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Abstract

The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings
significant benefits through enabling humans and the physical world to interact using various
technologies from small sensors to cloud computing. IoT devices and networks are appealing
targets of various cyber attacks and can be hampered by malicious intervening attackers if
the IoT is not appropriately protected. However, IoT security and privacy remain a major
challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data,
and operation in open environments. Moreover, many existing cloud-based solutions for IoT
security rely on central remote servers over vulnerable Internet connections. The decentralized
and distributed nature of blockchain technology has attracted significant attention as a suitable
solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D)
communication. This thesis explores the possible adoption of blockchain technology to address
the security and privacy challenges of the IoT under the 5G cellular system.

This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS)
model is proposed to protect IoT networks while simplifying the implementation of blockchain
technology. The concept of clustering is utilized to facilitate multi-layer architecture deploy-
ment and increase scalability. The K-unknown clusters are formed within the IoT network by
applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and
Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fab-
ric (HLF) Blockchain platform is deployed for the proposed model development. Base stations
adopt a global blockchain approach to communicate with each other securely. The quantitative
arguments demonstrate that the proposed clustering algorithm performs well when compared to
the earlier reported methods. The proposed lightweight blockchain model is also better suited
to balance network latency and throughput compared to a traditional global blockchain.

Next, a model is proposed to integrate IoT systems and blockchain by implementing the permis-
sioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided
by employing a local authentication process. A lightweight mutual authentication and autho-
rization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In
addition, the proposed model provides traceability for the data generated by the IoT devices.
The performance of the proposed model is validated with practical implementation by measur-
ing performance metrics such as transaction throughput and latency, resource consumption, and
network use. The results indicate that the proposed platform with the HLF implementation is
promising for the security of resource-constrained IoT devices and is scalable for deployment in
various IoT scenarios.

Despite the increasing development of blockchain platforms, there is still no comprehensive
method for adopting blockchain technology on IoT systems due to the blockchain’s limited
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capability to process substantial transaction requests from a massive number of IoT devices.
The Fabric comprises various components such as smart contracts, peers, endorsers, validators,
committers, and Orderers. A comprehensive empirical model is proposed that measures HLF’s
performance and identifies potential performance bottlenecks to better meet blockchain-based
IoT applications’ requirements. The implementation of HLF on distributed large-scale IoT sys-
tems is proposed. The performance of the HLF is evaluated in terms of throughput, latency,
network sizes, scalability, and the number of peers serviceable by the platform. The experi-
mental results demonstrate that the proposed framework can provide a detailed and real-time
performance evaluation of blockchain systems for large-scale IoT applications.

The diversity and the sheer increase in the number of connected IoT devices have brought
significant concerns about storing and protecting the large IoT data volume. Dependencies of
the centralized server solution impose significant trust issues and make it vulnerable to security
risks. A layer-based distributed data storage design and implementation of a blockchain-enabled
large-scale IoT system is proposed to mitigate these challenges by using the HLF platform
for distributed ledger solutions. The need for a centralized server and third-party auditor is
eliminated by leveraging HLF peers who perform transaction verification and records audits in
a big data system with the help of blockchain technology. The HLF blockchain facilitates storing
the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is
stored in the off-chain big data system to reduce the communication overheads and enhance
data integrity. Finally, experiments are conducted to evaluate the performance of the proposed
scheme in terms of throughput, latency, communication, and computation costs. The results
indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale
IoT data within the big data ecosystem using the HLF blockchain.
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Chapter 1

Introduction

The rapid evolution of the Internet changed its paradigm from a traditional interconnected net-

work of computing devices to an environment that virtually connects every “thing.” The Internet

of Things (IoT) is a ubiquitous network of devices and computers that facilitate communication

and data exchange with users or interconnected devices. Smart IoT devices require connectivity

to external services to perform basic functionalities. This growing connectivity offers real-time

and customized services for IoT users, including many smart appliances. The Service Providers

(SPs) collect the data sensed by IoT devices in centralized cloud servers for further data pro-

cessing and provides users with personalized services. Since the IoT interacts with humans,

machines, and environments, failures or data corruptions in the IoT systems can lead to severe

consequences.

The IoT faces various challenges in enabling secure, safe, and scalable ecosystems. Most IoT

platforms rely on external cloud service providers. Cloud dependency poses numerous secu-

rity and privacy risks. The collected data from IoT devices ranges from privacy-sensitive data

(such as healthcare data) to personal details (habits and social life). Many IoT devices lack

fundamental security protections. Besides, various security challenges are due to the intrinsic

features of IoT networks: devices and vendors heterogeneity, network scale, lack of central con-

trol, multiple attack surfaces, situational and context-aware risks. Numerous security exposures

are identified in connected smart devices ranging from smart locks [1] to smart vehicles [2]. A

massive distributed denial of service (DDoS) attack left much of the websites inaccessible due

to poorly secured IoT devices in October 2016 [3]. The remarkable point was that many of the
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CHAPTER 1. INTRODUCTION

compromised devices launching the attack were relatively small computing devices consisting of

webcams, residential gateways, printers, home appliances, i.e., the IoTs. These highlights man-

date the need for robust security solutions for IoT ecosystems. Integrating smart and connected

IoT devices into our everyday life requires providing security safeguards for IoT devices and

networks.

The sheer amount of generated data as well as increasing pervasive and dissemination of data

collection raise serious concern about security and privacy. The lack of basic security protections

exacerbates the privacy vulnerabilities of many first-generation IoT products. Also, this data

can be implemented in many customized and sophisticated services to provide useful utilities for

end users. However, it can be deployed to construct algorithms that can reveal user activities

pattern, private information, and personalized lifecycle data. For example, energy companies

can track their consumers’ energy consumption patterns and build a virtual profile of the users

that may compromise their privacy.The traditional Internet deploys a well-developed security

protocol such as The SSL/TLS (Secure Socket Layer/Transport Layer Security) [4]. However,

the new wireless and cellular networks have unique characteristics that distinguish them from

the conventional Internet and need new robust solutions to address the security challenges. The

IoT settings need a single integrated solution to support the heterogeneous requirements ranging

from safety-critical systems to sensor nodes. Most of the existing security measures, including

Kerberos, SSL/TLS, and widely-used solutions for Wireless Sensor Network (WSN) and Mobile

Ad hoc Network (MANET), are mainly developed for homogeneous networks. They may not be

directly applicable in heterogeneous IoT ecosystems.

The aforementioned challenges have been explored in literature with some suggested solutions.

An access control mechanism is proposed in [5] built on distributed capability-based access

control to protect sensitive information. The research in [6] implemented IP-sec and TLS to

provide authentication and privacy. The authors in [7] proposed a privacy management mech-

anism to investigate the risk of disclosing data. The proposed method allowed IoT users to

decide on whether to share data with SPs or not. Provide a biometric-based security solution

for IoT is proposed in work [8]. The authentication and authorization solution is presented in [9]

based on distributed gateways. The proposed framework provides remote authentication and

authorization for IoT devices.

It is found that the following challenges are not fully addressed by the existing security and
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privacy solutions in the literature.

1. The IoT systems are often heterogeneous with the diversity in resource-constraint devices

and intermittent connectivity. This heterogeneous ecosystem is diverse in terms of security

requirements and resource availability within the IoT systems.

2. The complex security solutions can not be implemented on IoT devices with restricted

resources, including computation resources, memory, and bandwidth. The robust solution

should consider these limitations [10].

3. The existing IoT networks are mainly based on a centralized authentication server to

provide IoT devices identification, authentication, and authorization. The IoT ecosystems

are connected through cloud servers for communication. This model fails to address the

scalability of the massive number of connected IoT devices. Besides, the single point of

failure vulnerability is a significant drawback of such systems that can impact the entire

network [10].

4. The performance of the lightweight scalable blockchain approach for IoT over 5G cellular

system can be enhanced through implementing a multi-layer framework. The multi-layer

structure needs to be further explored through implementing an improved clustering algo-

rithm suitable for IoT ecosystem.

5. The existing solutions fail to address the challenges associated with the data provenance

of large data in IoT systems with the concerns about the low resource consumption. The

robust solution needs to explore blockchain technology’s capability for provenance tracking

in the big data system environment.

6. Due to the open environment nature of the IoT operation, adversaries have physical access

to IoT devices and platforms and/or through wireless, increasing the potential risks.

Blockchain technology has attracted significant attention in recent years to improve IoT’s se-

curity, privacy, anonymity, auditability, and reliability. Blockchain is an auditable, immutable,

and timestamp ledger of blocks used to store and share data in a distributed structure [11]. The

stored data includes an extensive range such as payment history (Bitcoin [12]), a contract [13],

personal data [14], or commodity trading data [15,16]. All participating nodes have a replica of

the distributed digital shared ledger of transactions. The blockchain ensures high auditability
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by storing all transactions in the shared ledger. All participants need to verify and confirm the

addition of new transactions into the blockchain ledger.

Miners are the particular nodes in the network that perform adding newly generated transactions

to a pending transactions pool. The size of each block and the number of transactions within

each block are predefined. Therefore the miner nodes embed all pending transactions into a

block when the specific predefined size is reached. The process of appending a newly generated

block into the blockchain ledger is called mining. The mining is based on a consensus algorithm

that guarantees blockchain security against malicious miners and introduces randomness. The

Proof of Work (PoW) [17] and Proof of Stake (POS) [13] are the most popular consensus algo-

rithms among existing blockchain technologies. The PoW consensus process requires significant

computational resources. Miner nodes with high capability and more computational resources

most likely solve the consensus algorithm and mine the next block. On the other hand, the

miners in the PoS lock the asset or stack to mine the new block in the blockchain. Miners that

have the higher stack mine the next block. Each user needs to be identified by a Public Key

(PK) to create transactions to ensure a high anonymity level.

Hyperledger Fabric (HLF) or simply Fabric [18] was first introduced in 2017 to create a private

and permissioned blockchain platform as one of the projects of Hyperledger under the auspices

of the Linux Foundation [19]. Preceding permissioned blockchain platforms suffer from many

restrictions linked to their permissionless nature or inherited from deploying the order-execute

architecture. In particular: hard-coded consensus protocol, trust model, a smart contract writ-

ten in fixed and non-standard languages, limited performance due to sequential execution of

all transactions by all peers, confidentiality, and issues with programmatically deterministic

transactions. HLF is an open-source blockchain platform that overcomes the aforementioned

limitations. The Fabric has been used widely across various industries and use-cases and has

been deployed in more than 400 prototypes, proofs-of-concept, and production distributed-ledger

systems. The work in [20] proposed a new framework using smart contracts for access manage-

ment of IoT devices that enhance the overall IoT ecosystem security. Blockchain technology

is used as an underlying network to provide security and privacy for IoT-enabled services [21].

However, there are issues with applying the existing blockchain solutions directly in the IoT

ecosystem, which are discussed in the following section.
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1.1 Motivation

As outlined earlier, blockchain technology has attracted many researchers to adopt this emerging

technology to enhance security, privacy, and anonymity of the IoT and D2D ecosystems. How-

ever, integrating the existing blockchain platforms into the IoT and D2D context is challenging

and encounter the following problems:

• Throughput: Throughput is determined as the total number of stored transactions per

second (TPS). The throughput in the conventional blockchain platform is limited. This

number for Bitcoin is about 7 transactions per second, while the number of transactions

per second generating from massive IoT devices is extensive and exceeds such limitations.

• Latency: There is a delay linked to confirmation of a transaction by all nodes in the

network. The time for transaction confirmation in Bitcoin is up to 30 minutes, and in

Ethereum, it takes up to 30 seconds. There are specific limits for the delay requirements

due real-time nature of most IoT applications, and the service providers have restricted it.

• Overheads and Network Scalability: Since all nodes hold a copy of the blockchain ledger,

all nodes maintain the block verification process for broadcasted blocks in the typical

blockchain implementation. This arises scalability issues since the processing overhead

of a large amount of broadcasted traffic would surge dramatically with the number of

network participants. However, many IoT devices are limited in terms of their bandwidth

and processing capabilities. Furthermore, to ensure the integrity of the blockchain, a newly

added node needs to download a copy of the entire ledger and checks for the validity of

the whole chain.

• Complexity of consensus algorithms : Most blockchain consensus algorithms require a

considerable amount of resources from participating nodes that are not feasible to be

applied directly on resource constraint IoT devices.

• Blockchain memory requirements: The massive number of IoT devices generates a vast

number of transactions requiring a considerable memory footprint at the blockchain nodes

to store the blockchain ledger. The current Bitcoin blockchain includes more than 620

million transactions, requires more than 330GB of storage space [22]. With the rapid
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growth of the IoT ecosystem, the number of transactions exceeds the Bitcoin blockchain.

Figure 1.1 shows the total size of the blockchain minus database indexes in gigabytes.

Figure 1.1: The total size of the blockchain minus database indexes.

• Storage requirement of IoT applications: Most IoT applications require diverse storage

options to store their collected data. Besides, they need to keep the data for a specific

period. Smart IoT devices collect data and send it to service provider (SP) for further

processing and storage. Therefore, the related transactions only valid for that particular

period. In some cases, progressive actions can be summarized into a specific transaction

representing the entire process. Hence, the current blockchain solutions don’t offer this

flexibility, and they store transactions in an immutable and permanent fashion that can

not be altered.

• Limited privacy: All data in the blockchain network is publicly visible to all participants

in the current blockchain platforms. User privacy disclosure risk is high in the blockchain

as all user devices permanently store the transaction in the blockchain. A linking attack

happens when multiple linked transactions are generated by the same user that causes

identity deanonymization. The interaction between the IoT device and SPs can be com-

promised by monitoring the frequency that has been used to record a transaction by a

user [23]. Permissioned or private blockchain solutions limit the disclosure range. In or-

der to cryptographically protect the data and achieve privacy, additional layers, such as

zero-knowledge proofs or a commitment scheme, are required .

• Key Management: Most IoT applications need to authorize the user before generating
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transactions. The key management process facilitates issuing the corresponded public and

private Keys (PK-) for authentication and authorization. Users can update the public

keys(PK+) to enhance security and privacy. Therefore, managing and storing the keys for

multiple IoT devices on a large scale is a complicated and time-consuming process.

1.2 Thesis Overview

Blockchain can provide solutions to address the security challenges faced by the centralized

cloud-based IoT and the issues related to the reliability, privacy, and management of the IoT

and D2D communication devices. This research work considers the limitations related to the

constrained resources of the IoT and mobile D2D devices because the conventional blockchain

solution uses a consensus algorithm demanding a significant amount of computing power and

leading to considerable network traffic. This research evaluates models that facilitate access

to IoT resources using trusted and secure communication through implementing smart con-

tracts. The advantages of using the proposed blockchain approach are immutability, decentral-

ized trust, high availability, and transparency. The main contribution of this thesis is adoption

of the blockchain technology for the IoT ecosystem over 5G cellular networks by addressing the

challenges mentioned in the previous section.

Furthermore, it investigates the deployment of the P2P network blockchain for D2D technology,

which allows direct communication of mobile devices within the 5G networks. This thesis consid-

ers a private blockchain to provide high security and lightweight authentication for lightweight

IoT devices to restrict and manage participants continuously.

This thesis has made the following contributions:

Chapter 1 demonstrates the research motivation and shows the challenges that are not fully

addressed by existing security and privacy solution. It explores the existing blockchain solutions

and the feasibility of implementing blockchain technology for IoT, focusing on Hyperledger

Fabric (HLF) blockchain in Chapter 2.

Chapter 3 proposed and developed a Multi-Layer Blockchain-Based security architecture for

IoT. The new network model based on multi-layer distributed blockchain can be regarded as an

organic combination of blockchain technology and clustering techniques that effectively utilize
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network clustering performance and capabilities and significantly improve the overall security

and reliability of the IoT ecosystem. Clustering is one of the critical steps of implementing

multi-layer architecture. Therefore, a new network clustering method is applied. It is based on

the evolutionary computation that deploys multi-objective fitness functions relevant to hetero-

geneous IoT networks. The decentralized, fast, and self-clustering mechanism divides the IoT

network into clusters while considering node mobility.

Chapter 4 shows how Hyperledger Fabric Blockchain can be implemented for securing the edge

IoT. A blockchain-enabled edge computing approach is considered and implemented for the

IoT network with an open-source HLF blockchain platform. A layer-wise security architecture

is designed according to different nodes and functionality capabilities to fit the scalable IoT

applications. The infrastructure includes Base Stations (BS), Cluster Heads (CH), and IoT

devices facilitating access control policies and management. Mutual authentication and autho-

rization schemes for IoT devices are proposed and implemented to ensure the security of the

interconnected devices in the scalable IoT platform. An HLF blockchain middle-ware module

embedded in the IoT gateways ensures secure data transactions for the IoT distributed applica-

tions. Off-chain data storage and blockchain distributed data storage are employed to support

data traceability.

Experimental performance analysis of scalable distributed HLF in a large scale IoT testbed is

presented in Chapter 5. Performance computation and evaluation represent significant challenges

for current blockchain systems, particularly during complex smart contract execution. The

Fabric network is orchestrated by various components, including endorsers, ordering services,

and committers. It constitutes different transaction processing phases: the endorsement phase,

ordering phase, validation, and commit phase. Therefore, the Fabric encompasses configurable

parameters, such as block size, channels, endorsement policy, and state databases. Finding the

right set of values for this range of parameters is the main challenge in adapting an efficient

blockchain system that has been explored in this chapter.

Chapter 6 Proposed and measured the performance of IoT big data provenance scheme using

Blockchain on the Hadoop ecosystem. The IoT systems face challenges in performing vari-

ous identity management, maintaining the trustworthiness of data, providing access control to

numerous data within the network, and detecting abnormal behaviors. Data provenance is a

solution to tackle the challenges mentioned above in IoT by recording information about data
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operations, data origins and analyzing the data history from its source to the current state.

Embedding the data provenance enriched by blockchain technology into big data applications

enhances system security and privacy while ensures data availability. The blockchain-enabled

data provenance mechanism for big data applications in IoT systems guarantees data verifiabil-

ity and integrity since the data operations are recorded in the form of the transaction by every

block in the blockchain network. A provenance mechanism is applicable to record the origin of

multiple sensor data to meet these concerns. The blockchain-based provenance system’s scala-

bility is enhanced by implementing the high capacity of big data systems such as the Hadoop

Distributed File System (HDFS). A model is designed to integrate the blockchain technology and

IoT big data system incorporating edge computing in a large-scale IoT environment. The goal

is to provide the data provenance, integrity, traceability, and accountability for large-volume of

generated data by IoT devices and store it in a secure and verifiable big data ecosystem.

Chapters 3,4,5,and 6 are peer-reviewed research publications and have self-contained literature

review that establish the state-of-the-art research works and identify the research gaps in the

literature. Therefore, there is no traditional literature review chapter in this thesis.

1.3 Thesis Outline

The outline of the thesis is as follows:

• Chapter 1 provides the motivation of the research, research goals, research contributions

and the outline of the thesis.

• Chapter 2 presents an overview of the blockchain technology for IoT as the background

knowledge for the thesis. An overview of the Ethererum is provided, along with the

blockchain technology implementation for the IoT ecosystem. Furthermore, this chapter

contains a comprehensive description of the Hyperleger Fabric blockchain as a suitable

solution for the IoT environment.

• Chapter 3 proposes and develops a multi-layer blockchain-based security architecture for

IoT. In this chapter, the framework architecture and the multi-layer system model are

detailed. It also provides the proposed IoT blockchain framework implementation and

associated results. The clustering approach is formulated to find the optimal number of
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clusters within the IoT system over 5G networks. The proposed clustering algorithm is

based on the Genetic Algorithm (GA) and Simulated Annealing (SA). The performance

analysis of the proposed technique is presented. Compared to other methods, the proposed

model achieves significant improvements in terms of load, coverage, distances, and the

optimal number of cluster heads (CHs). This chapter illustrates the challenges addressed

by implementing the proposed system model. Finally, this chapter concludes and provides

further research directions.

• Chapter 4 proposes, implements, and studies the performance of a HLF blockchain for

securing the edge IoT. In the beginning, a system model is introduced, and the details

of the system design are elaborated. The chapter presents a novel method of adopting

blockchain technology for edge IoT devices. The obtained results are presented, including

results from real-life IoT applications. Finally, this chapter contains the conclusion and

directions for further works.

• Chapter 5 presents the experimental performance analysis of scalable distributed HLF

in a large-scale IoT test-bed. This chapter provides an overview of the HLF blockchain

technology and the target platforms. The study also presents the methodology for evalu-

ating Fabric implementations, the key configuration metrics, and the experimental setup.

Then, a discussion of the results and their implications are covered. Finally, the chapter

illustrates simulation outcomes and proves the effectiveness of the proposed model.

• Chapter 6 proposes and measures the performance of IoT big data provenance schemes

using blockchain on the Hadoop ecosystem. The chapter introduces blockchain technology,

security settings, big data systems, and the primary settings of the model. Subsequently,

the proposed model is extended to protect large-scale IoT data storage. The system

implementation is presented. Finally, detailed model analysis and performance evaluations

are presented.

• Chapter 7 delivers the concluding remarks with a summary of the performed research,

achievements and contributions of this research work. Finally, areas for further research

are identified and recommended as future research directions.
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Chapter 2

The Blockchain Technology for the 
Internet of Things

In this chapter, the fundamentals of blockchain and the widespread implementation of the tech-

nology is discussed to provide background knowledge for the rest of the thesis. The blockchain

basic concepts are discussed in Section 2.1. Section 2.2 provides an overview of the Ethereum

and smart contract concept. A comprehensive discussion on the implementation of various con-

sensus algorithms is presented in Section 2.3. To address the blockchain technology deployment

within the IoT ecosystem and improve blockchain performance, the use of Hyperledger Fabric

(HLF) blockchain is proposed. A comprehensive introduction to HLF is presented in Section

2.4.

2.1 What is Blockchain?

At its simplest core, blockchain is no more than a distributed database. Think of it as a sizeable 

worldwide computer where everyone can securely access data and execute transactional code. 

All transactions are stored in blocks of data. These blocks are made to make them very hard 

to manipulate or fake once stored on the blockchain. Due to the nature of blockchain, it can 

be seen as a trustworthy way to store data in scenarios where there is no trust. This could be
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monetary transactions between anonymous strangers on the internet or the ability to securely

store medical information in a way that can only be accessed by those who are allowed. It is

also worth mentioning that blockchain is generally not a place to store large amounts of data

for each transaction. For example, generally, images will not be stored on the blockchain, but it

might store information to validate if an image is being tampered with or not. Most data stored

on the blockchain is focused on transactions and states of objects rather than the actual objects

themselves.

The notion of a cryptographically secured chain of blocks was described by Stuart Haber and

Scott Stornetta in 1991 [24]. Nick Szabo [25] did the first recognized work on the decentral-

ized digital currency using similar technology in 1998. But it took almost ten years until the

blockchain concept was getting mature and published by Satoshi Nakamoto in 2008 [12]. Satoshi

is by most considered to be the founder of bitcoin in 2009. There is massive investment being

done by traditional legacy software companies like IBM and Microsoft, but there is also a large

and rapidly growing mass of startup companies getting their blockchain implementations out to

the market.

Blockchain is a distributed network of participants that is formed in a peer-to-peer (P2P) man-

ner. A group of nodes (data centers, devices, computers, etc.) shares information or files in a

P2P fashion placed on top of the network layer. Blockchain technology has attracted consid-

erable attention from industries and academia in different fields (including economy, finance,

law, and computer science). Nodes keep a copy of the entire blockchain ledger and run the

consensus algorithm on the blockchain state. Therefore, blockchain is a transparent and secure

decentralized transactional ledger. Blockchain is a decentralized network technology that pro-

vides the participant’s anonymity, robust security, and transaction immutability [26]. Figure 2.1

shows the chained blocks of the blockchain ledger. The blockchain is natively object-oriented,

where code and data reside together. However, objects are securely separated from each other.

There is no one in control over a blockchain. It cannot be stopped, and it cannot have a central

failure. There is no power cord to pull nor a single point of failure. Blockchain, by its nature,

is accessible and verifiable. Everyone that has access to the blockchain can verify every single

transaction from the beginning of time and enables everyone to audit everything.
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Figure 2.1: Simplified Block Structure.

2.1.1 How Does It Work?

It begins with someone doing a single or a group of transactions. A transaction is typically

sending data in the form of a contract. Depending on the blockchain implementation, it can

also involve cryptocurrency being sent from one account to another. The transactions are sent to

an extensive P2P network of computers. These are generally distributed all over the ecosystem.

Each computer is called a node, and they all have a copy of the existing data. Then the

transaction is executed and validated based on preshared contracts and scripts. This ensures

that all nodes execute using the same set of rules. When the transaction has been executed,

the result is embedded in the blockchain. Since this is done at each Node, an attacker needs to

compromise every Node in the chain in order to compromise the transaction. All transactions

are atomic, where the entire operation run or nothing at all. Transactions run independently

of each other. So no two operations can interact or interfere with each other, and it has to be

inspectable. This gives a unique possibility for securing and auditing solutions on a wide scale.

Blockchain objects are immortal means that all data from an object are permanent. The code

for an object can never be changed, and you can never delete an object externally. The only

way to remove an object from the blockchain is that if it is programmed to remove itself.
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2.1.2 Hashing

The core of any blockchain resides in the concept of hashing. Hashing is basically to execute a

mathematical algorithm that creates a result with a given length regardless of the input given.

The result of a hashing function is called a hash, and it can be seen as digital fingerprints.

Hashing is a one-way function, meaning the process will always return the same result given

the same input but never regenerate the input based on the result of the hashing algorithm.

The more advanced a user wants algorithms to be, the more power it takes to execute. A

widespread hashing algorithm used with blockchain is the SHA 256. It is one of several checksum

hashing algorithms, and it will produce a long text string as a result. The American National

Security Agency designs it, and it is made available to the public. The SHA is a family of

hashing algorithms. The number following the names lets one know the complexity of the

implementation. A very common use for hashing is when storing passwords in a database.

The longer a password is, the less likely it is that the hacker can find the input that created

a particular hash. Because hash algorithms always give the same result given the same input

and always give a fixed length of the result, they are also ideal for verifying the consistency of

larger amounts of data. Even a single comma would result in a different hash result. So when

comparing two hashes, it is very quick to determine if they match or not. Hashing algorithms

are also used in numerous areas of modern security where the need for consistency is high, for

example, insecure communication where timestamps are exchanged.

A Merkle tree is a hash of hashes, making it quick and relatively easy to confirm large amounts

of data and transactions. In the Merkle tree, groups of hashes are hashed together to create

a hash of hashes. These hashes are then hashed together as well, creating what we call a root

hash. In order to figure out if something has changed anywhere in the Merkle tree, we only need

to see if the root hash has changed, and one can then follow the tree down to see where the

change is done.

2.1.3 The Block and Mining

A block consists of data and its resulting hash. If any change occurred in data within the block,

the hash would change, and the block will be invalid. It also includes the nonce, which is input to

the hashing algorithm that would result in the first part of the hash to be something predefined
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like a set of zeros. It is impossible to predict the nonce to be considered in proof of work by

the machine creating the hash. Consider that we require the hash to have a leading number of

four zeros. Whenever a change happens, there is a need to rerun the hashing algorithm until

it figures out which nonce to set. This is called mining the block. A structure of a block is

presented in Figure 2.2.

Figure 2.2: A block structure in Blockchain.

The block also contains a block number, meaning which order it has in the blockchain. A block

also must contain a timestamp, but most importantly, the block in a blockchain will include the

hash of the previous block. If any of the values in one of the blocks is altered, all the blocks

following in the chain will be broken. This is also where the Merkle tree (Hash Tree) is used.

The only way to fix the blockchain will then be to mine all the blocks after the changed block

and make the nonced hashes all over. In the blockchain, a chain of blocks is distributed to a vast

number of computers. The chain exists in multiple locations. Depending on the implementation

of blockchain, it could be millions of replications of the chain. It could easily be determined if

something has changed, even if one chain has been re-mined. The resulting hashes would be

different from one chain, and blockchain works in a way where the chain with the most work

put into it wins. The altered chain would then be rejected by the distributed blockchain and be

removed.

Each block contains the main data (Transactions), previous block hash, current block hash,

timestamp, and other information (Block header). Figure 2.3 illustrates a simplified block

15



CHAPTER 2. THE BLOCKCHAIN FOR THE IOT

structure in the blockchain and block linkage in the network. The transaction structure, block

header contents, active and stable blocks are shown in this figure. Marked blocks in black repre-

sent functional blocks, and blue ones are called stale blocks. The first block in the blockchain is

called the genesis block. Multiple children are connected to a parent block simultaneously. The

main data is application dependent which will be described based on the application for which

the blockchain is implemented, such as IoT data transaction.

Figure 2.3: Structure of a Block and Block Header.

The block header structure is highly dependent on the blockchain type. The figure 2.3 shows a

high-level representation of a block and the associated block header. Each block header includes

a unique identifier of the block generated from the hash of all content of the block called the

BID. Previous BID refers to the previous block used to link blocks (chain of blocks) and provides

immutability within the blockchain ecosystem. If the stored transaction has been compromised,

the hash of the associated block, which is linked and recorded to the next block, is no longer

consistent; thus, the malicious activity or attack will be exposed. As mentioned before, the

miner constructs a Merkle tree based on transaction history and block information. As depicted

in Figure ref 2.4, the Merkle tree recursively hashes the established transactions of the block

stored as the various leaves of a tree. The block header keeps the Merkle tree root to maintain

the transaction membership verification in a block with a better speed and better performance.

The timestamp, the last field in the block header refers to the time when the block was generated.

Miner appends (mines) the block into the blockchain ledger by implementing a consensus algo-

rithm such as Proof of Work (PoW) [12] and Proof of Stake (PoS) [13]. The consensus algorithm

performs the blockchain consistency among blockchain participants and ensures the randomness
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Figure 2.4: Merkle Tree Structure.

between various miners. The randomness is necessary to stop malicious miners from mining

blocks continuously and enhance blockchain ecosystems’ security. Section 2.3 further explores

the existing consensus algorithms in various blockchain platforms. The blockchain broadcasts

the mined block to all network participants and nodes. Each node adds the newly generated

block into its local replica of the blockchain ledger after validating the integrated transactions.

Following this process, the newly mined block will be removed from the pending transactions

pool by the miners.

2.1.4 Securing Data

Data stored in the blockchain is generally available to everyone who has access to the chain.

This gives some challenges, but it will also lead to thinking about security first. It is not a

big challenge in some applications that everyone has access to everything, but it is necessary to

assure some degrees of control on data in most cases. There are two ways to handle this. The

first is obfuscation. To make the data relevant only to those who know its value. One example

of this is Bitcoins. With the address of any account, it is a long string of letters and numbers.

No one in the chain knows who the address is physically connected to, and they don’t need
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to know, but everyone knows every transaction going between the different account addresses.

It is optional to be anonymous or not. Another example of obfuscation is to have the data

contain IDs and status codes. The problem with relying only on obfuscation is that it always

risks someone making the connections due to a breach in the system controlling the keys and

connecting the data. To deal with this, blockchain use encryption. When a message or the

transaction payload is encrypted, it applies a two-way algorithm to the message in a way that

can only be decoded if you know a password or a passphrase. The data can be available to

everyone, but only those who have the keys to decrypt the message can make sense of it. There

are many different encryption algorithms, and as with hashing, they are continuously evolving.

One of the most secure in use is now called Advanced Encryption Standard or AES for short.

It uses long keys to produce heavy-duty encryption. The harder it is to crack. The original

message passes through an AES 128 encryption with a generated key. The structure of the

block is kept the same, but the message itself is encrypted. The block can still be evaluated and

verified by the blockchain participants, but the content will only be available to those with the

key.

A transaction will be hashed before execution and will be broadcasted to each participating

Node. A transaction in the blockchain maintains the basic communication primitive that forms

the information exchanges between two nodes. In a most general sense, transitions are an

encrypted data structure stored in files known as blocks in the blockchain. Transaction ID (TID)

represents the hash of all other transaction fields to create the transaction’s unique identifier.

Genesis transaction denotes the first transaction in the ledger. Previous transaction ID (PTID)

indicates the previous transaction that facilitates the link between successive transactions made

by the same entity (or node). A list of timestamped blocks builds a blockchain ledger that records

all transaction history in the network in an ordered manner. There may exist dependencies

between different transactions whereby specific fields generated in one transaction (outputs)

represent the inputs in another transaction. Each transaction consists of separate fields for

Input and Output. The blockchain system guarantees anonymity by implementing a Public

Key (PK+). A blockchain node changes the PK+ used as the transaction identifier to enhance

anonymity. The PK field in a block includes the hash of this PK+ that reduces the size of

transactions and protects the transactions against malicious attacks on the Private Key (PK-

). A public key and generated hash are used to sign the previous transaction digitally by the

transaction owner, presented as a sign filed. Following this process, the previous transaction
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owner uses their private Key to sign the hash.

Blockchain broadcasts all transactions to the network participants. The blockchain guarantees

security through the mining process to verify, create, publish, and broadcast blockchain blocks.

Transaction verification and validation are the primary objects of the mining process. Miners

are particular nodes that perform transaction verification by validating the embedded signature

using the linked private key. An incentive-driven model is being used in several blockchain

platforms to generate new coins through the mining process. The miners are the nodes who can

solve the next block in the blockchain receive these new coins as the reward, and the blockchain

system checks for the previous transaction ID’s existence. The final step consists of checking for

particular blockchain framework rules and verifying other fields in the transactions.

The verified transactions are placed into a pool of pending transactions to be added to the

blockchain. Following this process, the Merkle tree [27] will be constructed based on block

information and transaction history downloaded by miners to make Merkle root. As shown in

Figure 2.3, Each miner collects and combines pending transactions into a block based on the

predefined size known as the Block size. The maximum block size limits the block added to the

blockchain, but a miner can select desired transaction numbers. In Bitcoin, this maximum size

is 1MB to accommodate transactions within this space.

It may be recalled that the blockchain is a distributed technology in which multiple miners can

simultaneously broadcast the same block, creating a fork. As shown in Figure 2.5, the fork

occurs where two blocks have the same previous block ID reference. Most blockchain platforms

address this issue by implementing "the longest ledger" concept where the ledger consists of

more chained blocks is elected as the valid ledger. The transactions in the forked blocks are

considered invalid transactions. The confirmation time is the indicator that ensures that the

end-user transactions are stored in the longest ledger by waiting for a number of blocks to be

embedded into the chain of the block that contains their transactions. This confirmation time

varies for different blockchain platforms and applications; for example, in Bitcoin, it takes 30

minutes to store three blocks in the blockchain [12].
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Figure 2.5: Simple blockchain forking.

2.1.5 Blockchain Implementation for the Internet of Things

In order to integrate blockchain technology into the IoT system, the most appropriate blockchain

framework needs to be designed and deployed. The selected blockchain framework needs to im-

plement the consensus algorithm, which best suits the resource-constrained IoT environment.

This section presents some of the existing blockchain platforms and their practical applicability

to be deployed within IoT applications. Various aspects of these implementations are reviewed,

including associated consensus approaches, applications, operation mode (permissioned or per-

missionless), accessibility (private or public), and other related information. The characteristics

of the blockchain system are affected by the features above and its performance, scalability, and

availability. The scalability indicates the number of supported participants by the blockchain

network and the size of the network. The performance refers to throughout and network latency

which are the critical parameters of an IoT system. The accessibility of the network participants

to a replica of the distributed ledger is defined as availability [28].

Blockchains can be either public or private. In a public blockchain, everyone with an internet

connection can connect to the chain. The way the public chains are funded is that one generally

needs to pay for storage, transaction, and execution costs to the entities that have joined the

chain. Since the public blockchains are generally widely distributed, there is also no given point

for attack for a hacker. They cannot target a single data center or company to bring down

the chain. But this really depends on how well the community supports the chain. One of the

most significant benefits and challenges of a public blockchain in a business context is that it is

democratic. The community has to decide how forks are being handled. Many consider these

not to be real blockchains when looking at private blockchain as they are not truly distributed

and democratic. A private blockchain is closer to a traditional database.
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2.2 Ethereum and DAPPS

Ethereum is one of the largest and most well-established blockchains, and it is based on the

proposal from Vitalic Buterin in 2013 [13]. It was publicly available in 2015. Since it is open-

source, it is straightforward to use it for private blockchains. Ethereum is a platform and a

programming language running on a blockchain to build and publish distributed applications

called DAPPS. Ethereum has its cryptocurrency called Ether that in many ways is similar to

bitcoins. One benefit with Ethereum is that it has fast transaction times where the block time

is set to a few seconds compared to minutes for Bitcoin. This can make it more suitable for

applications where a fast response is needed. Another big thing about Ethereum is that it has

a method for funding transactions depending on their computational complexity, bandwidth

use, and storage needs. This is a difference from the bitcoin blockchain, where transactions

compete equally with each other. The proof of work that other blockchains are using has had

some negative impact where large computing compasses are solving complex problems just to

prove that they put work into it. This is a big waste of resources, and Ethereum is moving more

towards proof of stake, where they use direct economic stake instead of proof of work.

