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Abstract

In this thesis we study electrical activity in smooth muscle cells in the absence of exter-

nal stimulation. The main goal is to analyse a reaction-diffusion system that models the

dynamical behaviour where adjacent cells are coupled through passive electrical coupling.

We first analyse the dynamics of an isolated muscle cell for which the model consists of

three first-order ordinary differential equations. The cell is either excitable, nonexcitable, or

oscillatory depending on the model parameters. To understand this we reduce the model

to two equations, nondimensionalise, then perform a detailed numerical bifurcation analy-

sis of the nondimensionalised model. One parameter bifurcation diagrams reveal that even

though there is no external stimulus the cell can exhibit two fundamentally distinct types of

excitability. By computing two-parameter bifurcation diagrams we are able to explain how

the cell transitions between the two types of excitability as parameters are varied.

We then study the full reaction-diffusion system first through numerical integration. We show

that the system is capable of exhibiting a wide variety of spatiotemporal behaviours such

as travelling pulses, travelling fronts, and spatiotemporal chaos. Through a linear stability

analysis we are able to show that the spatiotemporal patterns are not due to diffusion-

driven instability as is often the case for reaction-diffusion systems. It is as a consequence

of the nonlinear dynamics of the reaction terms and coupling effect of diffusion. The precise

mechanism is not yet well understood, this will be subject of future work. We then examine

travelling wave solutions in detail. In particular we show how they relate to homoclinic and

heteroclinic solutions in travelling wave coordinates. Finally we review spectral stability

analysis for travelling waves and compute the essential spectrum of travelling waves in our

system.

vi



List of Figures

1.1 (a) Spot patterns on the Amur leopard, Panthera pardus orientalis. Repro-

duced from (Warby, 2015) (b) Wind ripples in sand dunes. Reproduced from

(BLMCalifornia, 2012) (c) Pigmentation patterns on seashell, oliva porphyria.

Reprinted by permission from Springer Nature from (Meinhardt, 2003) . . . 2

1.2 Examples of Turing patterns: (A) Spot pattern. (B) Stripe pattern. (C)

Hole pattern. (D-F) The Turing patterns shown in 3D form corresponding to

patterns A-C. Reproduced from (Xu et al., 2017). . . . . . . . . . . . . . . . 3

1.3 A crosssectional view of an arterial wall showing the three layers: the intima,

SMCs and endothelial cells (ECs), where p is the pressure normal to the vessel

wall and τ is the shear stress. Reprinted by permission from Springer Nature

from (Hahn and Schwartz, 2009). . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Classification of ion channels. Reproduced from (Ratan, 2018). . . . . . . . . 6

1.5 A schematic representation of an action potential . . . . . . . . . . . . . . . 7

1.6 The equivalent circuit representation of a cell membrane with n ion channels. 8

1.7 Phase planes showing the dynamics of the fast activation variable V and the

slow variable N before, at, and after the saddle-node on an invariant circle

(SNIC) bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Phase planes showing the dynamics of the fast activation variable V and the

slow variable N before, at, and after the Hopf bifurcation. . . . . . . . . . . 13

vii



1.9 (a) The snapshot of the α-profile for (I) travelling front; (II) travelling pulse;

(III) chaotic response (b) Space-time plot of the reactant α for four different

parameter values. Reproduced from (Merkin et al., 1996) with permission

from the Royal Society of Chemistry. . . . . . . . . . . . . . . . . . . . . . . 17

1.10 (a) Snapshots of the membrane potentials of gap junction-coupled 80×80 class

I∗ neurons for different values of the gap junction strength (b) Space-time plot

of membrane potentials of 20 neurons of class I∗ with the two neighbors by

gap junctions. The vertical and horizontal directions indicate respectively the

neuron position, and the time. Reprinted from (Fujii and Tsuda, 2004) with

permission from Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.11 The switching sequences of spatiotemporal patterns in layers I and II. Both

layers are initially in the STC state. Panel (a) and (b) differ by randomly

initial conditions. Reprinted with permission from (Hartle and Wackerbauer,

2017). Copyright (2020) by the American Physical Society. . . . . . . . . . . 21

1.12 Spatiotemporal dynamics for bidirectional synaptic coupling between in layers

I and II. Example for (a) a swapping event; (b) reinitiation of STC; and

(c) a fast switching sequence. Reprinted with permission from (Hartle and

Wackerbauer, 2017). Copyright (2020) by the American Physical Society . . 21

2.1 Equivalent circuit representation of cell membrane with three ionic channels. 26

2.2 Schematic representation of a smooth muscle cell coupled electrically to adja-

cent cells through gap junctions. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The plots of n∞ against Cai for three different values of the membrane poten-

tial v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



2.4 Time series of (2.1.1)–(2.1.8) for the (a) membrane potential, (b) fraction of

opening K+ channels, (c) potassium and calcium currents and (d) free cyto-

plasmic calcium concentration with initial conditions, (v, n,Cai) = (−50mV, 0, 0nM),

and parameter values in Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Time series of the membrane potential v when the three conductances are

blocked. The parameters used are those of Table 2.2 except (a) the leak

channel is blocked (gL = 0); (b) the Ca2+ channel is blocked (gCa = 0); (c)

the K+ channel is blocked (gK = 0). . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Time series of the membrane potential v for (a) v1 = −35mV; (b) v1 =

−25mV; (c) v1 = −19mV. Other parameters as in Table. 2.1. . . . . . . . . . 34

2.7 Time series of the membrane potential v for (a) v6 = −35mV; (b) v6 =

−25mV; (c) v6 = −2mV. Other parameters as in Table. 2.1. . . . . . . . . . 34

2.8 A plot of v3(mV) against time for solutions to (2.1.1)–(2.1.8) with the param-

eters of Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Time series of the membrane potential v for v1 (a) v1 = −35mV; (b) v1 =

−25mV; (c) v1 = −19mV. Other parameters as in Table. 2.2. . . . . . . . . . 37

2.10 Time series of the membrane potential v for (a) v3 = −31mV; (b) v3 =

−21mV; (c) v3 = 2mV. Other parameters as in Table. 2.2. . . . . . . . . . . 37

2.11 Time series of the membrane potential V for nondimensionalised model (2.2.6)–

(2.2.7) with the parameters values in Table 2.2. . . . . . . . . . . . . . . . . 41

2.12 Time evolution of the membrane potential V for (a) v̄1 = −0.4375; (b) v̄1 =

−0.3125; (c) v̄1 = −0.2375. Other parameters as in Table. 2.2. . . . . . . . . 41



2.13 Time evolution of the membrane potential V for (a) v̄3 = −0.3875; (b) v̄3 =

−0.2625; (c) v̄3 = 0.025. Other parameters as in Table. 2.2. . . . . . . . . . . 42

2.14 (a) The (V,N) phase plane for the nondimensionalised model (2.2.6)–(2.2.7)

with parameters as in Table. 2.2. The blue curve is a stable periodic orbit.

The magenta and orange curves are the nullclines for V and n. The black

curves are the solution trajectories. The red circle is unstable equilibrium. . 45

2.15 The (V,N) phase plane for the nondimensionalised model (2.2.6)–(2.2.7) with

(a) v̄1 = −0.4375; (b) v̄1 = −0.3125; (c) v̄1 = −0.25; The blue and red curve

is a stable periodic orbit. The magenta and orange curves are the nullclines

for V and N . The black curves are the solution trajectories. The blue and

red circles are stable and unstable equilibria. The red and green curves in (c)

are the stable and unstable manifolds of the saddle point. Other parameters

as in Table. 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.16 The (V,N) phase plane for the nondimensionalised model (2.2.6)–(2.2.7) with

(a) v̄3 = −0.3875; (b) v̄3 = −0.2625 ; (c) v̄3 = 0.025; The blue curve is a

stable periodic orbit. The magenta and orange curves are the nullclines for

V and N . The black curves are the solution trajectories. The blue and red

circles are stable and unstable equilibria. Other parameters as in Table. 2.2. 48



3.1 Bifurcation diagrams of (a) the full model (2.1.1)–(2.1.8) with v1 as the bi-

furcation parameter, (b) the reduced model (2.2.1)–(2.2.2) with v1 as the

bifurcation parameter and (c) the nondimensionalised model (2.2.6)–(2.2.7)

with v̄1 as the bifurcation parameter. The remaining parameter values are

given in Tables 2.1 and 2.2. Panel (d) shows the period of the oscillations

in Fig. 3.1c for the nondimensionalised model. Black [magenta] curves corre-

spond to equilibria [limit cycles]. Solid [dashed] curves correspond to stable

[unstable] solutions. HB: Hopf bifurcation; SN: saddle-node bifurcation (of an

equilibrium); SNC: saddle-node bifurcation of a limit cycle; SNIC: saddle-node

on an invariant circle bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 (a) A bifurcation diagram of the nondimensionlised model (2.2.6)–(2.2.7) with

v̄3 as the bifurcation parameter and other parameter values as given in Table

2.2. (b) A plot of the periodic oscillations as a function of parameter v̄3. The

labels and other conventions are as in Fig. 3.1. . . . . . . . . . . . . . . . . . 60

3.3 A bifurcation diagram of the nondimensionalised model (2.2.6)–(2.2.7) with

(a) ψ; (b) v̄L as the bifurcation parameter, and other parameter values as

given in Table 2.2. The labels and other conventions are as in Fig. 3.1. . . . 61

3.4 A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–

(2.2.7) in the (v̄1, v̄3)-plane for the parameter values of Table 2.2. The values

of v̄3 in l1, l2, l3, l4, l5 and l6 are 0.45, 0.25, −0.047, −0.088, −0.26 and −0.32,

respectively. The black curves are the loci of codimension-one bifurcations

labelled as follows: HB: Hopf bifurcation, SN: saddle-node bifurcation (or

SNIC), HC: homoclinic bifurcation, and SNC: saddle-node bifucation of limit

cycle. The labels for the codimension-two bifurcations are explained in Table

3.2. The invariant sets that exist in each region are listed in Table 3.3. . . . 63



3.5 (a) An enlargement of Fig. 3.4 showing lines l1 and l2. The filled diamond

is a Bogdanov-Takens bifurcation. (b) A one-parameter bifurcation diagram

along l1 with v̄3 = 0.45. (c) A one-parameter bifurcation diagram along l2

with v̄3 = 0.25. HB: Hopf bifurcation, SN: saddle-node bifurcation, SNC:

saddle-node bifurcation of a limit cycle, HC: homoclinic bifurcation. . . . . . 66

3.6 (a) An enlargement of Fig. 3.4 showing lines l3 and l4. The filled circle is a

non-central saddle-node homoclinic bifurcation. (b) A one-parameter bifur-

cation diagram along l3 with v̄3 = −0.047. (c) A one-parameter bifurcation

diagram along l4 with v̄3 = −0.088. HB: Hopf bifurcation, SN: saddle-node

bifurcation, SNC: saddle-node bifurcation of a limit cycle, SNIC: saddle-node

on an invariant circle bifurcation, HC: homoclinic bifurcation. . . . . . . . . 68

3.7 A phase portrait of the nondimensionalised model (2.2.6)–(2.2.7) on line l3

at v̄3 = −0.047 showing tristability. The blue and red curves are stable and

unstable limit cycles. The magenta and orange curves are the nullclines for

N and V . The black curves are the solution trajectories. The blue and red

circles are stable and unstable equilibria. . . . . . . . . . . . . . . . . . . . . 69

3.8 (a) An enlargement of Fig. 3.4 showing lines l5 and l6 (b) An enlargement of

panel (a). (c) A one-parameter bifurcation diagram along l5 with v̄3 = −0.26.

(d) An enlargement of panel (c). HB: Hopf bifurcation, SN: saddle-node

bifurcation, SNC: saddle-node bifurcation of a limit cycle. . . . . . . . . . . . 70

3.9 A one-parameter bifurcation diagram along l6 with v̄3 = −0.32 (shown in

Figs. 3.4 and 3.8a). HB: Hopf bifurcation. . . . . . . . . . . . . . . . . . . . 71



3.10 A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–

(2.2.7) in the (v̄1, v̄L)-plane. Other parameter values as in Table 2.2; (b) and

(c) are enlargements of Fig. 3.10a. The labels and conventions are as in

Fig. 3.4, Table 3.2 and Table 3.3. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.11 Further bifurcation diagrams of (2.2.6)–(2.2.7). The values of the remaining

parameters as in Table 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12 A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–
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1. Introduction

In this work we discuss spatiotemporal pattern formation in electrically coupled smooth mus-

cle cells under the influence of changes in transmural pressure, that is, the pressure gradient

across the vessel wall. In this chapter, we briefly review pattern formation mechanisms and

summarise how the spatial patterns observed in nature are reproduced in experiments and

mathematical models.

In Sec. 1.2 we give overview of excitable cells, in particular the smooth muscle cell, and

discuss relevant electrophysiological processes including excitability and an action potential.

Then in Sec. 1.3 we review conductance based models, and provide some classical models.

Coupling of adjacent cells in excitable media via reaction-diffusion system adjacent cells is

discussed in Sec. 1.4. In Sec. 1.5 we review existing reaction-diffusion models with similar

unusual patterns observed in our numerical simulations. Finally the thesis outline is provided

in Sec. 1.6.

1.1 Pattern Formation

Pattern formation is a developmental process through which complex structures and shapes

form in nature. Examples of the resulting spatial patterns include complex patterning of

animal coats (Murray, 2003), wind ripples in sand dunes (Chaplain et al., 1999), and geo-

metric designs on seashells (Meinhardt, 2003), see Fig. 1.1. Several experiments have been

performed to reproduce these patterns and mathematical models have been used to numer-

ically replicate patterning processes. The main type of mathematical model used to gen-

erate spatial patterns is a reaction-diffusion system. The framework for pattern formation

theory originates with Alan Turing’s seminal paper “The Chemical Basis of Morphogene-

sis” (Turing, 1952). In his research, he applied a reaction-diffusion system to explain how

1
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diffusion-driven instability in chemical reactions under certain conditions result in nonho-

mogeneous spatial patterns now known as Turing patterns. Although Turing’s work was

initially criticised, some years later De Kepper’s group in France experimentally confirmed

his hypothesis (De Kepper et al., 1991). They observed Turing-type spatial patterns in the

chemical oscillatory reaction known as the Belousov-Zhabotinsky reaction.

(a) (b) (c)

Figure 1.1: (a) Spot patterns on the Amur leopard, Panthera pardus orientalis. Reproduced
from (Warby, 2015) (b) Wind ripples in sand dunes. Reproduced from (BLMCalifornia,
2012) (c) Pigmentation patterns on seashell, oliva porphyria. Reprinted by permission from
Springer Nature from (Meinhardt, 2003)

Subsequently, pattern formation has received great interest and Turing patterns have been

observed in many interdisciplinary studies. In ecology, the popular Lotka-Volterra model for

two interacting species exhibits both Turing and non-Turing patterns when a diffusion term

is incorporated in the model (Banerjee and Banerjee, 2012; Shi and Ruan, 2015; Liu et al.,

2020). In epidemiology, spatial patterns have been observed in diffusive epidemic models

designed to investigate the spread and control of infectious diseases (Jia et al., 2018; Chang

et al., 2020). Various spatiotemporal patterns have been observed in cellular dynamics due

to electrophysiological processes in cells and tissues (Izhikevich, 2007; Keener and Sneyd,

2009). Also, spatial patterns have been generated in a variety of physical and mechanical

systems (Paul et al., 2003; Perez-Londoño et al., 2010). Turing patterns include stripes,

hexagons, spirals, spots, spheres, see Fig. 1.2.
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Figure 1.2: Examples of Turing patterns: (A) Spot pattern. (B) Stripe pattern. (C) Hole
pattern. (D-F) The Turing patterns shown in 3D form corresponding to patterns A-C.
Reproduced from (Xu et al., 2017).
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1.2 Excitability and Action Potentials

Cellular dynamics refer to the behavior of cells in living organisms. The cells are classified as

excitable (examples include neurons, muscle, and some endocrine cells) or non-excitable (such

as fibroblasts and adipocytes). The interactions among these cells result in different cellular

and biological processes such as cell organisation (Murray, 2003), secretion of hormones and

T-cell activation (Keener and Sneyd, 2009), muscle contraction (Shaikh et al., 2011), and

cell signalling (Izhikevich, 2007). Excitable cells have the ability to be electrically excited

when subject to a stimulus. During the course of this research, we explored the dynamical

behaviour of excitable cells, in particular smooth muscle cells.

Smooth muscle cells (SMCs) are widely spread across various organs and tubes in the body.

For example, they are found in arteries, blood vessels, veins, and urinary tracts. An artery

is a functional unit in cardiovascular system which helps to regulate blood flow. Its wall

consists of three main layers: the intima (outer layer), SMCs (middle layer), and endothelial

cells (inner layer). Fig. 1.3 is a cross-sectional view of an arterial wall showing the three

layers.

Figure 1.3: A crosssectional view of an arterial wall showing the three layers: the intima,
SMCs and endothelial cells (ECs), where p is the pressure normal to the vessel wall and τ is
the shear stress. Reprinted by permission from Springer Nature from (Hahn and Schwartz,
2009).
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Moreover, just like the other cell types (neurons, endocrine, and skeletal cells) the SMC,

when stimulated by an external stimulus, can generate a large electrical signal and contracts

in response. The tendency of a cell to respond to a stimulus in this way is referred to

as excitability. A detailed understanding of excitability requires knowledge of the relevant

electrophysiological processes, and these have been widely studied in neuroscience, and other

related disciplines (Sneyd et al., 1995; Koenigsberger et al., 2004; Ermentrout and Terman,

2008; Shaikh et al., 2011; McCobb and Zeeman, 2016).

The cell membrane of a SMC separates solutions of different ions from its internal and

external environments. These include calcium ions (Ca2+), potassium ions (K+), sodium

ions (Na+), chloride ions (Cl-), and organic anions (OA-). These ions flow in and out of the

cell membrane through membrane proteins known as ion channels. Ion channels come in a

variety of different forms. The most common types of ion channel in the cell membrane are

the gated and leak channels. Most of the gated ion channels are highly selective, so they

allow only specific types of ion to pass through, while the leak channels are non-selective. For

example, the sodium channels are only permeable to Na+. The gated channels are classified

into three sub-types: ligand-gated channels, voltage-gated channels, and mechanically-gated

channels, see Fig. 1.4.

All gated channels change from an open state to a closed state, and vice-versa, in response to

stimuli. The ligand-gated channels open or close in response to the binding of a ligand, which

is a chemical messenger such as a neurotransmitter. The activation of the voltage-gated ion

channels is regulated by changes in the voltage across the membrane. The mechanically-

gated channels are activated in response to mechanical stimuli or pressure.

The concentrations of K+ and OA- inside the cell are higher than on the outside. In con-

trast, the concentrations of Ca2+ and Cl- are higher on the outside than on the inside. The

difference in the concentrations between the outside and inside of the cell results in a con-

centration gradient which determines the resting membrane potential of the cell membrane
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Figure 1.4: Classification of ion channels. Reproduced from (Ratan, 2018).

(McCobb and Zeeman, 2016). The passage of ions through the voltage-gated ion channels

leads changes in the membrane potential. A positive feedback effect from voltage-gated chan-

nels can lead to a spike in voltage known as an action potential. During this process, the

membrane potential is rapidly depolarised, then repolarised as the ion permeabilities change

with the opening and closing of ion channels. When the membrane is highly permeable to

Ca2+, there is influx of Ca2+ and the membrane potential becomes more positive than it is

at the resting potential, hence the membrane is depolarised. When the membrane is highly

permeable to K+, there is efflux of K+ which leads to the repolarisation of the cell. At some

point, the membrane potential becomes more negative than it is at the resting potential and

the membrane is hyperpolarised such that it will not respond to any stimuli until when it

is back to the resting potential. The period of hyperpolarisation is known as the refractory

period. Fig. 1.5 shows different phases of an action potential during excitability.

During the electrophysiological process, another cellular event that may occur is the prop-

agation of the action potential along the vessel wall. The propagation of action potential

plays a vital role in cell to cell communication between SMCs. The excitation of a particular

SMC may trigger action potentials in neighbouring SMCs as a result of spatial propaga-

tion of action potential. In this research, we will be considering electrical coupling among
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Figure 1.5: A plot of an action potential. It shows different stages in the production of an
action potential.

SMCs through gap junctions, the intercellular channels that allow passage of ions between

connected cells. To understand the dynamics of the action potential and its properties in

excitable cells the activity of the cell membrane can be interpreted as an electrical circuit.

The set-up of the cell membrane as an electric circuit and its mathematical description is

discussed in the next section.

1.3 Conductance-Based Models

The electrophysiological activities in the cell membrane of an excitable cell are often described

as an electric circuit. This representation is called the conductance-based model. The cell

membrane acts as an electrical insulator with resistance and capacitance, thus it is modelled

as a capacitor in parallel with a number of resistors. The equivalent circuit representation

of cell membrane with n types of ionic channels is shown in Fig. 1.6.

The dynamics of the conductance-based model is governed by Kirchhoff’s law. This says that

the total current, flowing across the cell membrane is the sum of the membrane capacitive
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Figure 1.6: The equivalent circuit representation of cell membrane with n ion channels. gi
and Vi are the i-th maximal conductance and reversal potential of ionic channels, where
i = 1, 2, ..., n. Cm is the cell membrane capacitance. gLeak and VLeak are the maximal
conductance and reversal potential for the leak channel

current and all the ionic currents, defined as:

Iapp = C
dV

dt
+ I(V, Pj), (1.3.1)

where Iapp is the total membrane current, C is the membrane capacitance, V is the membrane

potential, Pj is the j-th gating variable (i.e. the fraction of open j-th ion channels) and

I(V, Pj) =
∑
i

giQi(V − Vi), (1.3.2)

where gi is the maximal conductances for the i-th ionic currents, Vi is the reversal potentials

ion i, the voltage at which there is no net flow of a particular ion from the internal and

external part of the cell membrane. When there is no external applied current, Iapp = 0,

and that is the case we are interested in . Finally, Qi, the proportion of open i-th channels

is defined to be:

Qi = ma
i h

b
i , (1.3.3)

where mi is the probability that activation gate is in open state (sometimes denoted by n

for K+), hi is the probability that inactivation gate is in open state, a is the number of
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activation gates and b is the number of inactivation gates per channels (Izhikevich, 2007).

The activation and inactivation gates control the electrical conductance of ion channels. For

the leak currents, Q = 1 since the leak channels are independent of voltage. The equation

for the gating variables is of the form:

dPj
dt

= ω(V )
(
P̃j(V )− Pj

)
, (1.3.4)

where ω(V ) is a rate constant, P̃j(V ) is an activation function that corresponds to the

fraction of j-th ion channels that are open at steady state.

Many mathematical models have been developed to describe the behaviour of SMCs and

other excitable cells. The pioneering Hodgkin-Huxley model, developed by A. L. Hodgkin

and A. F. Huxley (1952), concerned electrical impulses along a squid giant axon. This

model consists of two voltage-dependent channels, Na+ and K+ and the leak channels which

are voltage independent. Consequently the model consists of four first-order differential

equations with the current equation defined as:

Iapp = C
dV

dt
+ gKn

4(V − VK) + gNam
3h(V − VNa) + gL(V − VL), (1.3.5)

while the equations for the gating variables are similar to (1.3.4). Comparing (1.3.5) to

(1.3.3), the Hodgkin-Huxley model has a K+ channel with four K+ activation gates, and

a Na+ channel with three activation and one inactivation Na+ gates. Their investigation

showed that the squid giant axon responds to electrical stimuli by generating an action

potential due to changes in membrane potential with respect to alteration of ions through

the ionic channels.

