil or crop requirements. This is known as 

precision agriculture or precision farming. Crop farmers have informally practised the philosophy of 

precision agriculture for thousands of years. Farms have traditionally been divided into individual field 

parcels based on soil and topography, in which each field is treated as an homogeneous area (Oliver, 

2010). However, because GPS was not available until the 1980s, crop management was practised at the 

individual field scale. Sub-field variability was often left unmanaged, which became more apparent when 

farmers merged their fields into larger units to accommodate centre pivot irrigation or larger farm 

machinery (Blackmore et al., 2005). The practices of site-specific crop management (SSCM) are necessary 

to improve input-use efficiency such as irrigation and fertiliser use to minimise environmental risks (Basso 

et al., 2016).  

This chapter examines problems associated with the use of geospatial information and reviews previous 

studies that use sensor-derived information for crop management (section 2.2).  

The focus and scope of this review include: 

• Issues associated with yield sensor data collection and remediation (section 2.3.1.1.1 and section 

2.3.1.1.2); 

• Applications of sensor data and validation (section 2.3.1);  

• Statistical methods for mapping spatial point data and developing site-specific crop management 

zones (section 2.3.2).  
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2.2. Using spatial data to prescribe management inputs 

Modern-day precision farming employs data-driven approaches for informing agricultural production 

system decisions. One key aspect of precision farming involves delineating potential site-specific crop 

management zones (MZs). The emphasis is on separating "sub-regions of a field that express a 

homogeneous combination of yield-limiting factors for which a single crop input is appropriate" (Doerge, 

1999, p.2). The outcomes of this management method include more efficient use of inputs, which can 

reduce agronomic, economic, and hidden environmental costs, from potential unused nutrient losses to 

the environment (Bongiovanni & Lowenberg-DeBoer, 2004). 

The following sections (2.2.1 and 2.2.2) review precision farming applications based on MZs and their 

limitations and then identify the research problem in the analysis of spatial data.  

2.2.1 Optimising seeding rates 

The cost of seed is one of the major expenses of growing maize in New Zealand (Genetic Technologies 

Limited, 2019). Variable-rate seeding (VRS) has the potential to improve profit by matching the seeding 

rate to production potential within the field. Variable-rate seeding is a technique used to adjust seeding 

rates spatially within a field based on soil texture and/or other variables as the soil in some parts of the 

field will have different soil moisture-holding capacity that supports differing seeding rates  (Jeschke et 

al., 2015). Once the soil variations within a field are characterised, the information can be processed to 

determine suitable seed rates and then uploaded to a variable rate planter, which adjusts the planting 

density automatically. This process is not new to maize growers, but there are limited studies on the value 

of VRS in the public domain. 

Shanahan et al. (2000) investigated the yield response of different maize hybrids (early and late maturity) 

and plant densities (24,692, 37,037, 49,382 and 61,727 plants/ha) in dryland landscapes of the US Great 

Plains during 1997, -98, and -99 seasons. The treatment yields and landscape data (such as elevation and 

slope) were interpolated and then classified into low-, medium-, and high-yielding areas based on the 

average and standard deviation for each field. This study found large within-field yield variability in the 
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three fields (average yields ranging from 5.43 to 6.39 t/ha) and the coefficient of variation (CV) ranging 

from 20% to 29%. Hybrids responded similarly to field variation while plant densities responded 

differentially in the low, medium and high-yielding areas (R2 = 0.43, 0.76, 0.87, respectively). Economically 

optimum plant densities changed by around 5000 plants/ha between high and low-yielding field areas, 

producing potential savings in seed costs of US$6.25/ha. This study suggested that there is a potential 

cost-saving from the use of VRS based on different landscape attributes (such as elevation and slope) that 

influence the spatial yield. 

Taylor et al. (2006) evaluated a VRS trial of wheat on a commercial farm in New South Wales, Australia. 

The field was divided into MZs based on soil electrical conductivity (EC surveyed using a Geonics EM38 

and a Veris 3100 sensor) and RTK elevation. To verify MZs, soil sampling was conducted with core samples 

taken from two depths (0-30 cm and 60-90 cm) at 15 locations within each zone. Nine small trial plots 

(100 m × 30 m) including three seed treatments (50, 75 and 125 kg/ha) and three replicates were randomly 

located in each zone, with the remaining areas planted with 100 kg/ha as a reference. The zones did not 

appear to have significant variations in the measured soil properties, except for the subsoil CEC and the 

percentage of silt in the topsoil (p<0.05). In different zones, variable seed rates produced different 

responses in the plant counts and the harvest yield, which suggested the potential for VRS. However, only 

one year's seeding trial was conducted, which did not have enough temporal resolution to make 

conclusive results. Therefore, VRS based on spatial management zones may have to consider temporal 

factors such as forecast rainfall and soil temperature, in addition to soil texture and crop cultivar to ensure 

optimal seeding rates.  

Hörbe et al. (2013) attempted to optimise the maize plant population according to management zones in 

two fields (90 and 124 ha) in Southern Brazil. For Experiment 1 (the 2009/10 season), the field was 

delineated into low, medium, and high-performance MZs visually based on the farmer's knowledge. For 

Experiment 2 (the 2010/11 season), the MZs were delineated based on multiple yield maps. A random 

block design was used for the experiment, with five seeding rates (50, 60, 70, 80, and 90 thousand 
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seeds/ha) and five replications set up in each zone. Based on the two experiments, reducing the 

recommended seeding rate by 31% in the low MZ resulted in a yield increase of approximately 1.5 t/ha. 

Increasing the recommended seeding rate by 13% in the HZ resulted in an increase of 0.91 t/ha in grain 

yield. However, the experiments did not consider the effect of temporal conditions such as rainfall on the 

yield potential, so is not conclusive as only one growing season was investigated. 

Licht et al. (2017) developed procedures for maize seeding rate optimisation and maximizing yield using 

soil and topographic parameters. Experimental treatments included five seeding rates (61,750; 74,100; 

86,450; 98,800; and 111,150 seeds/ha) in a randomised complete block design in three central Iowa fields 

from 2012 to 2014 (nine site-years). Soil samples were analysed for available phosphorus, exchangeable 

potassium, pH, soil organic matter (SOM), cation exchange capacity (CEC), and texture. Topographic data 

(in-field elevation, slope, aspect, and curvature) were determined from publicly available light detection 

and ranging (LIDAR) data (Dubayah & Drake, 2000). Multiple regressions with interaction terms were 

conducted to understand and identify the key independent variables that best explained maize grain yield. 

However, this study found no consistent interaction between the measured variables and the seeding 

rate for most sites due to weather variability. These results further confirm that the performance of 

variable rate seeding is likely to have an interaction with weather conditions during the growing season.  

There appears to be a need to develop a crop management strategy that can incorporate weather 

variables into the decision making processes about prescribing within-field seeding rates. 

2.2.2 Optimising nitrogen (N) fertiliser input 

Nitrogen (N) is the most frequently applied nutrient to arable crops as it has a rapid effect on crop growth. 

N is often the limiting factor to crop growth as it is readily leached through the soil profile in the nitrate 

form. Also, N can be volatilised as ammonia, nitrogen gas, and nitrous oxide. More N than is needed by 

the crop is often applied, as the cost of additional N is low compared to the potential yield loss resulting 

from insufficient N. As farmers have traditionally not been accountable for the consequences of nitrogen 

leaching or greenhouse gas emissions, there has been little incentive to manage its use responsibly. There 
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are now nitrogen limits and seasonal use restrictions imposed by regional Government bodies, 

highlighting the importance of managing on-farm nitrogen use, and providing the potential to apply 

variable rates of nitrogen within-field (Basso et al., 2016).  

Godwin et al. (2003) examined revenues from precision farming practices during a three-year study in 

Southern England with known farm sizes and levels of variability. VRA-N in barley and wheat were 

evaluated based on historic yield and shoot density. Historic yield trials were conducted over three years 

in three fields using both variable and uniform application rate strategies. Shoot density (the number of 

shoots per square meter) was determined in near real-time using NDVI data from airborne digital 

photography. The use of VRA-N based on real-time crop canopy sensing was also evaluated in winter 

wheat. An average benefit of £29.90/ha (NZ$55/ha, 2020 conversion rates) was reported from using the 

shoot density method, and £22/ha (NZ$42/ha) from using the crop canopy method, compared to the 

standard, uniform N application rate. However, this analysis is inconclusive because it overlooks many 

temporal factors such as rainfall and does not have enough data layers (three years) to investigate 

temporal yield variation due to VRA-N.  

Koch et al. (2004) evaluated the economic feasibility of four VRA-N strategies utilising MZs with an on-

farm field study in Colorado, US. Trials were conducted over three site-years on two long-term maize 

fields in north-eastern Colorado under furrow (18.5 ha) and centre-pivot (58 ha) irrigation during the 2000 

and 2001 growing seasons. The management zones for the two fields were delineated based on bare soil 

aerial imagery and farmer knowledge of topography and experience. 

The N management strategies were:  

• Uniform with a constant yield goal; 

• Grid sampling-based to meet a constant yield goal;  

• Site-specific management zone – constant yield goal (SSMZ-CYG);  

• Site-specific management zone – variable yield goal (SSMZ-VYG).  
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The N rates were calculated using an N recommendation algorithm, with the inputs being expected yields, 

soil nitrate, and soil organic matter. This study found consistently less total N fertilizer (6% – 46%) was 

used with the SSMZ-VYG strategy when compared with uniform N application. Net returns from the SSMZ-

VYG strategy were US$18.21 (NZ$28, 2020 conversion rates) to US$29.57/ha (NZ$45) more than uniform 

management. The cost savings of SSMZ-VYG were consistently higher than the grid sampling-based 

strategy. In this study, despite that the variable yield goal was subjectively defined (based on the farmer’s 

knowledge and past management experience rather than using yield monitor data), the resulting cost-

saving suggested that there is a value for setting the variable yield goal. 

Basso et al. (2013) evaluated the impact of variable rate nitrogen (VRA-N) fertiliser application on spatial 

and temporal patterns of yield in a durum wheat grain crop.  The study was conducted during the 2008/09 

and 2009/10 growing seasons in a 12-ha field near Foggia, Italy. The field was subdivided into two MZs 

being High and Average, using yield maps from the two seasons. Three N rates were identified using a 

calibrated crop simulation model (SALUS). They were: low N (30 kg N/ha); average N (70 kg N/ha); and 

high N (90 kg N/ha), This study found no significant effects of the different N rates for the 2008/09 growing 

season for the High and Average zone. For the 2009/10 growing season which experienced higher rainfall 

there was a significant difference between the three N rates in grain yield for the Average zone 

(2,955 kg/ha), but not in the High zone (3,970 kg/ha). This study suggests the optimal amount of N for a 

given MZ varies with the rainfall amount and distribution during both the fallow and growing season, 

which makes the prescription of N for a rain-fed crop more difficult. Therefore, the delineation of MZs 

based on spatial information such as historical yield maps should ideally combine temporal factors, such 

as rainfall, to prescribe the input of N more effectively.  

 

2.3 Addressing the issues 

Section 2.2.1 and section 2.2.2 identified issues regarding the lack of temporal focus for delineating MZs 

using sensor-derived spatial data. Although the process of delineating static MZs is generally well-
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established and representative of yield or soil variation, the spatial pattern of the yield could be dynamic 

and variable over time. It is difficult to prescribe optimum rates of input without knowing how much yield 

each area will produce in the current season.  

To fill this knowledge gap, this research aims to improve the delineation of MZs by predicting spatial yield 

within-field using data that is high spatial resolution and readily available from the fields. Once the 

relationship between yield and these spatiotemporal factors is established, it may be possible to prescribe 

crop management inputs at the sub-field scale. 

 

2.3.1 Sensor-derived data 

To prescribe variable-rates of fertiliser within-field based on soil fertility, the cost of undertaking intensive 

soil sampling using traditional sampling methods such as grid soil sampling is expensive. The advent of 

precision farming sensors such as soil electrical conductivity (EC) sensors show great promise for collecting 

good resolution spatial data with minimal costs of time and labour. The use of sensor-derived spatial data 

could provide insights into predicting spatiotemporal patterns of crop yield.  

The common spatial data available to New Zealand arable farmers include:  

• Yield monitor data derived from combine harvesting operation (section 2.3.1.1);  

• Soil electrical conductivity (EC) derived from mobile soil EC sensors (section 2.3.1.2);  

• Elevation data derived from precision planting operation (section 2.3.1.3); 

• Multispectral imagery derived from satellites (section 2.3.1.4). 

2.3.1.1 Yield monitor data  

Site-specific yield data from crops are recorded using a yield monitor on a harvester. This is achieved by 

several subsystems: product output sensing; area sensing (ground speed and swath width); positioning 

(DGPS); data processing, monitoring, and storing units. There are two types of yield monitor systems on 

the market: grain volume (volume-flow sensors) and grain mass (mass-flow sensors). Yield monitor 
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systems all provide a final output of crop yield in tonnes per hectare (t/ha) at a user-set time interval, 

usually 1 second (1 Hz) while harvesting (Demmel, 2013). The area covered is calculated by multiplying 

the working width of the cutter bar and the ground distance travelled by the harvester between each 

period. 

2.3.1.1.1 Yield data errors 

It is necessary to apply post-processing to all yield monitor data before mapping variability to eliminate 

any spatial artefacts caused by systemic or human error. To remediate these errors in a GIS software 

program and to reduce misleading information, this section reviews possible errors that may exist in some 

yield data. 

Systemic error 

1) Delay of the grain flow signal which records the mass or volume at a different location to where 

harvested: When grain flows through the combine it experiences conveying, threshing, separation 

and cleaning processes before finally reaching the yield monitor. A "simple time delay model" was 

introduced to match the flow data to the position data, and the flow signal is shifted by a constant 

time value (Birrell et al., 1996).  

2) Combine filling mode: Many yield maps exhibit low yields immediately inside the headlands 

where the combine first enters the crop, which is caused by combine filling, which is due to the 

sieves, elevators and other temporary storage spaces being empty and taking time to fill up, 

before passing through the combined mechanism and reaching the yield sensor) (D. Murphy et 

al., 1995; Thylén & D. Murphy, 1996). In that case, the low yield recorded could be caused by a 

shortcoming of the monitoring system, rather than any actual variation in the crop.  

Human error 

1) Incorrect set width: When the combine harvester enters the crop, the operator must align the 

edge of the head cutter to the crop rows, the cut width is generally set as the full width of the 

header. However, a problem may occur at the end of harvesting a field when there are only a few 

rows left and these are less than the full cut width of the machine. An unknown crop width 
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entering the header and or the actual crop width entered incorrectly into the controller. This 

causes long strips of low yield to be recorded running along the length of the field, where the 

harvester finished working by only harvesting a fraction of the full head width (Blackmore & 

Marshall, 1996). 

2) Inconsistent ground travel velocity can be caused by operator behaviour such as difficulties in 

aligning the crop divider with the crop edge, and abrupt changes of combine ground speed (Colvin 

& Arslan, 2000). For example, a sudden decrease in ground speed would result in a small 

estimated area at a given time, making the instantaneous yield too large as the grain keeps 

travelling in the combine.  

3) Empty header: Another issue is that while the combine is turning around in the headland, there 

are times when the header is lowered, and recording yield, but is not harvesting (i.e. no grain flow 

through the clean grain elevator). This creates invalid data points (Luck & Fulton, 2015). 

Sensor calibration 

Measurement errors can be mitigated by statistical filtering, but actual yield information is lost if the yield 

sensor is not adequately calibrated. By sensor calibration, the recorded yields are adjusted based on the 

actual yield measured on a certified weight scale. Ideally, at least four grain-loads should be measured to 

establish a reliable calibration curve (Luck & Fulton, 2014). However, during a busy harvest schedule, the 

calibration of the yield sensor is often poorly carried out using fewer loads. Instead of the “four-point” as 

recommended by the sensor manufacturer, a linear “two-point” calibration method may have been 

undertaken. That is, farmers would measure one load at the high grain flow scenario and then measure 

another load at the low grain flow scenario, simulated through the change of ground travel velocity or cut 

width (Luck & Fulton, 2014). If the yield data is calibrated from the “two-point” method, it is likely to have 

recorded higher values than the actual yield as high levels of measurement error tend to occur in the low 

grain flow condition (Kormann et al., 1998). Therefore, it is suggested for the best practice use of yield 



28 | P a g e  
 

data to follow the recommended sensor calibration method and sensor maintenance at the beginning of 

harvest to minimise the errors. 

 

2.3.1.1.2 Spatial data filtering 

Given potential errors in yield measurement as reviewed (section 2.3.1.1.1), undertaking data filtering of 

spatial data is important before its use in decision making.  

There are a few studies on how to detect yield data errors and remove them in GIS programs. An algorithm 

developed by Simbahan et al. (2004) includes two stages of yield data screening: The first stage addresses 

flow delay and start-/end- pass; and the second stage undertakes outlier tests (velocity, grain flow, and 

moisture), yield thresholds, local neighbour filtering and overlay points. Inverse distance weighted (IDW) 

interpolation (Burgess & Webster, 1980) was used to estimate yield within a search window and this was 

then compared with the actual yield. If the actual yield was outside the confidence interval of the 

estimated yield, the value was classified as an outlier. For the validation of this algorithm, 1000 points of 

maize and soybean yield were withheld as test data and compared to that interpolated by ordinary kriging 

with root mean square errors (RMSEs) calculated. The results showed that the RMSE was reduced by 4.34 

– 5.36 % after the screening, which indicates the accuracy of the yield maps increases with each screening.  

A freeware package, Yield Editor, constructed by Sudduth and Drummond (2007), implements several 

filters to remove flow delay, start- and end- pass delay, velocity, swath width, yield and positional errors 

and allows users to visualise the effect on an interactive map display. Yield Editor 2.0 incorporates an 

``automated yield cleaning expert'' module for the automated selection of value thresholds based on the 

median range of the values of all the points contained in the dataset (Sudduth et al., 2012). Their study 

reported 13% to 27% (2510 to 8325 points) removal from the maize and soybean yield data collected from 

six fields. However, this program is not integrated into mapping software and is limited to the data from 

specific yield monitoring systems. 
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Spekken et al. (2013) proposed a generic approach to filter spatial data, which simply requires two input 

parameters: a search radius less than the range of spatial dependency; and a specified maximum 

coefficient of variation. Without the requirement for any further information (e.g. time, ground velocity), 

it is more effective in reducing noise (fill mode and lag time, points near the headlands, and points with 

an erroneous set width, which represent the majority of errors) on an interpolated yield map than filtering 

the data based on yield thresholds. They reported that 29% of the maize yield raw data points were 

removed by the programme. 

 

2.3.1.2 Soil electrical conductivity (EC) data  

2.3.1.2.1 Correlations between soil EC and soil texture 

Electrical conductivity (EC) is a measure of the ability of the soil to conduct electricity, commonly 

expressed in units of milli-Siemens per meter (mS/m). Electrical current may be conducted through the 

soil via three pathways: 1) the pore-connected soil solution of water and ions; 2) the cations that are 

bound to the surfaces of clay particles; 3) connected solid soil particles (Corwin & Lesch, 2003; Rhoades 

et al., 1999). The soil EC measurement can be correlated with soil properties that affect crop productivity, 

such as soil texture and cation exchange capacity (CEC).  

Sudduth et al. (2003) evaluated EC measurements obtained from a non-contact, electromagnetic 

induction (EMI)–based sensor (Geonics EM38) to those from a coulter-based sensor (Veris 3100) on four 

fields in Illinois and Missouri with fine-textured soil. The EC data were used to relate to soil particle size 

fractions and CEC sampled from 12 to 21 sampling sites in each field to a 120 cm depth, within a single 

field and measurement date. The strongest correlations were found between EC and clay content (r = 0.6–

0.9) and CEC (r = 0.51–0.88), which were consistent across all four fields and sensor types. Data obtained 

with both types of EC sensors were similar and exhibited similar relationships to soil physical and chemical 

properties. Similar results were also derived from their later study (Sudduth et al., 2005) in the north-
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central US, which reported the highest correlation (R2 = 0.37-0.63) between EC and topsoil clay content 

across 12 fields. 

Moral et al. (2010) produced prediction maps of soil texture from a handful of soil samples (N=70) using 

regression kriging with soil EC (measured by a Veris 3100 sensor) as secondary information for a 33-ha 

rapeseed field in Badajoz, south-western Spain. The results found that the soil EC was positively correlated 

with clay (r = 0.67 – 0.77), and negatively correlated with coarse sand (r = -0.61 – 0.67) and fine sand (r = 

-0.63 – 0.69).  

In Australia, Rodrigues Jr et al. (2015) predicted soil clay content and CEC using an EMI survey (soil EC) 

and gamma radiometric soil survey data (Dierke & Werban, 2013) in six fields ranged from 25 - 90 ha 

across three sugarcane growing regions. Their models derived from principal component analysis (PCA) 

were able to predict CEC (adjusted R2 = 0.29-0.71) and clay (adjusted R2 = 0.42-0.73) at most sites. These 

findings suggest it is possible to use soil EC data to map soil variability, which is considerably less expensive 

than when undertaken by traditional sampling methods such as grid sampling. 

In New Zealand, Hedley and Yule (2009) used high-resolution EC maps (derived from Geonics EM38 

survey) to predict the spatial variation of soil water content in a 33-ha irrigated maize field in Palmerston 

North. Three zones with low, intermediate, and high EC values were delineated based on the EC map. 

Higher EC values were associated with higher silt (30.8 to 61.3%) and clay content (8.3 to 26.8%) for the 

top 60 cm soil, respectively. Within each zone, EC values were correlated (R2 = 0.80) with a range of 

volumetric soil water contents to develop a relationship between EC, soil texture, soil moisture, and 

different soil moisture deficits. The soil EC map, with real soil moisture monitoring, can then be used to 

inform variable-rate irrigation within-field to prevent nutrient leaching due to over-application (Hedley et 

al., 2010). Hedley’s papers demonstrated that EC can be used as a predictor for soil texture and soil water 

holding capacity and soil CEC.  However, the emphasis of their research was the management of irrigation 

application on large fields (> 20 ha) based on soil variability. There is insufficient emphasis on the effect 

of spatial soil variability on crop yield in predominantly non-irrigated arable fields (<10 ha) in New Zealand.  
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2.3.1.2.2 Correlations between soil EC and crop yield 

Lund et al. (2000) used a ``boundary line" approach to derive yield goals with soil EC maps and multiple 

season yield data. The analysis divided the EC values into several bins and then fitted with a quadratic 

model (R2 = 0.96). However, only the static pattern of yield potential was derived and the temporal 

relationship between soil EC and yield potential from one year to another is not well understood.  

Kitchen et al. (2003) modelled within-field yield potential based on the soil EC measured by a Veris 3100 

and topographic data (slope, curvature, and aspect) in three contrasting soil–crop systems (four site-years 

of maize, three site-years of soybean, and one site-year each of grain sorghum and winter wheat) in 

Colorado, Kansas, and Missouri during 1997–99.  Using either regression or neural networks analysis, EC 

alone explained yield variability (averaged over sites and years R2 = 0.21) better than topographic variables 

(averaged over sites and years R2 = 0.17). Combining EC and topography measures improved the model 

R2 values (averaged over sites and years R2 = 0.32) for the non-irrigated fields in Kansas and Missouri. 

However, the low R2 produced by the models suggested the need to include other field attributes such as 

soil fertility, climate and management factors (such as the amount of fertiliser) for estimating yield 

potential. 

Kitchen et al. (2005) investigated the use of soil EC and elevation for delineating MZs for two claypan soil 

fields planted in a maize-soybean rotation in central Missouri. Meanwhile, the historical yield maps 

(between 1993 and 2002) were grouped into ``deficit", ``optimal" or ``excessive" precipitation years and 

were delineated into the respective yield MZs for these temporal conditions. The MZs were then 

compared with the yield MZs derived. 40–60% agreements (κ = 0.21 - 0.43) were found between different 

yield zones and soil MZs. The highest agreements (58-60%; κ = 0.29 – 0.34) were found with the yield 

zones derived from yield maps of the "deficit" years, whereas relatively lower agreements (41%-46%) 

were found with the yield zones derived from yield maps of the "optimal" years. These results suggested 

that the effect of soil texture on yield is more pronounced in a relatively drier year.  
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Guastaferro et al. (2010) delineated MZs (relatively high yielding and low yielding) using kriged soil texture 

data (to 0.3 m depth) and potential yield over three seasons for a 12-ha durum wheat field in south-

eastern Italy. Overall, weak areal alignment (20%-40%) was found between MZs and yield classes. The 

results also indicated that the MZs did not have consistent associations with yield classes due to temporal 

variations, consistent to Kitchen et al. (2003; 2005).  

The studies in this section suggest that despite crop MZs being able to identify different yield levels, they 

are unable to provide potential yield values of each zone, making it practically difficult to prescribe 

variable input rates. While some studies seek to associate yield with soil EC using a robust boundary line 

modelling, machine learning techniques such as neural networks and geostatistical technique such as 

regression kriging, little research has been done with sufficient focus on modelling the spatiotemporal 

interactions between yield, weather data (such as rainfall) and EC. The lack of temporal focus in these 

studies raises the question of how would yield respond to management inputs such as N-fertiliser under 

different temporal moisture conditions. To prescribe N rates more effectively based on within-field soil 

variability, it may be feasible to obtain a prediction of the yield response using historical data, which would 

allow management such as mid-season N fertiliser applications to be undertaken.  

 

2.3.1.3 Topographic features 

Soil at a higher elevation within a field may have shallower topsoil and comprises a coarser texture than 

soil at a lower elevation, which can have an impact on drainage (Rumbal, 1978). These factors can control 

the way water accumulates or moves across, and within, the soil (Whelan & Taylor, 2013, p. 129). The 

aspect of a sloping soil surface can have a direct effect on yield variability. Depending on the direction of 

the predominant weather systems in a region, there may be differences in growing conditions due to 

aspect. Geary (2003), using the CERES wheat model found a loss in grain yield of 1 t/ha on a slope of 10 % 

oriented to the North (away from the sun) in England. In the Southern hemisphere, North- and West-

facing slopes are warmer and dry more quickly than those facing South and East. In New Zealand, arable 
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farming is predominantly undertaken on small blocks and relatively flat land, the effects of slope and 

aspect on yield are often less pronounced. However, it is increasingly common to produce arable crops 

on sloping fields as they are planted using minimum tillage technologies to reduce the risk of soil erosion 

and nutrient runoff (Haynes & Knight, 1989). In these circumstances, the effect of elevation on spatial 

yield may exacerbate soil moisture and fertility distribution. RTK-GPS is by far the most reliable method 

to record elevation, with a precision of 12 to 20 cm.  

 

2.3.1.4 Spectral data for crop monitoring 

Plants use the energy from sunlight to produce glucose from carbon dioxide and water, by photosynthesis. 

Plants have little ability to absorb near-infrared (NIR) light in the 700 - 1300 nm wavelength from sunlight 

radiation. Light absorption by chlorophyll is particularly higher in the blue (400 to 500 nm) and the red 

(600 to 700nm) part of the visible light spectrum than in the green region (500 to 600nm) (Whelan & 

Taylor, 2013, p.58). This results in plants having a higher reflectance of green light. In healthy growing 

crops, a large disparity exists between low red light and a high NIR light reflectance. Red reflectance 

increases when crops are under stress because the chlorophyll reduces activity (Huete et al., 2004). 

However, NIR reflectance decreases as the leaf internal structure collapses; and thus, the disparity 

between the reflectance decreases significantly (Adams et al., 1999; Gausman et al., 1976; Tucker, 1979).  

Reflectance measurements of the green, red, and NIR spectrum has been used to determine plant 

nitrogen (N) content and canopy N deficits (Buschmann & Nagel, 1993).  Techniques were developed for 

using a SPAD chlorophyll meter, colour photography, or canopy reflectance factors, to assess spatial 

variation in N concentrations in crops.  

Blackmer and Schepers (1995) suggested the use of images of canopy reflectance centred at 550 nm 

acquired late in the growing season could be used to detect portions of the field that were nitrogen 

deficient. In the US Great Plains, an index was developed from green and NIR reflectance of an irrigated 

maize crop, which was highly correlated with an N sufficiency index calculated from SPAD chlorophyll 
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meter data and provided a rapid assessment of maize plant N status (Bausch & Duke, 1996; Bausch & 

Diker, 2001). There are several indices calculated from the light reflectance, of which one of the earliest 

and most robust measures is Normalised Difference Vegetation Index (NDVI) (Jackson & Huete, 1991; 

Wiegand et al., 1991). Higher values of NDVI indicate greater vigour, health or greenness of the crop. 

Strong correlations (R2 = 0.7 - 0.92) were also found between different vegetation indices (NDVI, 

transformed soil-adjusted vegetation index (TSAVI), green NDVI) acquired at mid-grain filling and maize-

grain yield during a two-year trial in US Nebraska (Shanahan et al., 2001).  

However, even if it is possible to predict maize-grain yield using remote sensing data collected during mid-

grain filling, it is likely too late to undertake any management intervention at that point (Pinter Jr et al., 

2003). For example, for a maize crop, nitrogen fertiliser is normally applied at planting and around mid-

November when the crop is at the V6 (6th leaf vegetative) stage, i.e. 4-5 weeks after planting. Mitigating 

the impact of nutrient stress on crop yield through the application of N fertiliser ought to occur at earlier 

growth stages. Failure to apply N in this optimal application window may result in irreversible loss of 

potential yield. This means that even if enough fertiliser is given at a late stage such as at grain fill, it is 

unlikely to reverse the yield loss resulting from insufficient N at an earlier stage. Also, if variable-rate 

fertiliser application is desired, then the current application methods make it difficult to apply inputs at a 

later stage of the season, because the crop may be too tall for a tractor to pass through without causing 

significant damage to the plants.  

 

2.3.1.4.1 Reflectance-based management zones 

De Benedetto et al. (2013) combined multisensory data including soil EC (Geonics EM28DD sensor) 

(surveyed in May & September 2010); vegetation indices (NDVI, NIR/Green ratio, Red Edge) obtained from 

Worldview-2; and GeoEye-1 satellite imagery for MZ delineation on an irrigated tomato field in southern 

Italy. The field was split into two blocks for separating two irrigation treatments from July 15, 2010: 

optimal water supply and moisture deficit conditions. The study concluded that the clustered maps based 
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on multi-sensor information can be used to differentiate the effect of crop moisture stress under different 

irrigation treatments. 

Martínez-Casasnovas and Arnó (2018) compared different potential MZs (NDVI-based, NDVI-EC-based, 

NDVI-EC-elevation-based) delineated based on the accumulated-NDVI derived from Sentinel-2 

multispectral images, soil EC derived from Veris 3100 sensor and elevation data for a 45-ha field of 

sunflower-maize rotation under centre pivot irrigation in north-eastern Spain. An alternative to MZs was 

created by combining the farmers’ expert knowledge about the within-field soil characteristics such as 

soil texture and problems such as drainage with the accumulated-NDVI map. The farmers’ knowledge 

accurately reflected statistically different levels of yield when compared with partially successful methods 

of delineating MZs based on NDVI, EC and elevation. However, only single-year yield data from one 

irrigated field was used for validation. 

Georgi et al. (2018) developed an automatic segmentation algorithm for developing MZs based on multi-

spectral satellite data (RapidEye time-series images from 2009 to 2015) for wheat and canola fields in 

north-eastern Germany. The algorithm automatically selected suitable images for cloud identification and 

crop pattern delineation based on a set of statistical thresholds for the blue, NIR band reflectance and 

NDVI. The NIR bands of all selected images were averaged and divided into five classes (quantile 10%, 

35%, 65%, 90%). The result showed that the delineated MZs were consistent with the expected level of 

yield productivity (relative yield <85%, 85%-97%, 97-103%, 103%-107% and >107%) or yield expectancy 

zones (very low, low, average, high and very high) related to soil texture variations within-field. This study 

suggested that there is potential for using reflectance images captured by satellites to delineate 

management zones when historical yield maps are absent, which may verify the effect of soil texture 

variations on crop growth. 