2.2.1 Distributed Applications (DAPPS)

A traditional application architecture could have a service setup that would provide the ap-

plication in storage, data logic, and user credentials. A client would run an interface of some

kind, and these would have a set communication channel. With distributed applications on the

blockchain, this can be constructed a bit differently. Shared data is available on the distributed

blockchain and exists in many locations, so it doesn’t matter if one of the servers goes down.

The same applies to the data logic, where the logic is shared on the blockchain. As soon as a

contract is uploaded to the chain, it will spread and execute regardless of where it runs from.

The client in a distributed setup also looks a bit different since it will be responsible for storing

its own user credentials and typically store more of the application data. Building applications

this way will make the solution very resistant to system failure, and it means that they can fully

operate without a centralized system.

When deploying code to Ethereum, it will create smart contracts built in a language called

solidity. Smart contracts are pieces of code that live on the blockchain and execute commands
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exactly how they were told to by a shared logic. The contracts make up what will be the

data logic for our distributed applications. They can read other contracts, make decisions, send

ether, and execute other contracts. Contracts will exist and run as long as the network. They

will only stop running if they run out of transactional funding or if they were programmed to

self-destruct.

2.2.2 Transactions

The term transaction, when used in Ethereum, needs to refer to the data package that stores

a message to be sent from an externally owned account to another account on the blockchain.

A transaction contains the receipt of the message, a signature identifying the sender, a value

field which is the amount of WEI to transfer from the sender to the recipient. A gas price value

representing the fee the sender is willing to pay for gas. The higher price one is willing to pay,

the higher miners will rank one’s work. There is also a start gas value representing the maximum

number of computational steps the transaction executed is allowed to take. This would be the

maximum cost, and it will make sure that one is not able to start infinite loops in one’s code.

It is also important to the miner to get an estimate over how much they can earn by doing the

transaction.

2.2.3 Smart Contracts

Making a smart contract is started by writing the code in a supported language. That will be

different depending on the blockchain implementation. When a compile is done successfully, it

will be uploaded and wait for it to be mined. After the contract is successfully mined, a client

can start interacting with it. One would create a user interface towards the contract in most

cases, but one can actually interact directly with it through http post operations.

As with most other programming languages, there are access modifiers. Access modifiers are

keywords used to ensure that one’s code only can be executed from where one expects. Public

means that it can be accessed from everywhere. Private limits access only to this contract.

Internal means that this contract and those contracts deriving from it can access the method or

property. External will disallow internal access and make it only accessible externally. Making
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something private only prevents the other contracts from accessing and modifying the informa-

tion, but it still will be visible to the whole world outside of the blockchain.

2.3 Blockchain Consensus Algorithms

This section summarizes the existing consensus algorithms implemented in available blockchain

platforms.

The most broadly used consensus algorithm in various blockchain networks is Proof of Work [12].

PoW is a mathematical puzzle that needs to be solved by a miner for new block validation while

adding a new block. The miners devote effort to find a nonce value, so the block contains hash

and the nonce contains a particular number of leading zeros. PoW applies a difficulty value to

define the number of leading zeros. Therefore, the number of the generated block is limited to

one block in the network per 10 minutes. PoW is a resource-consuming protocol as it involves

solving a hard-to-solve cryptographic puzzle.

Proof of Stake is the primary consensus algorithm used in Ethereum [13]. PoS is proposed to

address computational resources and energy usage challenges in blockchain platforms. In PoS,

the miner node selects a certain amount of assets to mine blocks, and the power of mining

relies on the value of chosen assets. PoS depends on the nodes that invested more assets on it

and less probability of attacking the blockchain. PoS deploys CASPER protocol to perform the

consensus process.

Proof of Capacity (PoC) [29], also called Proof of Space (PoSpace), implements the idle space

of the disk of the local computer to maintain the mining process. PoC is similar to the PoW

consensus algorithm; however, it utilizes disk space instead of applying computation resources.

All nodes in PoC store the solutions for series of computation puzzles that are hard to find but

easy to verify. The node with the fastest solution for the puzzle in the latest block will mine the

new block and get the mining rewards.

Proof of Authority (PoA) is a consensus algorithm that depends on a chosen set of trusted

nodes (Authorities). PoA is similar to PoS; however, miners’ mining power is predefined based

on their rule in the network instead of the number of locked assets [30]. All network participants

identify the pre-approved miners and their associated identities. The chain becomes a part of
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the permanent records when the majority of authorize nodes, at least N/2 + 1, sign off the

chain. The miner with a higher reputation has a higher chance of mining new blocks.

Intel released a new consensus algorithm for blockchain platforms known as Proof of Elapsed

Time (PoET) [31]. PoET uses Trusted Execution Environment (TEE) in Intel CPUs for run-

ning the leader-election-based consensus algorithm. PoET is integrated with trusted blockchain

environments such as Hyperledger. The algorithm needs a waiting time selected randomly from

a trusted network before appending a block to the blockchain. The TimeChecker function does

the random time selection verification.

RepuCoin [32] is a consensus algorithm based on the reputation of the validators. The mining

power of miners increases with the node reputation and likely has more chance of appending a

new block to the blockchain. The algorithm initiates by identifying a group of miners with a

high reputation. All participants know this group of nodes to measure the importance and their

reputation. A randomly selected leader is responsible for the mining of the next block. The

leader selection process is undertaken through voting by members of the group based on the

weighted practice using the node reputation. The packet overhead increases during the voting

process in a large distributed environment such as IoT with many validators.

The authors in [33] proposed a Byzantine agreement-based algorithm where the miners can

achieve consensus in one round called AlgoRand. The mining process does not involve rewards

for miners, i.e., validators. Randomly selected validators validate the next block. The newly

generated block is broadcasted to the network and each validator votes to one block. The

consensus can be achieved when all validators vote to the block, and the block with the highest

number of votes will be chosen as the next block. Such algorithms’ bottleneck in large IoT

networks appears with an increasingly significant bandwidth overhead from the participants.

In Practical Byzantine Fault Tolerance (PBFT), all the nodes contribute to the voting process

to add the next block, and the agreement is achieved once more than two-thirds of all nodes

agree upon that block. PBFT needs a minimum of 3f + 1 replicas to perform normally, where f

indicates the maximum number of faulty replicas. This minimum number ensures enough non-

faulty replicas to find the faulty ones byzantine and crashes. Byzantine Fault Tolerance (BFT)

protocols are a powerful mechanism to attain highly reliable and available systems. PBFT can

reach the consensus quicker and more with fewer resources compared to PoW. Also, it does not

require owning assets similar to PoS to participate in the consensus process [29].
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Federated Byzantine Agreement (FBA) [34] is a distributed version of BFT where any node can

be a validator, and the validator forms a group of validators randomly to build a quorum. Nodes

reach agreement once the quorums have intersections and the selected leader mines the next

block. However, the packet overhead is a bottleneck due to the cost of checking for intersections

and forming a quorum.

Raft is based on a voting process proposed to enhance the Paxos algorithm’s deployment in

practical systems and make it more understandable. Raft and Paxos are categorized as non-

Byzantine fault tolerance algorithms, and they can tolerate crash faults up to 50% of the nodes.

The consensus includes two stages: the election of the leader and log replication. The elected

leader maintains the transaction ordering. Randomized timeout is utilized for the leader se-

lection stage. The next step starts with elected leaders accepting the log entries from clients

and broadcasting transactions and making the transaction log version [52,69]. This consensus

algorithm has high throughput and low latency. However, its performance relies on the leader

node, which is dominant in the system [35,36].

Some of these consensus mechanisms, such as PoW and PoC, are limited by the system’s total

computing power amount. Therefore, the systems without sufficient computation power and

enough storage are vulnerable to 51% attacks. Limited throughput is another main limitation

of the consensus algorithms mentioned above. The existing approaches limit the blockchain

platform throughput because the number of blocks appended to the chain is limited. The key

features of the existing consensus algorithms in current blockchain technologies are summarized

in table 2.1.
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2.4 Hyperledger Fabric

Hyperledger Fabric (HLF) is a permissioned blockchain widely implemented by various enter-

prises [37]. HLF is built upon a pluggable consensus mechanism to address the specific appli-

cation requirements. Practical byzantine fault tolerance is the most common consensus in HLF

that can achieve consensus in hundreds of milliseconds. The permissioned blockchain environ-

ment provides the organization with a high degree of control, authorizes particular nodes to join

the blockchain, participates in the consensus, and has access to the shared ledger. HLF supports

a specific version of Smart Contracts called ChainCode [38]. A smart contract is defined as a self-

executing piece of code to automate predefined tasks, including transferring products, services,

or financial assets between various parties without an intermediary [39]. The smart contract

concept can empower many IoT applications by designing and developing security mechanisms

for IoT and defining different measures to protect IoT privacy based on smart contracts. These

features are more beneficial in autonomous and automated IoT platforms with many devices

distributed in a decentralized structure. Transactions are usually independent and carried out

by different smart devices in IoT networks that can be managed and processed by different smart

contracts more efficiently and securely [40].

HLF components are peers, orderer, chaincode, and policies. Peer nodes validate and perform

various requests coming from network participants within the network as well as new block vali-

dation. The orderer is responsible for handling transactions (valid invoked requests), structuring

a block based on received transactions, sending blocks for the verification process by peers, and

appending them to the shared ledger’s replica. Table 2.2 summarizes the well-known blockchain

implementations and their key features.

2.4.1 Distributed Ledger Technology for Business Applications

This section presents the characteristics that are desired in a distributed ledger technology for

creating business applications. Hyperledger fabric is suitable for creating distributed ledger

technology-based business applications. Hyperledger Fabric is a distributed ledger technology

for the business. The keyword here is the business that differentiated the Hyperledger Fabric

from other blockchain technologies that are geared more toward the public domain. Two such

dominant public domain distributed technology networks are the Ethereum and the Bitcoin

27



CHAPTER 2. THE BLOCKCHAIN FOR THE IOT

Table 2.2: Comparison of well-known blockchain implementation and their key features

Blockchain
Implementation Bitcoin Ethereum Hyperledger Fabric R3 Corda IoTA

Governance Satoshi Nakamoto Ethereum developers Linux Foundation (IBM) R3 iota.org

Operation Mode
and Accessibility

Public
Permissionless

Public
Permissioned or
Permissionless

Private
Permissioned

Private
Permissioned

Public
Permissionless

Consensus
Mechanism PoW Pow and PoS

Ledger Level

Pluggable consensus
Transaction Level
PBFT

Pluggable consensus
Transaction Level
RAFT

Tangle

Decentralization Yes Yes Partially Partially Partially
Privacy Weak Weak High High Weak
Scalability High High Partially Partially High
Throughput Very Low Low High High High
Latency 10 Minutes 12 Seconds 100 ms Not Verified 10 ms
Network-intensive No No Yes No No
Compute-intensive Yes Partially No No No

Smart contract Limited Yes
Solidity

Yes
Go, Java

Yes
Kotlin, Java No

Currency Bitcoin Ether
Token via smart contract

None
Tokens via CC None Iota

networks. The business application would require the distributed ledger system to have cer-

tain characteristics which are very different from the characteristics desired in a public domain

distributed Ledger technology.

There are four characteristics that make Hyperledger fabric suitable for implementing DLT

based business applications. Hyperledger Fabric is a permission network. It supports confiden-

tial transactions, and to participate, one does not need cryptocurrency, and it is programmable.

With these characteristics, Hyperledger Fabric establishes trust, transparency, and account-

ability among the participants in the network. Hyperledger Fabric allows businesses to create

permission networks. The Hyperledger fabric provides ways by which owners of the network can

restrict who can access and do what on the network. It requires participants in the network to

be known and join the network; the participants have to get permission from some authority.

Compare this with the public DLT platform such as Ethereum, where anyone can participate

on the network as it is a permission-less network. Hyperledger Fabric provides ways by which

the rules are assigned to the participant, and actions that each of those roles can take are

restricted by way of access control list. Transactions are validated by a known set of validators

that the participants trust since all participants are known in a business setting. It is easy to

identify or establish those trust authorities or transaction validators. Compare this with a public

network where everyone is anonymous, and there is a lack of trust among the participants. That

is why in those public networks such as Ethereum, resource-intensive validation schemes are

used. Another characteristic that is desired for business applications is the confidentiality of the
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transactions. Not all transactions are desired by the business to be visible to all. Hyperledger

fabric puts participants in control of the visibility of their transactions. Consider the scenario

where A, B, and C are engaged in carrying out business on a DLT based application. Any

transaction initiated by any of these entities will be visible to all of these participants. Now, if

B and C would like to engage in some kind of business activity that requires them to restrict the

visibility of the transaction to only two of them, then they can create a private channel to carry

out such business. Any transaction initiated by B or C on this private channel will be visible

only to be B and C. Businesses using Hyperledger fabric can create and participate on multiple

such private channels or networks.

Hyperledger Fabric does not have any concept of cryptocurrencies. Now, Ethereum uses cryp-

tocurrency to incentivize the distributed ledger network. Transactions on Ethereum are validated

by miners who get paid in cryptocurrencies that they can exchange for the fee. This kind of

transaction validation scheme is not needed in the case of a business DLT application. In other

words, there is no need to incentivize the network using cryptocurrencies. Hyperledger Fabric

allows participants to decide on who the validators would be and what kind of policies will be

used for transaction validation.

Typical public domain transaction validation schemes such as proof of work which is very

resource-intensive, are not applicable and are not needed for distributed ledger business ap-

plications. Hyperledger fabric is programmable by way of the construct called the chain code.

Conceptually ChainCode is the same as the smart contract on other distributed ledger technolo-

gies. Businesses can use ChainCode to automate the business processes ChainCode sits next

to the ledger, and participants of the network can execute the chain code in the context of a

transaction that gets recorded in the ledger. Automation of business processes by way of chain

code leads to higher efficiency, transparency, and greater trust among the participants.

2.4.2 Assets, ChainCode and Ledger

As discussed previously in the lecture on the distributed ledgers, assets represent some kind of

value that can be exchanged on the blockchain systems. Any object of value in the real world

may be represented as an asset on Hyperledger fabric as long as it can be represented digitally.

On Hyperledger fabric, the asset representation may be JSON or in binary format. For example,
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a simplified representation of the car will have two attributes in the JSON representation, the

VIN number field that uniquely identifies the car and the owner of the car. The second field is

that the owner can change as a result of a sale of the car. In effect, we are saying that the state

of the asset may change over time. These state changes can occur on Hyperledger fabric only

by way of well-defined transactions coded in ChainCode.

ChainCode defines the structure of the asset. It also defines the transactions that can be

executed against the asset. It has all of the business logic needed for the transaction. In the

case of the example of a car, there can be a function to sell the car defined in the ChainCode,

and a call to this function will lead to the transfer of ownership of a specific car to the new

owner. All transactions are recorded in a ledger. A ledger is a data structure that keeps track

of all of these transactions. It also records the state changes taking place in the assets due to

the execution of these transactions. And it is already known that the ledger and hyper ledger

fabric are distributed. That is, all participants have a replica, a copy of the ledger.

2.4.3 Membership Services and Permissioned Network

What that means is that there is a need to assign identities to the participants in the network.

Businesses deal with known entities. Businesses have B2B partners, for example, suppliers of

raw material or purchaser of goods. In some industries, by law, businesses are supposed to

interact with only known entities. For example, the banking industry. Banks must know the

identity of every single customer it has. Then there are regulatory agencies that interact with

the businesses. A distributed ledger technology-based application for businesses in effect would

require support for managing identities on the distributed ledger network.

Unlike public networks such as Ethereum, anonymous access to blockchain applications built

on Hyperledger is not allowed. Business application defines the roles that are assigned to the

participant, and access is granted or restricted by way of these roles. An abstract service referred

to as the membership service provider takes care of generating the credentials for the various

participants. In the context of Hyperledger, member refers to a legally separate or independent

entity. Identity in the hyper ledger network is managed by way of X509 certificates. When a

participant identity is created, the certificate is issued to the participant. Anytime a transaction

is initiated by the participant, certificates, private keys are used for signing the transaction, and
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any component in the network can validate be the authenticity of the transaction by using the

participant’s public key. Interestingly on Hyperledger, it is not only the participants that are

issued the certificate. Even the infrastructure components are assigned an identity by way of

certificates. This is to prevent a scenario where hackers can add a server to the network, for

example, to disrupt the network or to make an attempt to manipulate the transactions. Every

single infrastructure component in the Hyperledger network must have a valid certificate to

become part of the network.

Members are legally separate entities, and so even they are assigned an identity by way of a

certificate. Certificates follow the typical process of issuance and the revocation by the certifica-

tion authorities in the network. Members can manage the identities within their organization.

This aspect will remove the dependency on a single centralized certification authority. And

this is achieved by way of implementing the concept of membership service providers where

the member can use their certificate to create new valid identities that can participate on the

network. So, in other words, a member can create a new participant certificate that associates

the participants with the organization or the member by virtue of the certificate chain. Also,

members can create the certificate for that infrastructure component. As a result, the hyper

ledger fabric network can have one or more membership service provider components. Hyper-

ledger is a permission network. All entities participating on the network are known and have an

identity that is assigned by way of X 509 certificates. Certificates are issued to all participant’s

infrastructure components and members. Members are legally separate entities. These are the

organizations that have decided to adopt Blockchain for process automation. Each of these

members is assigned a certificate, and depending on their authority, they may be able to use an

MSP to create participant and infrastructure component identity within their organization.

2.4.4 Nodes and Channels

The concept of Node is common in all blockchain technologies. Think of node as a communi-

cation endpoint in a blockchain network. Nodes connect to another Node, and that is how the

blockchain network is formed. Nodes use some kind of peer-to-peer protocol for keeping the

distributed ledger in sync across the network. In public blockchain networks such as Ethereum

and Bitcoins, all nodes are equal, and the network looks like this in the case of Ethereum. To

participate in these public networks, one just needs to download the node software generally
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called Wallet, create an account and Execute the Node.

Things at Hyperledger are very different. Nodes are the communication entities of the Blockchain.

Nodes need valid certificates to be able to communicate with the network, and the participants

use the apps that connect to the network by way of the nodes. The participant’s identity is not

the same as the identity of the Node. When the participant executes or invokes a transaction,

the participant’s certificate is used for signing that transaction. Nodes certificate is used by the

network to check if they should trust the Node or not. Let’s say for the sake of discussion that

this Node’s certificate is either revoked or has expired. In that case, the transaction signed by

a valid certificate held by the participant is broadcasted to the network, but the transaction

will be rejected because the certificate that Node is using has expired or has been revoked. In

Hyperledger Fabric, unlike the public domain Blockchain technologies such as Ethereum and

Bitcoin, all nodes are not equal. HLF components and elements are presented in Figure 2.6.

Figure 2.6: HLF components and elements.

There is three distinct types of nodes. The first one is the client node. This is the Node that

applications use for initiating the transactions. Peers are the nodes that keep the ledger in-

sync across the network. Orderers are the communication backbone for the blockchain network.

They are responsible for the distribution of transactions. Members can participate on multiple

Hyperledger blockchain networks. The transaction in each network is isolated, and this is made

possible by way of what is referred to as the channel. Peers connect with the channels, and they

can receive all the transactions that are getting broadcasted on that channel.

The channel has its own independent ledger. In other words, if there are two channels, there
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are two different ledgers maintained in each of these channels, and there is no visibility for a

peer connected to one channel into the ledger of another channel. Consider this example where

there are five members, and they have decided to launch a blockchain network. Here as you can

see, there is a single channel, and there is a ledger and the chain code that is available on that

channel to all five members. When participants decided to have some kind of deal where they

want their transactions to be private, so what they can do is they can create a private channel.

The ledger and chain code for the private channel is independent and isolated from the ledger

and chain code for the common channel.

2.4.4.1 Ledger Implementation

Hyperledger Fabric is a distributed ledger technology. All peers in the network have a copy

replica of the ledger. Ledger has two parts transaction log and state database. In Fabric, there

are two parts to the ledger. Transaction log that keeps track of all the transactions invoked

against the assets. And then there is the state data. The state data is the representation of the

current state of the asset at any point in time. As in the example of the car, let’s say the dealer

sells the car to person A, the transaction is added to the log, and state data reflects that A is

the owner of the car. Now let’s say person A sold the car to B. The state data reflects the new

owner as B. And let’s say again B sells to C; the state data reflects C as the owner.

The transaction log is immutable. But the state data is not immutable. This is sometimes a

source of confusion. The term CRUD defines various actions includes create, retrieve, update

and delete. There is a need to find out how CRUD applies to transaction logs and state data.

One can create transaction records in the transaction log and retrieve the existing transaction

records from the transaction log but cannot update an existing transaction record that is there

in the log. In addition, the deletion of the transactions which have been added to the log is

not possible. From the state data perspective, you can carry out any of these operations on the

state data for an asset. It is mandatory to know how new transactions are created and how the

CRUD operations are carried out on the state data. It all happens by way of the execution of

the chain code. When the chain code is executed, it leads to the creation of transactions in the

transaction log. And at the same time, depending on the code in the chain code, there may be

a change in the state data. So, in other words, the CRUD operations are implemented in the

code for the chain code. The transaction log is implemented using the levelDB. LevelDB is a
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lightweight library for building key-value data stores. It is used in an embedded manner as part

of the fabric peer implementation. That means that the levelDB is not launched as a separate

process but is part of the peer process. It is a queryable and highly efficient implementation for

the insertion of data or the creation of data.

Peers write the transactions to the level database. It is crucial to know that one cannot replace

the level database with any other. It is a fixed implementation from the fabric peer implemen-

tation perspective. The state data consists of the key-value pairs that are version. The asset

state is managed in storage variables identified by the keys, for example, and Key is equal to

the owner. The value is represented by way of arbitrary blobs of binary objects. These blobs

may be in JSON format. Ledger implementation is presented in Figure 2.7.

Figure 2.7: Ledger implementation.

Apart from the key value, the state data also has a version. When the state data is updated,

the existing data is not over-written, which would cause the old data to be lost. Instead, a new

version is created for the key-value pair and placed in the state database. Foe example the car

has two attributes VIN number and the owner information. This is version one of the car’s state

data. If the car is sold by the current owner, so the owner data in the state is updated. So, at

this point the version one of the data is there, and it’s not overwritten. A version 2 of the state

data is created for the owner and retained in the state database. Same way, version 3 will be

created the next time a transaction is executed that updates the owner information. State data

can have this representation - state name of the Key and then the version and value for that

Key.
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The start data by default is managed in LevelDB, which is the embedded database, like it has

been explained in the case of the transaction log. The data will look like this for the car example.

The VIN number, which never changed, stays at version 1, and then ownership of the car has

changed over a period of time. So, version 1 was when the car was created by the manufacturer,

and then version 2 is when the ownership of the car was transferred to the dealership. Assume

the dealership Adam dealership and then when the dealership sold the car to John. Then there

is a version 3 created in the levelDB. One thing to keep in mind is that chain code owns the data

for these keys, so identifying a specific key is not just the key name but the chain code name

and the key name. So, in other words, the access to the data is restricted to the owner chain

code, and if there’s another chain code that tries to access it won’t be able to do that. Now,

this is how it’s implemented today in version 1.0.1. This may change in the future, wherein the

other chain code may be allowed to access the chain code data that they don’t own.

Both transaction log and state databases, by default, use levelDB, and levelDB support such

simple queries. Now, if these simple queries are going against the transaction log, that should

be fine because you are not going to go for complex queries against the transaction logs. It is

crucial to know that when someone queries the transaction log, they will be querying it against

the peer because the peer has the levelDB embedded within the peer process. Businesses depend

on reports and business intelligence, and insights that they gather from the data to make their

decisions. With simple queries that are available in levelDB, Businesses will be constrained

because they need to write some complex queries to generate these reports and insights.

Unfortunately, levelDB will not work in those cases. The good news is that the Hyperledger

fabric team understands this issue, and what they allow you to do is switch the levelDB with a

more mature database with more flexibility around the querying capabilities. The state database

is pluggable at the peer level. By default, it is levelDB which supports a simple query for key-

value pairs, but you can replace it with couch database, which is a NoSQL database that allows

one to execute complex queries, and all of this is done by the configuration of the peer.

2.4.5 Peers Nodes, Anchors, and Endorsers

Members in the blockchain network need to set up peers in their infrastructure for participating

in the network. Say, for example, member A has set up three peer nodes. All of these peers
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need to be configured with the appropriate cryptographic materials such as certificates and other

information. Peers in the members organization receive transaction invocation requests from the

clients within the organization. As transactions are created in the network, and new blocks get

generated. These blocks are sent out to the peers by the ordering service, and peers receiving

these blocks need to validate and update the ledger managed on the peer node. Inherently, this

kind of architectural approach is highly scalable as there is no need for a centralized effort to

scale the network or to scale the infrastructure.

Each member organization can look at their needs and set up the infrastructure based on their

requirements. So, for example, member organization A has three peers, whereas B has decided to

set up only two peers because that may be enough for their requirements. Member organizations

can have multiple peers, but not all peers receive the block information from the Orderer; only

the Anchor peer receives the blocks. Peers Nodes, Anchors, and Endorsers are presented in

Figure 2.8.

Figure 2.8: Peers Nodes, Anchors, and Endorsers.

What happens is when the anchor peer receives the block, it updates the other peers in the

member organization. To avoid a single point of failure, an organization can create a cluster of

anchor peers or more than one anchor peer. Anchor peers are set up and defined as part of the

channel configuration, and the anchor peers are by default discoverable. Now what that means

is that any peer that is marked as anchor peer is discoverable by the order and other anchor

peers. Peers may be marked as the endorser, or they can take up the role of the endorser, in

which case they are also known as the endorsing peer. A client sends the invocation requests

to the endorsing peer. On receiving the request for the invocation, the endorsing peer validates
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the transaction. For example, it checks if the end-user has used a valid certificate or not. If the

validation checks out fine, then it simulates the chain code.

What that means is that the endorsing peer executes the chain code. Now, after the execution,

it does not save the state of the chain code back to the blockchain as it is simply simulating the

change. And you will understand much better how this process works as part of the transaction

flow. So, for the time being, just think of simulation as execution, but the data that has changed

in the chain code is not saved to the ledger at this point. At the end of the endorsement process,

the endorser either rejects the transaction, and this may happen due to multiple reasons, for

example, the security aspects didn’t check out, or the execution failure or the endorser may

respond back with an endorsed transaction request.

The primary objective of the endorsing peer or the endorser is to protect the network. Now

when it has been explained as protect the network, it doesn’t necessarily means protect from

the intentional attack on the network, but it also means that it needs to protect the network

from a misbehaving or misconfigured node on the network. And since every member organization

is responsible for configuring their own nodes, which are peers, there is the possibility that a

misconfigured node may be unintentionally added to the network.

Another advantage of this mechanism is that only the endorser needs to execute the chain code.

And this will improve the overall scalability of the infrastructure. Since there is no need for all

nodes to execute the chain code. The focus of this lecture was on the peer node. Every member

organization needs to set up peers in the organization. Peers receive blocks from the network.

There is a special kind of peer that is set up to receive the blocks, and that peer is known as the

anchor. Anchor peer receives the blocks and then provides these blocks to the other peers in the

organization. Then there is the endorser peer or the endorsing peer. The endorsing peer receives

the transaction requests from the client. On receiving the transaction requests from the client, it

simulates the transaction; that is, the transaction is executed. The chain code is executed, but

the state of the chain code is not updated in the ledger. The endorser then rejects or accepts

the transaction after it has carried out multiple validation checks. The primary objective of

this endorsement mechanism is to protect the network from intentional as well as unintentional

attacks.
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2.4.6 Orderer Nodes

Endorsement policies are used by the client, the peer, and the orderer to ensure that the transac-

tions are valid before they get added to the ledger across the network. The client is responsible

for initiating the transactions, and the client does that by creating the transaction request and

sending it to one or more endorsing peers. Clients connect to the endorser and send the trans-

action to be endorsed. It is important to know which peer should be used as an endorser, and

the answer is it depends. It depends on the chain code. The chain code can associate a policy

known as the endorsement policy, and this endorsement policy has two components which peers

to use as endorsers. This is how the client comes to know which endorser it should connect to

for getting the transaction endorsed. Another part of the endorsement policy is the criteria for

the valid transactions. Figure 2.9 presents Orderer components.

Figure 2.9: Peers Nodes, Anchors, and Endorsers.

In this example policies, three peers have been set up that have been assigned the role of

endorsers. Clients must send the transaction request to all of these endorsing peers and then

collect the responses. In the second part of the endorsement policy, there is a criterion for

transaction validation. This is used by peers. In the criteria, the chain code developer defines

either the number of endorsements needed for checking the validity of the transaction, or the
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same thing can be specified as a percentage. For example, the policy may say that two out

of three endorsers must endorse the policy to have the transaction considered valid. Hence, it

may simply say 67 percent or above is the criteria used for marking the transaction as valid. In

combination, one may use the logical expression with AND/OR or operators to define expressions

that are used for checking the validity of the transaction.

The transaction will be considered valid if the organization 1 (Org1) endorser endorses the trans-

action, and if the Org1 member has not endorsed the transaction, then both or three endorsers

should have endorsed the transaction request for it to be considered valid. Endorsement policies

are optional. In other words, the chain code is not required to have an endorsement policy. The

endorsement policy is specified at the time of deployment of the chain code, and the obvious

question would be if the policy is not specified, then what is the default policy.

The default policy is that any peer from the client organization can endorse the transaction

request. Peers are responsible for keeping the ledger in sync with the network. So, peers received

the transactions that they need to add to the ledger, but before the peer adds the transaction to

the ledger, it uses the endorsement policy to check the validity of that transaction. So, there are

three high-level attributes that the peer checks for. The first is are all the endorsements valid.

The second thing is checking the criteria. Is there enough endorsement for the transaction to

be considered valid? The third thing is are the endorsements coming from the right sources. In

this particular scenario, the endorsements coming from peer-1, peer-2, and peer-3. If there is a

failure in any of these three checks then the transaction is considered invalid. After this check,

the transaction is marked as failed if it has failed the validation and added to the transaction

log. If the validation has passed, then it is marked as a successful transaction and added to the

transaction log.

2.4.7 Membership Servers and Certification Authority

The membership services provider is an abstract component of the Hyperledger fabric system

that provides the credentials to the clients and peers for them to participate in the Hyperledger

Fabric network. The idea of abstraction is that alternate implementation of the membership

service providers may be plugged in without impacting the core logic or the foundational compo-

nents of the Hyperledger fabric network. The default MSP implementation is based on the public
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key infrastructure (PKI). There are two main services that the MSP provides -authentication

service and authorization service.

Authentication is wherein the user’s identity is getting validated. In another word, is the user

or peers certificate valid? That’s for the MSP checks. Is the peer allowed to participate? This

is again based on the certificate that the peer presents. The authorization referred to various

actions that the user and peers can take. And the MSP again validates the authorization for the

peers and users to carry out those actions. For example, can this user issue or create new iden-

tities, can the user deploy a chain code? So these are some examples where MSP plays a critical

role in securing the Hyperledger fabric network. Now in PKI-based implementations, there is

a need to manage the identity by way of certificates. Certificates are issued, validated, and

revoked. This is where the certification authority fits into the picture. Hyperledger fabric devel-

opment team has done great work of putting together a certification authority implementation

that is available to one by default.

Certification Authority (CA) is a trusted party that affirms the identity of an entity. By signing

the certificate containing the entity’s public key and the key used for signing the certificate is

the certification authorities own private key. There are two other authorities that are referred

to in the context of certification authority the Registration Authority (RA) and the Validation

Authority (VA). The process starts with the requester raising a request for issuance of identity or

signing of the certificate. The requester sends the appropriate documentation to the registration

authority. Once the registration authority has validated the identity, the registration authority

informs the certification authority to issue a certificate. The certification authority issues the

certificate by signing the certificate and then sending it back to the requester. The certification

authority informs the validation authority about this new certificate so that anyone can check

with the validation authority if the certificate is issued.

For a single certification authority for the whole of the network, the process of issuance of

certificates will be very inefficient and may not be very cost-effective. The way Hyperledger

Fabric works is that a root certificate is issued to each member in the network, and then the

root certificate may be authorized to issue new identities so that the members in the network can

manage the identities within their organizations. In other words, there are multiple certification

authorities that can be set up in the Hyperledger Fabric network.

The node responsible for managing the certificates use the fabric-CA client to manage the
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certificates on the fabric-CA server. Orderers and peers can validate the certificates using the

interfaces exposed by the fabric-CA server. Apart from the CA client, there is also an SDK

available for managing the certificates, and there is also a rest API interface available for the

fabric-CA server.

The fabric-CA server manages the identities and certificates in the database. By default, the

CA server uses the SQL light implementation, which obviously is not very robust. By way of

configuration, one can change the CA server to use MySQL or Postgres, and it also supports

the enterprise LDAP.

2.4.8 ChainCode Development

This section covers at a very high level the structure of the ChainCode (CC), how the chain code

is developed, and the execution run-time for the ChainCode. ChainCode on Hyperledger fabric

may be written in Go Lang, Java, and NodeJS. There are two parts to the ChainCode. The

first part is the asset definition which is the digital representation of the asset. It is a structure

or a class definition that one would create. In the case of NodeJS, the structure or the class for

the asset is defined as part of Business Network modeling.

An example of the sample asset, which has two attributes asset ID and value. Once one has

created the asset definition, one has to put together the transactions which will create the asset

and manage the state of the assets. To do that, one would write the code for managing the

state of the asset, and that code can be written in JavaScript in the case of node run time.

The code in the transactions implements the business logic. This code carries out the typical

operations against the various assets defined in the business network application. The create,

retrieve, update and delete operations.

The developer writes the ChainCode in Java or Go Lang or NodeJS and then uses the common

software practices to iteratively compile and test the code till one is satisfied that the code is

working. As the next step, the developer deploys the ChainCode to the peer using a deployed

transaction. As part of the deployment, the developer can also put together the endorsement

policy for the chain code. The deployment transaction is propagated to the network, and once

the deployment transaction is successful, the transaction log and the state data are got updated.
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Participants in the network can use applications to invoke the chain code, and all such invocations

are recorded in the transaction log. All the state changes are recorded in the state database. The

deployment transaction deploys the ChainCode instance in its own container, and the execution

or invocation of the chain code also happens within the independent containers for each of these

ChainCode instances.

2.5 Hyperledger Fabric for Cellular-based IoT

This section presents various elements of the Hyperledger Fabric and its components integrated

with the IoT network, including reference architecture and overall enterprise readiness. Open

source, open architecture, and open standards of HLF give the flexibility to enhance the inte-

gration of Blockchain technology and IoT [38] and enables developers to tailor and integrate

the system based on their needs. The specific characteristics of cellular-enabled IoT systems

are obliged to comply with various technology governance standards and industry compliance.

HLF, as an enterprise-ready piece of open-source software, powers the network adaption. HLF

is a permissioned and private blockchain platform that is the right choice to be implemented

for corporate use. It is developed in the Golang programming language, and the gRPC pro-

tocol facilitates the communication of different system elements. The Hyperledger Software

Development Kits (SDKs) are available in Java, Node.js, and Golang.

2.5.1 Hyperledger Fabric Components

HLF is a modular and extensible architecture blockchain implementation, and these futures allow

for alternative implementations to be plugged in and implemented with a modular framework

with the IoT network system grows in complexity. The three main components of the HLF

framework are the peer nodes, Membership Service Provider (MSP), and dedicated orderer

service, which has been assigned to various nodes of the cellular-enabled IoT.

2.5.2 Membership Service Provider (MSP)

Different nodes within the network receive their associated certificate from the Certification

Authority as a dedicated X509-based identification service. The MSP is a conceptual element
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and can be organized based on the network design and specification. Moreover, any other service

that provides X509-based PKI infrastructure can be implemented to issue identity certificates

in different layers of the network.

2.5.3 Fabric Certification Authority

The Fabric network actors can be categorized into two main categories: human actors (such

as admins, users) and machine actors (such as peers, orderers, and applications). Network

components need an identity to be able to participate in the blockchain system based on the

x509 certificate. The certificates holder information is appended into each issued certificate and

holds some additional attributes that determine the roles and node privileges in the network. The

certification authority (CA) maintains various certificates in the cellular-based IoT network and

can be configured separately. In addition, any certification authority that issues x509 certificates

can be implemented. The procedure is divided into a two-step process. In the first stage, the CA

server creates (registrar) the node identity into the network and provides the authority holder’s

credentials. In the next step, the node as an identity holder enrolls the identity to obtain its

x509 certificate. However, in a non-human actor scenario, the corresponding network admin

enrolls and initializes the component.