The Hodgkin-Huxley model laid the foundation for other biological neuron models. FitzHugh

and Nagumo developed a two dimensional model which is a simplified prototype of Hodgkin-

Huxley model (Fitzhugh, 1961; Nagumo et al., 1962). Another variant of Hodgkin-Huxley
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model is the Morris-Lecar model which was developed to model the excitability of a barnacle

giant muscle fiber (Morris and Lecar, 1981). The model has two voltage-dependent channel

types like the squid giant axon, but in this case, they are Ca2+ and K+ channels, neither of

which inactivates. Thus, for the Morris-Lecar model, the current equation is given as:

Iapp = C
dV

dt
+ gKn(V − VK) + gNam(V − VCa) + gL(V − VL), (1.3.6)

this model has two gating variables, one each for the Ca2+ and K+ channels respectively, and

the gating variables equations are similar to (1.3.4). Other well known models include the

Connor-Stevens model (Connor and Stevens, 1971), the Wang-Buzsaki model (Wang and

Buzsáki, 1996).

In any of these models, if there are no additional current sources like the electrode injected

curent, that is Iapp = 0, then excitability is absent. But it has been shown that some excitable

cells sometimes can spontaneously become excitable and elicit self-sustained (periodic) os-

cillations. Such dynamics are referred to as pacemaker dynamics (González-Miranda, 2014).

The spontaneous excitability of such systems is the motivation for this research. Specifi-

cally, we will explore pacemaker dynamics in a prototype of the Morris-Lecar model with no

induced current.

Excitability plays important role in understanding electrophysiological activity in excitable

cells. It is associated with mode of transitions from excitable state to periodic oscillations.

Hodgkin (1948) classified excitability into type I and II on the onset of oscillations. He

described the differences based on the frequency-current relationship, for type I the frequency

curve is continuous and discontinuous for type II. Mathematically, Rinzel and Ermentrout

(1999) used bifurcation theory to distinguish between the types of excitability. They showed

that periodic oscillation in type I excitability arises via a saddle-node on invariant circle

(SNIC) bifurcation, and in the type II excitability the periodic oscillation arises via a Hopf
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bifurcation. It has been established in many studies that the Morris-Lecar model (1981)

exhibits both types excitability depending on how the physiological parameters are varied

(references).

The Morris-Lecar model consists of two variables, a fast activation variable V and a slower

variable N . The dynamical behaviour of the model is explained through the interaction of

the two variables, this can be visualised by plotting V against N in the phase space. The

intersection of the V - and N -nullclines corresponds to the equilibrium point, that is, the

point in the phase space where V and N are constant.

In type I excitability, the V - and N -nullclines intersect at three points, corresponding to the

three equilibria of the system, one stable denoted by A (sink), and two unstable denoted by

B (saddle point) and C (source), respectively. Stimulation moves the V-nullcline up, thus

pushing the equilibria A and B closer to one another. Increasing the stimulation, the two

equilibria A and B collide and disappear at a saddle-node bifurcation, and an infinite period

limit cycle appears. These dynamics are shown in Fig. 1.7.

In type II excitability, the V - and N -nullclines intersect at one point, corresponding to a

unique equilibrium. This equilibrium is a spiral sink (i.e stable). Stimulation moves the

V -nullcline upward, thus the equilibrium loses stability and appears a small amplitude limit

cycle through a Hopf bifurcation. Further increasing the stimulation causes the amplitude

of oscillation to grow. These dynamical behaviours are shown in Fig. 1.8

1.4 Wave Propagation in Excitable Media

Signals generated by cell excitation can propagate spatially through the cell population. This

gives rise to what is known mathematically as a travelling wave. Intercellular communication

between neighbouring cells is important in a vast number of physiological processes, for
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Figure 1.7: Phase planes showing the dynamics of the fast activation variable V and the slow
variable N before, at, and after the saddle-node on an invariant circle (SNIC) bifurcation.
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Figure 1.8: Phase planes showing the dynamics of the fast activation variable V and the
slow variable N before, at, and after the Hopf bifurcation.
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example propagation of signals through the vessel wall of SMCs causes vasomotion, the

contraction and relaxation of the blood vessel wall, which regulates blood flow across the

cell population.

The process of communication between neighbouring cells of an excitable medium via lo-

cal coupling is diffusion-like, hence this nonlinear dynamical behaviour can be represented

mathematically in the form of a reaction-diffusion system. Reaction-diffusion systems are

parabolic partial differential equations (PDEs) consisting of diffusion and reaction terms.

They are of the form:

∂U

∂t
= D∇2U + g(U), (1.4.1)

where U(x, t) describes the state of the system, D is the matrix of diffusivities, ∇2 is the

Laplace operator, and g(U), captures the reaction kinetics.

Reaction-diffusion systems have been widely used as a framework for understanding pattern

formation theory in many areas of research, for example: in chemistry, the Schnakenberg

model (Schnakenberg, 1979); in ecology, the Holling-Tanner model (Banerjee and Banerjee,

2012); and the Fitzhugh-Nagumo model (Fitzhugh, 1961), among others. Examples of wave

propagation observed in spatially excitable media are travelling fronts and pulses (in one-

dimension), spiral waves (in two-dimensions) and scroll waves (in three-dimensions). Our

interest is to study wave dynamics in an excitable reaction-diffusion system of pacemaker

SMCs through electrical coupling, so we will briefly review some previous studies on wave

propagation in spatially excitable media in next section.
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1.5 Examples of Spatiotemporal Patterns in Excitable

Media

Spatiotemporal patterns often arise in models of excitable media under the influence of small

perturbations to a homogeneous steady state. The transition from a homogeneous steady

state to a spatial patterns is an example of an instability or bifurcation. Stationary and

complex patterns have been observed in many models of excitable media.

In this section we briefly review some results of spatiotemporal patterns in reaction-diffusion

systems of excitable media. Our numerical results produce unusual spatial patterns, and

so we surveyed the literature to find other examples that look like these. Here we focus on

models that have spatiotemporal patterns similar to our results. Another interesting point is

that they come from quite a wide array of disciplines. While different models involve vastly

different reaction kinetics, the basic spatiotemporal behaviour observed through theoretical

and numerical analysis is often similar. In particular we discuss the existence of irregular

patterns in chemical systems and transitions between travelling pulses and spatiotemporal

chaos in synaptically coupled neurons.

1.5.1 Wave-induced Chaos in an Autocatalytic Chemical System

The spatiotemporal patterns in a model for a continuous-flow unstirred reactor (CFUR) was

examined by Merkin et al. (1996) through coupling of chemical reactions with molecular

diffusion. The model is a representation of chemical feedback between two chemical species

defined as reactant A and autocatalyst B. They assumed that the overall reactions can be

described by cubic autocatalysis such that the model equations for the evolution of the



Section 1.5. Examples of Spatiotemporal Patterns in Excitable Media Page 16

concentrations within the reactor in dimensionless form are given by

∂α

∂τ
= δ∇2α + 1− α− µαβ2, (1.5.1a)

∂β

∂τ
= ∇2β + β0 − φβ + µαβ2, (1.5.1b)

where α and β are concentrations of the reactant A and autocatalyst B, δ is the ratio of

diffusion coefficients, and µ, β0 and φ are constants. In one spatial dimension, ∇2 = ∂2

∂x2
.

Equations (1.5.1a)–(1.5.1b) are subjected to zero-flux boundary conditions

∂α

∂x
=
∂β

∂x
= 0; at x = 0 and x = x0, (1.5.2)

and initial conditions

α(x, τ = 0) = 1; for all x, (1.5.3a)

β(x, τ = 0) = 0; for σ < x < x0

β(x, τ = 0) = g0(x); for 0 < x < σ, (1.5.3b)

with typically, g0 = 1 for 0 < x < σ.

Numerical simulations of system (1.5.1a)–(1.5.1b) in one spatial dimension produce different

spatiotemporal behaviours including propagating fronts and pulses, and irregular spatiotem-

poral patterns. A front solution is observed whenever the value of µ is greater than a

certain saddle-node bifurcation and, connects the stable steady state (α0
ss, β

0
ss) = (1, 0) to

another steady state (α+
ss, β

+
ss). A pulse solution connects (α0

ss, β
0
ss) to itself. Examples of

these are shown in Fig. 1.9a. Merkin and Sadiq (1996) explored in detail the properties of

the travelling fronts and pulses over a wider parameter range. For values of µ beyond a Hopf

bifurcation, (α+
ss, β

+
ss) is unstable. In this case a propagating front from (α0

ss, β
0
ss) to (α+

ss, β
+
ss)

is observed but the system returns back towards the stable state (α0
ss, β

0
ss) in some region
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(a)
(b)

Figure 1.9: (a) The snapshot of the α-profile for (I) travelling front; (II) travelling pulse; (III)
chaotic response (b) Space-time plot of the reactant α for four different parameter values.
Reproduced from (Merkin et al., 1996) with permission from the Royal Society of Chemistry.

and this initiates further reaction-diffusion fronts propagating back to (α0
ss, β

0
ss). Repetition

of this process at different regions in the domain can be interpreted as the cause for irregular

spatiotemporal patterns in the system. Fig. 1.9a III shows a snapshot of such behaviour.

Fig. 1.9b shows the long term behaviour of the reactant α for four different parameter values.

The white and red regions correspond to high and low concentrations of α, respectively. The

white regions are values close to the (α0
ss, β

0
ss) state. For Fig. 1.9b I, III and IV, the system

is far from the Hopf bifurcation so the steady state (α+
ss, β

+
ss) has a strong repulsive effect.

This causes the system to evolve back rapidly to the vicinity of (α0
ss, β

0
ss). In Fig. 1.9b II,

the system is close to the Hopf bifurcation so (α+
ss, β

+
ss) has a weak repulsive effect. Here,

the system stays longer in the vicinity of this state before making an excursion towards

(α0
ss, β

0
ss), that is, it goes to (α0

ss, β
0
ss) much less frequently. Merkin et al. (1996) showed

that the complex dynamics observed in the system satisfied some criteria for chaos. This

included loss of spatial correlation and sensitivity to initial conditions and for this reason

the complex structures in Fig. 1.9b are characterised as spatiotemporal chaos. However,
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the mechanism for generating complex spatiotemporal structures in this system does not

depend on equal diffusivity of chemical species compared to previous studies of systems

analogous to (1.5.1a)–(1.5.1b) where unequal diffusivity of chemical species is required for

the complex spatiotempoaral structures to be observed (Pearson, 1993; Petrov and Showalter,

1994; Reynolds et al., 1994).

1.5.2 Chaotic Itinerancy in Type I Neurons

The emergence of spatiotemporal chaos in a network of neurons diffusively coupled by gap-

junctions was reported in (Fujii and Tsuda, 2004). The collective behaviour of interneurons

in the neocortex was modelled using a Morris-Lecar formulation to study cortical activity.

The focus of this study was on the population of Type I neurons in which the action potential

is produced through a saddle-node bifurcation. It is further claimed that Type I neurons,

when coupled by gap junctions, exhibit extensive spatiotemporal chaos in some parameter

regions. The neurons when isolated exhibit regular firings, hence the emergence of chaotic

behaviour is due to coupling.

Numerical results of membrane potential of 80 × 80 coupled neurons for different values of

the gap junction conductance gGJ is shown in Fig. 1.10a. The results shown are parameter

regions close to the saddle-node bifurcation. Fig. 1.10b is a contour map of time series of

the membrane potential. It shows creations and annihilations of chaotic waves that result

from successive phase shifts in the activity of neighbouring neurons. Here a wave with a

short time lag is considered to be synchronised, so transitions between synchronised and

desynchronised states is chaotic in both space and time.
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(a)
(b)

Figure 1.10: (a) Snapshots of the membrane potentials of gap junction-coupled 80× 80 class
I∗ neurons for different values of the gap junction strength (b) Space-time plot of membrane
potentials of 20 neurons of class I∗ with the two neighbors by gap junctions. The vertical
and horizontal directions indicate respectively the neuron position, and the time. Reprinted
from (Fujii and Tsuda, 2004) with permission from Elsevier.

1.5.3 Spatiotemporal Chaos in Synaptically Coupled Neurons

Hartle and Wackerbauer (2017) observed transitions from spatiotemporal chaos to travelling

pulse solutions in numerical simulations of two synaptically coupled layers of neurons mod-

elled using the Morris-Lecar equations. Each layer represents a ring network of N -diffusively

coupled neurons such that each neuron in a layer is connected synaptically to every neuron

in the other layer. The state of the i-th neuron (i = 1, · · · , N) in layer k (k = I, II) is given

by the membrane potential, V k
i , and the fraction of open potassium channels, nki . These are

governed by the differential equations

dV k
i

dt
=

1

Cm

(I − I ion,k
i − Isyn,k

i ) +D∆k
i ,

dnki
dt

= τ ki (nss,k
i − nki ),

(1.5.4)

where Cm is the membrane capacitance, I is the applied current, I ion
i is the ionic current, and

Isyn
i is the synaptic current (per unit area). The electrical coupling between neighbouring

neurons is modelled with the diffusion operator, ∆k
i = V k

i−1 − 2V k
i + V k

i+1, and D is the

diffusive coupling strength. Also τ determines the time constant for opening/closing of

potassium channels and nss
i is the fraction of open potassium channels at steady state. The
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synaptic current for neuron i in network k is given by

Isyn,k
i = g

II∑
l=I,l 6=k

N∑
j=1

wlkjis
lk
ji(V

k
i − Vs), (1.5.5)

where g is the conductance of the synapse and wlkji is the synaptic coupling sensor and slkji is

the fraction of open channels in the synaptic cleft between presynaptic neuron j in layer l

and postsynaptic neuron i in layer k.

Numerical simulations were conducted for a network of 50 identical, excitable neurons within

each layers. The results showed that the system switches spatiotemporal patterns within and

between layers I and II. The resulting patterns contain spatiotemporal chaos (STC), regular

and erratic propagating pulses, and rest states. In Fig. 1.11 a, both layers begin as STC,

then as time progresses layer I remains in STC state while the dynamics in layer II switches

to a stripe pattern. At a later time the dynamics in layer I switches from STC to a narrow

pulse and layer II collapse to a rest state. In Fig. 1.11 b, the STC in layer II changes to

erratic pulses while the STC in layer I persists. After some time, the STC in layer I changes

to propagating pulse while STC in layer II is reinitiated and later changes to pulse. Similar

behaviours have been observed in Keplinger and Wackerbauer (2014) where an isolated layer

is considered. The transient STC is associated with nearby saddle-bifurcations and the

existence of a chaotic saddle. More complex behaviours are observed between layers, for

example, a significant reduction in the activity of the neurons in one layer causes pulse

destabilisation and reinitiation of STC in the other layer. This behaviour is also observed

with bidirectional coupling. An example is shown in Fig. 1.12 where a swapping of states

between layers as well as reinitiation of STC is observed.
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Figure 1.11: The switching sequences of spatiotemporal patterns in layers I and II. Both
layers are initially in the STC state. Panel (a) and (b) differ by randomly initial conditions.
Reprinted with permission from (Hartle and Wackerbauer, 2017). Copyright (2020) by the
American Physical Society.

Figure 1.12: Spatiotemporal dynamics for bidirectional synaptic coupling between in layers
I and II. Example for (a) a swapping event; (b) reinitiation of STC; and (c) a fast switching
sequence. Reprinted with permission from (Hartle and Wackerbauer, 2017). Copyright
(2020) by the American Physical Society
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1.6 Aims and Outline of the Thesis

As described above, pacemaker cells are excitable cells that can generate action potentials

in the absence of external stimulation. Despite many experimental and theoretical studies

on pacemaker dynamics in SMCs, little is known about cell-to-cell communication. For this

reason an in-depth investigation of the mechanisms causing this behaviour could give valuable

insights into how populations of SMCs work as a network. Previous studies of pacemaker

dynamics have discussed mechanisms for the generation of action potential in an isolated

SMC (Gonzalez-Fernandez and Ermentrout, 1994), however, a precise explanation for the

development of spatial patterns in coupled-cell systems has not been studied extensively.

In this research we study pacemaker dynamics in coupled SMCs using a one-dimensional

reaction-diffusion model.

The rest of the thesis is organised as follows. In Chapter 2 we present the reaction-diffusion

system to study the dynamics of the membrane potential in a vessel wall of SMCs, and inves-

tigate the propagation of action potential between adjacent cells. We analyse the pacemaker

dynamics of an isolated SMC to reveal properties of excitable cells in the model. Here we

also reduce and nondimensionalise the model for further analysis. We discuss the stability

properties of equilibrium points.

In Chapter 3 we briefly describe bifurcations and define some terms associated to bifurcations

in excitable cells. We perform a bifurcation analysis to show that the dynamics of the

model remains qualitatively similar after model reduction. Transitions between types of

excitability is explained using two-parameter bifurcation diagrams. We identify codimension-

two bifurcations and parameter regimes in which the SMC exhibits each type of excitability.

In Chapter 4 we numerically study solutions to the reaction-diffusion system formulated in

Chapter 2. We review necessary conditions for Turing (diffusion-driven) instability and show

that the spatiotemporal patterns observed in the model are not due to Turing instability. We
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also discuss the numerical methods and present different types of spatiotemporal patterns

behaviour that may occur with variation of model parameters.

Next, existence and stability analyses of travelling waves solutions to the reaction-diffusion

system is given in Chapter 5. We introduce spectral stability analysis and numerically

compute the essential spectrum to summarise the stability properties of equilibrium points

and the travelling waves found in the travelling waves system. Finally Chapter 6 provides a

summary and suggests directions for future work.



2. A Mathematical Model for

Pacemaker Dynamics in Smooth

Muscle Cells

Electro-mechanical coupling (EMC) in muscle cells is a process by which electrical excitation

in response to external stimulation results in contraction of the cell. The excitation is

mediated by the influx of extracellular Ca2+ through voltage-gated Ca2+ channels and Ca2+

release from the cell’s internal Ca2+ store, the sacroplasmic reticulum (SR). The elevation of

the intracellular Ca2+ concentration causes muscle contraction. The underlying mechanisms

involved in EMC activity of some smooth muscle cell (SMC) types have been the subject

of numerous mathematical modelling and computational simulation studies. For example,

EMC activity in gastric (Aliev et al., 2000; Corrias and Buist, 2007, 2008), bowel (Miftakhov

et al., 1996), uterine (Rihana et al., 2009; Tong et al., 2011), mesenteric (Berra-Romani et al.,

2005), jejunal (Poh et al., 2012) and arterial (Jacobsen et al., 2007; Cha et al., 2008) SMCs

have been modelled by incorporating the dynamics of intracellular calcium concentration

and ionic channels in the model.

Pacemaker cells are cells that evoke spontaneous electrical activities in some tissues and

organs in the body. Examples of pacemaker cells are: Purkinje fibers, sinoatrial (SA) node,

interstitial cell of Cajal (ICC). They are vital in regulating the activities of tissues in the

body. For example, the cardiac pacemaker cells control the pumping of blood in the heart.

Also, the ICC generates spontaneous rhythmic activity and regulates gut contraction in

the gastrointestinal tract. Under normal physiological conditions, SMCs do not oscillate

mechanically in the absence of external sources. However several exceptions have been

observed experimentally where cells oscillate spontaneously. This cellular behaviour is known

24
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as pacemaker dynamics. A number of experimental studies have shown that arterial SMCs

can exhibit pacemaker EMC due to changes in the vessel’s transmural pressure (Johannson

and Somlyo, 1980; Harder, 1984, 1987; Ran et al., 2019). Mclean and Sperelakis (1977)

studied the spontaneous contraction of cultured vascular SMCs in chick embryos. Lusamvuku

et al. (1979) observed spontaneous electrical activity in rabbit cerebral arteries exposed to

high pressure. Harder (1984) examined cellular mechanisms of the myogenic response, the

pressure-induced contraction of blood vessels to regulate blood flow, in feline middle cerebral

arteries by recording intracellular electrical activity of arterial muscle cells upon elevation of

transmural pressure. It was observed that the blood vessels contract and spontaneous firing

occurs as the arterial blood pressure is increased. Also Osol and Halpern (1988) observed

that the spontaneous cyclic oscillations and EMC activity in cerebral arteries from genetically

hypertensive rats depend on transmural pressure and temperature in vitro.

There are a number of detailed mathematical models for the dynamics of SMCs, their formu-

lation depends on the number and types of voltage-gated ion channels in the cell membranes.

Based on experimental observations, the ion channels coordinating the EMC activity in SMCs

of feline cerebral arteries are the voltage-gated Ca2+ channel, voltage-gated K+ ion channel

and the leak ion channel (Casteels et al., 1977; Harder, 1984; Nelson et al., 1990). Following

experimental observations, Gonzalez-Fernandez and Ermentrout (1994) developed a model

to study the dynamics of pacemaker vasomotion in SMCs of small arteries. Since the EMC

activity does not depend on changes in the concentration of extracellular Na+, their model

formulation is based on the Morris-Lecar model (1981). Fig. 2.1 shows the equivalent circuit

of the cell membrane with the leak, K+, and Ca2+ ion channels.

The SMCs are coupled through gap junctions which can be one of three types: Ca2+, in-

ositol triphospate (IP3) or membrane potential (electrical). A schematic representation of

electrically coupled SMCs is shown in Fig. 2.2.

The focus of this research is to study the collective dynamics of electrically coupled pacemaker
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Figure 2.1: Equivalent circuit representation of cell membrane with three ionic channels.
IL, IK and ICa are the leak, potassium and calcium currents. Cm is the cell membrane
capacitance.

Figure 2.2: Schematic representation of a smooth muscle cell coupled electrically to adjacent
cells through gap junctions.
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SMCs. The electrical coupling between neighbouring cells in excitable media is commonly

modelled as a reaction-diffusion system, for example in neurons (Hodgkin and Huxley, 1952;

Hartle and Wackerbauer, 2017). Thus, in the remainder of this chapter, we will formulate a

reaction-diffusion system model to investigate pacemaker EMC activity in SMCs via mem-

brane potential coupling. We will analyse the dynamical behaviour of an isolated cell given

by the reaction terms and our focus will be on the dynamics of the membrane potential.

An analysis of the behaviour of solutions that may exist in the systems will be investigated

numerically.

2.1 Model Formulation

We propose a reaction-diffusion system to model the dynamics of a population of coupled

SMCs through passive electrical coupling of adjacent cells. The reaction term in the model is

based on a model developed by Gonzalez-Fernandez and Ermentrout (1994). It contains three

variables: the membrane potential, v(x, t), the fraction of open K+ channels, n(x, t), and

the cytosolic concentration of calcium Cai(x, t). The differential equation for the membrane

potential is:

C
∂v

∂t
= D

∂2v

∂x2
− gL(v − vL)− gKn(v − vK)− gCam∞(v)(v − vCa), −∞ < x <∞, (2.1.1)

where D ≥ 0 is the diffusion coefficient, gL, gK, and gCa are conductances per unit area for the

leak, potassium and calcium currents respectively, while vL, vK, and vCa are the corresponding

Nernst reversal potentials (equilibrium potentials). Also C is the cell membrane capacitance

per unit area and

m∞(v) =
1

2

(
1 + tanh

(
v − v1

v2

))
, (2.1.2)
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is the fraction of open Ca2+ channels at steady state, where v1 is the voltage associated

with the opening of half the population of Ca2+ channels and v2 measures the spread of

the distribution (Gonzalez-Fernandez and Ermentrout, 1994). The differential equation for

calcium is:

∂Cai
∂t

= (−αgCam∞(v)(v − vCa)− kCaCai) ρ, (2.1.3)

where α = 1
2βVcellF

, Vcell is the cell volume, β is the fraction of cell volume occupied by

the cytosol, F is the Faraday constant, and kCa is the rate constant for cytosolic calcium

concentration. The parameter ρ models Ca+ buffering, given by:

ρ =
(Kd + Cai)

2

(Kd + Cai)2 +KdBT

, (2.1.4)

where Kd is the ratio of backward and forward binding rates for the calcium and buffer

reaction (Sala and Hernandez-Cruz, 1990) and BT is the total concentration of the buffers.

Lastly the differential equation for the fraction of open potassium channels is:

∂n

∂t
= λn(v) (n∞(v,Cai)− n) , (2.1.5)

where λn, the maximum rate for opening the K+ channels, is defined as:

λn = φn cosh

(
v − v3

2v4

)
, (2.1.6)

where φn is the rate constant for the kinetics of the K+ channel and v3 and v4 have similar

effects as v1 and v2 for the Ca2+ channel respectively. The function n∞ provides the steady

state value for n and is defined as:

n∞(v,Cai) =
1

2

(
1 + tanh

(
v − v3(Cai)

v4

))
, (2.1.7)
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with

v3(Cai) = −v5

2
tanh

Cai − Ca3

Ca4

+ v6, (2.1.8)

where Ca3 and Ca4 have similar effects as v1 and v2 respectively, and v5 and v6 are parameters.