Ekanayake et al. (2018) used reflectance data (RGB pixels) derived from historical Google Earth images to 

develop management classes for a 5.95 ha maize field in Pukekohe, NZ. MZs derived from the bare-soil-

only images better depicted the patterns in the traditional multi-year yield map (R2 = 0.6 – 0.99), 
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compared to the map derived from the crop-cover-only images (R2 = 0.62 - 0.96). However, further ground 

validations should be undertaken to verify the cause of yield variability and determine if there is a 

correlation with the crop reflectance. 

The biggest challenge for applying remote sensing techniques to arable farming in New Zealand is the 

acquisition of consistently good quality satellite images that can be related to the appropriate stages of 

crop growth. To monitor the maize crop in New Zealand, the probability of obtaining cloud-free images is 

high mainly from December to February (summer), but low before this period (spring). This makes it 

difficult to estimate yield when cloud-free images are not available for the relevant specific growing stages 

(Eberhardt et al., 2016). 

Currently, high-resolution remote sensing products (< 10 m) are priced based on the area covered (often 

costing between NZ$20 -NZ$60 per km2 with a specified minimum order area) (FAO, 2015). This means 

that their cost is not justified financially when being used for management at the field level. Research 

needs to demonstrate the value of images for precision farming, which will encourage the adoption of 

zonal soil sampling and mapping, delineating management zones.  

 

2.3.2 Statistical techniques for analysing spatial data 

2.3.2.1 Geostatistical interpolation and Kriging  

Field sampling of soil and crop properties with GPS (e.g. Yield monitor, soil EC) collect data as spatial 

points, which need to be interpolated into surface maps to be utilised by VRA technologies such as a 

precision planter. That means predictions of the soil property in question could be made at regular 

intervals across the area of interest, represented as a raster grid. When the grid is of a moderate to high 

resolution (i.e. when the distance between the centres of adjacent grid cells is small, maybe 100 m or less) 

digital soil mapping techniques can provide detailed spatial coverage of the soil variable of interest 

(McBratney et al., 2003). In the absence of covariates or predictor variables, the predicted value of the 



37 | P a g e  
 

target property at any location is solely dependent on the spatial configuration of the set of locations 

where the target property value is known. 

Geostatistics is a technique for interpolating spatial point data based on Tobler’s First Law of Geography: 

``Everything is related to everything else, but near things are more related than distant things" (Tobler, 

1970, p. 234). This spatial relationship is quantified mathematically using a variogram (or semivariances), 

which illustrates that the difference in values increases as the distance increases before eventually 

reaching a plateau (meaning the difference in values is no longer associated with the distance). The 

distance in which the semivariance increases is called the “range of spatial dependency” or “range”, which 

can be used to guide the sampling interval (Kerry & Oliver, 2003). 

Kriging is an advanced interpolation technique that is widely used to produce maps based on underlying 

spatial variations between sampled locations  (J. Li & Heap, 2014). As with IDW (Burgess & Webster, 1980), 

the kriging estimate of the target soil or crop property at an unobserved location is a weighted average of 

the values of the property at the surrounding, observed, locations. The difference is in how the weights 

are determined. In the inverse distance weighting (IDW), the weights applied to the computation at any 

unobserved site are based solely on the distance of the unobserved site to the observed sites 𝐷𝐸(𝑥0, 𝑥𝑖). 

In kriging, the weights are based on not only the distance to the observed sites, but also the modelled 

variance in the target property between them (J. Li & Heap, 2014). When data are enough to compute 

variograms, kriging is often used as an interpolator for sparse data.  

 

2.3.2.2 Spatial classification for delineating management zones  

The delineation of MZs for VRA is an important aspect of precision farming practices. The statistical 

techniques for undertaking MZ delineation have evolved along with the fields of artificial intelligence and 

machine learning (ML). During the last 15 years, there have been researching interest in machine learning 

(ML) techniques for accurate crop yield prediction and nitrogen status estimation using rapidly advancing 

precision farming data (Chlingaryan et al., 2018). By establishing functional relationships 𝑓(𝑋1, 𝑋2, 𝑋3…) 
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between spatial crop yield potential (the response variable 𝑌) and related attributes (the predictors 

𝑋1, 𝑋2, 𝑋3…), a machine learning model can be built using the ``split-sample’’ approach (supervised 

learning) to make predictions of spatial yield variability or to identify spatial patterns without any prior 

knowledge of the data (unsupervised learning). For delineating MZs within a field, unsupervised learning 

techniques such as fuzzy c-means clustering are mainly based on single or multiple factors that explore 

sub-regions with similar yield-limiting factors such as soil water and soil nutrients (Guastaferro et al., 2010; 

Leroux et al., 2018; Pantazi et al., 2015).  

 

2.3.2.2.1. Unsupervised classification 

Fuzzy c-means is an unsupervised classification algorithm (unsupervised classification is a term in machine 

learning used to describe identifying patterns without any prior knowledge), which aims to minimise the 

objective function through numerous iterations.  

Fuzzy c-means clustering has been embedded in several software packages such as Management Zone 

Analyst and FuzME (Fridgen et al., 2004; Minasny & McBratney, 2002) and is used extensively to partition 

data points into groups for delineating MZs (Lark & Stafford, 1997; Kitchen et al., 2005; Taylor et al., 2007; 

Moral et al., 2010).  

Lark and Stafford (1997) introduced fuzzy c-means clustering to interpret multiple-year yield maps and 

identify patterns of seasonal yield variation. The fuzzy clustering produces partial membership, a measure 

of statistical confidence in which one data point may be associated with multiple clusters (rather than 

belonging to only one cluster) (Bezdek, 1973). This technique was tested on yield data (1993-95) of a 6-

ha, uniformly managed winter barley field in England. Soil samples were taken from 100 locations at 0-20 

and 20-80 cm depths across the field and measured for moisture, OM, pH and mineral nitrogen. An 

Analysis of Variance (ANOVA) test was used to determine the randomness of soil properties within the 

clusters. The ANOVA results suggested that the between-season yield variation in a cluster may reflect 

water deficiency in some soil types (Lark & Stafford, 1997). 
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Fraisse et al. (2001) aimed to delineate MZs based on soil EC and topographic attributes such as elevation 

and slope using fuzzy c-means clustering. Data collected in two claypan fields (28-ha and 36-ha) located 

in central Missouri were used to test the proposed methodology. The determined optimum number of 

MZs, indicated by the sum of within-cluster yield variances, were inconsistent from year to year and were 

possibly a function of seasonal weather and the crop species planted. The number of zones decreased if 

adequate moisture conditions were present throughout the cropping season, or if crop species tolerant 

of water stress were planted. 

A protocol was developed for delineating potential management classes based on multiple-year yield data 

for broad-acre crop production in Australia (Taylor et al., 2007). The protocol used mostly free software 

such as Yield Editor (spatial filtering), VESPER (variogram and kriging) and FuzME (fuzzy c-means 

clustering). The field average kriging variance was used to calculate 95% confidence intervals to determine 

the optimal number of clusters (Whelan & McBratney, 2003). The results suggested that some soil physical 

properties such as soil depth and plant available water capacities were significantly different between 

different yield classes delineated using the protocol.  

Like Fraisse et al. (2001)’s approach, Blasch and Taylor (2018) developed a Multi-temporal Yield Pattern 

Analysis (MYPA) method. Principal Component Analysis (PCA) was performed to produce the principal 

component (PC) maps that represented static and dynamic patterns of the yield. The outlier maps from 

the raster stack were identified using PCA. Yield pattern stability was evaluated using statistical per-pixel 

analysis based on the standard deviation (SD) of normalised yield. MZs were delineated with important 

PCs (PCA loading > 0.5) and SD using k-means clustering. However, this analysis is only applicable to 

complete yield datasets from a whole field due to the limitation of PCA, which is not capable of handling 

missing data due to management factors such as changing field boundary or trialling different treatments 

or hybrids in the same field.  

These papers provide different alternatives to analyse multiple-year yield maps and delineate potential 

productivity zones. However, these static maps identified long-term yield variation but did not examine 
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the dynamic pattern of the yield within each zone. These maps are perhaps suitable to be used in some 

continental countries where stable weather conditions are expected from year to year. In New Zealand, 

the weather conditions could be more variable between months, between weeks or even between days, 

than in the continental countries, which limits the effectiveness of static zones and subsequently variable 

rate applications. Therefore, temporal conditions needed to be integrated into the process of delineating 

management zones to estimate yield potential or provide decision support as to how much input should 

be applied for each zone within a field at a time. 

 

2.3.2.2.2. Supervised classification 

Statistical models (such as stepwise multiple linear regression and partial least square) have been used to 

help understand the relationship between crop yield and measured soil and site parameters, using large, 

spatial, multivariate datasets. Correlation and other linear techniques (e.g. multiple linear regression 

models) have been used in many previous studies to explore the relationship between crop or soil 

properties and the data derived from precision farming tools (Blasch et al., 2015; Schirrmann et al., 2011; 

Stadler et al., 2015). The correlations can also provide insight into the linkages between precision farming 

data and crop yield spatial variability (Drummond et al., 2003; Kitchen et al., 2003; Wang et al., 2019). 

However, linear regression models assume that the relationships between the dependent and 

independent variables are linear. Improved results have been reported with more complex machine 

learning techniques such as artificial neural networks.  

Blackmore et al. (2003) identified the spatial and temporal trends using crop yield maps from four 

different fields over six years in England. On assuming mostly stable yielding pattern within-field over the 

years due to the same yield-limiting factors, they attempted to predict the spatial yield of the latest year 

using yield maps from previous years but found poor results (R2  = 0.02 – 0.43). Their results could suggest 

that a multivariate approach should be undertaken for predicting spatial yield. 
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J. Liu et al. (2001) used a feed-forward, back-propagation neural network model for predicting maize yield 

based on soil factors (e.g. soil texture, pH, phosphorus, potassium, organic matter), management factors 

(nitrogen fertiliser), and monthly rainfall as inputs in their neural network. This study was conducted on 

small plots with different fertiliser treatments in the Morrow Plots of the University of Illinois. The BPNN 

was able to model the interaction between rainfall and the rate of applied nitrogen fertiliser. It also 

predicted maize yields with 80% accuracy. However, only one algorithm was tested. Given on-going 

development of ML algorithms in recent years, better predictions may be achieved with more advance 

ML algorithms such as deep neural networks. 

Drummond et al. (2003) predicted maize and soybean yield on three sites in the US state of Missouri 

(ranging from 13 to 36 ha in size) also using a feed-forward, back-propagation neural network with several 

soil fertility parameters (e.g. soil pH, OM, phosphorus, calcium, magnesium, potassium) and topographic 

inputs (e.g. elevation, slope). The neural network generally provided better statistical predictions (an 

average of 45% of the variation, range 21 - 74%) in the multiple-year analysis than the other models 

(SMLR, which explained an average of 31% of the yield variation, range 14% to 65%). However, variable-

rate application based on intensive sampling was also not cost-effective to be used for managing sub-field 

scale variation due to high sampling and mapping costs.  

Therefore, this research attempts to provide a case study on predicting spatial yield within-field using 

different machine learning models based on a variety of spatiotemporal information on maize fields in 

New Zealand, which is major cropping system in the North Island. It is hypothesized that this case study 

can provide new insights to help to manage within-field crop and soil variability by prescribing variable 

rates of inputs such as N fertilisers within-field. The application of sensor-derived data such as yield 

monitor data and soil electrical conductivity (EC) offers advantages over techniques that use spatial data 

collected from intensive and expensive grid sampling. The minimal costs associated with sensor-derived 

data are more likely to be of commercial interest to New Zealand crop farmers and therefore will 

encourage further uptake of variable rate application.  
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2.4 Discussion and Conclusions 

This chapter identifies the issue in the analysis of spatial data for managing within-field yield variability 

using VRA. Even though farmers have collected yield data over many years (in some cases up to 25+ years), 

the uptake of precision farming practices in New Zealand, such as calibrating yield sensors, yield mapping 

and delineating management zones, is limited because of a lack of a temporal focus on prescribing crop 

management inputs within-field.  

Specifically, this review has revealed the following research gaps: 

• Yield monitor data collected with GPS can be mapped to present the spatial variability of crop 

yields within-field. However, there are potential issues with the sensing systems such as combine 

flow delay and human variability such as inconsistent ground velocity, which may be detrimental 

to how well the yield maps represent the actual yield. Several spatial filtering techniques have 

been developed, including Yield Editor which is widely used to filter out yield data errors. 

However, no standard method was established for spatial filtering and some of the programmes 

were not straightforward for data that is collected using different sensors that come with different 

formats. To support yield mapping in New Zealand, spatial filtering should be flexible with 

different sensors and should be integrated into the rest of the yield data analysis to help improve 

the accuracy of yield maps.  

• To derive within-field yield potential, the soil EC data measured by EMI (such as EM38) or direct 

contact sensor (such as Veris 3100), along with RTK elevation have shown some promise. High EC 

values are often associated with fine-textured soil and greater available water holding capacity, 

which generally prevents crop moisture stress. The implication is to alter crop management inputs 

spatially, for example by lowering input rates in areas with low yield potential, which may result 

in lower production costs or produce a better yield. Of particular interest is that the impacts of 

soil texture variations on spatial yield may be captured using high-resolution satellite imagery 

such as Worldview-2, GeoEye-1 satellite imagery and RapidEye, which can be used to delineate 
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management zones for a range of crops when yield maps are absent. Strong correlations to crop 

yield have also been reported with several variants of NDVI such as Soil Adjusted Vegetation Index 

(SAVI) and Green NDVI. However, studies on the use of publicly free, medium-resolution satellite 

imagery such as Sentinel-2 for subfield-level crop research have been scarce.  

• Previous studies have attempted to delineate MZs using historical yield maps or soil EC and/or 

topography. However, spatial patterns delineated from yield or soil-based MZs are static, whereas 

the yield responses within the MZs can vary temporally. Most MZ studies do not consider 

temporal factors such as meteorological data and are unable to estimate yield potential for each 

MZ. Without a detailed level of understanding of yield potential and crop response to specific 

variables (e.g. climate, soil type), it is difficult to apply variable rates of input to MZs or justify its 

financial performance.  Therefore, this research and its stated aims exemplify a need to predict 

within-field yield potential for informing variable rate applications such as; N fertiliser by exploring 

spatiotemporal interactions between crop, rainfall and soil temperature using appropriate 

machine learning (ML) techniques. 
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Chapter 3 Materials and methods  

3.1 Introduction  

This chapter describes the study area and sites, data collection, and analysis methods employed for the 

research so that the objectives stated in Chapter 1 can be achieved:  

• To address Objective 1 (improve maize yield mapping precision), a customised spatial filtering 

algorithm was developed and tested using yield monitor data over four years (2014, 2015, 2017, 

and 2018) collected from FAR’s NCRS (section 3.3.1). 

• To address Objective 2 (identify appropriate spatiotemporal yield predictors), soil electrical 

conductivity (EC), soil organic matter (OM), RTK elevation, and multispectral crop images were 

collected from FAR’s NCRS and correlated with yield (section 3.3.2, section 3.3.3). Zonal soil 

sampling and soil texture analysis were undertaken to attempt to explain the yield variability and 

to provide a calibration for the use of soil EC (section 3.3.5).  

• To address Objective 3 (to determine the viability of predicting spatial yield at the subfield spatial 

scale), five non-irrigated maize fields with consistent management history in the Waikato region 

were selected (section 3.3.6). The temporal yield variability, meteorological data (rainfall, solar 

radiation and GDD) were incorporated for predicting subfield yield variability, which can induce 

‘dynamic’ production yield zones from year to year (section 3.3.4). Several machine learning 

models (SMLR, FFNN, CART, RF, XGBoost, and Cubist) were implemented and evaluated in terms 

of their yield prediction accuracies (section 3.4.5). 

These models can potentially be embedded into GIS software and then used by farm consultants to help 

inform crop management decisions such as N-fertiliser application. 
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3.2 Study area and site description 

3.2.1 Study area 

The study area is in the Waikato region of the upper North Island, NZ, and is home for a population of 

472,100 (Statistics NZ, 2018a). It has a wide range of agricultural industries, agribusinesses, and research 

institutes. The region is best known for its grass-fed dairy production industry and is a large consumer of 

grains for supplementary feed when pasture production is below animal demand. Poultry farming is 

another major industry in the region, supplying both chicken meat and fresh eggs which also creates a 

domestic demand for grain production (Statistics NZ, 2018b). Crop growing and processing are therefore 

significant contributors to the region’s economy, with 1,485 farms involved in arable cropping in the 

Waikato (Statistics NZ, 2019). Other crops include herbs, tomatoes, cucumbers, and lettuce. The region 

has more than 4,000 hectares of land dedicated to growing outdoor fruit and vegetables (Statistics NZ, 

2019).  

The Waikato region is the largest producer of maize crops (Zea mays) in New Zealand (Statistics NZ, 2019), 

supplying grain or silage primarily as supplementary feed for livestock. Most of the maize hybrids planted 

in New Zealand are dual-purpose and can be grown for silage or grain.  Maize crops are C4 pathway plants 

(C4 plants have different anatomy and physiology compared to C3 plants and have greater water use 

efficiency in carbon fixation) and are typically grown in areas of the North Island of NZ due to higher levels 

of solar radiation and a warmer temperate climate, ensuring a higher yield potential compared to the 

South Island (Booker, 2009).  

The climate of the Waikato region is temperate and tends to be warm and humid in summer and mild in 

winter (Chappell, 2013). The average annual rainfall is 1,250 mm spread evenly throughout the year 

(NIWA, 2016).  However, ‘dry spells’ (Periods of fifteen days or longer with less than 1 mm of rain on any 

day from December to March) are common in the region (Chappell, 2013).  

Soils in the area around Hamilton have a high horticulture and cropping potential. Of note is the Horotiu 

soil, a local Allophanic soil (Typic Udivitrand) formed from a series of thin tephra (volcanic ash) layers 
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overlying slightly raised channel/bar volcanic alluvial deposits laid down about 18,000 years ago by the 

Waikato River (Lowe, 2010). A key component of this soil is the amorphous mineral “allophane”, which 

binds soil particles into stable and fine aggregates that allow free drainage and helps retain moisture. Root 

exploration is relatively unconstrained by this soil type (Molloy, 1998). The Horotiu soil often forms a 

complex association with the Te Kowhai silt loam, gley soil (Typic Ochraqualf) formed from “volcanogenic 

overbank flood deposits” located on the lower-lying alluvial swales formed by the Waikato River. 

 

3.2.2 Site description 

To identify appropriate spatiotemporal yield predictors, five long-term (10+ years) non-irrigated maize 

fields in the Waikato region were selected (Figure 3-1) because of their consistent within-site 

management history. Yield monitor data were consistently collected from all fields over several years and 

provided by FAR.  

Northern Crop Research Site (NCRS) (175.372 E, -37.835 S) and is located at Tamahere, 10 km south-east 

of Hamilton, see Figure 3-1. It lies within the alluvial plain landscape unit of the Hamilton Basin where the 

Horotiu-Te Kowhai soil complex is dominant. An Automatic Weather Station (AWS), administered by New 

Zealand’s National Institute of Water and Atmospheric Research (NIWA) is located at Hamilton airport, 

approximately 5 km SW from NCRS, providing hourly weather data for public use. Because of the close 

distance to the NCRS site, the weather data recorded by the AWS is likely to be an acceptable proxy for 

the weather conditions at the NCRS site. 

The NCRS site also hosts long-term trials for maize and forage, including a long-term crop establishment 

trial. The selected maize field is a 10-ha in size and has been solely dedicated to growing maize. Strip-

tillage has been practised for planting maize at the site since 2013. Strip-tillage is a conservation tillage 

system for planting row crops and only cultivates a portion of the soil between previous crop rows and 

keeps 75% of the residue on the soil surface, thereby minimising soil disturbance (Heege, 2013), This 

contrasts with conventional tillage which normally fully cultivates the soil and mixes crop residue through 
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the soil before planting. Nitrogen (N) fertiliser (typical urea with a volatilisation inhibitor) is typically 

applied at planting, and also in the mid-season at the V5 crop stage (five-leaf vegetative stage) via surface 

broadcasting using a twin-disc spreader. 

 

 

Figure 3-1 Study site location in the Waikato Region of New Zealand and the nearby NIWA weather 
stations (source: Open Street Map) 
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3.3 Data collection 

3.3.1 Yield monitor data (response variable) 

Spatial yield data of maize (Zea mays) grain was collected from four harvests (2014, 2015, 2017, and 2018) 

at NCRS during crop harvesting using a yield monitor (Figure 3-2) fitted on an 8-row (6 m swath) combine 

harvester with a GPS receiver. Spatial data points were recorded at 1-second intervals during harvest. As 

an example, the first ten rows of 2018 yield data subset are shown in Appendix 1. 

The principle of geospatial yield monitoring was described in section 2.3.1.1. The yield monitor records 

mass grain flow during a series of combine harvesting processes (cutting, mixing and threshing). An on-

board computer then converts the flow relative to the area covered by the harvester into yield since the 

last GPS reference point and records the grain moisture content using an electrical capacitance sensor.  

 

Figure 3-2 Yield monitor based on the measurement of mass grain flow (the sensing plate converts the 
impact of the incoming grain into electric signals) 
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3.3.2 Soil EC, OM and elevation (as yield predictors) 

Soil apparent electrical conductivity (EC) is related to inherent soil texture and soil water holding capacity 

which can be used to derive yield potential within-field (Lund et al., 1999). The EC soil data for all available 

fields were collected using a Veris Mobile Sensor Platform (MSP-3) and collected at 1-second intervals 

along the transect, with 10 to 15 m separating each transect.  

The Veris MSP-3 has three sensing technologies, one of which is a contact-based EC sensor (see Figure 

3-3). This system has four-disc coulter plates that measure electrical resistivity indicating how well the 

electrical current flows in soil. The less resistance to the electrical current through the soil, the higher the 

moisture content. Differences in EC readings suggest variation in soil texture and/or the presence of a 

water table. This sensor takes measurements from two soil depths: between 0 and 30 cm (EC shallow), 

and between 0-90 cm (EC deep), which is predetermined by the voltage and the separation distance 

between discs (Grisso et al., 2005). 

The Veris MSP-3 also has a near-infrared LED that measures the light reflectance from a furrow created 

within the topsoil. Reflectance values are then calibrated using laboratory testing for soil organic matter 

content (Hurst et al., 2015; Lund & Maxton, 2011). 

Elevation points were measured in October 2017 by an RTK GPS installed on the variable rate planter.  

 

Figure 3-3 Veris Mobile Sensor Platform (MSP-3) (Source: Hurst et al., 2015)  
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3.3.3 Satellite imagery 

To examine if there are any associations between crop images and yield maps, this research explored the 

use of Sentinel-2 images to map crop variability. Sentinel 2 is a multispectral (443–2190 nm), wide-swath 

(290 km), fine spatial resolution (10 m for RGB and NIR band) satellite imagery developed by the European 

Space Agency (ESA) within the framework of the European Union Copernicus programme. Sentinel 2 

(Level-1C) has been available since June 2015. The Sentinel-2 Images are free for download and provide 

reflectance data from the light spectrums (R, G, B, and NIR) with a reasonable spatial resolution (10 m) 

which is useful for investigating crop performance at the subfield scale. Sentinel 2 has a five-day revisit 

cycle which is a higher frequency than the older NASA Landsat 8 with 30 m resolution and a 16-day cycle. 

The shorter revisit cycle of Sentinel 2 increases the chance of obtaining cloud-free images at a crop growth 

stage for the study sites.  

Sentinel 2 images have only been available since June 2015, whilst the yield monitor data for the subject 

field date from 2014. Therefore, Landsat 8 images are also used for 2014 (Table 3-1). 
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Table 3-1 Information for the satellite imagery acquired for this research 

Satellite Imagery Acquisition 

date 

Wavebands Spatial 

resolution 

USGS Landsat 8 Surface 
Reflectance Tier 1 

2014-02-09 Band2 (blue 452 – 512 nm), Band3 (533-
590 nm), Band4 (636 – 673 nm), Band5 

(851 – 879 nm) 

30 m 

USGS Landsat 8 Surface 
Reflectance Tier 1 

2015-02-12 Band2 (blue), Band3 (green), Band4 (red), 
Band5 (NIR) 

30 m 

Sentinel-2 MSI: 
Multispectral 

Instrument, Level-1C 

2017-02-23 Band2 (blue 458 - 523 nm), Band3 (green 
543 – 578 nm), Band4 (red 650 – 680 nm), 

Band8 (NIR 785 – 899 nm) 

10 m 

Sentinel-2 MSI: 
Multispectral 

Instrument, Level-1C 

2018-02-23 Band2 (blue), Band3 (green), Band4 (red), 
Band8 (NIR) 

10 m 

 

Landsat 8 Surface Reflectance Tier 1 data has been available since April 2013 and has a revisit cycle of 16 

days with a spatial resolution of 30 m for the visible and NIR band (Roy et al., 2014). This resolution, 

however, may be too coarse to be of use at the sub-field scale as some pixels may contain “noise” such 

as bare soil, streams, and trees within the same pixel (Dash et al., 2017). Remote sensing data (Sentinel 2 

and Landsat 8) were pre-processed by selecting cloud-free images and applying atmospheric correction 

(converts radiance to reflectance). The processed images were downloaded using Google Earth Engine 

(an online platform that allows records of data from many satellite projects to be accessed and 

processed). There are several steps included in the selection of images: 
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1. Cloud-free images were selected based on visual inspection of each image for each acquisition 

date (Table 3-1). After filtering, only 20 cloud-free Sentinel 2 images were available for the study 

field between 1 September 2016 and 1 July 2018, with most acceptable images taken between 

December and August. Georgi et al. (2018) developed an automatic algorithm that can select 

cloud-free images of vegetation for spatially high-resolution RapidEye satellite multispectral 

images (5 m). Due to different band and resolution specifications of Sentinel-2 images, this 

research was unable to reproduce the programme. This aspect of image availability could be 

explored further in future research. 

2. Since this study is focussed on investigating correlations between crop reflectance and soil and 

yield, images with low vegetation (indicated by low average values of normalised difference 

vegetation index [NDVI] <0.4) were excluded as they indicate a high incidence of bare soil.  

The atmospheric correction of Sentinel 2 images to remove the effect of water vapour, aerosol, and ozone, 

was undertaken using the “Py6S” program developed by R. Wilson (2013) and incorporated by S. Murphy 

(2017). The data were exported as a series of raster stacks (a collection of raster layer objects with the 

same spatial extent and resolution), with each stack containing reflectance data at four wavebands in the 

R, G, B, and NIR range. To ensure that images with different spatial resolutions could be overlaid with 

corresponding spatial data, a regular 6 m grid spacing was generated over the raster images to extract 

pixel values (explained in section 3.4.2).  
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3.3.4 Meteorological data (as yield predictors) 

To determine how yield might respond to changes in temporal conditions at critical stages during growth, 

meteorological data was downloaded from New Zealand's National Climate Database (CliFlo: NIWA's 

National Climate Database on the Web), a freely accessible data source. For the NCRS study site, historical 

weather data was recorded by the Hamilton AWS weather station (175.332 E, -37.861 S), located within 

5 km of the site (Figure 3-1).  

Weather data was retrieved as CSV files containing daily summary statistics. These variables selected 

were:  

Rainfall: Water is essential for crop development in terms of forming cell structure, germination, 

photosynthesis, nutrient transfer and transpiration. The water requirement of the maize crop varies 

between different growth stages but must not be restricted at any stage for maximum yield to be 

achieved. Theoretically, 20% of total water uptake occurs within the first five weeks of crop establishment, 

33% occurs during the next three weeks before silking, and 31% during the next three weeks during silking 

and early grain fill (Genetic Technologies Limited, 2016). Maize is very sensitive to drought, especially 

during the two weeks before and after silking, which may cause serious yield losses (McWilliams et al., 

1999). Therefore, rainfall occurring during the growing season should be partitioned into different growth 

stage intervals to model its effect on yield. 

Solar radiation: The amount of solar radiation intercepted for photosynthesis during growth determines 

the crop’s rate of growth and potential yield (Muchow et al., 1990). Maize is one of the most efficient 

plants at converting radiation into biomass (about 1.6 tonnes dry matter/ha for every 100 MJ of radiation 

intercepted (FAR, 2009). The most sensitive periods of crop growth (such as flowering and early grain fill) 

are often the most susceptible to stresses such as insufficient light, water, or nutrient intake. Previous 

studies have found that increases in radiation during grain-filling drives an increase in maize yield, 

especially in cool-temperate climates such as New Zealand (Yang et al., 2019; D. Wilson et al., 1995).  
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Air temperature: Temperature drives the duration of growth. The duration of growth is typically 

evaluated in terms of the accumulated heat unit (metric Growing Degree Day (GDD)), calculated by 

subtracting the base growth temperature for maize [8°C] from the average air temperature in 24 hours. 

Maize growth is assumed to be nil at the base temperature (FAR, 2005). In New Zealand, the GDD 

requirement for maize maturation is about 1,800 GDD and is dependent on the planting date and growing 

season temperature. The maize maturation date could be delayed for around 30 days if the air 

temperature was 3 °C cooler for the 12 weeks of spring (Salinger, 1986). A delay of maturity may also 

create uncertainties for harvest and delays for winter crop rotations.  

Daily weather data were aggregated into seven-day intervals, with accumulated rainfall, solar radiation, 

and GDD calculated over each interval. Because the maize crop was planted on different dates each year, 

and the duration to reach maturity varies between years, the meteorological data was referenced based 

on the number of days before and after the date of planting (Day 0) to compare the temporal effects for 

different years. 

 

3.3.5 Soil core samples 

To help explain yield variability within-field, soil sampling was undertaken. The maize field was visited on 

19 November 2018. The landscape features were visually inspected and photographed (Figure 3-5). Due 

to the constraints of time and budget, it was decided to conduct management zone soil sampling (taking 

samples from each predefined management zone) as compared to grid sampling (taking single or multiple 

soil cores within each regularly spaced grid cell). The predefined MZs were determined from historical 

maize yield maps (see section 4.3.2).  
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Soil was sampled to a depth of 80 cm using a standard soil core sampler (3.5 cm internal diameter) at six 

locations (Figure 3-4), three each in relatively high yielding zones (HY) and low yielding zones (LY). Each 

sampling point was georeferenced using an RTK GPS (Leica Zeno 20). Each soil core was then cut into 

sections (Figure 3-6), sealed in labelled sample bags, and stored in a chiller before processing. 

Texture analysis was performed on all samples collected from soil cores at depths of 5-10 cm, 10-15 cm, 

15-20 cm, 20-25 cm, and 25-30 cm (Figure 3-6). The soil at 0-5 cm depth was not sampled because of the 

highly variable bulk density and organic matter content within this interval for most soils (Kaul & Grafton, 

2017). This 0 - 5 cm depth is also above the point at which the maize seed was planted (5 cm). Since the 

crop grows roots downwards in response to gravity, the texture in this 0 - 5 cm depth above planted seed 

would have minimal effect on the crop. The soil profile below 30 cm was also not measured for soil texture 

because: 

1) Soil moisture deficit (controlled by rainfall, soil texture and groundwater level) before the V6 stage 

will permanently impair maize yield production after the V6 stage (Song et al., 2019); 

2) The rooting depth is about 30 cm deep between the V5 (5th leaf vegetative) to the V6 stage 

(Abendroth et al., 2011). Previous studies (Nichols et al., 2019) also suggest that 52 to 94% of the 

total root mass of a mature maize crop was found in the top 30 cm soil, which includes the primary 

and seminal roots that are critical for nutrient uptake. 

