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Abstract 

 

Rice (Oryza Sativa) plays a pivotal role in food security for Asian countries, especially in 

Indonesia. Due to the increasing pressure of environmental changes, such as land use and 

climate, rice cultivation areas need to be monitored regularly and spatially to ensure 

sustainable rice production. Moreover, timely information of rice growth stages (RGS) 

can lead to more efficient of inputs distribution from water, seed, fertilizer, and pesticide. 

One of the efficient solutions for regularly mapping the rice crop is using Earth 

observation satellites. Moreover, the increasing availability of open access satellite 

images such as Landsat-8, Sentinel-1, and Sentinel-2 provides ample opportunities to map 

continuous and high-resolution rice growth stages with greater accuracy. The majority of 

the literature has focused on mapping rice area, cropping patterns and relied mainly on 

the phenology of vegetation. However, the mapping process of RGS was difficult to 

assess the accuracy, time-consuming, and depended on only one sensor.  

In this work, we discuss the use of machine learning algorithms (MLA) for mapping 

paddy RGS with multiple remote sensing data in near-real-time. The study area was Java 

Island, which is the primary rice producer in Indonesia. This study has investigated: (1) 

the mapping of RGS using Landsat-8 imagery and different MLAs, and their rigorous 

performance was evaluated by conducting a multitemporal analysis; (2) the temporal 

consistency of predicting RGS using Sentinel-2, MOD13Q1, and Sentinel-1 data; (3) 

evaluating the correlation of local statistics data and paddy RGS using Sentinel-2, 

PROBA-V, and Sentinel-1 with MLAs. 

The ground truth datasets were collected from multi-year web camera data (2014-2016) 

and three months of the field campaign in different regions of Java (2018). The study 

considered the RGS in the analysis to be vegetative, reproductive, ripening, bare land, 

and flooding, and MLAs such as support vector machines (SVMs), random forest (RF), 

and artificial neural network (ANN) were used. The temporal consistency matrix was 

used to compare the classification maps within three sensor datasets (Landsat-8 OLI, 

Sentinel-2, and Sentinel-2, MOD13Q1, Sentinel-1) and in four periods (5, 10, 15, 16 

days). Moreover, the result of the RGS map was also compared with monthly data from 

local statistics within each sub-district using cross-correlation analysis. 



 

ii 

 

The result from the analysis shows that SVM with a radial base function outperformed 

the RF and ANN and proved to be a robust method for small-size datasets (< 1,000 

points). Compared to Sentinel-2, Landsat-8 OLI gives less accuracy due to the lack of a 

red-edge band and larger pixel size (30 x 30 m). Integration of Sentinel-2, MOD13Q1, 

and Sentinel-1 improved the classification performance and increased the temporal 

availability of cloud-free maps. The integration of PROBA-V and Sentinel-1 improved 

the classification accuracy from the Landsat-8 result, consistent with the monthly rice 

planting area statistics at the sub-district level. The western area of Java has the highest 

accuracy and consistency since the cropping pattern only relied on rice cultivation. 

In contrast, less accuracy was noticed in the eastern area because of upland rice cultivation 

due to limited irrigation facilities and mixed cropping. In addition, the cultivation of 

shallots to the north of Nganjuk Regency interferes with the model predictions because 

the cultivation of shallots resembles the vegetative phase due to the water banks. One 

future research idea is the auto-detection of the cropping index in the complex landscape 

to be able to use it for mapping RGS on a global scale.  

Detection of the rice area and RGS using Google Earth Engine (GEE) can be an action 

plan to disseminate the information quickly on a planetary scale. Our results show that 

the multitemporal Sentinel-1 combined with RF can detect rice areas with high accuracy 

(>91%). Similarly, accurate RGS maps can be detected by integrating multiple remote 

sensing (Sentinel-2, Landsat-8 OLI, and MOD13Q1) data with acceptable accuracy 

(76.4%), with high temporal frequency and lower cloud interference (every 16 days). 

Overall, this study shows that remote sensing combined with the machine learning 

methodology can deliver information on RGS in a timely fashion, which is easy to scale 

up and consistent both in time and space and matches the local statistics. This thesis is 

also in line with the existing rice monitoring projects such as Crop Monitor, Crop Watch, 

AMIS, and Sen4Agri to support disseminating information over a large area. To sum up, 

the proposed workflow and detailed map provide a more accurate method and information 

in near real-time for stakeholders, such as governmental agencies against the existing 

mapping method. This method can be introduced to provide accurate information to rice 

farmers promptly with sufficient inputs such as irrigation, seeds, and fertilisers for 

ensuring national food security from the shifting planting time due to climate change.  
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Chapter 1 Introduction 

 

1.1 Background 

Rice is an important crop in Indonesia as it is a staple food, along with maize and sago. 

Indonesia produced ~54.6 million tonnes of dry unhusked rice (equal to ~36.4 million 

tonnes of rice milled) in 2019 to maintain food security (FAOSTAT, 2021). However, this 

production rate will not be sufficient to secure food for more than 284 million people who 

are projected to exist in 2025 (FAOSTAT, 2016) with a rice consumption rate of 163 kg 

per capita (OECD, 2015) and limited productive wetland. Productive and profitable rice 

production has some critical issues to manage, such as the availability of water, healthy 

seeds, machinery, fertiliser, soil, climate, and human resources. 

Moreover, rice cultivation in Indonesia faces serious challenges, such as a high rate of land-

use change due to urbanisation of the productive paddy area, as 109,000 hectares of rice 

growing area has been converted in the last two decades (Simatupang & Peter Timmer, 

2008). Moreover, drought and flooding will be more frequent in the future due to global 

warming (Surmaini et al., 2015). The consequent reduction in rice production was 

estimated to be short of the average by a million tonnes during drought years due to El-

Niño in Indonesia between 1997 and 1998 (D'Arrigo & Wilson, 2008). This can also drive 

market prices higher than usual. The main rice producers are mainly Asian countries except 

for those on the American continent, such as the United States of America and Brazil 

(Figure 1.1). Moreover, Indonesia is also dependent on other countries, such as Vietnam 

and Thailand for extra rice storage buffer. Thus, monitoring the paddy area is crucial for 

agricultural stakeholders to prepare and mitigate if any disaster occurs, which could disrupt 

a regular production cycle.  
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Figure 1.1 Worldwide rice production map and top four rice importing countries from top 

five rice exporters in 2019. Compiled from http://www.fao.org/faostat, 

http://www.worldstopexports.com/, and https://www.bps.go.id/ 

1.2 Mapping rice growth stages using a remote sensing approach 

In Indonesia, the common practices for monitoring paddy areas are carried out by tabular 

hierarchical reporting from government extension workers to the upper level, such as the 

district level, regency level, province-level up to the Ministry of Agriculture (MoA) within 

more than one month (BPS, 2018). This data is spatially biased since the extension workers 

measure and extrapolate the area based on visual estimation. Thus, an objective and 

spatially unbiased approach is required to accompany the management practices in rice 

cultivation areas.  

Remote sensing technology offers an opportunity to monitor rice crops on a large scale and 

provides continuous spatial information, more so than the conventional estimation can. 

Moreover, the monitoring of a rice area could be separated based on the rice’s growth stage, 

which can be divided into three key growing stages: (1) vegetative stage begins with 

germination and ends with panicle initiation. The length of vegetative growth varies with 

variety, typically from 45 to 65 days, (2) reproductive stage includes panicle to flowering, 

http://www.fao.org/faostat
http://www.worldstopexports.com/
https://www.bps.go.id/
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which lasts approximately 35 days, and (3) ripening stage begins with flowering and ends 

with the mature grain (approximately 25 to 30 days) (Vergara, 1991). Each growth stage 

has contrasting optical properties, which enable the detection of the rice growth stages 

(RGS) accurately using remote sensing. For example, the vegetative stage can be 

discriminated from other stages based on low reflectance in the visible region (wavelength: 

370 to 700 nm) due to inundated paddocks with water. The greenest stage is the 

reproductive stage because of the highest reflectance values in the near-infrared (NIR) 

region (wavelength: 701 to 900 nm), followed by a decrease in the NIR band(s) values at 

the ripening stage due to the yellowing of the leaves (K.-W. Chang et al., 2005). A specific 

signal of bare land could be spotted with low reflectance in the NIR region and the highest 

reflectance in the short-wave infrared (SWIR) region (1 to 1,3 µm) since there is no paddy 

cultivated (Li et al., 2014). 

Several techniques for mapping the rice area have been developed over several decades by 

using various satellite sensors and computational algorithms. According to Dong and Xiao 

(2016), the source of the data can be divided into three categories: (1) optical satellite data 

such as Landsat Multispectral Scanner System (MSS), Landsat Thematic Mapper (TM), 

Landsat 5-8, SPOT XS, ERS-1, Moderate Resolution Imaging Spectroradiometer 

(MODIS), FormoSat, and Sentinel-2; (2) Synthetic aperture radar (SAR) is a type of active 

sensor that produces its own energy in the microwave and radio portions of the 

electromagnetic spectrum and then records the reflected energy from the Earth’s surface. 

The SAR signals can penetrate through clouds to detect the surface cover. The SAR sensors 

are divided into different categories depending on their wavelength, also referred to as 

bands. For example, C-band (7.5 to 3.8 cm) sensors are RADARSAT and Sentinel-1, with 

moderate penetration capacity to interact with surface features. The Advanced Land 

Observing Satellite (ALOS)/ Phased Array type L-band Synthetic Aperture Radar 

(PALSAR) L band sensor (30 to 15 cm) has greater penetration capacity and is widely used 

for forest and geophysical monitoring. TanDEM-X is an X-band sensor that has low 

penetration capacity. (3) A hybrid composition between two or more optical and/or SAR 

data. Among these data sources, the investigators prefer the optical sensor due to ease of 

access and detailed information, even if there are some drawbacks from the thick haze and 

long-lasting cloud cover in tropical countries (Shao et al., 2001).  
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The European Space Agency (ESA), with the Copernicus project, complements efforts at 

the USGS to monitor the Earth in near-real-time from satellites (Malenovský et al., 2012). 

The Copernicus project with the Sentinel mission has launched four satellites with different 

purposes and specifications. Sentinel-1 has a two satellites constellation with a revisit time 

of six days (Torres et al., 2012). The primary purpose of Sentinel-1 is to provide data under 

all-weather conditions using C-band Synthetic Aperture Radar (C-SAR) because of its 

ability to capture the Earth’s surface during both day and night and penetrate cloud and 

haze. The resolution of Sentinel-1 varies from 3.5 m to 100 m, depending on the acquisition 

mode.  

Regular rice growth monitoring requires high-frequency temporal data (e.g., three days) to 

better recognise its rapidly changing phenological stages in tropical climates where cloud 

and shadow reoccurrence is common. The previous studies relied only on MODIS data 

with coarse resolution (Sakamoto et al., 2005). Studying the integration of multiple satellite 

images with better resolution such as Landsat-8, Sentinel-1, and Sentinel-2 for the temporal 

analysis of rice growth is still limited, especially in developing countries due to researchers 

being more focused on determining rice area. 

Rice or paddy cultivation area monitoring with remote sensing has been developed on a 

regional scale, such as Crop Monitor from Group on Earth Observations Global 

Agricultural Monitoring Initiative (GEOGLAM) using the normalised difference 

vegetation index (NDVI) values. It can be accessed through cropmonitor.org (Whitcraft et 

al., 2015). It shows an early warning of the crop’s condition, such as favourable or failure 

and the leading cause of the condition based on season predictions such as flooding or 

drought. However, the information cannot be accessed at the sub-district level due to coarse 

resolution (250 x 250 m). Another project is Remote Sensing-based Information and 

Insurance for Crops in Emerging economies (RIICE), a project of IRRI using Sentinel-1 

data. However, this project cannot provide information in Indonesia (Nelson et al., 2014). 

Thus, the Indonesian government, through the National Institute of Aeronautics and Space 

(LAPAN) and the Indonesian Agency for Agricultural Research and Development 

(IAARD), has launched a programme using MODIS and the enhanced vegetation index 

(EVI) threshold method from 2013. They monitor RGS in different rice ecosystems in 

Indonesia with a 250 m spatial resolution (Domiri, 2017). To increase the spatial clarity of 

the observations, they have started using Landsat-8 OLI in 2015 (Parsa & Dirgahayu, 

file:///C:/MasseyOffice1/Research/cropmonitor.org
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2013). The spatial rice growth phases information in GEOGLAM and LAPAN is calculated 

based on different models and outputs. The MODIS-based map gives six classes (flooding, 

vegetative 1, vegetative 2, generative 1, generative 2, and bare land). On the other hand, 

the RGS map based on Landsat-8 gives users eight classes, including bare land, cultivated, 

vegetative 1, vegetative 2, maximum vegetative, generative 1, generative 2, and harvested. 

Moreover, they have weaknesses such as: (1) the consistency of both models has not been 

investigated yet, (2) the accuracy of both models is difficult to check due to coarse 

resolution and restricted access, and (3) improving the model is not an easy task since both 

models rely on EVI time series data. Thus, the need to build a robust method using multi-

source remote sensing data is growing unprecedentedly. 

The development of rice monitoring based on remote sensing has been a complex process 

from obtaining field data, labelling the dataset, the analysis process and dissemination to 

users or stakeholders through the internet. One of the alternatives to shorten the process is 

to use Google Earth Engine (GEE) which can increase the processing speed, modelling, 

display, and information sharing to the public. GEE stores planetary-scale and long-time 

series remote sensing data from multiple satellites that can be used instantly through cloud 

computing (Gorelick et al., 2017). The GEE interface is accessible to everyone and 

programmable using Java and Python, with a strong community and shared code through 

StackOverflow and Github. 

Many researchers have used the GEE as their data source or hub and created geospatial 

applications. Examples of the use of the GEE environment include mapping cropland 

(Aneece & Thenkabail, 2018; Teluguntla et al., 2018), wetland (Amani, Brisco, et al., 2019; 

Amani, Mahdavi, et al., 2019; Hao et al., 2019; Mahdianpari et al., 2020; Mahdianpari et 

al., 2018), land-use change (Hao et al., 2019; Li et al., 2019; Pulighe & Lupia, 2016; Sidhu 

et al., 2018; Venkatappa et al., 2019; Zurqani et al., 2018), and many more. However, the 

implementation of rice monitoring is still limited, and it has only exploited the data access 

from GEE (Ramadhani et al., 2020a, 2020b; Rudiyanto et al., 2019) for mapping rice 

growth stages, the rice area, and cropping pattern.  
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1.3 Research objectives 

The overall purpose of this research is to use combined satellite imagery sources to map 

the rice growth stages based on four specific objectives, on the different scenarios as 

follows: 

a) To investigate the accuracy of prediction models using different machine learning 

classifiers for mapping rice growth stages with Landsat-8 and their temporal 

performance over different years.  

b) To predict rice growth stages using multi-source remote sensing data Sentinel-2, 

MOD13Q1, and Sentinel-1 in the dry season.  

c) To investigate the correlation between rice growth stages with 100m spatial resolution 

from PROBA-V and Sentinel-1 and rice planting and harvested areas from local 

statistics at the sub-district level.  

d) To investigate the capability of Google Earth Engine for mapping the lowland rice area 

and rice growth stages and assessing its accuracy. 

 

The contribution of these works will be significant for building sustainable and near-real-

time monitoring of rice production in Indonesia to replace the existing monitoring. 

Moreover, some methods from this thesis are applicable to monitor other crops, such as 

maize, sugarcane and wheat; this application comes with no extra costs. 

1.4 Thesis outline and structure 

This thesis consists of seven chapters. The second chapter after the introduction is a 

literature review to critically review the existing work, identify the knowledge gaps, and 

inform the development of research methods to produce rice growth stages maps. The third 

until the sixth chapters are in journal form, which serves to fulfil the objectives of this 

thesis. The third, fourth, fifth chapters have already been published, and the sixth chapter 

is submitted to respected international journals. Each publication contains its introduction, 

methods, results, discussion, and conclusion. Since the aim of each publication is nearly 

similar, there is some overlapping of the introduction and conclusion. However, the 

methods, results, and discussion are distinctly different. Each manuscript publication was 

written by this thesis author and guided by supervisors. Moreover, all the submissions and 

emendations from the reviewers have been completed by this thesis author along with 
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helpful comments from the supervisors. The last chapter is the general discussion to 

summarise and conclude the thesis results. The workflow of this thesis can be seen in Figure 

1.2. 

The structure of this thesis is as follows: 

Chapter 1  : Provides the background and the objectives outlining the research in 

the thesis. 

Chapter 2 : Gives a general overview of previous knowledge and explains the 

knowledge gap about existing rice monitoring. 

Chapter 3 : Investigates the use of the existing in-situ monitoring using webcam 

stations to build a high accuracy model of Landsat-8 and its consistency 

over three years. 

Chapter 4 : Building a fusion model from Sentinel-2, MOD13Q1, and Sentinel-1 to 

map rice growth stages using field campaign data with 10m spatial 

resolution and its consistency over a 16-day period in the dry season. 

Chapter 5 : Assessing the correlation between rice growth stages from PROBA-V 

and Sentinel-1 and the rice planting area and harvested area from local 

statistics. 

Chapter 6 : Investigating Google Earth Engine for mapping the rice area and rice 

growth stages in the lowland areas. 

Chapter 7 : Summarise the findings from Chapters 3 to 6. It also provides 

advantages, limitations, future research, and finally, concludes the 

thesis from the introduction to the general discussion 
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Figure 1.2 The thesis outline. 
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Chapter 2 Mapping rice area and rice growth stages 

2.1 Introduction 

Rice is one of the essential cereal commodities, especially in Asian countries, with a total 

production of 677 million tonnes in 2019 and tends to grow over time. For example, rice 

production has steadily increased in Indonesia from 8 million tonnes in 1961 to 39 million 

tonnes in 2018 by introducing high yielding varieties as a result of the "Green Revolution" 

(Djurfeldt & Jirström, 2005) (Figure 2.1). Despite the increased demand for food, 

productivity has been increased and stabilised since 1997, but the area has slightly 

increased to maintain the higher production (Panuju et al., 2013). Moreover, the trendlines 

show that the population of Indonesia has been increasing by ~316,000 annually and is 

projected to be ~330 million by 2050. Innovations are needed to increase the harvested area 

and productivity, such as opening new rice fields (Putra et al., 2008), introducing new super 

rice varieties (Yu et al., 2020), and mechanisation (Mano et al., 2020). The remote sensing-

based rice monitoring projects could provide insights about the rice’s condition which are 

regularly updated to have better spatial information with a minimal cost. 

 

Figure 2.1 The population statistics, rice production in milled rice equivalent, and 

harvested area in Indonesia from 1961 to 2018. Compiled from FAOSTAT (2020a) 

The detailed information about rice cultivation and its growth stages is vital for 

understanding rice physiology. Rice is an annual grass with round, long grains with collars 

joined with sheaths of leaves; delicate, sickle-shaped, hairy heads; short, acute, or double 

split panics; and terminal panicles. The life cycle of rice varies from 105 to 145 days, 
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depending on the variety and the climate. RGS can be split into three stages: 1) vegetative, 

2) reproductive, and 3) ripening. The process of vegetative growth is characterised by 

active tillering, a gradual increase in plant height and the frequent appearance of leaves. It 

starts from seed germination, seedling emergence, small tillering which develops into 

maximum tillering. The second phase is reproductive, characterised by the elongation of 

the culm, the decrease in tillers, booting, flag leaf emergence, heading, and flowering. In 

most cultivars, the reproductive phase usually lasts approximately 30 days. The final stage 

is grain filling, and the ripening and ripening process is distinguished by ovarian 

fertilisation. Over that period, the grain increases in size and weight as the starch and sugars 

are transferred from the crests and leaf sheaths; the grain colour changes from green to gold 

or straw when ripened, and rice plant leaves start senescing. Figure 2.2 illustrates the 

process of RGS during the growth cycle. 

 

Figure 2.2 The rice growth stages with photos from the field survey. Modified from 

Kawamura et al. (2018) 

Remote sensing collects information about an object without physical contact (Jensen, 

2015). The information can be of several types, including differences in force distribution, 

acoustic wave distribution, or electromagnetic energy delivery to a sensor. Remote sensing 

can be divided into several major parts: capturing object information using a sensing system 

and interpreting the digital images into information products for the user. The workflow of 

the remote sensing system can be seen in Figure 2.3. 
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Figure 2.3 The typical process of remote sensing processing. Adopted from Lillesand et 

al. (2015) 

Remote sensing is capable of producing timely and reliable information related to rice 

ecosystems. Consequently, a wide range of applications have been developed at various 

levels and scales such as tracking and mapping rice area’s development, mapping RGS, 

cropping patterns, rice health, disease infestation and pests, forecasting rice yields, and 

estimation of methane fluxes, as shown in Table 2.1 
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Table 2.1 The examples of remote sensing research on different applications and scales. 

No Application Scale References 

1 Mapping rice area > million ha (Bazzi et al., 2019; Gumma et al., 2011; Jin et al., 2016; Qiu et al., 2015; Salmon et 

al., 2015; Xiao et al., 2006) 

2 Mapping rice growth stages > million ha (Ramadhani et al., 2020a, 2020b, 2021; Rudiyanto et al., 2019) 

3 Mapping cropping pattern > million ha (Bharathkumar & Mohammed-Aslam, 2015; Chandna & Mondal, 2020; Ding et al., 

2020; Z. Liu et al., 2019; Lunetta et al., 2010; Minh et al., 2019; Rudiyanto et al., 

2019; Sianturi et al., 2018; Tingting & Chuang, 2010) 

4 Mapping drought and floods 

in a particular rice area 

< million ha (Kwak et al., 2015; Parida et al., 2008; Son & Thanh, 2020; Wassmann et al., 2019) 

5 Forecasting yields < thousand ha (Alam et al., 2019; Pagani et al., 2019; Peng, 2009; Peng et al., 2014; Son et al., 

2014; Y. Zhang et al., 2017) 

6 Mapping disease and pests 

affected rice area  

< thousand ha (Huang et al., 2012; Prasannakumar et al., 2014; Qin & Zhang, 2005; Zhihao et al., 

2003) 

7 Estimating greenhouse 

gasses  

> million ha (Torbick, Salas, et al., 2017; Zhang et al., 2011) 
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Tracking rice growth is essential nowadays. The development of rice areas is slowing down 

due to unprecedented land-use changes. For example, many rice areas in Indonesia are 

being converted into palm oil areas because they are more profitable than cultivating rice 

(Daulay et al., 2016). Moreover, the rice areas are scattered in many islands, especially on 

low-lying land and the flat areas near the seacoast. 