The plots of n∞ against Cai for three different values of the membrane potential v are shown

in Fig 2.3.
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Figure 2.3: The plots of n∞ against Cai for three different values of the membrane potential
v.

To fully specify the reaction-diffusion system, it remains for us to impose boundary and

initial conditions. Since we are interested in self-organised patterns, we use no-flux boundary

conditions,

∂v

∂x
=
∂Cai
∂x

=
∂n

∂x
= 0, ∀x ∈ ∂Ω (2.1.9)

where Ω is the spatial domain with boundary ∂Ω. We will mostly be interested in behaviour

far from the boundary. The initial conditions are

v(x, 0) = v0(x), Cai(x, 0) = Cai0(x), and n(x, 0) = n0(x) ∀x ∈ Ω (2.1.10)

for some given functions v0(x), Cai0(x) and n0(x). The parameter values of Gonzalez-



Section 2.2. Dynamics of an Isolated Smooth Muscle Cell Page 30

Fernandez and Ermentrout (1994) are listed in Table 2.1.

Table 2.1: Model parameter values are taken from Gonzalez-Fernandez and Ermentrout
(1994).

Parameter Value Unit
v1 −22.5 mV
v2 25.0 mV
v4 14.5 mV
v5 8.0 mV
v6 −15.0 mV
Ca3 400.0 nM
Ca4 150.0 nM
φn 2.664 s−1

vL −70.0 mV
vK −90.0 mV
vCa 80.0 mV
C 1.9635× 10−14 C mV−1

gL 7.854× 10−14 C s−1 mV−1

gK 3.1416× 10−13 C s−1 mV−1

gCa 1.57× 10−13 C s−1 mV−1

Kd 1.0× 103 nM
BT 1.0× 105 nM
α 7.9976× 1015 nM C−1

β 5.5× 10−1

Vcell 1.1781× 10−9 cm3

F 9.6487× 104 C mole−1

kCa 1.3567537× 102 s−1

2.2 Dynamics of an Isolated Smooth Muscle Cell

We begin our analysis with the study of electrical activity in an isolated SMC by investi-

gating the local dynamics of system (2.1.1)–(2.1.8), with D = 0 in (2.1.1). The numerical

simulations described below were carried out in MATLAB using the ode45 solver, which uses

a variable step-size Rutta-Kutta method. Fig. 2.4 shows a time series of the system for the

parameter values of Table 2.1 and a typical initial condition. The repetitive spiking of action

potentials observed in Fig. 2.4a reveals the pacemaker EMC activity of the SMC. Fig. 2.4c
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shows the time evolution of the potassium IK and calcium ICa currents. It is observed that

IK lags ICa as this effect is observed in the action potentials in Fig. 2.4a. The mechanical

stimulation of the SMC results in fluxes of Ca2+ into the cell membrane through the voltage-

gated Ca2+ channels and the sacroplasmic recticulum, causing the depolarisation of the cell

membrane resulting in an increase of the membrane potential. As time progresses, the K+

channels are activated resulting in efflux of K+, causing the repolarisation of the cell mem-

brane and consequent decrease in membrane potential. Nelson et al. (1990) reported that

in some SMCs Ca2+ does not have a threshold, hence, as observed here, the depolarisation

process repeats itself and the system oscillates.

The voltage-gated ion channels play an important role in the physiological response of ex-

citable cells, especially in the generation of action potentials (Ermentrout et al., 2004; Izhike-

vich, 2007). Therefore, understanding their effects on pacemaker dynamics is highly impor-

tant in physiology. For example, blocking of specific ion channels is a technique used for

treating and managing physiological disorders like Alzhemier’s disease and atrial fibrillation.

To gain an insight into the role of ion channels on the pacemaker dynamics of the SMC model

(2.1.1)–(2.1.8), we block the conductances for the leak, Ca2+, and K+ currents in turn. Over

a range of parameter values considered, we found that pacemaker activity persists if the leak

current conductance gL is blocked i.e. gL = 0, but is absent if the Ca2+ and K+ currents

are blocked (Fig. 2.5 shows an example). This tells us that the Ca2+ and K+ currents are

required for pacemaker activity in the model.

It has been shown that variation of model parameters can result in a wide variety of elec-

trical activity in an isolated cell, including resting, simple or complex oscillations. In non-

pacemaker models, the external current is usually considered as a tuning parameter (or

bifurcation parameter) because it ostensibly simulates the cell (Morris and Lecar, 1981;

Tsumoto et al., 2006; Zhao and Gu, 2017). Some previous works on pacemaker models have

considered the ion channels conductance (González-Miranda, 2014) and effective reversal



Section 2.2. Dynamics of an Isolated Smooth Muscle Cell Page 32

(a)

0 2 4 6 8 10
-70

-60

-50

-40

-30

-20

-10

0

(b)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1
10-11

I
K

I
Ca

(d)

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

Figure 2.4: Time series of (2.1.1)–(2.1.8) for the (a) membrane potential, (b) fraction of
opening K+ channels, (c) potassium and calcium currents and (d) free cytoplasmic calcium
concentration with initial conditions, (v, n,Cai) = (−50mV, 0, 0nM), and parameter values
in Table 2.1.
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Figure 2.5: Time series of the membrane potential v when the three conductances are blocked.
The parameters used are those of Table 2.2 except (a) the leak channel is blocked (gL = 0);
(b) the Ca2+ channel is blocked (gCa = 0); (c) the K+ channel is blocked (gK = 0).

potential (Duan et al., 2008) as tuning parameters. We now want to reproduce some of

these behaviours in our pacemaker model by modulating parameters associated with the

ion currents and gating variables, specifically we modulate pressure dependent parameters,

v1 and v6. We use values of v1 between −40mV and −10mV, and values of v6 between

−40mV and 0mV. These parameter values have been measured in experimental analysis of

spontaneous electrical activity in arterial SMCs (Harder, 1984). For the range of values of

v1 and v6 considered in this thesis, the solutions to system (2.1.1)–(2.1.8) either converge to

a steady state or an oscillatory state which correspond to absence or presence of pacemaker

EMC in the SMC, respectively. The time evolution of the membrane potential for three dif-

ferent values of v1 are depicted in Fig. 2.6, and v6 in Fig. 2.7. These dynamics are consistent

with previous studies on non-pacemaker (Morris and Lecar, 1981; Tsumoto et al., 2006) and

pacemaker dynamics (Chay, 1985; Duan et al., 2008; González-Miranda, 2014).

To gain more understanding on how the values of the parameters affect the qualitative

dynamics we first perform dimension reduction. This will reduce the number of variables

to two, making the system more amenable to analysis but at the cost of introducing some

approximations. In the next section we will find a suitable reduced model to approximate

(2.1.1)–(2.1.8), which from now on will be refered to as the full model.
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Figure 2.6: Time series of the membrane potential v for (a) v1 = −35mV; (b) v1 = −25mV;
(c) v1 = −19mV. Other parameters as in Table. 2.1.
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Figure 2.7: Time series of the membrane potential v for (a) v6 = −35mV; (b) v6 = −25mV;
(c) v6 = −2mV. Other parameters as in Table. 2.1.
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2.2.1 Model reduction

Mathematical models of physiological processes often contain large numbers of state vari-

ables whose inclusion is due to biophysical considerations but which are not of significant

importance to the underlying dynamics, mathematically. Thus, removing such variables may

have little or no effect on the dynamics under consideration but yield a simplified model that

retains the essential properties of the original model. Different methods of model reduction

have been widely used, for example, quasi-steady-state approximations and geometric singu-

lar perturbation theory (Keener and Sneyd, 2009). Based on observations of simulations of

the model (2.1.1)–(2.1.8) there is no specific reduction method that can be applied directly

due to the fact there is no obvious separation into fast and slow dynamics between the state

variables.

We will use a heuristic approach to reduce the full model to two equations. Our reduction

is based on the behaviour of the time-varying function v3. Equation (2.1.8) shows that

the value of v3 has the upper and lower bounds v6 + v5
2

and v6 − v5
2

, respectively. Using

the parameter values of Table 2.1 and a numerical solution to system (2.1.1)–(2.1.8) after

transient dynamics have decayed, we see from Fig. 2.8 that the value of v3 spends a high

proportion of time close to its upper bound. Similar behaviour is observed across a wide

range of parameter values. This motivates a reduction by fixing v3 to the value of its upper

bound. We thus replace (2.1.8) with v3 = v∗3, where v∗3 = v6 + v5
2

. The assumption of

constant v3 reduces the number of variables to two because now v and n are decoupled

from Cai. Making v3 constant effectively takes the calcium dependence out of the potassium

channel behaviour, thereby decoupling the calcium dynamics from the system. The calcium

channel modelling is therefore effectively just done by the calcium current in the membrane
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potential equation. The reduced system is

C
∂v

∂t
= D

∂2v

∂x2
− gL(v − vL)− gKn(v − vK)− gcam∞(v)(v − vca), (2.2.1)

∂n

∂t
= λn(v) (n∞(v)− n) , (2.2.2)

where

n∞(v) =
1

2

(
1 + tanh

(
v − v∗3
v4

))
, (2.2.3)

λn(v) = φn cosh

(
v − v∗3

2v4

)
, (2.2.4)

and m∞(v) is unchanged from (2.1.2), the boundary and initial conditions remain as in

(2.2.11) and (2.1.10). In the absence of diffusion (i.e. with D = 0) the reduced model is

equivalent to the Morris-Lecar model (1981) without external current.

0 1 2 3 4 5 6 7 8 9 10

Figure 2.8: A plot of v3(mV) against time for solutions to (2.1.1)–(2.1.8) with the parameters
of Table 2.1.

In order for the reduced model to be useful, it should capture the essential dynamical be-

haviour of the original model, meaning the time series and bifurcation structure of the

reduced model should be qualitatively similar to those of the original model. For the range

of values of v1 and v3 considered in this thesis, the dynamics of the reduced model behave
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similarly to the full model, and this supports the v3 = v∗3 approximation. For the purpose

of comparison, Figs. 2.9 and 2.10 illustrate the time evolution of the membrane potential v

for the reduced model (2.2.1)–(2.2.2) for values of v1 and v3 corresponding to the values of

v1 and v6 considered in the case of the full model. We see that Figs. 2.9 and 2.10 are similar

qualitatively to Figs. 2.6 and 2.7, respectively. This shows that the full model (2.1.1)–(2.1.8)

can be well approximated by the reduced model (2.2.1)–(2.2.2). Before proceeding to anal-

ysis of the reduced model, we further simplify (2.2.1)–(2.2.2) by reducing the number of

system parameters through dimensional analysis.
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Figure 2.9: Time series of the membrane potential v for v1 (a) v1 = −35mV; (b) v1 = −25mV;
(c) v1 = −19mV. Other parameters as in Table. 2.2.
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Figure 2.10: Time series of the membrane potential v for (a) v3 = −31mV; (b) v3 = −21mV;
(c) v3 = 2mV. Other parameters as in Table. 2.2.
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2.2.2 Nondimensionalisation

Nondimensionalisation is the process of eliminating dimensions of variables in a mathematical

model. Scaling of model variables is used to transform a dimensional model to a nondimen-

sional form. In physiological models, different variables can evolve on different time-scales

and this plays a vital role in the generation of action potential. A suitable rescaling of the

variables reveals their relative sizes and time constants of the system. The process involves

choosing characteristic scales for the variables, and rewriting the dependent and independent

variables in in terms of O(1) quantities by multiplying the variables with their corresponding

characteristic scale (Murray, 2003; Logan, 2006) and then grouping variables and parameters

of similar magnitudes.

We nondimensionalise (2.2.1)–(2.2.2) by introducing dimensionless variables V and τ . Let

v = V Qv, t = τQt, (2.2.5)

for some characteristic voltage Qv and time Qt. To choose values for Qv and Qt we first

observe that the range of the action potential is vK ≤ v ≤ vCa (see Table 2.1 and Fig. 2.4a).

Hence the maximum variation of the action potential is less than vCa − vK = 170mV. This

value is roughly the same order of magnitude as vCa therefore we choose the characteristic

voltage Qv to be vCa. Simple choices for the characteristic time include Qt = C
gK

= 0.0625s

and Qt = 1
φn

= 0.3754s. We choose Qt = C
gK

for the characteristic time because it is faster

than 1
φn

. Substituting Qv = vCa and Qt = C
gK

into (2.2.1)–(2.2.2) produces the dimensionless

version of the model:

∂V

∂τ
= D

∂2V

∂X2
− ḡL(V − v̄L)− ḡKN(V − v̄K)− ḡCaM∞(V )(V − 1), −∞ < X <∞,

(2.2.6)

∂N

∂τ
= λ(V )(N∞(V )−N), (2.2.7)
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where

M∞(V ) =
1

2

(
1 + tanh

(
V − v̄1

v̄2

))
, (2.2.8)

N∞(V ) =
1

2

(
1 + tanh

(
V − v̄3

v̄4

))
, (2.2.9)

λ(V ) = ψ cosh

(
V − v̄3

2v̄4

)
, (2.2.10)

and

ḡr =
gr
gK
, v̄r =

vr
vCa

, ψ =
C

gK
φn, D̄ =

C

gK
D r = L,K,Ca, 1, 2, 3, 4.

The no-flux boundary conditions are,

∂V

∂X
=
∂N

∂X
= 0, ∀X ∈ ∂Ω, (2.2.11)

and the initial conditions are

V (X, 0) = V0(X) and N(X, 0) = N0(X), ∀X ∈ Ω (2.2.12)

for some given functions V0(X) and N0(X). The parameter values for model (2.2.6)–(2.2.7)

are given in Table 2.2.

The time series of the membrane potential for the nondimensionalised model (2.2.6)–(2.2.7)

in the absence of diffusion term with parameter values in Table 2.2 is shown Fig. 2.11. The

oscillatory behaviour observed is similar to the reduced and full model (see Fig. 2.4a). Also,

the time evolution for selected values of v̄1 is shown in Fig. 2.12 and v̄3 in Fig. 2.13. The

values of v̄1 and v̄3 correspond to the values of v1 and v3 used in Figs. 2.9 and 2.10 for the

reduced model (2.2.1)–(2.2.2), and v1 and v6 in Figs. 2.6 and 2.7 for the full model (2.1.1)–

(2.1.8). Notice that the time series of the nondimensionalised model (Figs. 2.12 and 2.13) are

scaled versions of those of the reduced model (Figs. 2.9 and 2.10) because the two systems
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Table 2.2: Parameter values for the nondimensionalised model (2.2.6)–(2.2.7).

Parameter Value
v̄1 −0.2813
v̄2 0.3125
v̄3 −0.1380
v̄4 0.1812
ψ 0.1665
v̄L −0.875
v̄K −1.125
ḡL 0.25
ḡK 1.0
ḡCa 0.4997
D̄ 0.0001

Table 2.3: Definition of the nondimensional model variables and parameters.

Variables and Parameters Definition
V Membrane potential
N Fraction of open K+ channels
T Time
M∞(V ) [N∞(V )] Fraction of open Ca2+ [K+] channels at steady state
ḡL, ḡCa, ḡK Conductance for leak, Ca2+ and K+

v̄L, v̄K Equilibrium potential for Ca2+ and K+

v̄1 The potential at which Ca2+ channels is half opened
v̄2 The potential at which K2+ channels is half opened
ψ Rate constant for kinetics of K+ channel
v̄3, v̄4 Tuning parameters for steady state
λ(V ) Voltage dependence associated with the opening of K+ channels
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differ only by the change of variables (2.2.5). As noted in the previous section, the reduced

model provides a good approximation to the dynamics of the full model. Thus we use the

nondimensionalised model (2.2.6)–(2.2.7) for further study.
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Figure 2.11: Time series of the membrane potential V for nondimensionalised model (2.2.6)–
(2.2.7) with the parameters values in Table 2.2.

(a)

0 40 80 120 160

-0.5

-0.25

0

(b)

0 40 80 120 160

-0.75

-0.5

-0.25

0

(c)

0 20 40 60 80 100 120 140 160

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

-0.64

-0.62

Figure 2.12: Time evolution of the membrane potential V for (a) v̄1 = −0.4375; (b) v̄1 =
−0.3125; (c) v̄1 = −0.2375. Other parameters as in Table. 2.2.
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Figure 2.13: Time evolution of the membrane potential V for (a) v̄3 = −0.3875; (b) v̄3 =
−0.2625; (c) v̄3 = 0.025. Other parameters as in Table. 2.2.

2.3 Linear Stability and Phase Plane Analyses

2.3.1 Linear Stability Analysis of Equililbria

In dynamical system, an equilibrium or steady state corresponds to the value or point at

which the state variable does not change. In terms of membrane dynamics, the equilibrium

corresponds to the point where the transmembrane current is zero and the membrane voltage

is unchanged.

Suppose (V ∗, N∗) is an equilibrium of system

dV

dT
= f(V,N),

dN

dT
= g(V,N), (2.3.1)

that is, f(V ∗, N∗) = 0 and g(V ∗, N∗) = 0.

2.3.1 Definition. The equilibrium (V ∗, N∗) is said to be Lyapunov stable (or stable) if for

every neighbourhood P ⊂ R2 of (V ∗, N∗) there exists a neighbourhood Q ⊂ R2 of (V ∗, N∗)

such that for every initial point (Vinit, Ninit) ∈ Q the solution to (2.3.1) is contained in P for

all t ≥ 0. If (V ∗, N∗) is not Lyapunov stable it is said to be unstable.

2.3.2 Definition. The equilibrium (V ∗, N∗) is said to be asymptotically stable if it is Lya-
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punov stable and there exists a neighbourhood U ⊂ R2 of (V ∗, N∗) such that for every initial

point (Vinit, Ninit) ∈ U the solution to (2.3.1) converges to (V ∗, N∗) as t→∞.

In general, the stability properties of an equilibrium in multidimensional are investigated by

computing the eigenvalues of the Jacobian matrix evaluated at the equilibrium, say J(V ∗,N∗).

Suppose λi, i = 1, 2, · · · , j,∈ C is the set of eigenvalues of J(V ∗,N∗), then the sign of λi

determines the stability type of (V ∗, N∗).

2.3.3 Definition. The equilibrium (V ∗, N∗) of (2.3.1) is said to be stable if and only if all

the eigenvalues of J(V ∗,N∗) have negative real parts. The equilibrium is unstable if at least

one of the eigenvalues has a positive real part.

For planar systems, equilibria can be classified based on their eigenvalues in relation to the

values of trace, τ , and determinant, δ, of J(V ∗,N∗) (Hirsch et al., 2013). The classification of

the equilibrium is shown in Table 2.4.

Table 2.4: Classification of equilibrium in planar systems

τ , δ Eigenvalues Equilibrium
λ1,2 are complex

τ < 0, δ > τ2

4
with negative real parts Stable focus

λ1,2 are complex

τ > 0, δ > τ2

4
with positive real parts Unstable focus

λ2 < λ1 < 0

τ < 0, δ < τ2

4
λ1,2 are real and negative Stable node

0 < λ2 < λ1

τ > 0, δ < τ2

4
λ1,2 are real and positive Unstable node

λ2 < 0 < λ1

δ < 0 λ1,2 are real with opposite sign Saddle (Unstable)
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2.3.2 Phase Plane Analaysis

The phase plane is the set of all states of a two-dimensional dynamical system. In the phase

plane we can visualise the evolution of the system for many different initial conditions by

plotting a phase portrait. This consists of sufficiently many trajectories (particular solutions)

to produce a clear picture. Alternatively a vector field shows the magnitude and direction

in which the system will evolve from any initial condition in the phase plane.

Nullclines are curves in the phase plane along which the derivative of one of the system

variable is zero. For an autonomous system of ODEs: dX
dt

= F (X, Y ) and dY
dt

= G(X, Y ),

the nullclines for X and Y are set of points in the phase plane such that dX
dt

= 0, dY
dt

=

0. Algebraically, these correspond to F (X, Y ) = 0 and G(X, Y ) = 0, respectively. Any

intersection of X and Y nullclines is an equilibrium (X∗, Y ∗) of the system.

For the nondimensionalised model (2.2.6)–(2.2.7), the V -nullcline is given by the following

function

N =
−ḡL(V − v̄L)− ḡcaM∞(V − 1)

ḡK(V − v̄K)
, (2.3.2)

and the N -nullcline is given by

N = N∞(V ) =
1

2

(
1 + tanh

(
V − v̄3

v̄4

))
. (2.3.3)

Figure 2.14 shows the phase plane for the model (2.2.6)–(2.2.7) with respect to parameter

values in Table 2.2. The figure includes sample trajectories, the vector field and the V

and N nullclines. The V -nullcline is magenta and the N -nullcline is orange in Fig. 2.14,

they intersect at the equilibrium (V ∗, N∗) = (−0.2573, 0.2119). This equilibrium is an

unstable focus; nearby trajectories spiral away from (V ∗, N∗). The periodic oscillations
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in Fig. 2.11 corresponds to the closed trajectory or loop coloured blue in Fig. 2.14, and is

known as periodic orbit. As seen in Fig. 2.14, the periodic orbit is stable, so it attracts

nearby trajectories (in fact with the given parameter values all trajectories converge to the

periodic orbit except the equilibrium (V ∗, N∗)).

Figure 2.14: (a) The (V,N) phase plane for the nondimensionalised model (2.2.6)–(2.2.7)
with parameters as in Table. 2.2. The blue curve is a stable periodic orbit. The magenta and
orange curves are the nullclines for V and n. The black curves are the solution trajectories.
The red circle is unstable equilibrium.

The phase plane for the selected values of v̄1 in Fig. 2.12 is shown in Figure 2.15. First with

v̄1 = −0.4375 we have Fig. 2.15a, (V ∗, N∗) = (−0.1952, 0.3472). It is observed that nearby

trajectories spiral toward the equilibrium confirming that the equilibrium is stable. Fig. 2.15b

depicts the phase plane for v̄1 = −0.3125. Here the equilibrium is unstable and surrounded

by a stable periodic orbit (as in Fig. 2.14). For v̄1 = −0.22, the phase plane is shown

in Fig. 2.15c. Here the nullclines intersect at three points, (V ∗1 , N
∗
1 ) = (−0.3329, 0.1032),

(V ∗2 , N
∗
2 ) = (−0.5168, 0.015), and (V ∗3 , N

∗
3 ) = (−0.7801, 0.0008). Therefore, this value of v̄1

there exist three equilibria in the system. The equilibria (V ∗1 , N
∗
1 ) and (V ∗2 , N

∗
2 ) are unstable.

Specifically (V ∗1 , N
∗
1 ) is an unstable focus while (V ∗2 , N

∗
2 ) is a saddle. The red and green curves
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in Fig. 2.15c are the stable and unstable manifolds of (V2, N2). Trajectories near (V ∗3 , N
∗
3 )

converge to this equilibrium confirming it is stable.. As an overall observation, increasing

the value of v̄1 causes a downward shift of the V -nullcline while the N -nullcline is unaffected

(and this can be readily understood from (2.3.2) and (2.3.3)).

Figure 2.16 provides analogous pictures for the selected values of v̄3 in Fig. 2.13. Fig. 2.16a

depicts the phase plane for when v̄3 = −0.3875, nullclines intersect at the stable equilibrium

(V ∗, N∗) = (−0.7191, 0.0251). When v̄3 = −0.2625, the nullclines intersect at the repelling

focus (V ∗, N∗) = (−0.4451, 0.1176) and there exists a stable periodic orbit, Fig. 2.16b.

Finally with v̄3 = 0.025, see Fig. 2.16c, the nullclines intersect at the stable equilibrium

(V ∗, N∗) = (−0.0911, 0.2173) much like in panel a. Observe that increasing the value of v̄3

causes a rightward shift of the N -nullcline while the V -nullcline remains unchanged.