All maize seed was planted with coated urea and ammonium sulphate, and additionally, urea was applied 

mid-season, so hypothetically, all maize plants should have received similar quantities of nutrients. To 

verify potential variation in nutrient uptake due to variation in soil texture within the field, fifteen-

centimetre fixed-transect soil core samples and subsequent testing (for soil fertility status) were 

undertaken 32 days before planting on 8 October 2018, and again 50 days before the harvest of the crop 

(14 May 2019). The soil test results were presented in Appendix 4 and 5. 
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Figure 3-4 NCRS core soil sampling locations and the banding (brown versus green) associated with 
differential growth patterns (source: Google Earth RGB image; imagery date: 11 March 2016) 
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Figure 3-5 Photo of the NCRS maize field (looking west) The vertical pole is the location of sample HY3. 
Note the variation in maize growth in the middle centre and middle right, potentially caused by soil texture 
differences within the field. (photograph date: 19 November 2018) 

 

 

Figure 3-6 Core soil sections (0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm, 25-30 cm, 30-40 cm, 40-60 
cm) taken from the NCRS maize field (photograph date: 19 November 2018) 
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3.3.6 Other field sites for testing yield modelling 

To further test the modelling approach employed in this research (section 3.4.5), four other field sites in 

the North Island of New Zealand were selected based on the availability of several years of maize harvest 

data. The sites that were chosen: (a) had a history of long-term maize production, and (b) had consistent 

management history with intact spatial data. 

Site 2 (175.487 E, −37.676 S) and Site 3 are two neighbouring non-irrigated maize fields (5-ha and 14.5-

ha, respectively) located 5 km southwest of Morrinsville. Five years’ yield monitor data (2014, 2015, 2016, 

2017, and 2018) were collected. The soil type is a mix of Te Puninga silt loam, some Ngakura loam and 

Morrinsville loam (Lilburne et al., 2012). The planting dates were missing for 2014 and 2015, and so from 

consulting the grower, the planting date for 2016 was assumed for those two years.  

Site 4 (174.904 E, -37.314 S) is a 7.8-ha non-irrigated maize field located near Onewhero, approximately 

10 km to the southern edge of the Auckland Region. The soil type is Karaka deep clay (Lilburne et al., 

2012). Seven years’ yield monitor data (2005, 2007, 2009, 2010, 2013, 2015, and 2017) were collected. 

The planting dates were missing for all years except for 2017. After consultation with the farmer, it was 

decided to use 10 October for planting for the missing years.  

Site 5 (175.763 E, -37.798 S) is a 24-ha non-irrigated mixed arable field located less than 1 km north of 

Matamata. The soil type is mainly Te Puninga silt loam and some Ngakura loam (10 %) (Lilburne et al., 

2012). Three years of maize yield data were collected (2008, 2009, and 2010).  

To determine if a trained model derived elsewhere can predict yield from a maize field that has a limited 

dataset, the data from the five individual fields were pooled together to form a larger maize yield dataset 

to be analysed in the predictive modelling analysis and to identify important variables. All fields have soil 

EC, elevation and weather data collected (Table 3-2). 
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Table 3-2 Summary statistics (N = 2520) of the response variable yield and predictors for all five fields 
(“Rain.7” represents the accumulated rainfall within the week before planting; “Rain0” represents the 
accumulated rainfall in the first week (7 days) after planting; “Rain7” represents the accumulated rainfall 
in the second week (14 days) after planting; “rad” -- solar radiation; “GDD” -- growing degree days) 

 mean sd median min max 

yield 11.48 3.24 11.64 0.47 25.89 

soilec_shallow 5.93 2.75 5.05 1.61 17.9 

soilec_deep 5.61 2.81 5.38 -1.45 15.88 

elevation 62.62 25.58 60.77 29.99 113.65 

Rain.7 15.95 15.82 13 0 75.5 

Rain0 20.82 14.49 16 0 44.5 

Rain7 13.77 9.64 13 0.2 36.4 

Rain14 22 16.33 18.6 0 58.5 

Rain21 12.81 12.35 3.3 0 38.6 

Rain28 13.09 12.6 6.7 0 46.4 

Rain35 9.13 8.17 5.6 0 28.7 

rad.7 121.01 13.84 123.1 100.76 145.12 

rad0 126.04 15.73 121.75 88.49 155.93 

rad7 140.78 19.94 143.39 101.52 171.55 

rad14 138.4 20.77 139.92 102.85 174.9 

rad21 148.46 16.37 151.59 116.92 175.51 

rad28 149.43 13.04 151.06 121.11 183.41 

rad35 154.75 19.75 156.45 98.65 195.3 

GDD.7 37.57 6.89 35.85 22.35 51.95 

GDD0 39.12 8.8 36.65 27.4 66.85 

GDD7 41.37 11.53 39.1 26.75 77.2 

GDD14 45.8 12.88 42.55 30.75 82.55 

GDD21 45.84 13.02 38.95 32.6 76.9 

GDD28 51.62 10.53 50.95 28.25 79.65 

GDD35 56.74 10.61 59.25 35.65 74.1 
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3.4 Methods and approach to data analysis 

3.4.1 Yield data pre-processing 

Pre-processing of historical yield monitor data is required to reduce errors associated with the sensing 

systems and operations, and improve yield map quality (see section 2.3.1.1.1). Therefore, spatial data 

filtering was conducted to remove erroneous data values. Data filtering software is available to help 

analysts filter yield data to improve the accuracy of raw data. A freeware filter, “Yield Editor 2”, developed 

by Sudduth et al. (2012) was initially used to establish its efficacy to remediate data errors. However, it 

was found that some historical yield datasets missed important attributes such as GPS timestamps, which 

led to processing difficulties in the software. To filter the spatial data with missing attributes, a tailored 

script was incorporated into R (R Core Team, version 3.5.3), which is available in Appendix 2.  

Specifically, spatial data filtering is a two-stage process, which removes erroneous values sequentially. 

The erroneous values include:  

• Data outliers: those values that are unrealistically large or small. Overly large yield values are 

commonly caused by abrupt stops of the harvesters, where the travel velocity reduces too 

abruptly while receiving the crop. The zero yield values are commonly located at field edges and 

headlands where the harvester is turning when it is likely that cutting stops and starts.  

• Data inliers: Yield monitor data may contain errors where the yield values appear to be reasonable 

but are dissimilar to their neighbouring points due to measurement errors over short distances 

(described in section 2.3.1.1.1). To remove data inliers, the spatial relationships of the yield values 

need to be considered. 

In this study, outliers were identified using boxplots, a simple univariate technique for detecting outliers 

and for presenting the distribution of data (Zhao & Cen, 2013). A boxplot is derived from the median value 

(or the middle value), as well as the lower- and upper- quartile values of the data. The upper quartile is 

the data value that has 25% of the population of values above it and 75% below. The lower quartile is the 
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data value that has 75% of the population of values above it and 25% below (King & Eckersley, 2019, pp.1-

21). The data outliers were then determined based on the maximum 𝑀𝐴𝑋𝑌 and minimum 𝑀𝐼𝑁𝑌 

thresholds derived from the median, and the lower- and upper- quartile values. Figure 3-7 demonstrates 

the procedure that was used for determining these thresholds. 

 

Figure 3-7 2017 harvest yield from NCRS boxplot and method for computing 𝑀𝐼𝑁𝑌 and 𝑀𝐴𝑋𝑌 filter 
parameter values. In this study, a scale factor 𝑌𝑠𝑐𝑎𝑙𝑒of 1.5 was arbitrarily selected. The greater the scale 
factor, the fewer points were labelled as the outliers and vice versa. 

 

The upper [𝑄2] and lower [𝑄1] quantiles of the yield distribution were determined for the median value. 

The interquartile range 𝑄𝑖𝑛𝑡𝑒𝑟 was then calculated by subtracting 𝑄2 from 𝑄1. To determine 𝑀𝐼𝑁𝑌 and 

𝑀𝐴𝑋𝑌, the upper and lower quantile values were expanded by a scale factor 𝑌𝑠𝑐𝑎𝑙𝑒 of the interquartile 

range. This is expressed mathematically: 

𝑄𝑖𝑛𝑡𝑒𝑟 = 𝑄2 −𝑄1 

𝑀𝐼𝑁𝑌 = 𝑄1–𝑄𝑖𝑛𝑡𝑒𝑟 × 𝑌𝑠𝑐𝑎𝑙𝑒 

𝑀𝐴𝑋𝑌 = 𝑄2–𝑄𝑖𝑛𝑡𝑒𝑟 × 𝑌𝑠𝑐𝑎𝑙𝑒 

(eq 3.1, 3.2, 3.3) 

Where:  
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𝑄𝑖𝑛𝑡𝑒𝑟= interquartile range  

𝑀𝐼𝑁𝑌=minimum threshold for yield   

𝑀𝐴𝑋𝑌=maximum threshold for yield  

𝑌𝑠𝑐𝑎𝑙𝑒= scale factor for multiplication. 𝑌𝑠𝑐𝑎𝑙𝑒=1.5  

To identify data inliers (values that are dissimilar from their neighbours), a generic spatial filtering 

technique developed by Spekken et al. (2013) was used. This technique requires spatial coordinates 

(longitude𝑋 and latitude𝑌) and yield data values). Its implementation includes the following steps: 

1. The coefficient of variation (CV) of a specific yield value 𝑍𝑖  (represented by the red dot in Figure 

3-8) was first calculated in relation to the other points within a defined search window (5 m radius, 

selected arbitrarily based on the machine cut width to eliminate local variations produced during 

machinery operations while keeping the computation time of this analysis manageable) (Figure 

3-8). The higher the CV, the more dissimilar the value of a specific point was compared to other 

points in the search window. 

2. The points with CVs above 20% (arbitrarily selected based on Spekken et al. (2013)’s study) within 

a 5 m radius were identified. 

3. If the number of yield values inside each search radius equalled the number of yield values with 

a high CV (>20%), that specific yield value (represented by the red dot in Figure 3-8) was labelled 

as an inlier and removed from the dataset.  
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Figure 3-8 Inlier filtering process (a point was identified as an “inlier” based on the coefficient of variation 
[CV] within a defined search radius) 
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3.4.1.1 Evaluation of data filtering using variogram 

To examine how well the spatial filtering technique could remove errors and improve the quality of 

mapping, a variogram analysis was conducted. Variograms and semivariograms are mathematical 

representations of Tobler’s First Law of Geography (1970). Statistically, this law states that the variance 

between two points is dependent on their distance. Semivariances usually decrease with decreasing 

distance and increase as the separation distance increases. This is a premise for kriging interpolation, used 

to estimate values at un-sampled locations based on the spatial relationship derived from sampled 

locations. If two locations are overlapping each other (distance = 0), there should be no difference in their 

values. However, when a regression line is fitted to the semivariance values, it commonly intercepts the 

y-axis (distance = 0) at some non-zero value, known as the “nugget variance”. In a typical variogram, 

nugget (𝐶0) often indicates measurement errors over distances less than the shortest sampling interval. 

If the nugget variance approximates the maximum semivariance, the kriging process is meaningless, as 

equal weighting would be given to each measured observation, implying that the predicted values are not 

related to the distances to nearby observation. Therefore, a reduction of the nugget variance of a 

variogram would indicate that the measurement errors over short distances are being remediated and 

thereby improving the outcome of the kriging process (Webster & Oliver, 1992).  

In this study, the variogram was computed using the R package “automap”. The package provides five 

different types of variogram models (“Sph” [spherical], “Exp” [exponential], “Gau” [gaussian], “Mat” 

[Matérn], “Ste” [Matern, M. Stein’s parameterization]) (Hiemstra et al., 2009). The comparisons of kriging 

accuracy between before- and after-filtering were made for each variogram model using 10-fold cross-

validation. These analyses evaluate the effect of spatial filtering on improving the accuracy of yield maps, 

which allows using kriging for modelling subfield yield variability. 
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3.4.2 Mapping spatial data using kriging 

To integrate different data sets (yield monitor data, soil EC, soil OM, and elevation) which were originally 

surveyed at different locations within the NCRS field, spatial data points for each data set were 

interpolated into a raster map consisting of grid pixels. 

The GPS coordinates of spatial data sets (longitude and latitude) were recorded using the standard World 

Geodetic System (WGS84) datum as decimal degrees, whereas kriging interpolation required the 

coordinates to be a distance unit (metre) to compute Euclidean distance. Therefore, spatial data sets 

mapped with the WGS84 datum were re-projected to the New Zealand Transverse Mercator projection 

(coordinate system documented by European Petroleum Survey Group [epsg]: code 2193): the coordinate 

reference system optimised for New Zealand. This transformation (using the R spatial analysis package 

“sp”) facilitated the computation of distances between paired points (i.e. distances measured in straight 

lines), as required by kriging interpolation of yield and other spatial data such as soil EC. A regular grid of 

6m × 6m cells was then created within the field boundary of NCRS. This cell size was selected because it 

was the application width of the maize seed planter.  

Ordinary kriging is more suitable for interpolating yield data than simple kriging which assumes a constant 

mean yield over the entire field, and so does not reflect sub-field variations in the mean yield. The yield 

values at the grid nodes were interpolated based on nearby actual yield observations using ordinary 

kriging. Ordinary kriging is used to estimate local variations requiring only spatial 𝑋, 𝑌 coordinates, and 

the yield data values (𝑍). Ordinary kriging assumes a constant unknown mean in the local neighbourhood 

of each interpolated yield value. In this study, the premise is that the average yield is locally different from 

one neighbourhood value to another.  

The principle of kriging is to predict the value at a given location by computing a weighted average of the 

known values nearby, which is mathematically closely related to regression analysis: 

𝑍0  = 𝑚𝑖+∑ 𝜔𝑖[𝑧𝑖 −𝑚𝑖]
𝑁
𝑖=1 , (3.4) 
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Where: 

𝑚𝑖= trend component (or drift), in simple kriging this is equal to the mean of 𝑧𝑖; 

𝑧𝑖  = an observed value;  

𝜔𝑖 = the weight assigned to an observed value;  

Let∑ 𝜔𝑖 = 1 because the estimator is unbiased. 

The purpose of kriging is to minimise the variance between predicted values and observed values (mean 

squared error, 𝜎𝐸
2= 𝐸 {[𝑍0 − 𝑍0̂]

2
} by selecting 𝜔𝑖 in equation (3.4) based on the computed variogram. In 

ordinary kriging, a linear external parameter called the “Lagrange factor” (μ) is introduced to minimise 

the amount of kriging variance) and to improve prediction accuracy (Malvić et al., 2009).  

In this study, the kriging variogram was computed using the R package “automap”. This iterated through 

the entire list of variogram models (“Sph”, “Exp”, “Gau”, “Mat”, “Ste”) and automatically fitted the model 

that produced a variogram with the smallest residual sum of squares (Hiemstra et al., 2009). The weights 

(equation 3.4) were then estimated based on the resulting variogram, providing interpolated yield values 

at un-sampled grid nodes.  

Because there was a dense distribution of data points for producing adequate variograms, the ordinary 

kriging technique was applied to the yield data for each year to create yield maps, as well as for the 

generation of soil EC, soil OM, and elevation maps.  

 

3.4.3 Delineating static zones for crop management 

3.4.3.1 Yield-productivity zones 

To present long-term yield variability in a measured and objective way and to inform soil sampling 

locations for soil texture analysis (section 3.3.5), yield-based MZs with high-yielding (HY) and low-yielding 
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(LY) zones were delineated. These were based on the interpolated yield maps (section 3.4.2) for the four 

harvests (2014, 2015, 2017, and 2018).  

To produce static yield zones, a statistical technique proposed by Blackmore (2000) was used. The yield 

values from each season’s yield maps were normalised against the average yield of that NCRS site (i.e. 

each yield was divided by field average which was set at 100%). A zone with a normalised yield higher 

than 100% was classified as `relatively high yielding' (HY) and vice versa (LY). To estimate how stable these 

yield values were, temporal variability was calculated based on the coefficient of variance (CV) at each 

grid node - the standard deviation of the mean over time. If over the four years, one zone sometimes 

yielded high and sometimes yielded low (relative to the mean), this would result in a high CV value, 

indicating temporal instability. Blackmore et al. (2003) noted that, in England, for most fields that grow 

grain crops, there are small areas that may be classified as “temporally unstable”, which is consistent with 

mapping yield data from several maize fields (Holmes & Jiang, 2018).  In this research, two types of yield 

zones were delineated (HY and LY). The delineation of these zones using a clustering method is described 

in the following section 3.4.3.2. 

 

3.4.3.2 Soil zones (SZ) 

To examine if soil EC maps can be used as yield predictors, soil zones were delineated based on the soil 

EC maps to establish that association with previous yield-productivity zones delineated. Fuzzy c-mean 

clustering (also known as soft k-means) was applied to the soil EC maps to generate a single map of 

different zones using the R software package ``e1071'' (Cannon et al., 1986).  

Fuzzy c-means clustering has been embedded in several software packages (Fridgen et al., 2004; Minasny 

& McBratney, 2002) and is used extensively to partition data sets into groups to help delineate MZs 

(Kitchen et al., 2005; Lark & Stafford, 1997; Moral et al., 2010; Taylor et al., 2007). Fuzzy c-means clustering 

is an unsupervised classification algorithm (unsupervised classification is a term in machine learning used 
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to describe identifying patterns without any prior knowledge) and aims to minimise the sum of within-

cluster variances through numerous iterations, expressed mathematically as: 

∑ ∑ 𝑢𝑖,𝑗
𝑚(𝑥𝑖 − 𝜇𝑗)

2
,

𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

 (3.5) 

Where: 

𝑥𝑖 = the principal component scores 

𝐶𝑗 = the centroid of a cluster and the mean of all points, is expressed as:  

∑ 𝑢𝑖,𝑗
𝑚𝑥𝑥𝑖∈𝐶𝑗

∑ 𝑢𝑖,𝑗
𝑚

𝑥𝑖∈𝐶𝑗

 (3.6) 

𝑢𝑖,𝑗= the cluster membership𝑢𝑖,𝑗 ∈ [0,1], the degree to which an observation 𝑥𝑖 belongs to a cluster 𝑐𝑗 

and ∑ 𝜇𝑖,𝑗 = 1𝑘
𝑗=1  

𝜇𝑗= the centre of the cluster 𝑗 

𝑚= the fuzziness exponent, 𝑚 is typically greater than 1. As 𝑚 tends towards 1 it transitions from fuzzy 

to hard clustering, whereas a value of 𝑚 tending towards infinity indicates complete fuzziness so that 

each observation has equal membership in all clusters. 

 

3.4.3.3 Crop reflectance zones (CRZ) 

To examine if satellite images can reflect the effect of spatial soil variability on yield, the crop reflectance 

images acquired from the satellites in section 3.3.3 were divided into two zones using fuzzy c-means 

clustering. The crop images (B, G, R, and NIR) are raster grids consisting of regularly spaced nodes, which 

are expressed as pixels.  

For multi-band data, Principal Component Analysis (PCA) was performed. PCA is a method of eliminating 

features by undertaking orthogonal transformation (rotating the coordinate systems to find the maximum 
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variance of the data). The results of PCA may show that the original data can be compressed into new 

variables (coordinates) called Principal Components (PCs). The first two PCs generally explain most of the 

variation in a multivariate dataset and are ranked in order of influence on data variation.  

The results of PCA are often discussed in terms of: 

• Loadings - the weight by which each standardised original variable should be multiplied to obtain 

the scores (i.e. the transformed values). Loadings represent how strongly each original variable 

contributes to the transformed PC. Variables with (+) or (-) loadings indicate that these variables 

both positively influence (+) or negatively influence (-) the PC. 

• Eigenvalues - the amount of variation retained by each PC. 

One necessary task with the clustering technique is determining the number of clusters. Instead of 

choosing an arbitrary number, the optimal number of clusters was selected using the silhouette method 

(Rousseeuw, 1987). This method measures how well the points are clustered into similar groups by 

evaluating the average distance between within-cluster points against the average distance between 

separate-cluster points. This measure produces a range between -1 and 1. An average silhouette near 1 

indicates that the samples are far away from neighbouring clusters and the groups are more isolated. A 

value of 0 indicates that the samples are on, or very close to, the boundary between two neighbouring 

clusters. A negative value indicates that the samples might have been misclassified. An average silhouette 

is equal to 0 if only one cluster is produced. Figure 3-9 shows that the optimal number of clusters was 

determined by the highest average silhouette width.  
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Figure 3-9 The average silhouette was computed for every increase in the number of clusters. The highest 
silhouette was produced when two clusters were created.  

 

3.4.3.4 Comparison of static zones 

To determine if there is any association between yield productivity zones, crop reflectance zones and soil 

zones, the yield productivity zone map was compared with both crop reflectance zones and soil zones 

using areal agreement (the percentage of pixels consistently classified as HY and LY), and Cohen’s kappa 

coefficients (how likely it is that the areal agreement occurs by chance). The kappa coefficient (𝜅) is 

mathematically expressed as: 

𝜅 =
𝑝0 − 𝑝𝑒
1 − 𝑝𝑒

 (3.7) 

Where 𝑝0 is the observed agreement amongst the zone maps, and 𝑝𝑒  is the hypothetical probability of a 

chance agreement. A kappa of 1 indicates perfect agreement, whereas a kappa of 0 indicates agreement 

equivalent to chance (Landis & Koch, 1977). The results of this analysis provide an understanding as to 
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whether the spatial pattern of crop reflectance and long-term yield productivity is related to soil variability 

within-field and thus inform soil sampling locations (see section 3.3.5). 

 

3.4.4 Soil texture  

To calibrate soil EC data and further validate the effect of soil texture, soil samples collected from the 

NCRS site (section 3.3.5) were kept moist in a chiller, organic matter removed from subsamples by boiling 

with hydrogen peroxide (35% strength), and then analysed for texture using standard pipette sampling 

from settling suspensions (Claydon, 1989). Particle size classes were sand > 63 microns, silt 2 - 63 microns, 

and clay < 2 microns. To determine the precision of this procedure, triplicate analyses were conducted at 

selected soil depths. 

 

3.4.5 Multivariate modelling analysis 

To demonstrate the viability of estimating potential yield within-field, this study investigated the use of 

supervised machine learning models. The modelled output can then help inform crop management input 

decisions. Figure 3-10 illustrates the workflow for the multivariate analysis, which included the following 

aspects: 

1. Model optimisation and hyperparameter tuning to avoid overfitting of the model, i.e. to avoid the 

model predicting well in training but predicts poorly in the validation. 

2. Computing variable importance and variable elimination to further eliminate statistically 

insignificant variables to simplify the model, reducing computational time and providing 

interpretation as to how yield responded to the important spatiotemporal variables. 

3. Evaluation of model performance for predicting yield  
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a. Multiple-year analysis to extract the relationship between yield and temporal factors 

using yield data from all available years. 

b. Leave-out-one-year analysis to evaluate how the models predict the unseen data, i.e. the 

yield of the left-out year. 

 

 

Figure 3-10 Flowchart of multivariable modelling analysis 

The multivariate modelling analysis was conducted using R statistical software (R Core Team, version 

3.5.3). Under the R machine learning library “caret” developed by Kuhn (2008), several packages were 

implemented for different model algorithms (Table 3-3).  
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Table 3-3 Algorithms, R packages and key principle  

Algorithms R packages Key principle 

Stepwise multiple linear regression (SMLR) Built-in Least-squares 

Feed-forward neural network (FFNN) nnet (version 7.3–12) 
Gradient descent 
backpropagation 

Classification and regression tree (CART) rpart (version 4.1-11) binary splits 

Random forest (RF) 
randomForest (version 4.6-

12) 
Bagging 

Extreme gradient boosting (XGBoost) xgboost (version 0.90.0.2) Boosting 

Cubist Cubist (version 0.2.2) Boosting 

 

Multiple linear regression is the most common algorithm used to model the relationship between one 

response variable (yield) and many predictors, by using linear regression parameters. The model fits a line 

(or a plane) using the “least squares” method, i.e. the minimum sum of squared residuals and estimates 

all the 𝛽𝑖 coefficients. The intercept 𝜀 can be included to minimise the error in the fit. This multiple linear 

regression is expressed mathematically in equation 3.8: 

Y = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑘𝑋𝑘 + 𝜀, (eq 3.8) 

Where:  

𝛽𝑖= linear coefficients;  

𝑋𝑖  = the predictors, e.g. soil EC, elevation, OM, rainfall, solar radiation, GDD (see Table 3-2);  

Y = the response variable, i.e. maize-grain yield; 

In this study, multiple linear regression was undertaken using R statistical software. Multiple linear 

regression aims to measure the correlations between predictors and the response variable. 

Multicollinearity arises when two predictors are highly correlated with each other, which prevents the 

model from revealing the underlying relationship between a predictor and yield. Multicollinearity was 

first eliminated by filtering out the absolute pairwise linear correlation coefficients (Kuhn, 2008) between 
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predictors that were above a predefined threshold (0.8), which is widely used to indicate a statistically 

significant correlation (Mukaka, 2012; Buytaert et al., 2006). Predictors were then manually eliminated 

one-by-one, based on their statistical significance, with higher p-values (p > 0.05) eliminated first. The 

elimination process was repeated until no further variables could be deleted without a statistically 

significant loss of model accuracy (indicated by the coefficient of determination R2). This process is called 

“stepwise multiple linear regression” (SMLR). The results from stepwise multiple linear regression can 

help to identify the cause-and-effect relationships between maize-grain yield and the predictors such as 

soil EC and elevation.  

The stepwise multiple linear regression model assumes the relationships between the response variable 

(maize yield) and the predictors to be linear. To explore any non-linear relationships, feed-forward neural 

network (FFNN) models have been used by previous studies (Drummond et al., 2003). To be able to 

compare this study with their findings, feed-forward neural network modelling is also implemented using 

the “nnet” package (Ripley et al., 2016) in the R statistical programme.  

A feed-forward neural network is a simple type of neural network with only one hidden layer (Figure 3-11). 

The input predictor data X[x1, x2, ... xn] moves from the input- to hidden-layer and then to the output layer 

(predicted yield) through fully connected nodes in a single direction (Figure 3-11). The nodes in the hidden 

layers are known as “neurons” and each neuron contains a non-linear “activation” function. Each neuron 

receives the weighted average of the predictor data Σ[w11x1, w12x1, ... w1nx1]/n and then transforms the 

data into a sigmoid curve with each output value ranged from 0 to 1. Then based on linear regression of 

the secondary data from the hidden layer, the final output value is estimated. The weights W[w11, w12, ... 

wnn] and G[g1, g2 ... gn] in the network are randomly initiated at the start and are updated by iteratively 

evaluating the derivatives of the “cost” function (sum of squared error). The optimisation of the network 

is completed when the “cost" reaches the minimum. This optimisation procedure is known as the 

“gradient descent”, and is designed to reduce the computational complexity of the neural network (LeCun 

et al., 1998). 
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Figure 3-11 Feedforward neural network structure (X represents the matrix of input data; W and G are 
the weight matrices assigned between the layers, which are updated iteratively to achieve the lowest 
prediction error; Y and Z are the matrices of the output values for that layer)  

 

In contrast to multiple linear regression and neuron networks, the classification and regression tree 

(CART) was originally developed to solve the interaction effects (the effect of one predictor on the 

response variable, depending on the state of another predictor), and to identify multicollinearity in linear 

regression, with inputs from a mix of continuous and categorical data (Morgan & Sonquist, 1963). Given 

the mix of spatiotemporal predictors employed for multivariate analysis in this study, the CART model 

may be applicable for predicting yield because it implicitly eliminates unimportant predictors from the 

training process (Figure 3-12). CART aims to partition data into homogeneous subsets via a top-down and 

recursive process (a regression tree): 

• CART iterates through each observation of a predictor and computes the sum of squared errors 

(SSE) from their true value and the average value of that partitioned subgroup. The observation 

value with the lowest SSE will be used to make an initial split to determine the threshold for the 

prediction.  
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• The algorithm then computes the SSE for each predictor. The variable producing the lowest SSE 

is used as the first “root node” at the top of the tree.  

• The process is then repeated until a certain tree size threshold is met. 

The CART model was implemented using the package ``rpart’’ (Therneau & Atkinson, 1997). The tree size 

threshold in this model was defined as the maximum tree depth (“maxdepth”). A tree that is too small 

may produce a large yield prediction error because only a few predicted values are produced (Figure 3-12). 

A tree too large will produce too many splits (decision points). Therefore, the “maxdepth” parameter was 

tuned using a grid search method (see section 3.4.5.1). CART often provides less accurate results due to 

binary splits and classed outputs (Ließ et al., 2012). To enhance the prediction ability of a single CART tree, 

ensemble tree methods are also evaluated in this study, including Bagging, Boosting, and Cubist 

Regression. 
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Figure 3-12 CART Decision tree (Data was split into two subgroups from layer to layer. In this model, the 
predictions of yield were then made by a series of constraints defined by the input predictors and their 
splits (decision points). The data that matched the condition would go to the left-side branch, i.e. a value 
of the splitting predictor was greater than or, equal to, a statistically defined threshold. Otherwise, the 
data would go to the right-side branch if the value of the splitting predictor was less than the defined 
threshold) 

Bagging, known as “random forest”, is a collection of regression trees created using “bootstrapped” 

datasets and uses all these trees to predict the response variable. Bootstrapped datasets are new datasets 

created by sub-sampling (random sampling with replacement) the original dataset. The observations that 

have not been sampled is called “out-of-bag” samples and are used to evaluate the prediction error in 

random forest processing. Several predictors are then randomly selected to build a new tree based on the 

“bootstrapped” dataset. As a result of random forest processing, many trees are built and the final 

prediction of yield is the average value of the yield values of all tree predictions (Breiman, 2001). The 

random forest model was implemented using the “randomForest” package in R (Liaw & Wiener, 2018).  
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Boosting creates trees sequentially, based on the prediction produced by the previous tree created. The 

boosting model then updates the residuals of prediction by creating new sequential trees until the model 

converges to the stage where the residuals of prediction can no longer be reduced. The magnitude of 

each update is controlled by a parameter called “learning rate” (η). It is the step weights given to the 

prediction input of each tree to ensure convergence. XGBoost (Extreme Gradient Boosting) is a more 

complex sequential boosting algorithm, originating from Breiman (2001)’s paper. XGBoost introduces a 

regularisation term (λ) which is applied to each tree to avoid overfitting. A larger λ (λ > 0) causes more 

pruning of each tree and produces smaller sums of residual and therefore better prediction. XGBoost is a 

model that has recently been dominating applied machine learning for structured or tabular data (Nielsen, 

2016). The XGBoost model was implemented using the “xgboost” package in R (Chen et al, 2015). 