The review of rice mapping has been discussed thoroughly in several publications: (i) (Niel 

& McVicar, 2004) conferred the potential of employing remote sensing in Australia to 

identify rice canopies using vegetation indices as a method of classifying the rice area and 

estimating the rice yield. They concluded that higher resolution images are essential to 

cover small paddocks. (ii) Kuenzer and Knauer (2013) discussed different techniques for 

mapping rice areas using radar backscattering to multitemporal vegetation indices derived 

from multiple resolutions images. Their conclusion is that the application of rice area 

mapping should be inexpensive, simple and easy to implement. Mosleh et al. (2015) 

focused on developing optical and radar-based techniques for mapping rice areas and 

estimating yields. For yield prediction, they considered auxiliary data such as 

meteorological information and crop models for accessing climate change effects in the 

future. Many authors are concerned about the uncertainty with wide-area implementation 

since the threshold value can differ depending on the cropping pattern. The latest review 

paper (Bégué et al., 2018) focused on the evolution of rice mapping methods from simple 

classification, phenological parameters, and machine learning with cloud computing. They 

concluded that cloud computing would become the forerunner of geospatial technology for 

quick analysis due to its ease of implementation.  

Although a lot of literature focused on rice area mapping, limited studies have been 

conducted for mapping RGS. Mapping RGS is essential for stakeholders to approximate 

the distribution of fertiliser, machinery, and pesticides based on their vegetation status. 

Moreover, the ripening stage area can be used to calculate the rice yield from the local to 

national level.  

This chapter aims to review the different techniques used for mapping the rice area and 

RGS. Moreover, this chapter discusses the performance of different sensors, mapping on 

local to global scales, mapping techniques, the existing rice monitoring projects, and the 

research gaps and future scope. 
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2.2 Sensors for mapping rice area and rice growth stages 

The remote sensing methods for mapping can be divided into two major categories based 

on energy sources (Lillesand et al., 2015). The passive sensor relies on solar power, and 

the active sensor depends on its source of electromagnetic energy and captures the reflected 

energy in real-time. Both passive and active sensors have their strengths and weaknesses. 

Nevertheless, sensor integration can combine the advantages of multiple sensors, which 

leads to improvements in the predictions’ accuracy. Hence, three types of sensors are 

described in the following subsections. 

2.2.1 Passive sensor 

The passive sensor uses the Sun’s energy to measure the reflected energy from the Earth's 

surface (Lillesand et al., 2015). Multispectral sensors collect reflected information in 

discrete bands (typically 1-20) of the electromagnetic spectrum. On the other hand, it can 

be called a hyperspectral sensor as it captures hundreds of contiguous and narrow spectral 

bands (typically 100 to 1000). Based on the distance of the sensor to capture the object, the 

passive sensors can be categorized into three classes as follows: 

(a) Proximal  

Field level remote sensing has the advantage of operational flexibility and capturing 

spectral signatures in a small area with minimal interference from the atmosphere. A study 

by J. Sun et al. (2017) predicted the value of rice leaf nitrogen using a handheld 

spectroradiometer (ASD FieldSpec) with a high degree of accuracy. Moreover, Wang et al. 

(2014) have used time-series NDVI to investigate rice phenology correlation with the 

vegetation index using a handheld radiometer. RGS such as tillering, jointing and maturity 

can be detected accurately with NDVI and the red-edge chlorophyll index (Zheng et al. 

(2016). Both studies have shown bell-shaped NDVI curves with different cultivars through 

the rice’s life cycle. The curve starts from a low NDVI value, where the water background 

is dominant over the biomass. It gradually increases until the maximum tillering stage, 

where it is stable for a few days until the late tillering wilting, and the panicle filling is 

starting. After that, the NDVI values decrease when the rice canopy turns into senescence 

due to the denaturation of chlorophyll, and finally, the rice grain becomes yellow and ready 

to be harvested (Figure 2.4). However, for operational or commercial work proximal 

sensing can potentially be cost-prohibitive for large spatial extents (regional or national).  
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Figure 2.4 The examples of NDVI profile over rice growth in time series in 2011, China 

(Wang et al., 2014). 

(b) Airborne 

The airborne sensors can capture surface dynamics with high resolution, over a more 

extensive area than the field spectrometer, which covers tens to thousands of hectares in 

one mission to support precision farming for efficient fertiliser recommendation dosage 

(Pullanagari et al., 2016). 

A small unmanned aerial vehicle (UAV) or drone can be divided into two types: those with 

a fixed motor such as senseFly eBee SQ and multirotor DJI P4 multispectral (Panday et al., 

2020). The other type is the fixed-wing type which can cover a greater area than the multi-

rotor type but can easily drift in windy situations. A drone can be equipped with a single 

RGB camera, a multispectral and/or hyperspectral camera. Moreover, the limited area that 

can be covered on a single mission is still challenging for operational bases, as it depends 

on the weight and flight time.  

Several studies have used RGB cameras for mapping rice areas. Lyu et al. (2021) have 

successfully calculated the number of panicles using DJI Mavic Pro 2 Zoom using a CMOS 

sensor with 3840×2160 resolution in video mode. However, they concluded that significant 

uncertainties could occur due to extreme weather, and the final image needs to have less 

exposure. Another experiment has been done by Q. Yang et al. (2020) to capture rice 
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phenology in the BBCH-scale with eight main development parts. They used two sensors, 

such as RGB digital camera and multispectral sensor with five bands (red, green, blue, red 

edge, and NIR) for correlating BBCH-scale with a particular vegetation index called scaled 

wide dynamic range vegetation index (SWDRVI). They demonstrated that SWDRVI could 

predict rice growth stages in near-real-time, with deep learning and shape-fitting models 

with high accuracy (83.9%). 

Wang et al. (2021) studied different RGS using hyperspectral sensors in 13 cultivars. They 

found that the similarities are high between cultivars, and the lodging feature in the 

reproductive stage is an important parameter to increase accuracy by over 5%. Despite high 

accuracy with airborne sensors, mapping large areas at the regional or national scale is 

challenging and expensive. Moreover, the information is not available at regular temporal 

intervals. 

(c) Spaceborne 

Spaceborne sensors are widely used for mapping Earth surface properties on a local to a 

global scale. One of the sensors is MODIS which is extensively used for mapping rice areas 

and RGS due to its high temporal frequency and continuous operation. Although MODIS 

collects images every day, composite products such as vegetation indices are produced to 

reduce cloud error (Table 2.2). 
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Table 2.2 The list of end products from MODIS, which is commonly used in rice-related mapping 

# Product name Description Strength Weakness References 

1 MOD09Q1 

(8-day composite/ 250 

m) 

Two surface reflectance 

(red and NIR band) 

The highest resolution, 

usually used for fusion 

Only two 

bands 

(Zhang & Lin, 2019) 

2 MOD09A1 

(8-day composite/ 500 

m) 

Seven surface reflectance 

(red, NIR1, blue, green, 

NIR2, SWIR1, and SWIR2) 

Commonly used to get 

multitemporal vegetation 

indices 

Need to be 

smoothed 

(Peng et al., 2011; Qiu et al., 

2015; Sakamoto et al., 2006; 

Sakamoto et al., 2005; Xiao et 

al., 2006; G. Zhang et al., 2017) 

3 MOD13Q1 

(16-day composite/ 

250 m) 

NDVI and EVI based on 

MOD09Q1 and MOD09A1 

Very useful for 

multitemporal analysis 

Longer 

composite 

time 

(Clauss et al., 2016; 

Fatikhunnada et al., 2020; Guan 

et al., 2016) 
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A vast number of studies exploited MOD09A1 as their primary data set for mapping rice 

areas because the composite time is shorter than MOD13Q1; this is essential to capture rice 

dynamics over a wide area such as China (Clauss et al., 2016), Vietnam (Guan et al., 2016), 

and Indonesia (Sianturi et al., 2018). MODIS data have frequently been used for mapping 

rice areas and rice intensity based on time-series pixel information and phenology-based 

algorithms. 

Another coarse resolution sensor is Project for On-Board Autonomy (PROBA-V), which 

provides 100 m to 1 km spatial resolution daily and has a 10-days revisited time. PROBA-

V is equipped with a multispectral sensor containing blue, red, NIR, and SWIR bands 

(Appendix 2). Due to its high resolution, the multitemporal PROBA-V dataset can monitor 

crop development with better results than the MODIS product, especially in fragmented 

fields (Zhang et al., 2016). However, MODIS and PROBA-V have limited potential to 

describe sub-pixel dynamics in small and fragmented rice areas. 

Since the launch of the Landsat mission, the investigations of rice monitoring has increased 

due to increased resolution (30 m) and free datasets. The first investigation of rice mapping 

using Landsat-5 was a study in Australia using Landsat-5 images with 68 m x 83 m in the 

1983/1984 season. They found that the accuracy differed slightly over time, but the 

differences in accuracy were less than those found in the manual survey. Another study 

(Tennakoon et al., 1992) successfully used the Landsat 7 TM for classifying rice from other 

vegetation classes (barren land, citrus, and perennial grass). A similar study has also been 

done in Japan with a comparable result, in which the classification result is less than the 

local statistics (Okamoto & Fukuhara, 1996). Oguro et al. (2003) developed multitemporal 

vegetation indices derived from Landsat-5 and Landsat-7 for mapping rice areas using a 

mixture model. P. Sun et al. (2017) developed a probability method to map rice areas using 

multitemporal Landsat-8 images with great accuracy (81 to 92%). A similar study (Su, 

2017) in which great accuracy was achieved using an object-based image analysis approach 

to reduce the salt-and-pepper effect from pixel-based analysis, but they used a higher spatial 

resolution (15 m) using the pan-sharpening method. They used multitemporal NDVI and 

LSWI to discriminate rice areas in China and got higher accuracy (~96 to 97%) than other 

studies.  

Recently, ESA has launched a high-resolution sensor (10 m), Sentinel-2, which provides 

an unprecedented opportunity to map rice dynamics on fragmented landscapes. The 
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uniqueness of Sentinel-2 with the other optical datasets is that it comprises three red-edge 

bands that are sensitive to vegetation dynamics (Griffiths et al., 2019). Moreover, Sentinel-

2 has a satellite constellation that consists of two satellites: Sentinel-2A, launched in 2015 

and Sentinel-2B in 2017. This configuration has reduced the revisit time to five days, which 

is ideal for monitoring rice vegetation dynamics. Consequently, diverse vegetation and soil 

indices such as NDVI, LSWI, the modified soil adjusted vegetation index and the modified 

normalized difference water index were developed for mapping rice (W. Zhang et al., 

2020). While several studies have used optical data to monitor rice area and RGS, the usage 

has been limited by cloud cover, particularly in tropical countries.  

2.2.2 Active sensor 

Active sensors have been preferred for use over tropical countries due to the frequent cloud 

cover there; they have their own energy sources and use electromagnetic waves to penetrate 

through the clouds. However, the captured data is hard to interpret since the sensor only 

receives the scattered energy, which depends on the sensor's technical configuration and 

the spatial and dielectric properties of the objects on Earth. Moreover, the dielectric 

properties of the different soils are greatly affected by their moisture content (Ulaby et al., 

1974).  

One of the examples of an active sensor is Synthetic aperture radar (SAR). SAR works as 

the satellite emits an electromagnetic pulse aimed at the Earth’s surface and the sensor 

captures the echo while passing by (Flores-Anderson et al., 2019). Depending on their 

wavelength, SAR is divided into different band groups (e.g. Table 2.3).
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Table 2.3 The list of different SAR sensors for crop monitoring. Modified from (Flores-Anderson et al., 2019) 

Sensor (Resolution, Revisited, and 

Access) 

Commodity References 

X (wavelength: 3.8 – 2.4 cm) 

TerraSAR-X: 0.2 m on spotlight mode, 

11 days, commercial  

rice, sugarcane, wheat (Baghdadi et al., 2010; Koppe et al., 2013; Sonobe et 

al., 2015) 

COSMO-SkyMed: ≤1m on spotlight 

mode, 16 days, commercial 

rice, wheat (Corcione et al., 2016; Kim et al., 2013) 

C (wavelength: 7.5 – 3.8 cm) 

ERS-2: 26 m on range mode, 35 days, 

Limited 

rice (Soo Chin et al., 1998) 

Radarsat-2: 1.5 m on spotlight mode, 

24 days, commercial 

rice, canola, wheat, 

corn, soybean, sorghum 

(Canisius et al., 2018; He et al., 2018; Hoang et al., 

2016; Jiao et al., 2011; Li et al., 2012; Liao et al., 

2018; Selvaraj et al., 2021; Shuai et al., 2019; Wu et 

al., 2011; Xie, Lai, et al., 2021; Xie, Wang, et al., 

2021; Xu et al., 2014; Yang et al., 2015; Yang et al., 

2012; Yonezawa et al., 2012; Zhang et al., 2014; Y. 

Zhang et al., 2017; Zhao et al., 2017) 
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Sentinel-1: 5 m on strip map mode, 

five days, free 

rice, maize, wheat, 

sunflower, canola, 

potato, grass 

(Bazzi et al., 2019; Clauss et al., 2018; Gandharum et 

al., 2021; Han et al., 2018; Khabbazan et al., 2019; 

Kontgis et al., 2017; Lasko et al., 2018; Mandal et al., 

2020; Mansaray et al., 2020; L. R. Mansaray et al., 

2017; Minh et al., 2019; Modanesi et al., 2020; 

Nasirzadehdizaji et al., 2021; Nasrallah et al., 2019; 

Nguyen et al., 2016; Phung et al., 2020; Shu et al., 

2020; Son et al., 2017; Song & Wang, 2019; Whelen 

& Siqueira, 2018) 

L (wavelength: 15 – 30 cm) 

ALOS/PALSAR-2: 1 m on spotlight 

mode, 14 days, commercial 

oil palm, maize (Cheng et al., 2018; Gururaj et al., 2021) 
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One of the earliest studies (Wang et al., 2009) used ALOS PALSAR for mapping RGS and 

found that HH backscatter captures better RGS information than the HV type does. 

Moreover, based on their comparison with the radiative transfer model, the single date SAR 

image is more challenging to map rice characteristics than multitemporal images. Zhang et 

al. (2009) used multitemporal images and achieved 80.1% accuracy. 

High-resolution commercial SAR sensors, such as TerraSAR-X (Koppe et al., 2012), 

COSMO-SkyMed (Mascolo et al., 2019), ERS-2 (Soo Chin et al., 1998), Radarsat-2 (Wu 

et al., 2011), contains rich information through multipolar data which can be effectively 

used for mapping a rice area with an accuracy between 85 to 95%. Despite this high 

accuracy, the effectiveness of deploying commercial SAR in developing countries is 

limited due to the financial burden. Moreover, it is more challenging to implement it for 

tracking the RGS every revisit time. 

With the growing interest in SAR to monitor the Earth’s surface, ESA launched the 

Sentinel-1 mission with two satellites in 2014 and 2016, with the same orbit path. Sentinel-

1 constellation delivers ~6 days revisit time at the equator.  

The Sentinel-1 with interferometric wide (IW) mode and double polarisation has been the 

main drive for mapping rice areas and RGS. L. R. Mansaray et al. (2017) showed that the 

rice area in China could be identified from areas with other land use from five consecutive 

images in 2015 with great accuracy (88.3%). The backscatter coefficient profile can easily 

differentiate between water, buildings and vegetation. A built-up area commonly has a high 

backscatter value (>-12 dB), and the water is otherwise (<24 dB). The rice areas have 

fluctuating backscatter profiles, depending on the amount of standing water and canopy 

growth (Singha et al., 2019). In contrast, trees usually show more stable backscatter values 

over time (Figure 2.5). 
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Figure 2.5 The example of the VH backscatter coefficients for different land use. 

Modified from L. R. Mansaray et al. (2017). 

Although the commercial sensors (e.g. TerraSAR-X) has the potential to determine the 

RGS accurately, their usage is constrained by the high cost. Unlike commercial sensors, 

the publicly available Sentinel-1 has the least potential due to coarse resolution and limited 

polarisation modes. 

2.2.3 Multi-source sensor 

Over decades, there has been a growing interest in integrating multiple sensors to generate 

continuous maps. The primary purpose of multi-resolution is to enhance spatial resolution 

by blending low and high-resolution images, such as pan-sharpening, which can be 

generated from bands 1 to 7 with 30 meters with band 8 with 15 meters spatial resolution 

for Landsat 7 and 8, respectively (Gilbertson et al., 2017; King & Jianwen, 2001; Rahaman 

et al., 2017). The final/composite images can be used for crop classifications with greater 

accuracy. Furthermore, Feng et al. (2006) introduced a mature Landsat-MODIS fusion 

algorithm known as the spatial and temporal adaptive reflectance fusion model (STARFM), 

which blends data based on a deterministic weighting function generated by spectral 

similarity, the temporal difference and spatial distance. Another example is Ehlersa et al. 

(2010), who successfully fused an IKONOS image and a TerraSAR-X using Ehler fusion 

for pan sharpening and maintained the spectral characteristics of IKONOS. Fusing the 
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Sentinel-2 and Sentinel-1 datasets can improve the accuracy of land use classification 

(Steinhausen et al., 2018).  

Furthermore, multitemporal information from multi-sensor data provides unique 

information from multiple features based on several images over time. Many researchers 

have used multitemporal information for detecting land cover changes. Abdi and 

Ardiansyah (2017) used time series vegetation indices to monitor rice areas because the 

specific trend of land use differs in temporal profiles. Table 2.4 shows examples of different 

combinations of multi-source remote sensing data used for the rice monitoring areas.  
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Table 2.4 The examples of application on the multi-source sensor on rice monitoring 

# Mapping 

application 

1st dataset / its 

resolution 

2nd dataset / 

its resolution 

3rd dataset / 

its 

resolution 

4th dataset / 

its resolution 

Accuracy 

measurement 

Area Dataset’s 

Year 

References 

1 Rice area MODIS – 

MOD09A1 

(500 m) 

Landsat- 7 

ETM+ (30 

m) 

PALSAR 

(100 m) 

- OA: 89% China 2007 (Torbick et al., 

2011) 

2 Rice area 

and its 

intensity 

MODIS -

MOD09A1 

(500 m) 

Landsat-8 

OLI (30 m) 

- - OA: 92.95% China 2015 (Ding et al., 

2020) 

3 Rice 

planting 

area 

MODIS -

MOD09A1 

(500 m) 

Landsat-8 

OLI (30 m) 

Landsat- 7 

ETM+ (30 

m) 

- OA: 98.19% China 2000 – 

2018 

(Yin et al., 

2019) 

4 Rice area MODIS – 

MOD09A1 

(250 m) 

Landsat-8 

OLI (30 m) 

- - OA: 95% China 2013 (Zhou et al., 

2016) 

5 Planting, 

heading, 

MODIS – 

MOD13Q1 

Landsat-8 

OLI (30 m) 

- - OA: 89.7% China 2018 (Li et al., 2021) 
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harvesting 

date 

(250 m) 

6 Rice area MODIS – 

MOD13Q1 

(250 m) 

Landsat-8 

OLI (30 m) 

- - OA: 89.7% China 2006 – 

2007 

(Son et al., 

2016) 

7 Rice area MODIS – 

MOD13Q1 

(250 m) 

Landsat-8 

OLI (30 m) 

- - OA: 92.38% China 2013 (Zhang & Lin, 

2019) 

8 Rice area 

and yield 

MODIS – 

MOD09GQ 

(250 m) 

Landsat-8 

OLI (30 m) 

Landsat-7 

ETM+ (30 

m) 

ALOS-

2/PALSAR-

2 (25 m) 

R2 : 0.4, 

RMSE: 0.87 

ton/ha 

Vietnam 2015 (Guan et al., 

2018) 

9 Rice area MODIS – 

MOD13Q1 

(250 m) 

Sentinel-2 

(10 m) 

Sentinel-1 

(10 m) 

- OA: 85% China 2018 (Cai et al., 

2019) 

10 Rice area MODIS – 

MOD13Q1 

(250 m) 

HJ-1A (30 

m) 

HJ-1B (30 

m) 

- OA: 82% India 2014 – 

2015 

(Singha et al., 

2016) 
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11 Rice area Landsat-8 OLI 

(30 m) 

Landsat-7 

(30 m) 

Sentinel-1 

(10 m) 

- OA: 82.5% China 2015 (Onojeghuo et 

al., 2018) 

12 Rice area Landsat-8 OLI 

(30 m) 

Sentinel-1 

(10 m) 

- - OA: 92.47% Indonesia 2019 (Arjasakusuma 

et al., 2020) 

13 Rice – 

fallow 

pattern 

Landsat-8 OLI 

(30 m) 

Sentinel-1 

(20 m) 

- - OA: 83% India 2015-16, 

2016-17, 

and 2017-

18 

(Chandna & 

Mondal, 2020) 

14 Rice area Landsat-1, 2, 

3, 4, 5& 7 (30 

m) 

ALOS 

PALSAR 

(6.25 m) 

RADARS

AT-1 (30 

m) 

- OA: 88.00 – 

94.33% 

The 

U.S.A and 

South 

Korea 

2003 – 

2009 

(Park et al., 

2018) 

15 Cropping 

system 

Sentinel-2 (10 

m) 

Sentinel-1 

(10 m) 

- - OA: 88% France 2016-

2017 

(Courault et al., 

2020) 

Note: OA = overall accuracy, RMSE = root mean square error 
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2.3 The methods and tools for mapping rice growth stages 

Mapping a rice area and its characteristics is challenging, especially with double and triple 

cropping. Therefore, some techniques are required to extract the critical biophysical 

features from spectral reflections or radar backscatter data.  

2.3.1 Vegetation indices 

The vegetation indices (VI) are mathematical combinations of two or more bands to 

measure a biophysical characteristic. The first and commonly used vegetation index was 

NDVI with the Advanced Very High-Resolution Radiometer (AVHRR) sensor in 1981. 

NDVI is usually obtained from a combination of reflectance bands of the visible-red band 

(580 to 680 nm) and near-infrared (NIR) band (725 to 1,000 nm), which are sensitive 

indicators for the vegetation canopy (Lillesand et al., 2015). The range of NDVI is 0 to 1. 

A high NDVI value indicates healthy/dense vegetation, while low values correspond to 

stressed/sparse vegetation. NDVI is a widely used VI, used for approximating various 

vegetation properties, such as leaf area index (Zhou et al., 2017), vegetation health (Jana et 

al., 2016; Tran et al., 2017), cropping pattern (Lunetta et al., 2010; Nguyen et al., 2012), 

crop classification (H. Zhang et al., 2017), rice area (Xiao et al., 2005), and rice phenology 

(Boschetti et al., 2009). 