The equilibria obtained in Figs. 2.14, 2.15, and 2.16 can also be classified via the nature

of the eigenvalues. For the nondimensionalised model (2.2.6)–(2.2.7) the derivatives of the

f(V,N) and g(V,N) evaluated at (V ∗, N∗) are

fV =

[
− ḡL − ḡKN∗ −

ḡCa

2v̄2

(
1− tanh2

(
V ∗ − v̄1

v̄2

))
(V ∗ − v̄Ca)− ḡCa

2

(
1 + tanh

(
V ∗ − v̄1

v̄2

))]
,

fN = −ḡK(V ∗ − v̄K),

gV =
ψ

2v̄4

[{
1

2

(
1 + tanh

(
V ∗ − v̄3

v̄4

))
−N∗

}
sinh

(
V ∗ − v̄3

2v̄4

)]

+
ψ

2v̄4

[
cosh

(
V ∗ − v̄3

2v̄4

)(
1− tanh2

(
V ∗ − v̄3

v̄4

))]
,

gN = −ψ cosh

(
V ∗ − v̄3

2v̄4

)
.

For the parameter values in Table 2.2, (V ∗, N∗) = (−0.2573, 0.2119). The Jacobian matrix
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(a) (b)

(c)

Figure 2.15: The (V,N) phase plane for the nondimensionalised model (2.2.6)–(2.2.7) with
(a) v̄1 = −0.4375; (b) v̄1 = −0.3125; (c) v̄1 = −0.25; The blue and red curve is a stable
periodic orbit. The magenta and orange curves are the nullclines for V and N . The black
curves are the solution trajectories. The blue and red circles are stable and unstable equi-
libria. The red and green curves in (c) are the stable and unstable manifolds of the saddle
point. Other parameters as in Table. 2.2.
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(a) (b)

(c)

Figure 2.16: The (V,N) phase plane for the nondimensionalised model (2.2.6)–(2.2.7) with
(a) v̄3 = −0.3875; (b) v̄3 = −0.2625 ; (c) v̄3 = 0.025; The blue curve is a stable periodic
orbit. The magenta and orange curves are the nullclines for V and N . The black curves are
the solution trajectories. The blue and red circles are stable and unstable equilibria. Other
parameters as in Table. 2.2.
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evaluated at (V ∗, N∗) is

J =

0.2678 −0.8680

0.3236 −0.1756

 , (2.3.4)

whose eigenvalues, λ1,2 = 0.0461±0.4814i, are complex with positive real parts, thus (V ∗, N∗)

is a an unstable focus.

Next, we consider cases for different values of v̄1 with other parameter values as in Table 2.2:

• Case 1: v̄1 = −0.4375, the equilibrium is (V ∗, N∗) = (−0.1952, 0.3472). The Jacobian

matrix is

J =

−0.4576 −0.9298

0.4217 −0.1686

 , (2.3.5)

and its corresponding eigenvalues, λ1,2 = −0.3131±0.6093i, are complex with negative

real parts. Thus, the equilibrium is a stable focus.

• Case 2: v̄1 = −0.3125, the equilibrium is (V ∗, N∗) = (−0.2494, 0.2262). The Jacobian

matrix is

J =

0.2208 −0.8756

0.3370 −0.1744

 , (2.3.6)

and its corresponding eigenvalues, λ1,2 = 0.0232 ± 0.5060i, are complex with positive

real parts, therefore, the equilibrium is an unstable focus.

• Case 3: v̄1 = −0.25, the system has three equilibria:

i. (V ∗1 , N
∗
1 ) = (−0.3329, 0.1032), the Jacobian matrix evaluated is

J =

0.4207 −0.7911

0.1955 −0.1914

 , (2.3.7)

its corresponding eigenvalues, λ1,2 = 0.1146± 0.2470i, are complex with positive

real parts, therefore, the equilibrium is an unstable focus.
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ii. (V ∗2 , N
∗
2 ) = (−0.5168, 0.015), the Jacobian matrix evaluated is

J =

0.2198 −0.6086

0.0437 −0.2658

 , (2.3.8)

its corresponding eigenvalues, λ1 = 0.1146 and λ2 = −0.2029, are real with one

positive and one negative, therefore, it is a saddle point which is always unstable.

iii. (V ∗3 , N
∗
3 ) = (−0.7801, 0.0008), the Jacobian matrix is

J =

−0.1148 −0.3449

0.0046 −0.5038

 , (2.3.9)

and its corresponding eigenvalues, λ1 = −0.1189 and λ2 = −0.4996, are both real

and negative, therefore, it is a stable node.

Note that the stability properties of the equilibria for (2.2.6)–(2.2.7) are in agreement

with the results found geometrically via the phase plane analysis. For example, when

v̄1 = −0.25, the are two unstable (unstable focus and a saddle) and a stable (node)

equilibria as observed in Fig. 2.15c, respectively.

2.4 Discussion

In this chapter we formulated a reaction-diffusion system for pacemaker SMCs coupled

through electrical gap junctions based on the model of Gonzalez-Fernandez and Er-

mentrout (1994). We studied the system in the absence of diffusion which corresponds

to an isolated SMC where the interactions between ion fluxes, in particular Ca2+ and

K+, results in spontaneous oscillations. We established importance of both Ca2+ and

K+ currents on to this oscillations by blocking the three different channels in turn.

Upon varying pressure dependent parameters, the model exhibits various dynamical
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features, such as a rest, or quiescent state, and an oscillatory state, observed in the

conventional (non-pacemaker) models for excitable cells.

For further analysis we reduced the full model (2.1.1)–(2.1.8) to two dimensions and

performed a nondimensionalisation. We found that this reduction did not significantly

alter the qualitative dynamics. By performing phase plane analyses of the nondimen-

sionalised system, (2.2.6)–(2.2.7), we found that the values of the parameters v̄1 and v̄3

affect the number and stability of equilibria. This motivates the bifurcation analysis

presented in the next chapter.



3. Transitions between Types of

Excitability

In the previous chapter we observed different dynamical behaviours of model (2.2.6)–

(2.2.7) for different values of the parameters and investigated the stability properties of

the equilibria. The phase plane analysis qualitatively provided some information about

how solutions of the system change due to variation of parameters. In this chapter we

seek to improve our understanding of how the dynamics changes with the parameter

values via a numerical bifurcation analysis.

In Sec. 3.1 we give an overview of numerical continuation technique and provide an

introduction to bifurcation theory emphasing topics most relevant for excitable cells.

Then in Sec. 3.2 we analyse changes to dynamics of (2.2.6)–(2.2.7) as one of four

different key parameters of the model are varied in turn. We perform a two-parameter

bifurcation analysis to show transitions between types of excitability in Sec. 3.3. In

Sec. 3.4 we study the effects of some other parameters, specifically the conductances

associated with the three ion channels and briefly explore pacemaker dynamics in the

model in the absence of leak conductance. Finally Sec. 3.5 provides a summary and

discussion.

3.1 Numerical Continuation and Bifurcation Tech-

niques

Numerical continuation is a method in which the solutions of a nonlinear system of

equations are followed through the path of an existing solution as a parameter is var-

ied. This technique has been widely used in dynamical systems to study steady state

52
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and periodic solutions, and their stability and transition to more complex behaviour

as parameters are varied in various systems. Different algorithms have been developed

to compute a family or path of solutions numerically, these include Newton’s method,

the natural parameter continuation and the arclength and pseudo-arc length contin-

uation method, and Moore-Penrose continuation (Doedel et al., 1991a,b; Kuznetsov,

1995; Allgower and Georg, 2003). Most of these algorithms use the predictor-corrector

method and have been implemented using numerical continuation software and pack-

ages such as DDE-BIFTOOL (Engelborghs et al., 2002), MATCONT (Govaerts et al.,

2011), AUTO (Doedel et al., 2012), XPPAUT (Ermentrout, 2002).

In this thesis we use AUTO 07P for the numerical continuation and bifurcation analysis

of our system. This uses orthogonal collocation and pseudo-arclength continuation to

solve ordinary differential equations as a bifurcation parameter varies. AUTO 07P

computes bifurcations of equilibria and periodic solutions in one parameter. It is able

to detect various kinds of bifurcations and folds, switch to and compute the bifurcated

branches, and allows us to follow the loci of the bifurcations and folds in two and three

parameters to detect codimension-2 bifurcation points.

3.1.1 An Introduction to Bifurcation Theory

As the parameters of a dynamical system are varied in a continuous fashion, a bi-

furcation is said to occur if, roughly speaking, the dynamics of the system changes

in a fundamental way. This is made more precise by using the notion of topological

equivalence.

Consider a one-parameter system

ẋ = f(x;α) (3.1.1)

with variable x(t) ∈ Rn and α ∈ R. Throughout this section we assume f is a smooth
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function of x and α. The various results in this section require different degrees of

smoothness (see Kuznetsov (1995)). We do not detail this here as our model (from

Sec. 2.1) is C∞. By the Picard-Lindelöf Theorem (see for instance Meiss (2007))

solutions to (3.1.1) exist and are unique and so can be written as a flow ϕt(x). In the

following definition it is assumed for simplicity that ϕt(x) is defined for all t ∈ R. Recall

that a homeomorphism is a continuous, one-to-one, onto function with a continuous

inverse.

3.1.1 Definition. Let α1, α2 ∈ R. The systems ẋ = f(x;α1) and ẋ = f(x;α2) are

said to be topologically equivalent if there exists a homeomorphism h : Rn → Rn and a

continuous function τ : Rn × R→ R that is increasing in t such that

h
(
ϕτ(x,t)(x;α1)

)
= ϕt(h(x);α2), (3.1.2)

for all x ∈ Rn and all t ∈ R.

The orbits of topologically equivalent systems display the same ‘structure’ in phase

space. The function τ allows orbits of the two systems to evolve at different speeds (if

(3.1.2) is satisfied with τ(x, t) = t the systems are said to be conjugate).

3.1.2 Definition. A value α∗ ∈ R is said to be a bifurcation value of (3.1.1) if for all

δ > 0 there exists α1 ∈ R with |α1 − α∗| < δ such that ẋ = f(x;α∗) and ẋ = f(x;α1)

are not topologically equivalent.

Bifurcations can be classified as either local or global, depending, as these words sug-

gest, on the size of phase space that is affected. Local bifurcations include bifurcations

at which an equilibrium x∗ becomes non-hyperbolic. This means that the Jacobian

matrix J = Df(x∗) has a zero or purely imaginary eigenvalue. We now list local

bifurcations that are common in excitable media.
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� Saddle-node bifurcation: This occurs when J has a zero eigenvalue. At the bifur-

cation two equilibria collide and annihilate. For this reason the bifurcation is also

sometimes called a fold or limit point.

� Hopf bifurcation: This occurs when J attains a pair of purely imaginary eigen-

values. For a two-dimensional system an equilibrium changes stability at a Hopf

bifurcation and a limit cycle is created that exists on one side of the bifurcation. If

the limit cycle is stable (and existing when the equilibrium is unstable) the Hopf

bifurcation is said to be supercritical; if the limit cycle is unstable (and existing

when the equilibrium is stable) the Hopf bifurcation is said to be subcritical. In

higher dimensions the stable and unstable manifolds of the equilibrium change

dimension and a limit cycle is created in the same way.

� Saddle-node of limit cycle bifurcation: This is simply a saddle-node bifurcation

of a limit cycle and occurs when a Floquet multiplier (these are analogous to

eigenvalues of equilibria) associated with the limit cycle (these are analogous to

eigenvalues of equilibria) attains the value 1. At the bifurcation two limit cycles

collide and annihilate.

� Period doubling bifurcation: This occurs when a Floquet multiplier associated

with a limit cycle attains the value -1. At the bifurcation the limit cycle changes

stability (or more precisely its stable and unstable manifold change dimension)

and a limit cycle of twice the period is created. It is common for an infinite

sequence of period-doubling bifurcations to occur over a finite range of parameter

values. This is called a period-doubling cascade and is a common ‘route to chaos’,

particularly for physiological systems.

The following two global bifurcations involve the collision of a equilibrium with a limit

cycle and are of critical importance to the system studied in this thesis.

� Homoclinic bifurcation: This occurs when the stable and unstable manifolds of
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a saddle equilibrium intersect. The intersection implies the existence of an orbit

homoclinic to the equilibrium. For two-dimensional systems, generically a unique

limit cycle is created on one side of the bifurcation (with period tending to infinity

at the bifurcation because the limit cycle tends to the homoclinic orbit). In

higher dimensions, homoclinic bifurcations can signal the onset of chaos, say if the

equilibrium is a saddle-focus satisfying Shilnikov’s condition (Kuznetsov, 1995).

� Saddle-node on an invariant circle (SNIC) bifurcation: This is a saddle-node bi-

furcation at which there exists an orbit homoclinic to the (non-hyperbolic) equi-

librium. Generically a unique limit cycle is created on the side of the bifurcation

where there are no equilibria locally, and with period tending to infinity at the

bifurcation. It is also known as saddle-node infinite period (SNIPER) bifurcation.

A bifurcation analysis plays an essential part in understanding the dynamics of physi-

ological models. Bifurcation diagrams are plots with a parameter of the system on the

horizontal axis and a variable of the system (or sometimes some other useful measure)

on the vertical axis. They consisely show the loss of stability of equilibria, the start

and end of oscillations, and also depict how bifurcating branches are generated (Rinzel

and Ermentrout, 1999; Govaerts et al., 2011; Shilnikov, 2012).

Under parameter variation excitable cells can transit from an excitable or rest state

to an oscillatory regime in different ways and this can be nicely characterised using

bifurcation theory. Rinzel and Ermentrout (1999) classify excitability into Type I and

II based on the bifurcation type at the onset of firing. The classification is consistent

with the original classification of Hodgkin (1948) where he studied the firing rate of a

neuron relative to the injected current. In Type I excitability, the transition is through

a saddle-node on an invariant circle (SNIC) bifurcation. The frequency of oscillations

begin at an arbitrarily low value, and as the parameter is varied to move away from

the bifurcation, the frequency of oscillations increases. This is because the period of
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the corresponding limit cycle tends to infinity at a SNIC bifurcation (as discussed

above). In contrast, for Type II excitability the transition from rest to an oscillatory

state is through a Hopf bifurcation, in this case the oscillations emerge with non-zero

frequency.

Transitions between types of excitability can be induced by some external factors such

as external current (Tsumoto et al., 2006), addition of conductance (Drion et al.,

2015), autapse (Zhao and Gu, 2017), and temperature (Xing et al., 2020). The classi-

cal Morris-Lecar model (1981) can exhibit both types of excitability. This has been well

studied in the literature using a two-parameter bifurcation analysis (Rinzel and Ermen-

trout (1999); Govaerts and Sautois (2005)). The codimension-two bifurcations associ-

ated with a change between the two types of excitability were identified by Tsumoto

et al. (2006) and Zhao and Gu (2017). Also, Duan et al. (2008) performed a similar

two-parameter bifurcation analysis of the Chay neuronal model.

Despite many studies of pacemaker activity in SMCs, there does not appear to have

been any detailed analysis about the types of excitability that can be exhibited. In the

next section we show that our model can indeed exhibit both Type I and II excitability.

3.2 Codimension-One Bifurcation Analysis

Here we investigate how the dynamics of (2.2.6)–(2.2.7) change as we vary some of

the parameter values from their values in Table 2.2. The bifurcation diagrams were

produced using the numerical continuation software AUTO (Doedel et al., 2012) and

edited in MATLAB. The abbreviations of the codimesion-one bifurcations are given in

Table 3.1. First we consider the effect of variation of v̄1 with other parameters fixed as

in Table 2.2. Figs. 3.1a–3.1c show the bifurcation diagrams of the full, reduced, and

nondimensionalised models. It is seen that they are qualitatively similar, this shows

that the dynamics of the full model is preserved by the reduced model which further
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Table 3.1: Abbreviations and notations of codimension-one bifurcations.

Bifurcation Abbreviation

Saddle-node SN
Hopf bifurcation HB
Saddle-node bifurcation of limit cycle SNC
Saddle-node bifurcation on an invariant circle SNIC
Homoclinic bifurcation HC

justifies our reduction method in Sec. 2.2.1.

In Fig. 3.1c, we observe (2.2.6)–(2.2.7) has a unique equilibrium except between two

saddle-node bifurcations, SN1 and SN2. To the right of SN2 the lower equilibrium

branch is the only stable solution of the system. The saddle-node bifurcation SN2 is

in fact a SNIC bifurcation (saddle-node on an invariant circle) as here there exists an

orbit homoclinic to the equilibrium. To the left of SN2 this orbit persists as a stable

limit cycle. Thus here (2.2.6)–(2.2.7) model SMC activity with Type I excitability. As

we pass through the SNIC bifurcation by decreasing the value of v̄1 the excitable state

changes to periodic oscillations. As shown in Fig. 3.1d the period of the oscillations

decreases from infinity as a consequence of the homoclinic connection. Upon further

decrease in the value of v̄1 the stable limit cycle loses stability in a saddle-node bifur-

cation (SNC). The resulting branch of unstable limit cycles terminates in a subcritical

Hopf bifurcation (HB). Between these bifurcations the system is bistable because the

upper equilibrium branch is stable to the left of the Hopf bifurcation and coexists with

a stable limit cycle.

Next we vary the value of the parameter v̄3. In the full model (2.1.1)–(2.1.8) transmural

pressure is associated with the parameter v6, so in the nondimensionalised model it

is associated with v̄3 through v∗3 = v6 + v5
2

. Hence we can examine the influence of

transmural pressure by using v̄3 as a bifurcation parameter. As shown in Fig. 3.2a, as

we increase the value of v̄3 a unique equilibrium loses stability in a supercritical Hopf

bifurcation HB1 then regains stability in a subcritical Hopf bifurcation HB2. Therefore
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Figure 3.1: Bifurcation diagrams of (a) the full model (2.1.1)–(2.1.8) with v1 as the bifurca-
tion parameter, (b) the reduced model (2.2.1)–(2.2.2) with v1 as the bifurcation parameter
and (c) the nondimensionalised model (2.2.6)–(2.2.7) with v̄1 as the bifurcation parameter.
The remaining parameter values are given in Tables 2.1 and 2.2. Panel (d) shows the period
of the oscillations in Fig. 3.1c for the nondimensionalised model. Black [magenta] curves
correspond to equilibria [limit cycles]. Solid [dashed] curves correspond to stable [unsta-
ble] solutions. HB: Hopf bifurcation; SN: saddle-node bifurcation (of an equilibrium); SNC:
saddle-node bifurcation of a limit cycle; SNIC: saddle-node on an invariant circle bifurcation.
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in this case the system exhibits Type II excitability. The stable oscillations are created

at HB1 with finite period (see Fig. 3.2b). They subsequently lose stability at the

saddle-node bifurcation SNC and terminate at HB2.

(a)

SNC

HB
2

HB
1

(b)

HB
1

HB
2

SNC

Figure 3.2: (a) A bifurcation diagram of the nondimensionlised model (2.2.6)–(2.2.7) with
v̄3 as the bifurcation parameter and other parameter values as given in Table 2.2. (b) A plot
of the periodic oscillations as a function of parameter v̄3. The labels and other conventions
are as in Fig. 3.1.

The influence of the other parameters associated with ion currents is highly important

while investigating physiological activities in excitable cells thus we also consider the

effect of ψ, the rate constant for the kinetics

of the potassium channel and vL, the Nerst (reversal) potential of the leak current.

Fig. 3.3a is a bifurcation diagram of the membrane potential V as ψ is varied. The

model (2.2.6)–(2.2.7) has three equilibria for the values of ψ considered. For relatively

low and intermediate values of ψ, there exist one stable (lower branch) and two unstable

(upper and middle branch) equilibria. By increasing ψ, a stable period orbit emanates

through an homoclinic bifurcation HC and upon further increase of ψ, the limit cycle

terminates in a supercritical Hopf bifurcation HB. Between these bifurcations the sys-

tem is bistable due to coexistence of stable periodic with a stable equilibrium lower
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equilibrium branch. To the right of the HB there are two stable (upper and lower

branch) and one unstable (middle branch) equilibria.

(a)

HB

HC

V

(b)

HB

SNC

SN
1

SN
2

SNIC

Figure 3.3: A bifurcation diagram of the nondimensionalised model (2.2.6)–(2.2.7) with (a)
ψ; (b) v̄L as the bifurcation parameter, and other parameter values as given in Table 2.2.
The labels and other conventions are as in Fig. 3.1.

Lastly, variation of v̄L produces the bifurcation diagram Fig. 3.3b. This has the same

type of bifurcation structure as Fig. 3.1b (except in reverse). Thus increasing the value

of v̄L results in the same qualitative changes to the dynamics as decreasing the value

of v̄1. In particular the excitability is Type I.

3.3 Codimension-Two Bifurcation Analysis

As seen in Sect. 3.2, system (2.2.6)–(2.2.7) can exhibit Type I or Type II excitability

depending on choice of parameter values. Here we study this in detail and show

transitions between the two types of excitability using a codimension-2 bifurcation

analysis. Specifically we consider bifurcation sets in the (v̄1, v̄3) and (v̄1, v̄L) planes,

respectively.
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The abbreviations and notations of the codimension-2 bifurcations are summarised in

Table 3.2 and discussed below.

Table 3.2: Abbreviations and notations of codimension-two bifurcations.

Codimension-2 bifurcation Abbreviation Label

Cusp bifurcation CPi

Bogdanov-Takens bifurcation BTi

Generalized Hopf bifurcation GHi

Resonant homoclinic bifurcation RHom

Non-central saddle-node homoclinic bifurcation NSHi

3.3.1 Bifurcations in (v̄1, v̄3)-plane

A two-parameter bifurcation analysis of the model (2.2.6)–(2.2.7) varying the parame-

ters v̄1 and v̄3 is illustrated in Fig. 3.4. It is produced from the loci of the codimension-1

bifurcations and contains five different codimension-2 bifurcation points: CP, BT, GH,

RHom and NSH denoting the cusp point, Bogdanov-Takens bifurcation, generalised

Hopf (Bautin) bifurcation, resonant homoclinic bifurcation, and non-central saddle-

node homoclinic bifurcation, respectively.

Two of the one-parameter bifurcation diagrams described in Sect. 3.2 are slices of

Fig. 3.4. Specifically Fig. 3.1c has the value of v̄3 fixed at −0.1375 and Fig. 3.2a has

the value of v̄1 fixed at −0.2813. Now we explore the consequences to transitions

between Type I and II excitability by studying slices at six different values of v̄3 in

Fig. 3.4. Fig. 3.4 is divided into regions with eight qualitatively different types of

dynamical behaviour, with enlargements in Fig. 3.5a, 3.6a, 3.8a and 3.8b. We have

assigned each region a number and a colour, see Table 3.3.

For sufficiently large values of v̄3 the only bifurcations are the two saddle-node bifurca-

tions SN1 and SN2, see Fig. 3.5a which shows a magnification of Fig. 3.4. A bifurcation



Section 3.3. Codimension-Two Bifurcation Analysis Page 63

diagram corresponding to slice l1 for a fixed value of v̄3 = 0.45 varying v̄1 is shown in

Fig. 3.5b. Thus for the slice l1 there are no periodic solutions. In this case, the system

dynamics will pass through region 1○ → 2○ → 1○ as labelled in Fig. 3.5a as v̄1 varies

between −0.3 and 0.05.

Figure 3.4: A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–
(2.2.7) in the (v̄1, v̄3)-plane for the parameter values of Table 2.2. The values of v̄3 in l1, l2,
l3, l4, l5 and l6 are 0.45, 0.25, −0.047, −0.088, −0.26 and −0.32, respectively. The black
curves are the loci of codimension-one bifurcations labelled as follows: HB: Hopf bifurcation,
SN: saddle-node bifurcation (or SNIC), HC: homoclinic bifurcation, and SNC: saddle-node
bifucation of limit cycle. The labels for the codimension-two bifurcations are explained in
Table 3.2. The invariant sets that exist in each region are listed in Table 3.3.
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As we decrease the value of v̄3 a Bogdanov-Takens bifurcation (Takens, 1974; Bog-

danov, 1975), denoted BT1, occurs on the saddle-node locus SN1 at v̄3 ≈ 0.3792. This

is a codimension-two point from which loci of homoclinic and subcritical Hopf bifurca-

tions emanate, denoted HC and HB1. As known from the theory of Bogdanov-Takens

bifurcations (Kuznetsov, 1995) and as seen in Fig. 3.5a these loci are tangent to SN1 at

the codimension-two point. Thus for a slice below BT1, such as l2 for which v̄3 = 0.25,

apart from the saddle-node bifurcations already observed there are now also homoclinic

and Hopf bifurcations between which there exists an unstable limit cycle, Fig. 3.5c.