Cubist regression has been used for some large remote sensing datasets and reported promising 

prediction accuracies and less computation time compared to that of random forests (Noi et al., 2017; 

Zhou et al., 2019). However, it is a rule-based decision tree algorithm introduced to the R statistical 

program (Kuhn et al., 2012). It is a proprietary product and thus little publicly available documentation 

exists as to how the model functions. The application of this model is, however, popular and has been 

cited in literature since it was introduced into R in 2012. Distinct from regression trees such as CART, 

where values are predicted at their terminal nodes, the Cubist model produces a set of rules (“if-then” 

statements), with each rule comprising multivariate linear regression models at the terminal nodes (Table 

3-4). The Cubist model adds a boosting procedure called “committees”, which are a series of trees created 

sequentially. The Cubist model adds a refinement to the boosting procedure by using neighbour–based 

adjustments so that each predicted value can be adjusted based on observed values in a similar neighbour 

cluster determined from the training set (Walton, 2008). The Cubist regression was undertaken using the 

“Cubist” package in R.
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Table 3-4 Example of Cubist modelling output (first 10 rules) 

Rule Condition Linear regression model support mean error 

1 
elevation > 38.35374 & elevation <= 

39.03139 & rad14 > 144.61 & rad35 > 156.45 (3.3902982) + (0.49 * soilec_deep) 27 4.4 0.9 

2 
soilec_deep <= 4.073236 & rad14 > 124.1 & 

rad14 <= 144.61 

(-22.5182272) + (0.132 * rad14) + (0.39 * soilec_deep) + (0.047 * 
rad21) + (0.028 * elevation) + (0.048 * GDD21) + (0.015 * GDD14) 

+ (0.007 * rad0) - (0.03 * soilec_shallow) - (0.01 * GDD.7) 92 7.5 1.4 

3 
soilec_deep <= 4.824256 & elevation <= 

38.35374 & rad14 > 144.61 & rad35 > 156.45 
(3.7557431) + (1.82 * soilec_deep) - (0.007 * rad35) + (0.004 * 

rad14) - (0.03 * soilec_shallow) 21 8.4 3.8 

4 
soilec_deep <= 3.612189 & elevation <= 

38.1531 

(-20.1481427) + (3.84 * soilec_shallow) + (0.049 * elevation) + 
(0.016 * rad14) + (0.017 * rad35) + (0.013 * rad28) + (0.05 * 

soilec_deep) 38 9.3 3.0 

5 
soilec_deep > 4.824256 & elevation <= 

35.46135 & rad35 > 156.45 (5.560037) + (0.36 * soilec_shallow) 46 9.5 2.4 

6 
soilec_shallow > 5.35793 & rad14 <= 144.61 

& rad35 > 156.45 & GDD14 > 36.65 
(316.3637189) - (2.185 * rad35) + (0.524 * elevation) + (0.241 * 

rad14) + (0.89 * soilec_deep) - (0.6 * soilec_shallow) 110 10.2 2.0 

7 
rad14 <= 144.61 & rad35 <= 156.45 & GDD14 

> 36.65 (14.6920276) - (0.046 * elevation) 131 10.9 1.1 

8 

soilec_deep > 3.612189 & elevation <= 
38.1531 & rad28 <= 166.29 & rad35 <= 

156.45 

(-62.1986031) + (0.424 * elevation) + (0.255 * rad14) + (0.063 * 
rad35) + (0.19 * soilec_deep) + (0.03 * rad28) - (0.07 * 

soilec_shallow) 147 11.0 1.8 

9 
elevation > 38.1531 & rad14 > 144.61 & 

rad35 <= 156.45 

(25.847636) + (0.258 * rad35) + (0.18 * elevation) - (0.331 * 
rad28) - (0.055 * rad14) + (0.4 * soilec_deep) - (0.02 * 

soilec_shallow) 157 11.2 1.3 

10 elevation <= 35.81275 & rad28 > 166.29 

(-20.9991053) + (0.84 * soilec_deep) + (0.074 * elevation) + 
(0.056 * rad14) + (0.057 * rad35) + (0.028 * rad28) - (0.07 * 

soilec_shallow) 30 11.2 4.1 
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3.4.5.1 Optimising model hyperparameters 

Hyperparameters are the parameters of a model used to control the model learning process such as its 

complexity or how quickly it should learn. To ensure the best performance of the prediction models and 

to avoid overfitting (i.e. model predicts well for the training set but predicts poorly for the test set), the 

models were optimised using a grid search method with K-fold cross-validation. The “cost” function such 

as root mean squared error (RMSE) was computed for each combination of parameters making up each 

axis of the grid (or grids). The lowest RMSE was then determined for a specific set of hyperparameters 

(Chan & Treleavan, 2015). 

To avoid bias in data selection, a 10-fold cross-validation method was used for hyperparameter tuning. 

Although there is no strict rule for determining the number of folds (K), a value of K = 5 or 10 may produce 

less bias prediction in the field of applied machine learning (Rodriguez et al., 2009). In this study, K = 10 

was selected for hyperparameter tuning considering enough samples for training the model and 

potentially large spatiotemporal yield variability in the multiple-year yield data. K = 5 may not be enough 

to capture that variability whereas K > 10 would increase computation time. In this method, the data were 

randomly divided into 10 subsets of equal size, in which one subset (10% of the total dataset) was used 

as the validation subset, and the remaining data (90%) as the training subset to train a model with a set 

of hyperparameters. The validation subset was used to evaluate the performance of the trained model 

and computed the RMSE for each model (Table 3-5). This cross-validation process was iterated and the 

overall RMSE was calculated as the average value of all modelled RMSEs for each set of hyperparameters. 

RMSEs from different sets of hyperparameters were compared. The hyperparameters that resulted in the 

smallest overall RMSE for a model were selected as the optimum for that model. Table 3-5 summarises 

the use of 10-fold cross-validation to evaluate the effect of the combination of the hyperparameter (a) 

and hyperparameter (b) on the model performance, indicated by the RMSEs.  
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Table 3-5 Illustration of the 10-fold cross-validation method for hyperparameter optimisation 

Hyperparameters Training set Testing set Performance indicator 

a, b Fold1 + Fold2 + … + Fold9 (90%) Fold10 (10%) RMSE1 

a, b Fold2 + Fold3 + … + Fold10 (90%) Fold1 (10%) RMSE2 

a, b Fold1 + Fold3 + … + Fold10 (90%) Fold2 (10%) RMSE3 

… … … .... 

 

For a single linear regression model, a regression line is fitted to minimise the sum of squared errors. In 

an ideal situation, without interference from other variables, the regression line should go through the 

origin of the X-Y axes. However, in applied situations, the regression line always intercepts the Y-axis at 

some non-zero “nugget” value. This intercept is then interpreted as the expected mean value of Y when 

X is zero. Since yield cannot be negative, a range of integer values for the intercept from 0 to 10 was tested 

in 10-fold cross-validation.  

For feed-forward neural network (FFNN) modelling, two hyperparameters were tuned, including the 

number of neurons in the hidden layer (hidden units) and weight decay. The number of neurons in the 

hidden layer (hidden units) determines a FFNN model’s ability to minimise prediction RMSEs for each 

subset of the training data. The optimal number of hidden units is often a value between the number of 

nodes in the input layer and that of the output layer (Heaton, 2008, p.159). Too many hidden units may 

cause overfitting, whereas too few hidden units decrease the complexity of the network. The neural 

network model implemented by the “nnet” package also adds a regularisation term called “weight decay” 

to the gradient descent algorithm by further regulating the size of the step in the descending process to 

prevent overfitting. Models with several hidden units ranging from 1 to 5, in combination to a weight 

decay value of 0.1, 0.2, and 0.3, were tested and is a suitable weight decay range for tuning the model 

hyperparameters in a grid search with manageable computation time. A larger weight decay value could 

result in a greater decrease in RMSE while there were only a few hidden units (functionally like regression). 
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As the number of hidden units increased, the prediction RMSE may become insensitive to the weight 

decay value. 

For classification and regression tree (CART) modelling, a prediction is made by repeating binary splits of 

the data until a predefined limit to the number of tree layers is met. In this analysis, several tree layers 

(ranging from 1 to 20) was tested in the grid search. For regression trees, fewer layers in the tree mean 

that fewer values are less able to be predicted, resulting in poor model performance. However, if the tree 

has more layers then model performance could be compromised due to overfitting.  

For random forest (RF), a yield prediction is made by combining the predicted values of each 

simultaneously created CART tree. Each tree is created using a “bootstrapped” (random sampling with 

replacement) dataset randomly sampled from the original dataset. The number of predictors that are 

randomly selected (“mtry”) determines the structural variation between any two trees in the forest. 

Increasing the number of predictors randomly selected may improve the strength of each tree, but 

decrease the variation between individual trees, causing similar trees and similar predicted values that 

could bias the final prediction. The cross-validation models with several randomly selected predictors 

(“mtry”) were tested, ranging from one predictor to the maximum number of predictors (24) for 

hyperparameter tuning and finding the lowest RMSE.  

XGBoost is a complex model based on “gradient boosted trees”, where trees are created in sequential 

order, with each tree created based on the prediction made by the previous tree created. XGBoost also 

integrates a regularisation term when building trees for pruning, as well as providing options for adjusting 

the tree size, learning rate, and observation and variable subsampling to reduce bias. Many 

hyperparameters may influence model performance. The important ones are tree depth “Max Tree 

Depth”, learning rate “eta”, subsample ratio of the training instances “subsample”, subsample ratio of 

columns “colsample_bytree” and the number of boosting iterations. As with a single CART tree, the “Max 

Tree Depth” controls the number of layers of each tree. The learning rate “eta” (η) determines the step 

weights given to the prediction input of each tree. Increasing η speeds computation due to fewer 
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iterations (and trees), but does not ensure the lowest RMSE. A smaller η reduces computation speed since 

more trees are added to the model to ensure convergence. Therefore, in this study, small η values in the 

range of 0.1 to 0.4 were tested for hyperparameter tuning. The hyperparameters “subsample” and 

“colsample_bytree” determine the sampling ratios of the dataset for building the trees. An increased 

number of iterations lowers residual errors so that, over time, the boosted trees should achieve the lowest 

RMSE possible. 

The Cubist model is a proprietary product and has very little public documentation to support its use.  

Based on limited information, it appears that the Cubist model uses a boosting-like procedure called 

“committees”. As with the XGBoost model, increasing the number of “committees” (the number of 

boosting iterations) may help reduce prediction error and prevent overfitting. Also, the Cubist model 

introduces neighbour–based adjustments, so that each predicted value can be adjusted based on 

observed values in a similar neighbour cluster determined from the training set. In this analysis, four 

committee values (#Committees - 1, 5, 10 and 20) were tested in a grid search. The Cubist model is 

computationally efficient and processes large multi-temporal images in remote sensing relatively quickly, 

making it a potential candidate for predicting spatial yield. 

 

3.4.5.2 Assessing the model performance 

3.4.5.2.1 Multiple year analysis 

To select the best model for predicting yield, an internal “split-sample” approach was used to measure 

prediction accuracy. In this approach, the dataset was randomly partitioned into two data subsets:  

1. A subset consisting of 75% of the data was partitioned as the “training set” for fitting and training 

the model for prediction, and  

2. An independent subset consisting of the remaining 25% of the data is withheld as the “test set” 

and used to test the accuracy of the model.  
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In the multiple-year analysis, data subsets were created from the yield data for all available years. The 

prediction model was then constructed and used to predict the yield in the test set. The level of accuracy 

for a test model was calculated as the root mean squared error (RMSE) and R-squared (R2), representing 

how well the predicted yield values are close to the actual yield. 

 

3.4.5.2.2 Leave-out-one-year analysis using individual-field data 

A trained model that successfully captures multivariate relationships should have the ability to predict 

independent field data. Since a relatively small number of years’ yield data are available for all available 

sites, the multiple year data was cross-validated by year. 

In cross-validation by year, one year of data was withheld as a test set for each iteration, with all remaining 

years included in the training set. The training set was used to predict yields for the year that was excluded 

as a test set (Table 3-6). This process was iterated for all four years and RMSEs were calculated. This 

indicated the ability of the trained model to handle new information, being the yield data collected from 

an additional harvest from another year. 

Table 3-6 Datasets used in the leave-out-one-year analysis (FAR’s NCRS). 

Model Training set Test set 

1 2014, 2015, 2017 2018 

2 2014, 2015, 2018 2017 

3 2014, 2017, 2018 2015 

4 2015, 2017, 2018 2014 

 

The results of this analysis will demonstrate the ability of the model to predict the yield of additional 

harvests in the same field, and the viability of delineating dynamic crop MZs based on predicted static 
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yield maps, which may lead to a more accurate prescription for crop management inputs such as N 

fertiliser application, compared to static yield maps (see section 3.4.3). 

 

3.4.5.2.3 Leave-out-one-year analysis using pooled data from other sites 

To determine if the trained model can predict yield from a maize field that has a limited dataset, the leave-

out-one-year analysis was undertaken using data pooled from other maize field sites. This analysis will 

help determine whether the models trained for one field can be used to determine yield for other 

independent non-irrigated maize fields. 

 

3.4.5.3 Analysis of predictor importance on pooled data 

To identify important spatiotemporal factors and potentially provide insights into managing spatial yield 

variability, the data collected for four other non-irrigated maize fields and years were pooled together, 

and the relative importance of each predictor was computed for each trained model using the “varImp” 

function in the R “caret” library. Table 3-7 summarises the key indicator for computing predictor 

importance for each model. 
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Table 3-7 Key parameters for computing relative predictor importance for each model. 

Algorithms Key indicator 

SMLR Absolute t-value of a predictor 

FFNN The sum of the absolute weights connecting to a predictor 

CART Sum of information gained from the splits of a predictor 

RF Reduction of the prediction accuracy for “out-of-bag” samples after re-shuffling the 

predictor of interest XGBoost Number of times a predictor used for splits, divided by the number of trees created 

Cubist Percentage of a predictor used in the “if-then” conditions and the regression models 

 

For SMLR, the importance of a predictor is determined by using its absolute t-value which indicates its 

statistical significance (p-value). The larger the absolute t-value, the smaller the p-value and more likely 

the null hypothesis will be rejected i.e. the yield is independent of or not linearly related to the predictor 

(Greenwell et al., 2018).  

For FFNN, the importance of a predictor is estimated based on the sum of the absolute value of the 

weights Σ[∣w11∣, ∣w12∣, ... ∣w1n∣] connecting the predictor (Figure 3-11). The sum of absolute weights is then 

scaled from 0 to 1 relative to the most dominant predictor which is given the value of 1 (Garson, 1991).  

For the CART model, each split results in a reduction of the mean squared error, because more similar 

subgroups are created. The importance of a predictor is calculated as the sum of the reduction of the 

prediction error attributed to each predictor at each split (Therneau & Atkinson, 1997). Therefore, the 

higher the reduction of the error, the higher importance the predictor has in determining the split. 

For the RF model, the observations randomly sampled are used to create a “bootstrapped” dataset and 

build individual trees. The remaining observations that have not been used to build trees are called “out-

of-bag” samples. The predictor importance is evaluated by predicting “out-of-bag” samples using the 

trained model. After re-shuffling the predictor of interest, the predictor importance is calculated to 

determine how much prediction accuracy would deteriorate. The re-shuffling breaks the relationship 
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between the predictor and the response variable (maize yield). If the accuracy of prediction reduces 

significantly after re-shuffling a predictor, the predictor is then considered important (Breiman, 2017; 

Fisher et al., 2018). 

For the XGBoost model, predictor importance is calculated on the number of times a predictor is used to 

generate a split in each of the boosted trees. This is then divided by the total number of trees created 

(Hastie et al., 2009, p. 367). 

For the Cubist model, predictor importance is calculated as the percentage of predictor usage in both the 

conditions and the linear regression models in the terminal nodes.  
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3.5 Summary  

This chapter describes the study location, data, and analysis methods required for this research, which 

contains the following tasks:  

• To improve the accuracy of yield maps in subsequent analyses, a customised spatial filtering 

algorithm was developed and tested by comparing modelled variograms and comparing the 

predicted values and the observed values in 10-fold cross-validation. 

• To identify appropriate yield predictors, yield monitor data collected from NCRS were mapped 

and delineated into MZs, which were correlated with MZs derived from soil electrical conductivity 

(EC), soil organic matter (OM), and elevation, and MZs derived from multispectral crop images. 

Zonal soil sampling and soil texture analysis were undertaken to attempt to explain the yield 

variability and to provide a calibration for the use of soil EC.  

• To determine the viability of predicting spatial yield using data that is readily available and 

inexpensive, in addition to NCRS, data were also collected from four other non-irrigated maize 

fields in Waikato. Temporal data (rainfall, solar radiation, and GDD) at various growth periods 

were collected from a nearby weather station and were incorporated into the development of 

subfield yield prediction models. Several machine learning models (SMLR, FFNN, CART, RF, 

XGBoost, and Cubist) were then implemented to predict yield, with the prediction errors of each 

model evaluated using “split-sample” approaches. To provide insights into managing subfield 

yield variability and the opportunity to fine-tune the prediction models, predictor importance 

analyses were undertaken using the pooled data from all available fields. 
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Chapter 4 Results 

4.1 Introduction 
To address the objectives outlined previously in Chapter 1, this chapter presents the results from the 

following analyses: 

• Pre-processing of yield monitor data. Pre-processing was applied to all yield monitor data 

available for the study area because of the need for accurate maps on which to base site-

specific management (section 4.2); 

• Identifying spatiotemporal yield predictors by examining spatial and temporal variability of 

yield and soil. This includes mapping of spatial data (yield monitor data, soil EC, elevation, soil 

OM); delineating potential MZs and; examination of soil subfield and depth variability, in an 

attempt to explain the underlying reason for crop and yield variability  (section 4.3); 

• Prediction of yield using supervised machine learning models. The purpose of multivariate 

modelling analysis was to see if it is viable to delineate dynamic MZs that are adaptable to the 

effects of short-term temporal conditions (section 4.4). 

 

4.2 Pre-processing of yield monitor data 

To improve the quality of yield maps that could be produced from available yield monitor data, spatial 

filtering was conducted using the customised programme (Appendix 2) to eliminate yield data errors 

before kriging interpolation (see section 2.3.1.1). 

The filtering programme targeted outliers (extremely high and low values that skew data distribution) and 

inliers (values that are dissimilar to the neighbours within a distance defined by the user, i.e. 5 m) for 

removal. Between 6 to 40% were removed from the original yield datasets (Table 4-1). The yield data for 

most years (2015, 2017, and 2018) had less than 1,000 points (6 to 12%) removed. The greatest number 

of points removed (40%) was associated with the yield in 2014. 
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Table 4-1 Statistics of yield monitor data values before and after-spatial filtering. 

Year mean sd min max obs 

 t/ha    

 before after before after before after before after before after Removed(%) 

2014 7.1 8.5 6.3 3.6 0 1.1 98.0 19.7 11452 6871 40 

2015 13.4 13.5 8.3 3.2 0 3.2 101.5 23.0 6333 5555 12 

2017 7.8 7.9 2.1 1.6 0.3 3.2 24.4 12.5 9017 8431 6 

2018 11.0 11.2 2.7 1.8 0.4 5.8 25.0 16.4 8592 7773 10 

All year - 10.0 - 3.4 - 1.1 - 23.0 35394 28630 19 

 

Geostatistical variogram analysis was conducted to evaluate the filtering performance. Figure 4-1 

presents the comparisons of the variograms between using the unfiltered and filtered yield data for each 

year. These variograms were fitted with models that generated the smallest sum of squared errors for the 

aggregated semi-variance values (Hiemstra et al., 2009). 

In Figure 4-1, the sill variance is the maximum semi-variance modelled between the values of paired 

locations. The nugget variance is the semi-variance when the distance that separates paired locations is 

at 0 (i.e. two locations overlap and hypothetically, they should have no difference in value). The nugget 

variance represents unnatural variations occurred over the sampled interval, which is commonly related 

to the measurement errors. A nugget/sill ratio close to 1 indicates a spatially random pattern at a specified 

resolution, which violates Tobler's First Law of Geography (1970) for natural variations and the premise 

for modelling the spatial structure of the data and kriging (Krige, 1951) (see Method section 3.4.1). 

The variograms based on the un-filtered yield data had higher modelled nugget variances (Figure 4-1a, c, 

e, g), caused by measurement errors at short distances. These nugget variances were reduced to 0 on the 

modelled variograms, based on the spatially filtered yield data (Figure 4-1b, d, f, h). The results (Figure 
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4-1) showed that the applied spatial filtering method reduced the nugget/sill ratio from 0.18 – 0.91 to 0 

for all available years (2014, 2015, 2017, and 2018). 

Figure 4-1c showed a high modelled nugget variance (71) and that an increase of distance separating 

paired locations had little effect on their semi-variances. After spatial filtering, the semi-variances 

increased initially as the distances increased (Figure 4-1d). The curve plateaued as it reached a threshold 

distance, meaning that the semi-variances were no longer dependent on the separation distances. The 

reduction of nugget variance suggested a successful elimination of the yield sensor errors for modelling 

yield variations over short distances. 

 

(a)  2014 un-filtered (nugget/sill = 0.18) 

 

(b) 2014 filtered 

(c) 2015 un-filtered (nugget/sill = 0.91) (d) 2015 filtered 
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(e) 2017 un-filtered (nugget/sill = 0.43) 

 

(f) 2017 filtered 

 

(g) 2018 un-filtered (nugget/sill = 0.59) 

 

(h) 2018 filtered 

Figure 4-1 Comparisons of the experimental variograms for the individual-year yield monitor data before 
(a, c, e, g) and after filtering (b, d, f, h) using the customised spatial filtering algorithms.  

  



95 | P a g e  
 

To evaluate how spatial filtering influenced the accuracy of kriging, the interpolated yield values were 

compared with the observed yield values, and the RMSEs were obtained. Table 4-2 showed that the 

spatial filtering method that was applied reduced the RMSEs for all available years (2014, 2015, 2017, and 

2018), particularly for the 2014 and 2015 yield data, in which the RMSEs were reduced substantially from 

(4.41 – 4.59) to (0.96 – 1.43); and from (6.61 – 7.27) to (1.34 – 1.43), respectively, suggesting that the 

filtering algorithm was effective at improving the kriging prediction for mapping spatial yield. The RMSEs 

generated from fitting different variogram models (Table 4-2) were similar, but the Matern model “Ste” 

generally produced smaller errors than the others.  

Table 4-2 10-fold cross-validation root mean squared errors (RMSEs) of ordinary kriging (fitted with 
different variogram models fitted: Spherical “Sph”; Exponential “Exp”; Gaussian “Gau”; Matern “Ste”) 
obtained by comparing the interpolated values and the observed values 

Year  10-fold cross-validation RMSE of ordinary kriging 

  Before filtering After filtering 

 Fitted variogram models Sph Exp Gau Ste Sph Exp Gau Ste 

2014  4.41 4.43 4.59 4.58 1.03 0.96 1.43 0.98 

2015  7.27 7.13 7.27 6.61 1.43 1.43 1.34 1.43 

2017  1.50 1.42 1.41 1.37 0.36 0.36 0.44 0.35 

2018  2.07 2.04 2.13 2.05 0.69 0.64 0.72 0.64 

 

To improve the precision of subsequent analysis, the filtered yield data were used in yield mapping 

(section 4.2), delineating static zones (section 4.3), and as the response variable in the supervised machine 

learning modelling analysis (section 4.4). 
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4.3 Examining spatial yield and soil variability 

4.3.1 Mapping spatial data 

4.3.1.1 Historical yield maps (Response variable) 

To align the values (yield monitor data, soil EC, OM and elevation) originally sampled at different locations 

within-field, the spatial yield data points for the individual years (2014, 2015, 2017, and 2018) were 

interpolated into maps for geospatial analysis. Compared to the yield maps of 2015, 2017, and 2018, the 

2014 yield map produced a strong “cluster” pattern as shown in Figure 4-2a. These clusters can be seen 

marked by the red circles. The yield within the “clusters” ranged from 1.5 – 2 times the field average (10 

- 16 t/ha), whereas in other areas it mostly ranged from 0.5 - 1 times the field average (4 - 7 t/ha). To 

attempt to explain the yield variability, the rainfall data for the 2013/14 crop growing period was 

presented (Figure 4-3). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4-2 Historical yield maps (normalised in relative to the field average yield for the year): (a) 2014 
yield map (the red circles represent two observed clusters); (b) 2015 yield map; (c) 2017 yield map; (d) 
2018 yield map. (Projection: NZTM in meters) 

 

Figure 4-3 Weekly total rainfall for the 2014/2015 season (the crop was planted on October 8, 2013, and 
harvested on May 12, 2014) 



98 | P a g e  
 

The descriptive statistics for each yield map are summarised in Table 4-3. The CVs confirm the magnitude 

of the yield variability within-field for each year. The 2014 yield map produced the largest CV of 0.42, 

indicating the largest yield variability within-field for that year. Other years produced smaller CVs ranged 

from 0.16 - 0.26, i.e. less variability. A large CV of 0.33 was also produced for the combined yield map 

from all available years. Given that this CV is larger than those produced in 2015, 2017, and 2018, the 

yield map of 2014 (with greater variability and a larger CV), had a greater weighting in overall yield 

variability. This result suggests that in addition to overall spatial yield variability, there was also a large 

temporal yield variability to be considered when planning effective crop management. This also suggests 

that temporal factors such as seasonal rainfall should be incorporated into the development of modelling 

yield variability. 

 

Table 4-3 Statistics of interpolated yield values from yield monitor data (mean, standard deviation [sd], 
coefficient of variation [CV], minimum [min] and maximum value [max]) 

Year min max mean sd CV 

 t/ha  

2014 1.59 17.37 7.79 3.25 0.42 

2015 3.69 22.13 12.42 3.19 0.26 

2017 2.85 12.49 7.82 1.63 0.21 

2018 5.99 16.08 11.08 1.74 0.16 

All year 1.59 22.13 9.73 3.21 0.33 

 

  



99 | P a g e  
 

 

To determine the overall spatial yield variability, the yield maps of four years (2014, 2015, 2017 and 2018) 

were averaged. Figure 4-4a showed that the variation of the average yield ranged from 0 t/ha to 16 t/ha. 

This large yield variability challenges the conventionally uniform treatment of the field as a single unit, 

and suggests the potential of optimising the application of crop management inputs such as seed and 

fertiliser, based on within-field yield potential. There was an overall cluster pattern of yield, which can be 

explained by analysing soil variability (section 4.3.2.2). 

The coefficients of variations (CVs) for the multiple-year yield maps are shown in Figure 4-4b. This map 

represents the rate of change in the yield pattern over the four years. The higher the CV value, the more 

temporally unstable the yield was over the years. The distribution of the CVs was skewed to the right, 

suggesting that the yielding pattern was mostly stable (Figure 4-5). Eighty per cent of the areas in Figure 

4-4b had a CV between 10% and 40%.  

To reveal the underlying spatial pattern from Figure 4-4b, CV threshold is adjusted. The CV threshold that 

divides the field into two equal sizes was approximately 18.5%. When this threshold was reduced by 5%, 

the field became mostly dominated by unstable yields and no clear spatial pattern was observed (Figure 

4-4c). When the 18.5% threshold was increased to 23.5%, some noticeable unstable yielding pattern 

appeared (Figure 4-4d). The unstable yield area west of the green line (Figure 4-4d) was near a shelterbelt, 

suggesting crop shading and crop moisture stress induced by the shelter trees. The results from this CV 

analysis described in the previous paragraph suggests a more complex local environment contributing to 

spatiotemporal yield variability. 
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(a) 

 

(b) 

(c) (d) 

Figure 4-4 Combined maps from multiple-year maize yield maps (2014, 2015, 2017 and 2018): (a) yield 
average map (shows the overall yield productivity at each location); (b) Yield coefficients of variation (CV 
%) map (c) Yield CV map with unstable and stable yielding zones divided by 13.5% CV threshold (d) Yield 
CV map with unstable and stable yielding zones divided by 23.5% CV threshold (The left of the green line 
represents the hedgerow trees).   
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Figure 4-5 The histogram of the yield CV distribution. 

 

4.3.1.2 Soil EC, organic matter, elevation maps (predictors) 

To determine the cause of spatial yield and to compare the predictors (soil EC, OM, and elevation), data 

points were interpolated into maps (Figure 4-6) using ordinary kriging. To evaluate spatial soil variability, 

the parameters of the modelled soil variograms are presented (Table 4-4). The nugget variances for these 

variograms are all close to 0, suggesting few measurement errors. Low RMSEs were produced relative to 

the mean value of the data, indicating good interpolation accuracies. 
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Table 4-4 Parameters of the modelled variograms (models, nugget, sill, range and 10-fold cross-validation 
RMSE of spatial interpolation) for the spatial data 

 Fitted variogram models Nugget Sill Range RMSE Mean sd N 

    m   

EC shallow Ste 0.00 6.89 38 0.25 5.4 2.6 4346 

EC deep Ste 0.01 19.22 41 0.75 6.2 4.3 4346 

Elevation Ste 0.01 206.59 137,244 0.11 54.7 0.8 4854 

Soil organic matter Ste 0.00 0.00 23 0.02 2.5 0.1 4346 

 

Soil EC shallow (0-30 cm) and soil EC deep (0-90 cm) were strongly correlated (r = 0.89) (Figure 4-6a, b). 

Soil EC shallow values ranged from 1.2 – 16.3 mS/m, suggesting a soil texture composition of mainly sand 

and silt. Soil EC deep values ranged from -8 to 32.2 mS/m, suggesting larger texture ranges in the deeper 

soil profile (Grisso et al., 2005). Both soil EC maps showed a clear spatial “banding” pattern with values 

ranging from 0 to 3 mS/m, indicating coarse-textured soils. To correlate EC with soil texture, soil core 

sampling was undertaken at different depths with subsequent soil particle size analysis undertaken (see 

section 3.3.5). 

An elevation map (Figure 4-6c) shows that there is a gradual decrease of elevation by approximately 4 m 

from the South-eastern boundary northward over the 400 meters at the adjacent stream on the northern 

boundary.  

The soil organic matter map (Figure 4-6d) shows a little variation (2.4 - 2.65%), but there are some 

noticeable “strips”, aligned in the direction in which farm operations (such as planting) occurs. These 

“strips” may be an artefact of the historical strip-till crop establishment in the field, which only cultivates 

narrow strips for seed placement while leaving most surface residues on the surface. 

These maps (Figure 4-6) were used as yield predictors in multivariate modelling analysis (see section 4.4).  
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(a)  Soil EC shallow 

 

(b)  Soil EC deep 

 

(c)  Elevation 

 

(d)  soil organic matter 

Figure 4-6 Potential yield predictors (soil EC & OM) derived from Veris MSP-3 soil sensor and RTK GPS 
(Projection: NZTM in meters) 
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4.3.2 Potential crop management zones (static) 

4.3.2.1 Yield productivity zones (YPZ) 

To delineate yield MZs, historical yield data (2014, 2015, 2017, and 2018) was classified into relatively 

high-yielding [HY] and low-yielding [LY] zones based on the average yield over the four years. These yield 

MZs could assist in the application of different management inputs (see Method section 3.4.3.1). Figure 

4-7b shows that the LY zones are visually consistent with the observed “banding” visible from a Google 

Earth image that illustrates differential growth patterns (Figure 4-7a). This visual consistency 

demonstrates that the spatial yield variability is consistent with aerial imagery. 

 

(a) 

 

(b) 

Figure 4-7 (a) the observed “banding” pattern of the crop (delineated by the dotted lines) on a Google 
Earth image (11 March 2016) and (b) relative yield productivity zones (relatively high yielding [HY] 
potential and relatively low yielding potential [LY] based on historical average yield) (Projection: NZTM in 
meters). 
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4.3.2.2 Soil zones (SZ) 

To determine the best predictors for spatial yield, all statistical combinations of soil EC (deep and shallow) 

and elevation maps were delineated into soil zones. This enabled comparison between both the yield 

zones and soil zones to examine correlation (Figure 4-8). HY and LY zones were labelled based on the 

average yield for that zone over the four years. There was a distinct visual consistency of pattern between 

all four maps and this is quantified in section 4.3.3. Adding elevation to clustering of the soil EC maps did 

not appear to affect the spatial yield zone pattern (Figure 4-8d). The statistical comparison between soil 

zones and yield zones are presented in Table 4-5.  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4-8 Soil zones delineated from the combinations of soil EC and elevation maps using fuzzy c-means 
clustering (Zones are labelled as relatively high yielding [HY] potential and relatively low yielding potential 
[LY] based on historical average yield) (Projection: NZTM in meters) 

 

4.3.2.3 Crop reflectance zones (CRZ) 

To enable comparison of the delineated zones, Sentinel-2 multispectral-band images for the field were 

downscaled (from 10 m to 6 m of the interpolated yield maps) using ordinary kriging. The delineated crop 

reflectance zones (CRZ) are presented in Figure 4-9. To compare these with the yield zones, the clusters 

derived from the multispectral reflectance data were labelled HY and LY based on the historical yield 

average for each zone. This zone pattern was visually similar to those observed on a Google Earth image 

(delineated as a dotted line in Figure 4-9). This suggests that crop reflectance zones can be used as an 

indicator of field variability.  
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Figure 4-9 Crop reflectance zones delineated from multi-date satellite images (relatively high yielding 
[HY] potential and relatively low yielding potential [LY] labelled based on historical yield average) and 
the visual “banding” pattern (delineated by the dotted lines) (Projection: NZTM in meters) 

 

4.3.3 Statistical comparison of zone pattern 

To statistically compare the zone patterns, kappa coefficients were calculated for each pairwise 

combination of the zone maps. Table 4-5 shows that some degree of similarity between the static zones 

(yield productivity zones, soil zones and crop reflectance zones) was found by comparing their spatial 

patterns. The best area agreement was found between crop reflectance zones and yield productivity 

zones (71%), which suggests that there is a potential to use Sentinel-2 reflectance images as reliable 

proxies for yield maps for delineating yield MZs when yield data are not available. The second-best 

agreement was found between soil zones (including elevation) and yield productivity zones (63%), which 

suggests that the soil EC and elevation have some contribution to yield variability.  