Several VIs have been proposed to quantify the vegetation properties. The enhanced 

vegetation index (EVI) had been used in parallel with NDVI on the product from MODIS 

because EVI also includes the blue band range (450 to 510 nm), which reduces atmospheric 

scattering and adds a gain factor for minimizing soil background effects (Lillesand et al., 

2015). EVI has been used to map the changes in vegetation dynamics in several studies 

(Peng et al., 2011; Setiawan & Yoshino, 2014). 
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To increase the accuracy for mapping rice areas, Xiao et al. (2005) used the land surface 

water index (LSWI) to detect rice in the presence of water (transplanting stage) by replacing 

the red band with a shortwave infrared band (900 to 1,700 nm). Moreover, researchers can 

compare with EVI or NDVI to determine, using a simple threshold method, between a rice 

area and a forest area since the rice area will always have a fallow period (LSWI + 0.05 > 

EVI) (Jin et al., 2016). The formulas for the four indices can be found in Table 2.5.
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Table 2.5 The four vegetation/ water indices commonly used in rice-related studies 

 Name Abbreviat

ion 

Formula The examples of application in remote 

sensing and rice conditions 

1 Normalized difference 

vegetation index 

NDVI 𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (Faisal et al., 2020; Guan et al., 2016; 

Nguyen et al., 2012; Zhang & Lin, 2019) 

2 Enhanced vegetation 

index 

EVI 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 6 × 𝜌𝑅𝑒𝑑 − 7.5 × 𝜌𝐵𝑙𝑢𝑒 + 1
 (J. Liu et al., 2019; Son et al., 2020; 

Tsujimoto et al., 2019; Zhu et al., 2019) 

3 Two band – enhanced 

vegetation index 

EVI2 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 2.4 × 𝜌𝑅𝑒𝑑 + 1
 (Kalpoma et al., 2019; J. Liu et al., 2019; 

Son et al., 2016; Wang et al., 2015) 

4 Land surface water 

index 

LSWI 𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1
 (Jin et al., 2016; Kwak et al., 2015; J. Liu 

et al., 2019; Zhang et al., 2015) 

Note: ρ = surface reflectance band, NIR = near infra-red, and SWIR1 = shortwave infra-red. 
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2.3.2 Multitemporal vegetation indices 

The vegetation index value changes over time as the rice grows and is harvested. The NDVI 

and EVI are commonly low at the beginning of rice cultivation. They start to increase in 

parallel with the canopy built-up and reach a peak in the early reproductive stage where the 

canopy has reached maximum potency, and then they start decreasing until the grain is 

ready to harvest. This unique profile is used to determine the rice area and rice phenology. 

For example, Fatikhunnada et al. (2020) reported a technique based on MOD13Q1 that 

could map cropping patterns on Java Island. The multitemporal profiles can also determine 

wheat and rice crops in one year, as shown in Figure 2.6. 

 

Figure 2.6 The examples of multitemporal values from NDVI, EVI, and LSWI in Jiangsu, 

China (Xiao et al., 2005) 

The threshold method can be classified with the NDVI value for the RGS with bare land 

(<0.2), vegetative (0.21 to 0.4), reproductive (0.41 to 0.7), and ripening stages (0.4 to 

0.5)(Dirgahayu & Made Parsa, 2019). However, this technique only works in a particular 

area and single date image classification. It cannot be transferred to other regions since the 

NDVI value threshold needs to be adjusted to capture the differences between rice varieties 
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and their cropping patterns. Moreover, the values of the ripening stage and the vegetative 

stage overlap and need additional input data to separate the ripening and reproductive 

phases which can make near-real-time applications for monitoring rice projects 

challenging. 

2.3.3 Multitemporal backscatter value 

The temporal information of backscattering values from SAR images (RADARSAT and 

ALOS PALSAR) can be used for mapping rice RGS. Low backscattering values can be 

seen during the flooding or transplanting stage due to specular reflection from the water’s 

surface (Corcione et al., 2016). As the rice canopy becomes taller and more prominent, the 

backscatter signal is stronger because of the double bounce interaction caused by the 

vertical shape of the stems. The rice canopy consists of panicles, stems, and leaves during 

the reproductive phase, which randomly scatter results with low backscatter values. The 

final stage is the ripening phase, where the stems become drier and have a higher 

backscatter signal. 

Rudiyanto et al. (2019) used multitemporal SAR images from Sentinel-1 for mapping rice 

areas in Indonesia and Malaysia. This technique uses the nadir of polarised backscatter to 

determine the rice cropping since a low backscattering shows the area is flooded and ready 

to be cultivated (Ramadhani et al., 2020a). The flooded area has a lower value than average 

since the reflectance off the water’s surface will scatter in all directions. Figure 2.7 shows 

the peak and nadir of the rice cropping pattern through EVI and VH backscatter.  
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Figure 2.7 The example of multitemporal Sentinel-1 profile in Indonesia with rice 

cropping (orange line) and non-rice cropping (blue line) (Ramadhani et al., 2020a) 

However, the previous techniques mentioned have some disadvantages for near-real-time 

rice monitoring, such as cloud occurrences, extensive local knowledge, and multitemporal 

radar data, which may provide different angles requiring remodelling the grouping. 

Moreover, none of these studies produced an open-source code to be checked or developed 

further by other researchers (Rocchini et al., 2017). 

2.3.4 Multitemporal rice growth stages (RGS) 

Multitemporal RGS is a new procedure to determine RGS based on the dataset’s 

availability for a certain period. This method was inspired by land-use change analysis to 

calculate the difference between two land-use analyses in different periods. There are two 

ways to determine the RGS. The first uses multitemporal vegetation indices or backscatter 

profiles as the precursor of rice growth, as mentioned previously (Section 2.3.2 and 2.3.3). 

The second is to use a machine learning model to predict or classify based on random points 
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dataset from field survey. The first method has the advantage of having better accuracy 

than the latter but not in near real-time with minimum periods of one month (Rudiyanto et 

al., 2019). The second one is more promising to provide information quickly because the 

model can reuse in determining RGS with acceptable accuracy, as shown in a previous 

study for mapping rice area (W. Zhang et al., 2020). 

The relationship of multi-source remote sensing with multitemporal rice growth stages is 

rarely investigated in previous studies. The proposed research focused only on 

classification based on single-source datasets such as MODIS (Panuju et al., 2021) and 

Landsat (Wang et al., 2015) for detecting rice growth stages for evaluating only, not for 

continuous monitoring application. In the application for monitoring rice growth stages, 

the need of real-time classification is needed to enable fast dissemination of information. 

The optical sensors have advantages for capturing rice fields using multi-spectral bands 

sensors. On the other hand, SAR satellites can capture objects day or night without cloud 

interference (Phung et al., 2020). However, the accuracy of SAR is limited due to speckles 

noise and is only sensible if there is a water background around the objects. Thus, the use 

of multi-source remote sensing is needed to integrate those sensors to more accurate 

information of rice growth stages in the application.  

2.3.5 Machine Learning 

Machine learning (ML) has become a valuable tool to extract versatile information from 

complex data through regression or classification tasks in agriculture (Liakos et al., 2018). 

ML can be described as an area of computer science that studies algorithms and techniques 

for automating solutions to challenging problems with traditional programming methods 

(Rebala et al., 2019). An ML algorithm aims to learn a model or a set of rules from a 

labelled data set so that the data indicate labels in the other data set which can be predicted 

correctly. This method is known as supervised machine learning, which mainly falls into 
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two categories: 1) regression or the capacity to predict continuous values and 2) 

classification which is the categorising of categorical values. 

The classification process starts with training the model using training data to identify the 

type or class of the inputted feature. A binary classifier labels the data as belonging to one 

of the two output groups. A multi-class classifier defines the input vector as one of more 

than two categories. The standard classifiers on remote sensing can be explained as follows: 

(a) Support Vector Machines (SVM) 

The SVM algorithm aims to find a hyperplane separating the data set into a discrete 

predefined number of classes that are the most consistent with the training examples. The 

term optimal hyperplane separation refers to the decision boundary that minimises the 

misclassifications during the training step (Figure 2.8). Learning in SVM refers to the 

iterative process of finding a classifier with optimal decision boundaries to isolate the 

training and then separate the simulation data in the same configurations (Raghavendra & 

Deka, 2014). SVMs are gaining interest in remote sensing due to their ability to manage 

limited training datasets effectively, often resulting in higher classification accuracy than 

traditional methods (Mantero et al., 2005).  

 

Figure 2.8 The illustration of the SVM linear algorithm. Adopted from Raghavendra and 

Deka (2014). 
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SVMs can accommodate data points that cannot be linearly segregated, using functions 

with unique properties called kernels by translating data points into higher dimensional 

regions. However, SVM has some drawbacks, such as a high sensitivity to mislabelled 

points and noisy data (Huang et al., 2008), slower computation and higher memory 

consumption than neural networks, and challenges in choosing the parameters (Holloway 

& Mengersen, 2018). 

(b) Artificial Neural Networks (ANN) 

Artificial neuron networks (ANN) are analogous to brain structures. ANN consists of the 

input layer, hidden layer, and output layer. The variables flow forward and backward from 

the input layer to the output layer through the hidden layer (Figure 2.9). ANN has 

considerable advantages over traditional methods, such as ordinary least squares 

regressions due to their ability to learn nonlinear and complex problems and incorporate 

different data types into the model. However, the performance of ANN depends on their 

architecture, the method of presenting the data, and carrying out the training.  

 

Figure 2.9 The illustration of the neural network algorithm. Modified from Gardner and 

Dorling (1998) 

(c) Classification And Regression Tree (CART) 
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The CART algorithm is the most straightforward classification, which seeks the 

homogeneity for each class based on the recursive splitting of the training data set (Figure 

2.10). The splitting rules can be divided into a few methods, such as reducing the 

misclassification cost and prior distributions. Thus, the Gini index can be used to measure 

tree impurity values. The last rule is the stopping split rule, which depends on the maximum 

value for tree impurity (Breiman et al., 1984).  

 

Figure 2.10 The general structure of the CART tree. Modified from Yang et al. (2003) 

(d) Random Forest (RF) 

The RF classifier is an ensemble classifier that allows a forecast using a set of classification 

and regression trees. The trees are generated by drawing a subset of exercise samples (a 

bagging process). Approximately two-thirds of the samples (known as in-bag samples) are 
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used to develop a model. In contrast, the remaining one-third (referred to as samples outside 

the bag) of the samples are then used to estimate model performance via majority voting. 

The algorithm produces trees with high variances and low tendencies, increasing the forest 

to a user-defined number of trees. Averaging of the class assignment probabilities 

determined by all the generated trees is the final classification decision, as shown in Figure 

2.11. 

 

Figure 2.11 The illustration of the random forest algorithm. Adopted from Belgiu and 

Drăguţ (2016) 

2.4 Rice monitoring projects 

The United Nations Food and Agriculture Organization (FAO) has initiated monitoring 

crops globally with the Global Information and Early Warning System (GIEWS). GIEWS 

uses remotely sensed data from MODIS, METEOSAT, and NOAA-AVHRR to calculate 

cold cloud duration (CCD) and NDVI images for drought and food insecurity monitoring. 

It can be explored on http://www.fao.org/giews/en/. Another project to synchronise with 

trading activities has been incorporated with the Crop Monitor – Agricultural Market 

Information System (AMIS) project. The system compiles data from MODIS, the Climate 

http://www.fao.org/giews/en/
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Hazards Center (CHC) InfraRed Precipitation with Station data (CHIRPS), the European 

Centre for Medium-Range Weather Forecasts (ECMWF), and soil moisture, 

evapotranspiration rates and runoff from the NASA model. The user can access it on 

https://cropmonitor.org. Recently ESA has launched the Sentinel-2 for Agriculture (Sen2-

Agri) project (http://www.esa-sen2agri.org/) with the aim of continuous monitoring 

agriculture landscapes at the planetary scale. It provides monthly maps for surface 

reflectance composites, cropland masks, cultivated crop types, and vegetation indices’ 

status based on NDVI and LAI.  

The International Rice Research Institute (IRRI) has collaborated with other institutes to 

create a rice monitoring system in several countries in Asia and Africa called the ‘Eyes in 

the sky’ project. In the first phase, the lowland rice areas were mapped using MODIS 

images, especially in the South Asia region (Gumma et al., 2011) and the Philippines 

(Boschetti et al., 2017). The second phase of the project used multitemporal Sentinel-1 to 

monitor the rice areas and combined this information with a crop model to predict the rice 

yield. The average accuracy for mapping the rice areas was 89.4% for 12 test sites, and the 

normalised-RMSE was 13.4% for 24 rice plots which are remarkable results. This 

programme has been integrated successfully into the Philippine rice monitoring 

programme. However, it remains challenging to develop a similar system in other 

developing countries due to limited resources (Setiyono et al., 2019).  

China developed another project called ‘Cropwatch’. It is specifically intended to use 

remote sensing data to evaluate the performance of national and international crops and 

related indicators by the Institute of Remote Sensing and Digital Earth (RADI), Chinese 

Academy of Sciences (CAS) (Wu et al., 2014). The system provides wheat, maize, rice and 

soybean growth forecasts and spans 50 countries worldwide. CropWatch 

(http://www.cropwatch.com.cn) uses high-resolution (Landsat, Radarsat, among others) 

https://cropmonitor.org/
http://www.esa-sen2agri.org/
http://www.cropwatch.com.cn/
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and low-resolution (MODIS, NOAA AVHRR, etc.) remote sensing data which are blended 

with in-situ data. The system can analyse and provide crop-monitoring indicators such as 

crop conditions, drought, crop acreage, cropping intensity, crop yield predictions, and food 

production estimations.  

The Indonesian Space Agency (LAPAN) and the Ministry of Agriculture have released a 

rice growth stages map based on MODIS images from 2012. The data are released every 

eight days or more. A few years later, the Landsat-8 based rice growth stages were launched 

in 2015 with a 30-meter spatial resolution by both agencies. Both systems can be accessed 

from http://sipandora.lapan.go.id/site/fasepertumbuhanpadi and http://sig.pertanian.go.id/. 

In addition to RGS, it also produces other rice products such as productivity maps and flood 

and drought-prone maps. However, the RGS in the existing system have low spatial 

resolution since they only relied upon 250-m resolution and a longer revisit time of 16-day. 

2.5 Challenges in remote sensing of RGS 

The operational use of remote sensing data has increased tremendously in the last few years 

using several satellite missions have been launched to monitor earth surface dynamics. 

However, several challenges are associated with RGS assessment. The most important 

aspect is the lack of freely available high-resolution data. Along with high resolution, high 

temporal frequency is required for regular monitoring and to extract multitemporal 

information. Although MODIS and PROBA could provide high temporal coverage, their 

coarse resolution leads to mixed pixels. The recent Sentinel-2 mission covers high temporal 

coverage and contains many bands to retrieve detailed information about vegetation. 

However, Sentinel-2 is constrained by cloud cover; hence no information can be seen. In 

addition, external environmental factors (rainfall, rice ecosystem, varieties) could impact 

the classification accuracy. The optical features of different RGS are highly overlapping 

which consequently hinders the application of remote sensing data to be applied on a large 

http://sipandora.lapan.go.id/site/%20fasepertumbuhanpadi
http://sig.pertanian.go.id/
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scale. Due to the ongoing development of Earth observation (EO) technology with the 

continuous launch of new generation EO satellites, the size of the remote sensing data has 

been growing tremendously. Such big data poses serious computational challenges when 

using traditional information systems.  

2.6 Keys barriers in implementing RGS monitoring and future scope 

Moreover, there are three main barriers to implementing monitoring RGS using remote 

sensing. The first is that the developing countries mainly located in tropical areas such as 

Indonesia and the Philippines faced more difficulties using remote sensing data due to 

extensive cloud cover, especially in the wet season (December – February). The second 

barrier is that these countries also depend on free satellites dataset to make them operational 

for providing rice growth stages information in a timely fashion. Some projects have been 

operational but short due to depending on grants or external funding, such as the 

International Asian Harvest mOnitoring system for Rice (INAHORT) based on images 

from the ALOS-2 satellite (Oyoshi et al., 2016). The last is the high uncertainty of 

implementing SAR-based RS datasets such as Sentinel-1 alone on discriminating RGS 

using the supervised method since the farmer's planting time can be shifting in Indonesia 

due to water distribution problems (G. Zhang et al., 2017). Thus, multitemporal and multi-

dataset should be used to discriminate the RGS in the near real-time. The supervised 

classification using machine learning has been investigated in previous studies in different 

objects, such as detecting damaged buildings and wildfires with acceptable accuracy 

(Sulova & Jokar Arsanjani, 2020; Valentijn et al., 2020; Wen et al., 2019). 

As remotely sensed data becomes more available and more easily accessible, researchers 

and the community have been developing different methods and techniques to interpret the 

images into useful information for stakeholders in the rice production business to make 

better policies more quickly. For example, the rice off-takers can be made more efficient 
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at finding an area to be harvested in a specific place and time. The government can detect 

rice production at the national level more accurately because the information is backed by 

spatial data. Moreover, combining spatial statistics in near-real-time with the mobile 

application can be more effective for end-users (Bégué et al., 2020).  

Alternative to traditional information systems, cloud computing services provides 

enormous computing power to manage and process big geospatial data with minimal effort. 

Google Earth Engine (GEE) is a sophisticated geospatial cloud computing platform that 

consists of petabytes of historical satellite information from multiple satellites at a 

planetary scale. GEE provides an opportunity for users to retrieve, analyse, display and 

download remote sensing images from one integrated platform (Gorelick et al., 2017).  

 

Figure 2.12 The user interface of GEE Code Editor and its functions 

(https://code.earthengine.google.com). 

There are some challenges to be solved when working with GEE. The main limitation is 

that each user gets limited computational time and storage with the free version. The user 

needs to pay more to have more calculations and storage. Another limitation is the lack of 

https://code.earthengine.google.com/
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access to super high-resolution imagery, including Worldview, Pleiades, RADARSAT-2 

or COSMO-SkyMed.  

Although GEE has in-built machine learning algorithms in its system, such as SVM, RF, 

CART, Naïve Bayes classifier, GEE does not support fine-tuning of the model’s parameters 

when building a classification model. Another option for cloud computing is the system for 

earth observation data access, processing and analysis for land monitoring (SEPAL), 

supported by the United Nations Food and Agriculture Organization (FAO) which offers 

land monitoring automatically, especially for the forest carbon stock database under the 

reducing emissions from deforestation and forest degradation (REDD) programme (Gomes 

et al., 2020). It consists of more complex elements, advanced processing algorithms, 

Amazon Web Services (AWS) cloud storage, and AWS computational hardware. 

Furthermore, the OpenEO initiative enables other researchers to use satellite images 

independently from the existing platforms such as GEE and AWS. However, OpenEO does 

not have a user-friendly interface like GEE (Schramm et al., 2021). 

2.7 Mapping rice growth stages for near-real-time monitoring 

As discussed in Section 2.2, despite a wide range of studies involved in mapping rice areas 

with high accuracy, studies related to rice phenology are limited. Mapping of RGS using 

multitemporal images using passive sensors is complex in tropical countries due to the 

frequent cloud cover. Moreover, the latest study shows that the RGS mapping using 

Sentinel-1 needs to be a minimum period of 30-day to update the multitemporal dataset 

using the proposed method (Rudiyanto et al., 2019). MODIS/Landsat-8 OLI images are 

limited in mapping RGS due to their low spatial resolution and lack of sensitive vegetation 

bands. A near-real-time monitoring system is required for continuous RGS mapping. 
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Another research gap is to map RGS by utilising multiple satellites data to increase the 

prediction accuracy and temporal frequency. With the growth in free satellite images, high 

prediction accuracy with high temporal frequency is possible by integrating multiple 

remote sensing data. Another ‘unexplored’ resource is PROBA-V, which has provided high 

temporal frequency since 2013. 

After generating accurate RGS prediction maps and computing the local rice production 

statistics, such as the planting and harvested times and the area, sub-monthly image 

acquisition is required. The information can fill the existing knowledge gap since many 

studies only focus on the accuracy of the rice area against the existing local statistics. 

Cloud computing is a new field that generates informative maps without downloading and 

managing the data. However, the implementation of GEE for operational monitoring is still 

limited. Many studies only concentrated on downloading just the GEE data. Quick mapping 

of RGS using the GEE environment is required to disseminate knowledge of the spatial 

distribution to agricultural stakeholders. 

2.8 Summary points 

The timely and accurate spatial information of rice phenology and rice areas is vital for 

maintaining food security during climate change. This chapter presents the review on 

remote sensing applications for rice to show the opportunity, gaps, and future direction for 

further investigations using remote sensing as a tool for food security assessments for near-

real-time monitoring. The main points that can be derived from the previous studies are as 

follows: 

(a) A deep discussion about different sensors and methods to map rice areas and their 

phenology using remote sensing has been presented. The growing trend is to use 

multiple sensors for mapping rice phenology, to improve the accuracy. 
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(b) Several studies have used multitemporal vegetation indices for mapping rice areas but 

it is still difficult to retrieve information related to RGS. The threshold method can be 

more problematic over a wide area because it requires a local expert to find the 

threshold values. On the other hand, the machine learning method becomes more 

interesting due to its simplicity in applying it to a wide area, and reports show a higher 

level of accuracy (OA >75%).  

(c) The growing impact of cloud computing and storage allows the remote sensing 

community to explore and connect the remotely sense image datasets with other 

services and mobile applications. Mapping RGS at the operational level needs 

petabytes of storage and multiple processing pipelines to classify the ready-to-analyse 

product, so it becomes ready to present to the stakeholders. Moreover, RGS 

information can be used as an input in crop models to predict yields and to optimise 

the use of resources.  
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Chapter 3 Mapping of rice growth phases and bare land 

using Landsat-8 OLI with machine learning  

 

The objective of chapter 3 is to build a workflow for mapping rice growth stages using 

Landsat-8 OLI with secondary webcam data. Moreover, it compared several classifiers to 

ensure that the best classifier was chosen and consistent over the years. This chapter is 

based on a published paper: 

Ramadhani, F., Pullanagari, R., Kereszturi, G., & Procter, J. (2020). Mapping of 

rice growth phases and bare land using Landsat-8 OLI with machine learning. 