Observe also that upon crossing BT1 the interval of values of v̄1 in which the system is

bistable changes from endpoints at SN2 and SN1 (for l1) to endpoints at SN2 and HB1

(for l2). The system in the case of line l2 goes through regions 1○ → 3○ → 5○ → 2○

→ 1○ as v̄1 decreases.

As the value of v̄3 is decreased further, HB1 shifts to the left and a locus of saddle-node

bifurcations of the limit cycle, SNC, emanates from the codimension-two point RHom

on HC at v̄3 ≈ 0.0095, see Fig. 3.6a. Thus below this point there exists a stable limit

cycle between SNC and HC, such as for the slice l3, Fig. 3.6b. For this slice, as the

value of v̄1 is decreased stable oscillations are created at HC. The system passes from

region 1○ → 3○ → 8○ → 6○ → 2○ → 1○. Here there is a small region of tristability:

stable oscillations coexist with two stable equilibria, see Fig. 3.7.

Upon further decrease of v̄3 the locus HC collides tangentially with SN2 at the codimension-

two point NSH1. This is known as a non-central saddle-node homoclinic bifurcation,

see for instance (Govaerts and Sautois, 2005). The collision produces the locus SNIC.

Thus immediately below NSH1 the system exhibits Type I excitability. The system

transitions from a stable equilibrium to a stable limit cycle at the SNIC bifurcation,

such as for the slice l4, Fig. 3.6c (and as described earlier, Fig. 3.1b). Thus the point

NSH1 marks the onset of Type I excitability. This has been observed previously for the

reduced Morris-Lecar model with external current (Tsumoto et al., 2006). For slice l4,
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Figure 3.5: (a) An enlargement of Fig. 3.4 showing lines l1 and l2. The filled diamond
is a Bogdanov-Takens bifurcation. (b) A one-parameter bifurcation diagram along l1 with
v̄3 = 0.45. (c) A one-parameter bifurcation diagram along l2 with v̄3 = 0.25. HB: Hopf
bifurcation, SN: saddle-node bifurcation, SNC: saddle-node bifurcation of a limit cycle, HC:
homoclinic bifurcation.
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as v̄1 decreases the system goes through region 1○→ 3○→ 4○→ 7○→ 1○ as labelled

in Fig. 3.6a.

Upon further decrease to the value of v̄3 a second Bogdanov-Takens bifurcation, de-

noted BT2, occurs on the SN1 locus at v̄3 ≈ −0.2429 (see Fig. 3.8b). This generates

loci of homoclinic and supercritical Hopf bifurcations. The homoclinic locus termi-

nates nearby at another NSH2 bifurcation where the SNIC locus reverts to a locus of

saddle-node bifurcations. The slice l5, Fig. 3.8c, is below these two codimension-two

points. Here the system exhibits Type II excitability as stable oscillations are created

at the Hopf bifurcation. This shows that the transition between Type I and Type II

excitability for the parameter regime we have considered is governed by the Bogdanov-

Takens bifurcation BT2, and this is in agreement with the result in (Zhao and Gu,

2017) where the authors studied bifurcation mechanisms induced by autapse in the

Morris-Lecar model. As v̄1 decreases, the system passes from region 1○ → 3○ → 8○

→ 6○ → 2○ → 1○ as labelled in Figs. 3.8a–b.

Finally, as v̄3 is decreased further the Hopf locus HB1 changes from subcritical to su-

percritical at a generalised Hopf bifurcation at v̄3 ≈ −0.2708 and the saddle-node loci

SN1 and SN2 collide and annihilate in a cusp bifurcation CP at v̄3 ≈ −0.2727. Below

these two codimension-two points the only bifurcations that remain are two supercriti-

cal Hopf bifurcations. The slice l6, Fig. 3.9, shows a typical bifurcation diagram where

the system passes through region 1○→ 4○→ 1○ as v̄1 decreases. Here the excitability

is Type II and there is no bistability.

From the analysis above, we see that the model (2.2.6)–(2.2.7) can transition between

Type I and Type II excitability as v̄3 varies. Thus, if we require to model SMC

activity with Type I behaviour then we set v̄3 values between NSH1 ≈ −0.0817 and

NSH2 ≈ −0.2586; and if we require to model SMC activity with Type II activity we

set v̄3 < NSH2. For v̄3 < −0.7879, the system is neither Type I or Type II in the range

of v̄3 considered in this thesis.
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Figure 3.6: (a) An enlargement of Fig. 3.4 showing lines l3 and l4. The filled circle is a non-
central saddle-node homoclinic bifurcation. (b) A one-parameter bifurcation diagram along
l3 with v̄3 = −0.047. (c) A one-parameter bifurcation diagram along l4 with v̄3 = −0.088.
HB: Hopf bifurcation, SN: saddle-node bifurcation, SNC: saddle-node bifurcation of a limit
cycle, SNIC: saddle-node on an invariant circle bifurcation, HC: homoclinic bifurcation.
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Figure 3.7: A phase portrait of the nondimensionalised model (2.2.6)–(2.2.7) on line l3 at
v̄3 = −0.047 showing tristability. The blue and red curves are stable and unstable limit
cycles. The magenta and orange curves are the nullclines for N and V . The black curves
are the solution trajectories. The blue and red circles are stable and unstable equilibria.

3.3.2 Bifurcations in (v̄1, v̄L)-plane

Here we will investigate the range of v̄L for which the model (2.2.6)–(2.2.7) can tran-

sition between Type I and Type II excitability. Fig. 3.10a is the two-parameter bifur-

cation diagram in the (v̄1, v̄L) plane with enlargements in Figs. 3.10b and 3.10c. The

black curves are the loci of codimension-one bifurcations labelled as in Fig. 3.4. It com-

pose of eight different regions with dynamical behaviour qualitatively similar to regions

1○- 8○ in Fig. 3.4. When other parameters are fixed with decreasing v̄L, it is seen in

Fig. 3.10a that for sufficiently large values v̄L there exists two supercritical Hopf bifur-

cations HB1 and HB2, between which there exists a stable limit cycle. This behaviour

is characteristic of Type II excitability. As we decrease the value of v̄L a generalised

Hopf bifurcation, denoted GH, occurs on the Hopf bifurcation HB1 at v̄L ≈ −0.6955.

At the GH point, the locus of saddle-node of limit cycle SNC emanates. Also HB2

changes from supercritical to subcritical. Below this point, apart from the two Hopf
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Figure 3.8: (a) An enlargement of Fig. 3.4 showing lines l5 and l6 (b) An enlargement of
panel (a). (c) A one-parameter bifurcation diagram along l5 with v̄3 = −0.26. (d) An
enlargement of panel (c). HB: Hopf bifurcation, SN: saddle-node bifurcation, SNC: saddle-
node bifurcation of a limit cycle.
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HB
2
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1

Figure 3.9: A one-parameter bifurcation diagram along l6 with v̄3 = −0.32 (shown in Figs. 3.4
and 3.8a). HB: Hopf bifurcation.

bifurcations already observed there are now two saddle-node bifurcations SN1 and SN2

which collide and annihilate in a cusp bifurcation CP at vL ≈ −0.7620.

With decreasing v̄L, a Bogdanov-Takens bifurcation, denoted as BT1 appears on the

saddle-node locus SN1 at v̄L ≈ −0.7918. The loci of homoclinic and supercritical Hopf

bifurcations emanate at BT1. The locus of the homoclinic bifurcation HC collides

with SN2 at a non-central saddle-node homoclinic bifurcation NSH1 to the locus of

saddle-node on an invariant circle (SNIC). Thus below BT1 the system exhibits Type I

excitability and this shows that model (2.2.6)–(2.2.7) transitions from Type II to Type

I via the Bodganov-Takens bifurcation BT1. Upon further decrease in v̄L the SNIC

locus terminates at the NSH2 bifurcation where the homoclinic locus emanates from

the SN2 locus. The locus SNC that emanates from GH terminates on the locus HC at

the resonant homoclinic bifurcation RHom.

Finally, as v̄L is decreased further the loci of homoclinic and Hopf bifurcations terminate

at another the Bodganov-Takens bifurcation, BT2. Below BT2, the only bifurcations

that remains are the two saddle-node bifurcations SN1 and SN2. Our results show
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that to model Type II excitability SMC with (2.2.6)–(2.2.7) it requires v̄L values above

NSH1, whilst Type I excitability requires NSH2 < v̄L < NSH1.

3.4 Effect of Ion Conductances on Pacemaker Dy-

namics

In Chapter 2 we investigated the significance of maximal conductance of ion channels

on the pacemaker dynamics of SMC model (2.1.1)–(2.1.8). By blocking the maximal

conductances in turns, it was found that in the absence of leak current conductance

gL pacemaker activity persists, but does not persist if the conductances gCa and gK for

the Ca2+ and K+ currents are blocked (Fig. 2.5 shows an example). In this section

we analyse the effect of each maximal conductance on pacemaker dynamics of model

(2.2.6)–(2.2.7) independently through a bifurcation analysis. Also, we will analyse the

model behaviour in response to modulation of transmural pressure in the absence of

leak current (gL = 0).

Figure 3.11 shows the bifurcation diagram of the membrane potential V as gL, gK, and

gCa are varied. As seen in Fig. 3.11a, decreasing gL results in the generation of stable

periodic oscillations through a saddle-node on an invariant circle bifurcation, SNIC,

and the limit cycle changes stability through a saddle-node of cycle, SNC. The unstable

limit cycle terminates at the Hopf bifurcation HB. This behaviour corresponds to Type

I excitability. Similar behaviour is observed qualitatively when gCa is considered as a

bifurcation parameter except in reverse (see Fig. 3.11c). The bifurcation diagram of

the membrane potential V with gK as a bifurcation parameter is shown in Fig. 3.11b.

The onset of periodic oscillations is via a subcritical Hopf bifurcation HB1 where the

unstable periodic oscillations that emanate from HB1 changes stability at SNC. The

stable period oscillations terminates at a supercritical Hopf bifurcation HB2. Since the
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(a)

(b) (c)

Figure 3.10: A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–
(2.2.7) in the (v̄1, v̄L)-plane. Other parameter values as in Table 2.2; (b) and (c) are enlarge-
ments of Fig. 3.10a. The labels and conventions are as in Fig. 3.4, Table 3.2 and Table 3.3.
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oscillations begins at a Hopf bifurcation then the system exhibits Type II excitability

in this case. In Fig. 3.11(a)–(c), the system is bistable between the saddle-node of

cycles bifurcation SNC and the subcritical Hopf bifurcation HB; a stable limit cycle

coexists with a stable equilibrium solution.

Now we want to investigate how the system transitions between the two types of

excitability via two-parameter bifurcation analysis. Fig. 3.12 is a two-parameter bi-

furcation diagram of (2.2.6)–(2.2.7) in the (ḡCa, ḡL)-plane with other parameter values

fixed as in Table 2.2. The curves in Fig. 3.12 are loci of the saddle-node bifurcations

SN1 and SN2, Hopf bifurcations HB1 and HB2, saddle-node of limit cycles bifurcation

SNC, and the homoclinic bifurcation HC. Fig. 3.12 is divided into 6 parameter regions

depicted by different colours. . It includes the same types of codimension-two bifurca-

tions as those present in Fig. 3.4. Moreover the labels and conventions used here are

the same as those used in Fig. 3.4 (see Table 3.2, Table 3.3). Fig. 3.12 shows that the

model exhibits Type I excitability in the range 0.2369 ≤ ḡL ≤ 0.40. For this param-

eter regime the Hopf bifurcation HB2 is subcritical. A Bogdanov-Takens bifurcation,

denoted BT, occurs on the saddle-node locus SN1 at gL ≈ 0.2369. At the BT point,

loci of homoclinic and Hopf bifurcations emanate, denoted HC and HB1. The HB1

bifurcation in this case is supercritical and intersects with the locus of HB2 at a gen-

eralised Hopf bifurcation GH at ḡL ≈= −0.0303 . This is a codimension-2 point where

supercritical changes to subcritical. The homoclinic locus collides tangentially with

the SN2 locus at a non-central saddle-node homoclinc bifurcation NSH at ḡL ≈ 0.2236.

Finally, the saddle-node loci SN1 and SN2 collide and annihilate in a cusp bifurcation

CP at ḡL ≈ 0.0524. Below the CP point, the system has only the two Hopf bifurcations

HB1 and HB2. Hence for this parameter regime the model is Type II.



Section 3.4. Effect of Ion Conductances on Pacemaker Dynamics Page 75

(a)

SNC

HB

SN
2

SN
1

SNIC

(b)

HB
2

HB
1

SNC

(c)

SNC

HB

SN
1

SN
2
SNIC

Figure 3.11: Further bifurcation diagrams of (2.2.6)–(2.2.7). The values of the remaining
parameters as in Table 2.2.
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Figure 3.12: A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–
(2.2.7) in the (ḡCa, ḡL)-plane. Other parameter values as in Table 2.2; The labels and con-
ventions are as in Fig. 3.4, Table 3.2 and Table 3.3.

3.4.1 Pacemaker Dynamics in the Absence of Leak Conduc-

tance

Figure 3.13a is a one-parameter bifurcation diagram of (2.2.6)–(2.2.7) as v̄1 is varied

with gL = 0 and other parameters are fixed as in Table 2.2. At very low values of v̄1, the

system has a unique stable equilibrium. Upon increasing v̄1, the system loses stability

through a subcritical Hopf bifurcation HB1 ≈ −0.2617. The resulting unstable limit

cycle changes stability in a saddle-node of cycles SNC at v̄1 ≈ −0.2625. As v̄1 further

increases, the stable limit cycle branch ends in Hopf bifurcation HB2 at v̄1 ≈ 0.0167.

Since the onset of oscillations is through a Hopf bifurcation the excitability in this case

if Type II (Rinzel and Ermentrout, 1999). This result is different compare to the case

where ḡL is present in the model where we observed Type I excitability as v̄1 is varied.

Now we consider v̄3 as the bifurcation parameter keeping other parameters fixed as in
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Figure 3.13: Bifurcation diagrams of (2.2.6)–(2.2.7) with other parameter values as given
in Table 2.2. Solid (dashed) black curves represent stable (unstable) steady states. Solid
(dashed) magenta curves denote the stable (unstable) limit cycles. HB: Hopf bifurcation,
SNC: saddle-node of limit cycles.

Table 2.2. Variation of v̄3 produces the bifurcation diagram in Fig. 3.13b. This has the

same bifurcation structure as Fig. 3.13a except in reverse. Hence, increasing v̄3 results

in the same bifurcation points and qualitative changes to the dynamics as decreasing

the value of v̄1.

Figure 3.14 shows a two-parameter bifurcation analysis of (2.2.6)–(2.2.7) in (v̄1, v̄3)-

plane with enlargement in Fig. 3.14b. The curves are loci of the Hopf bifurcations,

HB1 and HB2, and saddle-node of limit cycles bifurcation SNC with variation of (v̄1

and v̄3) simultaneously. There exist three regions with three qualitatively different

types of dynamical behaviour, and the only codimension-two bifurcation observed is

the generalised Hopf bifurcation GH.

For sufficiently large values of v̄3 the system remains in a steady state as v̄1 varies.

For values of v̄3 between [−1.015, 0.621] exist two Hopf bifurcations. Decreasing v̄3 a

generalised Hopf bifurcation, denoted GH1, occurs on Hopf locus HB1 at v̄3 ≈ 0.4909.

At GH1, the Hopf bifucation HB1 changes from supercritical to subcritical. The SNC
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locus emanating from GH1 ends in another generalised Hopf bifurcation denoted by

GH4, thus between GH1 and GH4 the Hopf bifurcation HB1 is subcritical. From

Fig. 3.14 we conclude that when ḡL = 0 (i.e. the leak channel is blocked) the system

only exhibits Type II excitability. In contrast when ḡL takes the value in Table 2.1

the system exhibits both Type I and II excitability for what is otherwise for the same

parameter set.

(a) (b)

Figure 3.14: A two-parameter bifurcation diagram of the nondimensionalised model (2.2.6)–
(2.2.7) in the (v̄1, v̄3)-plane. Other parameter values as in Table 2.2; (b) is enlargement of
(a). The labels and conventions are as in Fig. 3.4, Table 3.2 and Table 3.3.

3.5 Discussion

The analysis of pacemaker dynamics in an isolated SMC model, namely (2.2.6)–(2.2.7)

in the absence of diffusion, shows that our results are in agreement with results of non-

pacemaker models in literature. This motivates us to further our investigation to gain

more insights into physical significance of model parameters on dynamical behaviours

of the model.
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In the model, v̄1 and v̄3 are transmural pressure-dependent parameters, and are treated

as the main bifurcation parameters, while v̄L and ψ are secondary bifurcation param-

eters. Under the parameter regimes considered, the system undergoes periodic oscil-

lations through a SNIC bifurcation as v̄1 is varied, meaning the model exhibits Type

I excitability. Variation of v̄3 results in periodic oscillations through a Hopf bifurca-

tion, thus here the model exhibits Type II excitability. We investigated the transitions

between types of excitability using a two-parameter bifurcation analysis and observed

transitions in the (v̄1, v̄3) and (v̄1, v̄L) planes. These provide information on parameter

values for which (2.2.6)–(2.2.7) can model SMC activity of either Type I or Type II

excitability.

Finally in Sec. 3.4 we studied the effects of maximal conductances of ion channels on

the pacemaker dynamics. It was shown that in the absence of leak conductance, the

model exhibits only Type II behaviour in the parameter range considered.



4. Analysis of Coupled Model

Our goal is to gain insights into the collective behaviour of arterial SMCs due to

electrical coupling between adjacent cells under the influence of changes in transmural

pressure and concentration gradients of ions. In this chapter, we will analyse the

nondimensionalised reaction-diffusion model (2.2.6)–(2.2.7) introduced in Chapter 2 to

investigate the propagation of action potentials along a population of SMCs lining the

vessel wall. We will review the linear stability analysis to show that the spatiotemporal

pattern formation observed in the model is not due to diffusion-driven instability. Also,

we will briefly describe the numerical method used to approximate the solutions of the

model.

We conduct numerical simulations of diffusively coupled SMCs to study the spatiotem-

poral dynamics of the reaction-diffusion model. In particular, we examine the spa-

tiotemporal patterns that arise over a range of parameters considered in previous

chapters. Variation of model parameters results in wide range of spatiotemporal pat-

terns including non-stationary irregular spatiotemporal patterns, travelling pulses, and

fronts with irregular spatiotemporal oscillations. We will also study the effects of the

initial conditions on spatiotemporal dynamics of the model.

4.1 Linear Stability Analysis

Alan Turing (1952) hypothesised that spatially inhomogeneous patterns may arise in

a reaction-diffusion system if a spatially homogeneous steady state is stable in the

absence of diffusion and destabilised as result of diffusion. Such instability is referred

to as diffusion-driven instability or Turing instability. It has been established in recent

years that spatiotemporal patterns in a reaction-diffusion system can arise from small

perturbations to a spatially homogeneous steady state. In this section, we want show

80
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if the possible spatiotemporal pattern in (2.2.6)–(2.2.7) is due to Turing-instability or

whether it arises through some other mechanism.

Recall that our a reaction-diffusion system (2.2.6)–(2.2.7) is given by:

Vτ = D̄VXX + f(V,N),

Nτ = g(V,N),

(4.1.1)

where f(V,N) = −ḡL(V − v̄L) − ḡKN(V − v̄K) − ḡCaM∞(V )(V − 1) and g(V,N) =

λ(V )(N∞(V ) − N) are the reaction kinetics terms of V and N , and D̄ is a constant

diffusion coefficient. We assume that the spatial domain is a finite interval, Ω = [−L,L]

for some L > 0 and that V and N satisfy zero flux boundary conditions,

∂V

∂X
=
∂N

∂X
= 0, ∀X ∈ ∂Ω. (4.1.2)

Define (V ∗, N∗) as a spatially stable homogeneous steady state of (4.1.1), if

V (X, τ) = V ∗,

N(X, τ) = N∗,

(4.1.3)

is a solution to (4.1.1) where V ∗ and N∗ are constants. The steady state (V ∗, N∗) can

be found by solving the nonlinear system

f(V ∗, N∗) = 0, g(V ∗, N∗) = 0.

Now we want to examine the linear stability of (V ∗, N∗). Let
(
V0(X, τ), N0(X, τ)

)
be

a perturbation from the steady state, i.e. let

V0

N0

 =

V − V ∗
N −N∗

 . (4.1.4)
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Substituting (4.1.4) into (4.1.1) and expanding f and g in Taylor series in V , N about

(V ∗, N∗) we get,

V0

N0


τ

=

D 0

0 0


V0

N0


XX

+

f(V ∗, N∗) 0

0 g(V ∗, N∗)

+

fV fN

gV gN


V0

N0

+h.o.t,

(4.1.5)

We know f(V ∗, N∗) = 0 and g(V ∗, N∗) = 0. Ignoring the higher order terms (h.o.t),

we obtain the linearised system

V0

N0


τ

=

D 0

0 0


V0

N0


XX

+

fV fN

gV gN


V0

N0

 , (4.1.6)

where

fV fN

gV gN

 is the Jacobian matrix evaluated at (V ∗, N∗).

We assume a solution of the form (V0, N0)(X, τ) = βe(λτ+ikX), where β is a constant

vector, k is the wave number. Substituting this into (4.1.6),

λ 0

0 λ

β =

−k2D 0

0 0

β +

fV fN

gV gN

β, (4.1.7)

after rearranging we have

−k2D + fV − λ fN

gV gN − λ

β = 0. (4.1.8)

Equation (4.1.8) is homogeneous in β, thus it has nontrivial solution only if

∣∣∣∣∣∣∣
−k2D + fV − λ −fN

−gV gN − λ

∣∣∣∣∣∣∣ = 0. (4.1.9)
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The characteristic equation is

λ2 − λ
(
− k2D + fV + gN

)
+

(
− k2DgN + fV gN − gV fN

)
= 0, (4.1.10)

with characteristic roots

λ =
τ

2
±
√
τ 2 − 4δ

2
, (4.1.11)

where τ = −k2D + fV + gN and δ = −k2DgN + fV gN − gV fN . The eigenvalues of

the matrix are the temporal growth rates λ, by (4.1.10) they can be considered to be

functions of k. In the absence of diffusion, we know that the spatially homogeneous

steady state (V ∗, N∗) is stable and therefore the following two conditions hold:

(1) fV + gN < 0, (2) fV gN − fNgV > 0. (4.1.12)

The steady state of the system with diffusion is unstable if R(λ(k)) > 0 for some k 6= 0,

this can happen if either −k2D+fV +gN > 0 or −k2DgN +fV gN −gV fN < 0 for some

k 6= 0. Since the diffusion coefficient D is non-negative the first condition in (4.1.12)

ensures −k2D + fV + gN < 0, so we require −k2DgN + fV gN − gV fN < 0. For this to

happen DgN must be positive as a necessary condition since the second condition in

(4.1.12) is positive. In summary, the necessary conditions for diffusion-driven (Turing)

instability to occur in (2.2.6)–(2.2.7) are:

I. fV + gN < 0

II. fV gN − fNgV > 0

III. DgN > 0

Since (V ∗, N∗) depends greatly on the reaction kinetics and model parameters, δ can be

positive or negative. We will consider the parameter regimes where we have observed

a stable homogeneous steady state in the dynamics of our reaction kinetics. In the
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case of the parameter v̄1, we will consider three parameter regimes: before the Hopf

bifurcation HB1, between the two saddle-node bifurcations SN1 and SN2 and to the

right of SN2 on the bottom branch, see Fig. 3.1c. For all values of v̄1 considered in this

thesis, fN < 0, gV > 0, and gN < 0. For parameter regime SN1 < v̄1 < SN2, condition

III is violated due to gN = −ψ cosh
(
V−v̄3
2v̄4

)
< 0, as ψ and the function cosh

(
V−v̄3
2v̄4

)
are always positive, thus the conditions for diffusion-driven instability is not satisfied.