  



108 | P a g e  
 

 

To determine the statistical confidence of that spatial alignment, Kappa coefficients were calculated (see 

Method 3.4.3.4). Kappa coefficients were generally low (0.04-0.42), which suggests that agreement 

between yield productivity zones and any soil zone maps may have occurred by chance. 

Table 4-5 Areal agreements (%) between zones. Corresponding kappa coefficients are in brackets (0–0.20 
not reliable; 0.21–0.39 minimal; 0.40–0.59 weak, 0.60-0.79 moderate, 0.80-0.90 strong, above 0.90 
almost perfect alignments (McHugh, 2012)). 

Zones SZ (elevation incl.) SZ (EC shallow) SZ (EC deep) SZ (EC shallow + deep) CRZ 

YPZ 63% (0.27) 53% (0.04) 58% (0.16) 63% (0.26) 71% (0.42) 

 

To determine if the delineated zones (yield productivity zones, soil zones and crop reflectance zones) are 

able to represent different yield levels, historical yield values were averaged for each zone and compared 

using ANOVA tests. The zones derived from the different spatial datasets (soil EC/elevation, reflectance, 

and yield) were most effective at separating the yield levels over the four years, as indicated by the p-

values (p < 0.05) (Table 4-6).  

However, there were levels of variation in the average yield between HY and LY. For crop reflectance 

zones, the variation in the average yield between zones was greater for 2014, 2015 and 2018 compared 

to 2017, which could be related to relatively good soil moisture status and more plant-available water in 

all other years than 2017. 

For soil zones, there was no significant difference in the average yield between the soil zones for 2014 

and 2015. This statistical significance analysis reaffirms the temporal effect of EC on spatial yield and the 

need to incorporate weather data into yield zone prediction models. 
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Table 4-6 Average yields in static zones for each year and the p-value derived from ANOVA tests 
(subsampled N = 100). 

Zones SZ (elevation incl.) YPZ CRZ 

 HY LY p-value HY LY p-value HY LY p-value 

year          

2014 9.6 7.0 <0.001 10.9 5.5 <0.001 9.9 6.2 <0.001 

2015 14.2 12.6 <0.05 15.0 11.2 <0.001 14.5 11.2 <0.001 

2017 8.1 7.7 ns 8.7 7.1 <0.001 8.2 7.5 <0.05 

2018 11.5 10.8 ns 12.1 10.4 <0.001 11.5 10.8 <0.01 

          

Area (ha) 5.8 4.3  4.9 5.1  5.9 4.1  

Average (t/ha) 10.5 9.4  11.7 8.6  11.0 8.9  

Total yield (t) 60.9 40.4  57.1 44.2  63.0 36.4  

 

4.3.4 Results of soil particle size analysis 

4.3.4.1 Soil particle size fractions at various depths 

To verify the soil EC relationship with soil texture, soil sample cores were taken from each yield 

productivity zone and analysed for particle size composition. Table 4-7 shows that particle size fractions 

varied both spatially and at depth. Spatially, the average sand fraction in the top 30 cm ranged from 24 - 

64% for the six locations; the average silt fractions ranged from 31-69%; and the average clay fractions 

ranged from 12-24%. At depth, there were large variations, particularly for the silt and clay fractions at 

HY1 and at LY1   (Table 4-7; sampling locations refer to Figure 3-4), as indicated by the coefficients of 

variation (CV) for HY1 (silt 30%, clay 85%); LY1 (silt 27%, clay 44%). However, no obvious pattern can be 

identified associated with these variations at depth. 

HY3 (relatively high yielding) had the highest sand content for all depths (57-74%) compared to the other 

sampling locations. LY2 (relatively low yielding) had the highest silt (72-75%) and clay (28-31%) content at 

20-30 cm depth. LY3 had the highest silt (69-72%) and clay (22-28%) at 5-20 cm depth. The results for LY2 

and LY3 could suggest potentially poorly drained soils with fine texture. 
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Table 4-7 Particle size distribution (sand, silt and clay) at various depths (5-10 cm, 10-15 cm, 15-20 cm, 20-
25 cm and 25-30 cm) 

Core label HY1 HY2 HY3 LY1 LY2 LY3 

Sand fraction       

5-10 cm 0.23 0.36 0.57 0.55 0.25 0.25 

10-15 cm 0.27 0.30 0.60 0.57 0.25 0.23 

15-20 cm 0.18 0.31 0.74 0.54 0.25 0.26 

20-25 cm 0.25 0.25 0.62 0.48 0.22 0.36 

25-30 cm 0.24 0.27 0.64 0.40 0.20 0.28 

profile average 0.24 0.30 0.64 0.51 0.23 0.28 

CV † 0.14 0.14 0.1 0.14 0.1 0.18 

       

Silt fraction       

5-10 cm 0.34 0.47 0.32 0.26 0.66 0.71 

10-15 cm 0.63 0.61 0.32 0.37 0.66 0.72 

15-20 cm 0.39 0.60 0.33 0.33 0.68 0.69 

20-25 cm 0.67 0.66 0.30 0.47 0.72 0.55 

25-30 cm 0.67 0.66 0.30 0.52 0.75 0.68 

profile average 0.54 0.60 0.31 0.39 0.69 0.67 

CV 0.3 0.13 0.04 0.27 0.06 0.1 

       

Clay fraction       

5-10 cm 0.06 0.15 0.12 0.16 0.25 0.26 

10-15 cm 0.00 0.15 0.13 0.15 0.26 0.22 

15-20 cm 0.12 0.20 0.13 0.08 0.27 0.28 

20-25 cm 0.27 0.18 0.13 0.18 0.28 0.24 

25-30 cm 0.27 0.25 0.11 0.29 0.31 0.23 

profile average 0.14 0.18 0.12 0.17 0.27 0.24 

CV 0.85 0.22 0.07 0.44 0.08 0.1 

† Coefficient of variation 
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To determine the precision of analyses using the pipette method (Claydon, 1989), replicate analyses were 

conducted using the soil core subsamples. The average coefficients of variation (CV) calculated ranged 

from 0.02 to 0.04 for sand, from 0.07 to 0.15 for silt and from 0.07 to 0.32 for clay. These low CV’s 

indicated that the results from each measurement were consistent.  

 

4.3.4.2 Soil particle size distribution influence on soil EC 

To examine if soil EC data can be used as a proxy for soil texture, soil EC was correlated to different particle 

size fractions using Pearson's correlation coefficient (rho). The soil EC shallow data (0 - 30 cm) were 

strongly positively correlated to the clay fraction (<2 microns) at 5-10 cm depth (r = 0.94), followed by the 

clay fraction at 10-15 cm depth (r = 0.82) (Figure 4-10). 

However, the correlations decreased at the 15 – 30 cm soil profile depth (r = 0.16 – 0.68). A positive 

correlation was also found between the soil EC shallow (0-30 cm) and the silt fraction at 5-10 cm depth (r 

= 0.75). There were mostly negative and weak correlations between soil EC shallow and the sand fractions.  

Therefore, the within-field areas with low soil EC are likely to be associated with relatively coarse-textured 

soils and thus lower water holding capacity (Figure 4-6a, b). 



112 | P a g e  
 

 

Figure 4-10 Correlation between soil EC shallow (0-30 cm) and soil particle size fractions (sand, silt and 
clay) at depths (5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm, 25-30 cm). 

 

4.3.4.3 Soil particle size distribution influence on crop yield 

To identify multivariate relationships between soil texture and crop yield, PCA was applied to the dataset 

containing multiple-year yield data (2014, 2015, 2017, and 2018), soil EC (shallow and deep), and soil 

particle size fractions (sand, silt, and clay) as investigated in section 4.3.4.1. 

The first two major principal components (PCs) explained 79% of the total variation. LY2 and LY3 (relatively 

low yielding locations shown in Figure 3-4, determined based on Figure 4-7) showed similar properties in 

terms of their soil particle size fractions. LY2 and LY3 were dominated by silt and clay in the surface soil 

(5-30 cm), as was EC shallow (Figure 4-11).  
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In PC1, the multiple-year yield (2014, 2015, 2017, and 2018) were negatively correlated to the EC data 

(both shallow and deep), suggesting that higher EC values (and potentially saturated soils) may have 

contributed to low yield productivity at LY2 and LY3 (Figure 4-11). 

 

Figure 4-11 PCA biplot shows the clusters of samples (HY, LY) based on their similarity (Each PC is the linear 
combination of the original variables: profile average sand, silt, clay, OM, EC shallow, EC deep, multiyear 
yield data 2014 – 15 and 2017 – 2018). The longer the arrow of a variable, the greater contribution that 
variable has in this two-dimensional (PC1 + PC2) space. 
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To determine the effect of soil EC on yield for each year, quadratic models were fitted (Kitchen et al., 

2003). The results (provided in Table 4-8) shows that the quadratic model provided a good fit for 2015 

and 2017 (R2 = 0.76 and R2 = 0.92, respectively), suggesting that yield increases as soil EC shallow increases. 

High soil EC responses are related to the higher water-holding capacities of finer-textured soils. Therefore, 

plants located in areas with higher soil EC are less likely to encounter moisture stress. However, at this 

site, as EC increased, yield decreased, possibly due to impeded drainage and/or a perched water table. 

The quadratic models produced a poorer fit for 2014 and 2018 (R2 = 0.44 and R2 = 0.56, respectively), 

suggesting that other factors such as fertiliser application variability could have played an important role 

in the yield response to soil EC shallow.  

Table 4-8 Equations for the average yield response to soil EC shallow and R2 

Year Equation R2 

2014 y=4.93+0.915x-0.0424x2 0.44 

2015 y=8.03+1.92x-0.136x2 0.76 

2017 y=6.55+0.363x-0.0147x2 0.92 

2018 y=9.67+0.442x-0.0272x2 0.56 
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4.4 Results of multivariate modelling 

4.4.1 Prediction performance 

4.4.1.1 Multiple year analysis 

To evaluate yield prediction performance and to compare different models, the “split-sample” approach 

(75:25 data partitioning) was used (section 3.4.5.2). The nonlinear models (feedforward neural network 

[FFNN], classification and regression tree [CART], random forest [RF], XGBoost and Cubist) produced more 

accurate yield prediction (R2 = 0.36 - 0.72) than the stepwise multiple linear regression (SMLR) model (R2= 

0.20 - 0.72), see Table 4-9. RF, XGBoost and cubist (R2=0.44 - 0.72) produced relatively better prediction 

results than the SMLR and FFNN. This is to be expected as tree-based models are theoretically capable of 

handling data with multiple spatial and temporal interaction terms. The accuracy of CART was close to 

FFNN (R2= 0.52 - 0.60), but CART required less computational power and required less training time than 

FFNN (both models are described in section 3.4.5). 

To test this modelling method, more data from other fields are required. For most fields (NCRS, Field 3 

and Field 5), the accuracy for training and validation (R2) was close for all four nonlinear models, which 

suggested that the models were optimised (Hastie et al., 2009, pp. 228 - 230). For relatively smaller fields 

(Field 2 and Field 4), lower accuracies were observed for validation than training, suggesting that more 

fine-tuning of hyperparameters is required in 10-fold cross-validation. 

For the pooled data, the best prediction of yield was provided by XGBoost (R2 = 0.64 – 0.66). This result 

suggests that XGBoost could be more suitable for predicting yield with more variability. 
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Table 4-9.Prediction results (training and validation) provided by SMLR, FFNN, CART, RF, XGBoost and 
cubist in the multiple-year analysis (using data from the individual field). 

  SMLR FFNN CART RF XGBoost Cubist 

  RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

NCRS (10 ha) 

Training 2.3 0.50 0.1* 0.53 2.1 0.55 2.0 0.60 2.0 0.63 2.0 0.61 

Validation 2.3 0.51 2.2 0.52 2.0 0.60 1.9 0.63 2.0 0.62 2.1 0.57 

Field 2 (5 ha) 

Training 2.5 0.46 0.1 0.49 2.5 0.48 2.5 0.48 2.4 0.49 2.5 0.48 

Validation 1.9 0.46 1.9 0.46 2.2 0.36 1.9 0.46 2.1 0.44 2.0 0.45 

Field 3 (14.5 ha) 

Training 2.9 0.45 0.1 0.60 2.8 0.48 2.3 0.64 2.3 0.66 2.5 0.59 

Validation 2.9 0.36 2.5 0.52 2.6 0.50 2.1 0.64 2.1 0.67 2.5 0.52 

Field 4 (7.8 ha) 

Training 1.1 0.82 0.05 0.82 1.2 0.81 1.1 0.81 1.1 0.82 1.1 0.82 

Validation 1.3 0.72 1.3 0.72 1.3 0.72 1.3 0.72 1.3 0.72 1.3 0.71 

Field 5 (24 ha) 

Training 2.1 0.16 0.1 0.36 1.8 0.36 1.7 0.44 1.7 0.46 1.8 0.39 

Validation 2.0 0.20 1.7 0.39 1.7 0.39 1.5 0.50 1.6 0.50 1.6 0.45 

Pooled 

Training 2.6 0.35 0.1 0.53 2.4 0.45 2.1 0.60 2.0 0.64 2.1 0.59 

Validation 2.5 0.38 2.2 0.53 2.4 0.42 2.0 0.59 1.87 0.66 2.1 0.58 

* the response variable in FFNN was scaled into 0-1 

 



117 | P a g e  
 

4.4.1.2 Leave-out-one-year analysis using individual-field data 

Given the relatively small number of years, an internal cross-validation technique (i.e. withholding one 

year as test data while using all other years for training the model) was used to evaluate how these models 

predict unseen data. In this analysis, the yield prediction for the individual year (Table 4-10) was generally 

poor, producing low R2 values.  RF, XGBoost and Cubist produced better results than the other trained 

models (Table 4-10). RF produced the highest model fits (average R2 = 0.08 - 0.50), followed by XGBoost 

(average R2 = 0.06 - 0.39) and Cubist (average R2 = 0.03 - 0.19). 

Better prediction accuracies (average R2 = 0.28 – 0.50) were produced for the larger fields (NCRS, Field 3 

and Field 5) than Field 2 and Field 4 (average R2 = 0.02 – 0.08). The highest prediction accuracies were 

produced by Field 3 for the years 2014, 2015, 2016, and 2017, using the RF models (average R2 = 0.18 – 

0.50). The prediction was poor for 2018 because Field 3 was planted with variable rate seeding in October 

2017 and did not follow standard maize planting practice. 
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Table 4-10 Prediction results of SMLR, FFNN, CART, RF, XGBoost and Cubist in the leave-out-one-year 
analysis (using data from individual fields). 

   SMLR  FFNN CART  RF  XGBoost  Cubist    Observed yield  

 R2    

Withhold       mean CV% Resampled N 

NCRS (10 ha) 

2014 0.05 0.11 0.07 0.36 0.16 0.17 8.4 22% 103 

2015 0.13 0.14 0.16 0.35 0.25 0.21 13.3 11% 103 

2017 0.16 0.13 0.12 0.22 0.21 0.15 8.2 13% 103 

2018 0.10 0.12 0.13 0.20 0.19 0.07 11.7 22% 103 

Average 0.11 0.13 0.12 0.28 0.20 0.15    

Field 2 (5 ha) 

2014 0.02 0.02 NA 0.12 0.20 NA 16.7 22% 40 

2015 0 0 NA 0.08 0.09 0.01 12.1 12% 40 

2016 0.01 0 NA 0.06 0.01 0.15 13.6 10% 40 

2017 0.05 0.09 NA 0.02 0.01 0.10 11.4 13% 40 

2018 0.01 0.04 NA 0.01 0 0.03 10.7 30% 40 

Average 0.02 0.03 NA 0.06 0.06 0.07    

Field 3 (14.5 ha) 

2014 0.46 0.45 0.09 0.44 0.15 0.32 9.5 62% 111 

2015 0.49 0.42 0.36 0.69 0.59 0.46 7.3 49% 104 

2016 0.57 0.50 0.50 0.74 0.63 0.01 9.1 29% 111 

2017 0.47 0.40 0.39 0.54 0.51 0.08 9.5 28% 111 

2018 0.03 0.03 0.03 0.09 0.09 0.02 11.1 14% 111 

Average 0.40 0.36 0.27 0.50 0.39 0.18    

Field 4 (7.8 ha) 

2005 0 0 NA 0.11 0.06 0.05 16.6 11% 75 

2007 0 0 NA 0 0 0.03 9.5 14% 75 

2009 0.07 0.08 NA 0.06 0.03 0 10.2 10% 75 

2010 0.04 0.01 NA 0.02 0.04 0.01 13.0 8% 75 

2013 0.08 0 NA 0.27 0.19 0.02 10.5 10% 75 

2015 0.03 0.09 NA 0.08 0.05 0.04 13.0 7% 71 

2017 0.02 0.01 NA 0.04 0.06 0.03 10.8 7% 75 

Average 0.03 0.03 NA 0.08 0.06 0.03    

Field 5 (24 ha) 

2008 0.05 0.01 0.18 0.49 0.43 0.37 13.8 22% 286 

2009 0.08 0.02 0.37 0.54 0.48 0.13 12.7 11% 286 

2010 0 0 0.06 0.08 0.10 0.06 11.7 13% 286 

Average 0.04 0.01 0.20 0.37 0.34 0.19    
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4.4.1.3 Leave-out-one-year analysis using pooled data 

To determine the feasibility of predicting yield for an additional year for a field that has limited data based 

on models trained from pooled data, and if there is any improvement on the predictions based on models 

trained from the individual field, the predictions were evaluated by leaving out one set of data each term 

and using the remaining pooled data for training the models.  

The results (Table 4-11) showed that the models (random forest and XGBoost) built using the pooled data 

generally produced poorer predictions than the models built using data collected from individual fields. 

Except for Field 3, the XGBoost models improved the R2 of yield predictions of individual years by 0.01 to 

0.23 using the pooled data. However, the results of XGBoost were mostly poorer compared with that of 

RF using data from individual fields. This suggests that prediction models built using data from other fields 

cannot be applied reliably to a field that has a limited dataset. Thus, the predictions are largely site-

specific. 
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Table 4-11 Prediction results of RF in the leave-out-one-site analysis (pooled data from five fields). 

 RF-individual RF-pooled Difference XGBoost-individual XGBoost-pooled Difference 
 R2 

Withhold       

NCRS (10 ha) 

2014 0.36 0.35 -0.01 0.16 0.34 0.18 

2015 0.35 0.24 -0.11 0.25 0.11 -0.14 

2017 0.22 0.19 -0.03 0.21 0.14 -0.07 

2018 0.2 0.18 -0.02 0.19 0.11 -0.08 

Average 0.28 0.23 -0.05 0.2 0.18 -0.03 

Field 2 (5 ha) 

2014 0.11 0.01 -0.1 0.2 0.02 -0.18 

2015 0.37 0 -0.37 0.09 0.02 -0.07 

2016 0.19 0.01 -0.18 0.01 0.06 0.05 

2017 0.1 0.07 -0.03 0.01 0.06 0.05 

2018 0 0.01 0.01 0 0.01 0.01 

Average 0.15 0.02 -0.13 0.06 0.03 -0.03 

Field 3 (14.5 ha) 

2014 0.44 0.19 -0.25 0.15 0.38 0.23 

2015 0.69 0.43 -0.26 0.59 0.6 0.01 

2016 0.74 0.45 -0.29 0.63 0.68 0.05 

2017 0.54 0.5 -0.04 0.51 0.52 0.01 

2018 0.09 0.14 0.05 0.09 0.18 0.09 

Average 0.5 0.34 -0.16 0.39 0.47 0.08 

Field 4 (7.8 ha) 

2005 0.11 0.07 -0.04 0.06 0 -0.06 

2007 0 0.01 0.01 0 0 0 

2009 0.06 0.1 0.04 0.03 0.15 0.12 

2010 0.02 0.04 0.02 0.04 0.02 -0.02 

2013 0.27 0.01 -0.26 0.19 0.01 -0.18 

2015 0.08 0.04 -0.04 0.05 0.04 -0.01 

2017 0.04 0 -0.04 0.06 0 -0.06 

Average 0.08 0.04 -0.04 0.06 0.03 -0.03 

Field 5 (24 ha) 

2008 0.49 0.57 0.08 0.43 0.38 -0.05 

2009 0.54 0.41 -0.13 0.48 0.36 -0.12 

2010 0.08 0.03 -0.05 0.1 0.08 -0.02 

Average 0.37 0.3 -0.07 0.34 0.27 -0.07 
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4.4.2 Modelled variable importance using pooled data 

Soil EC deep was consistently ranked as the most important variable in both the RF and XGBoost models 

using data pooled from five fields in Waikato over years (Figure 4-12). This result is consistent with the 

hypothesis that areas with higher EC values generally have greater soil water holding capacities and 

provide plants with more resilience to dry weather conditions. 

In the Random Forest (RF) model, the importance of each predictor was calculated by quantifying how 

much the prediction accuracy (indicated by an increase in the mean square error) will be degraded after 

permutation using the “out-of-bag” samples (Chapter 3.4.5). Figure 4-12a shows that in the period before 

V6 (six-leaf vegetative stage – V6), the most important variables in the RF were: “soilec_deep” (100%), 

followed by “soilec_shallow” (70%) and “elevation” (39%). These were also important predictors in the 

periods after V6: “soilec_deep” (100%), “soilec_shallow” (79%) and “elevation” (61%) (Figure 4-12b). 

Compared to spatial effects, the temporal predictors (rainfall, radiation and GDD) had little influence on 

spatial yield. This result is likely to be constrained by having yield maps from a limited number of years, 

so is not able to adequately statistically capture temporal yield variability.  

In XGBoost, the variable importance was calculated based on the number of times each variable was split 

and then divided by the total number of generated trees (Hastie et al., 2009, p. 367). The more a predictor 

is used to determine key decisions in decision trees, the higher its relative importance. Figure 4-12c, d 

shows that the most important predictor is “soilec_deep” (100%), followed by “elevation”. 
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(a) RF (periods before V6) 

 

(b) RF (all periods) 

 

(c) XGBoost (periods before V6) 

 

(d) XGBoost (all periods) 

Figure 4-12 Variable importance plot for random forest model (a, b) and XGBoost model (c, d); the 
importance for each variable was scaled into 0 – 100% based on their relative ranking.  

For important temporal yield predictors in the RF model, the accumulated solar radiation in the fifth week 

after planting was identified as the most important temporal variable (26%). Solar radiation is important 

for crop growth at various stages of canopy development. The estimated coefficient (Figure 4-13a) 

suggested that every increase of 1 kJ/m2 in the accumulated solar radiation during the fifth week may 

generate an increase of 43 kg/ha in yield (provided there is sufficient moisture), possibly associated with 

a warmer temperature (the accumulated growing degree days in the fifth week after planting [GDD28]) 
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that is favourable for maize. However, maize-grain yield appears to decline and becomes more variable 

between sites or between years, with further increases of solar radiation beyond 160 kJ/m2. A slight 

decrease of yield was also observed as the increase of solar radiation from 80 to 200 kJ/m2 approximately 

two weeks before tasselling, indicated by the negative coefficient of 13 kg/ha (Figure 4-13b). At the early 

vegetative stage of the crop, the canopy is not fully developed to intercept the radiation. The greater the 

amount of solar radiation arriving at the plant, the greater the rate of evapotranspiration and hence soil 

moisture depletion (Ferrante & Mariani, 2018). 

 

(a)  28 days after planting 
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(b)  49 days after planting 

Figure 4-13 Yield response to accumulated solar radiation at (a) crop vegetative stage (28 days after 
planting) and (b) reproductive stage (119 days after planting) 

The accumulated GDD during different growth periods also contributed to the temporal yield variability. 

Figure 4-14a shows that in the second week after planting (V2), accumulated GDD between 40 and 80 

degree Celsius tended to produce more stable yield than sub 40 degree Celsius, possibly related to a 

warmer soil temperature encouraging crop establishment. In the sixteenth week after planting (around 

early- and mid-February at crop reproductive stage), yield increased with an increase of GDD (Figure 

4-14b). The estimated coefficient (0.11) suggests that every increase of 1 degree Celsius in accumulated 

GDD during this period may cause an increase of 0.11 t/ha in yield. 
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(a)  7 days after planting 
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(b) 105 days after planting 

Figure 4-14 Yield response to accumulated GDD at (a) crop vegetative stage (7 days after planting) and (b) 
crop reproductive stage (105 days after planting) 

In the XGBoost model, “Rain28” (accumulated rainfall 28 days after planting, between day 28 - 35) was 

identified as the most important temporal yield predictor. Figure 4-15a shows that accumulated rainfall 

in the fifth week (day 28 - 35) after planting (early- to mid-October) of between 15 and 30 mm appears to 

have produced higher average yields (12-13 t/ha), compared to 7-8 t/ha yields produced when the rainfall 

was less than 15 mm during week 5. Rainfall in early November before applying midseason N fertiliser 

was important for providing sufficient moisture for the crop. However, as the 28-35 days rainfall increased 

above 35 mm, the yield dropped dramatically, possibly related to starter N leaching below the shallow 

root zone (30 cm (Abendroth et al., 2011)). The negative coefficient of 0.043 (p<0.05) suggests that every 
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increase of 1 mm in the accumulated rainfall at early vegetative stage may decrease yield by 43 kg/ha. 

There has been an increase in yield variations with an increase of rainfall at this stage, suggesting that 

yield responded differently between different fields and soil types. Figure 4-15b shows that the 

accumulated rainfall 112 days after planting at crop reproductive stage also contributed to yield, despite 

having less significance in both models. These predictor importance analyses help identify important 

factors to further fine-tune yield prediction models. 

 

(a) 28 days after planting 

 



128 | P a g e  
 

 

(b)  112 days after planting 

 

Figure 4-15 Yield response to accumulated rainfall at (a) crop vegetative stage (28 days after planting) and 
(b) crop reproductive stage (112 days after planting) 
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4.5 Summary 

This chapter presented the following results: 

• Section 4.2 addressed Objective 1 (To develop a filtering algorithm to improve maize yield 

mapping precision.) 

Spatial filtering applied to the yield monitor data over the four years (2014, 2015, 2017 and 2018) removed 

between 6 to 40% points from the original yield datasets (Table 4-1). The yield data for most years (2015, 

2017 and 2018) had less than 6 to 12% removed. The highest number of points removed (40%) was 

associated with the yield in 2014. The spatial filtering method that was applied reduced the RMSEs of 

kriging for all available years (2014, 2015, 2017 and 2018). These results suggest that the method 

developed in R programme was effective for improving the accuracy of the yield maps. The filtered yield 

data were used throughout the subsequent analyses. 

• Section 4.3 addressed Objective 2 (To identify appropriate spatiotemporal yield predictors by 

examining historical yield maps, delineating subfield management zones and undertaking zonal 

soil sampling.)  

The historical yield data and soil EC collected from NCRS were mapped and delineated MZs. A good 

statistical agreement (Table 4-5) was found between yield productivity zones and crop reflectance zones, 

which suggests that the spectral images derived from Sentinel-2 can be a proxy of spatial yield for 

delineating management zones when yield maps are absent. Soil sample cores were taken from each yield 

productivity zones and measured for soil texture: sand, silt, and clay. The soil EC data were positively 

correlated (R2=0.69; profile average) to the clay fractions and the silt fractions (R2=0.47; profile average) 

at the soil surface. The nonlinear quadratic models were able to explain the relationships between the 

spatial yield of each year and soil EC (R2=0.44-0.92). These results reaffirm that soil EC can be used as a 

proxy for soil texture to explain the cause of the spatial yield variability.  
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• Section 4.4 addressed Objective 3 (To determine the viability of predicting dynamic maize yield at 

the subfield spatial scale using supervised machine learning algorithms.) 

The statistical model hyperparameters were optimised using the grid search and ten-fold cross-validation. 

The nonlinear models (FFNN, CART, RF, XGBoost and Cubist) produced more accurate yield prediction (R2 

= 0.36 - 0.72) than the SMLR model (R2= 0.20 - 0.72), see Table 4-9. RF, XGBoost and cubist (R2= 0.44 - 

0.72) produced relatively better prediction results than the SMLR and FFNN. The accuracy of CART was 

close to FFNN (R2= 0.52 - 0.60). However, the yield prediction for the individual year (Table 4-10) was 

generally poor with a small R2 produced. Better predictions were generally associated with greater yield 

variability within-field in some years indicated by the coefficients of variation (CV%). RF, XGBoost and 

Cubist produced better results than the other trained models. RF produced the highest model fits (average 

R2 = 0.08 - 0.50), followed by XGBoost (average R2 = 0.06 - 0.39) and Cubist (average R2 = 0.03 - 0.19). Then 

these modelling analyses were repeated using data pooled from different fields to determine if the 

models built using data collected from other sites can be applied to predict yield for a specific site that 

has no or limited data (Table 4-11).  

To provide insights into managing spatiotemporal yield variability, variable importance analysis for RF and 

XGBoost was conducted to identify important yield predictors. In addition to spatial variables such as soil 

EC and elevation, several variables such as accumulated solar radiation (in 5th and 8th week after 

planting), GDD (in 2nd and 16th week after planting) and rainfall (in 5th and 17th week after planting) 

were proven to be useful contributors to the prediction of yield. 
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Chapter 5 Discussion 

5.1 Introduction  

As yield is the driver of revenues for arable farmers, establishing zones where revenues and expenses can 

be managed or generating site-specific crop management zones (MZs) is a key concept in precision 

farming. In New Zealand, yield monitor data have frequently been collected on-farm from harvests over 

time, but the monitors have been rarely calibrated. The commercial uptake of precision farming practices, 

such as calibrating yield monitors has been limited due to a lack of proven commercial benefits. Therefore, 

little has been done to find methods to delineate zones from a variety of spatiotemporal information for 

crop management.  

The research outlined in this study aims to determine if the process of delineating site-specific MZs in 

maize crops can be improved by modelling spatiotemporal interactions between spatial and other 

complementary factors affecting yield. This discussion chapter discusses the findings of the study within 

the context of addressing the objectives posed in Chapter 1:  

• Section 5.2.1 addresses Objective 1 (To develop a filtering algorithm to improve maize yield 

mapping precision). 

• Section 5.2.2 addresses Objective 2 (To identify appropriate spatiotemporal yield predictors by 

examining historical yield maps, delineating subfield MZs, and undertaking soil sampling). 

• Section 5.2.3 addresses Objective 3 (To determine the viability of predicting dynamic maize yield 

at the subfield spatial scale using supervised machine learning algorithms).  

The discussion is broken into two main sections: 1: Provides more technical evaluation of the methods 

and analysis undertaken and reviews the findings observed in a broader scientific context and 2: A more 

general discussion that describes how these findings can benefit the arable industry. 
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5.2 Technical discussion and evaluation of methodologies 

5.2.1 Effectiveness of the spatial filtering algorithm 

The results from the filtering analyses (section 4.2) showed that the customised spatial filtering 

programme removed 6%-40% of the observations (586 to 4581 points) for the study field in each year. 

These numbers were like that from the previous study by Sudduth and Drummond (2007), which reported 

13% to 27% (2510 to 8325 points) removal from the maize and soybean yield data collected from six fields, 

using the Yield Editor they developed. Spekken et al. (2013) removed 29% of the raw data points using 

their proposed spatial filtering method and compared this with the method based on traditional statistical 

upper and lower yield limits. However, further evaluation is still required to determine how these filtering 

programmes could influence the accuracy of yield maps, Maldaner et al. (2018) combined previous 

methods reported (global, anisotropic and isotropic filtering) and applied this approach to three Brazilian 

soybean fields. However, it is difficult to develop anisotropic filtering without a correctly recorded GPS 

timestamp, which may be missing in the data collected in New Zealand as reported in this thesis. In 

Maldaner et al. (2018)’s study, relatively large percentages of the data (around 20 to 40%) were removed. 