International Journal of Remote Sensing, 41(21), 8428-8452. 

https://doi.org/10.1080/01431161.2020.1779378  

Supplementary data and software can be downloaded on https://github.com/ 

FadhlullahRamadhani/LS8-OLI-MAPPING  

Participating authors: 

• Fadhlullah Ramadhani: Conceptualization, investigation, data curation, formal 

analysis, methodology, software, visualization, and writing—original draft preparation 

• Reddy Pullanagari: Conceptualization, methodology, supervision, and writing—

review and editing,  

• Gabor Kereszturi: Conceptualization, methodology, supervision, and writing—review 

and editing, 

• Jonathan Procter: Supervision and writing – review & editing 

  

https://github.com/%20FadhlullahRamadhani/LS8-OLI-MAPPING
https://github.com/%20FadhlullahRamadhani/LS8-OLI-MAPPING
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Abstract 

Regular monitoring and mapping of rice (Oryza Sativa) growth phases is essential for 

industry stakeholders to ensure food production is on track and assess the impact of climate 

change on rice production. In Indonesia, high-cost field surveys have been widely used to 

monitor the rice growth phases. Alternatively, this research proposes a methodology to 

retrieve multitemporal rice phenology (vegetative, reproductive, and ripening) and bare 

land mapping using medium resolution remote sensing imagery obtained from Landsat-8 

Operational Land Imager (OLI) combined with machine learning techniques. In this study, 

we have used extensive ground validation information collected from 2014 to 2016 for 

training the models. This ground validation information was obtained from pre-installed 

webcams across Indonesia. Five different machine learning algorithms were used including 

random forest (RF), support vector machine (SVM) with three kernel functions (linear, 

polynomial, and radial) and artificial neural networks (ANN) to classify rice growth phases 

and bare land. This paper also evaluates the temporal evolution of rice phenology and bare 

land to check the prediction model consistency between two consecutive dates in three 

years. The results show that the nonlinear SVM algorithm gives the best model accuracy 

(70.5% with kappa: 0.66) based on the test dataset and the lowest temporal changes 

(<11%). Spatial-temporal assessment of rice phenology and bare land from Landsat-8 

indicated that the models were reliable and robust over different seasons and years. The 

distribution of rice phenology maps will enable Indonesian management authorities to 

supply fertiliser, allocate water resources, harvesting, and marketing facilities more 

efficiently. 
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3.1 Introduction 

Rice (Oryza Sativa) is the primary crop for Asian countries, especially in Indonesia, which 

contributes 10.6% of the rice produced in Asia (FAOSTAT, 2014). The continuous growth 

of the Indonesian population places food security under increased pressure. In 2016 

approximately 19.4 million people in Indonesia were undernourished (FAOSTAT, 2017). 

The Indonesian government has been developing many policies to ensure adequate food 

through supplying subsidized fertilisers, mechanization tools, constructing irrigation 

projects and educating farmers through extension activities. However, the rice cultivation 

in Indonesia is vulnerable to climate change with El Niño/Southern Oscillation (ENSO) 

affecting rice production in 1997-1998 due to drought and flood events (Naylor et al., 

2001). To mitigate this, the Indonesian government has established a climate change task 

force which provides information on cropping patterns and rice production estimates based 

on climate change models (IAARD, 2011). One of the challenges for increasing the 

accuracy of prediction is the lack of spatial data of paddy rice growth promptly because the 

information of rice growth is collected based on “visual estimation” from local workers 

without any spatial attributes and is challenging to validate.  

Remote sensing technology offers a simple operational solution for filling the data gaps 

with reliable spatial data from regional to global scales. The Earth observation system, 

comprised of a series of satellite missions, regularly monitors the Earth’s surface with 

various spectral and spatial resolutions aimed at understanding and resolving issues related 

to food security (Gumma et al., 2019; Kogan et al., 2019), for example, Sentinel missions 

(Clauss et al., 2018; Nguyen et al., 2016; Skakun et al., 2017; Torbick, Chowdhury, et al., 

2017; Veloso et al., 2017), Landsat missions (Dong et al., 2016; McCloy et al., 1987; 

Sonobe et al., 2017; Tran et al., 2017; Wang et al., 2015; Ye et al., 2018; H. Zhang et al., 

2017), Moderate Resolution Imaging Spectroradiometer (MODIS) (Aulia et al., 2016; C.-
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F. Chen et al., 2012; C. F. Chen et al., 2012; Clauss et al., 2016; Mondal et al., 2017; G. 

Zhang et al., 2017), RADARSAT (Chakraborty & Panigrahy, 2000; Chen et al., 2011; 

Konishi et al., 2007; McNairn et al., 2014; Shao et al., 2001; Wu et al., 2011; Y. Zhang et 

al., 2017) among others (Koppe et al., 2013; Pan et al., 2015). Subsequently, a number of 

remote sensing studies have attempted to study rice phenology in different ecosystems, 

such as irrigated (Conrad et al., 2011) and rainfed areas (Lebrini et al., 2019). For detecting 

rice phenology, a wide range of broad and narrow-band vegetation indices, including 

normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), 

from different sensors have been proposed. Sakamoto et al. (2005) showed that MODIS 

data with 500 m resolution combined with wavelet filter was able to estimate growing date 

with a root mean square error (RMSE) of 12.1 days on planting date. Xiao et al. (2006) 

have used EVI and Land Surface Water Index (LSWI) derived from MODIS with 8-days 

composite images to detect transplanting stage in rice in China. Their result is comparable 

with statistics from a local ground truth database and achieved high accuracy in a flat area, 

whilst the accuracy seemingly degraded over hilly areas due to mixed pixels with other 

land use. Dong et al. (2015) have reported that the Landsat-8 OLI sensor is a potential 

sensor to map paddy fields with better accuracy than MODIS and Landsat-7 in subtropical 

regions due to its improved performance within radiometric and spectral resolutions. 

However, the accuracy of Landsat-8 OLI in tropical to sub-tropical areas are affected by 

rapid land use change due to natural disasters (e.g. tropical cyclones, earthquakes, 

landslides, floods, volcanic eruptions), weather conditions and urban expansion with 

recurrent cloud cover (Dong et al., 2015). To overcome weather limitations (e.g. cloud and 

shadow cover), radar-based imagery such as Synthetic Aperture Radar, Sentinel-1A 

(Nguyen et al., 2016), and RADARSAT (Chakraborty & Panigrahy, 2000; Chen et al., 

2011; Konishi et al., 2007; Oyoshi et al., 2016) was frequently used. However, access to 

RADARSAT, which could be a financial burden to implement at the operational level in 
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developing countries. Moreover, the analysis also needs clean and time series data to be 

clustered by a trained person or using existing knowledge of the study area which leads to 

high cost and time-consuming activities. 

Classifying rice growth phases with Landsat-8 OLI within southeast Asia could be a 

challenging task due to complex spectral information. Machine learning statistical 

algorithms alternatively offer a robust solution for classification in high dimensional, 

nonlinear and complex remote sensing datasets (Boschetti et al., 2017; Campos-Taberner 

et al., 2017; Campos-Taberner et al., 2016). Several families of machine learning 

algorithms such as support vector machine (SVM), e.g. (Mountrakis et al., 2011), random 

forest, e.g. (Belgiu & Drăguţ, 2016), and artificial neural network (ANN), e.g. (Murmu & 

Biswas, 2015) are widely used in remote sensing applications. SVM has become a common 

approach in the remote sensing area, especially in classification problems as SVM can 

generate a robust model and is resistant to the local minima problem (Mountrakis et al., 

2011). Campos-Taberner et al. (2016) successfully retrieved leaf area index (LAI) from a 

rice crop with high accuracy (R2 > 0.92) using Gaussian process regression (GPR). C. F. 

Chen et al. (2012) attempted to map the rice area in the Mekong basin in China using 

MODIS data where they achieved high accuracy with a neural network approach.  

In Indonesia, ground-based monitoring of rice crops is conducted by a stand-alone camera 

with an internet connection (webcam). The time-series information from webcam images 

can depict plant phenology and bare land with more precision than satellite and airborne 

remote sensing imagery. For example, Liu et al. (2017) have compared vegetation index 

between the webcam and three different scales of remote sensing imagery and found that 

the results are comparable to grass savanna with an R2 > 0.81. Hence, the use of ground-

based webcam information and remote sensing imagery has a great potential to be used to 

monitor rice growth phases in a spatial extent from local to global scale using domain 
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adaptation which has never been explored before in tropical landscape. However, the 

majority of the studies have used limited data to analyse rice phenology. In addition, these 

models are associated with poor transferability which impedes the practical application of 

remote sensing tools. 

This study aims to develop a workflow to combine webcam information and remote sensing 

data (Landsat-8) for mapping rice phenology from 2014 to 2016 using machine learning 

algorithms such as RF, SVM, and ANN and tested the temporal consistency. This study 

also tested the transferability of mapping rice phenology and its temporal consistency.  

3.2 Data collection 

3.2.1 Training dataset 

(a) Ground data 

Webcam stations are equipped with solar-powered 1.3-megapixel digital cameras and 

located all around Java Island (Figure 3.1). This study utilizes 35 webcams from the total 

55 stations across Java Island as some webcam stations have limited data. The captured 

photos of these webcams are in the public domain and available at the website: 

katam.litbang.pertanian.go.id in near real-time. This study used the images between 1 

January 2014 and 31 December 2016. The webcams have a field of view of ±200 m on 

either side of the camera’s focal point. Quantum GIS software overlaid with Google Earth 

layers is applied to ensure the camera focal point is in the middle of the paddy field. 
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Figure 3.1 Webcam locations on Java Island. 

(b) Landsat-8 OLI training dataset 

The surface reflectance of Landsat time-series data was downloaded from Google Earth 

Engine (GEE) repository from 2014-2016 sourced from the United States Geological 

Survey Earth Resources Observation and Science. The GEE computing platform enables 

the researcher to process an enormous amount of remote sensing data with unprecedented 

speed without having difficulties in downloading raw or pre-processed images (Gorelick et 

al., 2017). The raw Landsat images were orthorectified, radiometrically calibrated and 

atmospherically corrected using Landsat Surface Reflectance Code (LaSRC) method 

(USGS, 2017). The six bands which were used in this study are Band 2/ Blue (452 – 512 

nm), Band 3/ Green (533 – 590 nm), Band 4/ Red (636 – 673 nm), Band 5/ NIR (0.851 – 

879 nm), Band 6/ SWIR1 (1,566 – 1,651 nm), and Band 7/ SWIR2 (2,107 – 2,294 nm) with 

30 m resolution. The pixel quality of Landsat images was calculated with CFMASK 

methods such as clear, water, cloud, snow, and shadows (Foga et al., 2017). The number 
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of scenes which covered the webcam locations varied from 63-132 scenes for each webcam 

point with a total of 631 scenes. The scenes derived from 11 paths/rows: 117/66, 118/65, 

118/66, 119/65, 119/66, 120/65, 121/64, 121/65, 122/64, 122/65, and 123/64. The satellite 

images were directly downloaded from Google Earth Engine based on the USGS dataset 

(USGS Landsat-8 Surface Reflectance Tier 1) with UTM projection and WGS84 datum. 

Furthermore, the spatial analysis was conducted in the R statistical software with raster 

package (Hijmans, 2016) and the map layout was done by using ArcGIS 10.4. 

3.2.2 Applied area 

We chose Indramayu as the application area for the best classification model because 

Indramayu is one of the most significant rice-producing regions in northwest Java Province, 

Indonesia (Figure 3.2) and also the cropping pattern in Indramayu is dominated by 

monocultures (Rice). Indramayu consists of 11 sub-districts and borders with the sea to the 

north and four regencies to the south and northwest. The area is mainly flat with its sloping 

degree of 0-2 % on altitude 0-100 m above sea level (Siregar & Crane, 2011). The tropical 

weather and monsoonal climate in this area result in a wet season starting from November 

to May and a dry season from June to October. The average temperature is 22.9 to 30 °C 

with an annual average precipitation of 2,213 mm in 2014-2016 (Bontkes & Wopereis, 

2003). The regency covers an area of 2,099 km2 with an irrigated rice/paddy area of 94.94 

km2 and a non-irrigated area of 20.9 km2 (Bontkes & Wopereis, 2003). The irrigated paddy 

field is mainly located on Cimanuk – Cisanggarung and Citarum watershed and the planting 

date are controlled by scheduled water distribution from Jatigede and Rentang Dam (Boer 

et al., 2012; BPS-Indramayu, 2017; Sianturi et al., 2018). 

Cultivation of rice in Indramayu has the first planting season from November to January, 

with the second planting season from March-July. Some areas to the south of Indramayu 

are bare land from August to October. Paddy fields near the sea would have the second 
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planting from July-October as during the rainy season, and they cannot cultivate due to 

flooding (Fig. 1). In the study area, the farmers commonly utilize the transplanting method 

of rice cultivation where the farmer grows the seed in a nursery and after 20-25 days the 

seedling is transplanted to the cultivation area (paddy) and harvested after 100 days (Sari 

et al., 2013). Transplanting is a widely adopted planting method of weed control in rice 

cultivation across Asia. The dominant rice varieties in this area are Ciherang, Mekongga, 

and Situbagendit which are short-duration varieties. The farmers in this area tend to 

cultivate rice even though water is limited, thus the vulnerability of this area is higher than 

other areas due to water competition between low stream area and upstream areas, 

especially during the dry season (Sianturi et al., 2018; Siregar & Crane, 2011). 
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Figure 3.2 The planting calendar on paddy field map of Indramayu Regency, Indonesia 

(Compiled from local statistics agency). 

The Landsat-8 OLI images to be applied with the best data model and to detect short (e.g. 

weeks) temporal changes within the applied area were derived from two Landsat-8 OLI set 

images with path/row 121/64 and 120/65 in a different year. The first set is 6 September 

2014 and 22 September 2014, secondly 21 June 2015, and 7 July 2015, and the last set is 7 
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June 2016 and 23 June 2016, as shown in Figure 3.3. These dates were selected because 

they are the clearest data in the consecutive order for each year to reduce cloud and shadows 

interference.  

 

Figure 3.3 The Landsat image of Indramayu Regency with false colour RGB (SWIR1, 

NIR, and Green) band for scenes: (a) 6 September 2014, (b) 22 September 2014, (c) 21 

June 2015, and (d) 7 July 2015, (e) 7 June 2016, and (f) 23 June 2016. 

3.3 Methodology 

The proposed methodology is composed of three steps, including data pre-processing, 

model training and testing, and temporal change analysis (Figure 3.4). 
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Figure 3.4 The flowchart of the methodology. 

3.3.1 Data labelling 

Identification of rice growth phases was carried out by visually interpreting webcam 

images. The significant paddy area activities were recognized as bare land, land 

preparation, ploughing, inundation, transplanting, vegetative, reproductive, ripening, and 

harvested stage with a total of 110-125 days of the rice lifecycle (Moldenhauer et al., 2013). 

However, we have considered three main growth phases and bare land in the analysis. The 

vegetative stage is started from seedling to tillering within 45-60 days. Afterwards, the 

reproductive phase is characterized by the emergence of a flag leaf, booting, until 

flowering. The duration of this phase is ±35 days. The last phase is ripening defined by a 

‘milk stage’ (±30 days) of the grain until it hardens and is ready to harvest. The bare land 

stages are the land when uncultivated, after harvest, and ratoon; the vegetative stage starts 

from the transplanting phase after the land has been ploughed and the seed was grown in 

the nursery bed for 20 – 25 days. The next stage is reproductive from panicle initiation to 

flowering and ripening stage where vegetation and grains turn yellowish until it has been 

harvested. 
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Due to technical difficulties such as network error, the dataset of webcam imagery is not 

entirely complete. If there are missing images without key phases, these are labelled as no 

data. In the data analysis, we have considered the cloud-free images (FMASK=322). Table 

3.1 shows that the highest frequency of class was bare land since the duration is longer than 

other phases. Moreover, the masking process eliminated 48.3% from the synchronized data 

indicating that the areas with webcam stations have high cloud interference. 

Table 3.1 Recapitulation of the dataset. 

Phase 
Synchronized 

data 

Unused 

data 

Used 

data 

Training data 

(70%) 

Test data 

(30%) 

Bare land   424 222 202 142 60 

Vegetative   431 184 247 173 74 

Reproductive   299 156 143 101 42 

Ripening   431 269 162 114 48 

Total       1,448 694 754 530        208 

 

The data on rice growth phases were synchronized on the same date with six bands of 

Landsat-8 OLI from the GEE dataset with a custom python script. We also calculated EVI 

and LSWI to compare classification performance between three datasets: a) six bands, (b) 

EVI, c) LSWI. The formula of EVI and LSWI are: 

EVI=2.5 ×
ρ

NIR
 - ρ

Red

ρ
NIR

 + 6 × ρ
Red

 - 7.5 × ρ
Blue

 +1
 

LSWI=
ρ

NIR
 - ρ

SWIR1

ρ
NIR

 + ρ
SWIR1

  

where 𝜌 is reflectance band, NIR is near-infrared, SWIR1: short-wave infrared 1. 
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3.3.2 Building the machine learning model 

The classification was carried out on a desktop computer using the R package for statistical 

analysis (Team, 2017), R Studio 1.0.143, and caret library (Kuhn, 2008). The caret library 

is a single interface package that allows exploring multiple classifiers in fewer steps and is 

capable of performing parallel computing (Kuhn & Johnson, 2013). The specific random 

seed was set before randomly splitting the dataset to ensure the model building was 

repeatable with the same result. The dataset was randomly divided into 70:30 proportion. 

The 70% of the dataset was used to train the model with Leave One Out Cross-Validation 

(LOOCV), a resampling technique to hinder overfitting in the model. LOOCV is the least 

biased and computationally challenging technique of validation to reduce the variance in 

model training that one sample is left out, is selected, widely used classification and the 

rest is used to train the model with specific tuning parameters, and this process is repeated 

until all samples are used in training. Thus, all the training results are summarized based 

on the accuracy parameter and the model with the highest accuracy was selected for test 

analysis with the confusion matrix (Kuhn & Johnson, 2013). In this study, we have 

evaluated widely using classification algorithms such as random forest, support vector 

machine and artificial neural network. The parameters of the selected classification 

algorithms were optimized using a grid search technique. 

(a) Random Forest (RF) 

RF is an ensemble algorithm based on a decision tree mechanism where each tree is grown 

independently using a random set of variables and samples and then averages the results of 

all trees (Belgiu & Drăguţ, 2016; Breiman, 2001). RF technique can run proficiently for 

the massive dataset (Tatsumi et al., 2015). This analysis was run using randomForest 

library(Liaw & Wiener, 2002) which can be divided into several steps. 1) Creating random 

decision trees (ntree); 2) for each tree, create random bootstrap samples from training 
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dataset; 3) grow the tree with each internal node using mtry predictors (a subset of 

variables) which are randomly selected and choose the best optimizing split criteria. The 

last step is selecting the final result of the majority vote from each tree. The previous study 

shows that higher mtry can lead to higher performance by selecting importance 

predictors(Strobl et al., 2008). The hyperparameters, ntree, and mtry were optimized with 

a grid search approach where different combinations of hyperparameters values were 

evaluated.  

(b) Support Vector Machines (SVM) 

Support vector machine (SVM) is a popular pattern matching algorithm which constructs 

optimum hyperplane in a high dimensional space to separate different classes of 

observations (Verrelst et al., 2015), and requires considerably more computational time 

than other approaches. In this study, we used three different kernels (Linear, Polynomial, 

and Radial basis function) with the main parameter Cost (C) for smoothing the hyperplane. 

For polynomial function two parameters, polynomial degree function and scale to 

determine the normalizing pattern, are required. The radial basis function has one parameter 

which is Sigma to modify decision boundary. The parameters were tuned within the search 

window of: for C parameter 2n with n =1 to 10, for Polynomial degree= 1 to 5, scale= 0.001, 

0.01, 0, and C are 0.01, 0.1, 1 to 20. The last kernel is SVM Radial which was tuned for 2-

25, 2-20, 2-15, 2-10, 2-5, 0 and C were set for 2n with n =1 to 10.  

(c) Artificial Neural Networks (ANN) 

ANN is a classifier which imitates brain cells to solve complex nonlinear problems 

(Verrelst et al., 2015). While brain cells contain a collection of neurons, which are 

connected to each other using a synapse, ANN has nodes and weights, respectively. There 

are three layers of nodes in the common ANN process. The first layer is the input layer 
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which is the node that carries out the pixel values of each index in the image. The second 

layer is a hidden layer, which contains nodes that calculate the sum of logistic function 

from input nodes in the input layer and the weights of connection to determine node value. 

The hidden layer becomes the input to specific nodes in the output layer. The output layer 

calculates the final decision by comparing the values of the nodes from a logistic function 

with the actual class. This process is run iteratively to minimize the error from input to 

output layer using a feed-forward propagation algorithm and was used for model training 

because it provides an adjustable method in the generalization of linear regression 

(Venables & Ripley, 2013). The tuning parameter is the size of nodes in the hidden layer=1-

10, and weight decays are 10-4, 10-3, 10-2, 10-1, and 0. Minimizing weight decay value 

increases optimization and prevents over-fitting because it can penalize big weights 

(Venables & Ripley, 2013). 

3.3.3 Accuracy statistics 

The final classification model was selected based on the average accuracy from iterations 

of the cross-validation procedure. The performance of the training model was validated 

with the test dataset. The final results of each classifier were evaluated by the statistics of 

the performance such as the overall accuracy (OA), producer’s accuracy (PA), user’s 

accuracy (UA), and kappa (κ) was calculated using error matrices as shown in Figure 3.5 

(Congalton & Green, 2008; Foody, 2002). Landis and Koch (1977) categorized 𝜅 into 

seven classes e.g. 0.81-1.00: almost perfect, 0.61-0.80: substantial, 0.41-0.60: moderate, 

0.21-0.40: fair, 0.00-0.21: slight, and <0.00: poor. Thus, these accuracy measurements were 

analysed with one-way ANOVA and Tukey Honest to test the statistical difference between 

the classifiers. 
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Figure 3.5 The example of confusion matrix, the formula of producer’s, user’s, and 

overall accuracy, and kappa. 

3.4 Temporal change analysis 

The temporal consistency of the model estimates was investigated on two consecutive 

Landsat images in the Indramayu Regency. Non-rice growing areas were masked with a 

high-resolution paddy field map, supplied by the Indonesian Ministry of Agriculture which 

was developed from very high-resolution satellite images, such as IKONOS and SPOT, 

and properly validated with field campaigns in 2008-2010.  