Similarly, condition III is violated due to gN < 0 for v̄1 below HB1 and v̄1 above

SN2 thus the diffusion-driven instability is not satisfied. Therefore, the spatiotemporal

patterns that may arise in the reaction-diffusion system in (2.2.6)–(2.2.7) are not due

to Turing instability.

4.2 Numerical Method

Different numerical techniques have been developed to approximate solutions for non-

linear PDEs, for example, finite difference methods, finite element methods, finite

volume methods, method of lines, and spectral methods (Cutlip and Shacham, 1998;

Trefethen and Embree, 2005; Schiesser and Griffiths, 2009; Olsen-Kettle, 2011; John,

2013). We use the method of lines (MOL) technique to find approximate solutions to

the reaction-diffusion system (2.2.6)–(2.2.7). This technique converts the PDE to a

system of ODEs by the discretisation of the spatial variable while the time variable

remains continuous. A numerical method for initial value ODEs is applied to approxi-

mate solutions to the PDE (Schiesser and Griffiths, 2009; Hiptmair et al., 2010). Using

the centred difference and second order central finite difference approximation to ap-

proximate the first and second partial derivatives of the membrane potential V with

respect to X, the approximation to the rate of change for some position Xi is given by

∂V (Xi)

∂X
≈ Vi+1 − Vi−1

2∆X
, (4.2.1)
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and

∂2V (Xi)

∂X2
≈ Vi+1 − 2Vi + Vi−1

∆X2
, (4.2.2)

where ∆X = 2L
M

, is the spatial step size and M , is number of grid points in X. Applying

(4.2.1)–(4.2.2) to (2.2.6)–(2.2.7) leads to

dVi
dτ

= D
Vi+1 − 2Vi + Vi−1

∆X2
− ḡL(Vi − v̄L)− ḡKNi(Vi − v̄K)− ḡCaM∞(Vi)(Vi − 1),

(4.2.3)

dNi

dτ
= ψλ(Vi)(N∞(Vi)−Ni), 2 ≤ i ≤M − 1. (4.2.4)

Equations (4.2.3)–(4.2.4) are system of 2M ODEs, before integrating the ODEs in τ ,

we must consider the boundary and initial conditions imposed on the problem.

4.2.1 Boundary Conditions

For all simulations in this research we use zero flux boundary condition, i.e. the flux

across the boundaries is zero. When i = M , (4.2.3) is defined as

dVM
dT

= D
VM+1 − 2VM + VM−1

∆X2
− ḡL(VM − v̄L)− ḡkNM(VM − v̄k)− ḡCaM∞(VM)(VM − 1),

(4.2.5)

where VM+1 is a point outside the grid in X; such a point is known as a fictitious point.

For equation (4.2.5) to be integrated, we need to assign a value to VM+1. Since the

point at i = M is a boundary point, we can obtain the value of VM+1 by approximating

the boundary conditions, ∂V
∂X

= ∂N
∂X

= 0, using the central difference approximation,

∂V

∂X
≈ VM+1 − VM−1

2∆X
= 0. (4.2.6)
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This implies VM+1 = VM−1, and substituting VM+1 into (4.2.5) we have:

dVM
dτ

= D
2(VM−1 − VM)

∆X2
− ḡL(VM − v̄L)− ḡkNM(VM − v̄k)− ḡCaM∞(VM)(VM − 1).

(4.2.7)

Similarly for i = 1, V2 = V0 such that

dV1

dτ
= D

2(V2 − V1)

∆X2
− ḡL(V1 − v̄L)− ḡkN1(V1 − v̄k)− ḡCaM∞(V1)(V1 − 1). (4.2.8)

Therefore, we integrate the ODE system for i = 2, · · · ,M − 1 using (4.2.3)–(4.2.4),

and (4.2.7) and (4.2.8) for i = 1 and i = M , respectively.

4.2.2 Initial Conditions

Since (4.2.2)–(4.2.3) is a system of M ODEs, M initial values are required for each of

the two variables. They are given as

V (0, Xi) = V0(Xi) and N(0, Xi) = N0(Xi), 1 ≤ i ≤M. (4.2.9)

It has been widely observed that spontaneous spatially inhomogeneous patterns can

be initiated through perturbation of homogeneous steady states (Murray, 2003; Zhang

and Zang, 2014). For all numerical simulations we perturb the initial value of the

variable V such that the initial conditions become

V0(Xi) = V ∗ +G(Xi) and N0(Xi) = N∗ (4.2.10)

where V ∗ andN∗ are homogeneous steady states of (2.2.6)–(2.2.7) and G(Xi), a smooth

function.

The numerical simulations are carried out in MATLAB using ODE45 to approximate
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the solutions V1(τ), · · · , VM(τ) and N1(τ), · · · , NM(τ). We approximate the solution

behaviour on a suitably large domain Ω = [−L,L]; the spatial mesh size is ∆X = 2L
M

.

The diffusion coefficient D = 0.0001 is chosen to be small relative to domain length so

as to prevent the interference of the boundaries. Changing D is equivalent to rescaling

space, and has no qualitative effect on the dynamics on an infinite domain therefore

its value is kept constant in our simulations. The values of other parameters are fixed

as in Table 2.2, unless otherwise stated.

4.3 Numerical Simulations

To observe spatiotemporal patterns in our simulation we perturbed the homogeneous

steady state using the Gaussian function G(Xi) = A0exp
(
−1

2

(
Xi−µ
σ

)2)
, where A0 is the

height of the curve, µ is the centre, and σ determines the spread of the curve. In our

simulations of (2.2.6)–(2.2.7) with A0 = 0.3, µ = 0, σ = 0.1, the Gaussian generally

initiates a pulse at the centre of the domain, which splits into two pulses that travels

across the domain in opposite directions as time progresses.

Variation of model parameters results in wide range of spatiotemporal patterns. Such

patterns have been observed in chemical systems (Merkin and Sadiq, 1996; Merkin

et al., 1996; Or-Guil et al., 2001), ecology (Kay and Sherratt, 1999; Pal et al., 2019), and

neurons (Keplinger and Wackerbauer, 2014; Lafranceschina and Wackerbauer, 2014).

Figure 4.1a shows the behaviour of the system over a total simulation time of τ = 500

with parameter values fixed as in Table 2.2. For these parameters, in the absence of

diffusion the system has a unique unstable equilibrium point surrounded by a stable

periodic orbit (see Fig. 3.1c). In Fig. 4.1a, the solution is homogeneous in space and

periodic in time except for the dynamics created by the Gaussian stimulus that initially

splits into counter-propagating pulses at the centre of the domain. As time progresses,

the pulse solutions destabilise, generating secondary pulses that travel inwards. The
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resulting interactions induce a complicated patterned structure in a roughly triangular

region bounded by the first two propagating pulses. The snapshot of the pulse solution

for times τ = 2, 20, 250 is shown in Figs. 4.1b, 4.1c, and 4.1d, respectively.
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Figure 4.1: (a) Space-time plot of the membrane potential V ; (b)–(d) Spatial distribution
of V at times τ = 2, 20, 250. The parameter values are as in Table 2.2.

We found in Chapters 1 and 2 that the behaviour of the solutions is dependent on the

parameters, for example a change in v̄1, v̄3 and ψ can lead to different solutions. Thus

in the next sections we will investigate the effect of varying the parameters on the

spatiotemporal dynamics of (2.2.6)–(2.2.7). In Sect. 4.1 we showed that the patterns

are not due to Turing instability, which required a stable steady state in the absence of

diffusion. In our subsequent expriments, we will investigate spatiotemporal dynamics
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for a wider range of parameter values, in particular where the steady state in absence

of diffusion may be stable or unstable.

4.3.1 Spatiotemporal Patterns with varying v̄1

The system (2.2.6)–(2.2.7) in the absence of diffusion (D = 0) undergoes a Hopf bi-

furcation, saddle-node bifurcation, and saddle-node on an invariant circle bifurcation

as the parameter v̄1 is varied, see Sec. 3.2. Transitions between these bifurcations

demarcate changes in the behaviour of solutions and this can affect the spatiotem-

poral behaviour of coupled cells. To show the behaviour of the solutions we vary

v̄1 ∈ [−0.5,−0.125], keeping other parameters fixed. The spatiotemporal solutions

of the membrane potential V for values v̄1 close to bifurcation points are shown in

Fig. 4.2.

For low values of v̄1, the solution quickly stabilises to the homogeneous steady state.

A typical example is shown in Fig. 4.2b for which v̄1 = −0.325 corresponding to the

left the Hopf bifurcation HB. Increasing v̄1 to the right of the Hopf bifurcation, an

interesting spatiotemporal pattern is observed at v̄1 = −0.265. The solution starts as

a pulse at the centre of the domain due to the initial perturbation. Then, as time

progresses, the pulse splits into two propagating pulses that transition to time-periodic

oscillations with inhomogeneous patterns at the back as they move across the domain,

as in Fig. 4.2c. Increasing v̄1, similar solution behaviour is observed for the values of

v̄1 between the Hopf bifurcation HB and the saddle-node bifurcation SN2. Figure 4.2d

shows the spatiotemporal result at v̄1 = −0.25. The low frequency oscillations observed

are due to a saddle-node on an invariant circle bifurcation, i.e. this value of v̄1 is close

to the SN2 bifurcation point.

Beyond SN2 the solution transitions from time-periodic oscillations to two pulses trav-

elling in opposite directions. Again the initial Gaussian perturbation splits into two
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pulses that destabilise resulting in irregular triangular patterns at the back of the pri-

mary pulses. Fig. 4.2e shows an example. Similar behaviour is observed for the value

of close to the right of the SN2. The initial perturbation induced traveling pulses that

travelled in opposite directions and annihilated one another upon collision that results

to the triangular patterns at the back of the pulses, as in Fig. 4.2f.

For relatively large values of v̄1, the system returns to the homogeneous steady state

rapidly after perturbation. Similar behaviour is observed for some values of v̄1 between

the two saddle node SN1 and SN2 bifurcations. The solution behaviour to the left of

SN1 (see Fig. 3.1c), specifically at v̄1 = −0.230, is shown in Fig. 4.2g.

The spatial distribution of the membrane potential V for these parameter values at

different simulation times, τ = 3, 15, 50, 125, 250, 500 is shown in Fig. 4.3. This

shows again how solution starts as a Gaussian pulse that splits into two pulses which

destablise to create secondary waves that travel in opposite direction to the initial

pulses. As time progresses, the secondary waves collide with one another which results

in instability across the domain, see Fig. 4.3.

4.3.2 Spatiotemporal Patterns with varying v̄3

Here we study the spatiotemporal behaviour of the model varying v̄3 with other pa-

rameters fixed as in Table 2.2. Recall that in this case the system in the absence of

diffusion exhibits supercritical and subcritical Hopf bifurcations, see Fig. 3.2a. Results

of simulations for time up to τ = 500 are shown in Fig. 4.4. For extremely low values

of v̄3, the system returns quickly to the homogeneous steady state after a initial per-

turbation at the centre of the domain. Fig. 4.4c shows the behaviour at v̄3 = −0.3019

close to a supercritical Hopf bifurcation point. The system is in a quiescent state across

the domain except at the centre where the Gaussian stimulation creates a simple pulse

which turns to time periodic oscillations as time progresses. As v̄3 increases, the solu-
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Figure 4.2: Space-time plots of the membrane potential V . (b)–(g): v̄1 = −0.325, −0.265,
−0.25, −0.248, −0.240, and −0.230, respectively. Other parameters are fixed as in Table 2.2.
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Figure 4.3: Spatial distribution of the membrane potential V for times τ = 3, 15, 50, 125,
250, 500 in Fig. 4.2e.



Section 4.3. Numerical Simulations Page 93

tions start as a simple pulse but as time progresses the action potentials propagate to

the previously non-oscillatory region as observed in Fig. 4.4d at time τ = 200.

The behaviour of the solutions for intermediate values of v̄3 is shown in Fig. 4.4e.

Apart from the pulse initiated by the Gaussian stimulus at the centre, time-periodic

oscillations homogeneous in space are observed across the entire domain, and this cor-

responds to the stable limit cycle observed in this parameter regime in the bifurcation

diagram in Fig. 3.2a for the uncoupled cell. Increasing v̄3, Fig. 4.4f depicts the solution

behaviour before the subcritical Hopf bifurcation point. The system exhibits stable

synchronised temporal oscillations across the entire domain except at the centre where

the initial stimulus creates a pulse of propagating action potentials. As time progresses,

secondary pulses emanate behind the main pulses and the secondary pulses collide to

form irregular oscillations at the centre which eventually spread across the domain.

As v̄3 increases beyond the subcritical Hopf bifurcation point, periodic oscillations are

observed for a short time across the entire domain, then stabilise to the homogeneous

steady state, see Fig. 4.4g.

4.3.3 Spatiotemporal Patterns with varying ψ

As we saw in Fig. 3.3a, when the parameter ψ is increased for the system in the absence

of diffusion, stable periodic oscillations are created in a homoclinic bifurcation and

then are destroyed in a supercritical Hopf bifurcation. The spatiotemporal behaviour

of solutions for various values of ψ is shown in Fig. 4.5. For extremely low values of

ψ, the initial perturbation created a pulse at the centre of the domain and as time

progresses the pulse splits into two travelling pulses propagating in opposite direction

at the same speed. A slight increase in ψ leads to a destabilisation of the pulses that

results in an initiation of secondary pulses travelling in the opposite direction to the

primary pulses. Increasing ψ further results in the collision of the secondary pulses
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Figure 4.4: Space-time plots of the membrane potential V . (b)–(g): v̄3 = −0.3462, −0.3019,
−0.2813, −0.23842, −0.1725, and −0.05565, respectively. Other parameters are fixed as in
Table 2.2.
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and eventually irregular oscillations occur across the spatial domain. Interestingly, as

ψ varies past the homoclinic bifurcation, the unstable pulses transition to travelling

fronts connecting a stable steady state to an unstable state with irregular oscillations

at the back of the fronts. However, as ψ increases further, the upper unstable branch

changes stability at a supercritical Hopf bifurcation so beyond the Hopf bifurcation

point the system has two stable steady-state solutions. Finally, for large values of ψ the

solution eventually transitions to travelling fronts propagating in opposite directions.

In this case the front connects the two stable steady states shown in Fig. 3.3a. The

solution profile at time τ = 300 shows the transitions from travelling pulses to complex

spatiotemporal patterns to travelling fronts as ψ is varied.

4.3.4 Effect of Changing the Initial Perturbation

In this section, we change the initial perturbation to investigate the effect of initial

conditions on the qualitative behaviour of solutions. Fig. 4.7 shows the spatiotemporal

patterns observed in the model varying v̄1 with other parameters fixed and initial stim-

ulus G(Xi) = εXi, where ε is a small number. For low values of v̄1, the system returns

quickly to the homogeneous steady state after a short sequence of periodic oscillations.

By increasing v̄1, we observed a pulse (wave train) of propagating action potentials

moving across the domain as time progresses. Specifically, examples of such behaviour

are illustrated in Fig. 4.7b and Fig. 4.7c. This behaviour corresponds to the stable

periodic orbit observed in the bifurcation diagram of the uncoupled cell (see Fig. 3.1c).

As v̄1 increases further, the solution transitions to single pulse that propagates across

the domain, and as time progresses a counter propagating pulse emanates from behind

the pulse. Behind the already existing two pulses are secondary pulses travelling in

opposite directions to the primary pulses, and collision of the secondary pulses result

in irregular oscillations that spread across the domain. Fig. 4.7d and Fig. 4.7e are

behaviour of solutions near the saddle-node on an invariant circle (SNIC) bifurcation
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Figure 4.5: Space-time plots of the membrane potential V . (b)–(g): ψ = 0.1, 0.12, 0.13, 0.2,
0.3, and 0.5, respectively. Other parameters are fixed as in Table 2.2. The solution transitions
from propagating pulses travelling in opposite direction to complex spatiotemporal patterns
to fronts travelling in opposite direction.



Section 4.3. Numerical Simulations Page 97

-3 -2 -1 0 1 2 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1
=0.1

-3 -2 -1 0 1 2 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1
=0.12

-3 -2 -1 0 1 2 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1
=0.15

-3 -2 -1 0 1 2 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1
=0.2

-3 -2 -1 0 1 2 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2
=0.3

-3 -2 -1 0 1 2 3

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2
=1.0

Figure 4.6: Solution profiles at time τ = 300 showing the transitions from travelling pulses
to spatiotemporal chaos and to fronts.
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in Fig. 3.1c. For values of v̄1 to the left of the first saddle-node bifurcation SN1, the

system goes back quickly to the homogeneous steady state after initial perturbation.

It is seen that the emergent spatiotemporal patterns seem similar to what we observed

in Sec. 4.3.1 for the parameter values of v̄1 considered except for Fig. 4.7c at where the

solution looks like travelling pulses for transient time. The spatiotemporal structure

for longer simulation time at v̄1 = −0.255 is shown in Fig. 4.8 and it is observed that

the solution behaviour is similar to Fig. 4.2d in long time.

Similarly, the dynamical behaviour of the model varying ψ with a straight line as the

initial perturbation is the same with the Gaussian stimulus in Sec. 4.3.3. In particular,

the spatiotemporal pattern for ψ = 0.12 is shown in Fig. 4.9, the result is similar to

Fig. 4.5c. The results in this section shows that the profile of the initial perturbation

does not seem to change the types of spatiotemporal patterns observed in the model.

4.3.5 Simulations with Two-Point Source

In this section we explore the spatiotemporal dynamics of (2.2.6)–(2.2.7) by perturbing

the homogeneous steady state at two spatial locations with same initial profile. Here,

we consider two Gaussian initial stimuli centred at X = ±1. The results of a simulation

for τ = 500 varying v̄1 are shown in Fig. 4.10. The perturbation creates a pulse at

points of stimulation while other regions remain at the homogeneous steady state across

the domain. The spatiotemporal patterns observed do not seem qualitatively different

from those produced in the case of single point source perturbation (Fig. 4.2).

For extreme low values of v̄1, the system stabilises at the homogeneous steady state

after a short time of periodic oscillations. A typical example is shown in Figs. 4.10a.

In some parameter regimes, the pulse created at the perturbed points splits into two

pulses propagating in opposite directions with irregular spatiotemporal patterns be-

tween the pulses. As time progresses, the right propagating pulse and left propagating
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Figure 4.7: Space-time plots of the membrane potential V . (a)–(f): v̄1 = −0.325, −0.265,
−0.25, −0.248, −0.246, and −0.245, respectively. Other parameters are fixed as in Table 2.2
and ε = 0.025.
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Figure 4.8: Space-time plot of the membrane potential V at v̄1 = −0.255 with a straight line
as the initial perturbation.
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Figure 4.9: Space-time plot of the membrane potential V for simulation time τ = 1000 at
ψ = 0.12 with a straight line as the initial perturbation.
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pulse from the two point sources coincide at the centre of the domain to create more

irregular patterns across the domain, see Figs. 4.10 (b)–(e). Finally, for extremely

high values of v̄1 the system goes to back quickly to the homogeneous steady state

after perturbation. This behaviour is shown in Fig. 4.10f. Similar analysis is carried

out for ψ, the spatiotemporal patterns observed seem to appear similar to those for a

one-point source for the same values of ψ in Fig. 4.5.

The effect of the distance between the point sources, say ρdiff , on the behaviour of

solutions is also considered. It is observed that the spatial locations of the point

sources do not affect the mechanisms and kind of patterns in the system except that

the waves coincide in short time if the point sources are close to each other while it

takes longer time for the collision of waves to occur for larger distance. Fig. 4.12 shows

the simulations with the same parameter value of ψ with two point sources at different

spatial locations. In Fig. 4.12a the distance between the point sources ρdiff = 2, the

waves collide at time τ = 176 while in Fig. 4.12b ρdiff = 4, the waves collide at time

τ = 368.

4.4 Discussion

We have studied in detail the spatiotemporal dynamics in a model of SMCs coupled

electrically through the gap junctions. We began our analysis by establishing by linear

stability analysis that the spatiotemporal patterns observed in the model are not due

to Turing instability but as a consequence of the nonlinear dynamics of the system

in the absence of diffusion, plus the coupling effect of diffusion. We explained many

qualitative features of the spatiotemporal dynamics by referring to the bifurcation

analysis of the system in the absence of diffusion that was given in the preceeding

chapter.

To investigate the evolution of the model dynamics as time increases we perturbed
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Figure 4.10: Space-time plots of the membrane potential V with two Gaussian pulses centered
at X = ±1, respectively. (a)–(f): v̄1 = −0.325, −0.265, −0.250, −0.248, −0.240, and−0.230,
respectively. Other parameters are fixed as in Table 2.2.
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Figure 4.11: Space-time plots of the membrane potential V for simulation time τ = 500 with
two Gaussian pulses centred at X = ±1, respectively. (a)–(f): ψ = 0.1, 0.12, 0.13, 0.2, 0.3,
and 0.5, respectively. Other parameters are fixed as in Table 2.2. The solution transitions
from propagating pulses travelling in opposite direction to complex spatiotemporal patterns
to fronts travelling in opposite direction.
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Figure 4.12: Space-time plots of the membrane potential V for simulation time τ = 500 at
ψ = 0.2 with two Gaussian pulses centered at (a) X = ±1 with distance between the point
sources ρdiff = 2; (b) X = ±2 with distance between the point sources ρdiff = 4.

the centre of the domain with a Gaussian pulse. In general, the initial perturbation

induced counter propagating pulses that travel across the domain as time progresses.

By varying v̄1 we found some interesting patterns that depend on the parameter val-

ues. For values of v̄1 close to the left of the Hopf bifurcation the system returns to

the steady state quickly after short time-periodic oscillations. For values v̄1 to right

of the Hopf bifurcation, irregular triangular patterns are generated. This is due to

the destabilisation of the pulse initiated by the Gaussian stimulus. For values of v̄1

below and above the saddle-node SN2, spatiotemporal chaos is observed behind two

travelling pulses moving in opposite directions. The resulting patterns found in our

numerical simulations are similar to the one found in (Merkin et al., 1996; Hartle and

Wackerbauer, 2017).

We further explored spatiotemporal dynamics by varying ψ. For low values there exist

two stable counter propagating pulses initiated at center of the domain that travel

through the entire domain as time progresses. For intermediate values, secondary

pulses are produced behind primary pulses which further collide to create irregular

triangular patterns. Increasing ψ, to the right of the Hopf bifurcation the pattern

transitions to two travelling fronts moving in opposite directions.
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Finally, we investigated the effect of the profile of the initial perturbation on the spa-

tiotemporal dynamics of the model. The patterns observed when the initial perturba-

tion is changed to a straight line are similar to when a Gaussian pulse is considered

as the perturbation function. Therefore, we can conclude that the shape of initial

perturbation does not appear to have much effect on the type of spatiotemporal pat-

terns exhibited by the model provided an action potential is triggered by the initial

perturbation.



5. Travelling Wave Analysis of the

Reaction-Diffusion System

Travelling waves play a vital role in understanding many biological, physical, and

chemical systems, such as the propagation of signals in neurons (Hodgkin and Huxley,

1952), beams and pulses that travel through an optical fiber, solitary water waves in a

channel, flame fronts in chemical reactions, and synchronisation of cell cycles and cell

migration (Chang and Ferrell Jr., 2013; Yang et al., 2016). Travelling waves of electrical

activities in excitable cells are due to interactions between the cells. Emergence of

complex dynamics of such waves can sometimes cause tissue or cellular disorders, for

example, multiple propagation of fibrillation waves observed during heart contractions

(Moe et al., 1964; Pandit and Jalife, 2013).