The nugget/sill ratios were reduced from 0.86-0.95 to 0.54-0.58 with the range of spatial dependence 

reduced from 196-5,000 m to 60-339 m. However, these results were different to that reported in Figure 

4-1 (0.18 – 0.91 to 0; 106-390 m to 13 to 59 m) because of different crops and environments. 

In addition to the geostatistical analyses such as investigating the nugget/sill ratios, this thesis determined 

how spatial filtering affected the accuracy of spatial prediction (interpolation) of yield data using ordinary 

kriging with several common variogram models (spherical, exponential, gaussian and Matérn). The results 

(Table 4-2) reaffirmed that the filtering algorithm was effective at improving the kriging prediction for 

mapping spatial yield, as indicated by the large reduction of prediction errors for some years (for example, 

RMSE was reduced from 4.41-4.59 to 0.96-1.43 for the interpolated yield in 2014, and 6.61-7.27 to 1.34-

1.43 for the interpolated yield in 2015, see Table 4-2). These results were an improvement compared to 

the unfiltered data and the errors were far more acceptable.  
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Very little ground validation was conducted in these analyses on the effect of spatial filtering, common 

errors in geospatial yield monitor data were reviewed in section 2.3.1.1.1, concentrating on the causes of 

errors, and how to mitigate these. Previous work shows that the errors are commonly caused by systemic 

limitations (such as flow delay) and human mistakes such as misuse of cut width setting. This 2014 data 

set had more points removed than the other years suggesting that it may contain more unusual values 

due to inadequate sensor calibration (Luck & Fulton, 2014). The unrealistically high yields such as 98.0 

t/ha observed in 2014 and 101.5 t/ha in 2015 may have been caused by abrupt vehicle stoppage. The 

ground travel velocity was reduced to near 0 km/h in a short period while the system was still conveying 

the grain across the sensing plate and therefore the unrealistically large yield values were generated. The 

yield values of zero found in the data were likely caused by the process of emptying the conveyor belt, 

when the harvester turns around at the end of a row with the header down but not harvesting any crop 

(Colvin & Arslan, 2000). In this thesis, filtering was undertaken to mitigate the impact of erroneous data 

values, which may cause biases in subsequent multivariate modelling analysis (section 4.4). 

 

5.2.2 Effectiveness of spatial yield predictors 

5.2.2.1 Examining spatial and temporal yield variability 

The historical yield maps (2014, 2015, 2017 and 2018) generated from field data (section 4.3.1) have been 

analysed. It can be seen from the 2014 yield map that there was a strong spatial “banding” pattern across 

the centre of the field which followed that of the stream on the northern boundary. The spatial “bands” 

that produced a lower yield ranged from 4 to 7 t/ha, compared to the other parts of the field, which 

mostly produced a higher yield ranging from 10 to 16 t/ha. The occurrence of this “banding” pattern 

coincided with an extended dry period from late-February to mid-March at a critical reproductive stage 

in plant development (Figure 4-3), which may have caused plant moisture stress in some locations within 

the field. Since the field received no irrigation and had been uniformly managed with the same amount 

of seed and fertiliser, these results suggest that inherent soil moisture variation may have caused the 
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spatial yield variability, in conjunction with the lower than average seasonal rainfall. In a drier season, the 

crop growing in the coarser-textured soils would be more susceptible to moisture stress, compared to the 

crop growing in finer-textured soils which are more likely to have higher water holding capacities (Hewitt, 

2004). In comparison to my research, Blackmore (2000) investigated spatial and temporal yield variability 

using yield data collected over six years from a small 6.7 ha field with winter wheat and oilseed rape 

rotation in eastern England. Rather than soil texture variations, he found the relatively low- and unstable-

yielding areas were mostly located on the field edges (headlands) and generated lower gross margins 

compared to the centre of the field. A similar effect of field headlands on spatial yield has also been found 

in New Zealand based on previous yield mapping analyses on other maize fields (Holmes & Jiang, 2018).  

The coefficients of variations (CVs) for the multiple-year yield maps were calculated (Figure 4-4) to 

determine the stability of that spatial yield pattern over the four years. The results show that the higher 

the CV value, the more temporally unstable the yield was over the years. 80% of the areas had a CV 

between 10% and 40%. The CV threshold that divides the field into two equal sizes was at around 18.5%. 

This unstable yielding rate was associated with low-lying areas. This could indicate more susceptible to 

slower drainage once the perched water reaches the root zone in rainfall events. The area around the 

study site has been extensively studied (Lowe, 2010) and consists of the Horotiu (Allophanic, Typic 

Udivitrand) and Te Kowhai (Gley, Typic Ochraqualf) soil complex. The nearby stream has degraded the 

landscape features adjacent to its flow, leaving remnant lenses of the poorly drained Te Kowhai silt loam. 

The persistence of soil moisture conditions close to field capacity caused by poor drainage is likely to 

deplete the soil oxygen content critical for maize root respiration and affect the plants’ ability to absorb 

nutrients (Saglio et al., 1983). Similarly to my results, Blackmore et al. (2003) investigated temporal yield 

variance over six years for four fields in England that had grown malting barley, winter wheat and oilseed 

rape. In one of the fields, they found a relatively high and unstable yielding MZ in a low-lying deep soil 

area next to an open drain, which may have caused large temporal yield variations from one year to 

another, depending on average seasonal variations in rainfall.  
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Lark and Stafford (1997) used a different statistical approach from that used in this thesis. They used fuzzy 

c-means clustering to group yield into several clusters and then interpreting local yield variation using the 

fuzzy c-means membership values. The membership value is the association between one sampled yield 

data point and each clustered yield zone, to help evaluate the statistical confidence of clustering of the 

yield data. Their analysis conducted on a 6-ha field that grows winter barley during 1993 to 1995 in the 

UK, suggested that unstable yield may be attributed to an observed poor drainage status recorded over 

the past season within the field. The results in this thesis support the effect of field elevation on spatial 

yield in relation to temporal seasonal rainfall and suggest that the use of elevation derived from an RTK 

GPS on a tractor is a useful predictor for yield. 

 

5.2.2.2 Examining soil EC and texture variability on spatial yield 

5.2.2.2.1 Soil EC mapping and sampling resolution 

To examine the effect of soil EC on spatial yield, the soil EC data were interpolated using ordinary kriging 

with adequate fitted variograms. Table 4-4 presented the properties of these variograms and showed that 

the range of spatial dependence on the distances that separate two locations were similar for the soil EC 

measurements (38 m and 41 m) for shallow (0-30 cm) and deep mode (30-90 cm) respectively. Similar 

findings were derived from a previous study in New Zealand by Hedley and Yule (2009). They investigated 

spatial soil texture variations for a 35-ha irrigated maize field in Palmerston North, intending to predict 

soil moisture distribution. They interpolated the soil EC data with 14,152 points measured from a Geonics 

EM38© sensor and delineated this data into zones for further soil sampling. Their results showed a similar 

range of spatial dependence (33 m) to this study (38 m and 41 m).  

The range of spatial dependence derived from soil EC maps is useful for determining the optimal soil 

sampling intervals. As a rule of thumb, a sampling interval of less than half-of-the-range of spatial 

dependency from the ancillary data should be considered to compute a variogram reliably for kriging 

(Kerry & Oliver, 2003). If this rule is to be followed, to develop a variable rate fertiliser application strategy, 
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soil samples should be taken from less than 19 m apart for mapping soil fertility via kriging, for prescribing 

a map-based variable rate application of starter fertiliser, a sampling resolution (cell size) of 19 m is 

applicable, because it is larger than the full width (6 m) of a typical maize planter in New Zealand. 

However, for a mid-season fertiliser application, the full bout width of a fertiliser spreader in New Zealand 

is approximately 20 m, which is about the same as the 19 m optimal interval for soil sampling. Producing 

soil fertility maps of less than 19 m resolution may incur unnecessary sampling costs if the technology is 

not capable of applying inputs at the resolution that is required. For evaluating the potential effect of VRS 

strategies on spatial yield, spatial maps with 6 m resolution were produced as predictors for yield. 

 

5.2.2.2.2 Effect of soil texture on EC and water holding capacity 

In this study, soil EC was collected from the field using a direct EC sensor (Veris MSP-3). Both soil EC maps 

scanned at two depths showed a clear spatial “banding” pattern with local EC values ranging from 0 to 3 

mS/m, which indicates potential coarser-textured soils. The researcher thus speculated that this pattern 

originated from geological processes such as the deposition of fine alluvial materials from nearby streams 

during flooding events. To correlate EC with soil texture, soil samples were collected at six locations (based 

on yield productivity; described in section 3.3.5) across the field using a soil corer at depths of 5-10 cm, 

10-15 cm, 15-20 cm, 20-25 cm and 25-30 cm. Soil samples collected from the field were analysed for 

texture (sand > 63 microns, silt 2 - 63 microns, and clay < 2 microns) and replicated. The results of the 

analysis of these soil samples show that soil EC was positively correlated with the fine particles associated 

with the average silt and clay fractions in the topsoil of 5 – 30 cm (R2 = 0.47 and R2 = 0.69, respectively). 

These results are consistent with a previous study by Sudduth et al. (2005) in the north-central US, which 

found the highest correlation (R2 = 0.37 - 0.63) between EC and topsoil clay content across 12 fields. In 

New Zealand, Hedley and Yule (2009) reported that the zones classified by higher EC values were 

associated with higher silt (30.8 to 61.3%) and clay content (8.3 to 26.8%) for the top 60 cm soil, which is 

similar to that in Table 4-7 (31% to 69% for silt; 12% to 27% for clay). They then determined the available 
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water holding capacity (100 to 190 mm/m) and irrigation trigger for each soil zone and develop real-time 

variable rate irrigation strategies. Similar relationships between soil EC and soil texture between zones 

were also derived from Hedley et al. (2010)’s study on a 22-ha maize field in the sand country region of 

Manawatu. The results reported in Table 4-7 suggest that large spatial soil texture variations not only exist 

on a 20-40 ha field under centre pivot irrigation but also exist in an arable field as small as 10 ha, which 

highlights the applicability of variable rate application on small fields.  

A guide for irrigation provided by FAR (2010) recommended that the plant available water should be at 

least 10 times greater than the daily evapotranspiration to maintain a steady uptake of water for the 

optimum yield. Based on the soil particle size distribution measured at six sampled locations (section 

4.3.4.1), it is estimated that the maximum amount of the plant-available water at these locations ranges 

from 136 mm/m to 180 mm/m, which is similar to Hedley and Yule (2009)’s previous estimation (100 to 

190 mm/m) for their research field, even though the soils types are different between the studies. As a 

rule of thumb, the crop can extract a maximum of 10% of the available water per day from the root zone 

(FAR, 2010). Theoretically, given potential evapotranspiration of 5 mm per day in summer, it would take 

13 days for maize yield reduction to occur in the soil at the field capacity with 180 mm/m of plant-available 

water with no rainfall recorded. These results suggest that crop moisture stress during a period after the 

V6 is more likely to occur when the nil rain condition persists for approximately two weeks, because of an 

inherently larger plant available water capacity. 

 

5.2.2.2.3 Effect of topsoil texture on spatial yield 

In the study site reported in this thesis, maize seeds were planted at 5 cm depth, with polymer-coated 

urea added 2.5 cm below seed placement. According to Genetic Technologies Limited (2016), 20% of the 

total seasonal water required by the crop occurs in the first five weeks of crop establishment. From 

planting through to the V6 stage, the rooting depth of a maize crop is estimated to reach 30 cm deep. 

During periods of low rainfall, coarser textured horizons (in the top 30 cm soil), hosting the bulk of the 
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root mass, may have limited ability to meet the water demands for the growth onward (Hedley et al., 

2010; Stadler et al., 2015), particularly in a non-irrigated system. Severe and prolonged water stress in 

maize plants during the early vegetative stages may cause irreversible damage to the structure of the 

photosynthetic membrane, resulting in lower chlorophyll content and possibly a 25%-30% reduction in 

yield (Cakir, 2004; Denmead & Shaw, 1960), even if sufficient water supply is present during the remaining 

growth period (Song et al., 2019). Additional urea fertiliser is typically broadcast at the V4 to V6 stage (5-

6 weeks after planting; mid-November) to support the growth (Figure 5-1). However, the applied nutrients 

are not be solubilised for uptake if there is little soil water stored at the 0-30 cm depth. Compared to the 

V4-V6 stage, at a later growth stage (tasselling; mid-December; 75-85 days after planting), the root system 

is more deeply established in the soil (>70 cm) and can access a larger volume of plant-available water, 

unless dry seasonal conditions persist for more than 13 days. 
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Figure 5-1 Maize growth stages in New Zealand and the estimated days after planting required (the rates 
of growth depends on the environmental conditions). Image modified from Genetic Technologies Limited© 

Literature shows that yield often increases with an increase of soil EC because this data suggests better 

water holding capacity and lower risk of moisture stress during crop growth (Hedley et al., 2010; Stadler 

et al., 2015). However, yield may then decrease after optimal soil EC due to impedance of drainage and 

the onset of anaerobic soil conditions (Corwin & Lesch, 2003).  

In this study, quadratic models were fitted for each year to investigate the relationship between EC and 

historical yield maps. Table 4-8 showed that the model had a good fit for 2015 and 2017 (R2 = 0.76 and R2 

= 0.92, respectively) but a poorer fit for 2014 and 2018 (R2 = 0.44 and R2 = 0.56, respectively), suggesting 

a temporally variable yield response. Management factors (such as the timing of mid-season fertiliser 

application), as well as variable rainfall patterns, could play an important role in determining yield 

potential. This variability was consistent with a previous study in the north-central US by Kitchen et al. 

(2003). Their study modelled the relationship of soil EC, topographic features (elevation, slope and 

curvature) and crop yield for three contrasting soil-crop systems. Their quadratic models explained 7%-
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51% (an average of 21%) of the maize-grain yield variation using the EC data alone. Some improvements 

for the models were produced (an average of 32%) when combining soil EC and elevation for the non-

irrigated fields in Kansas and Missouri but only slight improvement (by around 1-2%) for the irrigated field 

in Colorado. In Table 4-5, the combination of EC and elevation maps reported no significant improvement 

on correlating to the yield zones, because there is little variability of elevation within-field at NCRS (a 

gradual decrease of elevation by approximately 4 m for over 400 meters).  

Kitchen et al. (2005) delineated productivity zones using a combination of soil and elevation maps and 

compared these with yield productivity zones delineated using historical yield maps over seven years for 

two claypan soil fields in US midwest planted in a maize-soybean rotation. The historical yield maps 

(between 1993 and 2002) were grouped into ``deficit”, ``optimal” or ``excessive” years based on the 

spatial yield in specific landscape positions (foot-slope and side-slope) and in relation to the quartile 

threshold of monthly rainfall over 58 years. The grouped yield maps were then delineated into the 

respective yield zones for these temporal conditions. Kitchen et al. (2005)’s study reported a 51–68% 

agreement (with kappa coefficient κ = 0.21 - 0.43) between multiple-year yield zones and soil MZs. The 

highest agreements (58-60%; κ = 0.29 – 0.34) were found with the yield zones derived from the “deficit” 

years (the yield in the eroded side-slope was less or equal than 95% of the field average), whereas 

relatively lower agreements (41-46%; κ = 0.07 – 0.11) with the yield zones derived from the “optimal” 

years (the yield in both eroded side-slope and foot slope between 0.95 and 1.05 of the normalised field 

average yield). The results reported in this study (53-63% agreement and κ of 0.04-0.27, Table 4-5) was 

consistent with Kitchen et al. (2005)’s findings. The low κ indicates low statistical confidence of the 

agreement between yield and soil MZs, which is likely to be associated with the high number of pixels of 

the zone maps (N = 4,346; Table 4-4).  

5.2.2.2.4 Reaffirming effect of soil texture on yield using satellite images 

The purpose of introducing the satellite images into section 4.3.2.3 was to determine if these freely 

accessible, relatively coarser-resolution images (10 m) can reflect the influence of soil texture variations 
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on maize yield in this study. There was a high agreement of 71% (κ = 0.42) between yield productivity 

zones and crop reflectance zones (Table 4-5), which suggests that these multispectral images (Sentinel-2 

images captured in February at the crop reproductive stage) could be used as proxies for spatial yield for 

delineating MZs, especially when yield maps are absent. Although different satellite images were 

employed, the result in this thesis was consistent with Georgi et al. (2018)’s study, which developed an 

automatic algorithm for delineating crop reflectance zones using fine spatial resolution RapidEye satellite 

multispectral images (5 m). The crop reflectance zones derived from the NIR bands of all automatically 

selected images were able to delineate significant yield differences (p<0.05) related to soil texture 

variations within-field for different crops (wheat and canola) on different fields. Table 4-6 shows that 

medium-resolution crop reflectance zones are also potentially effective at differentiating the yields of 

maize crops, which could support the further uptake of soil EC mapping on small arable fields for precision 

farming in New Zealand. 

 

5.2.3 Predicting spatial yields at the subfield level  

5.2.3.1 Modelled performance 

To assess the performance of the models (SMLR, FFNN, CART, RF, XGBoost and Cubist) that have been 

trained (section 4.4.1) and to compare different algorithms, the trained models were assessed using a 

subset of the data withheld from the original dataset. Around 20 - 72% of the yield variations were 

explained by the models. SMLR was not very useful for predicting yield (average R2= 0.20 - 0.52), 

consistent with a previous study by Sudduth et al. (1996). Slightly better accuracies in this study (average 

R2=0.42 - 0.72) were produced by FFNN and CART than the linear regression model. These accuracies were 

reasonable for predicting spatial yield, as R2 between 0.21 to 0.74 were reported previously (Drummond 

et al., 2003). For CART, less accurate results were expected because the model predicts discrete values 

(i.e. the predicted value is the average value for each data subset), instead of continuous values as in more 

complex ensemble tree methods (Miller et al., 2016). For FFNN, less accurate results were also expected 
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because the optimised FFNN model was functionally similar to multiple regressions when only a few 

hidden neurons were required. Further improvement on the prediction accuracy of spatial yield by the 

neural network may be possible with more complex architecture (deep neural network with two or more 

hidden layers) (Orimoloye et al., 2020). However, training these neural networks can be computationally 

time expensive. The time used for training the model could vary from hours to weeks depending on the 

structure of the neural network (e.g. the number of hidden layers, neurons) and the optimisation 

methods, which increases the difficulty of processing spatially dense precision farming data. Better 

accuracies (R2 = 0.45-0.72) were produced by the ensemble tree models (RF, XGBoost and Cubist), possibly 

because of continuous outputs rather than the discrete outputs produced by CART. 

To assess how well a model predicts unseen data (i.e. yield from an additional harvest), the leave-out-

one-year analysis was undertaken by withholding one year of yield, as the test set. However, the 

prediction accuracies of all the models for individual years were generally poor given the relatively limited 

number of years (2014, 2015, 2017 and 2018), which were unable to capture the range of temporal effects 

such as rainfall on yield. The XGBoost and RF models tended to produce a better prediction of yield. It is 

suggested that XGBoost and RF both have potential in handling data with multiple spatiotemporal 

interactions. These should be promoted to predict yield at a subfield level, although at greater 

computational costs than other models. Compared to the RF model, in which there is no pruning for the 

trees generated, XGBoost allows its trees to be pruned and thus tends to avoid overfitting. However, 

compared to RF, which employs “bootstrapping” (random sampling with replacement) to generate new 

datasets to avoid biases from individual observations, XGBoost is more susceptible to “noise” (i.e. 

unrealistic values in any of the input datasets). Given the potential inconsistency in the yield sensor 

calibration methods, it would be difficult for XGBoost to capture that multivariate relationship if the 

historical data of some years do not represent the actual yield level (see Chapter 2 section 2.3.1.1.1). 

These results were consistent with the study of Drummond et al. (2003). The authors predicted maize and 

soybean yield on three sites in the US state of Missouri (ranging from 13 to 36 ha in size) using an FFNN 



143 | P a g e  
 

model with several soil fertility parameters (soil pH, OM, phosphorus, calcium, magnesium, potassium) 

and topographic inputs (elevation, slope). The FFNN model generally provided better statistical 

predictions (an average of 45% of the variation, ranging from 21 to 74%) in a multiple-year analysis than 

the other two models (SMLR, which explained an average of 31% of the yield variation, range 14% to 65% 

and Projection Pursuit Regression). However, in the leave-out-one-site-year analysis, significant 

prediction errors were produced for the individual site year due to severe overfitting. Consequently, most 

climatological variables were excluded except for the total rainfall during the plant reproductive phase 

(days 51–110 after planting). It is concluded that a much larger set of climatologically unique sites and 

years, would be required for these models to be used in a predictive manner. However, the minimum 

number of sites and years data required to produce a reasonable prediction of spatial yield is unclear. The 

results may be distorted with additional years of yield data, in the leave-out-one-site-year analysis, if the 

consistency of historical management actions and yield data quality is not known.  

A similar statistical approach was applied in a study by J. Liu et al. (2001) in Urbana-Champaign, Illinois, 

US. This used an FFNN model for predicting maize yield based on a range of climate (Growing Degree Days 

(GDD) and monthly rainfall) soil factors (soil pH, phosphorus, potassium, organic matter), management 

factors (nitrogen fertiliser) as inputs in their FFNN model. By doing this they attempted to predict yield on 

small plots with different fertiliser treatments in the Morrow Plots of the University of Illinois. In 

comparison, this study attempted to predict spatial yield from commercial cropping fields. However, only 

one model (FFNN) was tested in the study by J. Liu et al. (2001), whereas in this study, the ensemble tree 

models (RF, XGBoost and Cubist) reported better predictions of spatial yield (average R2 = 0.44 – 0.72) for 

data with multiple spatiotemporal interactions than from FFNN (average R2= 0.39 – 0.72). These tree-

based models that are trained with field data could provide a statistical basis to help delineate dynamic 

yield zones in New Zealand, compared to the static zones evaluated previously in US midwest (Kitchen et 

al., 2005), for optimising management inputs within-field. 
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5.2.3.2 Potential improvements to the yield prediction models  

5.2.3.2.1 Inclusion of soil moisture data 

Maize crop yield was generally influenced by seasonal rainfall at several critical stages. The analysis of 

relative variable importance (Chapter 4.4.2) suggested that the accumulated rainfall in the fifth week and 

the seventeenth week after planting were identified as influential factors for the yield in the XGBoost 

model (Figure 4-12c, d). Figure 4-15a shows that accumulated rainfall in the fifth week after planting 

(between day 28 - 35; early- or mid-October) of between 15 and 30 mm appears to have produced higher 

average yields (12-13 t/ha), compared to 7-8 t/ha yields produced when the rainfall was less than 15 mm, 

based on data pooled from five fields over the years. The accumulated rainfall in the fifth week after 

planting provides enough moisture for dissolving N fertiliser to nitrate that can be readily taken up by 

plants. Adding a small amount of starter fertiliser at planting is traditionally recommended for growing 

maize in a temperate climate regime as it benefits the growth of the primary nodal roots for water and 

nutrient uptake and lowers the risk of uneven stands of maize (Mascagni et al., 2007). It is also a more 

effective way of placing other valuable, and less leachable nutrients such as P and K in the top 10 cm soil, 

than broadcasting via a fertiliser spreader.  

An excessive amount of rain at the seedling emergence stage may cause nitrate leaching from the shallow 

root zone (Butts-Wilmsmeyer et al., 2019), especially with coarser-textured soils, which have a lower 

water holding capacity and (if free-draining) have a higher throughput of pore-water volume. Figure 4-15a 

shows a negative estimated coefficient of 0.043 (p<0.05), which suggests that every increase of 1 mm in 

the accumulated rainfall at early vegetative stage may decrease yield by 43 kg/ha. Based on the soil 

particle size distribution measured for the six sampled locations (section 4.3.4.1), the available water 

capacity of the 0 - 30 cm soil depth was only about 34.1 mm to 45.3 mm. Theoretically, it would only 

require approximately 5 mm per day of consecutive rain for the water to leave the root zone to depth in 

some coarse-textured soils. To improve nitrate uptake by crops, it is generally recommended to split 

fertiliser applications into two or more applications and apply only a small amount of slow-release N 

fertiliser at each planting. 
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The accumulated rainfall in the seventeenth week after planting at the reproductive stage had a small 

negative influence on yield (Figure 4-15b). The estimated coefficient of 0.003 (p<0.05) in the linear 

regression model suggests that each 1 mm increase in the rainfall within this period could decrease yield 

by 3 kg/ha. An excessive amount of rainfall can reduce maize yield through direct physical damage to the 

plants and other processes associated with those soils which have poor drainage (waterlogging, ponding, 

overland flow, and prevention of optimal harvesting events) that are detrimental to the crop yield (Y. Li 

et al., 2019). Prolonged rainfall may also encourage diseases such as stalk rots and can result in lodging 

(the bending over of the crop stems near the ground level), which causes difficulties at harvest and 

increases yield losses.  

The result in this thesis is different from a parallel study conducted in New Zealand by Holmes (2019) 

using farm-scale yield data recorded over 46 years by a local farmer in the Waikato Region, approximately 

11km from the NCRS site. Holmes (2019) aimed to model maize yield based on the N applied (base, starter 

and side-dress applications), seasonal growing degree days [GDD] (spring and summer) and seasonal 

rainfall (spring and summer) using multiple linear regression with interaction terms. After comparing 

different models, his best model explains 69% of the yield variation and reported that the yield increases 

by 10 kg/ha for each additional mm of the rainfall in summer, whereas in this research, yield decreased 

by 3 kg/ha for each 1 mm increase in the rainfall in the seventeenth week after planting. The difference 

in results regarding the effect of summer rainfall on yield may have been caused by the lack of exact 

planting dates for comparing growth periods in his model. Holmes (2019)’s model is only explanatory at 

the current stage and cross-validation is still required to evaluate how well this model would perform for 

predicting actual yield. Also, no data filtering appears to have been applied to eliminate outliers.  

This finding in this thesis on the effect of summer rain on maize yield is incomparable to J. Liu et al. (2001)’s 

study at the University of Illinois. This study identified the best combinations of factors that could predict 

maximum yield and suggests that yield was most sensitive to late July rainfall (mid-summer in the US) and 

nitrogen fertiliser (0 – 336 kg/ha). Despite the high temporal resolution of yield in J. Liu et al. (2001)’s 
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study (> 30 years continuous maize yield), monthly rainfall may be too coarse for modelling yield in New 

Zealand because the variable distribution of rainfall within a given month can lead to soil moisture deficits. 

As previously estimated (section 5.2.2.2.2), soil can only meet the plant water demand for another 10-13 

days in the non-irrigated field examined in this thesis. Also, if there is no rain for three to eight hours after 

applying urea fertiliser, less urea is dissolved into the soil profile to be absorbed by the crop roots, and 

10% of the total N applied may be lost via volatilisation as ammonia (NH3) gas (Bishop & Manning, 2011). 

In a non-irrigated field, yield variation is largely associated with the temporal pattern of rainfall to the 

crop at different growing stages, in conjunction with inherent soil texture variations within-field. To 

predict spatial yield, the temporal water distribution within-field, at different times, should be measured 

and incorporated into the prediction model. This temporal soil moisture information may potentially be 

derived from the Synthetic Aperture Radar (SAR) sensor data of Sentinel-1, which is calibrated by soil 

moisture probes installed in different soil zones. Because the SAR sensing is based on the backscattering 

of radar waves, it is not sensitive to cloud cover, solar illumination and atmospheric conditions (Belenguer-

Plomer et al., 2019), allowing for year-round calibration and comparison. Given a fine spatial resolution 

(down to 5 m) and a 12-day revisit cycle, SAR sensor data could potentially provide some detail regarding 

temporal soil moisture distribution across the field. This can then be used as predictors of yield. 

 

5.2.3.2.2 Inclusion of soil temperature data  

The accumulated GDD within different growth periods contributed to temporal yield variability. Despite 

a slight decrease of yield caused by the accumulated GDD in the second week after planting (V2), Figure 

4-14a suggests that accumulated GDD in the second week after planting between 40 and 80 degree Celsius 

tended to produce more stable yield than when the GDD range is less than 40 degree Celsius. A wet and 

a cool soil in the second week after planting is detrimental for crop establishment. Maize has a base 

temperature (the minimum temperature a plant requires to assimilate carbon dioxide through 

photosynthesis) range of 8 – 10°C (FAR, 2005). Warmer soil temperatures in spring are favourable for seed 
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germination and crop emergence, which can help the crop achieve an early crop maturity and avoid cold 

stress. In New Zealand, maize is ideally sown in early to mid-October, once the soil temperature has 

increased to above 10°C (Booker, 2009). Cool conditions during planting will retard crop emergence and 

seedling health. In coarser-textured soils, night-time temperatures in spring can drop significantly due to 

less water in the topsoil to regulate heat, even following warm days, inflicting extra stress on maize 

emergence (Alessi & Power, 1971). In practice, few New Zealand farmers measure soil temperature to 

decide the suitability for planting but base their decision mostly on the date, and soil moisture condition 

after spring rains: i.e. whether the ground is sufficiently dry for the planter to operate and also on the 

availability of planting machinery. In the sixteenth week after planting in this study (around early- to mid-

February), yield increases with an increase of GDD and suggests that every increase of 1 degree Celsius in 

the accumulated GDD during this period may cause an increase of 110 kg/ha in yield (Figure 4-14b), 

whereas in Holmes (2019)’s model, the yield increases by 8.2 kg/ha for each additional degree of Summer 

GDD. The large difference in results from these models may have been caused by different yield response 

on different textured soils.  

 

5.2.3.2.3 Inclusion of canopy cover data  

The results of the analysis of variable rank in terms of influence showed that accumulated solar radiation 

was an important input identified by the RF model (Figure 4-12). Figure 4-13a indicates that an increase 

of the accumulated solar radiation in the fifth week after planting by 1 kJ/m2 tended to increase grain 

yield by 43 kg/ha, suggested by the estimated coefficient. Maize is a C-4 plant that is efficient at converting 

radiation into biomass (about 16 kg dry matter/ha for every 1 kJ of radiation intercepted (FAR, 2009). 

Brown et al., (2007) in New Zealand modelled maize yield for several regions (Ruakura, Whakatane, 

Lincoln and Gore) based on historical data and estimated that Whakatane, in the Bay of Plenty Region, 

produced the highest yielding potential compared to the other locations because of the relatively high 

annual average radiation and temperature.  
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Although the linear fit was poor, the modelled results (Figure 4-13b) suggested that maize-grain yield 

declined slightly by 13 kg/ha with an increase in accumulated radiation two weeks before tasselling (in 

the eighth week after planting) by 1 kJ/m2, due to a less than fully developed canopy. The developmental 

stage of the crop canopy and leaf chlorophyll content controls the efficiency of radiation interception for 

photosynthesis. Strong sunlight can also have negative effects which increase evapotranspiration, 

increasing the risk of the crop experiencing moisture stress (Ferrante & Mariani, 2018). At the crop 

tasselling stage, the canopy is fully developed allowing maximum radiation interception to take place 

(Teixeira et al., 2010). Shading occurs at this stage limiting photosynthesis in the sub-canopy and nutrient 

transfer from stalks to the ear, which could result in 20% yield reduction due to fewer developed kernels 

produced per ear (Reed et al, 1988; W. Liu & Tollenaar, 2009). This thesis was not able to confirm the 

effect of canopy cover (and thus radiation) on yield due to a limited number of years’ yield data.  

  



149 | P a g e  
 

5.3 General discussion 

5.3.1 Understanding the importance of data filtering in precision farming  

As previously discussed, (Chapter 5.2.1), filtering yield monitor data is an important process that can 

improve the quality of yield maps (i.e. how closely the interpolated maps represent the actual sampled 

values). To date, there has been an inadequate investigation of the impact of poor-quality data on the 

uptake of yield mapping practices. There is some evidence (Fountas et al., 2005; Griffin et al., 2008) to 

suggest that one reason that farmers do not undertake yield mapping is that they receive little assistance 

in handling the data, which involves cleaning to the data to remove errors before further steps, which 

allows more accurate information to be achieved. Griffin et al. (2008) provided evidence for this when 

they interviewed six North American farmers with detailed questions on how they would use yield 

monitor data. They found that yield maps with errors affected the farmers’ confidence in undertaking 

subsequent management actions. This highlights the importance of reducing errors in yield data to inform 

farm management practices. 