2.5.4 Ordering Service

The ordering service is the backbone of the network’s communication. The Orderer maintains

the consistency of the ledger state across the entire network. The orderer functionality can be

assigned to nodes, and the system can have more than one orderer. The Orderer establishes the

Consensus in Fabric, and the Orderer service is responsible for providing the transaction’s order.

The Fabric provides a RAFT-based ordering service for production purposes and is considered

in this study.

2.5.5 Peer Nodes

Peer nodes maintain the execution of the smart contracts (ChainCode) and the ledger mainte-

nance. There are two particular peer nodes defined in the Fabric network: endorser peers and
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anchor peers. Anchor peers are accessible from outside the defined organization; therefore, they

receive the data blocks and distribute them to all peers. An organization can be structured to

include a cluster of nodes (anchor peers) and address a single point of failure issues. In addition,

peer nodes may act as endorsers or be assigned the role of an endorser peer. Client nodes send

an invocation request for the ChainCode to the endorser peers. Upon receipt of the invocation

request, the endorser peers simulate and validate the chaincode transaction.

2.5.6 Permissioned Network

The public blockchain facilitates a system in which participants download the software and

begin transacting anonymously; however, it is not a suitable method to be implemented in

business networks. Most enterprise networks does not need anonymity transactions within their

system. Network participants are always identified by their identifiers and allocated various

roles in the system. In contrast, the HLF is a permission blockchain network that assigns

transactions to recognized identities and responsibilities. All nodes, users, and components need

to be authenticated before participating in the network performed by MSP and CA entities.

The HLF employs a public key infrastructure to approve and validate users and components.

2.5.7 Confidential Transactions

HLF provides the concept of dedicated channels. Various channels can be configured to separate

the data flows. Channel capability enables transactions to be private between specified parties.

Each channel can be associated with a specific ledger, and several channels may exist among

consortium members connected to the same network.

2.5.8 Hyperledger Fabric Policies

The pluggable and modular features of the HLF blockchain enables participants to define sev-

eral policies, different rules, decisions, and regulations that govern the consortium’s operation

and deployment. These characteristics facilitate decentralized decisions within the consortium

blockchain environment. Numerous administrators from organization members vote by majority

to make changes to the network that impact the consortium. By utilizing rules, the Hyperledger
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2.5.8 Hyperledger Fabric Policies

Fabric technology enables decentralized administration. Figure 2.10 shows the considered ar-

chitecture concept in this study. It has multiple parts; the main two parts in this structure are

IoT layers and blockchain network. IoT layers are composed of various components: applica-

tion, edge computing, network connectivity, data accumulation, data abstraction, and physical

nodes. Several information can be exchanged between IoT networks and blockchain systems,

and HLF blockchain deploys various communication interfaces to interact with IoT devices. This

framework defines different types of peer nodes on the model, including endorser, non-endorser,

orderer, and client nodes.

Figure 2.10: The high-level overview of the proposed architecture.
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Chapter 3

Multi-Layer Blockchain-Based

Security Architecture for Internet of

Things

Chapter 3 includes the article, “Multi-Layer Blockchain-Based Security Architecture for Internet

of Things” published in the MDPI journal of “Sensors”. This article is of open access type.

It is republished in this thesis under the Creative Commons Attribution License. No special

permission is required to reuse all or part of article published by MDPI, including figures and

tables. For articles published under an open access Creative Common CC BY license, any part

of the article may be reused without permission provided that the original article is clearly cited.

Reuse of an article does not imply endorsement by the authors or MDPI.

The full text is included in the thesis has some modifications. This means that while the content

is identical to the published article, there may be stylistic differences.
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Abstract: The proliferation of smart devices in the Internet of Things (IoT) networks creates signifi-
cant security challenges for the communications between such devices. Blockchain is a decentralized
and distributed technology that can potentially tackle the security problems within the 5G-enabled
IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks
while simplifying the implementation. The concept of clustering is utilized in order to facilitate the
multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying
techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated An-
nealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication
and authorization. Local private blockchain implementation facilitates communications between
the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and
security while also providing a network authentication mechanism. The open-source Hyperledger
Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt
a global blockchain approach to communicate with each other securely. The simulation results
demonstrate that the proposed clustering algorithm performs well when compared to the earlier
reported approaches. The proposed lightweight blockchain model is also shown to be better suited
to balance network latency and throughput as compared to a traditional global blockchain.

Keywords: internet of things; blockchain; hyperledger fabric; evolutionary clustering; security;
scalability; authorization

1. Introduction

Ubiquitous interconnected objects can be deployed through the Internet of Things
(IoT) infrastructure using cloud platforms in a centralized network [1]. A wide variety
of interconnected devices, including smart locks [2] and vehicles [3], can also implement
decentralized solutions by employing the blockchain technology in a decentralized peer-to-
peer manner [4]. Both of the models are capable of dealing with the challenges of providing
privacy and security for networked devices in the IoT environment. Nevertheless, the
constraints of limited resources, centralized control, scalability, overhead, latency, and
throughput characterize the expected heterogeneity of IoT network devices [5].

In a centralized network structure, the server controls and enhances the performance
of the devices [6]. However, centralized schemes have several drawbacks. The network
with a large number of smart devices normally generates a tremendous volume of data.
A cloud platform service-provider requires considerable network bandwidth as well as
high-performance with regards to efficiency and storage [7,8]. Furthermore, there is always
a risk of the centralized network key components failure leading to a serious (or complete)
breakdown of the entire system [9,10]. The data that are collected by the central cloud
storage often require further manipulation by a third-party. This potentially could lead
to data leaks, thus compromising the end-user’s privacy [11]. The external computing
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resources coordination is another challenge for proving IoT security and performance in
the centralized systems [9]. Therefore, most current centralized systems fail to provide
entities with a guarantee of data reliability and privacy.

Most IoT devices are only able to communicate in short-range transmissions, due
to their low-power wireless transmitters and receivers. IoT networks can benefit from
utilizing the Multihop Cellular Network (MCN) concept [12] that facilitates significant
shortening in signal coverage. The essence of MCN leveraged by distributed, decentral-
ized blockchain technology can ensure the required high-security and credibility for the
IoT network by addressing the drawbacks of the centralization servers [13]. Besides, it
enhances the degree of trust between heterogeneous devices, and that can minimize the
cost of conventional data-sharing platforms [14]. The formation of a large-scale network
comprising of heterogeneous nodes is not as easy as traditional blockchain implementation
needs high-performance nodes. A self-protection mechanism is also required, due to the
distributed structure of IoT networks with a multitude of objects and devices [15].

The increased number of connected devices (in the order of million devices per sq
km), heterogeneity of devices and vendors, interoperability, a vast amount of collected data
and network traffic, requirements of large bandwidth capacity, communication latency,
and trust are the major challenges within the new era of the 5G-enabled IoT. [16]. The new
model of security should address the unique requirements of the 5G-enabled IoT and D2D
(Device-to-Device) communication devices such as scalability, low latency, energy concerns,
secure communication, and reliability. Blockchain technology, including bitcoin [17,18],
have been implemented for security enhancement for a long time. Their technical value
has been generally recognized. At the same time, their functionality support is still limited
to simple transactional data storage. Furthermore, the blockchain is a viable option for
supporting ultra-reliable low latency massive Machine Type Communication (mMTC) of
resource-constrained IoT devices under the 5G networks for improved security and privacy.

This paper discusses a multilayer architecture that is based on a new clustering model
suited for blockchain implementation to tackle the issues associated with implementation
complexity and elaborate on the mechanism for securing IoT communication. The new
network model that is based on multi-layer distributed blockchain can be regarded as an
organic combination of the blockchain technology and clustering techniques that effec-
tively utilize network clustering performance and capabilities, and significantly improve
the overall security and reliability of the IoT. An adapted clustering algorithm has been
developed to suit the IoT systems’ blockchain implementation by considering the network
performance metrics in defined cost functions. The IoT network clustering aims to reduce
the network load, enhance coverage, and minimize the energy (as reflected in the distance)
while leveraging the essence of MCNs. The multi-layer structure facilitates the detection
of compromised entities within the entire network in each layer. Each transaction in the
system needs to be verified by other participants by implementing a consensus algorithm.
Blockchain is continuously monitored by the entire network participants, maintaining a
copy of the blockchain ledger. Therefore, compromised nodes have no means of inserting
fraudulent blocks into the public ledger without immediately being noticed by others.
Thus, the multi-layer blockchain removes compromised entities from being a part of the
system. This makes it impossible to compromise the integrity of records in the blockchain.
Another crucial point is that the new multi-layer architecture allows for upgrading for
the existing central cloud server. This makes large-scale deployments possible. Besides, a
lightweight authorization and authentication process running in each cluster guarantees
secure access to the network resources through implementing smart contracts.

The rest of the paper is organized, as follows. In Section 2, a literature review on
the blockchain implementation in the IoT environment is introduced along with essential
information on the blockchain and IoT security. Section 3 details the framework architecture
and multi-layer system. Section 4 provides the proposed IoT blockchain framework
implementation and associated results. The proposed clustering algorithm is based on
the Genetic Algorithm (GA) and Simulated Annealing (SA) [19]. Section 5 illustrates the
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challenges addressed by implementing the proposed system model. Finally, Section 6
draws a conclusion and presents future research directions.

2. Related Works

Fast-growing numbers of networked devices characterize modern IoT systems. Con-
sequently, the amount of generated data by the connected devices is also escalating. This
inevitably leads to security and privacy concerns. Security (along with computing and
communication issues associated with IoT devices) is mainly due to the limited memory
capacity and processing power of the devices [10].

2.1. Authentication and Authorization in IoT

Devices require authentication and authorization to enter the IoT system. These mea-
sures are considered as a critical juncture of network security [20]. Interconnected devices
within the IoT environment are required for establishing secure communication with the
aid of relevant authentication procedures. The authentication and authorization processes
of the interconnected nodes and devices are traditionally maintained by a central authority
in the IoT network based on the Public Key Infrastructure (PKI) [21]. Therefore, the process
increases the authority center’s workload significantly and it causes considerable delay due
to a large number of requests [22]. To this end, several new authentication models have
been proposed. The method that was proposed in [23] for the authentication and privacy
is built up upon IP-Sec and Transport Layer Security (TLS). However, such a mechanism is
not suitable for resource-constrained interconnected IoT devices due to the high demand
for computational resources.

Research [24] develops an access management mechanism that is based on blockchain
decentralized architecture in the IoT system. The proposed approach eliminates the central-
ized control server and implements the Proof of Concept (PoC) as a consensus algorithm.
The development of a secure access control mechanism for IoT is presented in [25] in
order to address the issues related to the distribution of access rights delegation. This
approach uses the blockchain Ethereum technology to validate the identity of the entity.
Research [26] proposes a framework with layers, intersect, and self-organization Blockchain
Structures (BCS) to verify IoT entities. Model efficiency and security performance are ana-
lyzed in terms of storage efficiency, response time, and verification. Paper [27] highlights
the concerns that are related to privacy and security of data authentication in IoT. The
blockchain technology has been seen as a potential fabric for eliminating the central server
concept, and distributed futures helps to address IoT challenges, such as device spoofing,
false authentication, and lower reliability in data sharing. The authors in [28] propose
a structure for security and authentication in IoT that is based on the blockchain. This
proposal addresses the single-point-failure issue.

2.2. Blockchain-Based Frameworks for IoT Security and Privacy

Researchers have been developing blockchain technology to address the privacy and
security challenges in the IoT as an alternative solution. The implementation of several
privacy preservation strategies in blockchain-based IoT systems is discussed in [29]. These
strategies include encryption, anonymization, private contract, mixing, and differential
privacy. The authors of the research [30] review the blockchain technology and applications
for IoT systems as well as a way the blockchain techniques can address the security
challenges within the IoT systems. The lack of a comprehensive standard architecture,
cloud server availability, capacity, susceptibility to manipulation, and cost limitations are
highlighted as the critical challenges with the blockchain technology implementation in
IoT [7,8].

Lightweight Scalable Blockchain (LSB) is presented in [31] in order to facilitate the
privacy and security of the IoT devices. An overlay network is proposed to achieve
decentralization and maintain end-to-end security and privacy with the blockchain-based
framework implementation run by devices with robust computation capabilities. A new
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Proof of Block and Trade (PoBT) consensus algorithm is proposed in [32] in order to
address the challenges associated with integrating salable IoT networks and blockchain
technology. The research aim is to reduce the computation time for the validation of trades
and blocks. The work is also considered a ledger distribution mechanism to reduce the
memory requirements of IoT devices. The study that is presented in [5] suggests using LSB
to build the blockchain-based model on the modified consensus algorithm to minimize the
Proof of Work (PoW) deployment complexity. Hence, the author replaced the PoW with a
distributed trusted consensus algorithm. The proposal enhances the privacy and security of
IoT networks in a decentralized manner. The research in [33] proposes a blockchain-based
framework to address privacy, security, fault-tolerance, and autonomous behavior issues.
The framework helps to assess the possible blockchain implementation through a decision
structure for IoT and edge computing.

Data operations are performed in the blockchain system through smart contract
implementation, including data gathering, invoking, transfer, storage. A new context-
aware mechanism is proposed in [34] for blockchain-enabled IoT systems to facilitate the
on-chain data allocation. The authors define a fuzzy logic mechanism to control the data
and calculate the Rating of Allocation (RoA) value that is associated with each data request.
The efficiency of the proposed mechanism is investigated in the blockchain-based cloud
and fog architectures implementations.

2.3. Permissioned Blockchain in IoT

Hyperledger Fabric (HLF) [35], which is a distributed ledger technology, paves the way
to leverage a trustful environment without central authority dependency while delivering a
high degree of flexibility, scalability, and confidentiality. The consensus algorithm is an open
architecture in HLF. It provides a flexible environment for modifying the configuration
and increase the performance. A new authorization framework for an IoT network is
proposed in [36] based on the HLF framework. The work focuses on enhancing the
consensus algorithm by implementing the GA optimization. The aim is to attain the
best configuration with input transactions and success rates as input parameters to the
GA algorithm. The IoT data management and its traditional characteristics have been
considered in [37]. The research proposes a permissioned blockchain-based decentralized
trust management (BlockBDM) in order to address the security and trust problems of IoT
big data management.

2.4. Layer-Based IoT Blockchain

A platform for facilitating secure communications for smart cities is proposed in [38].
The presented solution deploys a layer-wise security structure by integrating smart devices
and blockchain technology. Paper [39] has proposed a multi-layer IoT blockchain-based
solution that is specifically modelled for use in the medical field. The solution addresses
computation and complexity issues of the blockchain implementation by converting IoT
networks into decentralized multi-layer structures. The research presented in [40] proposes
a hybrid network architecture for the smart city by leveraging the strength of emerging
Software Defined Networking (SDN) and blockchain technologies. In order to achieve
higher efficiency, the proposed architecture is divided into two parts: the core network and
edge network. This model inherits the strength of both the centralized and distributed
network architectures. In [41], the authors proposed a multi-level blockchain framework to
enhance privacy and data security in IoT applications. The multi-level model focuses on
improving the response time and resource utilization. The authors define mobile agents
to perform the hash function, implement encryption, deploy aggregation, and decryption.
The mobile agents are transferred between blockchain and IoT in order to accomplish
the required tasks. A two-tier hierarchical blockchain framework for IoT is proposed
in [42] for enhancing and measuring the scalability of a blockchain application in a IoT car
rental system.
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Some of the previous works discuss the multi-layer based blockchain approach for the
integration of IoT and blockchain technology. The multi-layer based blockchain network
model is introduced in [43] in order to overcome the challenges of conventional centralized
network architecture. The proposed model reduces the difficulty of the blockchain deploy-
ment in IoT systems by dividing the network into a multi-level decentralized network.
Hybrid IoT [44] is a new hybrid blockchain platform for IoT. It is based on the implemen-
tation of PoW and Byzantine Fault Tolerance (BFT) consensus algorithms. The proposed
structure includes sub-blockchains and inter-blockchains. The BFT inter-connector plat-
form connects two PoW sub-blockchains. An integrated blockchain-IoT is proposed in [45]
in order to secure the digital system for healthcare. The work addresses the scalability
challenges in the IoT system.

In [46], the authors proposes a double-chain (alliance and private chain) model that
considers the IoT environment for the data-sharing-transaction application. In the multi-
layer model, the alliance chain processes the transactions. The transaction data record
in the blockchain ledger is performed by the private chain that is deployed within each
organization. The real blockchain system data is stored in an IPFS cluster server built
by the alliance stores. Paper [47] proposes a hierarchical resource allocation framework
based on the blockchain for edge computing. The presented model implements a smart
contract-based hierarchical auction mechanism for solving resource allocation challenges
for the IoT devices that are located beyond the coverage of Access Points. A blockchain-
based multi-layer hierarchical architecture proposed in [48] facilitates the monitoring and
managing of the Internet of Underwater Things (IoUT) on cloud data. Sensor nodes are
clustered and organized based on selected residual energy cluster heads. The cluster head
and node tracking are performed by using the Bloom filter. The gateways communicate
by deploying a standard secret key, separated from another secret key that is used by the
cluster head. Subsequently, the blockchain ledger stores the routed data. A fog layer smart
gateway merged into the IoUT blockchain addresses the transaction preparation challenges,
data routing to miners problems, and scalability issues [49]. The proposed model deploys
a lightweight consensus mechanism to add blocks in the blockchain where the IoUT data
are stored.

Unfortunately, the majority of the solutions proposed in the literature do not address
the problems that are associated with the implementation of the blockchain technology
in IoT systems, such as device authentication, low scalability, transaction delays, high
computational resources for mining, and device heterogeneity. In our previous work [50],
some of the challenges that are mentioned above are highlighted along with the discussion
on the adoption of the blockchain technology in the IoT context. This article expands the
implementation of the Lightweight Hyperledger Blockchain (LHB) technology and smart
contracts to enhance the performance of the blockchain-IoT combination.

The heterogeneous IoT network lifetime improvement is achievable by implementing
a clustering model along with a multi-layer structure. The clustering concept is the key
to achieving the multi-layer architecture, where the cluster heads form the multi-layer
structure. Clustering techniques for wireless networks and device-to-device (D2D) com-
munications systems have been widely reported in the literature. They offer reduced
energy consumption and higher throughput [51]. A self-clustering method is proposed in
this work in order to identify Cluster Head (CH) nodes. Genetic algorithms considering
various clustering factors, including geospatial ones (e.g., the distance between nodes, the
base-station distance to nodes) and total network energy, are proposed. A fitness function
simulating network changes and node movements within the network is optimized by
deploying the SA methodology.

In the multi-layer architecture, devices in each layer have different computational
capabilities and energy storage capacity. Consequently, different security strategies are
proposed for individual layers. Each design is based on the blockchain. Even so, the
blockchain implementation is modified to suit the devices of each particular layer. The key
contribution of this research is three-fold:
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1. A novel, lightweight, private multi-layer model is proposed for reducing the complex-
ity of blockchain technology implementation while improving the network scalability.
The proposed model is tailored to meet the requirements of IoT devices by adopting
the blockchain technology to suit different layers of the IoT system. The simula-
tion study shows that the proposed Hyperledger Fabric-based method outperforms a
traditional blockchain solution, like the Ethereum, in terms of latency and throughput.

2. Clustering is one of the key steps of implementing the multi-layer architecture. There-
fore, a new network clustering method is presented. It is based on the evolutionary
computation that deploys multi-objective fitness functions that are relevant to hetero-
geneous IoT networks. The decentralized, fast, and self-clustering method divides
the IoT network into clusters while considering the node mobility. The simulation
results show that the proposed clustering algorithm outperforms existing solutions.

3. A novel method of authentication and authorization of IoT nodes is implemented in
order to provide security for IoT devices and protect device communications through
a multi-layer structure.

3. Multi-Layer Security Framework

The aim of the proposed network model is to provide a reliable trustful security mech-
anism for IoT networks while using the performance and capabilities of the cellular system.
The intelligent clustering and machine learning approach based on Swarm Intelligence
(SI) and Evolutionary Computation (EC) algorithms [19] is deployed in order to encode
the multi-layer structure. This proposal provides a framework to facilitate the lightweight
authentication and authorization of IoT networked devices (objects and nodes) based on
the blockchain technology.

The proposed multi-layer network model divides the entire cellular-enabled IoT
network into multiple tiers. Layer-1 consists of various clusters and IoT nodes. Layer-
2 includes sink nodes and controlling devices, such as cluster heads. Layer-3 contains
the base stations of a cellular network. All of the CHs, as cellular devices, have cellular
connectivity with the 5G BSs, and, thus, via the BSs/D2D capability, also with other CHs.
The BSs have the processing power (with appropriate servers and CPUs) to implement the
decentralized blockchain mechanism at Layer-3. Figure 1 shows the overall system model.

Blockchain implementation can potentially lead to additional overhead and scalability
issues [5]. The multi-layer network model, as shown in Figure 2, is proposed for minimizing
the overhead, reduce delays, and response time, create associated channels to collect
specific data, secure communication, and address the need for the network scalability. The
first layer contains devices and nodes with a diverse range of computational capabilities
and power resources. Locally registered devices use authentication and authorization
services through a local authorization program that is run by the cluster heads in the IoT
network. The second layer includes CH nodes, authority nodes, edge-computing nodes,
and gateways. CH nodes can securely communicate in the blockchain environment that
deploys a lightweight consensus. The local permissioned HLF blockchain is implemented
in this layer. The last layer consists of BSs in cellular networks. This higher layer, which
consists of resources with high computational power, can be arranged as a set of separate
structures under the HLF blockchain [52]. Robust asymmetric cryptography mechanism
deployment can be achieved in this layer. The security and privacy are guaranteed with
the implementation of the Global Blockchain and sophisticated security approaches to the
high-level layer (Layer 3).
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Figure 1. Multi-Layer model for Internet of Things (IoT) network.

Figure 2. The network model based on a multi-layer structure that implements a local authorization
service in the infrastructure level, a local blockchain, and public chain in the remaining two layers.
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3.1. LAYER-1

This level includes IoT objects, nodes, and devices, as well as network elements for
communications, network procedures, and protocols. Unsupervised hybrid clustering
algorithms, as described in Section 4, convert the entire IoT network into multiple clusters
and to form the layers. Each cluster is associated with a powerful device chosen as CH. IoT
devices and nodes are geographically distributed non-uniformly. The devices are authen-
ticated and authorized to the network through a local authorization and authentication
services to guarantee the privacy and security inside each cluster.

The intra-cluster security and privacy are facilitated by local CH nodes acting as edge
processing nodes, as shown in Figure 2. Such an approach can enhance the implementation
efficiency while also addressing the issues that are associated with globally centralized
cloud computing.

A lightweight session key is assigned to devices when they authenticate to associated
CH nodes and establish communications. The session key period validation is carried
out by the cluster heads in order to perform the authorization and authentication. The
registration services and authentication management, as well as authorization, are also
locally performed by the CH nodes to improve scalability and address device heterogeneity.
CH nodes maintain the addition of new devices to the network through a local registration
process. The cryptographic key distribution or session keys allow the node authentications.
Less power-hungry cryptography is provided by edge computing. Alternatively, CH
nodes for IoT devices with limited resources could provide long-term cached session keys
(cryptographic keys).

Lightweight session keys are assigned by CH nodes in order to maintain the authoriza-
tion of registered nodes as an authorization entity and authenticate them to the network.
Symmetric keys and lightweight cryptography are proposed to tackle the scalability chal-
lenges and the limitation of IoT devices with constrained resources. CH nodes perform the
following four tasks:

• a new node registration to the network as a new entity;
• session key (cryptographic key) distribution and assignment;
• communications management and initiation; and,
• secure communications management and establishment.

Symmetric key-wrapping encrypts the lightweight session keys, called the distribution
keys. Every single communication is protected with a session key. The session key is a
symmetric key that has a unique ID and a period of validity. The use of cryptographic keys
(credential management) for encryption, message authentication, and decryption is managed
by secure communication. Consequently, selected CH nodes are responsible for managing
cryptographic keys. Figure 3 illustrates the overview of the authorization procedure.

Figure 3. Local authorization service among IoT entity and Cluster Head (CH) nodes for secure
communication.

3.2. LAYER-2

The second layer connects all of the selected CH nodes under the serving Base Station
(BS) units. Cluster heads collect and forward data to the higher layer. All of the nodes in
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the second layer run a private LBC in a distributed manner to achieve a consensus that
is based on the defined consensus algorithm [5]. BS and CH units generate and verify
blocks, handle communications with non-consensus devices and nodes within the same
layer, and broadcast blocks to each cluster. Trusted nodes provide interfaces to subordinate
and superior layers employing the blockchain protocol. The HLF blockchain platform is
proposed for this layer.

The proposed network model needs to consider secured CH communications while
addressing the resource-constrained and decentralized node distribution of the IoT network.
The blockchain mining process is computationally intensive and time-consuming. Hence, it
is not ideally suited for implementation in an IoT system. Therefore, the proposal suggests
a lightweight, private, decentralized blockchain-based method for data communications
built upon distributed consensus. It is important to consider the limitation (resource-
constraint) of devices in the IoT system. Thus, a lightweight cryptographic mechanism is
to be implemented.

In the proposed model, the interaction between CH nodes and other networked
elements are based on local permissioned HLF blockchain [53] platform. HLF is a private
permissioned blockchain and it is based on an execute-order-validate architecture. In this
architecture, the transaction execution (via smart contract) is separated from transaction
ordering in order to achieve better scalability and modular consensus implementations.

The main elements of the proposed model are organizations (base stations), IoT nodes
and objects, ordering clusters, and peers (including endorser and committer, membership
service providers (MSPs), and channels [54]), as shown in Figure 4.

Figure 4. The network architecture of the IoT-enabled cellular system combined with the blockchain
technology and smart contracts.

The peers maintain distributed ledger and execute transactions. A peer node can
be an endorser or committer or both. The orderers are responsible for ordering all of the
transactions in the network. In addition, orderers propose new blocks and seek consensus.
Ordering service is a collection of orderers. All peers are committers by default. Ordering
service sends the ordered state updates in the form of a block of transactions, and com-
mitters maintaining the ledger. The peer validates transactions of a new block, commits
the changes locally as a copy of ledger, and updates the blockchain by appending it on
the block. Peers also can be an endorser for endorsing transactions. An endorser executes
the smart contract (ChainCode in HLF) and appends the results with its cryptographic
signature (called endorsement) before sending it back to the client. In the proposed model,
CH nodes can take the endorsers or committer roles, based on predefined roles.

MSP carries out the authentication services in the Hyperledger network. MSP has
to verify the network nodes identity. The organizations are the logical representation of
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the Hyperledger framework. They are responsible for the management of the network
members with the help of MSP. Channels facilitate the various connections within the
network between its different elements while using private or dedicated channels. The
committers perform the validation and update of the shared ledger.

The Hyperledger Blockchain is implemented through various transactions for data
collection and data transmission. Transactions are defined using smart contracts [54]. Base
stations in the high-level layers provide an organization for the blockchain implementation.
They are connected to CH and different nodes in the IoT system. The ordering cluster
handles the transactions and queue orders while providing a shared channel for differ-
ent peer-to-peer communications. Additionally, the ordering service performs messages
broadcasting, including transactions, and creating transaction blocks. IoT devices send
transactions to ordering clusters while using Ordering Service (OS) to make a block of
transactions. Defining the IoT nodes in the blockchain network to have an endorser or
committer role depends on various metrics, e.g., the network configuration. Aside from
validation tasks and updating the blockchain state, the committer node is responsible for
block addition to the blockchain ledger.

An IoT node becomes an endorser through submitting an endorsement request. This
request is sent to the endorser node for approval and consistency monitoring. The process
of consistency check proceeds with the smart contract execution. The endorser sends
back the response to the associated IoT node requests and grants a specific read and
writes access.

The transaction block creation is performed by ordering clusters through the OS.
The transaction blocks are distributed to all CH nodes. The blockchain system in this
level updates the ledger, and transactions are added to the ledger along with IoT node
specifications. A copy of the Blockchain ledger is shared with all of the peers in the network
after validation.

3.3. LAYER-3

This layer consists of a distributed networked collection of BS nodes acting as an
organization owner. Base stations manage devices, generate data, and process requests
in a cloud server manner. The trusted nodes in this layer have powerful computing re-
sources with less power and processor limitations. Consequently, more robust asymmetric
cryptography mechanisms are proposed for this level with the aid of the global blockchain.

The high-level layer consists of BS nodes that can perform independent mining tasks
without reliance on the central authentication servers. The nodes in this layer are computa-
tionally powerful while forming a distributed network topology. Therefore, deploying a
suitable global chain, such as the global Ethereum blockchain framework, along with more
sophisticated security techniques is feasible. The deployment of asymmetric cryptography,
such as Elliptic Curve Cryptography (ECC) [55], is an appropriate solution for this layer.
The blockchain-based system implementation enhances the level of privacy and security
while guaranteeing data integrity. The higher layers do not include any central node,
while the devices are data independent. The blockchain network records the transaction
exchange between the nodes of this layer. The cluster heads, base stations, and computing
edge nodes initiate the globally distributed trust relationship service mechanism among
other network members.

The peer-to-peer nature of the blockchain provides a suitable solution for a globally
distributed security framework between different network entities, such as BS nodes. The
communication among CH nodes and computing edge nodes is done through implement-
ing the blockchain-based communication with the use of certificates. Smart contracts
maintain the distribution of the certificates to perform a trustful communication within the
blockchain system among different nodes in this layer. CH nodes are required to sign the
certificates. The proposed blockchain-based model is enhancing the distributed trust be-
tween two CH nodes and related BS nodes when they collaborate for authorization of their
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entities. It also enhances the trust, while an entity or IoT node establishes communication
with other nodes in separate clusters under each BS.

The blockchain-based system maintains smart contract execution in order to avoid
the requirement of using domain names and fixed addresses while the nodes establish the
communications. The fixed addresses and domain names are not needed for the cluster
heads in the proposed model for their communications with the edge devices as well as to
execute smart contracts.

4. Framework Implementation
4.1. Network Self-Clustering

Figure 5 shows the clustering approach for the IoT network. Figure 6 shows the flow
of the proposed network clustering algorithm. It can be seen that the clustering is done
with the utilization of metaheuristic algorithms [56]. Metaheuristic algorithms are based on
a close interaction between computational practices and optimization. The main advantage
of these methods is that they are unentrapped in local optimal points [57]. Therefore,
these approaches seek all over the entire search space. Furthermore, the control within
the metaheuristic algorithms is fully distributed among individuals (network nodes and
participants). These individuals communicate with each other in a localized manner. The
system response is robust, and the application for environment changes is fast [56–58].

Figure 5. Network clustering scheme for cellular IoT network.

GA is a population-based algorithm that is a subset of metaheuristic methods. It
shows a good global-based exploration performance for the search of a problem space [59].
Therefore, GA is proposed in this research for the heterogeneous IoT network clustering.
Furthermore, a good local-based exploration mechanism within the search space is required
in order to evaluate a single solution. While SA indicates very good performance in this
manner, a hybrid mechanism (built upon GA and SA) is chosen in this paper to optimize
the proposed IoT network clustering [60].

The clustering approach also reduces the latency and overhead in the IoT systems
via the overall minimization of communication distances among IoT objects and selected
cluster heads. With clustering, a lower number of nodes require long-distance transmissions
to BS nodes. Therefore, the total energy consumption for the entire system is reduced, while
the network coverage is enhanced [59–61]. The clustering-based approach helps to leverage
the blockchain technology application efficiency by reducing the deployment complexity.
The entire network is divided into non-overlapping clusters that are managed by the CH
nodes. Other cluster members communicate with the CH nodes for data transmission.
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Figure 6. The flow of the Genetic Algorithm-GA-Simulated Annealing (GA-GA-SA) clustering algorithm.

The idea is to achieve the clustering through the deployment of the evolutionary
computation algorithms within the network. In the proposed model, critical network
attributes, such as the distance, network coverage, energy, and load, are the parameters
considered for the clustering of the nodes.

A hybrid algorithm (consisting of a Genetic Algorithm and Simulated Annealing) is
employed for the selection of a cluster head as well as for cluster optimization, as shown in
Figure 6. The proposed self-clustering approach allows for avoiding a uniform distribution
of nodes and clusters. This is done to model the heterogeneous nature of the IoT network.
The total number of clusters as well as the number of nodes that belong to each cluster
are not predefined. Besides, the proposed clustering enhances the flexibility of nodes
deployment in the IoT network. The nonuniform distribution of nodes in each cluster is
considered. Consequently, the lifetime of the entire network increases, while the energy
dissipation among the CH nodes is more uniform.

4.1.1. GA Phase: CH Selection with Genetic Algorithm

The most critical factor in the IoT network design is satisfying the energy constraint.
Longer network operation can be achieved through the shortening of communications and
transmission links as well as by reducing the power consumption. Shorter communication
links are achievable by grouping nodes into independent clusters. Such an approach
facilitates the aggregation and forwarding of data, because each cluster member needs to
exchange its information with the associated CH. The calculation of energy consumption
uses the first order radio communication model [62]. The radio energy dissipation for
transmitting or receiving a bit of data is equal to Eelec. Energy dissipation for transmitting
n bits of data from the transmitter to the receiver node at the distance l can be calculated,
as follows [63]:

Etx(n, l) = Eelec × n + Eamp × n × l2, (1)

while the energy dissipation volume in a node to receive n bits of data is formulated as:

Erx(n) = Eelec × n, (2)

where, Eelec is the dissipation of radio energy and Eamp is transmission amplifier energy
dissipation.
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Consequently, the total energy requirements to send and receive n data bits between
two nodes located at the distance l comprise two main elements. The first component is the
energy for amplifying data, transmission, and receiving. The second component includes
the energy for the data processing by the node. The current leakage is considered to be
negligible in low voltage and high-frequency systems. Equation (3) denotes Ell the total
energy loss for the distances that are shown in Figure 5.

Ell =
k

∑
j=1

mj

∑
i=1

[
l2
ij +

L2
j

mj

]
, (3)

where, Lj represents the distance between the cluster-head and computing edge node; the lij
represents the distance between a node and its related cluster head (Figure 5); k represents
a number of cluster heads; and, m represents the total number of nodes on the network.

Clustering is performed by considering the node residual energy, node distance from
the BS, number of CH nodes, and CH distance from the other cluster heads (intra- and
inter-cluster distances).

The cost function for the optimization problem considers the total transmission dis-
tance as a key metric that is to be minimized. Furthermore, the fitness function also takes
the number of cluster heads into account while optimizing the network load. The following
multi-objective cost function evaluates each individual node in the GAs algorithm:

Minimize:

cost( f1) = ω1

(
Edd
D

)
+ ω2

(
CHi
m

)
+ ω3

(
Load

m

)
, (4)

where, Edd is the sum of CH distances to all individual nodes and the sum of the computing
edge node distances to all CH nodes, CHi indicates the number of cluster heads, D is the
network scaling dimension, m is the total number of nodes, Load is the max network load,
and ω1, ω2, and ω3 are predefined constant weights.

The goal is to attain a fewer number of CH nodes and enhance the energy. The weights
ω1 to ω3, with values between 0 and 1, represent the importance of the key metrics during
the optimization procedure. Their values are chosen according to the importance of cost
function factors [60]. GA minimizes the cost function at this stage. Figure 7 shows the
initial phase of the clustering algorithm.

Figure 7. GA algorithm pseudocode.
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4.1.2. Optimization of Distance and Coverage by GA

The GA approach helps to achieve distance optimization through its self-organized
feature. The next GA starts with the final global solution of the first step GA as the initial
solution, as outlined in Figure 6. This step can effectively formulate the mobility of different
nodes. The proposed GA method also takes network coverage optimization into account.

The second GA phase enhances the GA solution of the first phase by a local search
strategy. Optimizing the distance between CH to a node, and the CH to the sink or edge
computing node results in the minimization of the total network energy dissipation. The
distance-based equation is deployed in order to cluster the nodes in multi groups in the
previous step and define the number of clusters through implementing the GA algorithm.
The initial population for the current stage is generated from the best solution of the last
phase. A multi-objective cost function is used in the GA optimization step. The distance is
optimized while maximizing the coverage:

Minimize:
cost( f2) = ω4(Ell) + ω5(1 − Coverage), (5)

where, Ell is detailed in (3). Coverage shows the provided network coverage by nodes, ω4
and ω5 are predefined constant weights.