There are four classes in each date classification map from the best model results from the 

model building process, such as bare land, vegetative, reproductive, and ripening. The next 

step was applying a mask of pixel quality band to get two other classes (water and 

cloud/shadows). Thus, the temporal changes were analysed by creating a matrix between 

classification with six classes on the current and the previous images. This transitional 

matrix consists of 36 classes; then it was reclassified into four classes (Table 3.2). The new 

classes are (1) Unchanged: there are no class changes between four rice growth phases; 

(2) Changed correctly: there is a one-step stage change forward between rice growth 
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phases, and bare land and vegetative into the water, and water into bare land and the 

vegetative stage (3) Changed incorrectly: there is a two-step and more stage changes 

forward between rice growth phases or a stage change backward between rice growth 

phases. For example, water changes into a reproductive and ripening stage or a change from 

the vegetative and reproductive stage into bare land or reproductive and ripening stage into 

the water, and there is no change in water class; 4) Cloud and shadow: there is a shadow 

or cloud class on one or two dates. The sum of the area of four classes was summarized 

with spatial analysis, and the mean difference percentage of the area between classes for 

all classifiers was calculated for each year. Especially for changed incorrectly class, the 

mean of absolute differences (MAD) was calculated over the three years to compare 

performance between the classifiers. 

Table 3.2 An example of a transitional matrix and reclassifying scheme in 2015. 

 Classification on 7 July 2015 (current) 

 Code 1 2 3 4 11 12 

Classification 

on 21 June 

2015 

(previous) 

1 1 → 1 1 → 2 1 → 3 1 → 4 1 → 11 1 → 12 

2 2 → 1 2 → 2 2 → 3 2 → 4 2 → 11 2 → 12 

3 3 → 1 3 → 2 3 → 3 3 → 4 3 → 11 3 → 12 

4 4 → 1 4 → 2 4 → 3 4 → 4 4 → 11 4 →12 

11 11 → 1 11 → 2 11 → 3 11 → 4 11 → 11 11 → 12 

12 12 → 1 12 → 2 12 → 3 12 → 4 12 → 11 12 → 12 

Note: The colour-coded temporal changes classification matrix. The number codes are (1) Bare 

land; (2) Vegetative; (3) Reproductive; (4) Ripening; (11) Water; (12) Cloud/ shadow. The colour 

codes are Yellow: Unchanged; Green: Change correctly; Red: Change incorrectly; and Grey: Cloud 

and shadow. 
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3.5 Results  

3.5.1 Spectral signature analysis 

The spectral signatures of three rice growth phases and bare land in our study were 

calculated using all training samples. Figure 3.6 (a) shows the mean spectral reflectance 

and the corresponding rice growth phase. The bare land stage has a different pattern as it 

has the highest reflectance on the red and SWIR1. On the other hand, vegetative, 

reproductive, and ripening phases pose an almost identical pattern where the surface 

reflectance was low at the red band and high at the NIR band. The highest reflectance value 

of the reproductive stage on the NIR band indicates that the interpretation of the growth 

phase using secondary data correlates with the greenness of rice growth which has a high 

mean reflectance on the NIR band. However, the ripening phase is almost identical to the 

reproductive stage, except it is lower on the NIR band which indicates that the accuracy of 

identification of the ripening stage would also be lower. The webcam images on selected 

dates indicate four phases of paddy growth phases (Figure 3.6(b)) highlighting that the 

reproductive and ripening stages have almost identical visual appearances and spectral 

curves. 
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Figure 3.6 (a) Spectral signatures of rice growth phases in mean surface reflectance based 

on training and test dataset. (b) The example images from webcam station with 

coordinate: 6°28'18.0"S, 108°13'35.0"E with vegetative (b.1), reproductive (b.2), ripening 

(b.3), and bare land (b.4). 

3.5.2 Accuracy assessment 

The accuracy measurement using the confusion matrix of different predictors has been done 

to investigate the best predictors used to classify the rice growth stages. Table 3.3 shows 

that the accuracy of using EVI as a sole predictor is 49.6% with SVM Polynomial, and for 

LSWI and EVI as predictors are 62.5%. Moreover, the highest accuracy (68.3 – 70.5%) 

was achieved by using six Landsat-8 bands as predictors in all classifiers which 

outperformed EVI’s accuracy by>20%.  
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Table 3.3 The list of the accurate measurements based on Landsat-8’s test data for rice 

growth stage classification with different predictor datasets. 

# Classifier Predictors 
Overall 

accuracy 
kappa 

1 ANN LSWI and EVI 60.3% 0.45  

2 ANN EVI 49.1% 0.32  

3 ANN Blue, Green, Red, NIR, SWIR1, and SWIR2 70.1% 0.59  

4 Random Forest LSWI and EVI 61.6% 0.48  

5 Random Forest EVI 43.8% 0.24  

6 Random Forest Blue, Green, Red, NIR, SWIR1, and SWIR2 68.3% 0.57  

7 SVM Linear LSWI and EVI 62.9% 0.50  

8 SVM Linear EVI 46.4% 0.26  

9 SVM Linear Blue, Green, Red, NIR, SWIR1, and SWIR2 70.1% 0.59  

10 SVM Polynomial LSWI and EVI 62.5% 0.49  

11 SVM Polynomial EVI 49.6% 0.33  

12 SVM Polynomial Blue, Green, Red, NIR, SWIR1, and SWIR2 70.1% 0.59  

13 SVM Radial LSWI and EVI 60.3% 0.46  

14 SVM Radial EVI 49.1% 0.32  

15 SVM Radial Blue, Green, Red, NIR, SWIR1, and SWIR2 70.5% 0.60  

 

The confusion matrix indicates that all classifiers have the highest producer’s accuracy 

(PA) in the vegetative stage (Table 3.4). On the other hand, the highest UA (user’s 

accuracy) is a bare land stage. It indicates that SWIR1 is more dominant than the NIR band 

prediction. However, the reproductive stage has the lowest PA and UA because of the 

availability of a limited amount of data over a short time (Table 3.4). 

Overall, the classifiers has significantly different accuracies F at the p < 0.001 for 

[F(4,120), p < 1.01e-07] of classifiers. The pairwise test shows that there is no significant 

difference in accuracy and kappa between SVM based classifiers and ANN except the pair 

with RF (Figure 3.7).  

. 
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Table 3.4 The confusion matrix performance on the test dataset. 

Test data 

 Growth phases Bare land Vegetative Reproductive Ripening Total UA (%) 

(a) Artificial Neural Networks 

Classified  Bare land 42 4 0 8 54 77.8 

data Vegetative  13 57 2 3 75 76.0 

 Reproductive 0 8 23 2 33 69.7 

 Ripening 5 5 17 35 62 56.5 

 Total 60 74 42 48 224  

 PA (%) 70.0 77.0 54.8 72.9 
 

 

 OA (%) 70.1      

 kappa  0.59       

(b) Random Forest 

Classified  Bare land 44 4 0 8 56 78.6 

data Vegetative  13 56 2 3 74 75.7 

 Reproductive 0 7 23 7 37 62.2 

 Ripening 3 7 17 30 57 52.6 

 Total 60 74 42 48 224  

 PA (%) 73.3 75.7 54.8 62.5 
 

 

 OA (%) 68.3      

 kappa  0.57       

(c) SVM Linear 

Classified  Bare land 41 3 0 8 52 78.8 

data Vegetative  15 60 2 5 82 73.2 

 Reproductive 0 9 26 5 40 65.0 

 Ripening 4 2 14 30 50 60.0 

 Total 60 74 42 48 224  

 PA (%) 68.3 81.1 61.9 62.5 
 

 

 OA (%) 70.1      
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 kappa  0.59       

(d) SVM Polynomial 

Classified  Bare land 45 2 0 8 55 81.8 

data Vegetative  12 57 2 4 75 76.0 

 Reproductive 0 9 23 4 36 63.9 

 Ripening 3 6 17 32 58 55.2 

 Total 60 74 42 48 224  

 PA (%) 75.0 77.0 54.8 66.7 
 

 

 OA (%) 70.1      

 kappa  0.59       

(e) SVM Radial 

Classified  Bare land 43 1 0 10 54 79.6 

data Vegetative  13 60 2 3 78 76.9 

 Reproductive 0 8 24 4 36 66.7 

 Ripening 4 5 16 31 56 55.4 

 Total 60 74 42 48 224  

 PA (%) 71.7 81.1 57.1 64.6 
 

 

 OA (%) 70.5      

 kappa  0.60       



 

71 

 

3.5.3 Temporal model consistency 

Multitemporal maps of the study area extracted during the times of 2014 (September), 2015 

(July), and 2016 (July) show the distribution of rice phenology and bare land. The images 

in 2014 show that almost all the area is in a bare land stage after the second planting season 

(Figure 3.8). The northern part of the image was misclassified, indicated by red colour. In 

contrast to 2014, the majority of 2015 was dominated by the vegetative stage due to a 

second planting season (Figure 3.9). Figure 3.10 shows that the dataset images have more 

cloudy areas than the previous year. The date was 16-days earlier than dataset images in 

2015, which show the peak of the vegetative stage in most areas for the second planting 

season. Overall, the classification shows a good agreement with the cropping pattern 

(Sianturi et al., 2018). Over the three years within this study, only a small proportion of the 

area was misclassified. The topographic effect also contributed to lesser accuracy since the 

optical sensor depends on a homogenous indicated angle on a flat area (Proy et al., 1989). 

Therefore, all small parcel rice areas in the hilly area would give inconsistent surface 

reflectance which the model could not predict. 
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Note: ANN: Artificial Neural Network, RF: Random Forest, SVM: Support Vector Machine. Red 

lines show highly significant differences between the two classifiers.  

Figure 3.7 (a) The boxplot of overall accuracy (OA) and kappa (κ), (b) Tukey test result 

of confidence level of OA, and (c) Tukey test result of confidence level of kappa. 
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Figure 3.8 The classification maps based on Landsat image on 6 September 2014 for (a.1) 

ANN, (b.1) Random forest, (c1) SVM Linear, (d.1) SVM Polynomial, and (e.1) SVM 

Radial and on 22 September 2014 for (a.2) ANN, (b.3) Random forest, (c.4) SVM Linear, 

(d.5) SVM Polynomial, and (b.6) SVM Radial. The temporal changes in 2014 for (a.3) 

ANN, (b.3) Random Forest, (c.3) SVM Linear, (d.3) SVM Polynomial, and (e.3) SVM 

Radial. 
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Figure 3.9 The classification maps based on Landsat image on 21 June 2015 for (a.1) 

ANN, (b.1) Random forest, (c1) SVM Linear, (d.1) SVM Polynomial, and (e.1) SVM 

Radial and on 7 July 2015 for (a.2) ANN, (b.3) Random forest, (c.4) SVM Linear, (d.5) 

SVM Polynomial, and (b.6) SVM Radial. The temporal changes in 2014 for (a.3) ANN, 

(b.3) Random Forest, (c.3) SVM Linear, (d.3) SVM Polynomial, and (e.3) SVM Radial. 
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Figure 3.10 The classification maps based on Landsat image on 7 June 2016 for (a.1) 

ANN, (b.1) Random forest, (c1) SVM Linear, (d.1) SVM Polynomial, and (e.1) SVM 

Radial and on 23 June 2016 for (a.2) ANN, (b.3) Random forest, (c.4) SVM Linear, (d.5) 

SVM Polynomial, and (b.6) SVM Radial. The temporal changes in 2014 for (a.3) ANN, 

(b.3) Random Forest, (c.3) SVM Linear, (d.3) SVM Polynomial, and (e.3) SVM Radial. 
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3.5.4 Spatio-temporal changes  

The temporal changes were completed by classifying two consecutive Landsat images to 

explore the consistency of the surface changes during the 16-day interval for three 

consecutive years. In Figure 3.8-3.10 (a-f.3), the performance of all classifiers was 

consistent except Random Forest. Random Forest mostly misclassified transitions from 

bare land and vegetative phase to ripening phase. Moreover, nonlinear SVM has the least 

difference than other classifiers (7.83% and 10.19%) due to the flexibility of hyperplane 

for determining class separation in high dimensional space, as shown in Table 3.5.  

3.6 Discussion 

In this study, we have presented a workflow of mapping rice growth phases in Indramayu 

Regency using Landsat-8 and ground webcam data using machine learning algorithms 

which dataset and code can be downloaded at https://github.com/FadhlullahRamadhani 

/LS8-OLI-MAPPING. In order to create a robust model, extensive data were collected 

between 2014 and 2016. Since rice phenology is associated with seasonal dynamics due to 

different cultivation practices (upland and lowland), cropping patterns, environmental 

changes, a wide range of remote sensing datasets such as Landsat-8, Sentinel-2, and 

Sentinel-1 are essential to characterise rice crops as stressed by Rudiyanto et al. (2019) 

regarding the importance of time-series remote sensing data for characterising rice 

phenology. Although many researchers restrict experiments to limited timeframes (Parsa 

& Dirgahayu, 2013), this study accounted for different seasons throughout multiple years 

and environments for modelling the rice phenology. 

https://github.com/FadhlullahRamadhani%20/LS8-OLI-MAPPING
https://github.com/FadhlullahRamadhani%20/LS8-OLI-MAPPING
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Table 3.5. The recapitulation of temporal changes in mean absolute difference (MAD) for each classifier and year. 

Classifiers 
Unchanged Changed correctly Changed incorrectly 

2014 2015 2016 2014 2015 2016 2014 2015 2016 MAD 

ANN (%) -0.59 2.21 -2.72 -6.77 0.07 2.61 15.59 -11.62 10.82 11.03 

RF (%) 2.05 -0.70 -2.81 9.57 -3.97 -8.22 -31.64 14.47 32.30 24.46 

SVM Linear (%) 0.95 0.09 4.35 -18.06 0.61 -1.68 21.62 -2.14 -22.10 14.99 

SVM Polynomial (%) 2.25 -1.64 0.14 2.47 2.51 -10.00 -21.80 1.61 -10.00 7.83 

SVM Radial (%) -4.65 0.04 1.05 12.79 0.78 -11.02 16.24 -2.33 -11.02 10.19 

Note: MAD: mean of absolute differences 
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This study indicates the use of six bands of Landsat imagery rather than the information of 

vegetation indices and significantly improved the accuracy for mapping rice phenology and 

bare land. In general, vegetation indices carry limited information and have less capability 

to classify rice growth phases because of similarities between spectral signatures. For 

example, in Figure 3.6, we note that the spectral pattern of vegetative and reproductive 

phases seems similar. Similar responses have been seen by K. W. Chang et al. (2005). 

Moreover, the majority of the vegetation indices such as EVI and NDVI, Soil-adjusted 

vegetation index (SAVI) typically use spectral bands from visible and NIR regions which 

are highly influenced by soil background and vegetation structure.  

Although rice phenology was classified with moderate accuracy, the error could be caused 

by many reasons such as spectral heterogeneity of pixels within each class, broad spectral 

and spatial resolution and availability of a limited number of bands in the sensor. As a 

consequence of different soil backgrounds and different types of rice cultivation (e.g. 

upland and low land) present in Indramayu Regency, high variability occurred in spectral 

data which results in classification errors. Although the training data being attempted to 

cover a wide range of rice varieties and soil types, some information could be missed. 

Moreover, the paddy field in the study area is highly fragmented by small roads to ease 

access between the main road into paddy fields, resulting in misclassification within the 

model. We assumed that the farmer only plants rice on the paddy field as suggested on the 

cropping calendar. However, there is a small proportion of mixed cropping where farmers 

grow other crops such as soybean and maize along with rice during the dry season in small-

scale areas. Since Landsat-8 has a coarse resolution (30 m), some mixed pixels and 

misclassification can be expected in mixed cropping regions. The mixture effect could be 

minimized by unmixing approaches as Lu et al. (2017) reported that an unmixing approach 

with integration Theil-Sen (TS) was able to differentiate between vegetation over the urban 

environment.  
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We propose machine learning approaches to retrieve rice phenology from Landsat-8, and 

machine learning algorithms have provided encouraging results. The algorithm SVM with 

radial function outperformed RF, SVM linear, SVM polynomial and ANN and showed 

robust performance on the test results. The performance was consistent on spatio-temporal 

maps over different times and regions. However, some parts of the study area were 

classified incorrectly, particularly in bare land and vegetative phases. The incorrect 

classification could be caused by different agronomic practices and topographic variations, 

which influence the spectral signatures (Campos-Taberner et al., 2017). 

Further study is required to investigate the recent availability of high spatial resolution (10-

20 m) Sentinel-2 data for rice phenology across Asian countries. Sentinel-2 provides 

valuable spectral information for monitoring rice growth stages with a potential higher 

accuracy than Landsat 8 OLI (Vuolo et al., 2018). Since cloud cover affects optical imagery 

in Indonesia, integrating information from multiple satellite sensors (MODIS, PROBA-V, 

Landsat-8, and Sentinel-2) could be a useful alternative for enhanced spatio-temporal 

coverage. Moreover, additional spectral information can be expected from multiple 

satellites which could provide detailed physiological information of different rice growth 

phases.  

Radar imagery, such as Sentinel-1, is one of the other alternative solutions to overcome the 

cloud and shadows problem. Using smartphones by local extension workers or the farmers 

themselves can be a reliable secondary data source to build up an automated classification 

model if computer vision is enabled with active learning concept (Alajlan et al., 2014; 

Baumann et al., 2017; Brown et al., 2016; Chung et al., 2018; Knox et al., 2017; Liu et al., 

2017; Rousselet et al., 2013). In future work, the integration of multiplatform remote 

sensing data for monitoring rice production and climate data could offer a solution for 
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developing countries to supply and apply subsidized agriculture inputs with better precision 

and enable trackable distribution of crops to support improved accountability.  

3.7 Conclusion 

Java Island is Indonesia’s largest rice producer, primarily Indramayu’s paddy fields. Along 

with the adverse effects of climate-related disasters, such as floods, drought, it is crucial to 

track the rice growth stage dynamically with a fast and reliable method. This paper provides 

a machine learning framework to classify rice growth phases using Landsat-8 data. The 

near real-time monitoring of paddy areas enables governments to make effective decisions 

on food security issues in developing countries. 

From this research, we conclude that the Landsat-8 data can be used along with ancillary 

data from webcams to build a predictive model for rice growth phases with adequate 

accuracy. Moreover, the accuracy was improved significantly using all bands compared to 

vegetation indices. The results of spatio-temporal maps using transfer learning demonstrate 

the consistency and reliability of this approach for mapping rice phenology. However, this 

model shows some inconsistencies due to mixed pixels, seasonality, and shifting planting 

time that require further investigation and additional training datasets.  
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Chapter 4 Automatic Mapping of Rice Growth Stages 

Using the Integration of SENTINEL-2, MOD13Q1, 

and SENTINEL-1 

 

The objective of chapter 4 is to build a workflow for mapping rice growth stages using the 

fusion from SENTINEL-2, MOD13Q1, and SENTINEL-1. Moreover, the rice cultivation 

detection was applied to make it better accuracy. This chapter is based on a published paper: 

Ramadhani, F., Pullanagari, R., Kereszturi, G., & Procter, J. (2020). Automatic 

Mapping of Rice Growth Stages Using the Integration of SENTINEL-2, 

MOD13Q1, and SENTINEL-1. Remote Sensing, 12(21), 3613. 

https://www.mdpi.com/2072-4292/12/21/3613  

Supplementary data and source code can be downloaded on https://github.com/Fadhlullah 

Ramadhani/S2-PADDY-MAPPING  

Participating authors: 

• Fadhlullah Ramadhani: Conceptualization, investigation, data curation, formal 

analysis, methodology, software, visualization, and writing—original draft preparation 

• Reddy Pullanagari: Conceptualization, methodology, supervision, and writing—

review and editing,  

• Gabor Kereszturi: Conceptualization, methodology, supervision, visualization, and 

writing—review and editing, 

• Jonathan Procter: Supervision, and writing – review & editing 
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Abstract 

Rice (Oryza sativa L.) is a staple food crop for more than half of the world’s population. 

Rice production is facing a myriad of problems, including water shortage, climate, and 

land-use change. Accurate maps of rice growth stages are critical for monitoring rice 

production and assessing its impacts on national and global food security. Rice growth 

stages are typically monitored by coarse-resolution satellite imagery (250 x 250 m). 

However, it is difficult to accurately map due to the occurrence of mixed pixels in 

fragmented and patchy rice fields, as well as cloud cover, particularly in tropical countries. 

To solve these problems, we developed an automated mapping workflow to produce near 

real-time multitemporal maps of rice growth stages at a 10-m spatial resolution using 

multisource remote sensing data (Sentinel-2, MOD13Q1, and Sentinel-1). This study was 

investigated between 1 June and 29 September 2018 in two (wet and dry) areas of Java 

Island in Indonesia. First, we built prediction models based on Sentinel-2 and fusion of 

MOD13Q1/Sentinel-1 using the ground truth information. Second, we applied the 

prediction models on all images in area and time and separated between the non-rice 

planting class and rice planting class over the cropping pattern. Moreover, the model’s 

consistency on the multitemporal map with a 5–30-day lag was investigated. The result 

indicates that the Sentinel-2 based model classification gives high overall accuracy of 

90.6% and the fusion model MOD13Q1/Sentinel-1 shows 78.3%. The performance of 

multitemporal maps was consistent between time lags with an accuracy of 83.27–90.39% 

for Sentinel-2 and 84.15% for the integration of Sentinel-2/MOD13Q1/Sentinel-1. The 

results from this study show that it is possible to integrate multisource remote sensing for 

regular monitoring of rice phenology, thereby generating spatial information to support 

local-, national-, and regional-scale food security applications.  
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4.1 Introduction 

Regular monitoring of the paddy area is vital as rice production supports rural livelihoods 

in Asia, where more than 1.21 billion tonnes of rice were harvested to feed 4.56 billion 

people in 2018 (FAOSTAT, 2019; Lowder et al., 2016). The rice production often struggles 

with the effects of climate change (Arévalo et al., 2019; Hazaymeh & Hassan, 2017), water 

shortage (Elagouz et al., 2019; Surmaini et al., 2015), inadequate machinery supplies in 

developing countries (Van Ittersum et al., 2013), and soil degradation (Guo et al., 2018), 

which in turn requires intensified monitoring to ensure sustained food production. The 

common practice of monitoring rice crops in Indonesia is by using local government 

officers at a sub-district level to collect data based on field visits and information provided 

by the farmers. This data is expensive to collect, non real-time, and inefficient to handle 

spatio-temporal changes in rice-producing areas (Lewis et al., 2008; Raedeke & Rikoon, 

1997; Wood et al., 1999). Moreover, the paddy area needs to be monitored in near-real-

time due to the need for a continuous water supply from irrigation canals and fertiliser 

inputs at critical stages (Castillo et al., 2006). Thus, timely and accurate information on rice 

growth stages is vital for planning and managing the rice farming system, which is critical 

for sustainable food security at the regional and national scale (Vermeulen et al., 2012; 

Wassmann et al., 2009). 