Software such as the Yield Editor has been developed by Sudduth and Drummond (2007) to mitigate 

sensing errors. However, upon examination of historical yield data from NCRS in this thesis using this 

software, it was clear that processing is difficult because of different commercial sensors, as well as the 

possibility of missing information such as timestamps (see Appendix 1 for an example data). Therefore, to 

address this issue, a small customised programme in R (Appendix 2) based on the principles developed by 

Sudduth et al. (2012) and by Spekken et al. (2013), was developed as part of this PhD study which may 

help to ‘clean’ historical yield monitor data automatically. The benefit of this programme is that only yield 

values and their coordinates are required and hence it can be applied to yield monitor data from differing 

crops. It has been used in other studies to filter machine harvest yield data for potatoes, which contain a 

large amount of local variation (Jiang et al., 2017). 
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5.3.2 Understanding the value of spatial data in precision farming 

5.3.2.1 Soil and elevation mapping at the subfield scale 

Soil EC deep (depth between 0 and 90 cm) was consistently ranked the most important predictor of maize 

yield in both the Random Forest and XGBoost models using data pooled from five fields over years (Figure 

4-12). Figure 4-12a shows that in the period before V6 (six-leaf vegetative stage), the most important 

predictors in the Random Forest model were: “soilec_deep” (100%), followed by “soilec_shallow” (70%) 

and “elevation” (39%), in terms of their relative ranking. These were also important predictors in the 

growth periods after V6: “soilec_deep” (100%), “soilec_shallow” (79%) and “elevation” (61%) (Figure 

4-12b). Proximal soil EC sensing is a relatively well-established technique in precision farming and many 

studies use this approach (Lund et al., 2000; Kitchen et al., 2003; Corwin et al., 2010). A key advantage of 

this technique, relative to traditional sampling methods such as grid sampling, is the collection of spatially 

dense sample points, which are beneficial for mapping at finer subfield scale for precision farming 

operations such as delineation of MZs for fertiliser application, detection of soil compaction (Payne, 2008), 

irrigation scheduling (Hedley & Yule, 2009), and determination of yield potential (Lund et al., 1999). 

In New Zealand, soil survey and soil type mapping are typically conducted at the regional scale, and it is 

uncommon to find soil maps at the farm scale, let alone field scale (Lilburne et al., 2012). To delineate 

dynamic MZs using the purposed method in this thesis, soil texture needs to be measured at the subfield 

level. Although only three soil cores taken from selected LY and HY zones derived from historical yield 

data would not be sufficient to map spatial soil texture variations at the field scale (as discussed in section 

5.2.2.2.1), soil texture measurements were correlated to soil EC sensor data (R2 = 0.47 with the average 

silt and R2 = 0.69 with the average clay fractions in the topsoil of 5 – 30 cm, respectively) and the 

subsequent impact of soil texture on crop yield in relation to temporal rainfall pattern was confirmed by 

conducting the predictor importance analyses. Undertaking soil texture analysis has also illustrated that 

there is potentially significant spatial variation in texture across a short spatial distance (38 m and 41 m), 

even within a 10-ha non-irrigated field. These results provide a rationale to use soil EC data as a predictor 

for spatial yield. 
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5.3.3 Applicability of subfield yield prediction models for precision farming 

To determine the feasibility of applying the model to other similar fields that have no or limited data, 

prediction models were built using data pooled from all five study fields. The predictions were evaluated 

by leaving out one set of site-year data each term and using the remaining pooled data for training the 

models. The results (Table 4-11) showed that the Random Forest and XGBoost models developed using 

pooled data produced multiyear average R2 values ranged from 0.04 to 0.47. These R2 values were lower 

(by 0.02 – 0.18) than when they were constructed using data collected from individual fields (multiyear 

average R2 = 0.06 – 0.50). Given these results of prediction, these trained models are likely to be field-

specific and are less capable of predicting yield for other fields, thus emphasising to individual growers 

the need for collecting multi-year spatially variable yield data. 
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5.4 Research contributions to precision farming 

From the above discussion, this thesis contributes to precision maize cropping in New Zealand by 

identifying the following three key points:  

1. To improve the quality of yield maps and subsequent modelling analyses, erroneous data points 

that are caused by systemic or operational mistakes must be removed. 

Software programmes such as Yield Editor have been developed and are widely used for data filtering. 

However, upon examination of historical yield monitor data in New Zealand, it was found that information 

such as GPS timestamps were missing, which made it difficult to apply existing filtering software. For this 

reason, some of the work in this thesis involved the creation of a customised automatic filtering algorithm 

in R and validated its performance using geostatistical variogram analyses and 10-fold cross-validation. 

The results suggest that the filtering programme was effective at improving the accuracy of spatial 

interpolation for yield mapping, with only the coordinates and yield supplied as inputs. Therefore, this 

programme can be applied to other spatial data in precision farming with different structures, providing 

the opportunity for greater use of data. However, it should be noted that data filtering will not remediate 

data from an inadequately calibrated sensor at the start of each harvest, which still presents challenges 

to the further uptake of precision farming. 

2. By examining the spatial and temporal variability of spatial yield maps, the delineated crop 

management zones using spatial data and conducted zonal soil sampling can be used to 

determine the applicability of spatial data for precision farming in New Zealand.  

To understand the cause of spatial yield variability, soil texture variations within-field were investigated 

with samples taken from each zone. The effect of spatial soil variability and field elevation on crops was 

discussed in relation to temporal rainfall to justify the use of soil EC, elevation and temporal weather data 

as predictors for spatial yield. Low and medium resolution satellite images (Landsat-8 and Sentinel-2) were 

also collected and delineated into zones to correlate with soil and yield zones. The results support the 

inclusion of field elevation and soil EC maps on smaller-scale arable fields (<10 ha), which could encourage 
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further uptake of delineating management zones and zonal soil sampling in New Zealand for commercial 

variable rate applications. 

3. Examining the viability of predicting spatial yield at the subfield level can help to delineate 

dynamic management zones and inform crop management inputs. 

Earlier studies often lacked focus on the spatiotemporal interactions between soil, weather variables and 

crop. In addition to the models tested in previous studies, this study compared the performance of 

different supervised machine learning algorithms. By computing the variable importance using data 

pooled from different maize fields in the Waikato, significant contributors to the models were identified 

for further improvement of the model prediction. The results demonstrated the viability of predicting 

spatial yield at the subfield level for delineating dynamic MZs, which provided an alternative to mid-

season variable rate input prescription, using data that is readily available and inexpensive. With the 

increasing availability of sensor-derived data such as yield maps for additional years, staged canopy cover 

derived from aerial photographs and detailed soil nutrient maps derived from hyperspectral imagery, the 

accuracy of the yield prediction models should be improved over time and provide insight into managing 

spatial yield variability within-field. 

Several new questions were raised within the framework of this research but only a few of these could be 

addressed. These additional questions need to be addressed in future research:  

• What would be the filtering performance using the developed algorithm when compared to other 

well-established programmes such as Yield Editor if the information required is intact? 

• Can this modelling approach be applied to other crops in New Zealand? 

• Would the impacts of spatiotemporal interactions on spatial yield still be consistent with more 

years of yield and meteorological data? 

• Given the spatial soil texture variations and seasonal and within-season rainfall patterns, what 

would be the environmental impacts of applying variable rate N fertiliser in maize production?  
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The case study outlined in this thesis is potentially relevant in some developed countries where small crop 

farms are key players in the industry. These farms collect a large amount of subfield data over time and 

are driven to minimise the costs of production using data-processing techniques. Overall, this study 

utilised existing sensor-derived data in New Zealand and demonstrated a novel application of machine 

learning models which highlighted the value of spatial data collection to assist in more efficient use of 

production inputs and sustainable arable farming systems. 
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5.5 Summary 
This chapter extrapolates from current findings and contrasts with published literature. Spatiotemporal 

data collected from various sources and utilised to predict spatial yield at a subfield level, to allow the 

prescribing crop management inputs such as seed and fertiliser. 

The findings of this study demonstrate that:     

• The customised spatial filtering algorithms programmed in R proved effective at improving the 

accuracy of yield maps, as indicated by the reduction of prediction errors. The benefit of this 

programme is that only yield values and their coordinates are required and hence it can be applied 

to yield monitor data from differing crops. 

• Examining spatial and temporal yield variability reaffirmed the effect of field elevation, soil EC and 

temporal rainfall on yield, justifying the use of these datasets as yield predictors. When yield maps 

are absent, there is a potential to use medium-resolution (10 m) satellite images as proxies to 

yield maps for delineating MZs. By delineating zones from satellite images, soil EC survey and soil 

sampling can be undertaken from each zone for soil texture analysis, which provides a basis for 

prescribing seeding and fertiliser recommendation.  

• This research recognised the feasibility of predicting yield at a subfield level using cheaply 

accessible data and provides a statistical basis for delineating dynamic MZs. The predictor 

importance analyses suggest that potential improvements to the yield prediction models can be 

made by incorporating soil moisture, soil temperature and canopy cover data at critical stages of 

crop development. However, given these results of prediction, these trained models are likely to 

be field-specific and are less capable of predicting yield for other fields. 
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Chapter 6 Summary, implications and limitations 

6.1 Introduction  

The research question posed in Chapter 1 was addressed in the research chapters and revisited in the 

discussion through an evaluation of model and analysis performance.  

This research hypothesized that: 

The process of delineating site-specific management zones can be improved by modelling 

spatiotemporal interactions between spatial crop yield and other complementary factors.  

The research objectives related to the following issues and gaps in knowledge identified around the use 

of yield monitor data at the small field scale for crop production in New Zealand i.e.: 

o To develop a filtering algorithm to improve maize yield mapping precision. 

o To identify appropriate spatiotemporal yield predictors by examining historical yield 

maps, delineating subfield management zones, and undertaking soil sampling. 

o To determine the viability of predicting dynamic maize yield at the subfield spatial scale 

using supervised machine learning algorithms. 

This chapter outlines the summary of conclusions and their wider implications and identification of 

thesis limitations using thesis results and limitation to provide directions for future research.  

 

6.2 Summary of conclusions 

Precision farming is a data-driven management philosophy about applying the right input, at the right 

amount, at the right place and the right time. While precision agriculture is not new to the New Zealand 

arable community, this thesis demonstrates how sensor-derived data captured within-field can be fully 

utilised to inform crop management decisions. The work presented particularly addressed the aspects of 
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precision agriculture that focus on “the right amount” of inputs and knowing when the “the right time” 

might be with the predictions of spatial yield made at the subfield level. 

These are the conclusions drawn from Chapter 5: 

• A methodology approach taken in this thesis was to provide a customised automatic filtering 

algorithm that could work without this information. Its effect on the accuracy of the interpolated 

maps was validated using geostatistical variogram analyses and 10-fold cross-validation. The 

results (for example, the nugget/sill ratios were reduced from 0.86-0.95 to 0.54-0.58; RMSE was 

reduced from 4.41-4.59 to 0.96-1.43 for the interpolated yield in 2014, and 6.61-7.27 to 1.34-1.43 

for the interpolated yield in 2015) suggest that the filtering programme was effective at improving 

the accuracy of spatial interpolation for yield mapping, with only the spatial coordinates and yield 

as input parameters.  

• To identify important spatiotemporal yield predictors, this research project examined the spatial 

and temporal yield variability from historical yield maps. To achieve this, historical yield maps 

were delineated into yield productivity zones categorised as relative high yielding (HY) and low 

yielding (LY). To verify the effect of soil texture on spatial maize yield over the years, zonal soil 

sampling (based on the yield zones) and soil texture analysis were undertaken. The soil EC 

measurements were highly correlated (R2 = 0.69; profile average) to the clay content in the topsoil 

(5-30 cm). These findings support those studies by other researchers, which may have caused 

spatial yield variability under a non-irrigated system. 

• To determine the relationship between soil EC and spatial yield, the soil EC maps were correlated 

to the spatial yield map of each year. The yield response to soil EC appears to be a quadratic curve, 

with the reasonable fit (R2 = 0.44 – 0.92), with higher ECs tending to produce better yield due to 

greater soil water holding capacity and being less susceptible to plant moisture stress. The 

variation in yield response between years suggests that soil EC should be discussed in relation to 
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the seasonal rainfall data so that soil EC measurements can be used as a spatial yield predictor 

more effectively. 

• A reasonable agreement (71%, κ = 0.42) were found between MZs derived from multispectral 

images (Landsat-8 (30 m) and Sentinel-2 (10 m) and yield productivity zones. This result 

demonstrates that optical satellite images can be used as proxies to yield maps for delineating 

MZs when yield maps are absent. These results were consistent with other studies using high-

resolution RapidEye images to delineate MZs. 

• This research recognised the feasibility of predicting yield at a subfield level using cheaply 

accessible data and provides a statistical basis for delineating dynamic MZs. Compared to other 

models tested such as a feedforward neural network, the tree-based algorithms such as random 

forest and XGBoost tended to produce better statistical predictions (R2 = 0.08 - 0.50) because of 

their ability to model multiple spatiotemporal interactions. Meteorological factors such as early 

seasonal rainfall at the crop vegetative stage (in the fifth week and seventeenth week after 

planting), GDD (the second week and sixteen-week after planting) and solar radiation (the fifth 

and eighth week after planting) were identified as important predictors of spatial yield, based on 

the relative importance derived from the prediction models. 

 

6.3 Research limitations 

This research was limited in several aspects:  

1. Only three soil cores were taken from each yield-based LY and HY zone for investigating the soil texture 

variations within the field. This sampling density would not sufficiently represent these production zones. 

Depending on funding constraint, future research may look at more detailed soil sampling for mapping 

soil texture variability, and then correlate the texture to soil EC and yield. 

2. More related variables such as soil pH should be included to improve the model predictions of spatial 

yield within-field. There is a potential influence of pH variation, and therefore nutrient availability, on 
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maize yield production within NCRS. The soil test results (Appendix 4 and 5) indicate that, for the whole 

field, pH values ranged from 6.3 to 7.6, slightly higher than optimum, and will potentially pose a risk in 

terms of zinc, manganese, and phosphorus availability to the growing maize crop (Longhurst et al., 2018). 

Soil pH data derived from Veris MSP measurement has been used for mapping previously (Holmes and 

Jiang, 2017) and can be used for future research. 

3. This study did not investigate the impact of shelterbelt trees on yield. Some hedgerow species such as 

pine trees are known to require a large amount of moisture in summer with their more extensive root 

systems, which may compete with the crop nearby. The crop adjacent to the shelterbelt may also 

experience sunlight suppression due to the potential shading effect if the tree canopy has not been 

pruned adequately. At NCRS, sunlight is blocked in the late afternoon. In future research, it would be 

useful to look in detail at how the spatial yield is influenced by the shelterbelt trees. Shading is one of the 

features that can be derived from satellite images as a predictor for yield. 

4. Another factor that might influence spatial yield in the field boundaries is that the soils in the headlands 

may also receive twice the compaction as the centre of the field because heavy farm vehicles (such as 

planters and harvesters) exit, turn around and then re-enter the field in these locations. Generally, fine-

textured soils when wet, with fewer pore spaces, are more susceptible to compaction than coarse-

textured soils, which have more pore spaces. There may be a spatial pattern in the level of compaction 

around the headlands associated with soil texture variations. 

5. Limited years (3 to 7 years) of yield data collected from maize fields in Waikato were used to build yield 

prediction models due to historically poor yield sensor calibration, which may not be sufficient to capture 

temporal variability of yield. Yield monitor data from additional years and rotation crops should be 

analysed to provide further validation to the findings of this research. With more years of yield monitor 

data and crop images uploaded into the system, the yield prediction model for the individual field can 

become more accurate over time. 
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6.4 Recommendations for future research 

Although the implementors of precision farming will be arable farmers, the data analysis tasks are mostly 

undertaken by farm consultants, researchers with specialist skills, and possibly agricultural contractors. 

To make these prediction models more accessible by farmers and consultants, there is a need to develop 

machine learning-based decision-supporting tools specifically for precision farming; For example, the 

trained models in this research can be embedded in a web application such as R “shiny app” with a simple 

and intuitive user interface. After receiving the data from farmers, the R “shiny app” can potentially 

initiate data analyses automatically, such as data filtering, mapping, mining, and the creation of 

management zones and providing crop management input recommendations. With more years of yield 

monitor data and crop images uploaded into the system, the yield prediction model for the individual field 

should be able to self-calibrate and become more accurate over time. The application of ML on precision 

farming data is likely to continue in research in the future. 

This thesis has provided a case study on the analyses of on-site historical yield data. There is also a need 

to keep encouraging farmers to calibrate their yield sensors for developing accurate yield prediction 

models. Once the yield data is fully utilised for optimising crop management inputs, its potential economic 

and environmental value should be recognised by the arable industry worldwide.  
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6.5 Wider implications 

The findings of this research suggest the following opportunities: 

• The ability to improve product quality as well as quantity 

To demonstrate the profitability of precision farming management practices for arable production in New 

Zealand, research may focus on product quality instead of just quantity. For example, in maize-grain 

production, the profitability is almost completely defined by yield. However, for wheat grain, the protein 

content is an important parameter for milling.  The protein content of wheat is often increased with the 

increase of applied N. However, over-application of N may result in too high protein levels, decreased 

yield, increased disease incidence as well as posing an environmental risk. Therefore, there is a need to 

find the optimum for applied N rates that achieve a good balance between the quantity (yield) and quality 

(protein content) of wheat. Having the ability to predict the spatial gross margins of wheat at a subfield 

level will give the advantage of being able to prescribe N-rate before several in-season applications are 

applied, without overuse or the crop having limited supply of N. 

• The ability to reduce environmental impacts on vegetable crop production 

This statistical modelling technique can be applied to optimise inputs used in the production of vegetable 

crops. For example, field crop potatoes generally have shallower rooting than arable crops, a large 

demand for N, and a need for frequent irrigation in many regions. A high amount of fertiliser (up to 230 

kg N/ha) can be used, especially for winter-planted varieties that are grown for table consumption. There 

is considerable potential for nitrate leaching to occur from these crops due to winter rainfall, if excessive 

fertiliser is applied. Excessive N concentrations in the tubers may also decrease tuber dry matter 

percentage (DM%) and density. Therefore, having the ability to predict marketable tuber yield during the 

production phase gives the advantage of being able to optimise crop management inputs spatially and 

reduce the risk of N leaching.  
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The researcher presented a preliminary case study on tuber yield mapping at 7th Asian-Australasian 

Conference on Precision Agriculture in 2017 (Jiang et al., 2017). This thesis encourages further 

investigations into the possibility of predicting spatial tuber yield before the harvest, which could provide 

a yield prediction model customised to New Zealand production. 

  



164 | P a g e  
 

6.6 Concluding remark  

This research aimed to determine if the process of delineating site-specific management zones in maize 

crops could be improved by modelling spatiotemporal interactions between spatial and other 

complementary factors affecting yield. The findings of this research demonstrated the viability of 

predicting spatial yield based on a variety of spatiotemporal predictors (such as soil EC, rainfall) associated 

with individual fields that are cheaply available for crop producers in New Zealand. 

The growing development of sensor technologies continues to make collecting a massive amount of data 

cheaper and easier. The advancement of sensor technologies has improved field sampling efficiencies and 

reduced sampling and analysis costs. Accurate point clouds can be collected and applied to subfield 

measurement and analysis, and medium to high-resolution satellite multispectral imagery is readily 

available for in-season crop monitoring. Spatial information collected from various sources can be 

integrated into precision applications (planting, spraying, fertiliser application) with variable rate 

technologies for varying inputs within-field. The increase of computer processing powers and machine 

learning models provides the possibility to extract knowledge from layers of information. Based on these 

trends, this study extrapolated from the existing sensor technologies and applied machine learning 

predictions that demonstrate the potential to fulfil the philosophy of precision farming and lead to more 

automated and sustainable farming systems in the future. 
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Appendix 1 Example of yield monitor data 
Table A - 1 A subset of the yield monitor data (NCRS 2018) 
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Appendix 2 Customised spatial filtering programme in R 
################################################################################ 
####### Simple program for filtering spatial data points (batch process) ####### 
################################################################################ 
 
#### load packages 
 
library(readr) 
library(sp) 
library(rgdal) 
library(rgeos) 
library(foreach) 
library(doParallel) 
 
######## set directory ########### 
 
wd <- "E:\\user_name\\input_folder" #--- input yield data file folder 
setwd(wd) 
 
boundary_dir = paste0(wd, "/boundary") #---boundary file folder 
 
output_dir = paste0(wd, "/output_data") #--- output data folder 
 
##### read spatial data ##### 
 
# read boundary file 
bound = readOGR(boundary_dir, as.character(gsub(".shp","",list.files(boundary_dir, pattern = "\\.shp$")))) 
proj4string(bound) <- CRS("+init=epsg:4326") 
bound_utm <- spTransform(bound, CRS("+init=epsg:2193")) 
 
# read yield file 
yield_list <- lapply(list.files(wd, pattern = "\\.shp$"), function(shp_list) { 
  layer_name <- as.character(gsub(".shp","",shp_list)) 
  shp_spdf <-readOGR(dsn = wd, stringsAsFactors = FALSE, verbose = TRUE, 
                     useC = TRUE, dropNULLGeometries = TRUE, addCommentsToPolygons = TRUE, 
                     layer = layer_name, require_geomType = NULL, 
                     p4s = NULL, encoding = 'ESRI Shapefile') 
}) 
 
for (i in seq(yield_list)) { 
  proj4string(yield_list[[i]]) <- CRS("+init=epsg:4326") 
  yield_list[[i]] <- spTransform(yield_list[[i]], CRS("+init=epsg:2193")) 
  yield_list[[i]] <- yield_list[[i]][bound_utm,] 
}   
 
##### filter spatial points ##### 
 
#--Global Filter Algorithm--Sudduth et al. 2003 
GlobalFilter <- function(x, na.rm = TRUE, ...) { 
  qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...) 
  H <- 1.5 * IQR(x, na.rm = na.rm) # whisker length 1.5 by default 
  y <- x 
  y[x < (qnt[1] - H)] <- NA 
  y[x > (qnt[2] + H)] <- NA 
  y 
}    
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YieldData1st <- yield_list 
 
for (i in seq(YieldData1st)) { 
   
  YieldData1st[[i]]$yield <- GlobalFilter(YieldData1st[[i]]$`Yld_Mass_D`) 
   
  # Select yield variable `Yld_Mass_D`, otherwise rename the variable as `Yld_Mass_D`! 
   
  YieldData1st[[i]] <- subset(YieldData1st[[i]], !is.na(YieldData1st[[i]]$yield)) 
 
} 
 
#--Local Filter Algorithm--Spekken 2013 
 
YieldData2nd <- YieldData1st 
 
CV <- function(mean, sd) {(sd / mean) * 100} 
distThreshold <- 5 # Distance threshold 
CVThreshold <- 20 # CV threshold 
 
LocalCV <- list() 
Num.CV <- list() 
 
# Parallel processing to reduce processing time 
cores=detectCores() #setup parallel backend to use many processors 
clust_cores <- makeCluster(cores[1]-1) 
registerDoParallel(clust_cores) #To see if the connections are active, use showConnections() 
 
YieldData3rd = foreach(i = seq(YieldData2nd), .combine=list, .multicombine=TRUE) %dopar% { 
  LocalCV[[i]] = sapply(X = 1:length(YieldData2nd[[i]]), 
                        FUN = function(pt) { 
                          d = spDistsN1(YieldData2nd[[i]], YieldData2nd[[i]][pt,]) 
                          ret = CV(mean = mean(YieldData2nd[[i]][d < distThreshold, ]$yield), 
                                   sd = sd(YieldData2nd[[i]][d < distThreshold, ]$yield)) 
                          return(ret) 
                        }) # calculate CV in the local neighbour 
   
  YieldData2nd[[i]]$CV <- LocalCV[[i]] 
  YieldData2nd[[i]] <- subset(YieldData2nd[[i]], !is.na(YieldData2nd[[i]]$CV)) 
   
  Num.CV[[i]] = sapply(X = 1:length(YieldData2nd[[i]]), 
                       FUN = function(pt) { 
                         d = spDistsN1(YieldData2nd[[i]], YieldData2nd[[i]][pt,]) 
                         ret = length(YieldData2nd[[i]][d<distThreshold & YieldData2nd[[i]]$CV>CVThreshold,]$CV) == 
length(YieldData2nd[[i]][d<distThreshold,]$CV) 
                         return(ret) 
                         # If the total number of CVs over 25% equals to the total number of CVs within a search radius then 
return TRUE or 1 
                       } 
  ) 
   
  YieldData2nd[[i]]$NumCV <- Num.CV[[i]]  # Add num CV as attribute data 
  YieldData2nd[[i]] <- subset(YieldData2nd[[i]], YieldData2nd[[i]]$NumCV == FALSE) # subset the filtered data 
} 
 
stopCluster(clust_cores) 
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##### Save & extract processed data ######## 
 
for (i in seq(YieldData3rd)) { 
   
  YieldData3rd[[i]] <- spTransform(YieldData3rd[[i]], CRS("+init=epsg:4326")) # reproject into wgs84 
   
  # writeOGR(YieldData3rd[[i]], output_dir, as.character(gsub(".shp","", list.files(wd, pattern = "\\.shp$")[i])), 
driver="ESRI Shapefile") 
 
    # save the processed files to the folder using writeOGR function 
 
    for (i in seq(YieldData3rd)) 
 
      assign(as.character(gsub(".shp","", list.files(wd, pattern = "\\.shp$")[i])), YieldData3rd[[i]]) 
  # Extract each element in list into its own object 
  } 
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Appendix 3 Locations of filtered data points 

 

(a)  2014 un-filtered yield data 

 

(b) 2014 inliers identified 

(c) 2015 un-filtered yield data (d) 2015 inliers identified 



191 | P a g e  
 

 

(e) 2017 un-filtered yield data 

 

(f) 2017 inliers identified 

 

(g) 2018 un-filtered yield data 

 

(h) 2018 inliers identified 

Figure A -  1 Unfiltered yield monitor data (a, c, e, g) and the locations of the yield measurement errors 
(b, d, f, h) identified by the filtering programme 
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Appendix 4 Soil test results for fertiliser recommendation (2018) 
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Appendix 5 Soil test results for fertiliser recommendation (2019) 
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Appendix 6 R script for delineating zones 
 
#### load packages 
library(readr) 
library(sp) 
library(raster) 
library(knitr) 
library(rgdal) 
library(rgeos) 
library(foreach) 
library(doParallel) 
library(tidyverse) 
library(automap) 
 
 
#### set functions 
# batch load shape file 
#### set directory 
wd <- "~/Documents/test.data/ncrs_back" 
setwd(wd) 
 
boundary_dir = paste0(wd, "/boundary") 
 
soil_dir = paste0(wd, "/soilec") 
 
elevation_dir = paste0(wd, "/planting") 
 
rs_dir = paste0(wd, "/rs_data/mz_") 
 
 
#### load data 
# boundary 
bound = readOGR(boundary_dir, as.character(gsub(".shp","",list.files(boundary_dir, pattern = "\\.shp$")))) 
proj4string(bound) <- CRS("+init=epsg:4326") 
bound_utm <- spTransform(bound, CRS("+init=epsg:2193")) 
 
# soilEC 
soilEC = readOGR(soil_dir, as.character(gsub(".shp","",list.files(soil_dir, pattern = "\\.shp$")))) 
proj4string(soilEC) <- CRS("+init=epsg:4326") 
soilEC_utm <- spTransform(soilEC, CRS("+init=epsg:2193")) 
soilEC_utm <- soilEC_utm[bound_utm,] 
 
# elevation 
elevation = readOGR(elevation_dir, as.character(gsub(".shp","",list.files(elevation_dir, pattern = "\\.shp$")[2]))) 
proj4string(elevation) <- CRS("+init=epsg:4326") 
elevation_utm <- spTransform(elevation, CRS("+init=epsg:2193")) 
elevation_utm <- elevation_utm[bound_utm,] 
 
# remote sensing 
rs <- lapply(list.files(rs_dir, pattern = ".tif$", full.names = TRUE), stack) 
rs_utm <- lapply(rs, function(a){projectRaster(a, crs = CRS("+init=epsg:2193"))}) 
 
 
masked = list() 
band_names = c('B','G','R','NIR') 
for (i in seq(rs_utm)) { 
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  masked[[i]] <- mask(x = rs_utm[[i]], mask = bound_utm) 
   
  for(j in 1:4){ 
    names(masked[[i]])[j] = paste0(names(masked[[i]])[j], band_names[j]) 
  } 
} 
 
 
##### yield ##### 
yield_list <- lapply(list.files(wd, pattern = "\\.shp$"), function(shp_list) { 
  layer_name <- as.character(gsub(".shp","",shp_list)) 
  shp_spdf <-readOGR(dsn = wd, stringsAsFactors = FALSE, verbose = TRUE, 
                     useC = TRUE, dropNULLGeometries = TRUE, addCommentsToPolygons = TRUE, 
                     layer = layer_name, require_geomType = NULL, 
                     p4s = NULL, encoding = 'ESRI Shapefile') 
}) 
 
for (i in seq(yield_list)) { 
  proj4string(yield_list[[i]]) <- CRS("+init=epsg:4326") 
  yield_list[[i]] <- spTransform(yield_list[[i]], CRS("+init=epsg:2193")) 
  yield_list[[i]] <- yield_list[[i]][bound_utm,] 
}   
 
#--Global Filter Algorithm--Sudduth et al. 2003 
GlobalFilter <- function(x, na.rm = TRUE, ...) { 
  qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...) 
  H <- 1.5 * IQR(x, na.rm = na.rm) # whisker length 1.5 by default 
  y <- x 
  y[x < (qnt[1] - H)] <- NA 
  y[x > (qnt[2] + H)] <- NA 
  y 
}    
 
YieldData1st <- yield_list 
 
for (i in seq(YieldData1st)) { 
  YieldData1st[[i]]$yield <- GlobalFilter(YieldData1st[[i]]$`Yld_Mass_D`) 
  # Select yield variable `Yld_Mass_D`, otherwise rename the variable as `Yld_Mass_D`! 
  YieldData1st[[i]] <- subset(YieldData1st[[i]], !is.na(YieldData1st[[i]]$yield)) 
} # Only iterate once 
 
#--Local Filter Algorithm--Spekken 2013 (p.s. parallel processing will be used to reduce time usage) 
 
YieldData2nd <- YieldData1st 
 
CV <- function(mean, sd) {(sd / mean) * 100} 
distThreshold <- 5 # Distance threshold 
CVThreshold <- 20 # CV threshold 
 
LocalCV <- list() 
Num.CV <- list() 
 
# Parallel processing 
cores=detectCores() #setup parallel backend to use many processors 
clust_cores <- makeCluster(cores[1]-1) #not to overload your computer 
registerDoParallel(clust_cores) #To see if the connections are active, use showConnections() 
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YieldData3rd = foreach(i = seq(YieldData2nd), .combine=list, .multicombine=TRUE) %dopar% { 
  LocalCV[[i]] = sapply(X = 1:length(YieldData2nd[[i]]), 
                        FUN = function(pt) { 
                          d = spDistsN1(YieldData2nd[[i]], YieldData2nd[[i]][pt,]) 
                          ret = CV(mean = mean(YieldData2nd[[i]][d < distThreshold, ]$yield), 
                                   sd = sd(YieldData2nd[[i]][d < distThreshold, ]$yield)) 
                          return(ret) 
                        }) # calculate CV in the local neighbour 
   
  YieldData2nd[[i]]$CV <- LocalCV[[i]] 
  YieldData2nd[[i]] <- subset(YieldData2nd[[i]], !is.na(YieldData2nd[[i]]$CV)) 
   