4.1.3. Network Changes Optimization Using SA

Simulated Annealing is a meta-heuristic algorithm that is chosen to perform the
network changes, including node addition to, moving in, and removing from the IoT
network. Generally, a random primary solution is required to start SA. However, in the
proposed hybrid GA-GA-SA approach (Figure 6), the initial solution for SA is selected
from the final GA global solution in the previous step. A local search strategy is deployed
to improve the network changes by the SA algorithm. A new solution (called Solutionnew)
is generated at every iteration of SA that is located in the current solution (Solutioncurrent)
neighborhood area. The case Costnew < Costcurrent means that the current solution is
replaced by the new solution. Otherwise, the new solution can be accepted. The same cost
function of the first GA (expression (4)) is considered for SA evaluation at each iteration.
Figure 8 shows the SA algorithm.

Figure 8. SA Algorithm pseudocode.
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4.1.4. Clustering Results

In order to study the performance of the proposed clustering algorithms, a network
environment for the IoT devices was simulated, as shown in Figure 5. It included 100 nodes
randomly generated and distributed in a 2-D network. MATLAB 2018a was employed since
it offered a reliable environment for clustering algorithms, facilitated a straightforward
simulation of algorithms, so that the results could be ultimately compared. Table 1 provides
the GAs parameters deployed in this scenario.

Table 1. GAs Parameter Settings.

GAs Parameters Value
Population Size 30
Selection Type Proportional Selection
Recombination Percentage 0.1
Crossover Percentage 0.5
Crossover Type One-Point
Mutation Percentage 0.4
Mutation Rate 0.05
Generation Size 500

The GAs started from a specific number of individuals, termed population. Each
individual in proposed GA algorithms was elevated while using combined cost functions
presented in Equations (4) and (5). The network configuration changes were detected
by the SA section and then optimized the network accordingly. Table 2 provides the SA
parameters used in this scenario.

Table 2. SA Parameter Settings.

SA Parameters Value
Max Iter SA 1000
T initial 0.001
T final 0.000
Pchange Max 0.05
Pchange Min 0.02

In the simulation, the energy loss per bit for transmitter or receiver (Eelec) was consid-
ered to be equal to 50 nJ/bit (Eelec = 50 nJ/bit), while the constant value for transmission
amplifier was Eamp = 0.1 nJ/bit/m2 which was in line with the reported work [64].

The proposed clustering algorithm was benchmarked against four following algo-
rithms reported in the literature: ASLPR [60], ERA [65], FSFLA [64], and GAPSO [50].

Application-Specific Low Power Routing (ASLPR) is based on evolutionary algorithms
adopted for Wireless Sensor Network (WSN) applications. It uses GA and SA for CH nodes
selection. Energy-aware Routing Algorithm (ERA) is for cluster-based WSNs. The residual
energy of the CH nodes and the intra-cluster distances is considered in ERA for cluster
formation. Fuzzy Shuffled Frog Leaping Algorithm (FSFLA) employs the memetic Shuffled
Frog Leaping Algorithm (SFLA) in order to optimize the Mamdani fuzzy rule-base table
based on the application specifications. This protocol deals with node energy and intra-
cluster distances as well as with network lifetime. Genetic Algorithm and Particle Swarm
Optimization (GAPSO) [50] is proposed in order to form clusters in the IoT environment.
All of the protocols were evaluated within the same simulated network environment. Each
algorithm at the end of its optimization resulted in a different number of clusters and
cluster heads.

The obtained simulation results indicate the effectiveness of the proposed clustering
model as well as the efficiency of the algorithm to minimize the distances and the total
network energy. Figure 9a illustrates the formed clusters for GA-GA-SA with the centrally
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located base station with 100 nodes that were randomly distributed in a network coverage
area of 150 (m) × 150 (m). Figure 9b–d show that the proposed GA-GA-SA performs better
when compared to the other algorithms by lowering the network load, minimizing the
distances, and, therefore, increasing the network coverage.

4.2. Blockchain Implementation
4.2.1. Development Environment

We deployed simulation models in two different environments associated with each
level of the multi-layer network in order to demonstrate the feasibility and practicability
of the proposed blockchain framework. The first model implements the HLF blockchain
in Layer-2 encompassing IoT devices, CH nodes (peers), APIs, and an organization. The
global blockchain deployment simulator at Layer-3 is conducted to compare both Etherume
and HLF metrics implementations. The simulation model at Layer-3 uses a workstation as
the BS server running the blockchain applications.

The Layer-2 implementation environment was created in order tto study the efficiency
of the proposed blockchain framework of the multi-layer model, as illustrated in Figure 10.
It also shows the means of connection between various entities consisting of IoT devices,
IoT server, and blockchain network. The IBM Cloud was used to host development tools
and technologies for implementing the IoT devices. IBM Watson IoT Platform [66] was
chosen to host IoT devices and gateways. The Node-Red server provided communication
between the IoT devices and servers while using the Constrained Application Protocol
(CoAP). Physical nodes are simulated in the IBM IoT Watson platform and connected to
related Cloud foundry services on the IBM Cloud. The IoT server is organized using a
virtual environment that was integrated with various virtual nodes, and a lightweight
permissioned HLF blockchain framework is utilized to grant the security for Layer-2.
The HLF network within the experimental setup consists of four peers and an orderer
node running as docker images using docker containers [67]. The open-source HLF (v1.4)
blockchain framework was implemented and hosted by Linux foundations. The Ubuntu
Linux 18.4 LTS is the operating system hosted by Intel Core i7-3770 @ 3.4 GHz processor
and 16 GB memory. The docker environment is run by the docker engine (version 19.03.8).
The configuration of docker images and containers is provided by the docker-compose
(version 1.17.0) as the Integrated Development Environment (IDE).

A smart contract was installed and instantiated on peers nodes, and data storage
was allocated in order to write a block of transactions to the blockchain ledger. The
composer-playground is a web interface for designing and implementing smart contracts
and managing transactions and assets. The composer Command Line Interface (CLI)
provides an environment to deploy, implement, and execute smart contracts and related
definitions by the developers. The peers were set up to use the CouchDB for managing
the state data that can handle the complex queries against the transaction logs. The Chain
Code (CC) was modelled as JavaScript Object Notation (JSON). The client application can
invoke a CC to access the state database and perform various queries, such as put, get, and
delete, through APIs. Different blockchain functions were defined by deploying a REST
server to directly provide RESTful APIs that can be invoked while using a web client or a
virtual device. The user can invoke relevant APIs using GET or POST to submit various
transactions through HTTP requests. The REST server hosts the Fabric client application
to communicate with the HLF network through google Remote Procedures Calls (gRPC)
system deployment. All of the peers in the network have a copy replica of the ledger. The
ledger has two parts transaction log and all the recorded state changes. The state data
also consists of the key-value pairs that are version. All the state database changes are
recorded in time order in the ledger, and the blocks are cryptographically linked together.
The orderer node ensures ledger consistency by implementing the PBFT algorithm. The
HLF framework supports the Execute-Order-Validate and Commit transaction model.

CHAPTER 3. MULTI-LAYER BLOCKCHAIN-BASED SECURITY ARCHITECTURE

62



Figure 9. Performance of the proposed clustering algorithm. (a): clustered network and CH positions. (b–d): benchmarked
performance in terms of load, distances, and coverage, respectively.

The Layer -3 simulation model was created while using a workstation as the BS
server running the blockchain applications. This environment facilitated measuring the
throughput and latency parameters of the Ethereum and Hyperledger private networks.
The networks were set up in similar conditions and provided with a virtually generated
workload. A distributed environment that includes the two blockchain networks was
considered for the experimental set up. The simulation models used a workstation with
Intel Core i7-3770 @ 3.4 GHz processor and 16 GB memory as the BS. For simplicity, the
Etherume network was deployed with just one mining node. The experimental results are
presented in Section 4.3.

4.2.2. Smart Contract for Modeling Transactions

The Hyperledger Composer [68] hosted the blockchain applications and facilitated
the design and implementation of smart contracts as well as blockchain applications. A
business network was deployed in the Hyperledger Composer through a set of open
development tools. The members of business networks were participants. They could
submit related transactions. The participants were the owners of IoT devices (CH and
related BS nodes) with the management and access abilities for their devices. Assets were
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services, devices, properties, and goods that were registered and stored within the network.
In the reported study, the assets represented IoT devices, including sensors, actuators, or
IoT nodes. Each device could be identified through the device ID, device type, device name,
device owner, timestamp, event, and value. The presented nodes, including CH ones, were
modeled as a different type of assets in the simulation. Transactions represented a logical
process within the smart contracts. The implemented model stored the data checksum,
data pointers, operations, and ownership of data in the blockchain ledger, while the actual
data were held in a separate cloud-server or off-chain storage system. Smart contracts
interacted with assets and participants. Besides, a smart contract could set various rules
and conditions to perform multiple actions, such as read, create, update, or delete, within
the blockchain network. The logical transaction operations were defined in smart contracts
as transaction process functions. Smart contracts also included the queries definitions
written in a bespoke query language to extract data from the blockchain network. The
communication between the blockchain network, IoT device, and the web application was
performed by REST APIs that were generated by the composer-rest-server.

Figure 10. The implementation structure of the blockchain IoT framework.

4.3. Performance Evaluation

The primary objective of a blockchain application is to maintain a number of sub-
mitted transactions by the participants. The submitted transactions then proceed to the
verification and ordering process, which results in a block generation and storing the
transaction outcome on the blockchain ledger. The following metrics are presented by
Hyperledger Performance and Scale Working Group [69] to measure the blockchain appli-
cation performance:

• Transaction Throughput, i.e., the total number of committed transactions by the
blockchain System Under Test (SUT) in a given time period in seconds.

• Transaction Latency, i.e., the amount of time that is taken for a transaction to be stored
on the blockchain ledger.

The system was tested to evaluate the performance of the proposed model in terms of
both the latency and throughput. The results were benchmarked against the parameters
reported in the literature with the aim of demonstrating the efficiency of the designed
framework. The evaluation was conducted while using the Hyperledger Caliper [70] to
facilitate the specific blockchain configuration by the administrator.
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In the proposed model, the latency represents the time that is required by CHs to verify
new blocks. The block size is an essential factor that affects both node and network latency.
The latency is measured by the time that the system requires to reach consensus after the
node starts to detect the new block validations. The analysis of the system was conducted
with a set of transactions, such as Open, Transfer, and Query. The results were provided
for Hyperledger Fabric (proposed blockchain for Layer 2) and Ethereum (standard global
blockchain). Table 3 presents the simulation results for evaluating latency and throughput
for three different transaction types within HLF implementation. The average latency
decreases by implementing a multi-layer model. In this model, only a portion of the nodes
(i.e., CHs) is contributing to new blocks validation. Table 3 also presents the Ethereum
implementation results. It can be seen that the proposed lightweight HLF blockchain is
superior when compared to the Ethereum as a global blockchain technology.

Table 3. Hyperledger and Ethereum performance metric summary (H: Hyperledger Fabric, E: Ethereum).

Name Send Rate (TPS) Max Latency (s) Min Latency (s) Avg Latency (s) Throughput (TPS)

Blockchain H E H E H E H E H E

Open 20.2 22.7 0.38 7.05 0.04 2.12 0.18 4.58 20.1 10
Query 10 10.2 0.07 0.02 0.01 0.01 0.01 0.01 10 10.2
Transfer 10 10.7 0.38 7.13 0.06 2.07 0.19 4.63 10 6.7

Despite security and privacy, latency and throughput are essential performance met-
rics when selecting an appropriate blockchain platform for IoT applications. The resource
allocation for the blockchain network must be done in order to meet the latency require-
ments (for a given input load). A further experiment was conducted to analyze the SUT
behavior consisted of multiple rounds of benchmarks with different transaction sending
rates. The sending rates varied from 20 to 500 Transactions per Second (TPS), and 1000
transactions were generated for each benchmark to measure the maximum, average, and
minimum transaction latency and throughput. Figure 11 presents the maximum, average,
and minimum transaction latency for each round of experiments. The minimum latency
remained below 1 s during the experiments, while the maximum latency proliferated as
the send rate reached the 100 TPS. Figure 12 illustrates the transaction throughput results
for varying transaction sending rate. The throughput remained around 100% while the
sending rate was up to 110 transactions per second. A significant drop in the throughput
was observed as the sending rate increased to 110 TPS, which was the maximum usable
sending rate for the SUT.

This experiment only considered an individual client in the blockchain network to
generate all the transactions. As expected, the performance of the blockchain network
highly depends on the underlying hardware. The HLF provides a three-stage revolutionary
architecture known as execute-order-validate, in which every stage depends on previously
executed transactions.

Our experiments revealed that the proposed HLF-based blockchain model for IoT
application could process up to 110 transactions per second while maintaining a 100%
transaction throughput and an average latency of 500 milliseconds, with a maximum of
110 TPS, with throughout that is very close to 100%. A send rate of 100 TPS is sustainable,
as the actual throughput is around 100%. However, increasing the send rate to 100 and
200 TPS only yields to a marginal throughput decrease. This lead to the conclusion that our
setup can sustain a send rate of about 110 TPS. Therefore, our proposed architecture could
support real-time provisioning of multiple 5G-enabled IoT applications without imposing
any considerable latency to the process.

The maximum latency grows to nearly 15 s as the number of input transactions
increases. This is due to resource restrictions of the containers that are allocated to the peer
nodes. The minimum latency remains almost constant, as there are no high loads imposed
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on the peer nodes at the beginning. Additionally, the blockchain configuration (e.g., the
block size, the number of channels, ordering service, users, endorsing nodes) influences
the latency. It can be observed that, in all cases, all of the transactions are successfully
completed, i.e., no loss of transactions occurs.

Figure 11. Latency vs. transaction sending rate.

Figure 12. Throughput vs. transaction sending rate.

5. Security Analysis of the Framework

The proposed secured IoT multi-layer model that is based on Hyperledger Blockchain
technology offers an overall superiority over the previous works reported in the literature,
as illustrated by the metrics comparison that is given in Table 4.

Table 4. Security challenge comparison of blockchain applications in IoT systems.

Ref IoT Application
Security Challenges

Implemented
Consensus

Implemented
BlockchainFramework

Privacy
Heterogeneity
and Flexibility

Authentication Scalability

[38] Smart Grids, Smart Cities Yes Yes PoW Private
[71] Microgrids, Smart Grids, Vehicle-to-Grids Yes PoW Consortium
[72] Microgrids, Smart Grid Yes PoC Private
[73] Big Data, eHealth Yes Yes PoW Public
[74] Industrial IoT Yes Yes PoW Private
[75] Smart Factory, Supply Chain Yes PoS Consortium
[76] Industrial IoT, Energy Harvesting networks Yes Yes PoW Consortium
[77] eHealth Yes PoW Public
[78] Mobile edge computing, eHealth Yes Yes PoC Permissioned
[79] Cloud computing, V2X Yes Yes PoS Consortium
[80] Vehicular Edge Computing Yes Yes PoW Consortium

proposed 5G MBS Yes Yes Yes Yes PBFT,
PoC Consortium
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5.1. Framework Privacy

Contracts between different entities are recorded in the blockchain system. Therefore,
privacy disclosure assessment is required. The identity of an object is encrypted, and the
IoT address is recorded in the blockchain as the pseudonym of the entity. The domain
name and fixed address for communication are not required, and the blockchain maintains
tasks through running smart contracts, as discussed above. In the IoT network, IP address
of an object is encrypted and recorded in the blockchain thus leading to the anonymity of
the object. The contract context privacy is guaranteed by the Hash Code of the real context
within the blockchain network while minimizing the risk of a privacy leak.

5.2. Heterogeneity and Flexibility

The proposed framework accommodates various configurations for system security
in different scenarios. These include the IoT objects with limited resources, the security
of sensitive information, high-risk, and broadcasting. The security configuration options
can vary, due to the strength of cryptography techniques and characteristics of key life-
times (strong crypto, short and long key lifetimes, and lightweight cryptography), key
distribution mechanisms, the selection of different session keys, such as encryption and au-
thentication, cached session keys, including of one, multiple, and unlimited keys, different
owners of keys, and the stability of the fundamental protocols (TCP and UDP). Besides,
a certain degree of flexibility is achievable by granting an option to a node or entity to
connect or leave the system freely. Changes in the network are recorded in the blockchain
through the distributed consensus process.

5.3. Authentication

The process of authentication is implemented in two parts: (1) local authentication and
authorization process in the infrastructure layer and (2) rights to objects by smart contracts.
The node requirements and respective rights are recorded in the blockchain that was
implemented in different segments. The block summary consists of a contract summary.
It is accessible at any time. The non-repudiation nature of this summary guarantees the
interests of the object.

The multi-layer approach through the network clustering divides the entire IoT net-
work into different tiers, as presented in Figure 2. This includes the local authentication
services and globally distributed blockchain-based framework, while separating the ex-
ternal authority. Therefore, the effect of a local authentication service failure or attack
to the network is limited to the compromised nodes, while the impact on the network
is significantly reduced.

5.4. Scalability

The framework tackles the following scalability challenges: (1) high data traffic and (2)
a massive number of IoT objects and devices. The multi-layer structure facilitates multiple
cluster implementation and fulfills the scalability issues. Two different CH nodes can
establish different secure communications on a client-server basis. CH establishes secure
communication with the entities within the same cluster in order to avoid the overhead
incrementation. When networked CH nodes start communicating within a framework
that is based on the blockchain, the exchange of cryptographic keys is necessary before
beginning the client-server communication by which further overhead is reduced.

6. Conclusions

This paper proposes a multi-layer security model for IoT devices functioning under
multi-hop cellular networks based on distributed technology of the blockchain. The
developed model provides a feasible solution to establish the decentralized application
of the blockchain technology for the security of the cellular-enabled IoT network. The
hybrid self-clustering EC algorithm, utilizing GA and SA, is developed to fragment the IoT
network into clusters in order to provide the multi-layer structure and enhance the network
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lifetime. Detailed system implementation is discussed, and the way the blockchain-based
model can help to improve the IoT system authentication and authorization is elaborated.
The model proposes the open-source HLF blockchain for deployment and verification. The
multi-layer model enhances network security, lowers the processing load, and reduces
network load and latency. The proposed implementation enhances the efficiency of the
communications via the peer-to-peer nature of the blockchain communication and maps it
to the device-to-device communication in cellular systems with improved integrity and
security. The proposed solution tackles the IoT security challenges, including framework
privacy, authentication, heterogenicity, and flexibility, as well as network scalability. The
proposed hybrid clustering algorithm has been compared with four existing protocols. The
simulations study demonstrates that the proposed algorithm outperforms the competitors
in terms of various performance metrics, including network load, network coverage, and
distances. The performance of the proposed multi-layer blockchain-based framework was
evaluated. It was found that the lightweight blockchain was more effective than the global
blockchain Ethereum.

The focus of our future work will be on the deployment of a practical scalable test-
bed configured as MBS framework of IoT devices to study, analyze, and compare the
performance in the real world environment.
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ASLPR Application-Specific Low Power Routing
BCS Blockchain Structures
BS Base Station
CC ChainCode
CH Cluster Head
CLI Command Line Interface
CoAP Constrained Application Protocol
D2D Device-to-Device
EC Evolutionary Computation
ECC Elliptic Curve Cryptography
ERA Energy-aware Routing Algorithm
FSFLA Fuzzy Shuffled Frog Leaping Algorithm
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Abstract: Providing security and privacy to the Internet of Things (IoT) networks while achieving
it with minimum performance requirements is an open research challenge. Blockchain technology,
as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the
current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system
implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing
devices by employing a local authentication process. In addition, the proposed model provides
traceability for the data generated by the IoT devices. The presented solution also addresses the
IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices
in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to
define the rules and conditions. The paper validates the performance of the proposed model with
practical implementation by measuring performance metrics such as transaction throughput and
latency, resource consumption, and network use. The results show that the proposed platform with
the HLF implementation is promising for the security of resource-constrained IoT devices and is
scalable for deployment in various IoT scenarios.

Keywords: Internet of Things; hyperledger fabric; smart contract; security and privacy; data prove-
nance; edge computing

1. Introduction

Internet of Things (IoT) [1] technologies are associated with the significant growth
of generated, collected and used data. At the same time, with the rapid involvement of
distributed heterogeneous devices, various aspects of traditional IoT applications and
platforms face challenges in security, privacy, data integrity, and robustness [2]. The
blockchain has emerged as an innovative engine that can facilitate reliable and transparent
data transactions. It has been widely applied to traditional sectors, including finance,
commerce, industry, and logistics.

Most IoT platforms and applications depend on centralized architecture by connecting
to cloud servers via gateways. Unfortunately, this leads to severe security and privacy
risks. Wireless communication between sensor nodes and IoT gateways might also be very
susceptible to attack. Cloud servers are potential targets for Distributed Denial-of-Service
(DDoS) attacks resulting in significant infrastructure collapse [3]. Moreover, the centralized
server solution introduces a single point of failure risk to the entire system.

Networked devices in an IoT system are heterogeneous in terms of their security
requirements and resource availability. Resource-constrained devices operate in an open
environment that increases the risks of physical and wireless accessibility by adversaries.
RSA (Rivest–Shamir–Adleman) [4] and ECC (Elliptic Curve Cryptography) [5] are the two
most popular key cryptosystems. However, computing RSA is time-consuming due to
the modular exponentiation involved. Similarly, point multiplication in ECC relies on

Sensors 2021, 21, 359. https://doi.org/10.3390/s21020359 https://www.mdpi.com/journal/sensors
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modular multiplication, which is computation-intensive thus resulting in a prolonged
operation. The computational complexity of conventional security techniques such as SSL
(Secure Sockets Layer) [6] and its successor, TLS (Transport Layer Security), make them not
suitable for IoT devices. The SSL/TLS approach supported by CRL (Certificate Revocation
List) creates scalability challenges for IoT applications. Homomorphic encryption [7] is
very useful in protecting the privacy of users. However, the homomorphic encryption
may be slow thus requiring special implementation techniques to speed up the execution.
The ideal solution must provide data security and integrity while handling vast traffic
and being attack-resistant. Furthermore, lightweight, scalable, transparent access control
are to be associated with such a model. Blockchain is regarded as a promising solution
to provide decentralized accountability and an immutable approach that can be used to
overcome the aforementioned problems in heterogeneous scenarios [1]. It offers great
security features while providing high transparency and enhancing efficiency. Meanwhile,
it can also improve data traceability and eliminate third-party intervention at a lower cost.

Thanks to the development of edge computing platforms, data generated by the IoT
devices can be transferred to the edge gateways for further process and analysis. At the
same time, cloud-centric services are not suitable for the edge computing applications
due to the limited network bandwidth, security, and data privacy. When applied to
the edge computing systems, the blockchain provides a feasible solution to protect IoT
data from being tampered [8]. It is a general distributed, decentralized, and peer-to-peer
system that guarantees data integrity and consistency within existing industrial domains.
Ethereum [9] is a common blockchain service showing intrinsic characteristics of distributed
applications (dApps) over the blockchain network such as decentralization, anonymity, and
auditability. However, common blockchain platforms (e.g., Ethereum) require tremendous
computational power, making the integration of IoT nodes challenging.

The blockchain is an emerging technology playing a vital role in storing information
and securing IoT systems and devices [10]. Although the blockchain is a promising ap-
plication to solve IoT privacy and security challenges of current centralized systems, lots
of IoT devices are constrained to perform complex operations due to their limited power
of CPU, restricted data storage, and constrained battery resources. Furthermore, existing
consensus algorithms in blockchain-based networks such as the Proof of Work (PoW) [11]
cannot be implemented on devices with limited computing resources. The mining process
described as taking decisions by all the nodes in peer-to-peer networks, requires consider-
able computational capabilities. Smart contracts present another promising application of
blockchain technology that can distributively enforce various access control policies in IoT
applications in the real-world scenarios. The data provenance plays a decisive role in the
security and privacy of IoT systems. Additionally, the integrity of all generated data by IoT
devices can be ensured by private blockchain technology.

In this paper, a blockchain-enabled edge computing approach is proposed and imple-
mented for the IoT network with an open-source Hyperledger Fabric (HLF) blockchain
platform. HLF is the best fit for this study because of its lower processing complexity
(fewer number of transactions). Moreover, the transactions there can be performed in
parallel while using various validators. Additionally, the processing is made more effi-
cient by employing the fast RAFT [12] consensus algorithm. Finally, it provides a channel
mechanism for private communication and private data exchange between members of a
consortium. Moreover, all the HLF programs run in the docker [13] containers providing a
sandbox environment that separates the application program from the physical resources
and isolates the containers from each other to ensure the application’s security. A layer-
wise security architecture is designed according to the capabilities of different nodes and
functionality to fit the scalable IoT applications. The infrastructure includes Base Stations
(BS), Cluster Heads (CH), and IoT devices facilitating access control policies and man-
agement. Mutual authentication and authorization schemes for IoT devices are proposed
and implemented with the aim to ensure the security of the interconnected devices in the
scalable IoT platform. The local authentication is used for ordinary IoT devices connected
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to CHs (edge IoT gateways), while the blockchain service provides the authentication
of the IoT edge gateways i.e., the edge IoTs. The practical end-to-end lightweight HLF
prototype for IoT applications is deployed on the embedded edge IoT hardware built upon
the ARM64 CPU-based Raspberry Pi to validate the feasibility of the proposed design. HLF
docker images are customized to fit with the IoT gateways. The Fabric client facilitates
the request and query of transactions through invoking ChainCodes (CC) in IoT gateways.
Off-chain data storage and blockchain distributed data storage are employed to support
the architecture data traceability. HLF is implemented to act as a medium for multiple
device interactions while exchanging information. Moreover, the blockchain maintains a
global computation state. The distributed data storage is secure, and it has a large capacity.
The data processing confidentiality and efficiency are guaranteed by implementing exter-
nal off-chain computations. An HLF blockchain middle-ware module embedded in the
IoT gateways ensures secure data transactions for the IoT distributed applications. The
performance metrics such as throughput, latency, resource consumption and network use
of the proposed model are evaluated using the edge IoT devices and x86-64 commodity
virtual hardware.

The following distinct contributions are made in this work:

1. A novel architecture for the security and privacy of IoT edge computing using a per-
missioned blockchain is proposed. The proposed architecture considers 5G-enabled
IoT technologies for node communications. The architecture is suitable for real-world
IoT systems due to the developed ChainCodes that facilitate storage and retrieval of
data in a tamper-proof blockchain system. Moreover, blockchain-based data traceabil-
ity for 5G-enabled edge computing using the HLF is designed to provide auditability
of the IoT metadata through a developed NodeJS client library.

2. The adaptability of the Hyperledger Fabric for ARM architecture of the edge IoT
devices is improved by modifying official docker images from the source as there are
no official or public images of HLF to support the 64-bit ARMv8 architecture.

3. A lightweight mutual authentication and authorization model is designed to facilitate
a secure and privacy-preserving framework for IoT edge that protects the sensor nodes’
sensitive data through a permissioned fabric platform. Furthermore, it provides trust
for the IoT sensors, edge nodes, and base stations by the private blockchain. This
is achieved by using the edge nodes to record the IoT data in an immutable and
verifiable ledger to guarantee metadata traceability and auditability.

4. Performance characteristics of the proposed architecture blockchain in terms of
throughput, transaction latency, computational resources, network use, and com-
munication costs are experimentally evaluated in two network setups.

The rest of the paper is organized as follows. In Section 2, a review of the related
works is presented. Section 3 presents the main characteristics of blockchain technology.
Section 4 describes the proposed HLF model implementation and elaborates on the details
of the system design. In Section 5 the profiling and analysis are presented, including results
from real-life IoT applications. Finally, Section 6 presents the conclusion and directions for
future work.

2. Related Work
2.1. IoT Overview

In general terms, IoT is a collection of physical devices, computers, servers, and
small objects embedded within a network system [14]. Some of the most prominent IoT
application areas are smart homes [15] and smart cities [16], vehicular systems [17], and
smart healthcare networks [18]. All these systems are highly distributed. The evolution
from the conventional cloud-centric architecture has been accelerated by the emergence of
the edge computing technologies [19,20]. A unified standard classification is defined to
ensure the consistency of the development and structures of IoT. It includes four layers:
service layer, platform layer, network layer, and device layer [21]. A comprehensive
review of security attacks towards Wireless Sensor Networks (WSNs) and IoT is presented
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in [22]. The study also provides the techniques for prevention, detection, and mitigation of
those attacks.

IoT systems normally include many interconnected IoT devices generating a massive
amount of data. Meanwhile, IoT devices normally have limited capabilities in terms of the
CPU processing performance, memory capacity, and battery energy volume. Therefore,
they can be characterized as having restricted ability to resist various cyber-attacks. This
leads to issues associated with insufficient security and potential compromising of privacy.
New technologies have been developed to address the IoT’s decentralization challenges
with the blockchain being among the most promising of them.

2.2. IoT Blockchain

Most IoT applications are prone to problems such as system failure and data leakage.
Blockchain technology can mitigate these problems by providing better security and
scalability for IoT applications. However, there are many challenges associated with the
actual implementation of the approach. They are associated with tasks distribution between
IoT devices as well as with the limited capabilities of the IoT devices such as computational
performance, memory capacity, power resources. Numerous research works on blockchain
technology focus on coping with these challenges to adopt blockchain in IoT [23–25].

Many distributed and decentralized IoT systems have adopted blockchain technology
to provide trust [26], security [27], data management [28], fault-tolerance [29], as well
as peer-to-peer and interoperable transactions [30]. The application scope of blockchain
platforms can be divided into three main types depending on the way they manage user
credentials: (i) public or permissionless blockchain, (ii) private or permissioned blockchain,
and (iii) consortium blockchain. Blockchains that anonymous nodes can join, read data,
and participate in transactions with equivalent status are public blockchains. In contrast,
private or consortium blockchains are based on permissions and different types of nodes.
Some nodes need to be authenticated to perform specific actions [31].

Scalability is the major challenge in the integration of blockchain and IoT systems.
Many research works have addressed the scalability issues within Bitcoin’s architecture [32].
Smart contracts are promising solutions to facilitate the integration of distributed IoT sys-
tems and blockchain technology. However, their performance and scalability are directly
linked to overall blockchain system performance [33]. Multiple IoT applications recently
adopted blockchain for digital payment, smart contract services [34], and data storage [35].
Nonetheless, continuous developments have shown that new technologies can bring signif-
icantly higher scalability and degree of performance to next-generation blockchain systems.

The layer-based IoT blockchain frameworks are proposed in the literature to cope
with the scalability challenges in IoT systems while providing higher performance and
security. The layer-wised structure is a promising solution to smart cities’ security by
integrating smart devices and blockchain technology [36]. A hybrid-network architecture is
seen to leverage the strength of emerging Software Defined Network (SDN) and blockchain
technologies in a multi-layer platform [37]. Layer-based blockchain can potentially address
the IoT systems’ challenges such as response time and resource consumption [38]. This
approach can further facilitate the integration of blockchain technology in IoT systems by
tackling the complexity of blockchain implementation in the layer-based model [39].

Security challenges associated with the cyber-physical systems (CPSs) of smart cities
are reviewed in [40] and adoption of distributed anomaly detection systems by CPSs of
smart cities is proposed. A permissioned private blockchain-based solution in the context
of the Industrial IoT (IIoT) is proposed in [41] to secure the encrypted image. This approach
stores the cryptographic pixel values of an image on the blockchain, ensuring the image
data privacy and security. The state of the art in industrial automation is presented in [42]
to provide a better understanding of the enabling technologies, potential advantages and
challenges of Industry 4.0 and IIoT. Also, it covers the cyber-security related needs of IIoT
users and services.
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2.3. Blockchain for Mobile Edge Computing

Several pieces of research have considered the integration of blockchain technology
and edge computing layer over the past few years. Multiple works have focused on en-
abling secure and efficient distributed edge computing [43,44]. Such integration targets
security enhancement. It also uses blockchain technology to develop access control policies
for various applications at the edge [45–47]. Other works [48,49] investigated the edge
resource management by implementing the blockchain. Distributed robotic system au-
tomation was also considered [50]. The integration of blockchain significantly benefits the
security of edge computing [51]. Permission blockchain and Distributed Ledger Technology
(DLT) embedded with identity management bring benefits to address many challenges by
adding a resilience layer while network traffic integrity is guaranteed against malicious
diversion and traffic manipulation. Network resource manipulation and fraudulent use
of shared resources are avoidable through the blockchain-enabled resource management.
Moreover, the blockchain provides a higher degree of security for the automotive sector [48]
and the healthcare sector at the edge [52]. Blockchain is applied to provide a decentralized
authentication model in edge and IoT environments [53]. The blockchain application is
further explored to enhance the privacy, integrity, and authentication between IoT, mobile
edge computing, and cloud in telehealth systems connected with 5G and IoT [54]. An
HLF-based blockchain architecture is proposed in [55] for healthcare monitoring applica-
tions. The authors in [56] highlighted the importance and benefits of fog computing for IoT
networks. The study also provides a comprehensive investigation of hardware security to
fog devices through an enriched literature review. A model based on HLF blockchain is
proposed in [57] as a service to answer IoT systems’ specific requirements, including low
hardware, storage, and networking capabilities.

2.4. Blockchain for Data Sharing and Traceability

Digital signatures and Message Authentication Code (MAC) are two standard meth-
ods to identify data lineage and origin. However, these cryptographic techniques are not
able to provide comprehensive data provenance [58]. Furthermore, the key management
in a heterogeneous IoT network with data sourced from different nodes is complicated.
Although logging-based methods can facilitate data transmission and system events mon-
itoring, they cannot efficiently track data in distributed IoT systems [59]. Blockchain
technology has been widely considered for data provenance within a distributed system
such as IoT. Data operations are embedded in the blockchain transactions to provide the
data provenance [60]. ProvChain [61] is a distributed and decentralized blockchain-based
data provenance architecture to provide verifiability and data integrity in cloud environ-
ment. A blockchain network records the data operations as the provenance of data in the
blockchain transactions while the system stores the data record in a local ledger. Smart
contracts can automate the blockchain-enabled provenance systems without the off-chain
verification [62]. A function for tracing the data deviation is designed into smart contracts
with built-in access rules to protect data privacy in a distributed ledger [63]. SmartProve-
nance [64] is the blockchain-based distributed data provenance system that facilitates
the verification of provenance records and provides trustworthy data and provenance
collection using smart contracts and the Open Provenance Model (OPM). The blockchain is
proposed to ensure secure and trustworthy industrial operations [65]. The complexity of
blockchain implementation causes various limitations in deploying the aforementioned
provenance techniques in IoT systems. Existing works on data provenance are compu-
tationally complex and pose a hardware cost. Therefore, these methods are not feasible
for resource-constrained IoT systems with limited CPU performance, memory size, and
power capacity.

Despite the benefits that blockchain brings to IoT applications, there are resource
constraints and scalability challenges associated with the integration [2,66,67]. Generally,
the blockchain demands substantial computational power for the mining process in Proof
of Work (PoW), low latency, and high bandwidth. IoT devices with low processing power
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are not capable of performing the blockchain mining process. The data encryption process
is frequently happening in blockchain systems. The computationally intensive process
of blockchain drains the low power capacity of IoT devices. The size of the blockchain
ledger increases continuously while the storage capacity of most IoT devices is low. Storing
a copy of the full blockchain ledger for IoT devices is not feasible as it requires a large
memory capacity. With Bitcoin, the blockchain storage size rests at over 200 GByte while
for Etherum it is around 1.5 TByte. New block generation and agreement reaching in
the blockchain require the nodes to exchange information through the consensus process
frequently. The consensus process and information exchange need high bandwidth and
low latency. However, the bandwidth of IoT devices is normally strictly limited.

One common concern about the blockchain system is associated with the need for
achieving high scalability in a blockchain network [68]. The problem with such a large
blockchain size is centralization risk. Most IoT systems have a very high number of
interconnected devices. In addition, IoT networks frequently change to suit different
applications by adding or removing IoT devices. Therefore, a solution is required to
address the IoT system scalability challenges. Moreover, the limitations in the processing
power and storage capacity of IoT devices in the blockchain network are also to be resolved.
Addressing these challenges is the main focus of this paper.

3. Blockchain Overview

Satoshi Nakamoto, first implemented a decentralized digital currency in 2009 [69]. The
blockchain can be described as a distributed ledger consisting of immutable and verifiable
transactions. All network participants share a replica of the ledger in the network. Integrity,
immutability, transparency, non-repudiation and equal rights are the main properties of
the blockchain systems.

Bitcoin [70] is known as the most popular blockchain platform. PoW is used in Bitcoin
to perform ownership management and tracking coins owner via implementing public-key
cryptography with a consensus algorithm. The consensus algorithm is executed when a
new block is introduced to the previous block to guarantee the reliability and validity of all
transactions. The nodes will reach a consensus when 51% of the nodes are truthful.