In the previous chapter, we showed that the reaction-diffusion system (2.2.6)–(2.2.7)

exhibits different forms of travelling waves including propagating pulses and fronts

depending on model parameters. In this chapter, we will be concerned with the analysis

of travelling wave solutions for a range of parameter values where travelling waves have

been observed in our numerical simulations, to establish existence of the wave and

numerically approximate the wave speed. Also, we will investigate the stability of the

travelling wave as a solution of (2.2.6)–(2.2.7).

5.1 Existence of Travelling Waves via Wave Speed

Analysis

Travelling waves (TWs) are solutions to a partial differential equation on an infinite

domain which propagate with a fixed shape, and speed. To describe the TW profile we

106
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consider TWs with speed c > 0. Introducing the travelling wave variable, ζ = X − cτ ,

we now treat V and N as a function of ζ and τ . Equations (2.2.6)–(2.2.7) transform

to V
N


τ

= D

V
0


ζζ

+ c

V
N


ζ

+

f(V,N)

g(V,N)

 , (5.1.1)

where

f(V,N) = −ḡL(V − v̄L)− ḡKN(V − v̄K)− ḡCaM∞(V )(V − v̄Ca),

g(V,N) = λN(V )
(
N∞(V )−N

)
.

TWs are solutions to (5.1.1) that propagate without changing their profile at a constant

speed c. That is, TWs are stationary solutions to (5.1.1). These solutions satisfy

V
N


τ

= 0,

and hence, by (5.1.1), they satisfy the ordinary differential equation (ODE)

D

V
0


ζζ

+ c

V
N


ζ

+

f(V,N)

g(V,N)

 = 0. (5.1.2)

Equation (5.1.2) defines the spatial profile of the TW solution denoted by

P (ζ) =

V (ζ)

N(ζ)

 . (5.1.3)

We rewrite (5.1.2) as system of first order ODEs with ′ := d
dζ

; introducing a new
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variable W = V ′ to obtain

V ′ = W,

W ′ = − 1

D
(cW + f(V,N)),

N ′ = −1

c
g(V,N),

(5.1.4)

with boundary conditions:

lim
ζ→+∞

(V,W,N)(ζ) = (V+, 0, N+), lim
ζ→−∞

(V,W,N)(ζ) = (V−, 0, N−), (5.1.5)

where V± and N± are boundary values (or asymptotic states). We will refer to (5.1.4) as

the travelling wave ordinary differential equation (TWODE) system. The dependence

of terms on the right hand-sides of the TWODE system on c is significant in obtaining

the existence of TW solutions. Types of TWs commonly observed in excitable systems

are fronts, solitary pulses, and periodic wave trains. These are described below and

shown in Fig. 5.1.

Front: A travelling front tends to a constant as both ζ → −∞ and ζ →∞. It connects

two different asymptotic states, thus in the phase space of the TWODE system the

corresponding trajectory that connects the two states is a heteroclinic orbit.

Pulse: A travelling pulse is the same as a travelling front except the two asymp-

totic states are the same. This TW is represented by a homoclinic orbit since the

corresponding trajectory connects one equilibrium to itself.

Periodic wave trains: Periodic wave trains are TW solutions that are periodic in

ζ. Such TWs do not satisfy the constant boundary conditions (5.1.5). They are

represented by limit cycles in the phase space of the TWODE system.

Homogeneous waves: These are simply constant solutions and correspond to equi-

libria of the TWODE system.
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(a) Front (b) Heteroclinic trajectory

(c) Pulse (d) Homoclinic trajectory

(e) Periodic wave train (f) Limit cycle

Figure 5.1: A schematic diagram showing three different types of travelling waves and their
corresponding trajectories in the phase space of the TWODE system. The black dots corre-
spond to equilibria.



Section 5.1. Existence of Travelling Waves via Wave Speed Analysis Page 110

For some values of the parameter ψ, direct simulations of (2.2.6)–(2.2.7) result in trav-

elling pulses and fronts, respectively. For example, when ψ = 0.1 two stable counter-

propagating pulses are created, and they travel across the domain at approximate speed

c = 0.006182 (see Fig. 4.5b). Also, when ψ = 0.5 two stable counter-propagating fronts

are created, and they travel across the domain at speed c = 0.004155 (see Fig. 4.5g).

These speeds have been estimated directly from the numerical simulation results. Now,

we want to establish the existence of TW solutions for (2.2.6)–(2.2.7). That is, we want

to find the homoclinic and heteroclinic trajectories of (5.1.4) that correspond to such

TW solutions. A number of mathematical methods have been established to describe

the existence of TW solutions in a reaction-diffusion system, for example, the shooting

method (Ermentrout, 2002), singular perturbation theory (Merkin and Sadiq, 1996;

Cornwell and Jones, 2018), variational techniques (Chen and Choi, 2015), and the

factorisation method (Achouri, 2016).

We use the shooting method to numerically investigate the existence of TWs and to ap-

proximate their wave speed. The simulation procedure for the shooting methood is the

following: Given an n-dimensional system of ODEs, we can compute an equilibrium,

and evaluate its associated eigenvalues. If none of the eigenvalues lie on the imaginary

axis, then there are m eigenvalues with positive real parts and n−m eigenvalues with

negative real parts. Since the equilibrium is hyperbolic, by the stable manifold theo-

rem there exist unstable and stable invariant manifolds, Λ±, which are of m and n−m

dimensions respectively. Every point on Λ+ tends to the equilibrium as ζ → −∞, and

every point on Λ− tends to the equilibrium as ζ →∞.

The simulation of the TWODE system (5.1.4) was carried out in MATLAB. We first

numerically computed equilibria and their associated Jacobian matrices. The desired

homoclinic or heteroclinic trajectory was found by using, as an initial point, a point

perturbed from the corresponding equilibrium in a direction given by one of the eigen-

vectors of its Jacobian matrix. We solved (5.1.4) from this initial point (this is ‘shoot-
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ing’) and adjusted the value of c until the solution was approximately homoclinic (or

heteroclinic).

Specifically in case of the pulse, the solution travels away from the bottom steady state

to the top steady state and returns to the bottom steady state in the ODE system,

see Fig. 4.5b. Thus, we look for a trajectory that approaches the asymptotic state

(V,W,N) = (−0.7148, 0, 0.001764) as ζ → ±∞. The Jacobian matrix evaluated at

(V,W,N) has one positive eigenvalue and two negative eigenvalues for all c > 0. Thus,

there is a one-dimensional stable manifold and a two-dimensional unstable manifold.

We shoot from the bottom steady state along the one-dimensional manifold and vary

c > 0 until desired homoclinic trajectory is obtained. The wave speed we obtained by

shooting is c = 0.006116. This is very similar to the wave speed of the pulse solution

that we estimated from the simulation of (2.2.6)–(2.2.7) at ψ = 0.1. The plot of the

pulse profile for V is shown in Fig. 5.2a and its corresponding homoclinic trajectory in

(V,W,N) phase space is shown in Fig. 5.2b.
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Figure 5.2: (a) The solution profile of (2.2.6)–(2.2.7) and the travelling pulse V (ζ) with c =
0.006116 (b) Corresponding homoclinic trajectory representing the pulse in (a) connecting
the asymptotic state (V,W,N) = (−0.7148, 0, 0.001764) to itself in the (V,W,N) phase
space. The parameters are ψ = 0.1, D = 0.0001, c = 0.006116.
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From Fig. 4.5g, we can see that the travelling front connects the top and bottom steady

states of the ODE system. We followed a similar procedure to find the heteroclinic

trajectory that connects the asymptotic state µ2(V,W,N) = (−0.2935, 0, 0.1559) to

µ1 = (V,W,N) = (−0.7148, 0, 0.001764) as ζ → ±∞.

From Fig. 4.5g, we can see that the travelling front connects the top and bottom steady

states of the ODE system. We followed a similar procedure to find the heteroclinic

trajectory that connects the asymptotic state (V,W,N)− = (−0.2935, 0, 0.1559) to

(V,W,N)+ = (−0.7148, 0, 0.001764) as ζ → ±∞. The eigenvalues of the Jacobian

matrix J evaluated at (V,W,N)− and (V,W,N)+ has one stable and two unstable

eigenvalues. Thus, there is a one-dimensional stable manifold and a two-dimensional

unstable manifold. We shoot from the one-dimensional manifold of the top steady state

to approximate the heteroclinic by varying c until the desired trajectory is obtained.

The wave speed obtained by shooting was c = 0.0043 which is close to the wave speed

estimated from the simulation of (2.2.6)–(2.2.7) at ψ = 0.5. The plot of the front

profile for V (ζ) is shown in Fig. 5.3a and its corresponding heteroclinic trajectory in

(V,W,N) phase space is shown in Fig. 5.3b.

5.2 Stability Analysis of Travelling Waves

Now that TWs to (2.2.6)–(2.2.7) have been found, we now address their stability.

Stable propagating solutions can lose stability as model parameters are varied. A

typical example is shown in Fig. 4.5. A stability analysis of TW solutions thus provides

a more detailed understanding of the wave dynamics of the reaction-diffusion system.

Note that any translate P (ζ+α) of the wave P (ζ), with α ∈ R fixed, is also a TW. Here

we are concerned with the stability of a given TW, i.e. we are interested in solutions

whose initial conditions are small perturbations of the TW under consideration. If

every such solution stays close to the set of all translates of P (ζ) for all positive
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Figure 5.3: (a) The solution profile of (2.2.6)–(2.2.7) and travelling front V (ζ) with c =
0.006116 (b) Corresponding heteroclinic trajectory representing the front in (a) connecting
the asymptotic state (V,W,N) = (−0.2935, 0, 0.1559) to (V,W,N) = (−0.7148, 0, 0.001764)
in the (V,W,N) phase space. The parameters are ψ = 0.1, D = 0.0001, c = 0.006116.

times, and converges to a translate of P (ζ) as ζ → ∞ then we say that P (ζ) is

asymptotically stable. If there are initial conditions arbitrarily close to the wave such

that the associated solutions leave a small neighbourhood of the wave and its translates,

then the wave is unstable (Sandstede, 2002).

Different techniques have been used to investigate the stability the TWs, for example,

the shooting method (Ledoux et al., 2010), Hill’s method (Deconinck and Nathan,

2006), pseudospectra method (Trefethen and Embree, 2005). The major approach in

investigating the stability of a TW is the use of a linearisation criterion. This can be

achieved by linearising the PDE about the TW solution. The spectrum of the resulting

linear operator L provides information on the stability of the TW. If the spectrum is

entirely contained in the left half of the complex plane, then the TW is stable. If part

of the spectrum belongs to the right half of the complex plane, it is unstable (Jones,

1984; Eigentler and Sherratt, 2020).

A numerical continuation method for the computation of spectra of the linear opera-



Section 5.2. Stability Analysis of Travelling Waves Page 114

tor L was introduced by Sandstede (2002) and its implementation using the software

package AUTO was presented by Rademacher et al. (2007). A comprehensive analysis

of various aspects and concepts related to stability analysis of TW solutions using this

method is given by Kapitula and Promislow (2013). In the next section we provide the

setup required for the computation of the spectrum of the linear operator in a general

m-dimensional setting.

5.2.1 Spectral Analysis

Let D be a diagonal m × m matrix of diffusion coefficients with positive entries and

G(U) : Rm → Rm be a smooth function. We consider the reaction-diffusion system in

one spatial dimension given by

Uτ = DUxx +G(U), x ∈ R, τ ≥ 0, U ∈ Rm. (5.2.1)

We consider solutions to (5.2.1) of the form U(x − cτ, τ) such that in a moving coor-

dinate frame in the variable ζ = x− cτ with speed c > 0 we get

Uτ = DUζζ + cUζ +G(U). (5.2.2)

A travelling wave U(ζ, τ) = P (ζ) is a stationary solution to (5.2.2), thus

DPζζ(ζ) + cPζ(ζ) +G(P (ζ)) = 0. (5.2.3)

Rewriting the second order ODE system (5.2.3) as a first order system gives

Pζ(ζ) = Q(ζ),

Qζ(ζ) = − 1

D
(cQ(ζ) +G(P (ζ))) .

(5.2.4)
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Let εP̄ (ζ, t) for ε� 1 be a small perturbation from the TW solution, i.e. write

P (ζ, τ) = P (ζ) + εP̄ (ζ, τ). (5.2.5)

Substituting (5.2.5) into (5.2.2) and expanding G in a Taylor series about P (ζ) gives

P (ζ, τ) = LP̄ +O(ε), (5.2.6)

where L is the linear operator

L = D∂ζζ + c∂ζ + ∂UG(P (ζ)). (5.2.7)

The solution P (ζ) is said to be spectrally stable if the spectrum of the linear operator,

denoted by Σ(L) and defined below (see Definition 5.2.3), lies entirely in the left

half of the complex plane. If any elements of Σ(L) have positive real part, then the

corresponding travelling wave is spectrally unstable. By assuming the separation of

variables

P̄ (ζ, τ) = eλτΦ(ζ), (5.2.8)

we obtain the following eigenvalue problem:

λΦ = DΦζζ + cΦζ + ∂UG(P (ζ))Φ. (5.2.9)

The eigenvalue problem (5.2.9) can be written as a first order ODE system

T (λ)Φ :=

(
d

dζ
− A(ζ;λ)

)
Φ = 0, (5.2.10)

where T is a first order linear operator. The matrix function A(ζ;λ) ∈ C2m×2m can be
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written as

A(ζ;λ) = Ã(ζ) + λB(ζ), (5.2.11)

where

Ã(ζ) =

 0 I

− 1
D
∂UG(P (ζ)) − c

D

 , B(ζ) =

 0 0

− 1
D

0

 .

A(ζ;λ) is given by the asymptotic matrices A±(λ) as ζ → ±∞. A±(λ) is said to be

hyperbolic if the real part of all eigenvalues of A±(λ) is non-zero (i.e. Σ(A±(λ))∩ iR 6=

∅). The stable (unstable) subspaces associated with all eigenvalues with negative

(positive) real part of the asymptotic matrices A±(λ) are denoted as Es±(λ) (Eu±(λ)).

5.2.1 Definition. (Kapitula and Promislow, 2013) The Morse index of A±(λ), denoted

by i(A±(λ)), is the dimension of the unstable subspace associated to A±(λ):

i(A±(λ)) := i±(λ) = dim(Eu±(λ)). (5.2.12)

5.2.2 Definition. Let Ker(L) and R(L) denote the kernel and range of L. We say

that L is a Fredholm operator if

(a) Ker(L) is finite-dimensional,

(b) R(L) is closed with finite codimension.

The Fredholm index of a Fredholm operator is defined as

ind(L) = dim[Ker(L)]− codim[R(L)].

We now define the spectrum of an operator.

5.2.3 Definition. (Sandstede, 2002) We say that λ ∈ C is in the spectrum Σ of T if

T (λ) is not invertible. We say that λ ∈ Σ is in the point spectrum Σpt of T if T (λ) is

a Fredholm operator with index zero. We say that λ ∈ Σ is in the essential spectrum
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Σess if it is not in the point spectrum, i.e. Σ \ Σpt := Σess. The resolvent set of T is

defined as ρ = C \ Σ.

Kapitula and Promislow (2013) showed that the essential spectrum can be characterised

by the following set

Σess(L) = {λ ∈ C : i−(λ) 6= i+(λ)} ∪ {λ ∈ C : A±(λ) is not hyperbolic}. (5.2.13)

Next we come to spatial eigenvalues µ which are given by solutions to the characteristic

polynomial of A±(λ):

d±(λ, µ) := det(A±(λ)− µI) = 0. (5.2.14)

Equation (5.2.14) is known as the dispersion relation for L (or T ). It can be obtained

by substituting the ansatz Φ(ζ, τ) = eµζΦ̄(τ) into the eigenvalue problem (5.2.9). The

borders of Σess (also known as the Fredholm borders), denoted by ΣF(L), are then

given by the following curves in the complex λ-plane (Kapitula and Promislow, 2013):

ΣF := {λ ∈ C : d±(λ, ik) = 0, k ∈ R}. (5.2.15)

These curves correspond to the loss of hyperbolicity of A±(λ); therefore, the essential

spectrum depends solely on the behaviour of solutions at the asymptotic states as

ζ → ±∞.

5.2.2 Spectra of Different Wave Types

Here we briefly discuss the consequences of the results from Sec. 5.2 for the different

wave types observed in our system. For more details on this topic see (Sandstede, 2002;

Rademacher et al., 2007; Kapitula and Promislow, 2013).
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Homogeneous waves: Suppose P (ζ) is a homogeneous stationary solution, so that

P (ζ) = P0 ∈ Rm does not depend on ζ. In this case the coefficients of linearisation

about P0 are constant and the linearised solution u satisfies an equation of the form

du

dζ
= A0(λ)u, (5.2.16)

where A0(λ) is a linearised matrix evaluated at P0.

Equation (5.2.16) has a bounded solution on R if, and only if, the matrix A0(λ) is

non-hyperbolic. A complex number λ is in the essential spectrum of T if and only if

d0(λ, k) := det[A0(λ)− (ik)I] = 0, (5.2.17)

has a solution k ∈ R. The essential spectrum consists of curves λ(k) in the complex

plane, while the point spectrum of the homogeneous rest state is the empty set.

Fronts: Suppose that the TW solution P (ζ) is a front such that the limits

lim
ζ→±∞

P (ζ) = P± ∈ Rm (5.2.18)

exist and P± are homogeneous stationary solutions (asymptotic steady states). The

matrix A has limiting values

lim
ζ→±∞

A(ζ;λ) = A±(λ). (5.2.19)

Here λ is in the essential spectrum of T if either λ is in essential spectrum of P+ or

P− or else if the Morse indices of A± differ, i.e. i+(λ) 6= i−(λ). Also λ is in the point

spectrum of T if and only if the asymptotic matrices A±(λ) are both hyperbolic with

identical Morse indices i+(λ) = i−(λ).
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Pulses: Suppose that the TW solution P (ζ) is a pulse such that

lim
|ζ|→∞

P (ζ) = P0 ∈ Rm. (5.2.20)

The matrix A has one limiting value

lim
|ζ|→∞

A(ζ;λ) = A0(λ). (5.2.21)

Here λ is in the essential spectrum if the asymptotic matrix A0(λ) is not hyperbolic,

i.e. if λ is in the essential spectrum of the asymptotic steady state P0. Also λ is in the

point spectrum if and only if A0(λ) is hyperbolic. The major difference between this

case and that of the front above is that the Morse indices at ζ = −∞ and ζ = +∞ are

always the same.

5.2.3 Model Analysis

Having established the existence of travelling pulses and fronts in Sec. 5.1, we now

investigate their stability. As mentioned above, the stability of the TW is determined

by the spectrum Σ of the linear operator L in (5.2.7), which for system (2.2.6)–(2.2.7)

is

L :=

D∂ζζ + c∂ζ + fV fN

gV c∂ζ + gN

 . (5.2.22)

Note that in (5.2.22) D is a scalar whereas in the previous section it was a m × m

matrix. For the separation of variables in (5.2.8) we write

eλτΦ(ζ, τ) = eλτ
(
p̄(ζ), q̄(ζ)

)T
. (5.2.23)
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Substituting (5.2.23) into (5.2.22) gives the eigenvalue problem
(
L− λI

)
Φ̄ = 0 which,

in full, is given by

λ

p̄
q̄

 =

D∂ζζ + c∂ζ + fV fN

gV c∂ζ + gN


p̄
q̄

 . (5.2.24)

We can rewrite (5.2.24) as the following system of first order ODEs

p̄′ = r̄,

r̄′ = − c

D
r̄ +

1

D

(
λ− fV

)
p̄− 1

D
fN q̄,

q̄′ = −1

c
gV p̄+

1

c

(
λ− gN

)
q̄,

(5.2.25)

where ′ = d
dζ

. The operator L − λI is equivalent to the operator T (λ) given by

T (λ)


p̄

r̄

q̄

 :=

(
d

dζ
− A(ζ;λ)

)
p̄

r̄

q̄

 , (5.2.26)

where

A(ζ;λ) =


0 1 0

1
D

(
λ− fV

)
− c
D

− 1
D
fN

−1
c
gV 0 1

c

(
λ− gN

)
 . (5.2.27)

Note that the dependence of A(ζ;λ) on ζ is through the underlying wave P (ζ); thus,

the matrix A(ζ;λ) tends to asymptotic matrices A±(λ) as ζ → ±∞. These limiting

matrices are given by

A±(λ) =


0 1 0

1
D

(
λ− fV (P±)

)
− c
D

− 1
D
fN(P±)

−1
c
gV (P±) 0 1

c

(
λ− gN(P±)

)
 , (5.2.28)



Section 5.2. Stability Analysis of Travelling Waves Page 121

where

fV
(
P±
)

=

[
− ḡL − ḡKN(P±)− ḡCa

2v̄2

(
1− tanh2

(
V (P±)− v̄1

v̄2

))
(V (P±)− v̄Ca)

− ḡCa

2

(
1 + tanh

(
V (P±)− v̄1

v̄2

))]
,

fN
(
P±
)

= −ḡK(V (P±)− v̄K),

gV
(
P±
)

=
ψ

2v̄4

[{
1

2

(
1 + tanh

(
V (P±)− v̄3

v̄4

))
−N(P±)

}
sinh

(
V (P±)− v̄3

2v̄4

)]

+
ψ

2v̄4

[
cosh

(
V (P±)− v̄3

2v̄4

)(
1− tanh2

(
V (P±)− v̄3

v̄4

))]
,

gN
(
P±
)

= −ψ cosh

(
V (P±)− v̄3

2v̄4

)
.

For our system, from (5.2.14) and (5.2.28) we obtain the following cubic polynomial

for the dispersion relation term

d±(λ, µ) = −µ
[(
− c

D
− µ

)(λ− gN
c

− µ
)]
−
[(

λ− fV
D

)(
λ− gN
c

− µ
)
− fNgV

cD

]
= −cDµ3 +

[
D(λ− gN)− c2

]
µ2 +

[
c(λ− gN) + c(λ− fV )

]
µ

−
[
(λ− fV )(λ− gN)− fNgV

]
= 0.

(5.2.29)

Substituting µ = ik for some k ∈ R into (5.2.29) we obtain

d±(λ, ik) = (−D(ik)2 + ick + fV − λ)(ick + gN − λ)− fNgV = 0. (5.2.30)

Solving d±(λ, ik) = 0 for λ gives

λ2 − (−Dk2 + 2cik + fV + gN)λ+ ((k2D + ick + fV )(ick + gN)− fNgV ) = 0.

(5.2.31)
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For a particular wave number k, the solutions to (5.2.31) are

λ =
τ ±
√
τ 2 − 4δ

2
, (5.2.32)

where

τ = −k2D + ick + fV + gN , (5.2.33)

δ = (−k2D + ick + fV )(ick + gN)− fNgV . (5.2.34)

We begin our analysis with spectral stability of homogeneous steady states. Following

Sandstede (2002), it is sufficient to study the essential spectrum to determine the

stability of the homogeneous steady state, as the point spectrum is always empty. The

steady states of the reaction terms of (2.2.6)–(2.2.7) are spatially homogeneous steady

state solutions in the reaction-diffusion system and the steady states to the TWODE

system (5.1.4).

-1 -0.8 -0.6 -0.4 -0.2 0

V

-0.1

0

0.1

0.2

0.3

0.4

0.5

N

A B

C

Figure 5.4: V and N nullclines for the nondimensionalised model (2.2.6)–(2.2.7) at v̄1 =
−0.225. Magenta and black curves represent the V -nullcline, and N -nullcline, respectively.
The blue and red filled circles are the steady states, A (stable), B and C (unstable). Other
parameter vaklues as in Table 2.2.

To calculate the essential spectrum of homogeneous steady state we will focus on values

of v̄1 between SN1 and SN2 where the system has three steady states. Fig. 5.4 shows
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the nullclines of the state variables V and N at v̄1 = −0.225, the three intersections

correspond to the steady states, A is stable node, B is a saddle point, and C is an

unstable focus. The TWODE system (5.1.4) and the eigenvalues of its linearised system

depend on the wave speed c. Thus for the range of values of c considered in this thesis,

the steady states A, B and C are saddle points in the TWODE system.