Remote sensing can offer cost-effective near real-time solutions to analyse land-use 

changes (Bruzzone, 2014; Joshi et al., 2016; Liu et al., 2010), cropping patterns 

(Fatikhunnada et al., 2020; Minh et al., 2019; Nguyen et al., 2012; Rudiyanto et al., 2019; 

Sianturi et al., 2018), growth stages (Gao et al., 2017; Ramadhani et al., 2020b; Rudiyanto 

et al., 2019), and crop detection over large areas (Boschetti et al., 2017). Previous studies 

have widely used coarse resolution multitemporal optical imagery, such as Moderate 

Resolution Imaging Spectrometer (MODIS) (Clauss et al., 2016; Sakamoto et al., 2005; 
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Setiawan et al., 2014; Xiao et al., 2006; Zhang et al., 2015), for rice monitoring. MODIS 

has a significant advantage of daily revisited time and is able to generate vegetation indices, 

such as enhanced vegetation index (EVI) and normalized difference vegetation index 

(NDVI). These indices can be used to quantify rice growth stages accurately and recreate 

a temporal evolution of rice production. This data can be fed to establish regional and 

national productivity of rice yield inventories (Sakamoto et al., 2006; Xiao et al., 2005; 

Zhang et al., 2015). However, most of the other optical satellites (e.g. Landsat-8, SPOT-5 

and ASTER) have less frequent visit times, and they are prone to cloud cover and shadow, 

resulting in gaps in the temporal data, particularly in monsoon season (Onojeghuo et al., 

2018). Additionally, their medium to coarse spatial resolution (> 250 m) hampers the 

capability to discriminate the rice growth stages within paddy fields. Moreover, paddy rice 

fields are often highly fragmented, resulting in mixed pixels. Some prior studies show that 

single-date rice monitoring with Landsat 7/8 can be done with better accuracy (Campos-

Taberner et al., 2016; Kontgis et al., 2015; Ramadhani et al., 2020b) with a revisited time 

of 16 days, which is challenging to get precise data which is useful at the operational level. 

To avoid the cloud interference, microwave or synthetic aperture radar (SAR) data from 

RADARSAT (Li et al., 2003; Zhang et al., 2014), ALOS-PALSAR (Wang et al., 2009; 

Zhang et al., 2009), and Sentinel-1 (Bazzi et al., 2019; Dirgahayu & Made Parsa, 2019; Jo 

et al., 2020; Lasko et al., 2018; L. R. Mansaray et al., 2017; Singha et al., 2019), have been 

explored for rice mapping. The backscattering of the microwave radiation can be used to 

detect the rice cropping pattern due to phenological changes of the rice canopy structure 

having characteristic microwave scattering properties (Yin et al., 2019). The previous 

studies on the mapping of rice growth stages are limited to identifying rice/non-rice areas 

(Clauss et al., 2018; Gumma et al., 2011; Mosleh et al., 2015) and the cropping pattern 

using various sensors (Chandna & Mondal, 2020). Rudiyanto et al. (2019) demonstrated 

the detection of rice phenology in Indonesia and Malaysia rice fields, using hierarchical 
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clustering with vertical-horizontal backscatter from Sentinel-1. On the other hand, Phung 

et al. (2020) were able to correlate between incident angles of backscattering and day of 

rice planting based on smoothed VH backscattering intensity images. These studies have 

utilised the fact that the inundation and vegetative rice growth stages typically have the 

lowest backscattering intensity due to the flooded soil that reflects the radar energy 

specularly away from the sensor. As the rice grows, the backscattering intensity becomes 

higher when the rice canopy is established (e.g., reproductive phase) as the canopy can give 

double-bounce scattering (Liu et al., 2016; Pham-Duc et al., 2017). Finally, the 

backscattering intensity becomes lower again after harvesting due to a loss of biomass 

(Ndikumana, Ho Tong Minh, Dang Nguyen, et al., 2018). The utility of RADAR for rice 

growth stage monitoring can also benefit from the frequent satellite revisit times and 

penetration through cloud cover affected by many tropical countries. The only global and 

free RADAR dataset is provided by Sentinel-1 satellite imagery. Other RADAR-capable 

satellites, such as ALOS-PALSAR and TerraSAR-X, are limited in uses or available via 

paid subscriptions. Moreover, the speckle noise issue can be a problem in complex land-

use (Lee et al., 1994) and can be minimized with the deep learning approach (Kang et al., 

2020; Sica et al., 2020). Importantly, microwave remote sensing has a significant time lag 

to be analysed near-real-time due to its slow processing time and high demand for local 

knowledge to classify the rice growth stages (Rudiyanto et al., 2019). Moreover, the short 

time (< 16 days) is vital for rice mapping for validating the rice production prediction on a 

national or local scale. 

Considering the advantages from both optical and radar images, combining multiple remote 

sensing data (data fusion) can improve accuracy with high temporal coverage. The fusion 

between active and passive remote sensing have been adopted (Belgiu & Stein, 2019; Ding 

et al., 2020; Ghassemian, 2016; Waske & Benediktsson, 2007) to overcome the missing 

data, and have higher accuracies due to the ability to distinguish specific crop area, 
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especially near water bodies. According to Schmitt and Zhu (2016), there are three types 

of data fusion: 1) raw data fusion, 2) feature extraction fusion, and 3) decision-making 

level. Feature extraction fusion is more attractive than the others because the fusion process 

can be carried out with multiple images with different temporal and spatial resolutions. The 

feature fusion uses similar objects from multiple sources that are combined for further 

assessment. For example, Park et al. (2018) developed a method by combining the data of 

Landsat, MODIS, and ALOS-PALSAR to map paddy areas in South Korea, which 

increased the accuracy by 6–9%, compared to individual sensor information. Similarly, Cai 

et al. (2019) reported high accuracy for mapping rice paddy areas in China with multiple 

sensors (Sentinel-1/Sentinel-2/MODIS). The resultant high accuracy is due to the strong 

correlation between the leaf area index (LAI) and biomass with cross-polarization of 

microwave backscattering (Inoue et al., 2002). To date, the study of integration between 

optical and radar-based imagery on rice growth stages classification is not investigated 

thoroughly on the feature extraction and decision-making fusion level to increase accuracy. 

Considering some limitations of previous studies, such as course spatial resolution, single-

source dataset, and manual interpretation, the actual demand for near-real-time rice growth 

stage prediction models using remote sensing is high. Thus, this study aimed to develop an 

automatic workflow for generating 10-m-resolution multitemporal maps of rice growth 

stages by combining Sentinel-2, MOD13Q1, and Sentinel-1 imagery. The result of this 

study, both the method and the map products, can be used for mapping at national and 

regional scales to ensure food security and production with timely and accurate spatial 

information using multiple remote sensing data sources. 
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4.2 Background, study area, and data 

4.2.1 Rice growth stages 

The growth stage of paddy rice in Asia, particularly Indonesia, can be split into five classes, 

which reflect the rice cultivation practices in any given time (Bouman, 2019; Fageria, 2007; 

Hardke, 2013). First, the bare land area is filled by water (flooding) and ploughed for (15–

25 days) depending on the water irrigation schedule (Figure 4.1). The second stage is the 

vegetative stage, which the rice grows from seedling emergence until panicle development 

(55–65 days; Figure 4.1). The third stage is the reproductive stage where the leaf stem 

bulges with the panicle, also known as the booting stage (20–25 days; Figure 4.1). 

Flowering and pollination also occur in this stage. The final stage is the ripening stage, 

which includes fertilisation, the grain is filling/expanding, and the paddy grain becomes 

dry-brown (30–35 days; Figure 4.1). The total cultivation time is 120–150 days, depending 

on the varieties. Intercrops, growing other crops (maize, soybean, green beans) between 

the rice crop, is also adopted in some areas. The size of parcels is varied between 0.2 – 2 

ha).  

 
Figure 4.1 The example of rice growth stages and other rice field conditions in the paddy 

field area. The geolocation and date are stamped on the photos. 
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4.2.2 Study area 

In this study, we chose two distinctive regions with different climates (wet and dry area) 

and fragmented paddy areas from Java Island, Indonesia (Figure 4.2). The West Area is 

located on West Java, representing the paddy area, mainly irrigated area and low land, 

while the East Area is located with a larger rain-fed paddy field and has a high fragmented 

area. Both areas have a monsoon climate with two seasons: the wet and dry seasons (Kottek 

et al., 2006). The wet season is from October to March, and the dry season is from April to 

September (Figure 4.3). Typically, short-duration varieties (~ 120 days), such as IR64, 

Ciherang, of glutinous rice are widely adopted in this area (Rudiyanto et al., 2019; Sianturi 

et al., 2018). 

 
Figure 4.2 Map of the study area for West Area and East Area and overlay with the false 

colour (NIR/SWIR/Green) of Sentinel-2 image, which has been masked to show only the 

paddy rice fields for the West Area on 11 and 14 June 2018 and for the East Area on 13 

June 2018. 
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Note: R1: Rice 1st cultivation, R2: Rice 2nd cultivation, R3: Rice 3rd cultivation, SC: Secondary 

crops, and BL: Bare land. 

Figure 4.3 The simplified cropping pattern of the West Area and East Area. 

(a) West Area 

West Area consists of paddy area in three regencies, which are Karawang (96,482 ha), 

Subang (84,228 ha), and Indramayu (115,555 ha), with a total area of 310,265 ha (BPS-

West-Java, 2018) (Figure 4.2). Most of the area is irrigated paddy field from the Jatiluhur 

area (258,633 ha), established on alluvial and lithosol soil. The water distribution is 

maintained by the state-owned company easing water requirements. However, further 

issues arise from sedimentation, breaking drainage, and land-use change, especially in the 

dry season. The season comprises two rice planting cycles, separated by 1-3 months of bare 

land. This bare land period is intended to rest the soil and stop the crop pest life cycle 

(Figure 4.3). The planting time changes based on the catchment location, with the first 

planting season, starting from November and the second in March in the upper catchment 

areas. The downstream areas start their season in February due to constant floods during 

the rainy season, while the second planting is in July.  

(b) East Area 
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East Area is located on West Java Province consists of four regencies, including 

Bojonegoro (78,677 ha), Lamongan (87,336 ha), Jombang (48,704 ha), and Nganjuk 

(42,918 ha), totalling an area size of 257,635 ha (BPS-East-Java, 2018) (Table 4.1). The 

soil types of this region are much more diverse, including alluvial soils, grumusol, and 

regosol. The main cropping pattern can be divided into four types. The first cropping 

pattern is rice planted three times throughout the year with planting times in December, 

April, and August with water pumping from the Bengawan Solo river for year-round 

irrigation. This cropping pattern is only found in this one area near the Bengawan Solo 

river facilitating the farmer to cultivate during the dry season by pumping water. The 

second cropping pattern is planting rice twice annually with the first planting season in 

December and the second in April. The third cropping pattern utilises one rice planting 

period and a secondary crop planted in the dry season, such as maize, soybean, and shallots. 

The fourth cropping pattern consists of rice cultivation during the rainy season (Figure 4.3). 

Table 4.1 Comparison between the West Area and East Area. 

Study Area West Area (WA) East Area (EA) 

Topography 

broad coastal plain on the 

north and  

hills the south 

Most of the area is a flat area 

in the north and hilly on the 

south.  

Height 0 –1500 m, 0 – 2 %. 150 –1500 m, 0 – 2 %. 

Climate 

Total annual rainfall: 1849 

mm with the number of 

rainy days: 95 days (2018) 

Total annual rainfall: 1,860 

mm with the number of rainy 

days: 102 days (2018) 

Soil type Alluvial, Lithosol Alluvial, Grumusol, Regosol 

Irrigation 

Cimanuk, Cipanduy, 

Citarum, Ciliwung 

Irrigations area 

Brantas, and Solo irrigations 

area 

Irrigated paddy 

field 

272,633 ha 

 
166,286 ha 

Non-irrigated 

paddy field 

37,632 ha 

 
91,349 ha 

Total paddy 

field 
310,265 ha 257,635 ha 
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4.3 Satellite Imagery 

This study is based on three satellite datasets from 1 June to 29 September 2018. The first 

dataset comes from Sentinel-2 A/B in Level-1C (L1C) format, which is a Top-Of-

Atmosphere product from Copernicus Open Access Hub (Gascon et al., 2017). Sentinel-2 

satellites provide five days of revisited time over the study area. The scenes of Level-1C 

were subjected to atmospheric corrections into Level-2A by using Sen2Cor (Louis et al., 

2016). The Sen2Cor produces surface reflectance, which includes seven bands with a 10-

m resolution, four bands with a 20-m resolution, six bands with a 60-m resolution, and 

Scene Land Classification (SCL) with a 20-m resolution. Here, we used 11 bands as the 

predictors for the Sentinel-2 model (Table 4.2). Moreover, bands 5, 6, 7, 8A, 11, and 12 

were resampled into a 10×10 m pixel size to match with high-resolution bands.
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Table 4.2 Remote sensing data 

Sentinel-2 L2A  

(5 Days Revisit Time) 

MOD13Q1  

(16 Days Composite Period) 

Sentinel-1  

(12 Days Revisit Time) 

Band 

Central 

Wavelength 

(nm) 

Resolution 

(m) 
Band 

Resolution 

(m) 
Band 

Resolution 

(m) 

Band 2 – Blue 490 10 NDVI 250 VH 10 

Band 3 – Green 560 10 EVI 250   

Band 4 – Red 665 10 
Quality 

indicator 
250   

Band 5 – Red edge 1 705 20     

Band 6 – Red edge 2 740 20     

Band 7 – Red edge 3 783 20     

Band 8 – Near-infrared 842 10     

Band 8A – Red edge 4 865 10     

Band 11 – Shortwave infrared 1 1610 20     

Band 12 – Shortwave infrared 2 2190 20     

Scene land classification (SCL) band - 20     
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The second dataset was MOD13Q1 from Terra sensor with a 250-m resolution from Google 

Earth Engine (GEE), which was pre-processed to surface reflectance (Abdi & Ardiansyah, 

2017; Gorelick et al., 2017) and resampled in a 10×10 m pixel size. We used this dataset 

for filling the gap of Sentinel-2 imagery because it is a composite 16-day period of daily 

MODIS observation. MOD13Q1 consists of the normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI), which are chosen with the highest NDVI 

value in the 16-day period. The calculation of NDVI and EVI is based on MODIS/Terra 

bands with the formula as follows: 

NDVI=
ρNIR - ρRed

ρNIR + ρRed 
,  

 

(1) 

EVI=2.5 ×
ρNIR - ρRed

ρNIR + 6 × ρRed - 7.5 × ρBlue +1
. (2) 

The third dataset was Sentinel-1A, which was downloaded from GEE and pre-processed 

with Sentinel-1 toolbox to remove thermal noise, calibrating radiometric and terrain 

correction (https://developers.google.com/earth-engine/sentinel1). The Sentinel-1 has 12 

days of revisited time on the study area due to the location on the equator. We used vertical-

horizontal backscattering (VH) descending data and Minimised Interferometric Wide 

Swath (IW) mode, which consists of vertical-horizontal (VH), vertical-vertical 

backscattering (VV), and angle bands (Table 4.3). Thus, the speckle noise of VH values 

was reduced using the refined-Lee filter with a 7 × 7 window size (Lavreniuk et al., 2017; 

Lee, 1981; Lee et al., 1994; Plank et al., 2017). This dataset has already been used for 

mapping the paddy area due to the high sensitivity of water presence in rice cultivation area 

globally (Bazzi et al., 2019; Lasko et al., 2018; L. R. Mansaray et al., 2017; Onojeghuo et 

al., 2018; Singha et al., 2019). In this study, we used VH as predictors because the VH is 

more consistent and sensitive in the detection of rice research works than VV 

backscattering, as suggested in previous works (Nguyen et al., 2016; Son et al., 2017). 
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The total number of acquisitions used in this study were 200 scenes for Sentinel-2, 28 

scenes for Sentinel-1, and 17 composite scenes for MOD13Q1 (Table 4.3). All of the 

datasets was masked with a high-resolution paddy field area from the Indonesia Ministry 

of Agriculture to reduce complexity with other land use before further processing. 

Table 4.3 List of the acquisition date of Sentinel-2, MOD13Q1, and Sentinel-1. 

Sensor  Acquisition Date (Day of the Year) in 2018  Total 

Sentinel-2 

T48MZU and T48MZT: 152, 157, 162, 167, 172, 177, 

182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 

237, 242, 247, 252, 257, 262, 267, and 272 

T48MYU and T48MYT: 155, 160, 165, 170, 175, 180, 

185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 

240, 245, 250, 255, 260, 265, and 270 

T49MFM, T49MEM, T49MEM, T49MEN, and 

T49MFN: 154, 159, 164, 169, 174, 179, 184, 189, 194, 

199, 204, 209, 214, 219, 224, 229, 234, 239, 244, 249, 

254, 259, 264, and 269 

200 scenes 

Sentinel-1 

IW mode, VV-VH band: 159, 161, 171, 173, 183, 185, 

195, 197, 200, 207, 209, 219, 221, 231, 233, 236, 243, 

245, 248, 257, 267, 269, 279, 281, 291, 293, 296, and 

303 

28 scenes 

MOD13Q1 
1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 

209, 225, 241, and 257 

17 

composite 

scenes 

4.4 Methods  

The workflow of analysing multisource remote sensing data for multitemporal mapping of 

rice growth stages from June–September 2018 is illustrated in Figure 4.4. First, we labelled 

and synchronised data from multiple satellites (Sentinel-2, MOD13Q1, and Sentinel-1) 

with the collected field data. The next step is to build two separate prediction models for 

rice growth stages using the support vector machine methodology for the Sentinel-2 and 

another for fusion between MOD13Q1 and Sentinel-1 (MOD13Q1/Sentinel-1). After 

assessing the accuracy of both models (Sentinel-2 and MOD13Q1/Sentinel-1), the image 

data were combined into one time series to fill the cloud-obscured pixels of Sentinel-2. 

Additionally, rice planting detection was applied to separate rice cultivation and non-rice 
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cultivation activity on the rice fields. The final rice growth stages map is the integration of 

the Sentinel-2/MOD13Q1/Sentinel-1 maps. Finally, we calculated the consistency 

percentage of the Sentinel-2 and Sentinel-2/MOD13Q1/Sentinel-1 maps over time. In the 

following subsection, the data conversion steps are described in detail. 

 

Figure 4.4 The workflow of the integration of Sentinel-2/MOD13Q1/Sentinel-1. 

4.4.1 Field data and dataset labelling 

The field data was collected as purposive and random sampling with a Global Positioning 

System (GPS)-enabled mobile phones and synchronised with a pocket GPS receiver 
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between 20 July and 4 September 2018. The sampling points were selected randomly with 

a 500-m buffer distance using the official paddy area as the base map, which returned 227 

points in the West Area and 171 points in the East Area in total. These sites were then 

visited in the field. The enumerator of the field data made sure that the sampling area had 

a dimension at least 50×50 m and contained the same rice growth stage throughout to 

reduce impacts of mixed pixels. Each field site has associated field photos that were used 

for labelling. The field observations were then matched up with the closest and cloud-free 

satellite dataset’s date for extraction. 

The flooding class has been underrepresented due to fieldwork conducted in the dry season. 

To ensure the field dataset was balanced, 70 flooding locations were manually extracted 

from a Sentinel-2 false colour composite image taken on 6 June 2018. The total number of 

Sentinel-2 datasets utilised was 426 observations, and MOD13Q1/Sentinel-1 had 468 

observations. The difference is due to the changes in cloud cover within the datasets.  

4.4.2 Prediction models for the rice growth stages 

In this study, we used SVM because of its suitability in remote sensing data applications 

and its capacity to handle complex classification problems (Cortes & Vapnik, 1995; Guyon 

et al., 1992). SVM maps the data points in high-dimensional feature space and separates 

the class using hyperplane with a kernel function, linear, polynomial, sigmoid, and radial 

functions. The closest data points of the hyperplane become the support vectors, which 

determine the position and orientation of the hyperplane to find the maximum margin (the 

distance between the support vectors with the hyperplane) (Raghavendra & Deka, 2014). 

Here, we used the radial basis function (RBF) because of the high variability and complex 

predictors for rice conditions (Onojeghuo et al., 2018; Son et al., 2017). Moreover, 

Kavzoglu and Colkesen (2009) suggested that SVM with RBF has advantages, such as 

training pixels being needed less than with other classifiers and being flexible with a 
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statistical distribution range in remotely sensed data. Moreover, SVM with RBF has been 

applied successfully for rice growth stage mapping before and outperformed other 

classification methods, such as random forest and neural networks (Ramadhani et al., 

2020b). There are two kernel parameters of SVM RBF that can increase the accuracy, i.e., 

cost penalty (C) was used to define trade-off between model complexity and error and 

Sigma for smoothing the vector (Mountrakis et al., 2011).  

Two SVM models were built in this study, using the R programming language with the 

caret package (Kuhn, 2008), as follows: 

(a) Sentinel-2 model: this prediction model was based on Sentinel-2 input bands (Table 

4.2) as predictors labelled based on the field data temporally closest to the Sentinel-2 

imagery acquisition. The Sentinel-2 model to predict rice growth stages was trained 

using the field dataset with a 70:30% random split (i.e., 299 and 127 observations from 

the field dataset). The relationship between the bands of Sentinel-2 and the rice growth 

stages can be expressed as follows: 

𝑅𝑖𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑠𝑡𝑎𝑔𝑒𝑠 (𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙2)~ 𝐵02 + 𝐵03 + 𝐵04 + 𝐵05 + 𝐵06 +

𝐵07 + 𝐵08 + 𝐵11 + 𝐵12 + 𝐵8𝐴. 

(3) 

(b) MOD13Q1/Sentinel-1 model was developed by combining MOD13Q1 and Sentinel-1 

with predictors of NDVI and EVI from MOD13Q1 and VH for three consecutive three-

time lag series (e.g., Sentinel-1 image of VH on t day (T0), t-12 days (T1), and t-24 

days (T2) in decibel (dB)). We found that using three consecutive VH values had better 

accuracy, which can be explained by the typical length of each rice growths stage of 

around 24 days. We used 330 points for the training dataset and 138 points for the test 

dataset. The relationship of the MOD13Q1 indices and multitemporal backscattering 

data of Sentinel-1 and the rice growth stages can be expressed as follows: 
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𝑅𝑖𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑠𝑡𝑎𝑔𝑒𝑠 (𝑀𝑂𝐷13𝑄1/𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙1) ~ 𝑁𝐷𝑉𝐼 + 𝐸𝑉𝐼 + 𝑇0 +

𝑇1 + 𝑇2. 
 