IOTA [71] is a distributed ledger designed for IoT to facilitate the value and data ex-
change. A machine-to-machine communication is facilitated by the Tangle protocol capable
of forming micro-payment systems. Additionally, it establishes IOTA network, which is a
set of Tangle graphs. This set constitutes the ledger to store transactions submitted by the
network nodes. The process of block validation leads to making a decision and adding a
new block to the blockchain.

3.1. Consensus Algorithm

Li et al. [72] reviewed the most common consensus algorithms in the existing
blockchain systems. These consensus mechanisms are PoW, Proof of Stake (PoS), Practical
Byzantine Fault Tolerance (PBFT), Delegated Proof of Stake (DPoS), Proof of Authority
(PoA), Proof of Elapsed Time (PoET), and Proof of Bandwidth (PoB).

PoW is the widest deployed consensus algorithm [73] that was first introduced by
Bitcoin. The nodes use computational power to compete in finding the nonce value. This
process is called mining. The difficulty level for PoW is adjustable when the number of
participants increases to manage the block’s average processing time. Higher difficulty
results in a lower number of blocks. No user should take more than 50% of the processing
power to avoid controlling the system by just one user.

PoS [74] was introduced to address the vast energy consumption issues associated
with the competing process in PoW. No competition is employed in the PoS algorithm.
The network selects a node as a validator (so-called a transaction validator node). The
node is chosen in advance to be a part of the Proof of Stake and attend a similar process of
difficulty adjustment as PoW. If the validator does not validate the transaction, the network
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sets the next node as a validator, and the process continues until any node validates the
transaction. PoS deploys CASPER protocol to perform the consensus process.

PoA [74] algorithm is based on a chosen set of trusted nodes (known as Authorities).
This consensus algorithm is a Byzantine Fault Tolerant (BFT) variation. The chain becomes
a part of the permanent records when most authority nodes (for example at least N/2 + 1)
signs off the chain. This procedure facilitates the creation of a permissioned chain and is
associated with a lighter exchange of messages.

Hyperledger [75], introduced in 2016 by the Linux Foundation, is the most successful
and the most popular permissioned blockchain in the industrial and IoT domains. The
designed permissioned blockchains for enterprise ecosystems deploy the RAFT Consensus
Protocol [12], which is a better fit because it is more straightforward and less resource
consuming. Figure 1 shows the process of the RAFT consensus protocol and block creation
considered in this study.

Kafka [76] and RAFT are the same types of consensus that use Crash Fault Tolerant
(CFT) for ordering service implementation. They can tolerate up to N/2 system failures.
RAFT follows a “leader and follower” approach. There a leader node is dynamically
elected among the ordering nodes in a channel (this collection of nodes is known as the
“consenter set”), and the followers replicate its decisions. However, RAFT’s ordering service
deployment is easier and more manageable than Kafka-based ordering services from the
configuration to the process’s speed. Additionally, the RAFT configuration originates
directly from the orderer (unlike the Kafka case, which cannot be configured directly from
orderer services and must create a Zookeeper cluster to enable the state machine replication
process). The comprehensive design facilitates different organizations to contribute nodes
to a more distributed ordering service.

Figure 1. Overview of the RAFT consensus protocol and block creation.

The process is initiated by sending the transaction proposals to the blockchain peers.
A transaction proposal consists of various values, IoT metadata as well as other blockchain-
related contents. The client application is responsible for starting the process and then
transaction broadcasting to each blockchain member organizations’ peers. Once the peers
receive the transactions, they activate the endorsement process by executing the Chain-
Code implementing authentication and authorization mechanism. The transaction is then
endorsed and returned as the signed transaction. When all peers have endorsed the trans-
action based on the endorsement policy, the next step includes sending the transaction to
the ordering service when the consensus is reached (i.e., RAFT in our case). The last step is
encompassing the creation of the final block and committing it to the ledger.
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3.2. Smart Contracts

Smart contracts are executable distributed programs to facilitate, execute, and enforce
the terms of an agreement on a decentralized consensus tamper-proof and typically self-
enforcing through automated execution [77]. The smart contracts are simply executable
scripts that are filed on the blockchain with a specific address.

Smart contracts are triggered by transactions to execute and perform operations based
on recorded instructions. They are installed and instantiated on blockchain participants.
HLF is programmable by a construct called ChainCode (CC). Conceptually, CC is the same
as the smart contract on other distributed ledger technologies. CC sits next to the ledger.
Participants of the network can execute CC in the context of a transaction that is recorded
in the ledger. Automation of business processes through CC leads to higher efficiency,
transparency, and greater trust among the participants. Smart contracts allow decision
automation thus making them suitable for IoT applications.

4. Hyperledger Fabric IoT System Model
4.1. Overall Design

The network model proposed in this work is based on blockchain technology as
an individual application integrated with edge computing to provide security, identity
management, and authentication. This study builds on the model introduced in our
previous work [78] using a multi-layer platform approach and the Lightweight Hyper-
ledger Blockchain technology along with smart contracts to enhance the performance
of the blockchain-IoT combination. The whole network is divided into several layers
and sub-networks. The devices in each layer have different computational capabilities
and energy storage capacity. As a result, different security approaches are proposed for
individual layers based on the blockchain. However, the blockchain implementation is
modified to suit the devices of each particular layer. These layers are Base Station (BS)
nodes, Cluster Head (CH) nodes (edge layer), and IoT devices. In the current work, we
propose an additional layer—Off-Chain Storage servers—to enhance the data storage of IoT
devices. Moreover, it facilitates the system performance improvement as the increase in the
shared ledger size causes system performance degradation. The Hyperledger Blockchain
platform is considered to be a potential solution to cope with scalability challenges while
distributed programs are defined to facilitate various tasks and transactions [79]. However,
the blockchain implemented in the embedded edge gateways provides reliable connectivity
considering sufficient power and computational resources requirements. Figure 2 shows
the conceptual framework of the proposed IoT Blockchain platform. The presented model
encompasses interconnected IoT devices, Edge IoT nodes (CHs), client application nodes,
external data storage, and IoT servers orchestrated in the peer-to-peer blockchain-based
network to form a multi-layer blockchain model.

4.2. Multi-Layer IoT Blockchain Network
4.2.1. Layer-1

A cluster of IoT devices is collected under each CH, a service agent for that cluster. This
layer is the external service interface, in which IoT devices collect sensing data, perform
local computing, and send results for storage and further analysis. CH nodes register the
identity of each connected IoT device by implementing a smart contract. Each IoT device
has a unique address within the IoT system. Each IoT node exists only in one cluster. The
nodes in this layer have limited power, computational performance, and storage resources.

4.2.2. Layer-2

Cluster heads at Layer-2 are responsible for data routing, security management (such
as local authentication and authorization procedures), and network management. Beyond
the aforementioned responsibilities, the IoT blockchain service is running in this layer to
provide blockchain technology services and form a distributed system. The IoT devices’
identity management, communications, and consensus processes are run in this layer
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within the peer-to-peer blockchain network. The blockchain also handles the shared
distributed ledger across all participants. Furthermore, this layer handles consensus
algorithms and smart contract services to form data consistency and traceability.

Figure 2. Conceptual framework of the integrated IoT blockchain platform.

A client application node across the network can have granted access to invoke various
blockchain behaviors. Various ledger modifications are enabled by running smart contracts
installed and instantiated in all peer nodes or selected peer nodes. The CH nodes running
local authentication and authorization mechanism are directly connected to BS nodes.
ChainCodes provide deployment, query, and invocation services. The API rest server can
act as an interface by the client application with modifying the network-related operations
and behaviors. Furthermore, the application client performs transaction submission to
the blockchain. Therefore, various services can be defined within the blockchain network,
including user enrollment and authentication and IoT device registrations. The IoT device
authentication and authorization need to be carried on before transaction submission. The
local authentication and authorization process manages this procedure. Consequently, a
registered participant can sign a transaction using its private keys.

Data queries are enabled through CC, which is an executable logic hosted by peer
nodes. Additionally, it facilitates appending data from data stored in the ledger. CC and
related functionalities are mirrored across all peer nodes. CC deployment can be done to
a specific number of peers to address the scalability issues. Therefore, parallel execution
can be supported, which is resulted in an overall increase in system performance. The
client application performs several operations, including storing the data checksum, data
pointers, and data ownership in the blockchain. The actual data is stored in an external
data storage, which is off-chain.

4.2.3. Layer-3

In general, this layer is consistent with the current centralized cellular network en-
compassing Base Station nodes while the cloud server manages the process requests and
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data generated from various devices. Powerful devices in this layer can choose to use a
non-symmetric encryption algorithm for data transmission. Layer-3 provides connectivity
and wide area networking capabilities for the edge nodes. Network in the Layer-3 is
decentralized, and BS units are distributed. The nodes trust the BSs in the system while
they can access public networks.

4.2.4. Layer-4

This layer is designed for storing sensed data by the IoT devices as well as enabling
big data analytic applications for further analysis. It is generally done off-chain. It stores
the actual data, while the blockchain ledger data includes data checksum, pointers, and
data ownership. The blockchain world state is stored in a database such as LevelDB or
CouchDB. The stored data in be queried and traced by a file ID in the blockchain. This
method provides data provenance and data consistency between the edge nodes.

4.3. Local Authentication and Authorization of IoT Devices in Layer-1

Identity of IoT devices is registered and stored in the shared ledger. Each IoT device
can join only one cluster. The registration request is sent to CH. It includes the required in-
formation such as IoT node ID, cluster identity, and timestamp. CH runs the smart contract
in the local blockchain to perform the IoT device registration. The mutual authentication
model is designed to provide the security of IoT devices with limited resources. The role of
CH is to register the IoT devices as well as locally authenticate and authorize IoT entities.
It also interacts with other cluster heads to form a secure communication between entities
through the implemented blockchain network.

The entire process is orchestrated in a smart contract to form an Authentication and
Authorization ChainCode. The CC is installed and instantiated by the blockchain peer to
perform the IoT blockchain local authentication procedure. This process is illustrated in
Figure 3.

Authentication of the IoT devices consists of a few steps: the discovery of devices, key
exchange, authentication, and data encryption. These procedures consider two network
entities: the CLIENT (IoT sensor nodes) and SERVER (an edge computing gateway or
intermediary node). It is noteworthy that the authentication of the IoT devices implements
the exchange of keys using Diffie-Hellman Ephemeral (DHE) for the collection of session
keys or secret keys. The following six steps describe the local Authentication of IoT devices.

Step 1 The first step starts with the CLIENT sending a package to the SERVER to establish
a “connection”. For visualization purposes, this package contains the “HELLO
CLIENT” character string.

Step 2 The answer from the SERVER to the CLIENT with the “HELLO SERVER” string.
With that, the connection is established. For better performance, it is suggested to
use chain bits for establishing the connection.

Step 3 The CLIENT generates a pair of asymmetric keys consisting of the public key
(KCpub ) and the private key (KCpriv ). For the key generation, an Initialization Vector
(IV) is required with random values guaranteeing the distinction between the
generated keys. Then, a packet is sent to the SERVER containing: the CLIENT’s
public key (KCpub ); a value such as “challenge-response” generated by the CLIENT;
a character string Fdr defining the “challenge-response”.

Step 4 The SERVER generating a pair of asymmetric keys: the public key (KSpub ) and the
private key (KSpriv ). In sequence, the SERVER receives the CLIENT’s package and
responds with another package containing its public key (KSpub ) and the response
to the “challenge-response” calculated from the Fdr function. The Fdr is a math-
ematically predefined function that can be sum, subtraction, or multiplication
applied to the value of IV received.

Step 5 The CLIENT calculates Diffie-Hellman values. A new package consisting of the
obtained DH value (DHC), the parameters g and p used in the calculation, a
new value of IV (ivC), and the value of IV obtained from the SERVER applied
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to the function Fdr (F (ivS)) will be sent to the SERVER. Moreover, a summary
function (Hash) for all these data and its result is encrypted with the CLIENT
key (KCpriv ). It is then included in the package. The whole package is then
encrypted with the public key of the SERVER (KSpub ). The encryption guarantees
the data confidentiality.

Step 6 The SERVER performs the calculation of the Diffie-Hellman values from the
information coming from the CLIENT. The SERVER then performs the same
actions as done by the CLIENT in step 5. It sends the resulting package to the
CLIENT at the end of the process. With that, both the parties have a common key:
the session key (DHK).

After exchanging the keys, the client and the server can exchange encrypted data with
a symmetric key (DHK), which can last for the session.

Figure 3. Local authentication flow.
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4.4. Secured IoT Blockchain for Edge Computing Nodes in Layer-2

The proposed model as illustrated in Figure 4 encompasses the blockchain as part of
the individual applications of the edge computing layer to provide security, data traceability,
identity management, and privacy. A blockchain orchestrates a decentralized database that
allows applications to trace the history of appended transactions to a shared ledger.

Figure 4. Blockchain-based edge services.

The main component of the proposed model in this layer is HLF blockchain framework
running on the docker containers and integrated client library. The storage component is
designed in a separate layer to store the actual collected data off-chain. The client library
initiates the operations and communicates with other elements. The seamless provenance
of metadata storage is enabled while the data checksums are recorded in a tamper-proof
blockchain ledger.

4.4.1. Nodes in IoT Edge Hyperledger

There are three distinct types of nodes in HLF: Peer, Orderer, and Client. The client is
the node that applications use for initiating the transactions. Client nodes perform issuing
transactions to the peers, collecting proposal responses, and sanding blocks for ordering.
Peers are the nodes that interact with the blockchain ledger and endorse transactions
through running CC. Peers are the nodes that keep the ledger in-sync across the network.

Orderers are the communication backbone for the blockchain network. They are
responsible for the distribution of transactions. Furthermore, the orderer nodes are ac-
countable for the validity and verification of responses. Moreover, the order nodes form
new blocks from grouped transactions when the consensus is achieved.

Peers nodes update the ledger after the blocks are generated. Members can participate
in multiple Hyperledger Blockchain networks. Transactions in each network are isolated,
and this is made possible by way of what is referred to as a channel. Peers connect with the
channels that can receive all the transactions that are getting broadcasted on those channels.
The transaction flow is presented in Figure 5.

There are two particular types of peer nodes: Anchor and Endorser. These peers need
to be configured with appropriate cryptographic materials, such as certificates. Peers in the
member’s organization receive transaction invocation requests from the clients within the
organization. Once transactions are created in the network and new blocks get generated,
they are sent out to the peers by the ordering service. Peers receiving these blocks need
to validate and update the ledger. This is managed on the peer node. Inherently, this
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architectural approach is highly scalable as there is no need for a centralized effort to scale
the network or scale the infrastructure.

Figure 5. Proposed HLF network transaction flow.

Each member organization can look at their needs and set up the needed infrastructure
based on their requirements. Member organizations can have multiple peers. However,
not all peers receive the block information from the Orderer—only the relevant anchor peer
receives them. To avoid a single point of failure, an organization can create a cluster of the
anchor peers. The anchor peers are set up and defined as part of the channel configuration.
The anchor peers are by default discoverable. Peers may be marked as the endorsers or
take up the endorser’s role (known as the endorsing peers). A client sends the invocation
requests to the endorsing peer. On receiving the request for the invocation, the endorsing
peer validates the transaction. For example, it checks whether the end-user has used a
valid certificate. If the validation checks out fine, then it simulates CC.

A set of IoT edge nodes is configured to run HLF processes through Docker. Network
participants run the peer process and maintain the blockchain ledger by receiving various
transaction proposals. The peer process is the main component of the HLF network
while hosting CC and the ledger. Network’s efficiency can be enhanced by increasing
the number of running peers. However, one peer node per organization is normally
sufficient. The ordering service handles blocks of ordering tasks and validates the proposed
blocks by peers with a deterministic consensus algorithm. The proposed model can be
enhanced through the multiple Orderers approach for fault tolerance using RAFT [12] or
Kafka [76] methods.

4.4.2. ChainCode in IoT Edge

Each peer participating in HLF networks keeps a copy of the ledger. The ledger
consists of the blockchain and world state. Each block contains packed transactions,
ordered and broadcasted by ordering service based on peer proposals. The world state
database keeps the latest state in key or value form. CC is a program (smart contract) that
is written to read and update the ledger state. Its operation is the process of deploying
a well-developed CC onto a fabric network (channel) such that client applications can
invoke CC functions. CC deployment (lifecycle ChainCode) includes: (i) install CC to
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selected peers, (ii) instantiate CC to a channel and specify an endorsement policy as well as
initial function arguments when needed. After the deployment, invoking the ChainCode
functions is accessible.

One enhancement in HLF is that the CC governance becomes decentralized. The CC
package does not need to be identical across channel members. This means that organiza-
tions can extend the CC to include additional validation. Lifecycle CC includes steps in
which member organizations can explicitly participate in the ChainCode deployment. The
current design implements ChainCodes to manage IoT devices’ identity connected to edge
gateways, store, and retrieve data from the blockchain ledger. The checksum of all collected
data objects is stored in the ledger. Moreover, the location of data and the data ownership
(authenticated ID) are considered to be recorded. This approach enables the system to track
the data location and verify the integrity of the data. Using the certificate for invoking
the transaction, the system records who and when edited or stored an item. The data
lineage traceability is enabled by recording the references of the items used to generate it.
The client library facilitates the ledger’s interaction to perform various functions, storing
and querying the provenance information. The proposed model implements multiple
endorsing nodes to ensure running the CC in a lightweight environment.

Part of the ChainCode design includes running the authentication and authoriza-
tion processes for security, privacy, and identity management. Furthermore, CC tracks
the owner of performed operations on data. The Client Identity (CID) CC library [58]
introduced in HLF v1.1 is used in this research to save a userID issued by the Certificate
Authority (CA).

4.4.3. Certificate Authority

Membership Services Provider (MSP) is an abstract component of the HLF system that
provides clients’ and peers’ credentials to participate in the Hyperledger Fabric network.
The default MSP implementation is based on the Public-Key Infrastructure (PKI). There
are two primary services provided by MSP: authentication and authorization. In PKI-
based implementations, there is a need to manage the identity by way of certificates. The
certificates are issued, validated, and revoked by the CA.

Each component needs to be authenticated and identified before accessing the fabric
network. In a typical case, a user is issued with a digital certificate that includes proper
information associated with that user. Fabric CA is the Certificate Authority developed by
HLF serving a CA role. Once the Fabric CA is up and running, it can issue new certificates
with the request’s specific requirement. Fabric CA can be accessed using Fabric-CA Client
or Fabric SDK, both from HLF. Digital Certificate is issued by CA that is trusted by the
fabric network. The user’s operation is then accepted and processed by the fabric network.
The digital certificate can be issued when crypto material is generated with Cryptogen and
Configtxgen binaries, or more commonly, generated through registration and enrollment
on CA. The current design implements Hyperledger’s CA docker image, customized to
provide persistent certificate database storage. The fabric-CA implementation has two
parts: fabric-CA server and fabric-CA client. Members are issued a root certificate that they
can use for issuing their own identities within their organizations. Thus, the Hyperledger
fabric network can have one or more certificate authorities to manage the certificates.

4.4.4. Ledger Implementation

HLF is a distributed ledger technology. All peers in the network have a copy replica of
the ledger. The ledger has two parts: a transaction log and state database. The transaction
log keeps track of all the transactions invoked against the assets. The state data are a
representation of the current state of the asset at any point in time. The transaction log is
implemented using the LevelDB, that is a lightweight library for building a key-value data
store. It is embedded and used as part of the fabric peer implementation. Unfortunately,
the LevelDB does not provide a capability for creating and executing complex queries.
However, one can replace the state database (which is implemented in the LevelDB) with
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CouchDB that supports the creation of complex queries. Therefore, the state database is
pluggable at the peer level. The transaction log is immutable. At the same time, the state
data are not immutable. The creation of records in the transaction log is possible, as well as
the retrieving of existing transaction records from the transaction log. However, it is not
possible to update a current transaction record that is present in the log while it is possible
to delete any of the transactions added to the log. From the state data perspective, create,
retrieve, update, and delete operations can be carried out on the state data for an asset. The
ledger implementation in the proposed model is shown in Figure 6.

Figure 6. Ledger implementation flow.

4.5. Base Station Nodes with High Computational Power in Layer-3

BS node’s main functionality includes several tasks such as nodes management under
each base station, collecting and aggregating the received data from sensing nodes, process-
ing, analyzing, and storing the received data. As an organization manager, BS is trusted
by other network participants. CH nodes (edge IoT devices) first need to be initialized
and authenticated by BS before joining the network. Base stations can connect to public
networks or clouds as they have robust computing and storage resources. In a public
blockchain, nodes build trust in a decentralized manner through a consensus algorithm.
Running public blockchain within resource constraint IoT nodes is not feasible due to the
lack of needed massive capacity and time for the frequent authentication process. The
unified authentication scheme is presented in Layer-2 to facilitate the joining process for
nodes in a local private blockchain framework. The current hybrid design proposes a
public blockchain for base stations in Layer-3 of the network model. Cluster head nodes
are registered and authenticated with BS nodes through implementing the smart contracts.
The node’s identity information is recorded in a public blockchain ledger.

4.6. Layer-4 Off-Chain Storage

Implementation of Distributed Ledgers Technologies (DLT) with blockchain is limited
in terms of the amount of data stored in their ledger. The size of the shared ledger is
growing incessantly, causing the system performance degradation. The solution to this
challenge in the proposed design includes the use of off-chain storage. The blockchain
in Layer-2 stores only the metadata’s provenance while the actual generated IoT data
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are stored in non-blockchain-based storage. This amount is a small fraction of the total
generated data by the IoT devices. The data checksums are computed, stored, and verified
with the blockchain records to ensure the integrity and immutability of the stored IoT data.
The CC functions and the ledger functionality are independent of the off-chain storage
choice. However, quick adding multiple storage (or other) resources is possible based on
system requirements.

The current design implements SSHFS [80] as shared storage, while Raspberry Pi are
employed as CHs (edge IoT devices). Thus, the choice of external shared storage needs
to be aligned with the ARM64 architecture of the Raspberry Pi system. The SSHFS is a
FUSE-based user-space client. It allows mounting a remote filesystem using SFTP as an
underlying protocol through SSH. Most SSH servers enable and support the SFTP protocol
and provide access by default. Performance evaluation of distributed storage services in the
community network shows that SSHFS is comparable with other network file systems [81].
Moreover, the system enhancement is achievable with a more resilient distributed file
system such as Open AFS [82] or cloud-based services such as Amazon EFS [83].

5. Performance Evaluation

The primary objective of any deployed blockchain applications is to maintain submit-
ted transactions by network participants, transaction verification and ordering processes,
block generation, and store the transaction outcome in a distributed ledger. Therefore, the
blockchain system performance can be evaluated with the following performance metrics:

• Throughput: The maximum number of transactions that the blockchain system can
handle, and record the ledger’s transaction outcomes in a given time.

• Latency: The time between the transaction invoking by a client and writing the
transaction to the ledger.

• Computational Resources: Hardware and network infrastructure required for the
blockchain operation.

The detailed desperation of Hyperledger performance metrics is documented in the
Hyperledger Performance and Scale Working Group white paper [84].

5.1. Experimental Setup and Implementation

The experimental setup consists of two different environments of the same network.
The first network was set up and run on virtual desktop nodes. The other system included
Raspberry Pi (RPi) devices acting as IoT edge nodes. These RPis were chosen as IoT cluster
heads and were connected to several small IoT sensors.

The virtual desktop setup had five virtual machines running on VMware virtual
platform environment: 5 Intel(R) Xenon(R) Gold 5220 CPU@202GHz 2C2T. All nodes run
Ubuntu 18.04. The official Hyperledger Fabric (version 1.4) framework was deployed as
an underlying blockchain application. HLF is a permissioned open-source blockchain
architecture designed for the enterprise ecosystem. Figure 7 shows the system under test
high-level architecture.

The same network setup was implemented on four RPi Broadcom BCM2711 Quad-
core Cortex-A72 (ARM v8) 64-bit SoC@1.5GHz devices, and one virtual desktop used as
CA server. RPi nodes run the Debian 64-bit OS and nodes interconnected in a peer-to-
peer network thus forming a distributed and decentralized network. Because the official
HLF framework cannot be run on Raspberry Pi devices, the docker images for ARM64
architecture has been modified to support running the HLF on the RPi nodes.

Measurements on both the networks were taken enabling a comparison between
the architectures. The two system setups encompass devices with dissimilar capabilities.
That helped to better understand the system performance and devices’ capabilities in
different scenarios of running the HLF platform. Docker containers consisted of blockchain
components that were orchestrated by the Docker Swarm and deployed across the network
of nodes. A client was considered to be load-generating one that could submit transactions
into the system, and invoke transactions and system behaviors from it.
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Figure 7. Experimental setup and system under test.

5.2. System Configurations

The system configurations encompass various tasks while taking into account also
configuring system dependencies. They included Docker composes configuration, docker
swarm setup, loading needed certificates and different scripts, CC configurations, exter-
nal off-chain storage setting, various network access, modifying Docker images for RPi,
etc. Many issues were coming from unsupported 64-bit RPi images, including software,
libraries, and kernel issues. A shared Docker swarm network was implemented to manage
and deploy multiple Docker containers to edge IoT nodes. Docker composes and related
compose files were the central point for configuring containers deployment, modifying vari-
ables, initializing scripts, and testing the fabric network. Docker images were built to suit
the RPi 64-bit ARMv8 architecture as the HLF does not officially support ARM architecture.

5.3. Transaction Throughput

Transaction Throughput is a performance metric defined by the Hyperledger Perfor-
mance and Scale Working Group [84]. This metric represents the number of transactions
processed by blockchain, leading to writing the outcome in a distributed ledger within a
specific time. For this purpose and to measure the throughput, multiple rounds of bench-
mark applications were run on the top of the implemented HLF network with varying
transaction batches. The corresponding time for each transaction and batch were mea-
sured through the benchmark application. The total time and average time were found to
determine the response times and the number of transactions per minute.
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5.3.1. Desktop Measurements

The throughput measurement was conducted by submitting several transactions
together while varying load intensity levels. Figure 8a indicates exponential growth in the
throughput with the batch sizes increase until it reaches its peak around 3500 transactions.
Larger batch sizes can help the system to order more messages within the same block while
it is submitted in the same timeout. Furthermore, Figure 8a indicates that many blocks
are required to be filled up quickly to achieve higher throughput. The maximum number
of transactions performed by the implemented virtual environment system was around
3500 transactions per minute, the peak system throughput. It is essential to consider that
these large batch sizes were generated to evaluate the system performance. The system
was limited to 58 transactions per second (approximately 3500 transactions per minute)
due to the hardware capability of the virtual desktop.

Transactions response time is illustrated in Figure 8b. The response time increased
with the growth in batch size. A large number of transactions caused system congestion—
more transactions needed to be handled by peers and verified by the Orderer. Therefore,
the individual transaction response time increased accordingly. As shown in Figure 8b, the
transactions were handled quickly at the beginning of the process. However, the response
time increased with the growth in the number of transactions in the queue to be handled
and verified.

With the increase in the transaction arrival rate, the throughput increased linearly
as expected until it flattened out at the peak point. This was because the number of
ordered transactions waiting in the queue during the validation phase grew rapidly while
subsequently affecting the commit latency. It shows that the validation phase was a
bottleneck in the system performance. An increase in the number of Orderer nodes and
validation peers could address this challenge.

(a) Throughput (b) Average Response

Figure 8. Effects of transaction sizes on the throughput and average response times in Desktop setup.

5.3.2. Raspberry Pi Measurements

The same system evaluation was performed in the environment consisting of RPi
devices so to compare with the results obtained while using the virtual desktop setup.

The results that are shown in Figure 9a,b confirm the same trend as was observed
previously while using the desktop setup. The maximum throughput peak happened
around 750 transactions batch size per minute (i.e., 12 per second), which is lower than
the results for the virtual desktop case. Moreover, the higher response times than in
the desktop version were observed. The peak throughput occurred in the batch sizes
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around 750 transactions per minute due to constraints of RPi devices in terms of the
CPU capabilities.

The blockchain distributed ledger may be limited due to the amount of data stored
in the blockchain system. The growth in the shared ledger causes degradation in the
performance. To address this issue, the provenance of data was kept in the HLF ledger.
External storage was dedicated in layer-4 of the proposed model to store the data verified
by immutable blockchain records.

It should be noted that the results show satisfactory performance for the system
in general. However, it is expected that the same results could be achieved by adding
more clients to the system. Most of the restrictions, in this case, are related to the client’s
hardware on which the applications are run and are related to the peer nodes’ limitations.
The results show that storing information and recording data in the ledger do not affect the
system performance any much. However, the limitations are mostly related to the time
required to perform these operations as it should be done in a sequence, thereby affecting
bandwidth and response times.

(a) Throughput (b) Average Response

Figure 9. Effects of transaction sizes on the throughput and average response times in Raspberry Pi setup.

5.4. Transactions Latency

Transaction Latency indicates the time between the invoking of a transaction by a client
and recording the transaction on the ledger. In the experimental setup, the measurements
of a single transaction latency were performed by an application that sent a defined number
of transactions to the HLF network while recording the individual transaction time, total
average time, and corresponding statistical metrics. The results are shown in Figure 10 for
CC Operation latency are the average of 100 separate operations.

Table 1 presents the results for operator SET in both desktop and RPi setup. It is
evident from Table 1 that in the case of operator SET, the Raspberry Pi setup measurements
were worse than those associated with the Desktop setup. The reason for this can be found
in the standard deviation of related measures. The results of throughput measurements
in the case of Raspberry Pi show a lot of fluctuations compared to the desktop option. It
can be explained as the capability difference between the two implementations. Indeed, it
took 2109 ms to submit a transaction and confirm it by running the HLF on the Desktop
setup, while the time for Raspberry Pi was about 2348 ms. The Retrieving operations time
for GET operators was about 100 ms in both cases. The results for RPi indicate more delays
compared to the desktop environment. When the number of ordered transactions waiting
in the verification process queue during the validation phase increased, it significantly
increased the commit latency. Therefore, a validation phase can be considered to be a
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bottleneck. However, the increase in the number of involved peers also causes higher
latency. Furthermore, the experiments indicate that for real applications such as IoT to
achieve lower transaction latency, the use of a smaller block size with a low transaction
rate would be needed. In contrast, the higher transaction rates need a larger block size to
achieve higher throughput and lower transaction latency.

Table 1. Statistics analysis of SET ChainCode latency.

Setup Environment Avg Std Med Max Min

Desktop 2109 42.5 2105 2518 2103
RPi 2348 252 2306 4029 2204

Figure 10. Latency for all ChainCode operation.

The experiment was further developed with multiple rounds of the benchmark to
submit transactions with different sending rates starting from 10 to 500 transactions per
second (TPS) for different block sizes. The experiment aimed to measure the maximum,
average, and minimum transaction latency and transaction throughput. The results are
presented in Figure 11. The minimum latency remained below 1 s during the experiments,
while the maximum latency proliferated as the send rate reached 100 TPS.

5.5. Resource Consumption

Resource measurements encompass CPU computational capability, memory, and
network use. The measurements carried out with varying load levels employed edge,
middle, and large load cases. The operation of storing various data sizes in the network
was performed with different transactions to calculate the resource consumption. The
volumes were different for desktop and Raspberry Pi network setups due to hardware
limitations and RPi devices’ capability.

5.6. CPU and Memory Use Measurements

The CPU and memory activities were measured with the Psrecord utility [85] by
attaching the processes’ pid and submitting transactions with varying data seizes. Psrecord
is an open-source monitoring tool that can record real-time metrics in time-series databases.
The Psrecord monitors and records a defined process. The specific usage is recorded by the
Psrecord tool up to a maximum of 400% of maximum system use. The result for Orderer
and ChainCode processes indicates that the resource consumption of these two processes
was negligible. The Peer nodes consumed most of the memory and CPU resources. This
was because the verification of the transaction and smart contracts by peer nodes required
high CPU usage. Therefore, the investigation mainly dealt with the peer process and client
application processes.
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(a) 5Peers-10Blocks (b) 5Peers-50Blocks

Figure 11. Latency vs. transaction sending rate.

5.6.1. Desktop Setup

Evaluation of the CPU and memory use by the involved process provided a compre-
hensive view of the overhead and the impact on the device hardware. Therefore, a series of
measurements were conducted to analyze resources’ consumption, including the resources
of the network, CPU, and memory of the involved devices. Peer, Orderer, ChainCode,
and application client processes were involved. The experiment was initiated by sending
3000 transactions per minute each of 1 KByte. The initial measurements indicated a high
dependency on peer and client processes to the data sizes and throughput. However,
Orderer and ChainCode processes used a small CPU capacity percentage (about 9%) and
memory (approximately 16 MByte and 33 MByte). Due to that fact, the evaluation and
analysis were focused more on peer and client processes’ usage of resources. With lower
load sizes, the peer processes showed similar behavior. When increasing the throughput,
the peer process used a higher CPU percentage (about 20%), and memory usage at around
150 MByte. The client process used approximately 40% of the CPU capacity continuously
and used 120 MByte of memory. The reason for this can be attributed to multiple processes
in the client. It mainly involves connecting to a peer for each transaction, invoking CC
and related operators, performing related transactions, executing the proposal requests
and responses related to ordered transactions. The use of resources is also increased if the
client uses external storage. In this case, it needs to calculate the checksums stored in the
ledger as well as storing the data in external storage. These experiments were carried out
with the highest possible load amount (in the real-world scenarios, these values would be
significantly lower). The results are presented in Figure 12.

Similar to the scenario with the client process, the peer process used about 40% of CPU
capacity and 150 MByte of memory. One of the key elements in any HLF network is a peer
node and its related processes, playing a vital role in ordering transactions. The peer node
plays the role of a response coordinator to all components and from them while Peers must
keep the ledger coordinated across the HLF network. Peers connect with the channels,
and they can receive all the transactions that are getting broadcasted on that channel. Peer
nodes’ measurements show more resource consumption than the orderer, ChainCode, and
clients to synchronize with other components in the HLF network. To better evaluate
and analyze peer and client processes’ behavior, the consumption of resources at different
data size levels with three separate throughputs were investigated. The different levels
selected were low throughput and large data size (small), low throughput and small data
size (medium), and high throughput and small data size (large).
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(a) 5 tx/min (b) 50 tx/min (c) 1500 tx/min

Figure 12. CPU and memory use for varying data sizes for peer process in the Desktop setup.

The results are plotted in Figure 13 for CPU and Memory use of peer and client
application processes over 10 min span with sampling per second. As seen in the plots, the
peer process required a higher CPU use for the larger load with 30% increase. Similarly, the
use of memory was higher, as the peer process must handle more transactions. To evaluate
the client process performance and related applications, external storage was added to
assess its impact on CPU and memory use. From the low number of transactions and up to
many transactions, these values were sampled (Figure 13). Larger files needed more CPU
and memory levels. Finally, it can be concluded that the client process can be influenced by
the file size and the level of the load intensity to handle.

(a) 5 tx/min (b) 50 tx/min (c) 1500 tx/min

Figure 13. CPU and memory use for varying data sizes for client process in the Desktop setup.

5.6.2. Raspberry Pi Setup

Following up with analyzing the use of the resources, the RPi system setup was tested.
It is crucial to acknowledge that the RPi hardware was less capable and had hardware
limitations. Therefore, it was necessary to pay attention to the data sizes sent through
and the number of transactions. Consequently, we considered the maximum number of
transactions to be 500 per minute.

As is evident from Figure 14, the difference between 5 transactions per minute and
50 transactions per minute cases was more visible than the desktop setup. The continuation
of the comparisons led to the conclusion that with the same throughput, the RPi uses
more CPU resources (4 to 5 times more), which was interpreted as a hardware restriction
inherent to RPi devices. Although it was not possible to make a comprehensive comparison
between 500 transactions (tx) per minute in the case related to RPi setup and 1500 tx per
minute related to desktop setup, as shown in Figure 14, the CPU usage and memory were
approximately the same in both the cases.
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(a) 5 tx/min (b) 50 tx/min (c) 500 tx/min

Figure 14. CPU and memory use for varying data sizes for peer process in RPi setup.

Similarly, the same measurements were performed for the client application process
in the RPi setup. In this case, external data storage was considered. Figure 15 shows the
results of the experiment. The higher usage of CPU was due to the difference in device-
related clock rate in each of the separate setups. The peer process memory consumption
was higher in the RPi setup compared to the desktop one. This can be found in peer process
behavior in handling transactions. In both the setups in the client application process, the
level of memory use was similar. However, in all cases, the use of 200 MByte to 300 MByte
of memory was sufficient, and it was not considered the system’s main limitation. The
Desktop setup’s resource consumption with a realistic transaction load size of around
50 KByte every five seconds was around 5% CPU and 15% in RPi.

(a) 5 tx/min (b) 50 tx/min (c) 500 tx/min

Figure 15. CPU and memory for varying data sizes for client process in RPi setup.