  Num.CV[[i]] = sapply(X = 1:length(YieldData2nd[[i]]), 
                       FUN = function(pt) { 
                         d = spDistsN1(YieldData2nd[[i]], YieldData2nd[[i]][pt,]) 
                         ret = length(YieldData2nd[[i]][d<distThreshold & YieldData2nd[[i]]$CV>CVThreshold,]$CV) == 
length(YieldData2nd[[i]][d<distThreshold,]$CV) 
                         # If the total number of CVs over 25% equals to the total number of CVs within a search radius 
                         return(ret) 
                         # then return TRUE or 1 
                       } 
  ) 
   
  YieldData2nd[[i]]$NumCV <- Num.CV[[i]] 
  # Add num CV as attribute data 
  YieldData2nd[[i]] <- subset(YieldData2nd[[i]], YieldData2nd[[i]]$NumCV == FALSE) 
  # subset the filtered data 
} 
 
stopCluster(clust_cores) 
 
############################### 
# Interpolation using Kriging # 
############################### 
 
# create a regular grid of 6 m 
grd = spsample(bound_utm, type = "regular", cellsize = 6) 
 
# yield mapping 
YieldPts <- YieldData3rd 
 
krige_result <- list() 
YieldMap <- list() 
 
for (i in seq(YieldPts)) { 
  krige_result[[i]] <- autoKrige(yield~1, YieldPts[[i]], grd, maxdist= 20) 
  # interpolate yield points into maps using point kriging with maximum search distance of 20m 
  YieldMap[[i]] <- krige_result[[i]]$krige_output 
  YieldMap[[i]]$yield_norm <- YieldMap[[i]]$var1.pred/mean(YieldMap[[i]]$var1.pred, na.rm =T) 
  # normalise yield: dividing each pixel value by the mean 
  gridded(YieldMap[[i]]) = T 
} 
 
 
# ---- historical yield trend ---- 
 
JustYield <- list() 
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for (i in seq(YieldMap)) { 
  JustYield[[i]] <- YieldMap[[i]]$yield_norm 
} 
 
JustYield.df <- data.frame(t(matrix(unlist(JustYield), nrow=length(JustYield), byrow=T))) 
# convert list to data frame 
 
JustCoords <- data.frame(YieldMap[[1]]@coords) 
 
Yield_Average <- rowMeans(JustYield.df,na.rm = T) # average yield 
Yield_Std <- apply(JustYield.df,1, sd, na.rm = T) # standard deviation of yield 
Yield_CV <- Yield_Std/Yield_Average*100 # coefficient of variation of yield 
 
YieldTrend <- cbind(Yield_Average, Yield_CV, JustCoords) 
# put them back as data frame 
 
coordinates(YieldTrend) <- c('x1', 'x2') 
# convert to spatial point data frame 
 
YieldTrend$spatial_variability[YieldTrend$Yield_Average > 1] <- 'HY' 
YieldTrend$spatial_variability[YieldTrend$Yield_Average < 1] <- 'LY' 
 
 
gridded(YieldTrend) <- T 
yield_zones <- raster(YieldTrend["spatial_variability"]) 
# writeRaster(yield_zones,'arithmetic_yield.tif',options=c('TFW=YES'), overwrite=TRUE) 
 
##### soil/elevation attribute mapping ##### 
 
elevation_map <- autoKrige(Elvtn__~1, elevation_utm, grd, maxdist= 20) 
elevationMap <- elevation_map$krige_output 
 
 
soilom_map <- autoKrige(Soil_OM___~1, soilEC_utm, grd, maxdist= 20) 
soilomMap <- soilom_map$krige_output 
 
soilec_shallow_map <- autoKrige(EC_Shallow ~1, soilEC_utm, grd, maxdist= 20) 
soilec_shallowMap <- soilec_shallow_map$krige_output 
 
soilec_deep_map <- autoKrige(EC_Deep_dS~1, soilEC_utm, grd, maxdist= 20) 
soilec_deepMap <- soilec_deep_map$krige_output 
 
soil_df = data.frame(soilECdeep = soilec_deepMap$var1.pred, soilECshallow = soilec_shallowMap$var1.pred) 
 
soil_PCs <- prcomp(soil_df, center = T, scale = T) # PCA 
 
soil_clusters_output = cmeans(soil_PCs$x[,1:2], 2, iter.max = 10000, dist = "euclidean", method = "cmeans", m = 2) 
 
grd$soil_clusters = soil_clusters_output$cluster 
gridded(grd) <- T 
soil_zones <- raster(grd["soil_clusters"]) 
# writeRaster(soil_zones,'soil_zone.tif', options=c('TFW=YES'), overwrite=TRUE) 
 
plot(soil_zones, col = c("grey70", "grey30"), legend = FALSE, main = "Soil zones") 
 
##### multispectral reflectance analysis ##### 
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.rs.unloadPackage("tidyr") # package conflict to tidyr, which also has extract function   
 
ref = list() 
for (i in seq(masked)) { 
  ref[[i]] = data.frame(extract(masked[[i]], grd)) 
} 
 
reflect = na.omit(cbind(grd@coords, do.call(data.frame, ref))) 
 
reflect_PCs = prcomp(reflect[,3:ncol(reflect)], center = T, scale = T) # PCA 
reflect_clusters_output = cmeans(reflect_PCs$x[,1:2], 2, iter.max = 10000, dist = "euclidean", method = "cmeans", 
m = 2) 
 
reflect$reflect_clusters = reflect_clusters_output$cluster 
coordinates(reflect) = c('x1','x2') 
 
gridded(reflect) <- T 
reflect_zones <- raster(reflect["reflect_clusters"]) 
# writeRaster(reflect_zones,'reflect_zone.tif', options=c('TFW=YES'), overwrite=TRUE) 
 
##### Multiple-year yield analysis ##### 
 
soil = list() 
yd = list() 
refl = list() 
for (i in seq(YieldData3rd)) { 
   
  soil[[i]] = data.frame(extract(soil_zones, YieldData3rd[[i]])) 
  yd[[i]] = data.frame(extract(yield_zones, YieldData3rd[[i]])) 
  refl[[i]] = data.frame(extract(reflect_zones, YieldData3rd[[i]])) 
   
  } 
 
 
NCRS = cbind(NCRS, soilMZs_code = unlist(soil), yieldMZs_code = unlist(yd), reflectMZs_code = unlist(refl), 
             soilMZs = NA, yieldMZs = NA, reflectMZs = NA) 
 
if(mean(NCRS[which(NCRS$soilMZs_code==1),]$yield, na.rm =T) > 
mean(NCRS[which(NCRS$soilMZs_code==2),]$yield, na.rm =T)){ 
  NCRS[which(NCRS$soilMZs_code==1),]$soilMZs = 'HY' 
  NCRS[which(NCRS$soilMZs_code==2),]$soilMZs = 'LY' 
} else { 
  NCRS[which(NCRS$soilMZs_code==1),]$soilMZs = 'LY' 
  NCRS[which(NCRS$soilMZs_code==2),]$soilMZs = 'HY' 
} 
 
if(mean(NCRS[which(NCRS$yieldMZs_code==1),]$yield, na.rm =T) > 
mean(NCRS[which(NCRS$yieldMZs_code==2),]$yield, na.rm =T)){ 
  NCRS[which(NCRS$yieldMZs_code==1),]$yieldMZs = 'HY' 
  NCRS[which(NCRS$yieldMZs_code==2),]$yieldMZs = 'LY' 
} else { 
  NCRS[which(NCRS$yieldMZs_code==1),]$yieldMZs = 'LY' 
  NCRS[which(NCRS$yieldMZs_code==2),]$yieldMZs = 'HY' 
} 
 
if(mean(NCRS[which(NCRS$reflectMZs_code==1),]$yield, na.rm =T) > 
mean(NCRS[which(NCRS$reflectMZs_code==2),]$yield, na.rm =T)){ 
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  NCRS[which(NCRS$reflectMZs_code==1),]$reflectMZs = 'HY' 
  NCRS[which(NCRS$reflectMZs_code==2),]$reflectMZs = 'LY' 
} else { 
  NCRS[which(NCRS$reflectMZs_code==1),]$reflectMZs = 'LY' 
  NCRS[which(NCRS$reflectMZs_code==2),]$reflectMZs = 'HY' 
} 
 
NCRS$soilMZs = factor(NCRS$soilMZs) 
NCRS$yieldMZs = factor(NCRS$yieldMZs) 
NCRS$reflectMZs = factor(NCRS$reflectMZs) 
 
grd$yield_clusters = extract(yield_zones, grd) 
grd$reflect_clusters = extract(reflect_zones, grd) 
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Appendix 7 R script for combining data 
 
#### load packages 
library(readr) 
library(sp) 
library(raster) 
library(knitr) 
library(rgdal) 
library(rgeos) 
library(foreach) 
library(doParallel) 
library(tidyverse) 
library(automap) 
 
#### set functions 
# batch load shape file 
 
# extract spatial pt info within nearest neighbor 
extract_sppt_id <- function(set1, set2){ 
  set1sp <- SpatialPoints(set1) 
  set2sp <- SpatialPoints(set2) 
  apply(gDistance(set2sp, set1sp, byid=T), 1, which.min) 
} 
 
#### set directory 
wd <- "~/Documents/test.data/ncrs_back" 
setwd(wd) 
 
boundary_dir = paste0(wd, "/boundary/boundary_hdland_excl") 
 
soil_dir = paste0(wd, "/soilec") 
 
elevation_dir = paste0(wd, "/planting") 
 
weather_dir = paste0(wd, "/weather") 
 
 
#### load data 
# boundary 
bound = readOGR(boundary_dir, as.character(gsub(".shp","",list.files(boundary_dir, pattern = "\\.shp$")))) 
proj4string(bound) <- CRS("+init=epsg:4326") 
bound_utm <- spTransform(bound, CRS("+init=epsg:2193")) 
 
# soil 
soilEC = readOGR(soil_dir, as.character(gsub(".shp","",list.files(soil_dir, pattern = "\\.shp$")))) 
proj4string(soilEC) <- CRS("+init=epsg:4326") 
soilEC_utm <- spTransform(soilEC, CRS("+init=epsg:2193")) 
 
soilEC_utm <- soilEC_utm[bound_utm,] 
 
# elevation 
elevation = readOGR(elevation_dir, as.character(gsub(".shp","",list.files(elevation_dir, pattern = "\\.shp$")[2]))) 
proj4string(elevation) <- CRS("+init=epsg:4326") 
elevation_utm <- spTransform(elevation, CRS("+init=epsg:2193")) 
elevation_utm <- elevation_utm[bound_utm,] 
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# weather 
weather = read_csv(paste0(weather_dir, "/weather20130901onward")) 
 
 weather$`Tmax(C)` = as.numeric(weather$`Tmax(C)`) 
 weather$`Tmin(C)` = as.numeric(weather$`Tmin(C)`) 
 weather$GDD = (weather$`Tmin(C)` + weather$`Tmax(C)`)/2 -8 
 weather$GDD[weather$GDD < 0] = 0 
 
weather_df = data.frame(weather[c("Day(Local_Date)","Rain(mm)","GDD", "Rad(MJ/m2)")] ) 
 
 
weather_df$Rain.mm. = as.numeric(weather_df$Rain.mm.) 
weather_df$Rad.MJ.m2. = as.numeric(weather_df$Rad.MJ.m2.) 
weather_df$Day.Local_Date. = as.Date(weather_df$Day.Local_Date., format = "%Y%m%d:0000") 
 
##### remote sensing 
 rs <- lapply(list.files(rs_dir, pattern = ".tif$", full.names = TRUE), stack) 
 rs_utm <- lapply(rs, function(a){projectRaster(a, crs = CRS("+init=epsg:2193"))}) 
 
 savi = list() 
 masked = list() 
 for (i in seq(rs_utm)) { 
  savi[[i]] = 1.5*(rs_utm[[i]][[4]]-rs_utm[[i]][[3]])/(rs_utm[[i]][[4]]+rs_utm[[i]][[3]]+0.5) 
  masked[[i]] <- mask(x = savi[[i]], mask = bound_utm) 
 } 
 
# yield 
 
yield_list <- lapply(list.files(wd, pattern = "\\.shp$"), function(shp_list) { 
  layer_name <- as.character(gsub(".shp","",shp_list)) 
  shp_spdf <-readOGR(dsn = wd, stringsAsFactors = FALSE, verbose = TRUE, 
                     useC = TRUE, dropNULLGeometries = TRUE, addCommentsToPolygons = TRUE, 
                     layer = layer_name, require_geomType = NULL, 
                     p4s = NULL, encoding = 'ESRI Shapefile') 
}) 
 
for (i in seq(yield_list)) { 
  proj4string(yield_list[[i]]) <- CRS("+init=epsg:4326") 
  yield_list[[i]] <- spTransform(yield_list[[i]], CRS("+init=epsg:2193")) 
  yield_list[[i]] <- yield_list[[i]][bound_utm,] 
}   
 
#--Global Filter Algorithm--Sudduth et al. 2003 
GlobalFilter <- function(x, na.rm = TRUE, ...) { 
  qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...) 
  H <- 1.5 * IQR(x, na.rm = na.rm) # whisker length 1.5 by default 
  y <- x 
  y[x < (qnt[1] - H)] <- NA 
  y[x > (qnt[2] + H)] <- NA 
  y 
}    
 
YieldData1st <- yield_list 
 
for (i in seq(YieldData1st)) { 
  YieldData1st[[i]]$yield <- GlobalFilter(YieldData1st[[i]]$`Yld_Mass_D`) 
  # Select yield variable `Yld_Mass_D`, otherwise rename the variable as `Yld_Mass_D`! 
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  YieldData1st[[i]] <- subset(YieldData1st[[i]], !is.na(YieldData1st[[i]]$yield)) 
} # Only iterate once 
 
#--Local Filter Algorithm--Spekken 2013 (p.s. parallel processing will be used to reduce time usage) 
 
YieldData2nd <- YieldData1st 
 
CV <- function(mean, sd) {(sd / mean) * 100} 
distThreshold <- 5 # Distance threshold 
CVThreshold <- 20 # CV threshold 
 
LocalCV <- list() 
Num.CV <- list() 
 
# Parallel processing 
cores=detectCores() #setup parallel backend to use many processors 
clust_cores <- makeCluster(cores[1]-1) #not to overload your computer 
registerDoParallel(clust_cores) #To see if the connections are active, use showConnections() 
 
YieldData3rd = foreach(i = seq(YieldData2nd), .combine=list, .multicombine=TRUE) %dopar% { 
  LocalCV[[i]] = sapply(X = 1:length(YieldData2nd[[i]]), 
                        FUN = function(pt) { 
                          d = spDistsN1(YieldData2nd[[i]], YieldData2nd[[i]][pt,]) 
                          ret = CV(mean = mean(YieldData2nd[[i]][d < distThreshold, ]$yield), 
                                   sd = sd(YieldData2nd[[i]][d < distThreshold, ]$yield)) 
                          return(ret) 
                        }) # calculate CV in the local neighbour 
   
  YieldData2nd[[i]]$CV <- LocalCV[[i]] 
  YieldData2nd[[i]] <- subset(YieldData2nd[[i]], !is.na(YieldData2nd[[i]]$CV)) 
   
  Num.CV[[i]] = sapply(X = 1:length(YieldData2nd[[i]]), 
                       FUN = function(pt) { 
                         d = spDistsN1(YieldData2nd[[i]], YieldData2nd[[i]][pt,]) 
                         ret = length(YieldData2nd[[i]][d<distThreshold & YieldData2nd[[i]]$CV>CVThreshold,]$CV) == 
length(YieldData2nd[[i]][d<distThreshold,]$CV) 
                         # If the total number of CVs over 25% equals to the total number of CVs within a search radius 
                         return(ret) 
                         # then return TRUE or 1 
                       } 
  ) 
   
  YieldData2nd[[i]]$NumCV <- Num.CV[[i]] 
  # Add num CV as attribute data 
  YieldData2nd[[i]] <- subset(YieldData2nd[[i]], YieldData2nd[[i]]$NumCV == FALSE) 
  # subset the filtered data 
} 
 
stopCluster(clust_cores) 
 
 
############################### 
# Interpolation using Kriging # 
############################### 
 
# create a regular grid of 6 m 
grd = spsample(bound_utm, type = "regular", cellsize = 24) 
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# yield mapping 
YieldPts <- YieldData3rd 
 
krige_result <- list() 
YieldMap <- list() 
 
for (i in seq(YieldPts)) { 
  krige_result[[i]] <- autoKrige(yield~1, YieldPts[[i]], grd, maxdist= 50) 
  # interpolate yield points into maps using point kriging with maximum search distance of 20m 
  YieldMap[[i]] <- krige_result[[i]]$krige_output 
  YieldMap[[i]]$yield_norm <- YieldMap[[i]]$var1.pred/mean(YieldMap[[i]]$var1.pred, na.rm =T) 
  # normalise yield: dividing each pixel value by the mean 
  gridded(YieldMap[[i]]) = T 
} 
 
##### soil/elevation attribute mapping 
elevation_map <- autoKrige(Elvtn__~1, elevation_utm, grd, maxdist= 50) 
soilom_map <- autoKrige(Soil_OM___~1, soilEC_utm, grd, maxdist= 50) 
soilec_shallow_map <- autoKrige(EC_Shallow ~1, soilEC_utm, grd, maxdist= 50) 
soilec_deep_map <- autoKrige(EC_Deep_dS~1, soilEC_utm, grd, maxdist= 50) 
 
elevationMap <- elevation_map$krige_output 
soilomMap <- soilom_map$krige_output 
soilec_shallowMap <- soilec_shallow_map$krige_output 
soilec_deepMap <- soilec_deep_map$krige_output 
 
#### join soil/elevation to yield 
 
df = list() 
for (i in seq(YieldData3rd)) { 
   
  YieldMap[[i]]$soilec_shallow = soilec_shallowMap$var1.pred 
  YieldMap[[i]]$soilec_deep = soilec_deepMap$var1.pred 
  YieldMap[[i]]$elevation = elevationMap$var1.pred 
  YieldMap[[i]]$soilom = soilomMap$var1.pred 
 
   
  df[[i]] =  data.frame(year = gsub(".shp","",list.files(wd, pattern = "\\.shp$"))[i], 
                         
                        YieldMap[[i]]@coords, 
                        yield = YieldMap[[i]]$var1.pred, 
                        soilec_shallow = YieldMap[[i]]$soilec_shallow, 
                        soilec_deep = YieldMap[[i]]$soilec_deep, 
                        elevation = YieldMap[[i]]$elevation, 
                        soilom = YieldMap[[i]]$soilom 
 
                        ) 
   
  assign(as.character(gsub(".shp","", list.files(wd, pattern = "\\.shp$")[i])), df[[i]]) 
  } 
 
#### join weather 
# seperate dates for yield datasets 
 
season2014_planting_date = '2013-10-08' 
season2014_harvest_date = '2014-05-12' 
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season2014 = weather_df[(which(weather_df$Day.Local_Date.== season2014_planting_date)-
7):which(weather_df$Day.Local_Date.== season2014_harvest_date),] 
season2014 = 
  season2014 %>% 
  group_by(week = cut(Day.Local_Date., "7 days")) %>% 
  summarise(rain=sum(Rain.mm., na.rm = T), rad=sum(Rad.MJ.m2., na.rm = T), GDD= sum(GDD, na.rm = T)) 
for (i in seq(NROW(season2014))) {season2014$day[i] = as.integer(difftime(season2014$week[i], 
season2014$week[1]))-7} 
 
season2015_planting_date = '2014-10-10' 
season2015_harvest_date = '2015-05-18' 
season2015 = weather_df[(which(weather_df$Day.Local_Date.== season2015_planting_date)-
7):which(weather_df$Day.Local_Date.== season2015_harvest_date),] 
season2015 = 
  season2015 %>% 
  group_by(week = cut(Day.Local_Date., "7 days")) %>% 
  summarise(rain=sum(Rain.mm., na.rm = T), rad=sum(Rad.MJ.m2., na.rm = T), GDD= sum(GDD, na.rm = T)) 
for (i in seq(NROW(season2015))) {season2015$day[i] = as.integer(difftime(season2015$week[i], 
season2015$week[1]))-7} 
 
season2017_planting_date = '2016-10-17' 
season2017_harvest_date = '2017-05-23' 
season2017 = weather_df[(which(weather_df$Day.Local_Date.== season2017_planting_date)-
7):which(weather_df$Day.Local_Date.== season2017_harvest_date),] 
season2017 = 
  season2017 %>% 
  group_by(week = cut(Day.Local_Date., "7 days")) %>% 
  summarise(rain=sum(Rain.mm., na.rm = T), rad=sum(Rad.MJ.m2., na.rm = T), GDD= sum(GDD, na.rm = T)) 
for (i in seq(NROW(season2017))) {season2017$day[i] = as.integer(difftime(season2017$week[i], 
season2017$week[1]))-7} 
 
season2018_planting_date = '2017-10-18' 
season2018_harvest_date = '2018-05-14' 
season2018 = weather_df[(which(weather_df$Day.Local_Date.== season2018_planting_date)-
7):which(weather_df$Day.Local_Date.== season2018_harvest_date),] 
season2018 = season2018 %>% 
  group_by(week = cut(Day.Local_Date., "7 days")) %>% 
  summarise(rain=sum(Rain.mm., na.rm = T), rad=sum(Rad.MJ.m2., na.rm = T), GDD= sum(GDD, na.rm = T)) 
for (i in seq(NROW(season2018))) {season2018$day[i] = as.integer(difftime(season2018$week[i], 
season2018$week[1]))-7} 
 
 
# "Rain" 
ncrs2014df_join = cbind(ncrsgrain2014, setNames(as.list(season2014$rain), paste0("Rain", season2014$day))) 
ncrs2015df_join = cbind(ncrsgrain2015, setNames(as.list(season2015$rain), paste0("Rain", season2015$day))) 
ncrs2017df_join = cbind(ncrsgrain2017, setNames(as.list(season2017$rain), paste0("Rain", season2017$day))) 
ncrs2018df_join = cbind(ncrsgrain2018, setNames(as.list(season2018$rain), paste0("Rain", season2018$day))) 
 
# "radiation" 
ncrs2014df_join = cbind(ncrs2014df_join, setNames(as.list(season2014$rad), paste0("rad", season2014$day))) 
ncrs2015df_join = cbind(ncrs2015df_join, setNames(as.list(season2015$rad), paste0("rad", season2015$day))) 
ncrs2017df_join = cbind(ncrs2017df_join, setNames(as.list(season2017$rad), paste0("rad", season2017$day))) 
ncrs2018df_join = cbind(ncrs2018df_join, setNames(as.list(season2018$rad), paste0("rad", season2018$day))) 
 
# "GDD" 
ncrs2014df_join = cbind(ncrs2014df_join, setNames(as.list(season2014$GDD), paste0("GDD", season2014$day))) 
ncrs2015df_join = cbind(ncrs2015df_join, setNames(as.list(season2015$GDD), paste0("GDD", season2015$day))) 
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ncrs2017df_join = cbind(ncrs2017df_join, setNames(as.list(season2017$GDD), paste0("GDD", season2017$day))) 
ncrs2018df_join = cbind(ncrs2018df_join, setNames(as.list(season2018$GDD), paste0("GDD", season2018$day))) 
 
NCRS = bind_rows(ncrs2014df_join, ncrs2015df_join, ncrs2017df_join, ncrs2018df_join) 
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Appendix 8 R script for model evaluation 
 
#### load packages 
library(readr) 
library(sp) 
library(raster) 
library(knitr) 
library(rgdal) 
library(rgeos) 
library(foreach) 
library(doParallel) 
library(tidyverse) 
library(caret) 
 
 
#### set directory 
wd <- "~/Documents/test.data/join_data" 
setwd(wd) 
 
#### Data mining 
NCRS_weekly <- read.csv("~/Documents/test.data/join_data/pooled.csv") 
NCRS = na.omit(NCRS_weekly[, -which(colnames(NCRS_weekly) %in% c('X'))]) 
NCRS = na.omit(NCRS[, which(colnames(NCRS) %in% 
c("year","x1","x2","yield","soilec_shallow","soilec_deep","elevation","soilom", 
                                                  "Rain.7","Rain0","Rain7","Rain14","Rain21","Rain28","Rain35", 
                                                  "rad.7","rad0","rad7","rad14","rad21","rad28","rad35", 
                                                  "GDD.7","GDD0","GDD7","GDD14","GDD21","GDD28","GDD35"))]) 
 
# Parallel processing 
cores=detectCores() 
clust_cores <- makeCluster(cores[1]-1) 
registerDoParallel(clust_cores) 
 
# multicolinearity 
 corMatrix = cor(NCRS[,-c(1:4)], method = 'pearson') 
 highlyCor = findCorrelation(corMatrix,cutoff = 0.8) 
 cor_rm = cbind(NCRS[,-c(1:4)][,-highlyCor], yield=NCRS[,4]) 
 
 fit_control <- trainControl(method = "repeatedcv", number = 10, repeats = 1) 
  
set.seed(29) 
idx_train <- sample(1:nrow(cor_rm), size = nrow(cor_rm)*0.75) 
 
training <- cor_rm[ idx_train, ] 
testing  <- cor_rm[ -idx_train, ] 
 
fit_lm =  train(yield ~., data = training, method  = 'lm', trControl = fit_control) 
summary(fit_lm) 
 
 
pred <- predict(fit_lm, testing) 
error = postResample(pred = pred, obs = testing$yield) 
 
 
############################# 
###### neural network ####### 
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############################# 
 
set.seed(29) 
 
start_time <- Sys.time() # measure running time 
fit_nn <- train( 
   
  x = training[,-NCOL(training)], 
  y = training$yield/25, 
   
  method = "nnet", trControl = fit_control,   
  tuneGrid = expand.grid(size = 1:5, decay = c(0.1, 0.2, 0.3)), 
  linout = TRUE, maxit = 500) 
 
end_time <- Sys.time() # measure running time 
time_nn = end_time - start_time # 2.374481 hours 
 
fit_nn 
plot(fit_nn) 
 
pred_nn <- predict(fit_nn, testing) 
error_nn = postResample(pred = pred_nn*25, obs = testing$yield) 
 
 
##################### 
###### rpart2 ####### 
##################### 
 
cor_rm2 = cbind(NCRS[,-c(1:4)], yield=NCRS[,4]) 
 
training2 <- cor_rm2[ idx_train, ] 
testing2  <- cor_rm2[ -idx_train, ] 
 
fit_ctr <- train( 
   
  x = training2[,-NCOL(training2)], 
  y = training2$yield, 
   
  method = "rpart2", 
  trControl = fit_control, 
  tuneGrid = expand.grid(maxdepth=1:20) 
) 
 
fit_ctr 
plot(fit_ctr) 
 
pred_ctr <- predict(fit_ctr, testing2) 
error_ctr = postResample(pred = pred_ctr, obs = testing2$yield) 
 
##################### 
####### Cubist ###### 
##################### 
 
set.seed(29) 
 
start_time <- Sys.time() # measure running time 
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fit_cubist <- train( 
   
  x = training2[,-NCOL(training2)], 
  y = training2$yield, 
   
  method = "cubist", 
  tuneGrid = expand.grid(committees = c(1, 5, 10, 20), neighbors = c(0, 5, 9)), 
  trControl = fit_control 
) 
 
end_time <- Sys.time() # measure running time 
time_cu = end_time - start_time # 3.948066 mins 
 
fit_cubist 
plot(fit_cubist) 
varImp(fit_cubist) 
 
pred_cubist <- predict(fit_cubist, testing2) 
error_cubist = postResample(pred = pred_cubist, obs = testing2$yield) 
 
 
############################ 
####### Random forest ###### 
############################ 
 
set.seed(29) 
 
start_time <- Sys.time() # measure running time 
 
fit_rf <- train( 
   
  x = training2[,-NCOL(training2)], 
  y = training2$yield, 
   
  method = "rf", 
  trControl = fit_control, 
  importance = TRUE 
) 
 
end_time <- Sys.time() # measure running time 
time_rf = end_time - start_time # 
 
fit_rf 
plot(fit_rf) 
varImp(fit_rf) 
 
pred_rf <- predict(fit_rf, testing2) 
error_rf = postResample(pred = pred_rf, obs = testing2$yield) 
 
 
###### Hold out one site/year analysis (hooya) for Random Forest 
 
hooya_rf = cbind(year = NCRS[,1], cor_rm2) 
 
hooya_training5 = list() 
hooya_testing5 = list() 
hooya_fit_rf = list() 
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hooya_pred_rf = list() 
hooya_error_rf = list() 
 
names_sites = c("ncrsgrain2014", "ncrsgrain2015", "ncrsgrain2017", "ncrsgrain2018", 
                "bell2014_F2", "bell2015_F2" ,  "bell2016_F2",  "bell2017_F2" ,"bell2018_F2", 
                "bell2014" ,  "bell2015",  "bell2016", "bell2017", "bell2018",       
                "kaipograin2005", "kaipograin2007", "kaipograin2009", "kaipograin2010", "kaipograin2013", 
"kaipograin2015", "kaipograin2017_non_trial" ,        
                "stanley2008", "stanley2009", "stanley2010") 
 
start_time <- Sys.time() # measure running time 
for (i in seq(nlevels(hooya_rf[,1]))) { 
   
  hooya_testing5[[i]]  = subset(hooya_rf, year == names_sites[i]) 
  hooya_training5[[i]] = subset(hooya_rf, year != names_sites[i]) 
   
  set.seed(29) 
   
  hooya_fit_rf[[i]] <- train( 
     
    x = hooya_training5[[i]][, -c(1,ncol(hooya_training5[[i]]))], 
    y = hooya_training5[[i]]$yield, 
     
    method = "rf", 
    trControl = fit_control 
  ) 
   
  hooya_pred_rf[[i]] <- predict(hooya_fit_rf[[i]], hooya_testing5[[i]]) 
  hooya_error_rf[[i]] = postResample(pred = hooya_pred_rf[[i]], obs = hooya_testing5[[i]]$yield) 
} 
 
end_time <- Sys.time() # measure running time 
time_rf2 = end_time - start_time # 9.698936 mins 
 
 
 
###################### 
####### xgboost ###### 
###################### 
 
set.seed(29) 
 
start_time <- Sys.time() # measure running time 
 
fit_xg <- train( 
   
  x = training2[,-NCOL(training2)], 
  y = training2$yield, 
   
  method = "xgbTree", 
  trControl = fit_control 
) 
 
end_time <- Sys.time() # measure running time 
time_xg = end_time - start_time # 
 
fit_xg 
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plot(fit_xg) 
 
 
pred_xg <- predict(fit_xg, testing2) 
error_xg = postResample(pred = pred_xg, obs = testing2$yield) 
 
 
###### Hold out one year analysis (hooya) for xgboost 
 
hooya_xg = cbind(year = NCRS[,1], cor_rm2) 
 
hooya_training6 = list() 
hooya_testing6 = list() 
hooya_fit_xg = list() 
hooya_pred_xg = list() 
hooya_error_xg = list() 
 
start_time <- Sys.time() # measure running time 
for (i in seq(nlevels(hooya_xg[,1]))) { 
   
  hooya_testing6[[i]]  = subset(hooya_xg, year == names_sites[i]) 
  hooya_training6[[i]] = subset(hooya_xg, year != names_sites[i]) 
   
  set.seed(29) 
   
  hooya_fit_xg[[i]] <- train( 
     
    x = hooya_training6[[i]][, -c(1,ncol(hooya_training6[[i]]))], 
    y = hooya_training6[[i]]$yield, 
     
    method = "xgbTree", 
    trControl = fit_control 
  ) 
   
  hooya_pred_xg[[i]] <- predict(hooya_fit_xg[[i]], hooya_testing6[[i]]) 
  hooya_error_xg[[i]] = postResample(pred = hooya_pred_xg[[i]], obs = hooya_testing6[[i]]$yield) 
} 
 
end_time <- Sys.time() # measure running time 
time_xg2 = end_time - start_time # 6.155648 hours 
 
 
stopCluster(clust_cores) # close connection 
 
 

 