 

(4) 

The two models were trained with the parameter cost penalty (2n with n = 1 to 10) to define 

trade-offs between model complexity and error and Sigma (2−25, 2−20, 2−15, 2−10, 2−5, 0) for 

smoothing the vector (Mountrakis et al., 2011). Moreover, the resultant models were cross-

validated with the leave-one-out cross-validation method to ensure an unbiased result. The 

highest accuracy model was selected to be used to classify rice growth stages on the satellite 

dataset. 

4.4.3 Generating multitemporal maps for rice growth stages by integrating Sentinel-

2/MOD13Q1/Sentinel-1  

The final paddy growth stage maps were preferred to be based on Sentinel-2 classification 

results due to their better resolution than MOD13Q1. However, temporal gaps in the 

Sentinel-2 data frequently occur due to cloud coverage and shadows. These gaps were filled 

with the prediction maps generated from the integration of MOD13Q1 and Sentinel-1, 

which has the same spatial resolution using the resampling technique. The Sentinel-2-based 

rice growth stage classification was filtered for pixels that had not been bare land for a 

period 120 days (t1) and 150 days (t2) for the East Area and West area, respectively (Figure 

4.5). The timeline of each processing multitemporal map for a 16-day period from 10 June 

– 29 September 2018 can be seen in Table 4.4. 
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Figure 4.5 The flowchart of rice detection and the integration of Sentinel-

2/MOD13Q1/Sentinel-1. 

The differences between time windows were due to different rice cultivation between those 

areas during the dry season. The East Area has limited time to flood the rice field (<20 

days) compared to the West Area (20–40 days). Cloud and shadow were removed using 

the scene classification band. The Sentinel-1 VH was stacked up to find the lowest VH 

value (VHmin) over the time window t1 and t2 (Liu et al., 2016). Low radar backscatter 

signal can be associated with both the water/vegetative stage due to radar energy reflected 

off and bare land due to penetration radar energy on dry land (Rudiyanto et al., 2019), 
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making classification using only backscattering sensor data challenging. This confusion 

can be reduced by utilizing Sentinel-2-based rice growth stage classification. If the VHmin 

was higher than −19 dB and the rice growth stages are reproductive or ripening, then the 

pixel value will be replaced by a non-rice planting class, and others would have the rice 

growth stages value from Sentinel-2 maps. This step separates the maize or soybean in the 

reproductive or ripening phase because the spectral profile is nearly the same as rice’s 

profile, as illustrated in Figure 4.6 (Liu et al., 2016; Rudiyanto et al., 2019). 
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Table 4.4 Timeline of remote sensing images processed in 2018. 

No Period Sentinel-2 MOD13Q1 Sentinel-1 (T0) 
Sentinel-1  

(T-1) 

Sentinel-1  

(T-2) 

Rice Planting 

Detection 

1 10 – 25 June  11 – 14 June  10 – 25 June  10 – 20 June  25 May – 4 June  9 – 19 May  
11 February – 11 

June  

2 26 June – 11 July 26 – 29 June  
26 June – 11 

July  
26 June – 6 July  10 – 20 June  

25 May – 4 

June  

26 February – 25 

June  

3 12 – 27 July 13 – 16 July  12 – 27 July  12 – 22 July  26 June – 6 July  10 – 20 June  
15 March – 12 

July  

4 
28 July – 12 

August 

28 July – 12 

August  

28 July – 12 

August  

28 July – 7 

August  
12 – 22 July  

26 June – 6 

July  

30 March – 27 

July  

5 13 – 28 August 
13 – 16 

August  
13 – 28 August  13 – 23 August  

28 July – 7 

August  
12 – 22 July  

15 Apr – 12 

August  

6 
29 August – 13 

September 

30 August – 2 

September  

29 August – 13 

September  

29 August – 8 

September  
13 – 23 August  

28 July – 7 

August  

2 May – 29 

August  

7 
14 – 29 

September 

14 – 16 

September  

14 – 29 

September  

13 – 23 

September  

29 August – 8 

September  

13 – 23 

August  

17 May – 13 

September  

Total 
10 June – 29 

September 

11 June – 16 

September 

10 June – 29 

September 

10 June – 23 

September 

25 May – 8 

September 

9 May – 23 

August 

11 February – 13 

September 
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In some instances, we found that even the complete Sentinel-2 and MOD13Q1/Sentinel-1 

was unable to have cloud-free data every 16-day period. Thus, we used rice’s detection 

result to replace the cloud pixels. If the VHmin was lower than −19 dB, the pixel would be 

marked as the rice planting class. Otherwise, the cloud pixels were marked as another crop 

class. This resulted in a seven-class map, including bare land, flooding, vegetative, 

reproductive, ripening, rice planting, and other crops. The integration of Sentinel-

2/MOD13Q1/Sentinel-1 will have more rice growth stages data than the Sentinel-2 rice 

growth stage model alone. 

 
Figure 4.6. The example of rice detection workflow for each pixel with vertical-

horizontal backscattering (VH) values. The blue line is the example of a non-rice 

cultivation class (-7° 10' 34.9",111° 52' 55.42"), and the orange line is the example of a 

rice cultivation class (-6° 27' 57.27",108° 8' 56.64"). 

4.4.4 Accuracy assessment and temporal changes 

The accuracy of the Sentinel-2, MOD13Q1/Sentinel-1 model, and rice planting detection 

were tested using the comparison of predicted values and ground-reference data. By using 
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the confusion matrix, the overall accuracy, user’s accuracy (UA), and producer’s accuracy 

(PA) can be calculated as suggested by (Foody, 2002; Olofsson et al., 2014; T. Sun et al., 

2017). The test data for the Sentinel-2 model is 127 points, and MOD13Q1/Sentinel-1 is 

138 points. 

The temporal changes of predictions maps were reclassified into four classes: (1) No 

Change, there is no change between stages; (2) change correctly, the stages change into 

progressively according to the common practices of rice cultivation in Figure 4.1; (3) 

change incorrectly, the stages change into two stages forward or back to previous stages; 

and (4) cloud and shadows, one of the images have cloud/shadows. Thus, the average of 

no change, change correctly, and change incorrectly can be calculated. The consistency of 

the map of Sentinel-2 was tested by comparing two images of different 5, 10, 15, 20, 25, 

and 30 lag-days, and the Sentinel-2 / MOD13Q1 / Sentinel-1 maps were 16-day lag-days, 

respectively. The formulas of consistency and inconsistency as follows: 

No change (%)= 
∑ Area of no change

∑ All area
x100%, (5) 

Change correctly (%)= 
∑ Area of changed correctly

∑ All area
x100%, (6) 

Consistency (%)= 
∑ Area of no change+∑ Area of changed correctly

∑ All area
x100%, (7) 

Inconsistency (%)= 
∑ Area of changed incorrectly

∑ All area
x100%. (8) 

A high consistency value is better since the prediction model can accurately predict the 

growth stages in current and previous times. 
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4.5 Results 

4.5.1 Spectral bands 

Figure 4.7 (a) provides the mean and deviation of reflectance values for different rice 

growth stages based on the ground truth dataset. The result indicates that five classes have 

distinctive spectral features with significant variability. The reflectance profiles of bare 

land and flooding are different from rice growth stages (vegetative, reproductive, and 

ripening) as the rice growth stages have the higher mean value on Red Edge 3, NIR, and 

SWIR1 band. The flooding class displays the lowest reflection on the NIR band due to 

almost no reflection off from the vegetation. Moreover, the spectral bands of rice growth 

stages are concurrent with a multi-angle spectrometer from Sun et al. (T. Sun et al., 2017), 

except for the flooding phase because of the different rice management in the study area. 

The spectral trend in vegetative and reproductive phases followed a similar pattern.  

The averages of NDVI and EVI values can be seen in Figure 4.7 (b). It shows that 

bare land and flooding have similar NDVI values on average but are different on 

EVI, which indicates that EVI has a more significant role in separating bare land 

and flooding (Xiao et al., 2003). The NDVI and EVI values for rice growth stages 

follow the common rice growth stages values where the vegetative stage has the 

lowest values and the highest values are the reproductive stage due to the dense 

canopy. Lastly, the ripening stage is in the middle as it changes the vegetation to 

golden colour (Qiu et al., 2014).  

Figure 4.7 (c) shows the relationship between rice growth stages in three consecutive 

acquisition dates. It shows that the bare land, ripening, and reproductive stages have 

backscattering values >−19 dB, meaning the surface has relatively dense biomass 

over 24 days. The bare land is decreasing, and otherwise, ripening and reproductive 
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is decreasing. The main feature is the flooding class, which shows the lowest 

backscattering value on the previous 24 days and increases afterwards. The 

backscattering values on the vegetative stage were stable <19 dB, which shows the 

low scattering due to specular reflection (Hoang et al., 2016). 

 

Figure 4.7 (a) The means of spectral bands from Sentinel-2 values, (b) the means of 

NDVI and EVI values from MOD13Q1, and (c) the means of Sentinel-1 VH values 

regarding bare land, flooding, and rice growth stages. The bands are offset for 

visualization and error bars represent standard error. 
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4.5.2 Accuracy assessment of rice growth stages model 

Overall, the accuracy of the Sentinel-2-based model is higher than the combined 

MOD13Q1/Sentinel-1 model (Table 4.5). The former can reach a high overall accuracy of 

90.6% for all rice growth stages (except ripening) from the producer’s accuracy. The 

ripening stage is often misclassified with vegetative and reproductive stages. On the other 

hand, the MOD13Q1/Sentinel-1 model has an overall accuracy of 78.3%, which is lower 

due to confusion between the ripening class and the bare land stage. However, the 

MOD13Q1/Sentinel-1 model can predict the reproductive stage with high accuracy (97.1% 

for PA and 84.6% for UA).
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Table 4.5 The confusion matrix performance on the test dataset on Sentinel-2 and MOD13Q1/Sentinel-1. 

  Reference Data  

 Classes Bare Land Flooding Vegetative Reproductive Ripening Sum UA (%) 

 (a) Sentinel-2 

Predicted  Bare land 32 0 0 0 1 33 97.0 

data Flooding 0 21 0 0 0 21 100.0 

 Vegetative  1 0 16 0 4 21 76.2 

 Reproductive 0 0 2 35 3 40 87.5 

 Ripening 0 0 0 1 11 12 91.7 

 Sum 33 21 18 36 19 127  

 PA (%) 97.0 100.0 88.9 97.2 57.9   

 OA (%) 90.6       

 (b) MOD13Q1/Sentinel-1 

Predicted Bare land 31 1 5 0 5 42 73.8 

data Flooding 0 18 3 0 0 21 85.7 

 Vegetative  2 2 15 0 0 19 78.9 

 Reproductive 0 0 3 33 3 39 84.6 

 Ripening 4 0 1 1 11 17 64.7 

 Sum 37 21 27 34 19 138  

 PA (%) 83.8 85.7 55.6 97.1 57.9   

 OA (%) 78.3       
Note: OA= Overall accuracy, UA = User’s accuracy, and PA = Producer’s accuracy.
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The Sentinel-2 rice growth stage model was able to capture the variation of different rice 

growth stages, as shown in Figure 4.8. The map of a particular area on the West Area shows 

that the vegetative stage was recorded on 1–26 June 2018, followed by the reproductive 

stage on 1 – 21 July 2018, and then the ripening stage until 10 August 2018. The models 

show that the land was harvested on 15 August 2018.  

Figure 4.9 shows that the paddy area was surrounded by a non-paddy class as in the East 

Area, and the irrigation becomes scarce on second rice planting. The vegetative stage was 

captured on 3–23 June 2018. Then, the reproductive stage was 28 June – 23 July 2018. The 

process of ripening happened between 2 and 17 August 2018. Afterwards, the paddy area 

becomes bare land or host to other crop types. 



 

110 

 

 
Figure 4.8 Example of a small area of temporal rice growth stage maps based on the 

Sentinel-2 model on the West Area between 1 June and 24 September 2018 every five 

days. 
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Figure 4.9 Example of a small area of temporal rice growth stages maps based on the 

Sentinel-2 model on the East Area between 3 June and 26 September 2018 every five 

days. 
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4.5.3 Temporal changes 

The temporal analysis of Sentinel-2 shows that the model was able to capture the change 

classes with correct ranges of 83 – 90% (Table 4.6) of the time. The temporal consistency 

decreases with the time lag increase. The gradual decrease of the non-change area from 5 

to 16 days also confirms that the model can classify the change of rice growth, as shown in 

Figures 4.10 and 4.11. The West Area has a better consistency result since the irrigation 

schedule is stable, unlike the East Area where irrigation depends on rain.  

On the other hand, the temporal analysis of Sentinel-2/MOD13Q1/Sentinel-1 proves that 

consistency is high (84.15%), which is comparable with the Sentinel-2 consistency on the 

15-day period (87.91%). Table 4.6 also indicates that high consistency was achieved from 

the West Area and East Area, which suggests that the detection of the non-rice planting 

class is working well in the East Area. Moreover, Figures 4.7 and 4.8 show that final 

classification images from the integration of the Sentinel-2/MOD13Q1/Sentinel-1 model 

can deliver a rice growth stage map without cloud and shadows at a 10-m resolution. The 

Sentinel-2 model was able to fill in >80% of the study area except on 26 June, 28 July, and 

14 September 2018 in the West Area (Figure 4.7). Moreover, the East Area map shows that 

the rice field area is dominantly on bare land and non-rice planting except on the area on 

the north of the East Area, where rice planting can be irrigated with pumping water from 

the near river (Figure 4.8).
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Table 4.6 List of the average of performance from temporal changes analysis of (a) Sentinel-2 and (b) Sentinel-2/MOD13Q1/Sentinel-1. 

Time 

Lag 
N No Change (%) Change Correctly (%) Consistency (%) Inconsistency (%) 

 (a) Sentinel-2 

  WA EA Avg. WA EA Avg. WA EA Avg. WA EA Avg. 

5 23 58.72 69.22 63.90 34.00 18.82 26.48 92.72 88.04 90.39 7.28 11.96 9.61 

10 22 50.49 68.33 59.35 40.80 18.97 29.96 91.29 87.30 89.31 8.71 12.70 10.69 

15 21 44.06 63.41 53.68 46.47 21.86 34.23 90.53 85.27 87.91 9.47 14.73 12.09 

20 20 40.57 62.24 51.40 48.79 22.26 35.53 89.36 84.50 86.93 10.64 15.50 13.07 

25 19 39.02 55.41 47.22 48.36 26.05 37.21 87.39 81.47 84.43 12.61 18.53 15.57 

30 18 35.09 55.77 45.43 50.74 24.92 37.83 85.83 80.70 83.27 14.17 19.30 16.73 

 (b) Sentinel-2/MOD13Q1/Sentinel-1 

16 6 60.27 65.1 62.64 24.26 18.75 21.50 84.52 83.77 84.15 15.48 16.23 15.85 

Note: WA= West Area, EA = East Area, and Avg.=Average. 
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Figure 4.10 Temporal map of rice growth stages based on Sentinel-

2/MOD13Q1/Sentinel-1 on the West Area. 

 

Figure 4.11 Temporal map of rice growth stages based on Sentinel-

2/MOD13Q1/Sentinel-1 on the East Area. 
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4.6 Discussion 

4.6.1 The Performance of integrating Sentinel-2/MOD13Q1/Sentinel-1 for mapping 

rice growth stages 

High-resolution multitemporal images of rice growth stages are essential to improve rice 

production. Although optical images are less favourable for providing continuous images 

in tropical regions, this research developed a new method to generate multitemporal maps 

for rice growth stages across Java Island using multisource remote sensing data (Sentinel-

2/MOD13Q1/Sentinel-1). This method outperforms a single source of remote sensing 

information in a real-world application level on rice growth stage mapping as confirmed 

with previous results, especially to fill the missing data, increasing the overall accuracy by 

2–5% (Cai et al., 2019; Lopes et al., 2020; Orynbaikyzy et al., 2019). Previous research 

reported that using single-date data for creating rice maps is not an adequate strategy for 

mapping multitemporal implementation. These rice growth stage maps showed temporal 

consistency even without using the extended temporal composite vegetation index or 

backscattering profile series. This workflow works best on the paddy rice area, which is 

often flat and water covered. The water cover can be picked up by the Sentinel-1 VH signal 

and improve the temporal frequency of observation, and thus the overall rice growth stage 

models. Other advantages of this model are that it can be rolled out to cover larger areas 

(i.e., entire Southeast Asia) with the same farm practices and without depending on a clean 

time series of the vegetation index.  

Increasing the temporal frequency of Sentinel-1 images can improve the accuracy of rice 

growth stages since the backscattering profiles were more accurately determined, 

particularly on the vegetative stage during the dry season, such as the East Area, where 

water is scarce. Moreover, Ndikumana, Ho Tong Minh, Baghdadi, et al. (2018) reported 

that Sentinel-1 with a 6-day revisit cycle can produce a rice map with an 88% accuracy for 

rice fields in France, which better compares with the 12-day revisit cycle from the study 

from Clauss et al. (2018) with an 83% accuracy.  

It is not surprising that the Sentinel-2 based model produced higher accuracy than the fusion 

of MOD13Q1 and Sentinel-1 due to the red edge bands with high spatial resolution. These 

bands can enhance the detection of capturing canopy chlorophyll content better, as 

suggested by Frampton et al. (2013) and (Zhou et al., 2017), which enables separation of 
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the rice growth stages. The accuracy from the fusion of MOD13Q1 and Sentinel-1 was 

higher than MODIS information alone, which indicates the complementary information 

from Sentinel-1. This high accuracy is prominent for the flooding class due to the coarse 

resolution of the MOD13Q1 data, allowing a more significant portion of mixed pixels to 

occur compared to the 10-m Sentinel-2 data. The prediction maps from MOD13Q1 and 

Sentinel-1 were used to fill the missing data or for cloudy pixels of the Sentinel-2.  

The consistency of Sentinel-2 has a negative correlation between lag days. The 5-day lag 

showed the highest consistency percentage and slowly decreased to the 30-day lag-time 

due to the unchanged stages. Moreover, the correct changes became lower and less 

consistent over the lag days. This result demonstrated that the models could detect the 

changes in growth stages over time and still have the increased consistency (83.27%) over 

30 consecutive days. Moreover, the integration of Sentinel-2/MOD13Q1/Sentinel-1 shows 

an increase the consistency (2.54%) compared with the 5-day lag consistency percentage. 

4.6.2 The implication of satellite-based monitoring in tropical countries 

The tropical regions are challenging for optical satellite-based remote sensing due to 

persistent cloud coverage. Most of the study relies on high-frequency temporal remote 

sensing data to capture rice growth changes, which are hampered by observation gaps, 

which can be filled using radar-based imagery (e.g., S1). However, radar-based data also 

has some limitations, such as geometric distortion and a different response to bare land 

(Perbet et al., 2019). Our finding shows that by merging three sensors, we can deliver 

information on rice growth stages for near real-time monitoring for the Sentinel-2 model, 

and better accurate information in periodical data for Sentinel-2/MOD13Q1/Sentinel-1 

data. Furthermore, this study successfully filled the missing data up to 28.2% in the West 

Area and 8.8% in the East Area (Figure 4.12).  
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Figure 4.12 Pixel-based model compositions of temporal rice growth stages map of 

Sentinel-2/MOD13Q1/Sentinel-1 on final paddy condition map on 10 June – 30 

September 2018. 

Our methodology focuses on developing a groundwork for mapping rice growth stages for 

near-real-time monitoring, which is challenging to accomplish in an operational level due 

to the short duration of rice cultivation. Moreover, we focused on making it feasible to 

incorporate with cloud-based computing or stand-alone workstations and less human 

interference. Our study is in line with the works of Rudiyanto et al. (2019). They have 

succeeded in mapping rice growth stages from multitemporal Sentinel-1 images with 

unsupervised classification for one month with the same area with cropping pattern 

information. Significantly, our methodology outperformed the established rice monitoring 

systems in Indonesia based on MODIS (LAPAN, 2019) or Landsat rice monitoring 

(PUSDATIN, 2019), as our results created rice growth stage maps at a 10-m spatial 

resolution with a 16-day period, less cloudy data, and providing present cultivation crop. 

Future research should be focused on fusing the multitemporal and multiresolution of 

satellite observation to increase data availability and accuracy with <100-m spatial 

resolution. Our study shows that it is possible to fuse the information of the feature level 

using machine learning. Our experiment showed that the desktop personal computer with 

16 GB RAM could classify the image with high speed (17,770 ha/min). This method can 

also be employed for other remote sensing data, such as PROBA-V or WorldView 

missions.  

This technology enables users to compile information interactively via a user interface on 

a dedicated website or mobile application, resulting in significantly reduced wait times. 
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Moreover, the classifier of machine learning can be chosen easily with other open-source 

machine learning packages, such as TensorFlow (Abadi et al., 2016) with Keras (Ketkar, 

2017) or Scikit-learn (Pedregosa et al., 2011). Importantly, the integration of rice growth 

stages with other information, such as the recommended cropping calendar, climate 

predictions, weather reports, price trend maps, insurance risk maps, and other in situ 

knowledge, will improve the rice productivity supporting regional food security. 

4.6.3 Limitation of satellite remote sensing for rice mapping 

This research has some limitations, such as the availability of cloud-free images. These 

limitations are further hampered by the fact that there is a bias between the seasons. For 

example, most optical observations concentrate on the dry season, while only coarser 

resolution data are available (MODIS and RADAR) on the wet season. Accordingly, some 

areas with different surface reflectance may be misclassified if it is applied to images in the 

wet season, such as a wetland. Some traditional farmers switch flooding and drying again, 

and conduct final flooding before transplanting. This study’s accuracy is highly dependent 

on the existing rice field map, and, over time, some area could be converted into an urban 

or industrial area. Long-term rice mapping using multitemporal satellite images has been 

explored in some studies (Dong et al., 2016; Onojeghuo et al., 2018; Zhou et al., 2016) with 

high accuracy, which can be used to correct existing rice field maps every five years.  

The East Area has high fragmentation of different crops on the rice field area especially on 

the north area of Nganjuk Regency (Ramadhani et al., 2020a), which caused problems in 

classifying between the vegetative stage of rice and shallot cultivation since both crop types 

need a significant time of water cover to keep the soil moisture. Hence, they are spectrally 

similar at a specific time, mostly in the early second planting season. Moreover, the 

fragmented rice field paddocks with an area <0.5 ha made it difficult to be separated 

automatically in a large area. Thus, additional information is required, including the use of 

unmanned aerial vehicles (UAVs) (Zhou et al., 2017), ongoing and planned hyperspectral 

satellite missions (e.g., PRecursore IperSpettrale della Missione Applicativa (Cogliati et 

al., 2021; Pignatti et al., 2013)- PRISMA and Environmental Mapping and Analysis 

Program - EnMAP (Guanter et al., 2015), and webcams (Lebourgeois et al., 2008), for a 

more apparent separation between such classes.  
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4.7 Conclusion 

There is a need for timely and accurate spatial information on rice growth stages. This paper 

has provided an automatic process to build multitemporal maps for rice growth stages with 

a 10-m spatial resolution, which is sufficient for crop monitoring at the local and national 

levels in developing countries. This information is useful for stakeholders using a 

combination of Sentinel-2, MOD13Q1, and Sentinel-1 for a near real-time and high 

accuracy, consistency and temporal frequency (16-day period). Furthermore, the Sentinel-

2 model in this study was implemented in Indonesia, with 7.4 million hectares of 

autonomous data retrieving, analysis, and dissemination, which are available on a website 

(http://katam.litbang. pertanian.go.id/sc/). 