5.7. Network Use Measurements

To assess the consumption of available network resources and to check the network
overhead, launching the peer node and client application node locally could be employed
to send the transactions to the orderer, other peers, and external data storage. If the peer
node is launched locally, it allows us to monitor ledger updates. At the same time, all
transmitted traffics between different involved participants can be checked. Furthermore,
it would be possible to have an overview of all the factors of the transmitted data.

To measure and analyze network traffic, the Speedometer utility running on the Linux
environment [86] was used. Speedometer measured the sent and received network traffic
over a specific network interface. All other network activities were disabled. The HLF
network and external storage-related communication processes were monitored using
the iftop Linux monitoring tool to measure network traffic accurately. The experiments
were initiated without running any processes such as the Docker, and only the process
run by the operating system to be monitored was allowed. The results show that baseline
3–5 KByte/s data can be written off to others as the network traffic.

CHAPTER 4. HLF FOR SECURING THE EDGE IOT

96



With running the HLF, significant changes in network traffic were detectable. Figure 16
displays that with the onset of the peer process, network traffic increased by about five
times compared to the baseline mode. In this case, there were no transactions between peers.
The main reason for this was the beginning of the communication between peer process
and network components, to have ledger consistency and reaching a synchronization
through the gossip protocol. For further analysis and finding out how network resources
would be affected by offered load, different offered load levels were engaged, and various
modes were evaluated with and without external storage resources. The relevant results
are presented in Figure 17.

Figure 16. Network use for peer process with no transactions.

The results show that receiving and sending traffic to perform transactions every 5 s
occupies something about 1–40 KByte/s spectrum. Involving an external storage source
significantly increases traffic and increases its range to about 100 KByte/s. This increase
was also visible in the incoming traffic and indicated by the file storage’s confirmation in
the shared folder. Further increase in the number of transactions would increase the sent
and received traffic.

Figure 17. Network use vs. load sizes with/without external storage.
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6. Conclusions

Providing security to massive interconnected IoT devices while ensuring the scal-
ability of IoT systems with minimum resource requirements is a challenging problem.
Additionally, the heterogeneity and diversity of connected devices within the IoT realm
make it even more challenging. Therefore, the interoperability, identity, and privacy of
IoT systems need to be guaranteed securely. The existing centralized solutions, such as
a cloud-centric model, are costly. Moreover, these solutions’ latency is also noticeable.
Furthermore, the single point of failure issue is a considerable risk to the security of the
centralized solutions. Blockchain technology is a promising solution to provide security
for IoT devices while leveraging trust and interoperability.

This paper presented an implementation of the Hyperledger Fabric Blockchain plat-
form as a permissioned blockchain technology integrated with edge IoTs to test and analyze
the performance of the proposed BlockChain-based multi-layer IoT security model. The
presented proof of concept was implemented using two different environment setups on
the Raspberry Pi devices and VMware Virtual desktops. The performance metrics such
as transaction throughput, transaction latency, computational resources, and network use
of the implemented networks, were evaluated. The implemented prototype facilitates
the record of sensing data by IoT devices (metadata) in a tamper-proof and transparent
blockchain-based framework to provide data traceability. Moreover, the framework’s
security is guaranteed by implementing a layer-wise blockchain approach and local authen-
tication process for IoT nodes in each cluster. The client application is developed with the
help of Hyperledger Node SDK where various Hyperledger ChainCodes help to perform
local authentication and authorization. Moreover, they facilitate the record of file pointers
to provide checksums traceability and data validation.

The presented findings indicate a significantly optimal throughput for IoT applica-
tions. Peers and clients’ processes are the primary source of resource consumption in the
network. The Orderer and ChainCode use fewer resources compared to the peer process.
Experimental results show a significant increase in throughput of approximately six times
compared to the optimal scale implementation of HLF. The Desktop setup’s resource con-
sumption with a realistic transaction load size of around 50 KByte every five seconds is
around 5% CPU and for the RPi setup is around 15% CPU. Peer and client processes are the
primary resource consumers in HLF as our measurements indicate an average of 40% to
50% CPU consumption respectively at full load, while these measurements for the Orderer
process and ChainCode use an average of about 10% of CPU resources. The deployed
model could retrieve a single record in 100 ms. However, the use of the built-in ChainCode
queries allows retrieving 10 dependent IoT records in 102 ms. The empirical results all
indicate low overhead for running the proposed model.

Further work will consider the deployment of the proposed model in larger-scale IoT
scenarios significantly increasing the number of peers for the empirical analysis of the
system performance for both overall and detailed Fabric performance metrics, including
throughput, latency, block size, endorsement policy, and scalability.
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Abbreviations
The following abbreviations are used in this manuscript:

BFT Byzantine Fault Tolerant
BS Base Station
CA Certification Authority
CC ChainCodes
CH Cluster Head
CID Client Identity
CRL Certificate Revocation List
CPSs Cyber-Physical Systems
dApps distributed Applications
DDoS Distributed Denial-of-Service
DHE Diffie-Hellman Ephemeral
DLTS Distributed Ledger Technologies
DPoS Delegated Proof of Stake
ECC Elliptic Curve Cryptography
HLF Hyperledger Fabric
IoT Internet of Things
IIoT Industrial IoT
MAC Message Authentication Code
MSP Membership Services Provider
NFS Network File Systems
OPM Open Provenance Model
PBFT Practical Byzantine Fault Tolerance
PoA Proof of Authority
PoB Proof of Bandwidth
PoET Proof of Elapsed Time
PoS Proof of Stake
PoW Proof of Work
RPi Raspberry Pi
RSA Rivest–Shamir–Adleman
SDN Software Defined Networking
SSL Secure Sockets Layer
TSL Transport Layer Security
WSNs Wireless Sensor Networks
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Abstract—Blockchain technology with its decentralization
characteristics, immutability, and traceability is well-suited for
facilitating secure storage, sharing, and management of data of
decentralized Internet of Things (IoT) applications. Despite the
increasing development of blockchain platforms, there is still no
comprehensive method for adopting the blockchain technology
on IoT systems due to the blockchain’s limited capability to
process substantial transaction requests from a massive number
of IoT devices. Hyperledger Fabric (HLF) is a popular open-
source permissioned blockchain platform hosted by the Linux
Foundation. This article reports a comprehensive empirical
study that measures HLF’s performance and identifies poten-
tial performance bottlenecks to better meet the requirements
of blockchain-based IoT applications. The study considers the
implementation of HLF on distributed large scale IoT systems.
First, we present a model for monitoring the performance
of the HLF platform that addresses the overhead challenges
while delivering more details on system performance and better
scalability. Then, we implement the framework to evaluate the
impact of varying network workloads on the performance of the
blockchain platform in a real large-scale distributed environment.
In particular, the performance of the HLF is evaluated in terms
of throughput, latency, network size, scalability, and the number
of peers serviceable by the platform. The experimental results
indicate that the proposed framework can provide detailed real-
time performance evaluation of blockchain systems for large scale
IoT applications.

Index Terms—Blockchain, hyperledger fabric, smart contract,
performance, throughput, latency, scalability.

I. INTRODUCTION

BLOCKCHAIN, an innovative technology that originated
from Bitcoin [1], encompasses a list of continuously

growing data and transaction records, called blocks that are
cryptographically linked and secured. Peers maintain the
blockchain in a peer-to-peer (P2P) transaction platform, where
transactions are recorded in a period of time and pack-
aged into a block by peers to join the blockchain ledger.
Blockchain offers a decentralized network with records being
tamper-resistant and traceable. Numerous blockchain-based
decentralized applications have emerged with the widespread
development of the technology. As a secure and unalterable
architecture, blockchain is a promising paradigm to address the

H. Honar Pajooh, M. Rashid, F. Alam are with Department of Mechanical
& Electrical Engineering, School of Food and Advanced Technology, Massey
University, Auckland 0632, New Zealand (e-mail: h.pajooh@massey.ac.nz).
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needs of availability, confidentiality, and integrity for IoT ap-
plications [2]. The integration of the blockchain to the Internet
of Things (IoT) is a challenging enrichment that can guarantee
the privacy, security, trust, and data reliability of conventional
IoT applications. The feasibility of such blockchain-based
IoT systems has been extensively explored recently [3], [4].
Nonetheless, the time-consuming consensus process is the
primary bottleneck of adopting blockchain technology on IoT
applications. Besides, the IoT systems are varied in terms of
the number of generated requests where applications generate
thousands of transactions per second (TPS).

Distributed ledger technologies (DLTs) enable the storage
of information securely and accurately using a set of cryp-
tographic primitives. Once stored, the information becomes
immutable. Hyperledger Fabric (HLF), a form of permissioned
distributed ledger technology (DLT), helps enterprises build
their specific DLT solutions more efficiently and securely.
Some of the key enhancements of HLF such as ensuring
data privacy, better ChainCode application patterns, externally
launched ChainCodes and modified docker images pave the
way for secure DLT solutions (including the decentralized
ChainCode - Smart Contract). Implementing HLF facilitates
managing channels, ChainCodes, policies, certificate authori-
ties, etc., within the IoT environments where devices operate,
and services provided in multiple segments or among different
layers.

HLF architecture facilitates a permissioned blockchain en-
vironment. The HLF system performance is enhanced through
implementing a highly modular framework and pluggable
consensus. It can also provide privacy for a broad range of
implementation solutions (e.g., IoT networks) while meeting
the specific needs of IoT applications. Furthermore, a plug-
gable consensus approach improves the latency of finality
and confirmation. Scalability, throughput, robust cryptographic
security, latency and resource consumption are some of the
major challenges while moving from traditional DLT to HLF
solution. The security arrangements of distributed IoT systems
can be established and maintained through deploying HLF
with various features offered by different versions of the Fabric
implementation. Such security requirements include system
integrity, authentication and authorization, data privacy, system
security, device authentication, storage, key management, ac-
cess controls and revocations, device enrollment, user privacy,
identity management, user authentication, and authorization
and synchronization of software upgrades. Besides, Fabric

CHAPTER 5. PERFORMANCE ANALYSIS OF LARGE SCALABLE IOT

104



offers the implementation of restricted networks and controlled
access to user data within the IoT systems.

Blockchain applications have gained significant attention
from both industry and academia in recent years [5], [6]. Such
applications are noticeable in different domains ranging from
public services [7], finance [8], smart hospitals [9], smart
manufacturing [10], supply chains [11], energy trading [12]
to the new era of IoT [13]. Despite the development and
implementation of many blockchain projects, there are still
concerns associated with the blockchain platforms’ through-
put, latency, and ability to scale [14].

Performance computation and evaluation represent signif-
icant challenges for current blockchain systems [15], [16],
particularly during the execution of complex smart con-
tracts. Technical challenges in adapting blockchain systems
are throughput, latency, scalability, size, bandwidth, security,
wasted resources, usability, as well as versioning, and hard
forks [17]. Therefore, it is crucial to evaluate the real-time
performance of the blockchain platforms. The performance
of the blockchain system can be considered as overall per-
formance and detailed performance. The overall performance,
including the throughput and latency, can help to find the ideal
blockchain system that could fit real-world application scenar-
ios. However, the detailed performance computation reveals
performance bottlenecks and provides detailed information on
the entire process.

The primary focus of this work is to present an adaptive
framework to enhance blockchain-based IoT system’s perfor-
mance in a distributed environment with many peers. The aim
is to improve the transaction throughput by redesigning the
consensus protocols while the security and immutability need
to be accomplished by the implemented blockchain platform.
Blockchain parameters affect the performance, security, and
adaptability of the system. It becomes more complicated when
choosing an optimal configuration in the IoT systems with
vast amounts of small and resource constraint devices. The
parameters need to be validated and tested before deploying
the blockchain IoT systems to determine the limitations and
possible bottlenecks within the implementation.

The evaluation of the blockchain system’s overall perfor-
mance has been studied widely in the literature [18]–[21].
However, various process stages need more detailed perfor-
mance measurements as the overall metrics cannot reflect the
detailed performance. There is a lack of metrics to measure
and monitor the detailed performance of blockchain systems.
Moreover, the framework scalability and real-time monitoring
overhead need to be comprehensively studied. Besides, we
need to monitor the system performance in a large scale
distributed environment. Thus, the way of performance mon-
itoring and the selection of metrics to monitor are the main
challenges for blockchain’s performance measurements.

The Fabric network is orchestrated by various components,
including endorsers, ordering service, and committers. It con-
stitutes different transaction processing phases consisting of
the endorsement phase, ordering phase, validation, and commit
phase. Therefore, Fabric encompasses various configurable
parameters, such as block size, channels, endorsement policy,
and state databases. Finding the right set of values for this

range of parameters is the main challenge in adapting an
efficient blockchain system. A comprehensive performance
analysis needs to find out the optimal block size to achieve
higher throughput, lower latency while considering a more
efficient type of endorsement policy in a distributed platform.

This study considers a detailed real-time performance com-
putation model for Hyperledger Fabric (HLF) blockchain
systems to address the aforementioned challenges. A compre-
hensive review of blockchain research topics [22] shows that
latency, throughput, and scalability are the primary limiting
characteristics. The selected performance computation model
facilitates collecting real-time performance data by analyzing
logs and the daemon process. Besides, the study considers the
following factors:

1) Distribution. The Performance model needs to consider
the real distributed scenario on a large scale.

2) Scalability. The performance monitoring framework re-
quires to be extended easily to compute the performance
of added new peers to the Fabric system.

3) Detailed monitoring. The comprehensive analysis of logs
could reveal more detail data associated with various
stages of the Fabric system.

4) Minimum overhead. The performance computation
model should fit real-time monitoring and have a negli-
gible performance impact on the running of blockchain
systems.

We aim to demonstrate a model for studying the impact
of the different blockchain network workloads on the perfor-
mance of the first long-term support release of the Hyperledger
Fabric platform, v.1.4 [16], [23]. The system performance is
evaluated by implementing varying transactions, at different
rates, and block sizes in a large-scale distributed platform.
Performance of the Fabric network being evaluated includes
the latency (in seconds), throughput (in tps), and scalability
(network size and the number of participants peers) as well
as the endorsement policy. The followings are the main
contributions of this paper:

1) Conducted comprehensive experimental analysis of sev-
eral HLF performance metrics to outline detailed system
performance and configuration guidelines to show how
various network configurations affect overall system
performance.

2) Proposed a scalable model and tested for real-time
performance computation of the Fabric platform, con-
sidering lower overheads and better scalability. The
experiments were conducted on networks of different
sizes with peers running on multiple hosts to identify the
major limitations of the HLF network and performance
bottlenecks.

3) Provided comprehensive metrics measurements to ana-
lyze and monitor the impact of system configurations
(e.g., number of transactions, block sizes, endorsement
policies, network size) on the HLF performance, es-
pecially the scalability on a distributed environment.
highlighting the possibilities and limitations of HLF
implementation in large-scale IoT networks.

To the best of authors’ knowledge, the experimental study
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reported in this research study is the first of its kind in terms
of its focus and comprehensiveness. Specifically, it performs
the scalability analyses for the permissioned HLF blockchain
framework for IoT in a distributed computing infrastructure,
identifies the bottlenecks to the scalability, and offers possible
solutions for addressing them in the context of real-world
IoT implementation. Furthermore, this work determines the
impact of various blockchain metrics on the system’s latency
and resource consumption. This makes it different from the
existing studies that do not consider the measurement of
the relevant resource utilisation/requirements (e.g., memory
and CPU consumption) with an increasing number of peers
in the system. In addition, the interdependency between the
scalability of the permissioned HLF blockchain networks and
their resource usage was investigated.

The rest of the paper is organized as follows. In Section II,
related works in performance evaluation of HLF blockchain
platforms are presented. Section III provides an overview of
the HLF blockchain technology and the target platforms in
this study. Section IV presents the methodology for evaluating
Fabric implementations, the key configuration metrics, and the
experimental setup. Then, a discussion of the results and their
implications are covered in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORKS

The empirical analysis of DLT has been well documented in
the literature to evaluate the performance of the implemented
blockchain systems, such as Hyperledger and Ethereum. Al-
though the empirical analysis does not provide standardized
results, this method is flexible in terms of parameterization.
This approach could find potential bottlenecks and show how
to optimize the system performance based on self-designed
experiments. A well-controlled test environment can facilitate
comparing the performance of different private blockchain
platforms and various versions of a particular blockchain
system. Besides, some studies were conducted to evaluate the
performance of various hash and encryption algorithms from
the data layer in the conceptual model of the blockchain.

The throughput and latency of HLF v1.0 were studied in
[24] by deploying an experimental approach using the Caliper
[25] benchmarking tool. The study explored the impact of
different transactions and various ChainCodes parameters on
transaction latency and throughput under micro-workloads.
The authors evaluated the performance of Fabric character-
istics by implementing a varying number of ChainCodes,
channels, and peers. The sensitivity of HLF v1.0 throughput to
the Orderer setting was highlighted in the evaluation results.
Furthermore, the results showed that the HLF v1.0 committer
was incapable of handling the transaction process in parallel
using multiple vCPUs that could be considered as a bottleneck
in system performance.

An experimental performance evaluation of two different
versions of HLF (v0.6 and v1.0) was conducted by Nasir et
al. in [26] to analyze the execution time, throughput, latency,
and scalability through implementing various workloads to the
system and node scales. The inclusive results showed that HLF

v1.0 consistently outperformed HLF v0.6 across all measured
key performance metrics.

The study in [27] evaluated the blockchain latency, through-
put, and scalability of the network with varying block sizes,
peer CPU, SSD vs. RAM disk, and various peers. The obtained
results identified that the end-to-end throughput of HLF v 1.1
could go up to 3500+ transactions per second (TPS) in certain
widespread deployment configurations. Besides, the latencies
were about a few hundred ms while scaling well to 100+ peers.

Authors in [28] conducted a study to find the performance
bottlenecks of HLF v1.0 with varying performance metrics
consisting of endorsement policies, different block sizes, num-
ber of channels, resource allocation, and state database choices
(LevelDB vs. CouchDB). The experimental results listed the
major system bottlenecks such as endorsement policy verifi-
cation, sequential policy validation of transactions in a block,
and state validate and commit transactions (with CouchDB).
The authors outlined optimization solutions to overcome the
aforementioned bottlenecks.

Geyer et al. [29] investigated the performance of HLF in
terms of the underlying communication network using Caliper
through the configuration of network parameters, including
latency and packet loss in a dedicated testbed. The work exam-
ined the impact of transaction rate, network properties, block
size, ChainCode, local network impairment, and block size.
The experimental results indicated the transactions’ validation
as a significant contributor to the transaction latency in HLF.

In [30], the authors evaluated the performance of the HLF
v1.4 platform’s in terms of transaction throughput, latency, and
scalability with various network workloads such as the number
of transactions, transaction type, and transaction rate.

The impact of malicious behavior on the transaction
throughput and latency of HLF performance was explored in
the study conducted by Wang [31] with designed multiple
malicious behavior patterns. The results showed significant
degradation in the system performance due to the attacks’
delays and due to keeping some replicas out of working.

Shi et al. [32] empirically investigated the performance of
the Sawtooth platform. The blockchain platform performance
was examined in terms of consistency, stability, and scalabil-
ity with various workloads and configurations. The authors
provided an adjustable optimization approach to configure
parameters consists of the scheduler and maximum batches
per block.

Implementing permissioned blockchains technology such as
HLF on large-scale IoT systems is not a trivial task and is
associated with a number of challenges. Unfortunately, it has
been just partially covered by the existing research studies and
technology practices. Aiming to address this deficiency, this
work is reporting the results of performing a comprehensive
experimental study focusing on the challenges associated with
scalability and performance.

The scalability problem refers to the blockchain system
handling an expanding number of peers while continuing to
stay operational. The results presented in this study are based
on the experimental study involving a large-scale practical
setup. They highlight the blockchain network’s scalability
issue and demonstrate that it is significantly impacted by the
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hardware configuration, blockchain system architecture, and
complexity of smart contracts’ operations. The performance
issue was tackled through the extensive experimental study
involving a large-scale distributed computing infrastructure
(5 to 100 peers), measuring various performance metrics of
a popular permissioned blockchain framework (HLF) under
varying conditions.

Unfortunately, the above-cited and other earlier research
reports did not provide detailed performance computation of
real distributed large scale HLF implementation with different
number of peers. Although they tried to configure the HLF
platform with a different number of organizations, peers, etc.,
most consider the performance evaluation within a single
host machine and not in a distributed environment. Also,
the impact of network size on the fabric system’s overall
and detailed performance in different process stages were not
investigated comprehensively. Moreover, the aforementioned
research methods could not meet the low overhead requirement
and have poor scalability. Motivated by this research gap, we
conducted a comprehensive analysis of the HLF blockchain
in a scalable and real distributed environment hosted by
various virtual machines. The main objective is to compare the
two different environments for implementing HLF, including
Single-host and Multiple-Host. Addressing these challenges,
we propose a detailed real-time performance computation and
evaluation model for HLF blockchain systems.

III. HYPERLEDGER FABRIC

HLF was the first consortium blockchain platform estab-
lished by the Linux Foundation [33]. HLF supports arbitrary
smart contracts (known as ChainCodes [34]) implemented in
general-purpose programming languages like Go, Java, and
Nodejs. Other existing blockchain platforms deploy smart
contracts written in a Domain-Specific Language (DSL) such
as Ethereum’s Solidity to avoid non-deterministic operations.
Smart contracts enable a range of HLF applications across
various industrial domains. Novel Execute-Order-Validate ar-
chitecture for transactions and a pluggable consensus protocol
differentiates the fabric from other blockchain platforms. The
existing blockchain platforms use conventional order-execute
architecture to facilitate the ordering of the transactions based
on consensus protocol, and then each peer executes transac-
tions in sequence order. The execution phase increases the
network latency as the peers need to scrutinize all transactions
in the block and execute them [27]. Key components in the
fabric network are peer nodes, clients, and ordering service
nodes belonging to different organizations. Each network
entity in the fabric network has an identity assigned by a
Membership Service Provider (MSP) [35].

Hyperledger Fabric is a permissioned blockchain platform
where the network participants are exposed to each other
and fully trusted. Nevertheless, the fabric network could be
structured based on the governance model constructed, so trust
exists between the participants. Blockchain applications are
orchestrated and deployed based on participating organizations
within the consortia. Nodes (or peers) host the blockchain
and perform smart contract execution as well as mutually

Fig. 1. HLF network system architecture with major components [27]

maintain the ledger’s state. The concept of the channel in the
fabric helps implement the shared ChainCode by all entities
or develop private deployment. ChainCodes could be privately
shared and deployed to a group of peers and is not accessible
by other peers. The data and ChainCode are only available to
the participants joining the same channel. The fabric network
needs to authenticate and identify the peers through generated
cryptographical materials. Therefore, particular channel mem-
bers can be authenticated in this way. The ordering service
(OS) performs the ordering of the accepted transactions by the
fabric network on a per-channel basis. The overall Hyperledger
Fabric system architecture is presented in Figure 1.

A. Transaction Flow in Hyperledger Fabric

Hyperledger Fabric employs the Execute-Order-Validate and
Commit transaction model. Figure 2 shows the transaction
flow in HFL blockchain platform that involves three steps:
Endorsement, Ordering, and Validation phases. The transac-
tions are ChainCode invocations’ running on the Docker [36]
container. Thus, it helps to separate them from other running
ChainCodes on the same peer and the fabric codes. HLF
is a distributed ledger technology where fabric peers keep
a copy replica of the ledger. The ledger has two parts: the
transaction log and state data. The transaction log keeps track
of all the invoked transactions, while the state data represents
a current state of the asset at any point in time. Various
operations could be carried out on the state data by way
of executing the ChainCode. ChainCode execution leads to
creating transactions in the transaction log. It could also lead
to changes in the state data. The transaction log is implemented
using the levelDB that is a lightweight library for building a
key-value data store embedded in fabric peer implementation.
The state data consists of the key-value pairs that are versions.
The state database is pluggable at the peer level. LevelDB
supports a simple query for key-value pairs. However, it can
be replaced with the CouchDB database, a NoSQL database
that allows executing complex queries.

Participating organizations, their MSPs, and peers’ identities
need to be established before submitting any HLF network
transactions. The channel needs to be initialized on the Orderer
network with corresponding organization MSPs, and organi-
zation peers join the channel and initialize the ledger. Finally,
the required ChainCodes need to be installed on the channel.
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Fig. 2. Fabric transaction flow.

1) Phase 1: Endorsement Phase : Client applications using
the fabric software development kit (SDK) create a request
proposal and submit the transactions to endorsing peers based
on the endorsement policy embedded in the ChainCode.
The client puts a cryptographic signature to the proposal
and sends it on the same channel where the ChainCode is
deployed. The endorsing peers execute the proposed trans-
actions and deterministic output received by corresponding
endorsing. Nevertheless, all validity checks are carried on
by endorsing peers before the execution ensures the client’s
authenticity and authority. The endorsement response includes
the cryptographic materials, response value, and the read-
write sets generated as a result of ChainCode execution. The
endorsing peer signs the transaction response with the peer’s
identity through a system ChainCode called ESCC and sends a
proposal response to the client. The ledger remains unchanged
at this point. The client application collects endorsements from
multiple endorsing peers, according to ChainCodes’ defined
endorsement policy, and sends them to the ordering service.

2) Phase 2: Ordering Phase: The ordering service per-
forms transaction verifications. It orders them per channel.
The next step is to deliver the ordered transactions by ordering
service. All peers need to see the transaction in the same order
known as block formed by ordering service and communicated
to all peers. The ordering service deploys one of the developed
ordering algorithms, such as SOLO, Kafka, or Raft [27].
Solo ordering algorithm consists of a single ordering service
node (that controls all network ordering transactions), runs
on one node, and is used for development. Kafka is a more
distributed algorithm. It deploys the Kafka cluster to create and
consume transactions. Thus, it provides crash fault tolerance
(CFT) and is recommended in production deployments. Raft
is similar to Kafka as it follows the leader-follower model.
It has the advantage of being CFT. The setup of the Raft
is rather straightforward. The ordering service can perform
access control permissions of the client nodes to check whether
they can broadcast or receive blocks on a particular channel.

3) Phase 3: Validation Phase : Once the block is sent to all
peer nodes through either the ordering service provider or gos-

Fig. 3. HLF-based distributed system model (the peers and off-chain storage
are separated into a scalable platform).

sip protocol (based on gRPC [37] ), the transactions need to be
validated. The validation process identifies and rejects invalid
transactions. Therefore, only valid transactions are committed
and updated in both ledger and world state. The validation
phase consists of two consecutive steps: endorsement policy
evaluation (using validation system ChainCode (VSCC)) and
read-write conflict check (multi-version concurrency control
(MVCC)). If there is a mismatch in versions, and the en-
dorsement policy is not satisfied, the transactions are marked
as invalid and their effects are omitted. Valid transactions are
the ones that match the read set versions. The peer notifies
the client about the success or failure of the transaction. The
final step encompasses the ledger update. All the peers commit
the identified valid transactions in the fabric network, and its
write set is updated in the world state. Thus, in Fabric V1, each
transaction goes through three phases: endorsement, ordering,
and validation.

IV. CONFIGURATION PARAMETERS AND KEY METRICS

This work aims to study the performance of the scalable
HLF in a distributed environment with a different number
of nodes and various conditions to analyze how different
parameters affect the system performance. We limit our study
to a detailed analysis of a few parameters while other aspects
are covered in general terms to understand and identify the
interplay of network components. Therefore, the primary focus
is on studying the overall performance from the peer’s perspec-
tive. At the same time, the Orderer and Gossip effect on our
experiment is eliminated as they have been kept static. The
overall system under the test (SUT) and related components
are presented in Figure 3. The shown model includes a single-
channel HLF network with one client running benchmarking
tools and one anchor peer.
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A. Key Parameters Definition

Several key parameters are considered in this study. The first
of them is a block size. An Orderer orchestrates transactions
in batches. It then delivers them to peers in a block with the
aid of the Gossip protocol. Each peer processes one block
of received transactions at a time. The Orderer performs
the cryptographical process per block to verify the Orderer
signature, while the endorsement signature verification process
is handled per transaction. The block size variation influences
the throughput and latency. Therefore, we study the effect of
various block sizes in conjunction with transaction sending
rate. Note that we assume that all transactions are of the same
complexity and independent of each other.

Endorsement policies play a vital role in controlling the
number of executions of a transaction and signing transactions
before submission to the Orderer. So, the transaction can
successfully be validated by the VSCC phase. Validation con-
firms that a transaction’s endorsements meet the endorsement
policy for that ChainCode, i.e., read/write set does not con-
flict with simultaneous updates that were committed before.
Time required for endorsement policy to collect and evaluate
transactions is affected by its complexity and requiring more
resources.

Channel provides an environment where a group of peers
creates a separate transactions ledger accessible only by mem-
bers. However, a peer can join multiple channels and therefore
to maintain various ledgers. The channels process order, and
deliver transactions independently, even though on the same
peers. The number of the channels and their functionality
directly impact system performance and scalability.

The routine verification process and signature computation
by peers as a part of system ChainCodes need significant
CPU and network resources. Besides, running user defined
ChainCodes by endorsing peers during transaction submis-
sions create extra loads on system. Our design considers a
network having low latency and high bandwidth.

B. Performance Metrics

This paper considers a distribution ledger technology (DLT)
system level to model HLF performance. The performance
evaluation metrics document published by Hyperledger Perfor-
mance and Scalability Working Group [38] provides precise
performance metrics applicable across various DLT platforms.
We use and refine their definitions for our experiments and
analysis.

1) Transaction Throughput: Deployment, execution, and
invoking of smart contracts in different blockchain systems
occur at different speeds. We need to monitor the transaction
throughput that is defined as a number of transactions per
second (TPS) and indicates the rate of committing valid
transactions by a fabric network in a defined period of time.
For HLF network with a single channel, we consider the
measurement at a single peer. However, we further extend our
experiments to multiple peers (up to 100) in our model and
experimental analysis. The formal mathematical description
of transaction throughput can be obtained from the following
formula:

TPSi =
Count (Tx in (ts , te))

t
e
− t

s

(transactions/s), (1)

where, Tx is the total number of submitted transactions, te is
the last block commit time, and ts is the initial transaction
submission time. The transaction throughput of N peers is
calculated by taking the average:

TPS =

∑
i TPSi

N
(transactions/s), (2)

2) Transaction Latency: When the transaction is sent to the
network, it takes some time to be confirmed by the system.
Therefore, there is a gap between submitting a transaction,
committed in a block, and being accepted by all peers.
Transaction latency is the amount of time taken from the point
the transaction is submitted to the point when the transaction
is confirmed and committed with the result being available
across the network. This metric is measured per transaction.
However, in most cases, the experiment provides various
statistics on overall transactions such as high, average, low,
and standard deviations. We check the transaction confirmation
at a single peer and multiple peers with various load levels
in our analysis. The computed end-to-end latency consists of
three components: endorsement latency, ordering latency, and
commit latency [39]. During a period started at ts and ended
at te, the transaction sent to the peer is shown by Txinput,
and Txconfrimed . It presents the confirmed transaction’s
transaction action. The average latency (AL) of the peer i can
be computed by the following equation:

ALi =

∑
Tx
(tTxconfirmed − tTxinput)

Count (Tx in (ts, te))
(transactions/s),

(3)
The latency of all smart contracts is calculated by taking

the average:

AL =

∑
i ALi

N
(transactions/s), (4)

3) Network Size and Scalability : The implemented HLF
network’s ability to support increasing the number of partic-
ipants is computed in this study. Network size indicates the
number of validating peers participating in consensus in the
System Under Test (SUT). Network size is presented to show
the total number of nodes actively participating in the HLF
blockchain network.

4) Block Size : Block size presents the number of transac-
tions per block, and it is described by three variables: the
maximum transaction count, absolute maximum byte, and
preferred maximum bytes. The transactions are batched as
a block. Our study further expands the analysis to include
multiple blocks (10 blocks and 50 blocks) in batches. It also
studies effects of different batch sizes on HLF systems.

C. Test Environment

The primary goal of our study is to benchmark the perfor-
mance of distributed HLF implemented on multiple machines.
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Fig. 4. Experimental setup and components for performance evaluation.

TABLE I
THE SYSTEM UNDER TEST PARAMETERS AND METRICS.

Parameters Values
Transactions 1 KV write (1-w) of size 20 bytes
Channels 1 Channel
World StateDB LevelDB
Peer Resources Up to 100 vCPU, 3.3 GHz, 10 GiB,

Low to Moderate Network Perfor-
mance

Block Size 30 transactions per block
Batch Timeout 1000 ms
Tx Sending Rate 5 – 500 (tps)
Number of Blocks 10, 50

Therefore, we conduct an in-depth study of HLF core compo-
nents and benchmark fabric performance for IoT applications.
The throughput and latency of the system under test are
computed by varying configuration parameters listed in section
IV-A and IV-B.

Figure 4 depicts the experimental setup model that was used
in all our experiments. A permissioned HLF network was set
up where with one organization that includes several peers in
each scenario. The ordering service is run on a separate node,
and a single channel was implemented. The ChainCode was
deployed on the channel to facilitate the assigned tasks.

Our setup deployed a private HLF blockchain network
in a controlled distributed environment. To achieve realistic
results, we deployed several Amazon AWS EC2 instances as
an underlying network of nodes. Their parameters are given in
Table I. Each instance runs on its Virtual Machine (VM). All
VMs belong to the same subnetwork to diminish the effect of
network latencies within the experiments. We conducted the
same investigation several times with different values of peers
and nodes. KV is stand for Key Value (KV) , representing a
value as a transaction to be sent to the blockchain network.

We deployed the Hyperledger Fabric (version 1.4)
blockchain framework to run the blockchain application. It
is an open-source permissioned blockchain platform designed
for enterprise applications. Virtual machine instances host Hy-
perledger Caliper [25], a benchmark tool to measure multiple
blockchain performance. The Caliper also runs on client and
monitoring instances to broadcast transactions on the HLF
channel. The network consisted of numerous peers (from 5

TABLE II
NETWORK NODES AND LOAD SIZES.

Parameters Values
Transactions Sending Rate 10, 20, 30, ...,100, . . . , 500

(tps)
Number of Peers 5, 10, 20, . . . , 100
Block Size 10, 50

peers per organization and up to the maximum of 100 peers)
that are run on scalable network infrastructure. The blockchain
components were deployed as a Docker container. Docker
Swarm was used to orchestrate and manage the containers
spread across the network of VMs. All nodes had the Ubuntu
18.04 LTS operating system.

We deploy the Hyperledger Caliper, as the standard open-
source benchmarking tool recommended by the Hyperledger
community. Further analysis on collected log files and data
have been conducted using Microsoft PowerBI [40] and
Origin Pro [41]. Besides, to monitor Hyperledger Fabric
Docker Containers, we used Prometheus & Grafana [42].

The Proof of Work (PoW) consensus shows its robustness
and, due to its pseudo-anonymous nature, it has been con-
sidered the most secure option for crypto currencies appli-
cations. However, in the enterprise ecosystems such as IoT
networks and telecom environments, they appear redundant
as the blockchain participants are already known to each
other. Therefore, permissioned blockchains are designed for
enterprise systems that use more straightforward and less
resource-consuming consensus protocols, such as Raft [39].
Hence, we consider implementing the Raft consensus protocol
in this study.

V. RESULTS AND DISCUSSIONS

This section presents the impact of various key metrics
parameters on the performance of the Fabric network. The
throughput and transaction latency shown here have resulted
from multiple benchmarking runs. The averages of various
runs also have been computed.

A. Impact of Transaction Sending Rate - Single Host

Figure 5 plots the average throughput for various block sizes
over different transaction sending rates in a single-host setup.
Figure 6 presents the average latency over the same transaction
sending rates. Table II lists the multiple parameters used in this
experiment including the transaction sending rate, block size,
and peers. Each experiment started with sending transactions
from 10 tps up to 500 tps.

The average latency remained below 1 second throughout
the experiments till it reached around 100 tps. The throughput
scaled linearly with the increase in the transaction sending rate,
and it flattened out at about 100 tps showing the highest usable
rate of the system. When the load was increased beyond the
peak point, the performance started to degrade. Additionally,
when the number of ordered transactions waiting in the
verification process queue by VSCC during the validation
phase increased, it significantly increased the commit latency.
Therefore, a validation phase can be considered as a bottleneck
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Fig. 5. Transactions sending rate vs throughput – single Host.

Fig. 6. Transactions sending rate vs latency- single Host.

in the blockchain system thus causing a significant delay.
However, the blockchain system depends on SUT hardware
capabilities. Besides, the increase in the number of involved
peers also increases the latency.