To compute the essential spectra of the operator associated with homogeneous steady

states A, B and C we use the characteristic polynomial (5.2.31) following (5.2.17). Our

results are shown in Fig. 5.5. For steady state A, the curve of λ(k) lies entirely in the

left-half plane of the complex plane (Fig. 5.5a), whereas, for steady states B and C

the curves cross the imaginary axis (Fig. 5.5b and Fig. 5.5c). This indicates that A is

spectrally stable, but B and C are spectrally unstable.

We found that the stability of the essential spectrum depends on the location of the

steady state. For example, decreasing v̄1 moves the V -nullcine up which results in the

collision and annihilation of steady states A and B, and there is only one unstable

steady state, C remaining. As v̄1 decreases further, the system undergoes a subcritical

Hopf bifurcation and the steady state C becomes stable after the bifurcation point. A

typical example is shown Fig. 5.6a where the curve of λ(k) for C is contained in the

left half plane, for the value of v̄1 = −0.45.

Next we compute the essential spectra of the travelling pulse and fronts. In our nu-

merical simulations we observed travelling pulse at (v̄1, ψ) = (−0.2466, 0.1) with an

estimated wave speed c = 0.006116, see Fig. 5.7a. It satisfies the following boundary

conditions:

lim
|ζ|→∞

(V,W,N)(ζ) = (−0.7148, 0, 0.001764) = P0, (5.2.35)

which is an asymptotic state of (5.1.4). The essential spectrum is characterised by the

stability properties of the asymptotic state P0 with the associated asymptotic matrix
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(a) (b)

(c)

Figure 5.5: Essential spectra of steady states A, B, and C for v̄1 = −0.225 with c = 0.006116.

(a)
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Figure 5.6: (a)–(b) Essential spectrum of steady state C for v̄1 = −0.45 with c = 0.006116.
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A0(λ) given by

A0(λ) =


0 1 0

1
D

(
λ+ 0.0262

)
− c
D

1
D

(0.4109)

−1
c
(0.0048) 0 1

c

(
λ+ 0.2555

)
 , (5.2.36)

A0(λ) is non-hyperbolic if at least one of its eigenvalues has zero real part. We then

compute the essential spectrum using the dispersion relation (5.2.14). The curve of

λ(k) in Fig. 5.7b lies entirely in the left half-plane in the complex plane, thus the

spectral stability of the pulse is determined by the stability of its point spectrum.

(a)
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400
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(b)

Figure 5.7: (a) A travelling pulse solution (b) The essential spectrum of the pulse with wave
speed c = 0.006116 and D = 0.0001.

A travelling front with an estimated wave speed c = 0.004368 is observed at (v̄1, ψ) =

(−0.2466, 5.0), it satisfies the following boundary conditions:

lim
ζ→−∞

(V,W,N)(ζ) = (−0.2935, 0, 0.1559) = P− (5.2.37)

lim
ζ→+∞

(V,W,N)(ζ) = (−0.7148, 0, 0.001764) = P+, (5.2.38)

which are asymptotic states of (5.1.4). The stability of the front is determined by the
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properties of the asymptotic states P− and P+ with an associated asymptotic matrices

A−(λ) =


0 1 0

1
D

(
λ+ 0.0262

)
− c
D

1
D

(0.4109)

−1
c
(0.0484) 0 1

c

(
λ+ 2.5553

)
 , (5.2.39)

and

A+(λ) =


0 1 0

1
D

(
λ+ 0.0262

)
− c
D

1
D

(0.4109)

−1
c
(0.0484) 0 1

c

(
λ+ 2.5553

)
 . (5.2.40)

Similarly, A±(λ) is non-hyperbolic if at least one of its eigenvalues has zero real part.

The curve of essential spectrum for the asymptotic state P− is shown in Fig. 5.8b

and Fig. 5.8c shows the essential spectrum of asymptotic state P+. In both cases, the

curves lie entirely in the left-half of the complex plane, meaning the spectral stability

of the front is determined by the stability of its point spectrum.

Since the essential spectrum is determined by the asymptotic steady states P±, essential

spectrum instabilities of the front occur if one of the asymptotic steady states becomes

unstable. The mechanisms of essential instability of fronts in reaction-diffusion systems

are Turing, Hopf or Turing-Hopf bifurcations (Sandstede and Scheel, 2001). These

bifurcations cause spatially periodic patterns behind or ahead the front depending on

the direction of propagation. Such fronts are called modulated fronts. Our numerical

simulations exhibit modulated travelling front for some parameter values of ψ. A

typical example is shown in Fig. 5.9a for ψ = 0.3. The essential spectrum at P+ is the

same as in Fig. 5.8c while the essential spectrum of P− is shown in Fig. 5.9b, the curve

lies on the right-half plane in the complex plane meaning the essential instability of the

front occurs due to loss of stability of the asymptotic state P− behind the front. The
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Figure 5.8: (a) A travelling front that connects homogeneous steady states V = −0.2891 to
V = −0.7141. (b)–(c) Essential spectra of the front for asymptotic state P− and P+ with
wave speed c = 0.0043.
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onset of essential instability is due to a Hopf bifurcation in the dynamics of (2.2.6)–

(2.2.7). As explained in Sandstede and Scheel (2001) at the onset of instability, patterns

are created close to the steady state and this behaviour is observed in Fig. 5.9a.
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200

300

400

500

(b)

Figure 5.9: (a) A space-time plot of modulated front to (2.2.6)–(2.2.7) at (v̄1, ψ) =
(−0.2466, 0.3) (b) The essential spectrum of the front for asymptotic state P−.

5.3 Discussion

In this chapter we studied the TW solutions to the reaction-diffusion system (2.2.6)–

(2.2.7). To describe the profile of the TW solutions, the system (2.2.6)–(2.2.7) is

transformed via the TW ansatz to the system of ordinary differential equations called

TWODE, (5.1.4). We established the existence of right moving travelling pulses and

fronts numerically with the shooting method, and it was shown that the estimated

wave speed in the TWODE system is very close to the wave speed observed in the

numerical simulations.

We investigated the stability properties of homogeneous steady states, pulses, and

fronts. The stability of these TWs was determined by the location of the spectrum

of the linear operator L in the complex plane. The spectrum of L, denoted by Σ,
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can be partitioned into the essential spectrum Σess and the point spectrum Σpt. For

the homogeneous steady state the point spectrum is empty thus knowledge of the

essential spectrum is sufficient to determine stability. Our results show that, as one

would expect, the stability of the homogeneous steady-states is different for different

parameter values.

Also, we found that the essential spectrum of the travelling pulse is contained in the left-

half of the complex plane provided the asymptotic state is stable. Similarly, this occurs

for the travelling front provided the asymptotic states that connect the front are both

stable. For some parameter values of ψ, the travelling front is unstable due to instability

of the asymptotic state behind the front. The onset of the essential instability occurred

due to a Hopf bifurcation, and this results in spatiotemporal patterns close to the

unstable steady state.

The condition that the essential spectrum is contained in the left-hand plane is not

sufficient for the stability of travelling pulse and front since their point spectrum is not

empty. Although we did not analyse the point spectrum in this thesis, it is important

and remains for future studies.



6. Conclusion

This thesis aimed to study the collective dynamics of electrically coupled pacemaker

SMCs. Our work is motivated by a model that describes stationary vasomotion of the

vessel in arterial SMCs developed by Gonzalez-Fernandez and Ermentrout (1994). We

proposed a reaction-diffusion system to model the electrical coupling of membrane po-

tential between neighbouring cells. We presented a detailed analysis of spatiotemporal

dynamics of the model in one-dimensional domain.

The local dynamics of the reaction-diffusion system (2.1.1)–(2.1.8) under variation of

model parameters are analysed to study the electrical activity of an isolated SMC. We

first studied the role of ion channels on the pacemaker dynamics of the SMC model.

We found that the pacemaker activity persisted if the leak current conductance is

blocked i.e. gL = 0, but absent if the conductances for the Ca2+ and K+ currents are

blocked i.e. gCa = 0 and gK = 0 in turn. The implication of this is that the Ca2+

and K+ currents are required for the pacemaker activity. Existing studies have in-

vestigated the effect of mechanical stimulation on the pacemaker electrical activity of

SMCs. We reproduced some of these behaviours in our pacemaker model by modulat-

ing parameters associated with the ion currents and gating variables, specifically the

pressure-dependent parameters, v1 and v6, respectively. The numerical results showed

that the cell is either excitable, nonexcitable, or oscillatory depending on the model

parameters.

The full reaction-diffusion system was reduced to two equations, we further simplified

the model through dimensional analysis. The dynamics of the nondimensionalised

version of the reduced model (2.2.1)–(2.2.2) in the absence of diffusion term with

pressure dependent parameters, v̄1 and v̄3 (correspond to v1 and v6 in the full model),

revealed that the behaviour of solutions observed is qualitatively similar to the full

model. Thus the full model can be approximated by the reduced model, to further

130
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our understanding of the model behaviours we performed phase plane analysis of the

nondimensionalised model (2.2.6)–(2.2.7). It provided information on how the solutions

of the system change due to variation of parameters.

We then performed numerical bifurcation analysis to gain more insights into physical

significance of model parameters on dynamical behaviours of the model. With the aid

of bifurcation diagrams, we showed that the reduced model preserved the dynamical

properties of the full model qualitatively. We considered the transmural pressure-

dependent parameters, v̄1 and v̄3, as the main bifurcation parameters, and the rate

constant for the kinetics of the open K+ channel and the Nerst reversal potential of

the leak channel, ψ and vL, as secondary bifurcation parameters. The model exhibited

the two types of excitability for excitable cells depending on how parameters are varied.

Variation of v̄1 results in Type I excitability and Type II excitability is observed as

v̄3 is varied. We computed two-parameter bifurcation diagrams in different parameter

planes to show transitions between the two types of excitability as parameters are

varied. These analysis provided information on parameter values for which we can

model SMC activity of either Type I or Type II excitability.

The numerical simulations of the nondimensionalised reaction-diffusion system showed

a wide variety of spatiotemporal behaviours such as travelling pulses, travelling fronts

and spatiotemporal chaos. We explored the mechanisms for the generation of patterns

in the system, we have found that the spatiotemporal patterns observed occurred as

a consequence of nonlinear dynamics of the reaction terms and effects of diffusion not

due diffusion-driven instability as often the case in reaction-diffusion systems. Transi-

tions between patterns are driven by the model parameters. For instance, the system

transitions from stable travelling pulses to travelling fronts as the rate constant for

the kinetics of the open K+ channel ψ is varied. We also showed that the shape of

the initial perturbation does not affect the type of spatiotemporal patterns exhibited

by the model. The precise mechanisms is not yet well understood therefore a more
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comparison of the results to that of other gap junction coupling models could provide

an insight as it has been previously established by Sherman and Rinzel (1991) and

Medvedev and Kopell (2001) that desynchronised oscillations occur in gap junctions

coupled pancreatic β-cells and neurons when the coupling strength is weak.

In addition, we examined the travelling wave solutions to the reaction-diffusion system.

We established the existence of travelling pulses and fronts observed in our numerical

simulations and showed how they relate to homoclinic and heteroclinic solutions in

travelling wave coordinates. Lastly, we presented a detailed analysis of spectral stability

of the travelling waves specifically we focused on the homogeneous waves, travelling

pulses and travelling fronts. We computed the essential spectra of the travelling waves

and as expected this depends on the parameter values.

In this thesis we have revealed that biologically important parameters v̄1, v̄3 and ψ affect

the type of excitability and nature of the oscillations more generally in our pacemaker

model. The results of the model agree with experimental observations on pacemaker

behaviour of smooth muscle cells (Meyer et al., 1983; Harder, 1984) and neural cells

(Connor, 1985; Ramirez et al., 2004). Harder (1984, 1987) observed in isolated small

cerebral arteries that changes in transmural pressure cause smooth muscle cells in the

arterial wall to become depolarised, followed by spontaneous electrical activity leading

to constriction of the vessel’s smooth muscles. It was reported that for small and large

values of transmural pressure, the SMC is in a relaxation state, that is, there are no

oscillations. For intermediate values of the transmural pressure oscillatory activity

corresponding to EMC is observed. These behaviours are observed in our analysis

of an isolated cell in Chapters 2 and 3 when the parameters, v̄1 and v̄3, that govern

transmural pressure in our model are varied, see Figs. 3.1c and 3.2a. Similar behaviours

were observed in the experiment of Osol and Halpern (1988). Also, contraction of the

vessel’s smooth muscle is abolished when ion channel blockers are added (Harder, 1984).

We observed similar results in our model analysis when the Ca2+ and K+ channels were
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blocked, see Figs. 3.12 and 2.5c.

It is hoped the results may find application in models and experimental studies of phys-

iological and pathophysiological responses in muscle cells. Certainly the observation

that the dynamics of SMCs are particularly sensitive to parameter values has been

utilised pharmacologically in therapeutics (Droogmans and Casteels, 1989; Pogátsa,

1994)

6.1 Future Work

In this thesis we have studied spatiotemporal dynamics in one spatial dimension, how-

ever the model can be extended to two-dimension setting. Hence, further studies can

be conducted on two-dimensional patterns in our reaction-diffusion system.

Some experimental and computational studies of SMCs have shown that voltage-

dependent inward Na+ current is important in EMC activity (Berra-Romani et al.,

2005; Ulyanova, 2020), thus incorporating the Na+ current into our model to study its

effect on pacemaker dynamics of SMCs is a future work.
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The codes provided below are available at github.com/hamfat

A.2 AUTO-07p Code

To produce the codimension-one and codimension-two bifurcation diagrams for the

nondimensionalised model in AUTO continuation software. The followings files are

required:

1. dimless.f: This file contains model equations, parameter values and initial con-

ditions.

2. c.dimless: This file contains AUTO constant parameters

3. dimless.auto: This plots the bifurcation diagrams

!----------------------------------------------------------------------

! "dimless.f"

!----------------------------------------------------------------------

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

! ---------- ----

IMPLICIT NONE

INTEGER, INTENT(IN) :: NDIM, ICP(*), IJAC

DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*)

DOUBLE PRECISION, INTENT(OUT) :: F(NDIM)

DOUBLE PRECISION, INTENT(INOUT) :: DFDU(NDIM,NDIM), DFDP(NDIM,*)

DOUBLE PRECISION V, N, v1, vca, vL, vK, v2, v4, gca, gL, gK, phin

DOUBLE PRECISION minf, v3, ninf, C, psi

V = U(1)

N = U(2)

https://github.com/hamfat/Massey_Thesis
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! bifurcation parameters

v1 = PAR(1)

v3 = PAR(2)

! model parameters

vca = 80.d0;

vL = (-70.d0/vca);

vK = (-90.d0/vca);

v2 = (25.d0/vca);

!v3 = (-11.d0/vca);

v4 = (14.5d0/vca);

gK = 3.1416E-13;

gca = (1.57E-13/gk);

gL = ((7.854E-14)/gk);

C = 1.9635E-14;

phin = 2.664d0;

psi=((C*phin)/gk)

!model equations and auxiliary functions

minf = (0.5d0*(1+tanh((V-v1)/v2)));

ninf = 0.5d0*(1+tanh((V-v3)/v4));

F(1) = -(gL*(V-vL)+N*(V-vK)+gca*minf*(V-1.d0));

F(2) = psi*cosh((V-v3)/(2.d0*v4))*(ninf-N);

END SUBROUTINE FUNC

SUBROUTINE STPNT(NDIM,U,PAR,T)

! ---------- -----

IMPLICIT NONE

INTEGER, INTENT(IN) :: NDIM

DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM),PAR(*)
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DOUBLE PRECISION, INTENT(IN) :: T

! initial values for the bifurcation parameters

PAR(1)=-0.5d0

PAR(2)=-0.1375

! initial conditions

U(1)=-0.18484d0

U(2)=0.37227d0

END SUBROUTINE STPNT

SUBROUTINE BCND

END SUBROUTINE BCND

SUBROUTINE ICND

END SUBROUTINE ICND

SUBROUTINE FOPT

END SUBROUTINE FOPT

SUBROUTINE PVLS

END SUBROUTINE PVLS

!-----------------------------------------------------

! "c.dimless"

!-----------------------------------------------------

NDIM= 2, IPS =1, IRS =0, ILP = 1

ICP = [1]

NTST= 500 NCOL= 4, IAD = 3, ISP = 1, ISW = 1, IPLT= -1, NBC= 0, NINT= 0

NMX= 1000, NPR= 50, MXBF= 5, IID = 2, ITMX= 8, ITNW= 7, NWTN= 3, JAC= 0

EPSL= 1e-7, EPSU = 1e-7, EPSS = 1e-5

DS = 0.02, DSMIN= 0.0001, DSMAX= 0.005, IADS= 1

NPAR= 25, THL = {11: 0.0}, THU = {}
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!--------------------------------------------------------------

! "dimless.auto" file

! run "auto dimless.auto" in the terminal

!--------------------------------------------------------------

r1=run(’dimless’)

#r1.writeRawFilename(’eq_curve.dat’)

r2=run(r1("HB1"),ISP=2,ICP=[1,11],IPS=2)

r2.writeRawFilename(’period_curve.dat’)

r10=r1+r2

!plot(r10) produce the codimension-1 bifurcation diagram

plot(r10)

print "\n***curve of HB***"

r3=run(r1("HB1"),ISW=2,ICP=[1,2],STOP=[],NMX=2000)+...

...run(r1("HB1"),ISW=2,ICP=[1,2],STOP=[],DS="-",NMX=2000)

#r3.writeRawFilename(’HB_curve.dat’)

print "\n***saddle-node curves***"

r4=run(r1("LP1"),ISW=2,ICP=[1,2],STOP=[],NMX=500)+...

...run(r1("LP1"),ISW=2,ICP=[1,2],STOP=[],NMX=500,DS=’-’)

r4.writeRawFilename(’SN_curve.dat’)

print "\n***curve of periodic orbit***"

t2=run(r1("HB1"),ICP=[1,11],ISW=-1,IPS=2)

t3=run(t2("LP1"),ISW=2,ICP=[1,2,11])

t4=run(t3,NMX=1000,DS=’-’)+run(t3,NMX=1000)

t4.writeRawFilename(’LPC_curve.dat’)

plot t4

print "\n***curve of homoclinic orbit***"
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r9=run(r1("HB1"),ISP=2,ICP=[1,11],IPS=2,UZSTOP={11:2500})

print "\n***homoclinic_Highper***"

rHigPer =run(r9("UZ1"),ICP=[1,2],DS=’-’,NMX=1000)...

...+run(r9("UZ1"),ICP=[1,2],NMX=1000)

rHigPer.writeRawFilename(’HOM_curve.dat’)

print "\n***codimension-2 diagram***"

r12=r3+r4+t4+rHigPer

r12.writeRawFilename(’codimension-2.dat’)

plot(r12)

print "\n***Clean the directory***"

clean()

A.3 MATLAB Code

%model parameters

global d glbar gkbar gcabar vlbar vkbar vcabar v1 v2 v3 v4 psi a b

d=.0001; %diffusion coefficient

v1=-0.245;

v2=0.3125;

v3=-0.1405;

v4=0.1812;

vkbar=-1.125;

vcabar=1.0;

vlbar=-0.875;

gkbar=1.0;

glbar=0.25;

gcabar=0.4997;
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psi=0.1665;

A_0=.3;

% Find steady state v_0 and N_0 using fsolve

VN= fsolve(@(X) dimless(X),[-0.7654;0.001]);

V_0 = VN(1);

N_0 = VN(2);

%simulation time

tf=500;

Tf =1000;

tspan=linspace(0,tf,Tf);

%M is the number of discretisation

M =1000;

sigma=0.1;

a=-3.0;

b=3.0 ;

x=linspace(a,b,M);

dx=(b-a)/(M-1);

%%%%%%%%%%%%%%% initial conditions%%%%%%%%%%%%%%%%%%%

v_initial=V_0*ones(size(x))+A_0*exp(-((x)/sigma).^2).*ones(size(x));

n_initial=N_0*ones(size(x));

initial=[v_initial, n_initial];

%%%%%%%% to obtain the solutions for the state variables V and N %%%%%%%%

[tsol,xsol]=ode15s(@(t,x) myworkinternal(t,x,M),tspan,initial);

V=xsol(:,1:M)’;

N=xsol(:,M+1:end)’;

%%%%%%%%%%%%%%% Figures %%%%%%%%%%%%%%%%%%%%%%%%

[T,X] = meshgrid(tsol,x);
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figure(1)

%subplot(1,2,1);

mesh(T,X,V,’FaceLighting’,’gouraud’,’LineWidth’,0.5)

xlabel(’\itT\rm’)

ylabel(’\itX\rm’)

zlabel(’\itV\rm’)

set ( gca, ’xdir’, ’reverse’ )

colorbar

subplot(1,2,2);

mesh(T,X,N,’FaceLighting’,’gouraud’,’LineWidth’,0.5)

xlabel(’\itT\rm’)

ylabel(’\itX\rm’)

zlabel(’\itN\rm’)

set ( gca, ’xdir’, ’reverse’ )

f=figure(3);

imagesc(x,tsol,V’);

%title(sprintf(’$v_1$=%4.4f’, v1),’interpreter’, ’latex’)

title([’v_1=’,num2str(v1)])

ylabel(’T’,’Fontsize’, 20, ’interpreter’, ’latex’)

xlabel(’X’,’Fontsize’, 20, ’interpreter’, ’latex’)

colorbar

f.CurrentAxes.YDir=’normal’;

colormap jet

figure(4)

plot(x,V(:,550))

ylabel(’V’,’Fontsize’, 20, ’LineWidth’, 1.5, ’interpreter’, ’latex’)

xlabel(’X’,’Fontsize’, 20, ’LineWidth’, 1.5, ’interpreter’, ’latex’)
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%%%%%%%%%% ODEs %%%%%%%

function xdot = myworkinternal(~,x,M)

global d glbar gkbar gcabar vlbar vkbar v1 v2 v3 v4 psi a b vcabar

V = x(1:M);

N = x(M+1:end);

dx=(b-a)/(M-1);

mu=d/dx^2;

dVdt = zeros(M,1);

dNdt = zeros(M,1);

for i=1:M

minf=0.5*(1+tanh((V(i)-v1)/v2));

ninf=0.5*(1+tanh((V(i)-v3)/v4));

lambda_v=cosh((V(i)-v3)/(2*v4));

if i==1

dVdt(i)= 2*mu*(V(i+1)-V(i))-(glbar*(V(i)-vlbar)+gkbar*N(i)*(V(i)-vkbar)+...

...gcabar*minf*(V(i)-vcabar));

dNdt(i)= psi*lambda_v*(ninf-N(i));

end

if i==M

dVdt(i)= 2*mu*(V(i-1)-V(i))-(glbar*(V(i)-vlbar)+gkbar*N(i)*(V(i)-vkbar)+...

...gcabar*minf*(V(i)-vcabar));

dNdt(i)= psi*lambda_v*(ninf-N(i));

end

if i>1 && i<M

dVdt(i)= mu*(V(i+1)-2*V(i)+V(i-1))-(glbar*(V(i)-vlbar)...
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...+gkbar*N(i)*(V(i)-vkbar)+gcabar*minf*(V(i)-vcabar));

dNdt(i)= psi*lambda_v*(ninf-N(i));

end

end

xdot = [dVdt;dNdt];

end

%%%%%%%%%%% functions used to obtain the steady state V0 and N0 above %%%%%

function ica = I_Ca(V)

global gcabar vcabar

ica=gcabar * m_inf(V)*(V - vcabar);

end

function ik = I_K(V,N)

global gkbar vkbar

ik=gkbar * N * (V - vkbar);

end

function ileak = I_Leak(V)

global glbar vlbar

ileak=glbar* (V - vlbar);

end

function VN = dimless(X)

global psi

V=X(1);

N=X(2);

VN(1) = - I_Leak(V) - I_K(V,N) - I_Ca(V);

VN(2) = psi*lamda(V)*(n_inf(V) - N) ;

end

function out = m_inf(V)
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global v1 v2

out = 0.5*(1+tanh((V-v1)/v2));

end

function out =n_inf(V)

global v3 v4

out = 0.5*(1+tanh((V-v3)/v4));

end

function out =lamda(V)

global v3 v4

out = cosh((V-v3)/(2*v4));

end
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