Hyperledger Fabric relies on Docker-based architecture,
and all the components of your hyperledger network run
in separate containers with no visibility of the neighboring
containers. To make them communicate, they create a network,
and each container attaches itself to it. It can be found in
the docker-compose-cli.yml. In a single host scenario, all
containers run on a single machine, while the multi-host
setup includes various nodes that start from 1 to 100, but the
measurements are done in few steps. By default, Compose sets
up a single network for your app.

Furthermore, during the experiments, we observed an in-
crease in the transaction sending rate, leading to a small
increase in average CPU utilization by about 10%. The CPU
was mainly used during the validation phase of a block by
VSCC. It was experimentally found that, for real applications
(such as IoT) to achieve lower transaction latency, we needed
to use smaller block sizes with low transaction rates. In
contrast, higher transaction rates needed larger block sizes to

Fig. 7. Transactions sending rate vs throughput for multiple host arrangement.

Fig. 8. Transactions sending rate vs latency for multiple host arrangement.

get higher throughput and lower transaction latency.

B. Impact of Transaction Sending Rate - Multiple Host

Participating entities run peers within the consortium. For
larger consortiums, each organization is considered a partner;
preferably, they would run at least one peer to contribute to the
network. To achieve the real-world production environment,
we deployed an overlay network of nodes and implemented
the peer nodes in a distributed system. In that setup, we
explored the effect on system performance when consortiums’
size was growing. The endorsement policy was configured to
help peers endorsing a transaction on a single channel setup
within the consortium and to include the transaction output on
the blockchain.

Each peer was installed separately in a VM hosted on
a commercial cloud provider infrastructure and contributed
to the HLF network. The experiment consisted of multiple
benchmark rounds with changing transaction sending rates
(from 10 tps to 500 tps). We generated various transactions
for each benchmark run and submitted them to the HLF
network to compute the maximum, average, and minimum
transaction latency, and transaction throughput. Besides, we
run the experiments with various block sizes in each section
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(10 Blocks and 50 Blocks). Figures 7 and 8 show the latency
and throughput measurements for all workloads.

Our observation can lead to a conclusion that for a lower
transaction rate of 100 tps, more involved peers yield a lower
throughput and incur higher latencies when the consortium
size increases. The results are also slightly different for various
block sizes, showing that changing the block from 10 to 50
results in higher latency and lower throughput. The throughput
increased linearly as it can be predicted with an increase in the
transaction sending rate until it flattened out at the saturation
point, as shown in Figure 8. The results indicate that an
increase in the number of peers leads to reaching a lower
transaction sending rate peak point. The results for latencies
were as predicted.

C. Impact of Endorsement Policy

The first experiments considered the ChainCode endorse-
ment policy where peers run on a single host and one peer from
the organization endorsed all transactions. Such a representa-
tion is for a basic ChainCode implementation between various
entities where the organizations have the same authority to
control the incoming requests. However, we analyzed the case
when the clients sent the transactions to a number of endorsers
with response coming from multiple endorsing peers. Hence,
we studied the impact of different endorsement policies on the
average latency and throughput with varying sending rates.
We configured the endorsement policy such that a single
peer from an organization endorsed the transactions. Then we
expanded the experiments by involving more peers endorsing
the transactions.

Figures 9 and 10 present the resulting throughput and
average latency measurements. The results show that both
cases have almost the same latency trend till they reach the
peak point. Beyond the peak point, the transaction latency
with a single host endorsement indicates a better performance.
The throughput increases linearly in all the cases, albeit
with different peak points for different configurations. The
throughput gets flatten after reaching the peak point, which is
not the same for different metric configurations and network
setups. The bottleneck can be seen as this version of HLF
does not utilize all available CPU cores within participating
peers to commit transactions in parallel. Therefore, with higher
sending rates, the throughput plateaus to the maximum value
that the system can offer.

D. Impact of Block Size - Multiple Host

The block size dictates the number of transactions batched
in a block at the Orderer and delivered to peers through
gossip protocol. The ordering service controls the creation of
blocks from the transactions using various parameters such as
BatchSize and Batch Timeout. The BatchTimeout indicates the
amount of the Orderer waiting time before creating a block
regardless of how many transactions are included. We analyzed
the effect of varying block size on the throughput and latency
with different transaction sending rates.

There is a slight increase in the latency for a block size
as the transaction sending rate increases closer to the peak

Fig. 9. Transactions sending rate vs throughput for various endorsement
policies.

Fig. 10. Transactions sending rate vs latency for various endorsement policies.

point. For smaller block sizes and higher sending rates, blocks
are generated faster before the block timeout. Therefore,
transaction waiting time decreases at the ordering service
node. The increase in the transaction sending rate means more
transactions in a block, and so the time taken by the validation
and commit phase is increased accordingly.

The results shown in figures 11 and 12 indicate that per-
formance optimization can be achieved with an increase in
block sizes. Therefore, the Orderer BatchSize can significantly
influence the system throughput. Besides, the results show that
smaller block numbers reduce the throughput. This metric
can be specified during the Orderer bootstrap and can be
dynamically altered based on various system applications and
the total system load. With the increase in the number of peers,
the larger block sizes show less impact on the throughput.
Additionally, having transactions with a smaller BatchSize
diminishes throughput as a greater number of blocks and block
events are required to be generated.

This fact suggests that when the transaction sending rate is
expected to be lower than the peak point, we need to use a
smaller block size to achieve a lower transaction latency for
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Fig. 11. Impact of block sizes on system throughput.

Fig. 12. Impact of block sizes on transactions latency.

applications. On the other hand, when the transaction sending
rate is predicted to be high, we need to employ a larger block
size to gain a higher throughput and a lower latency.

E. Impact of Network Size

In this experiment, we studied the impact of the network
size increasing and including more peers. Our investigations
included one organization and one Orderer service node.
All transactions were directed to the same Orderer for the
validation process. The number of channels remained the same
as in the previous experiments, and we run all ChainCodes on
one channel. The membership provider was responsible for the
permission of entities within the same organization. The main
goal was to study the effect of peer node number increase on
the total throughput and average latency.

We studied the average latency and throughput for network
sizes having from 5 to 100 peers. The endorsement policy
setting consisted of a single channel and single Orderer within
the consortium setup to perform endorsement of a transaction
to be stored on the blockchain. Figures 13 and 14 show the
throughput and average latencies for transactions with varying
send rates up to 2500 tps.

We observed that for a lower transaction rate below 100 tps,
an increase in the number of peers yielded a lower throughput

Fig. 13. Impact of network size on the system throughput.

Fig. 14. Impact of network size on transactions latency.

and higher latency when the network size increased. The
results slightly varied t for different block sizes, showing that
changing the block from 10 to 50 results in higher latency and
lower throughput.

F. Resource Consumption

In this part, we studied the various system resource con-
sumption, including CPU, Memory, Disk, and Network Traffic
I/O. Measurements of the blockchain system resource con-
sumption are crucial for blockchain users or managers by
providing them with an overview of the blockchain system
performance. Note that the major part of CPU resource
consumption is accrued during the execution of chain codes.
The amount of CPU consumption is mainly affected by the
business logic implemented in the contract. Complex contracts
including encryption and loops normally consume more CPU
resources. Besides committing the block, the hash of the world
state computation also consumes much of CPU resources.

Memory consumption occurs when the virtual machine or
docker loads the account data from the world state during
the contract execution and opens up some arrays. The hard
disk storage space is separated by the blockchain program for
storing data, including a world state. Therefore, it uses I/O
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resources when maintaining the blockchain operations such
as block committing and contract execution. Keeping every
peer in the same state within different blockchain systems is
supported by deploying a different consensus protocol. The
consensus protocol performs appending transactions in the
network and transfers the block data while consuming the
network flow. The experiment encompassed sending multiple
transaction batches to calculate the metrics mentioned above.
The results are presented in Figures 15-19.

Fig. 15. Peers average CPU usage.

Fig. 16. Peers average disk write usage.

Fig. 17. Peers average memory consumption.

Figure 15 depicts the average peer CPU utilization. With
the increase in the number of the network peers, more CPUs
are involved, and less load is imposed on individual CPU
in general This result in the decrease in an average CPU

Fig. 18. Peers average network traffic In.

Fig. 19. Peers average network traffic Out.

utilization. Additionally, the growth in batch sizes increases
the CPU usage until it flattens around the peak. The average
disk write consumption shown in Figure 16, indicating the
linear growths with both the number of peers and the batch
sizes. Figure 17 shows similar patterns of about average
memory utilization by peers in the network. However, the
figure indicates that the maximum batch size suitable for
the system is around 100 tps. The network In/Out traffic is
presented in Figures 18 and 19, respectively. The average In
traffic increases with the increase in the number of peers and
batch sizes. However, the Out traffic shows a higher growth
with increased batch sizes, with fewer peers involved in the
blockchain system.

G. Summary of Performance Analysis

For analysing the scalability and performance of the Fabric
platform in a distributed architecture, we evaluated the sce-
narios where there are multiple hosts in the network (from
5 hosts to 100 hosts).We conducted experiments of the same
configuration on a single host environment. The Fabric in-
troduced the multiple organization concept in Fabric v1.0.
Fabric v1.4 is applied to a multi-host network of cloud-based
instances and analyzed by measuring the system performance
metrics consisting of throughput, latency, network size, re-
source consumption, and endorsement policies. The results
are compared with single-host deployment. The single host
deployment shows better performance for most of the metrics,
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but this scenario is not applicable in production. However,
the performance of multi-host schemes can be increased with
multi-organization deployment in which each organization has
its dedicated Orderer.

For the single-host, the HLF platform can handle a maxi-
mum of 25000 transactions. However, as shown in the results,
the execution time is decreased when the number of trans-
actions is more than 100 transactions resulting in a decrease
in the throughput and the latency. Single host implementation
has higher throughput and lower latency compares to multiple
host deployment. For the multiple-host, regardless of the
number of peers in the network, the HLF network can handle
around 25000 transactions. However, the number of concurrent
transactions is limited and highly dependent on the number of
peers in the HLF network. The execution time is higher than
the single-host deployment, resulting in docker deployment
in the large scale network. The throughput is lower, and
the latency is higher compare to the single host deployment.
Fabric cannot instantiate more than 20 endorsing peers on
local machines in both scenarios and need to be instantiated
manually.

VI. CONCLUSION

This paper presented a detailed experimental performance
analysis for the scalable Hyperledger Fabric blockchain plat-
form in a distributed large network, with varying numbers of
nodes and workloads. We proposed a scalable framework for
precise and real-time monitoring of HLF systems. It offers
significantly lower overhead and more details about the various
HLF system metrics compared with previous approaches. We
conducted a comprehensive performance analysis and evalua-
tion of the well-known HLF blockchain systems with different
network configurations, network load levels, node numbers,
and batch sizes. The system performance evaluation is shown
in terms of throughput, latency, block size, network size,
endorsement policy, CPU usage, memory consumption, disk
write, In/Out traffic and scalability. The experimental results
indicate the feasibility of the proposed framework. However,
the throughput, latency, and scalability of a blockchain frame-
work depend on hardware configuration, blockchain network
design, and smart contact complexity operations.

The throughput of the system linearly increases below the
transaction rate of about 100 tps for single-host configuration,
and around 50 tps for multi-host. After the peak point, the
throughput degrades, and transaction latencies increase show-
ing that the system throughput is sensitive to the Orderer set-
ting. The results also indicate that the change in the number of
endorsements influences the performance metrics significantly.
The smaller number of endorsements results in better perfor-
mance. Unfortunately, this also brings security vulnerabilities
to the system due to weakening its anti-collision properties.
One of the main bottlenecks is how the committing peers
utilize multiple vCPUs presented in the system to do parallel
transactions that need to be optimized to improve the system
performance. The size of transactions significantly impacts
throughput and transaction latencies. The system scalability
demonstrates promising results. A more extensive network size

needs to consider the optimized number of endorsements per
ChainCode to a smaller subset of peers to achieve a better
performance.

Future work will consider implementing the updated version
of HLF and evaluating the use of real-time transactional data,
as well as exploring more test cases, such as analyzing the
impact of having multiple Orderers on the overall system
performance. Besides, other system configurations such as
multiple fabric organizations and the increase in the number
of endorsement peers may be further explored.
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IoT Big Data provenance scheme using 
blockchain on Hadoop ecosystem
Houshyar Honar Pajooh1*  , Mohammed A. Rashid1, Fakhrul Alam1,2 and Serge Demidenko1,2 

Introduction
Over the past decades, data generated by the massive implementation and use of the 
Internet of Things (IoT) have been growing exponentially. The global Big Data market 
size has been projected to grow from USD 138.9 billion in 2020 to USD 229.4 billion by 
2025 [1]. This unprecedented increase of data acquisition across many fields [2] (such 

Abstract 

The diversity and sheer increase in the number of connected Internet of Things (IoT) 
devices have brought significant concerns associated with storing and protecting a 
large volume of IoT data. Storage volume requirements and computational costs are 
continuously rising in the conventional cloud-centric IoT structures. Besides, depend-
encies of the centralized server solution impose significant trust issues and make it 
vulnerable to security risks. In this paper, a layer-based distributed data storage design 
and implementation of a blockchain-enabled large-scale IoT system are proposed. 
It has been developed to mitigate the above-mentioned challenges by using the 
Hyperledger Fabric (HLF) platform for distributed ledger solutions. The need for a 
centralized server and a third-party auditor was eliminated by leveraging HLF peers 
performing transaction verifications and records audits in a big data system with the 
help of blockchain technology. The HLF blockchain facilitates storing the lightweight 
verification tags on the blockchain ledger. In contrast, the actual metadata are stored 
in the off-chain big data system to reduce the communication overheads and enhance 
data integrity. Additionally, a prototype has been implemented on embedded hard-
ware showing the feasibility of deploying the proposed solution in IoT edge comput-
ing and big data ecosystems. Finally, experiments have been conducted to evaluate 
the performance of the proposed scheme in terms of its throughput, latency, com-
munication, and computation costs. The obtained results have indicated the feasibility 
of the proposed solution to retrieve and store the provenance of large-scale IoT data 
within the Big Data ecosystem using the HLF blockchain. The experimental results 
show the throughput of about 600 transactions, 500 ms average response time, about 
2–3% of the CPU consumption at the peer process and approximately 10–20% at the 
client node. The minimum latency remained below 1 s however, there is an increase 
in the maximum latency when the sending rate reached around 200 transactions per 
second (TPS).
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as healthcare, manufacturing, retail, logistics, transportation, etc.) allows for gain-
ing meaningful in-depth insights. The extraction of meaningful insights from Big Data 
(e.g., volume, velocity, and representation) require a robust structure to facilitate the 
data storage, analysis, and processing in a secure, distributed, and scalable manner [3]. 
Big Data Analytics is an emerging field dealing with processing and analyzing vast data 
volumes [4]. The tremendous increase of data volumes within the Big Data ecosystems 
requires a robust solution to ensure information integrity so the correct knowledge can 
be derived from the analysis.

Blockchain offers a promising architecture for distributed large data storage and pro-
tection. A group of nodes and users within a blockchain network works cooperatively 
to structure the public ledger that contains the validated and recorded transactions as 
blocks. The data in IoT applications can be stored in off-chain storage (Big Data sys-
tems) while the data pointer to the off-chain storage can be kept in the blockchain sys-
tem. When a data entity from the big data system is required, the blockchain accesses 
the specific data entity through a trusted environment. The user authentication is 
maintained by the distributed blockchain miners instead of a third-party auditor or a 
trusted centralized server. This study considers the decentralized storage for IoT data as 
off-chain Big Data system in a distributed manner while an entity can easily locate the 
address through the blockchain system. The third-party auditor and centralized trusted 
server are eliminated and the access to IoT data is managed by the blockchain nodes. 
The blockchain also manages the authentication of the users. The proposed work pro-
vides the accountability and tractability of IoT data where activities such as data modifi-
cation and data access can be recorded in the blockchain.

Various approaches have been put forward to implement blockchain in several real-
world applications. The Secured Map Reduce (SMR) is a security and privacy layer 
between HDFS and MR Layer (Map Reduce) introduced in [5]. The research work pro-
motes data sharing for knowledge mining and address the scalability issues of privacy. 
The state-of-the-art security and privacy challenges in big data as applied to healthcare 
industry is reviewed in [6], The research work explores the security and privacy issues of 
big healthcare data and discussed ways in which they may be addressed. A permissioned 
blockchain is deployed for Halal supply chain to maintain secure transactions where the 
proposed model considers the transaction speed and rate to transfer data in effective 
manner [7].

Big Data analytics operating on cloud-based systems has been exploited widely. It 
has become the technology norm in extracting data-driven knowledge. The existing 
sensor-based IoT ecosystems (formed from integrating cloud-based Big Data analyt-
ics and wireless technologies) span a broad range of applications such as smart homes, 
smart cities, smart healthcare, etc. However, practical integration of IoT and Big Data 
systems face many issues such as security and privacy, non-interoperability, scalabil-
ity, data traceability, and management. This hinders the true potential of such systems. 
Security concerns associated with data privacy, integrity, safety mechanisms, and quality 
could negatively affect Big Data systems applications [8]. The existing solutions fail to 
address the Big Data auditing challenges in cloud platforms efficiently. This could lead to 
security issues in computing-based Big Data storage. The multi-layer blockchain paves 
the way to address the privacy and security of IoT through a layer-based structure [9]. 
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Local authentication and authorization are deployed to ensure the security of small IoT 
devices. Hyperledger Fabric (HLF) blockchain platform is a feasible approach to address 
the security and privacy challenges of edge computing devices within the IoT ecosystem. 
It can also provide the data provenance for generating data from IoT devices within the 
HLF and off-chain storage [10]. The details of implementing a layer-based blockchain 
model in an IoT environment including mathematical modelling and assumptions are 
described in our previous works [9, 10] along with the implementation of lightweight 
authentication mechanism for constrained IoT devices within the blockchain platform.

The most critical challenges and issues associated with various Big Data applications 
and techniques are security and privacy, infrastructure scalability, data interpretation, 
intelligence, real-time data processing, and data management. Among them, security 
and privacy are considered to be the most important [11]. The verification and integrity 
of user data within an untrustworthy infrastructure provided by a cloud service provider 
(CSP) is another critical challenge. Big Data characteristics consisting of variety, volume, 
and veracity raise concerns about efficient Big Data security mechanisms [12]. The afore-
mentioned concerns and issues require investigating a robust mechanism that can verify 
the integrity of the outsourced data for Big Data storage in the cloud environment.

The majority of existing solutions incorporate third-party auditor (TPA) programs to 
maintain data integrity based on log files. This process increases the required storage size 
as well as communication and computation overheads. At the same time, it also brings 
many security concerns. Various solutions and practices have been explored to preserve 
data confidentiality and provide information security. In recent times the blockchain 
technology has received significant attention from many researchers as a promising 
solution to provide security and privacy in Big Data systems. The blockchain is defined 
as a number of nodes joined in a peer-to-peer manner maintained by the distributed 
ledger technology (DLT). The study [13] considers the blockchain to enable efficient data 
collection and secure data sharing in a reliable and safe industrial IoT environment. The 
integration of blockchain with edge computing servers facilitates the security of the data 
collection process from IoT devices and the integrity of collected data [14]. Blockchain 
provides a robust structure for efficient and secure data collection in mobile ad-hoc net-
works [15]. Besides, the blockchain framework ensures data immutability, non-repudi-
ation services, and network management capabilities. The decentralized architecture 
of the blockchain and its unique advantages make it a promising solution for securing 
big data services and protecting data privacy. Nonetheless, direct implementation of 
the blockchain technology on existing auditing systems is not practical [16]. The perfor-
mance of blockchain system is degraded with the increase of the volume of data stored 
in the ledger. Accordingly, the deployment of the centralized auditing program into the 
decentralized blockchain network is challenging.

IoT systems face challenges in performing various identity managementfunctions, 
maintenance of the trustworthiness of data, access control to data within the network, 
and detection of abnormal behaviours. Data provenance is a solution to tackle these 
challenges. It includes recording information about data operations, and data origins 
as well as analyzing the data history from their source to the current state. Blockchain 
offers a distributed data storage. It can be deployed to provide data provenance for vari-
ous applications by recording data operations from blockchain transactions. Embedding 
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the data provenance (enriched by blockchain technology) into Big Data applications 
enhances system security and privacy while ensures data availability. The blockchain-
enabled data provenance mechanism for Big Data applications in IoT systems guaran-
tees data verifiability and integrity. This is because the data operations are recorded in 
the form of the transaction by every block in the blockchain network. Different devices 
within the IoT edge cloud architecture impose various trust concerns on the systems. 
Hence, a provenance mechanism is applicable to record the origin of multiple sensor 
data to meet these concerns [17]. Nonetheless, the blockchain-based provenance system 
scalability can be enhanced by integrating the high capacity of Big Data systems such 
as the Hadoop Distributed File System (HDFS). Smart contracts combined with crypto-
graphic methods maintain the task automation within the blockchain network. The inte-
gration of smart contacts helps to build up a secure environment for the IoT Big Data 
applications through a comprehensive data provenance management system. This study 
aims to provide the data provenance, integrity, traceability, and accountability for a large 
volume of data generated by a very large number of IoT devices and stored in a secure 
and verifiable Big Data ecosystem.

Blockchain technology paves the way to provide security and privacy for large-scale 
IoT data storage as well as to enhance the decentralized storage application, eliminate 
the centralized trust server, facilitate data traceability and accountability. Although many 
research efforts attempted to address the security and privacy challenges of Big Data sys-
tems, the authors are not aware of any studies on the application of blockchain tech-
nology that would comprehensively address the data traceability and data provenance 
for Big Data systems on large-scale IoT environments. The main goal of this paper is 
to address the outlined research gaps by implementing the HLF blockchain framework 
to maintain data provenance and auditing on Big Data systems within the large-scale 
IoT network without third-party auditing interventions. HLF blockchain is deployed to 
enhance data security by implementing mutual authentication and overcoming commu-
nication and computation overheads. In summary, the main contributions of this work 
are as follows. 

1) HLF blockchain scheme is developed to provide secure data storage for Big Data
systems in a large-scale IoT network. The proposed model maintains data privacy
preservation, ensures a secure connection to a Big Data system through the HLF net-
work, and guarantees data collection security. The centralized trust server is elimi-
nated through implementing the HLF blockchain technology.

2) A two-layer security framework is proposed that involves HLF blockchain and a
Big Data system. Trusted entities are linked to HLF, and third-party auditing par-
ties are eliminated to reduce the compromised auditor’s risk. The network scalability
is enhanced by incorporating edge computing to maintain IoT data computation as
well as to collect and forward data to the blockchain and off-chain storage.

3) A model is proposed to store the lightweight verification checksums and data point-
ers in the blockchain ledger to reduce the communication and computation over-
heads. The HLF blockchain performs data provenance while the actual metadata are
stored in off-chain storage after being verified by the blockchain. Extensive experi-
ments were conducted through a prototype implementation on a Hadoop system to
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evaluate the performance of the proposed scheme in terms of throughput, response 
time, latency, communication, and computation cost.

The rest of the paper is organized as follows. "Background" introduces blockchain tech-
nology, security settings, Big Data systems, and the primary settings of the model. An 
overview of relevant state-of-the-art literature sources for the different data provenance 
solution approaches is presented in "Related works" section. In "System model and archi-
tecture" section, the proposed model is extended to protect large-scale IoT data storage. 
The system implementation is presented in "System implementation" section. Detailed 
model analysis and performance evaluations are presented in "Results and discussions" 
section. Finally, the findings are summarized in "Conclusion" section. along with outlin-
ing potential future research directions.

Background
Blockchain and Big Data systems are the two main components of the blockchain-ena-
bled IoT data provenance framework. Blockchain provides a security and privacy basis. 
It guarantees the authorization and authentication for data owners and users with spe-
cific access and allows them to perform data analysis. Meanwhile, blockchain records 
storing the lightweight verification tags on the blockchain ledger to maintain the verifi-
ability, integrity, and traceability of data are stored in off-chain storage. An overview of 
the technologies used in the framework is presented below.

Blockchain

Blockchain, as an open-source digital distributed ledger, is one of the most prevalent 
innovations broadly deployed in various areas [18]. Nodes within the distributed block-
chain network communicate in a peer-to-peer (P2P) manner while the need for a central-
ized authority is eliminated. Blocks are the list of records wherein stored information is 
encrypted. All transactions are cryptographically marked and verified by all other par-
ticipants holding replicas of the entire ledger and records. Thus, all records are immuta-
ble, tamperproof, synchronized, and cannot be changed when stored in the blockchain. 
Blockchain platforms can be categories into three types: private, public, and consortium. 
Public or permissionless blockchains such as Bitcoin and Ethereum [19] allow all enti-
ties to join the network without restrictions while anonymous participants can perform 
the verification process. On the contrary, participants are required to get permission to 
join the private blockchain or permissioned blockchain network while the blockchain is 
limited to the authorized participants belonging to an organization or group of organi-
zations. Only selected nodes within the blockchain consortium can perform the veri-
fication process (Hyperledger Fabric [20] and Ripple [21]). In consortium blockchains, 
a specific group of nodes has access to the public ledger. The blockchain architecture 
is partially decentralized. Here, the consensus process is maintained by all participants 
based on specific rules. The key features of blockchain are as follows. 

1) Immutable Blockchain (with its permanent and unalterable characteristics) provides
an immutable framework where each node has a copy of the ledger. Transactions are
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verified and validated by nodes before adding to the ledger. Participants are not able 
to make alterations to the data stored in the blockchain ledger.

2) Distributed The deployed standard protocols in blockchain facilitate orchestrat-
ing blocks build upon the group of transactions verified by participants based on a
predefined set of rules. Besides, blockchain can synchronize and distribute the data
among multiple networks.

3) Decentralized The architecture of blockchain eliminates the need for a central
authority. The governance is done by the group of nodes maintaining the ledger.
Network participants hold a copy of all transactions and record their replicated data
using private keys. Thus, the risk of single-point failure vulnerability is eliminated.

4) Consensual Data consistency within the blockchain framework is maintained by the
associated consensus algorithms, and the blockchain operation relies on that. The
consensus process decides to select a group of active nodes and remove the false and
corrupted transactions added to the ledger. Maintaining transaction data integrity is
achieved when all nodes agree by executing consensus algorithms.

5) Anonymous All users communicate in the blockchain network in a P2P fashion.
Users’ identities cannot be disclosed while the encoded transaction details are visible
to all participants.

6) Secure High degrees of security are provided by the immutable and decentralized
blockchain through deploying various cryptography techniques. Each set of data is
uniquely identified by implementing hash functions on information and robust fire-
wall algorithms to protect the framework against unauthorized access. The data are
tamperproof as each block in the ledger holds its associated hash information and
the previous block hash data.

7) Traceable The blockchain transactions are digitally signed and time-stamped thus
facilitating data traceability and auditability. Every block is permanently connected
to its previous block enabling the data owner to trace the data within the blockchain
framework.

Big Data systems

Big Data is a definition for large data sets that traditional data processing systems can-
not efficiently interpret, collect, process, and manage using conventional methods and 
mechanisms. Big Data typically have the 4-V attributes, consisting of volume, velocity, 
variety, and veracity [22]. Many challenges are associated with data volume processing, 
such as modularity, imbalance, dimensionality, data nonlinearity, bias and variance, and 
computing availability. Variety indicates the collected data types, which are naturally 
heterogeneous and involved structured data, unstructured data, multi-structured data, 
and semi-structured data. The velocity presents the data generation speed while the 
veracity indicates the quality of data generated from various sources.

Big Data analytical systems facilitate knowledge extraction from multiple datasets for 
various purposes. The extracted information can be used in many applications, including 
smart cities, smart grids, e-health, logistics, transportations, mobile and wireless com-
munications. The most popular data analytics frameworks in the industry are Hadoop 
[23, 24], MongoDB [25], Spark [26], and Strom [27].
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Hadoop ecosystem

Hadoop is a framework to manage an orchestration of a cluster of computers with dis-
tributed processing based on the MapReduce programming model. Two main compo-
nents of the Hadoop system are MapReduce (for parallel and distributed processing) and 
Hadoop Distributed File System (HDFS) (as storage of data in a distributed file system). 
Nodes within the Hadoop architecture are classified into Master and Slave ones. The 
master node performs the data collection and maps them to the respective slave nodes. 
The slave nodes maintain read/write operations in the file system and carry out the block 
creation, block deletion, and replication based on the name node rules. The master node 
then records all the operation results. The final results are formed by combining the sub 
results. The MapReduce determines the master nod as a job tracker and the slave nodes 
as task trackers. Therefore, the job scheduling, subtask distribution, and fault tolerance 
associated functions take place in the master node.

HDFS helps to address the storage challenges of Big Data sets by distributing the 
enormous volume of data among various computing resources and machines called the 
Hadoop cluster. The main components of the HDFS architecture are the Name Node 
(referred to as a master node), the Data Nodes (slave nodes), and the Secondary Name 
Node (the name node backup). The HDFS distributed system architecture is illustrated 
in Fig. 1.

MapReduce programming framework is implemented within the Hadoop system 
to perform the Big Data processing. The framework maintains the processing of large 
data sets in a parallel and distributed manner across the Hadoop cluster architecture. 
Map phase and Reduce phase are the two distinct tasks of the MapReduce process. The 
data process is happening in all machines with the Hadoop cluster. It is known as the 
Map phase. Combining the outcomes and forming the final results are referred to as 
the Reduce phase. MapReduce is one of the core pieces of Hadoop that performs big 
data analytics along with HDFS and Yet Another Resource Negotiator (YARN). YARN is 
a technology sitting under the hood to manage all the resources of the cluster and to 

Fig. 1  The HDFS system architecture
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assign computational resources for application execution. NodeManager, AppManager, 
and Container are the components of YARN. Figure 2 presents the detailed operations 
and system structure of MapReduce.

Related works
Data provenance and data integrity have been considered as critical elements of the 
security requirements for big data analytics in IoT-based solutions. They enable users to 
check the integrity of stored data in outsourced storage. Data provenance enhanced with 
blockchain technology is a promising solution to provide the trustworthiness of stored 
data through immutable and tamperproof information about the data origin and history 
of data records.

Blockchain‑based data provenance in IoT

AgriBlockIoT [28] is a fully decentralized blockchain-based model to maintain the data 
traceability for Agri-Food supply chains. The mechanism provides immutable, fault-
tolerance, and auditable records of the whole supply chain system from production to 
consumption. The history of the purchased product is recorded in the blockchain system 
thus enabling effective data retrieval for consumers. The proposed system collects data 
provenance including the data origins and operations performed on the data. The trust 
concerns coming from various IoT edge devices in cloud infrastructure are addressed by 
a provenance mechanism to record sensor data and origins of the related entities [17]. 
The provenance system structure is based on a combination of IoT edge devices organ-
ized with a blockchain network. Blockchain transactions are used to record all actions 
within the ledger with data provenance. Physical Unclonable Functions (PUFs) are uti-
lized in BlockPro [29] to facilitate the data provenance and data integrity to achieve 
secure IoT environments with the help of the Ethereum blockchain and smart contracts. 

Fig. 2  System structure nd operation flow of MapReduce
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PUFs produce unique hardware fingerprints for each device and deploy them to find 
data provenance and identify the data source.

A distributed database based on the blockchain was designed to guarantee data veri-
fiability and integrity called ProvChain [30]. The Ethereum blockchain and two smart 
contracts are applied to maintain a decentralized digital ledger to ensure data integrity 
and prevent data tampering attacks. Data operations are stored in the local ledger while 
the blockchain records the provenance entry. The provenance retrieval from the block-
chain network is maintained by a Provenance Auditor (PA) that keeps the local database. 
Research [31] reports an extensible and secure IoT data provenance framework based 
on a layered architecture consisting of smart contracts and Etherum blockchain imple-
mented for a wide range of IoT applications. Shreya Khatal et  al. [32] propose decen-
tralized storage called Fileshare for file sharing within the secure environment based on 
blockchain to ensure the integrity and ownership of shared files. The introduced Decen-
tralized Application (DApp) is built upon the Ethereum blockchain framework while 
smart contracts utilize a distributed file system in the data layer.

Blockchain‑based data verification

Blockchain technology has recently attracted many researchers in various fields, includ-
ing cloud data storage and data integrity, application of edge and fog computations, 
provenance, etc. [33]. The foundation of cloud storage systems is formed based on data 
storage. The challenges of storing cloud data securely are being investigated in [34, 35] 
and addressed by deploying blockchain techniques. Restructuring the history of data 
associated with each data operation or scientific result is a critical data provenance ele-
ment. Nonetheless, it facilitates data management more efficiently in different appli-
cations such as scientific data and high-quality web data management. Works [36, 37] 
investigate embedding the data provenance mechanism into blockchain transactions to 
address the collection and verification issues.

Computing services with low latency and higher bandwidth are in place by applying 
the new edge and fog computing techniques with shared resources. Edge and fog com-
puting security can be further enhanced by integrating the emerging blockchain tech-
nology to establish a trusted decentralized environment. Blockchain technology has 
been considered to ensure the privacy-preserving for applications on edge platforms. 
Besides, data storage and resource allocation applications are deployed using blockchain 
at the edge and fog computing level while the architectural security is further improved 
[38–41]. Although the existing works attempt to enhance the data provenance mecha-
nisms and edge computing applications by replacing some functionalities with block-
chain technology, they still rely on centralized entities with significant limitations and 
additional overheads generated from deploying the centralized entities.

Research [42] proposes a framework for data integrity based on a blockchain for peer-
to-peer (P2P) cloud storage. Data integrity verification is deployed using rational sam-
pling approaches to establish sampling verification effectively. A fixed third-party auditor 
is deployed to perform the integrity verification of operation logs based on blockchain 
in the cloud [43]. This method brings third-party auditor security drawbacks into the 
system while the computing and communication overhead being quite considerable. A 
certificate-less public verification scheme against procrastinating auditors with the aid 
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of blockchain technology is proposed in [44]. The main idea is based on recording each 
verification by auditors in the form of blockchain transactions. Moreover, certificate-less 
cryptography is deployed in the scheme to overcome certificate management issues.

Implementing blockchain in a distributed large scale IoT environment with Big data 
storage providing the protection is a challenging task. The most significant issue is pro-
viding a light-weight authentication mechanism to manage the identities of users and 
IoT devices through a blockchain system. Most of the research works consider authen-
tication and other security primitives in a centralized server. Besides, providing a secure 
channel where data provenance and accountability can be maintained without inter-
vention from third party and trusted central server is a major limitation of the previous 
works. In our work, we take advantage of light-weight authentication model to achieve 
effective and efficient authentications for the users and IoT identities. The works sited 
in the literature review suffer from scalability problem that has been addressed in our 
proposed scheme with multi-layer blockchain approach extending to Hadoop database 
as off-chain storage of the underlying database. Hadoop is a distributed and scalable Big 
Data storage and supports random, real-time read/write access to Big Data. Further-
more, the majority of the previous studies consider the Cloud-IoT environment in which 
a large number of users and devices share data through the cloud computing infrastruc-
ture. However, the cloud can not provide a scalable platform and suffers from a lack of 
supporting a vast number of users. Therefore, the existing research works are limited 
to a certain number of devices and users. These challenges have been addressed in our 
proposed framework. In addition, our work considers processing massive data in IoT 
devices through lightweight algorithms to overcome the limitation of energy efficiency 
and processing performance of the current approaches.

System model and architecture
Blockchain technology and Big Data integration have been considered as potential solu-
tions to address large-scale real-world problems. The exponential growth in the gener-
ated data presents its own security and privacy challenges and issues associated with 
data sources reliability and data sharing. The challenges of the Big Data ecosystem can 
be answered using unique features of blockchain technology such as decentralized stor-
age, transparency, immutability, and consensus mechanisms. The integration of them 
can further enhance Big Data security and privacy, improve data integrity, provide fraud 
prevention, facilitate real-time data analytics, expand data sharing, enhance data quality, 
and streamline data access.

This work aims to develop a blockchain-enabled public data provenance and audit-
ing model in the Big Data ecosystem (Hadoop ecosystem) to provide a more efficient 
and secure framework than the reported solutions. Blockchain offers a decentralized 
database that records the history of all transactions appended to the shared ledger and 
enhances data traceability. The information inside the Big Data ecosystem in many 
applications is shared with multiple workers and writers, while most of them may be 
non-trusting participants. Blockchain as a resilient framework is a feasible solution to 
eliminate a third-party intermediary, provide automated interactions among multiple 
transactions in the shared database, and enhance auditability. To achieve the goal of the 
research, a distributed provenance tracking architecture is designed while deploying an 
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application built on top of the HLF and Hadoop ecosystem. The proposed data prove-
nance model aims to identify the way the data was derived and to provide data confiden-
tiality, integrity, and availability. The HLF permissioned blockchain having registered 
members offers the above-required functionalities.

The blockchain‑based high‑level scheme

The architecture of the system includes three layers: a blockchain layer, a Big Data sys-
tem (off-chain storage) layer, and an authentication provider layer. The first component 
is the HLF network implemented and running in Docker containers [45] and associated 
client libraries for multiple interactions with the HLF. The second component is the Big 
Data system (Hadoop ecosystem, in this case) operating as off-chain storage. The com-
munication with other parts of the system is managed through a client library to ini-
tiate and perform multiple tasks and operations. The proposed model aims to provide 
seamless records of provenance data in a tamperproof and immutable blockchain ledger, 
ensuring data storage and access to a pluggable Big Data storage service. HLF blockchain 
framework is deployed to record all provenance data entries. Multiple data operations 
can be stored within each block in the system. Data operations, as well as invoke and 
data querying, are recorded in the blockchain ledger. The identity of devices needs to 
be registered and stored in the shared ledger before running the HLF blockchain. Each 
gateway collects data from connected devices and sends them to a higher level for veri-
fication and storage. The registration request is sent to the gateways (IoT applications to 
edge IoT nodes). It includes the required information such as device ID, gateway iden-
tity, and timestamp. The gateway runs the ChainCode (smart contract) in the local block-
chain to perform the device registration. The mutual authentication model is designed 
and implemented to provide the device’s authentication before joining the network to 
ensure a secure and trusted environment. Secure communications between entities can 
be then established through the implemented blockchain network.

Figure  3 demonstrates the blockchain-based data provenance system model. It veri-
fies data integrity by finding the location of the data item and associated checksum. The 
lineage of data for new items is accessible via storing the references to the data items 
deployed to create it. Data operations are recorded to have good visibility on the time 
and the clients who stored the data items or manipulated the data object. The records 
are maintained based on the certificate ID used to invoke the transaction. Such a design 
provides a data provenance framework based on the HLF blockchain offering data secu-
rity, privacy, and auditability for Big Data systems.

Hyperledger framework

Multiple HLF processes are orchestrated and configured to be run on different nodes 
using Docker containers. Nodes in the HLF network run a peer process and maintain 
the shared ledger through various transaction proposals. The client library initiates 
the transaction proposal using the HLF software development kit functions, which 
are cryptographically signed with a certificate generated by the Certificate Author-
ity (CA). The critical element in the HLF framework is the peer process. It holds a 
replica of the shared ledger by running the ChainCode. Running more peers helps 
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to achieve higher performance. At the same time, one peer per organization is suffi-
cient to run the HLF network. The ordering service handles the block ordering (based 
on deterministic consensus protocol) and validates the blocks that peer processes 
have proposed. The single-orderer architecture is considered in the reported model 
using the built-in HLF RAFT consensus algorithm. Figure  3 presents the proposed 

Fig. 3  Proposed blockchain-enabled secure big data provenance scheme for large-scale IoT
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blockchain-enabled secure Big Data provenance scheme for a large-scale IoT, includ-
ing the HLF framework components.

Hadoop data storage

The distributed shared ledger implemented through the HLF blockchain has limitations 
in terms of data storage. The HLF performance degrades with the growth in the ledger’s 
size resulting from increasing the blockchain platform’s shared ledger. The proposed 
model stores the provenance of data in the shared ledger (a small portion of the meta-
data). The actual metadata is placed in the Hadoop ecosystem to tackle the issues men-
tioned earlier. In this way, the data is stored in the off-chain storage. The data checksums 
are computed to perform the data verification and integrity checks. Hence, the HLF 
blockchain can verify stored data integrity by comparing the immutable recorded infor-
mation in the shared ledger with the checksum of stored data in the Hadoop system. A 
ChainCode is developed to facilitate these operations running in each peer node within 
the HLF network. The built-in client library sends the data checksum and provenance 
data. The file-store operators are not needed and thus are eliminated. A flexible distrib-
uted Hadoop ecosystem is introduced as a pluggable storage solution to accommodate 
secure and verified data. The client facilitates the data invocation process by putting the 
data in the Hadoop storage and sending information to the blockchain for verification. 
The data query operations initiate the ledger side to acquire the location and address. 
Then the data is retrieved from the Hadoop storage.

ChainCode

The ChainCode runs on the peer nodes, maintains the data query, and appends data on 
the information stored in the shared ledger. It is the main component in the model with 
several functionalities to automate the tasks within the blockchain platform. All peer 
nodes have access to the functionalities implemented in the ChainCode. Storing and 
retrieving data from the shared ledger are automated by the ChainCode. The proposed 
design considers storing checksums of all data objects, data addresses and locations, 
information about workers who stored the data, information on creating an object, data 
lineage, timestamp, certificate ID, and additional fields that can be customized for vari-
ous data structures (e.g., JSON structure). The process starts with the ChainCode func-
tions (invoked as parameters associated with the data) to begin storing data in the HLF 
ledger. A specific function is designed in the ChainCode to perform the data retrieving 
functionalities. The data can be queried based on the data items assigned to a particular 
stored key and the data iterations. The query of data collections is provided through var-
ious query definitions within the ChainCode, either by key range or the iteration history.

Client library

The client library is developed and built using the Software Development Kit (SDK) [46] 
to interact with the HLF blockchain platform for data verification and provenance oper-
ations. The client library is a core element operating as a middleware for all other appli-
cations that need to interact with blockchain and store data or record the provenance 
data. The client application communicates with both blockchain and Hadoop systems 
for various operations as different distributed workers. It can be integrated into the peer 
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node or work as a separate node within the HLF blockchain system. Several client nodes 
with their associated client applications can run the HLF blockchain as an overlay net-
work in the background and perform various tasks relevant to Big Data analytics. The 
client applications control the fraction of data stored in the HLF shared ledger and the 
metadata that need to be stored in the Big Data system.

Edge computing

The edge computing device is a central node to implement the blockchain-based IoT 
Big Data storage scheme. It offloads the tasks from small IoT devices and maintains sig-
nificant energy savings. Besides, it performs the associated computations, manages data 
storage, and relays transactions and messages for IoT devices. The edge computing node 
contains the IoT device identification and authentication information. It stores the iden-
tification information of all interconnected IoT devices and provides a pair of keys for 
each device to perform the authentication through implementing a lightweight mutual 
authentication protocol.

The authentication procedure is shown in Fig. 4 for each IoT device to the edge com-
puting server. The generated messages and transactions by IoT devices are managed and 
created by the IoT edge node. The HLF blockchain framework runs on the edge com-
puting nodes, and the edge server conducts signing valid transactions, including the 
IoT device signature. The sensitive data are then verified to be ready for storage in the 
Hadoop ecosystem while the data checksums and related operation tags are stored in 
the HLF blockchain. The edge servers collect all verified and trusted data and send them 
to the Hadoop distributed file system. The collection of data from interconnected IoT 

Fig. 4  Local mutual authentication procedure at IoT edge computing [10]
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devices is a continuous process. The locations and addresses of the stored data are deter-
mined in the HLF blockchain for further verification and traceability operations. The 
details of the authentication and authorization process and the procedures to implement 
it within the layer-based structure are fully covered in the earlier research [10].

System implementation
The interaction with the ledger in HLF is possible through executing the defined Chain-
Code. The ChainCode is responsible for storing the data provenance and handling 
various data queries. Hence, the system implementation starts with defining specific 
ChainCode operations consisting of storing data provenance, querying the lineage 
of data, and retrieving data lineage. The IoT applications require a lightweight Chain-
Code to be implemented on endorsing peers to address the limitation of IoT devices 
in terms of their communication capacity, storage, and processing power.The access of 
the ChainCode to external resources is limited to ensure that the ChainCode can pro-
vide the same results for all endorsers. The ChainCode is designed to support different 
operations associated with data provenance and traceability of data within the ledger 
and the attached off-chain storage. The ChainCode specific operations in the proposed 
system include storing the data provenance related to an item, querying item check-
sums, retrieving an object with the associated transaction ID, extracting the version of 
an object based on its transaction ID, retrieving the lineage of the data item, retrieving 
the history of a data objects, querying the key-range of the list of items, retrieving the 
provenance information, and providing a specific version of an object and the related 
transaction ID. The main implementation concern is to make the ChainCode lightweight 
that can address the limitations of IoT devices and allocate a significant part of function-
alities to the client applications. The implemented system consists of distributed peer 
nodes that are at the centre of communications between network elements and the off-
chain storage (Big Data ecosystem).

The performance of the proposed model was evaluated for the system throughput, 
response time, latency, and resource consumption (memory, CPU, network) metrics. 
The evaluation was further expanded to cover the scalability of the distributed large-
scale IoT network environment. The measurements were conducted by implementing 
a benchmark application on top of the node package manager (NPM) libraries run on 
the client node. Besides, various Linux-based tools and utilities were deployed to moni-
tor the system’s performance. To emulate a large number of IoT devices, the custom-
ized Locust [47] was deployed on an independent server interconnected with the edge 
computing devices in the same LAN. The experiments were conducted by emulating 
100–2000 IoT devices connected directly to the edge IoT servers to send messages and 
transactions. A maximum number of 500 IoT devices was considered to be managed by 
each edge device. The edge server stored the identification of all connected IoT devices 
and authenticated them within a trusted HLF environment by implementing a mutual 
authentication scheme described in "Edge computing" section.

The performance analysis was carried out for the proposed model for various work-
loads and environment parameters. Moreover, a diverse set of interaction perfor-
mances was observed to explore the improvement or degradation caused by different 
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parameters and configurations of the model. Several benchmarking applications build 
on NPM libraries run on client nodes were employed to perform the benchmarking 
processes.

Often, stakeholders need to find out which benchmarking model is suitable for 
their applications and particular use cases since different methods differ in terms 
of involved parameters and phases. To address this challenge, the HLF performance 
guidelines and HLF performance metrics documented in the Hyperledger Perfor-
mance and Scale Working Group white paper [48] were considered to conduct the 
benchmarking of HLF V1.4. Real-time data reporting was deployed and statistic data 
on resource utilization were collected and monitored.

Experiment setup

The setup of the developed system prototype consists of five units of ARM-based 
Raspberry Pi (RPi) 4B, a client-server, and a Hadoop system as off-chain storage. 
The hardware and software specifications of RPis are summarized in Table  1. The 
RPis, client-server, and Big Data ecosystems were interconnected within the same 
LAN. The peer docker containers run on each RPi, and one node was assigned as the 
orderer node. Unofficial docker images of HLF version 1.4 were modified and estab-
lished on each RPi device. The docker images were compiled to suit the ARM64 archi-
tecture of the RPi. Performance measurements were conducted by a client desktop 
computer using a client application build on the NPM libraries. The client applica-
tion was developed using HLF node SDK. The ordering type (using the solo type of 
order in HLF) indicated that the consensus was achievable by a single ordering node 
implementing a sorting algorithm. New block generation was done based on specific 
parameters that have been defined in the client application.

The Hadoop cluster was configured with one master node and five slave nodes. The 
cluster was equipped with 48 CPU core and 35 TB local storage. The details of the 
Hadoop cluster configuration and associated software are presented in Table 2. The 
cluster had dedicated switches. It worked in the same networking structure. The same 
as mentioned in "Blockchain-based data verification" section, Yarn maintained the 
resource management. It facilitated resource monitoring for active nodes including 
the job details and correspondent histories. The HDFS was configured in the master 
node (name node), secondary name node, and five worker nodes (data nodes). Fig-
ure 3 shows the proposed model and the system under test architecture used for the 
performance measurements.

Table 1  Raspberry hardware specifications

Type of device CPU cores Memory

Raspberry Pi Computer Model B Broadcom BCM2711
Quad-core Cortex-A72 (ARM v8)
64-bit SoC @ 1.5GHz

4GB LPDDR4

Client node Intel (R) core(TM) i-7-6700
CPU @3.4 GHz

8 GB
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Results and discussions
This section presents the results attained after implementing the proposed model and 
sending various batch sizes and workloads to evaluate the performance of the entire 
architecture. We have assessed the performance of the proposed model by measur-
ing multiple parameters consisting of the system throughput, response time, latency, 
and resource consumption (memory, CPU, network) metrics. Each measurement was 
conducted with some repeats, and the average obtained results were plotted in each 
graph.

Throughput and response time measurements

The benchmark application was developed on top of the client library to generate trans-
action batches to the network. A timer was associated with each transaction. In addition, 
the timer was allocated for every set of transactions. The benchmark application calcu-
lated the response time of a transaction and the total average time while considering the 
number of successful and failed transactions for various data set and batch sizes. The 
benchmark application was powered with the ability to store the data in the HLF ledger 
or the Hadoop system. The performance evaluation was initiated by several transactions 
submitted together. The results indicated that the throughputs and response times were 
affected by the size of the data. However, the impact was not significant if the data prov-
enance and the transaction tags were only stored in the blockchain ledger. As stated ear-
lier, the provenance of data was stored in the blockchain ledger, and the actual metadata 
were placed in the Hadoop ecosystem off-chain storage.

The performance was affected when the Hadoop system was involved in storing the 
metadata (since the client application needed to consider the time for calculation of data 
checksums, operation tags, and the time to store the data in the Hadoop system). Fig-
ure 5 illustrates a degradation in the performance with the growth in the bath sizes.

Table 2  Hadoop cluster experimental setup and specifications

Node configuration Hardware Specifications

Server configuration Processor 2.9 GHz

Main memory 64 GB

Local storage 10 TB

Node configuration CPU Intel� Xenon�
CPU E3-1231 v3@ 3.40 GHz

Main memory 32 GB

Number of nodes 5

Local storage 6 TB each, 30 TB Total

CPU cores 8 each, 40 total

Software Operating System Ubuntu 16.04.2
(GNU/Linux 4.13.0-37-generic x86 64)

JDK 1.7.0

Hadoop 2.4.0

Spark 2.1.0

Workload Varying data sizes and batch 
sizes

Submitted by the HLF client application
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The obtained results (600 transactions per minute and 500 ms average response 
time) can be considered as very promising according to the HLF performance guide-
lines and HLF performance metrics documented in the Hyperledger Performance and 
Scale Working Group white paper [48]. One of the main limitations came from the cli-
ent node’s hardware capabilities and the peer process hardware constraints. The HLF 
employed the Execute-Order-Validate and Commit transaction model. Therefore, 
the system needed to perform the required operations for each data object, resulting 
in degradation in the throughput and increased response time. Besides, the system 
needed to consider the time for storing the data provenance in the HLF ledger, calcu-
lating the checksum of data objects, and storing the metadata in the Hadoop system.

To address the challenge,the network was made to include multiple clients. More 
endorsers were required to improve the overall throughput and response time perfor-
mance. With the small number of transactions, the throughput was slightly lower, while 
the increase in the number of transactions led to some rise in the throughput. At the 
same time, it could be noted that the throughput was approximately constant for a cer-
tain number of transactions.

The latency measurements were done by running multiple rounds of the benchmark to 
submit various transactions with different sending rates(from 10 Transactions-per-Sec-
ond (TPS) to 500 TPS) for different block sizes. The goal was to measure the maximum, 
average, and minimum transaction latency.

The results indicate that during the experiments, the minimum latency remained 
below 1 s. However, there was an increase in the maximum latency when the sending 
rate reached around 200 TPS. This was due to the rise in the number of ordered transac-
tions waiting in the verification process queue during the validation phase that signifi-
cantly increased the commit latency.

Since the system setup deployed a solo-orderer configuration, other orderer types 
needed to be employed along with different configurations. Consequently, the valida-
tion phase was considered as being a bottleneck in the overall system performance. 

Fig. 5  Throughput and response time for various batch sizes
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Hence, there was a need to deploy a smaller block size with a low transaction rate for 
IoT applications to have lower transaction latency. In contrast, higher transaction rates 
needed larger block sizes to achieve higher throughput and lower transaction latency 
(the results of latency measurements for various block and batch sizes are presented in 
Figs. 6 and 7). It happened mainly due to the increasing waiting time for transactions in 
the ordering services.

A potential optimization solution to overcome this drawback is to process transactions 
in parallel with sharding. However, the effect of transaction conflicts needs to be consid-
ered. Besides, in order to achieve lower transaction latency, it is recommended to use a 

Fig. 6  Latency vs. transaction sending rate (5 Peers 10 Blocks)

Fig. 7  Latency vs. transaction sending rate (5 Peers 50 Blocks)
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lower block size (along with a lower arrival transaction rate) than the default block size. 
Hence, with a higher transaction arrival rate than, a higher (than the default value) block 
size is recommended.

Large scale IoT environment evaluations

The data collected from massive IoT devices were managed by Edge computing and 
IoT gateways as a middleware between the IoT sensors and Big Data systems as well as 
application services. The data provenance tracking was maintained to ensure the qual-
ity of shared data. The process consisted of the identity, validity, and lineage of data. 
Hence, edge devices could save energy for small sensors by offloading work, improving 
the bandwidth, and decreasing the latency. The edge devices performed preprocessing 
tasks and compression, resulting in significant energy saving for IoT devices. The traf-
fic evaluations demonstrated a constant range between 20 KB/s and 30 KB/s in the idle 
state when there were no transactions between peer nodes and 100 KB/s during maxi-
mum load where the maximum amount of transactions were exchanged. The increase in 
the number of the orderer and endorser peers could improve the performance through 
the gossip protocol configuration. However, the results indicate that the proposed prov-
enance model was promising for application in large-scale IoT networks with many 
trusted IoT sensors and devices. The generated ChainCode queries were able to retrieve 
10 linked IoT records in 104 ms.

To further explore the system’s performance in a large-scale IoT environment, a set of 
experiments were conducted with varying numbers of IoT devices connected to each 
edge device. By implementing a large-scale IoT environment, the impact of CPU uti-
lization and throughput on the system were explored. The experimental environments 
included from 100 to 2000 IoT devices distributed equally between IoT gateways (RPi). 
All devices needed to be authorized before initiating communication with the network 
and other participants. The procedure of mutual authentication is described in "Edge 
computing" section. The increase in the number of IoT devices caused growth in the 
processing time. That was addressed by modifying the HLF configurations and adding 
more orderers and endorsers based on specific applications.

The system throughput and CPU utilization are illustrated in Figs. 8 and 9. Figure 8 
shows a linear growth in the system throughput until it reaches the maximum load 
(around 1000 IoT devices). It can be seen as a result of gradually increased resource 
allocation by the system until all resources were fully utilized. As depicted in Fig.  9, 
the CPU utilization was increased, reflecting higher resource utilization by the system. 
After the peak point, the throughput stabilized. The CPU was mainly used during the 
validation phase of a generated block. Therefore, modifying the configuration of HLF in 
terms of the batch timeout, maximum message count, and block size can result in better 
performance.

Data provenance and tracking resource consumption

To further evaluate the performance of the proposed system, the federated machine 
learning technique [49] was considered for application across the distributed set of net-
work participants while providing a collection of models, training, and test data sets. 
The framework was implemented in a way that facilitated data provenance and metadata 
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tracking. The ImageAI [50] library was implemented. Training and data sets were pro-
vided in the framework. The process was initiated with storing the model. It included 
the following steps: data checksum computation, storing the metadata in a big data sys-
tem, and maintaining the transactions by the client application library through the HLF 
blockchain to record the data checksum and files locations. Storing 100 models of 100 
MB (the models were created using the ImageAI library) was successfully performed in 
around 2.3 s.

The resource consumption measurements results are presented in Figs.  10  and 11. 
The results show that the CPU consumption was slightly (2–3%) affected in the peer 
process during the model storage. The client application consumed more CPU capac-
ity—approximately 10 to 20%. The reason for that can be found in the range of opera-
tions that needed to be handled by the client applications: computing data checksums, 

Fig. 8  Large scale IoT system throughput of edge gateways

Fig. 9  IoT gateway and peer node CPU utilization

CHAPTER 6. IOT BIG DATA PROVENANCE SCHEME

138



storing the metadata in the Big Data system as well as storing information within the 
HLF blockchain. It indicates that this network model can easily be deployed on low-cost 
IoT devices (e.g., RPi) for real-world applications. 

The client application profiling can reveal more details of the CPU consumption. Fig-
ure 12 indicates that the majority of CPU consumption by the client process was due to 
checksum computation and data storing in the big data system. Storing the HLF block-
chain information by the client process and garbage collection occupied a small amount 
(some 6% and 7%, correspondingly). As mentioned in "System model and architecture" 
section, the client application needed to follow the sequential operations resulting in 
more CPU consumption. These limitations can be addressed by implementing the calcu-
lation of checksum in parallelized manner.

Fig. 10  Peer process CPU and memory utilization

Fig. 11  Client application CPU and memory usage
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The network traffic measurements were conducted to explore the network overhead 
impact by storing the models generated by ImageAI every 2.3 s (this was for stor-
ing 100 models of 100 MB). The proposed provenance data framework was able to 
store the data provenance information, including data checksum, the data location, 
operation tags, data owner information, and some other optional parameters about 
the batch size. The system also provided the history of data models, tracked training 
datasets, and tested dataset provenance. Therefore, the lineage of successful transac-
tions could be traced, and the model could be verified through the system. The pre-
vious measurements (associated with the utilisation of CPU, memory, and profiling) 
indicate that the system limitations were mainly due to the size of the file, checksum 
calculation, and network transfer. Figure 13 shows a low overhead for storing 100 MB 
data objects. Storing large files could be considered as a limitation that impacts the 

Fig. 12  Client application profiling

Fig. 13  Network utilization for peer process with 100 models of 100 MBs
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network traffics. Hence, in such cases, the optimized solution would be to store the 
data provenance in the HLF. Files of large size (e.g., megabytes range) posed addi-
tional loads on the client nodes due to various resource-consuming operations such 
as checksum computation. The statistical results indicate no abrupt or anomalies in 
the network performance with changes in the system configurations. The network 
performance was mainly dependent on the traffic input and output. There was a pro-
gressive response to traffic changes—the observed increases in the network perfor-
mance were primarily related to the growth in the network traffic thus indicating the 
normal network behaviour.

Conclusion
This paper proposes a blockchain-enabled secure framework for large-scale IoT data 
storage in a Big Data system environment. Edge computing is considered to be merged 
to facilitate the management of the authentications of the small IoT devices and per-
form data storage. A lightweight mutual authentication scheme is deployed to perform 
authorization and authentication of IoT devices in blockchain-based IoT applications.

The paper presents the detailed implementation of the proposed security scheme to 
provide the data provenance, data integrity, traceability, and auditability of IoT data in 
the Hadoop system as off-chain storage. The proposed model offers tamper-proof and 
transparent records spread across a collection of distributed peers by developing a prov-
enance scheme using blockchain. The model also overcomes the high communication 
and computation overheads associated with storing large volumes of IoT data in central-
ized cloud storage. The proposed model eliminates the need for third-party auditing and 
a centralized server.

The results of the experimental research show the throughput of about 600 transac-
tions per minute and 500 ms of the average response time. Peer and client processes 
were the primary resource consumers in HLF. The measurements showed about 2–3% 
of the CPU capacity consumption at the peer process, and approximately 10–20% at the 
client node. The minimum latency remained below 1 s during the experiments. How-
ever, there was an increase in the maximum latency when the sending rate reached 
around 200 TPS.

This study shows that the proposed scheme is a promising solution for a large-scale 
IoT network. Moreover, extensive experimental results demonstrate that the proposed 
model can be deployed to track provenance metadata with competitive throughput and 
latency while maintaining low computation and communication overheads. Integrat-
ing the proposed scheme with a distributed database such as Apache Cassandra to store 
transaction data with more detailed performance evaluations and developing a sharding-
based consensus that handles the network partitions are future research directions.

The future works may include developing a framework to support more features 
including MQTT-based communication between blockchain, IoT sensors and Hadoop 
off-chain storage to store transaction data. Besides, the future works could categorize 
IoT data types and match them with feasible frameworks within the Hadoop ecosystem 
through integration with the proposed blockchain model.
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Chapter 7

Conclusion and Future Research

Directions

Security methods that only work on a centralized trust server basis cannot exploit the advantage

of emerging cloud and edge computing and make a single point of failure problems in the system.

Resource-constrained IoT devices are not capable of deploying fully distributed approaches due

to the additional overhead on individual IoT devices. The work considers protecting the security

and privacy of IoT infrastructure by implementing a locally centralized authentication and

authorization of IoT devices. The IoT edge computing nodes are globally distributed in a

trustful environment facilitated by implementing blockchain technology.

7.1 Conclusions

In this thesis, a Multi-layer Blockchain System (MBS) is proposed to provide the security and

privacy of the 5G-enabled IoT network in a decentralized and distributed structure. In the multi-

layer architecture, devices in each layer have different computational capabilities and energy

storage capacities. Consequently, different security strategies are proposed for individual layers.

The blockchain implementation is modified to suit the devices of each particular layer. The

clustering concept is the key to achieving the multi-layer architecture, where the cluster heads

form the multi-layer structure. A self-clustering method is proposed in this work to identify

Cluster Head (CH) nodes. It offers reduced energy consumption and higher throughput. Genetic
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algorithms considering various clustering factors, including geospatial ones (e.g., the distance

between nodes, the base-station distance to nodes) and total network energy, are proposed. A

fitness function simulating network changes and node movements within the network is optimized

by deploying the SA methodology.

By leveraging emerging network frameworks built on IoT edge computing and distributed

blockchain system, the proposed architecture reaches much higher availability which is a critical

measure in the safety of the IoT system. The availability is guaranteed even under failures of

local authorization entities running on the edge layer. We expect the possibility of integrating

the heterogeneous IoT devices and infrastructures, ranging from sensor objects to electric power

grid control systems, into the distributed multi-layer architecture enriched by implementing the

blockchain to facilitate various security alternatives. The proposed approach enables large-scale

IoT and D2D communications deployment to address the challenges associated with increasing

data traffic.

The main achievements and contributions of this thesis are summarized as follows:

1. Proposed a multi-layer security model for IoT devices functioning under multi-hop cel-

lular networks based on distributed technology of the blockchain. The suggested model

provides a feasible solution to establish the decentralized application of blockchain technol-

ogy to secure the cellular-enabled IoT network. The hybrid self-clustering EC algorithm,

utilizing GA and SA, is developed to fragment the IoT network into clusters in order to

provide the multi-layer structure and enhance the network lifetime. The multi-layer model

improves network security, lowers the processing load, and reduces network load and la-

tency. The proposed implementation enhances the efficiency of the communications via the

peer-to-peer nature of the blockchain communication and maps it to the device-to-device

communication in cellular systems with improved integrity and security. The proposed

solution tackles the IoT security challenges, including framework privacy, authentication,

heterogenicity, flexibility, and network scalability. The proposed hybrid clustering algo-

rithm has been compared with four existing protocols. The simulation results show that

the proposed algorithm outperforms the competitors in terms of various performance met-

rics, including network load, network coverage, and distances. The performance of the

proposed multi-layer blockchain-based framework was evaluated. It was found that the

lightweight blockchain was more effective than the global blockchain Ethereum.
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The main achievements from this part of the research are:

• A novel method of authentication and authorization of IoT nodes is implemented to

provide IoT devices security and protect device communications through a multi-layer

structure.

• Proposed a novel, lightweight, private multi-layer model for reducing the complexity

of blockchain technology implementation while improving network scalability. The

proposed model is tailored to meet the requirements of IoT devices by adopting

blockchain technology to suit different layers of the IoT system. The simulation study

shows that the proposed Hyperledger Fabric-based method outperforms a traditional

blockchain solution, like the Ethereum, in terms of latency and throughput.

• The qualitative and quantitative performance evaluations were undertaken to analyze

the proposed solution. Simulation results indicate that the multi-layer framework ap-

proach improves latency, throughput, processing time, and packet overhead compared

to existing blockchain approaches.

2. Presented an implementation of the secured HLF blockchain platform as a permissioned

blockchain technology integrated with edge IoTs to test and analyze the performance of

the proposed blockchain-based multi-layer IoT security model. The proposed approach

aimed to provide security to massively interconnected IoT devices while ensuring the scal-

ability of IoT systems with minimum resource requirements. Besides, the heterogeneity

and diversity of connected devices within the IoT realm are considered. The presented

proof of concept was implemented using two different environment setups on the Raspberry

Pi devices and VMware Virtual desktops. The performance metrics, such as transaction

throughput, transaction latency, computational resources, and network use of the imple-

mented networks, were evaluated. The presented findings indicate a significantly optimal

throughput for IoT applications. Peers’ and clients’ processes are the primary source of

resource consumption in the network. The Orderer and ChainCode use fewer resources

compared to the peer process. Experimental results show a significant increase in through-

put of approximately six times compared to the optimal scale implementation of HLF. The

empirical results all indicate low overhead for running the proposed model.

The main achievements from this part of the research are:

• A novel architecture for the security and privacy of IoT edge computing using a per-
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missioned blockchain is proposed. The proposed architecture considers 5G-enabled

IoT technologies for node communications. The architecture is suitable for real-world

IoT systems due to the developed ChainCodes that facilitate storage and retrieval of

data in a tamper-proof blockchain system. Moreover, blockchain-based data traceabil-

ity for 5G-enabled edge computing using the HLF is designed to provide auditability

of the IoT metadata through a developed NodeJS client library.

• The adaptability of the Hyperledger Fabric for ARM architecture of the edge IoT

devices is improved by modifying official docker images from the source as there are

no official or public images of HLF to support the 64-bit ARMv8 architecture.

• Designed a lightweight mutual authentication and authorization model to facilitate a

secure and privacy-preserving framework for IoT edge that protects the sensor nodes’

sensitive data through a permissioned fabric platform. Furthermore, it provides trust

for the IoT sensors, edge nodes, and base stations by the private blockchain. This

is achieved by using the edge nodes to record the IoT data in an immutable and

verifiable ledger to guarantee metadata traceability and auditability.

• Performance characteristics of the proposed approach in terms of throughput, trans-

action latency, computational resources, network use, and communication costs are

experimentally evaluated in two network setups. The findings indicate a significantly

optimal throughput for IoT applications. Peers’ and clients’ processes are the pri-

mary source of resource consumption in the network. The Orderer and ChainCode

use fewer resources compared to the peer process. Experimental results show a sig-

nificant increase in throughput of approximately six times compared to the optimal

scale implementation of HLF.

3. Proposed a detailed experimental performance analysis for the scalable HLF blockchain

platform in a distributed large network with varying numbers of nodes and workloads.

Presented a scalable and distributed framework for precise and real-time monitoring of

HLF systems. It offers significantly lower overhead and more details about the various

HLF system metrics. We conducted a comprehensive performance analysis and evaluation

of well-known HLF blockchain systems with different network configurations, network

load levels, node numbers, and batch sizes. The system performance evaluation is shown

in terms of throughput, latency, block size, network size, endorsement policy, CPU usage,

memory consumption, disk write, In/Out traffic, and scalability. The experimental results
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indicate the feasibility of the proposed framework. However, the throughput, latency,

and scalability of a blockchain framework depend on hardware configuration, blockchain

network design, and smart contact complexity operations. The findings demonstrate that

the system throughput is sensitive to the Orderer setting. The results also indicate that

the change in the number of endorsements influences the performance metrics significantly.

The smaller number of endorsements results in better performance. It is shown that one

of the main bottlenecks is how the committing peers utilize multiple vCPUs presented in

the system to do parallel transactions that need to be optimized to improve the system

performance. The size of transactions significantly impacts throughput and transaction

latencies.

The main achievements from this part of the research are:

• Considered a detailed and real-time performance computation model for HLF blockchain

systems to address the challenges mentioned earlier. A comprehensive review of

blockchain research topics shows that latency, throughput, and scalability are the

primary limiting characteristics. The selected performance computation model facili-

tates collecting real-time performance data by analyzing logs and the daemon process.

• A comprehensive experimental analysis of various HLF performance metrics is car-

ried out to explore overall and detailed system performance and provide the system

configuration guidelines to attain the maximum performance. This research work pro-

poses a scalable model for real-time performance computation of the Fabric platform,

considering lower overheads and better scalability. The experiments are deployed in

a distributed network with a varying number of peers and different network sizes to

identify the significant performance bottlenecks.

• Studied the comprehensive metrics measurements to measure and monitor the im-

pact of system configurations (e.g., number of transactions, block sizes, endorsement

policies, network size) on the HLF performance, especially the scalability. The re-

sults show the possibilities and limitations of HLF implementation in large-scale IoT

networks. This study could benefit various application domains in selecting the best

blockchain platforms that would fit specific applications.

4. Proposed a layer-based distributed data storage design and implementation of a blockchain-

enabled large-scale IoT system. The need for a centralized server and a third-party auditor
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has been eliminated by leveraging HLF peers that perform transaction verifications and

records audits in a big data system with the help of blockchain technology. The HLF

blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In

contrast, the actual metadata are stored in the off-chain big data system to reduce the

communication overheads and enhance data integrity. Additionally, a prototype has been

implemented on embedded hardware showing the feasibility of deploying the proposed so-

lution in IoT edge computing and big data ecosystems. Finally, experiments have been

conducted to evaluate the performance of the proposed scheme in terms of throughput,

latency, communication, and computation costs. The obtained results have indicated the

feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT

data within the big data ecosystem using the HLF blockchain.

The main achievements from this part of the research are:

• HLF blockchain scheme is developed to provide secure data storage for big data sys-

tems in a large-scale IoT network. The proposed model maintains data privacy preser-

vation, ensures secure connection to a big data system through the HLF network, and

guarantees data collection security. The centralized trust server is eliminated through

implementing the HLF blockchain technology.

• A two-layer security framework is proposed that involves HLF blockchain and a big

data system. Trusted entities are linked to HLF, and third-party auditing parties

are eliminated to reduce the compromised auditor’s risk. The network scalability is

enhanced by incorporating edge computing to maintain IoT data computation as well

as to collect and forward data to the blockchain and off-chain storage.

• A model is proposed to store the lightweight verification checksums and data pointers

in the blockchain ledger to reduce the communication and computation overheads.

The HLF blockchain performs data provenance while the actual metadata are stored

in off-chain storage after being verified by the blockchain. Extensive experiments were

conducted through a prototype implementation on a Hadoop system to evaluate the

performance of the proposed scheme in terms of throughput, response time, latency,

communication, and computation cost.
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7.2 Future Research Directions

With the rapid growth in blockchain integration into IoT ecosystems, there are still challenges

that need to be addressed to enhance the security environment of IoT and D2D devices with

blockchain technology. The multi-layer framework enables increasing the scalability of blockchain

by forming layers and clusters where only cluster heads maintain the blockchain operations, in-

cluding storing transactions and blocks. In this thesis, the clustering techniques are implemented

based on evolutionary algorithms to form the clusters overlay in distribute manner. However,

the clusters in the IoT network can be organized based on other parameters and features that

can improve the performance of the blockchain. One possible solution could deploy the average

number of transactions that may further enhance the load balancing on each cluster head. Be-

sides, the blockchain-based clustering algorithm needs to reduce the delay in adding or removing

a CH to the network.

The local authentication and authorization, which has been deployed in layer-based architecture,

provide a trustful environment while reducing the processing overhead for new block verifications.

The risk of generating fake transactions is minimized within this ecosystem. However, the

generalized approach is required to analyze the minimum number of CH within the system to

eliminate security risks in the blockchain. Additionally, the multi-layer implementation can also

be extended to study the security of the system against a wide-ranging possible threats and

attacks.

This work has implemented a prototype of the HLF blockchain in real-world edge IoT settings

to highlight the system performance and limitations. As a future research direction, develop-

ing the layer-based architecture on top of other existing blockchains, e.g., Ethereum, can be

further explored, enabling the users of particular blockchain solutions to use their specific IoT

applications.

Blockchain protection against malicious nodes or miners who modify the ledger or remove trans-

actions needs to be investigated. This issue still exists in centralized cloud servers where mali-

cious nodes can maintain a copy of private user data. A robust solution to address this challenge

may potentially enhance blockchain privacy.

Automating some of the CH operations through implementing smart contracts can enhance
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the distributed control within the integrated blockchain-based IoT system while reducing the

processing and packet overheads. Besides, a consensus mechanism is required to manage these

smart contracts, which need to be further investigated on how to achieve the consensus among

the affected nodes.

This work has proposed a layer-based distributed data storage design and implementation of

a blockchain-enabled large-scale IoT system to store the lightweight verification tags on the

blockchain ledger without relying on trusted third parties. This approach mitigates the trust

challenges associated with the centralized server solutions. The blockchain-based solution has

the potential to address security, transparency, anonymity, and auditability challenges. The

work studied the performance of the proposed model with the big data ecosystem by imple-

menting a prototype using edge computing devices and several Raspberry Pi devices. As future

work, comprehensive deployment of the proposed model can be considered for large-scale real-

world scenarios to explore all fundamental features of the model. Furthermore, the anonymous

authentication mechanism and routing algorithms may also be studied.
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