The research presented here is based on open-access satellite data and software, improving 

its accessibility and uptake by end-users in developing countries. Improving the speed of 

the mapping process can provide an effective tool for stakeholders and decision-makers to 

coordinate the distribution of machinery, fertiliser, and water more efficiently. The 

estimation of rice production can be predicted with better accuracy to control the export 

and import of rice trade. In addition to the climate change issue, the result is applied as an 

input of prediction of production and food security in a fragile area, such as drought and 

flooding, using the temporal analysis or becoming a part of the ASIA Rice project (asia-

rice.org) to support the dissemination among its members.  
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Chapter 5 Mapping a Cloud-Free Rice Growth Stages 

Using the Integration of PROBA-V and Sentinel-1 and 

Its Temporal Correlation with Sub-District Statistics  

 

The objective of chapter 5 is to investigate a new method for mapping cloud-free rice 

growth stages using the integration of PROBA-V and Sentinel-1 and its temporal 

correlation with sub-district statistics. This chapter is based on a published paper: 

Ramadhani, F., Pullanagari, R., Kereszturi, G., & Procter, J. (2021). Mapping a 

Cloud-Free Rice Growth Stages Using the Integration of PROBA-V and Sentinel-

1 and Its Temporal Correlation with Sub-District Statistics. Remote Sensing, 13(8), 

1498. https://www.mdpi.com/2072-4292/13/8/1498  

Supplementary data and source code can be downloaded on https://github.com/Fadhlullah 

Ramadhani/Remote-sensed-correlation-statistics.  

Participating authors: 

• Fadhlullah Ramadhani: Conceptualization, investigation, data curation, formal 

analysis, methodology, software, visualization, and writing—original draft preparation 

• Reddy Pullanagari: Conceptualization, methodology, supervision, and writing—

review and editing,  

• Gabor Kereszturi: Conceptualization, methodology, supervision, visualization, and 

writing—review and editing, 

• Jonathan Procter: Supervision, and writing – review & editing 

  

https://github.com/Fadhlullah%20Ramadhani/Remote-sensed-correlation-statistics
https://github.com/Fadhlullah%20Ramadhani/Remote-sensed-correlation-statistics
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Abstract 

Monitoring rice production is essential for securing food security against climate change 

threats, such as drought and flood events becoming more intense and frequent. The current 

practice to survey an area of rice production manually and in near real-time is expensive 

and involves a high workload for local statisticians. Remote sensing technology with 

satellite-based sensors has grown in popularity in recent decades as an alternative approach, 

reducing the cost and time required for spatial analysis over a wide area. However, cloud-

free pixels of optical imagery is required to produce accurate outputs for agriculture 

applications. Thus, in this study, we propose an integration of optical (PROBA-V) and 

radar (Sentinel-1) imagery for temporal mapping of rice growth stages, including bare land, 

vegetative, reproductive, and ripening stages. We have built classification models for both 

sensors and combined them into 12-day periodical rice growth-stage maps from January 

2017 to September 2018 at the sub-district level over Java Island, the top rice production 

area in Indonesia. The accuracy measurement was based on the test dataset and the 

predicted cross-correlated with monthly local statistics. The overall accuracy of the rice 

growth-stage model of PROBA-V was 83.87%, and the Sentinel-1 model was 71.74% with 

the Support Vector Machine classifier. The temporal maps were comparable with local 

statistics, with an average correlation between the vegetative area (remote sensing) and 

harvested area (local statistics) is 0.50 and lag time 89.5 days (n = 91). This result was 

similar to local statistics data, which correlate planting and the harvested area at 0.61, and 

the lag time as 90.4 days, respectively. Moreover, the cross-correlation between the 

predicted rice growth stage was also consistent with rice development in the area (r > 0.52, 

p < 0.01). This novel method is straightforward, easy to replicate and apply to other areas, 

and can be scaled up to the national and regional level to be used by stakeholders to support 

improved agricultural policies for sustainable rice production. 

Keywords: rice growth stages; machine learning; monitoring; PROBA-V; Sentinel-1; 

SVM  



 

123 

 

Table of contents for Chapter 5 

5.1 Introduction ................................................................................................................124 

5.2 Background, study area, and data ..............................................................................126 

5.2.1 Rice growth stages ......................................................................................126 

5.2.2 Study area ....................................................................................................127 

5.2.3 Satellite imagery .........................................................................................128 

5.2.4 Local statistics .............................................................................................130 

5.3 Methods .....................................................................................................................130 

5.3.1 Data sampling .............................................................................................132 

5.3.2 Building classification models ....................................................................132 

5.3.3 Accuracy assessment...................................................................................133 

5.3.4 Integration map of PROBA-V and Sentinel-1, and time series modulator .133 

5.3.5 Cross-correlation .........................................................................................134 

5.4 Results ........................................................................................................................136 

5.4.1 Spectral bands of PROBA-V and VH backscattering .................................136 

5.4.2 Accuracy of the machine learning model ....................................................137 

5.4.3 Rice growth stages maps from the integration of PROBA-V and Sentinel-1

 .............................................................................................................................139 

5.4.4 Time-series rice growth stages area ............................................................139 

5.4.5 Results of cross-correlation analysis ...........................................................143 

5.5 Discussion ..................................................................................................................146 

5.6 Conclusions ................................................................................................................149 

5.7 Acknowledgements ....................................................................................................150 

5.8 Supplementary material .............................................................................................151 

 

 

  



 

124 

 

5.1 Introduction 

Rice (Oryza sativa L.) is one of the main crops grown in the tropical and subtropical area, 

with more than half the world population depending on rice as a staple food (Normile, 

2008). However, global production is close to its limits while the dependent population is 

expected to grow up to 9.26 billion by 2050 (FAO, 2020). Moreover, urbanization, 

depleting water resources, climate change, and natural disasters have been threatening the 

sustainable production of rice despite its increased production by introducing new cultivars, 

chemical fertiliser, and better irrigation. Near-real-time and accurate information about rice 

growth stages is vital to support stakeholders to make better decisions to maximize 

production volumes and secure food production. 

Rice fields have been traditionally monitored by a local field statistician to calculate the 

planting and harvesting area from the local to a national scale. However, this is a long and 

exhausting field-sampling process that may not be compatible with the current and future 

situation where climate change may cause reduced agricultural productivity in developing 

countries by 2080 (based on emissions-forecasting worst-case scenarios) (Parry et al., 

2005). 

Remote sensing has been widely used to monitor crops, including projects such as 

Monitoring Agricultural ResourceS (MARS) by the EU (De Boissezon, 1995; Van der 

Velde & Bareuth, 2015). They have developed an automated system for rice monitoring 

for Europe, which has limited portability for tropical countries with limited free satellite 

image sources and high cloud occurrences. Other rice monitoring projects exist, such as 

Geo Global Agricultural Monitoring by multiple international organizations (Whitcraft et 

al., 2015) and CropWatch by China (Wu et al., 2014). However, the monitoring system 

only works for dedicated countries, making it difficult to be developed and replicated to 

other countries, especially for developing ones. 

In recent years, many attempts have been made for mapping rice areas using multitemporal 

Synthetic-aperture radar (SAR) images based on backscattering profiles (Bazzi et al., 2019; 

Inoue et al., 2020a; Jo et al., 2020; Lasko et al., 2018; Mansaray et al., 2020; Nguyen et al., 

2016; Phung et al., 2020; Satalino et al., 2012; Wakabayashi et al., 2019). Compared to 

optical sensors, the SAR sensors such as Sentinel-1 (Lasko et al., 2018; Mandal et al., 

2018), TerraSAR-X (Koppe et al., 2013; Yuzugullu et al., 2015) and Radarsat-2 (Li et al., 
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2012; Wu et al., 2011; Y. Zhang et al., 2017) have the advantage of penetrating through the 

clouds, which is the major obstacle in monitoring efforts. The previous studies reported 

that backscattering profiles could detect rice area (Bazzi et al., 2019; Mascolo et al., 2019; 

Son et al., 2017; G. Zhang et al., 2020), rice cropping pattern (Rudiyanto et al., 2019; 

Sianturi et al., 2018; Son et al., 2017), and rice growth stages (Phung et al., 2020; Rudiyanto 

et al., 2019) with high precision. Based on these results, Remote sensing-based Information 

and Insurance for Crops in Emerging economies (RIICE) has been developing a method 

with Sentinel-1 to map rice areas in six Asian countries (Holecz et al., 2013; Nelson et al., 

2014). 

Several studies highlighted that multiple-sensor data could increase the accuracy by 3–9% 

of rice mapping under different landscapes (Cai et al., 2019; Luo Liu et al., 2020; Perbet et 

al., 2019; X. Yang et al., 2020). For example, optical sensors can enhance or confirm the 

rice-specific backscattering profile with SAR data challenging to interpret in a complex 

area (Rudiyanto et al., 2019). Furthermore, the vertical-horizontal/vertical-vertical 

(VH/VV) backscatter images can detect inundating of rice area using the spikes of 

backscatter values (Cai et al., 2019; L. Mansaray et al., 2017). On the other hand, vegetation 

indices such as Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation 

Index (NDVI) from Sentinel-2 or Landsat-8 can also detect changes by using a phenology 

method for rice cultivation by capturing the increase and decrease in indices values (L. 

Mansaray et al., 2017; Tian et al., 2018). However, the phenology method requires long 

temporal data (>3 months), which may challenge building automated rice growth-stage 

detection methods. The Project for On-Board Autonomy-Vegetation (PROBA-V) is a 

satellite mission to monitor vegetation globally with a 2–5 days revisit time and 100 m 

spatial resolution. It has been used for mapping land use classification using vegetation 

indices with better spatial resolution than the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) based products (Bórnez et al., 2020; Shimabukuro et al., 

2020). Despite the advantages of PROBA-V, the application of this technology for rice 

growth stages is limited. 

The Indonesian Ministry of Agriculture has been developing several rice monitoring 

projects utilizing remote sensing technology to update food production statistics. The first 

project they supported undertook rice monitoring with the MODIS with Terra sensor with 

a spatial resolution of 250 m to map rice growth stages in 2012 (https://sipandora 
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.lapan.go.id/site/fasepertumbuhanpadi, accessed date: 11 November 2020) with accuracy 

<70% (PUSDATIN, 2019). In 2016, another project was undertaken using Landsat-8 

Operational Land Imager (OLI) using NDVI threshold (http://sig.pertanian.go.id/, accessed 

date: 21 December 2020 ) with accuracy <60% without cloud masking (PUSDATIN, 

2019). However, both projects have one major limitation; cloud occurrence causes 

uncertainty over a specific timeframe. 

The Indonesian Agency for Agricultural Research and Development has recently launched 

a rice monitoring system using Sentinel-2, allowing users to have detailed information 

about rice conditions in 10 m resolution (S-2 RGS). The S-2 RGS uses a machine learning 

model to classify rice conditions using ten bands of Sentinel-2 as a predictor (Ramadhani 

et al., 2020a). The information can be accessed freely online and on android with an 

interactive map (http://katam.litbang.pertanian.go.id/sc/, accessed date: 15 January 2021). 

However, the existing monitoring approach is incapable of temporal tracking using local 

statistics due to missing data in some periods due to cloud and shadows, and the results are 

not consistent because they are unable to produce time-series data. 

This study aims to overcome these challenges by proposing a new workflow to integrate 

ground observations and high-frequency revisit optical sensors with PROBA-V and radar 

sensors such as Sentinel-1. Furthermore, images from both sensors are available on the 

Google Earth Engine (GEE), which is freely accessible for public use. Thus, the objectives 

of this study are as follows: building classification models for mapping the rice growth 

stages using the integration of PROBA-V and Sentinel-1; and measuring the correlation 

between the area of rice growth stages with local statistics at sub-district levels. This study 

will provide a foundation for mapping the rice growth stages accurately and making these 

available to the stakeholders for making better decisions when manual observations are 

limited. 

5.2 Background, study area, and data 

5.2.1 Rice growth stages 

The rice production cycle usually takes about 3–4 months, depending on the variety and 

environmental conditions, to grow from seed to mature plants. They experience three 

general phases of growth: vegetative, reproductive, and ripening (Bouman, 2019). Figure 

5.1 illustrates the rice growth phases and surface conditions in the rice fields (Kawamura 

http://sig.pertanian.go.id/
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et al., 2018). First, the seed is planted in a small bed and, after 25 days, is transplanted into 

the main rice field to produce a higher yield and reduce weed occurrences. The vegetative 

stage spans from seed germination to maximum tillering. The next stage is the reproductive 

stage, where the plant grows from panicle initiation to heading. The last phase is ripening. 

The young grain in the panicle starts to develop starch. The grain colour becomes gold and 

then it is harvested. Within this study, we added a bare land class to capture the dynamics 

of the changing land surface within rice fields. 

 

Figure 5.1 The rice growth stages with actual images from the field campaign. 

5.2.2 Study area 

The study area is located on Java Island, the leading rice producer in Indonesia, with a 

combination of irrigated and low land areas. The area consists of three regencies: 

Karawang, Subang, and Indramayu, with 309,046 ha in West Java Province (Figure 5.2), 

which is split into 91 sub-districts administratively (BPS-West-Java, 2018). The leading 

rice production areas are usually within the sub-districts in Indramayu (116,869 ha) and 

Subang (90,474 ha). Karawang (101,703 ha) is a regency with high land-use change rates 

due to industrialization and housing construction. The most significant paddy field area is 

Losarang, Indramayu, with 7244 ha, and the smallest is Cikampek, Karawang (416 ha). 

The average rice field area, over 91 sub-districts, is 3373 ha. 

The majority of the land area is irrigated and dominated by alluvial soils which are most 

suitable for rice cultivation. This comes from deposition from the Cimanuk, Citarum, and 

Cilamaya rivers. A state-owned company maintains the water distribution from the 

Jatiluhur dam in the south of the study area. The climate is monsoon with two seasons: the 



 

128 

 

wet and dry seasons, and is classified as tropical rainforest based on Köppen–Geiger 

climate classifications (Kottek et al., 2006). Paddy cultivation includes the use of short-

duration rice varieties such as IR64, Ciherang, glutinous rice, and other varieties 

(Rudiyanto et al., 2019; Sianturi et al., 2018). Fertiliser is applied twice during the 

vegetative stage, and chemical pesticides are used to remove pests. Crops are harvested 

using manual tools and labour. The rice crop is typically cultivated twice a year, with 

farmers starting sowing during the rainy season in November–December and harvested in 

January–February. The second sowing is undertaken in March–April and harvest from June 

to July. However, some areas have scheduled water irrigation which allows rice cultivation 

even in the dry season. The complete cropping pattern of the study area is well described 

in the previous study (Sianturi et al., 2018). 

5.2.3 Satellite imagery 

This study uses two multitemporal imagery sources: Project for On-Board Autonomy-

Vegetation (PROBA-V) and Sentinel-1 satellite imagery was downloaded directly from 

GEE storage within the period from January 2017 to August 2018. PROBA-V Top of 

Canopy dataset comes from Flemish Institute for Technological Research/European 

Satellite Agency (GEE id: VITO_PROBAV_C1_S1_TOC_100M). The product contains 

five bands, e.g., red (658 nm), near-infrared (NIR) (834 nm), blue (460 nm), short-wave 

infrared (SWIR) (1610 nm), and the NDVI values were calculated from the red band and 

NIR band (Meroni et al., 2016). This dataset comes from a composite of 300 m spatial 

resolution every two days and 100 m every five days, which has been corrected at the 

atmospheric and radiometric level (Sterckx et al., 2014). 
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Figure 5.2 The map of the rice area on the study area for Karawang, Subang, and 

Indramayu Regency. 

The Sentinel-1 dataset comes from the Copernicus project by the European Space Agency 

(ESA) as one of the space missions to monitor land on a global scale. Sentinel-1 has a dual-

polarization C-band Synthetic Aperture Radar (SAR) with two satellites in the same orbit 

to have shorter revisit times (6–12 days). The dataset has been processed with the Sentinel-

1 toolbox to remove thermal noise, calibrate radiometric problems, and correct the terrain 

(GEE id: COPERNICUS_S1_GRD). The dataset contains vertical-horizontal (VH) and 

vertical–vertical (VV) cross-polarization with Interferometric Wide Swath mode in order 

to have the largest area in one swath with 10 m resolution from a descending orbit dataset. 

A revised Lee filter was run to decrease speckle noise (Lee, 1981). In the next step, the 

Sentinel-1 (VH only) images were resampled to 100 m to match the PROBA-V’s 

resolution. 

The total number of images of PROBA-V and Sentinel-1 processed from 1 January 2017 

to 23 July 2018 were 598 and 132 images, respectively. All the PROBA-V and Sentinel-1 

processed images were masked with existing rice field maps from the official Indonesian 

Ministry of Agriculture, which come from high-resolution images obtained in 2010. The 

masking process was carried out to ensure that only rice fields remained within the image. 
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5.2.4 Local statistics 

The agriculture agencies at the regency level have been collecting rice statistics, including 

planting area, harvesting area, and productivity for each month at the sub-district level since 

the 1980s. The planting and harvesting data are from farmer-provided information to the 

local agriculture statistics group. The collated data report would be sent to the agricultural 

division at the regency, province, and national level for the Indonesian Central Bureau of 

Statistics and the Indonesia Ministry of Agriculture. 

The overall statistics of rice planting and harvested area are illustrated in Figure 5.3. The 

highest rice planting area between January 2017 to July 2018 was 94,428 ha in December 

2017, and the harvested area was 76,300 ha in March 2018 for all three regencies (K. I. 

Dinas Pertanian, 2018; K. K. Dinas Pertanian, 2018; K. S. Dinas Pertanian, 2018). 

 

Figure 5.3 The fluctuations between the rice planting and rice harvested area on 

Karawang, Subang, and Indramayu Regency from January 2017 to July 2018. 

5.3 Methods 

There are four steps to find the cross-correlation between rice growth stages and rice 

planting and harvested areas. The first step was collecting data from the field campaign to 
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generate the ground-truthing dataset. The second step is to build a statistical learning model 

to classify rice growth stages using images from PROBA-V and Sentinel-1 and ground-

truthing datasets. In the third step, the time-series rice growth stages prediction maps were 

generated, and sub-district level maps were calculated. The last step was to calculate cross-

correlation and map the correlation value to each sub-district to generate a correlated and 

lag-day distribution map, as shown in Figure 5.4. 

 

Figure 5.4 The workflow of methodology for rice growth stages mapping using PROBA-

V and Sentinel-1. 
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5.3.1 Data sampling 

The purposive random sampling was undertaken during a field campaign based on rice 

field area from Indonesia Ministry of Agriculture from 4 July to 31 July 2018, yielding 316 

points. The surveyor visited the designated points to take field photos and record the rice 

field surface conditions such as land preparation, bare land, flooding, vegetative, 

reproductive, ripening, or harvested using a GPS-enabled smartphone. The designated 

points should be uniform and wide enough to represent the distribution of the area for 

reducing the mixed pixel effect (Pi-Fuei et al., 2001). An example of a field survey under 

various conditions is shown in Figure 5.5. 

 

Figure 5.5 The examples of rice conditions in the field campaign. 

5.3.2 Building classification models 

The resulting data from the field surveys were labelled into four classes: bare land, 

vegetative, reproductive, and ripening, and then synchronized with the PROBA-V and 

Sentinel-1 dataset to the closest date. Thus, the dataset was used to build a prediction model 

using a machine learning classifier with the caret package in the R statistical program 

(Kuhn, 2008; Team, 2017) with leave-one-out cross-validation (LOOCV). The total dataset 

was divided into training (70%) and test (30%) datasets for building a training model and 

testing, respectively. Here, we used the Support Vector Machine (SVM) with the radial 

basis function kernel (SVM-RBF) classifier, which is one of the most used classifiers for 

solving multi-class problems developed by Vapnik (Cortes & Vapnik, 1995; Guyon et al., 

1992) and suitable for this application due to its flexibility of high variability and complex 

dataset (Onojeghuo et al., 2018; Son et al., 2017). Additionally, Griffiths et al. (2010) 

suggested that SVM have high accuracy when used with a small dataset. Moreover, the 

previous study shows that SVM has better performance than the neural network and 

random forest classifier (Ramadhani et al., 2020b). It could be used to create the 

automatization of rice growth stages map (Ramadhani et al., 2020a). The SVM-RBF has 
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two hyperparameters to increase separability between classes: Cost and Gamma, which 

need to be found using a grid search with initial values. 

A classification model was built using the five predictors of PROBA-V bands with 223 

points as a training dataset and 93 points as the test dataset. Another classification model 

was built using time series Sentinel-1 images. In contrast to the PROBA-V model, S-1 

VH1, VH2, and VH3 images were collected from three consecutive dates as predictors to 

build the S-1 model. The predictor VH1 refers to the sampling date, VH2 is the previous 

12-days VH data, and VH3 is the previous 24-days of VH data from the sampling date, 

respectively. The VH has better sensitivity to detect rice phenology than vertically emitted 

and vertically receiving (VV) due to cross-polarization having more signal depolarization 

in the rice canopy with multiple reflections (Nguyen et al., 2016; Son et al., 2017). 

5.3.3 Accuracy assessment 

The accuracy of PROBA-V and Sentinel-1 models were assessed using the comparison of 

predicted values from the training dataset and test dataset within pixels using the confusion 

matrix. The overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA) can 

be calculated as suggested by Foody (2002). 

5.3.4 Integration map of PROBA-V and Sentinel-1, and time series modulator 

Initially, rice growth stage maps were generated using PROBA-V, and then cloud pixels 

were filled with the S-1 prediction map. Consequently, time series maps were generated 

from the integration of both images. To increase the consistency of time series maps, a time 

series modulator was applied. The modulator’s work is to check whether the current map 

is consistent with the previous period map and correct it automatically. For example, if the 

previous map had a bare land class and the current map shows a ripening class, which is 

not consistent, the current map’s value was changed into a bare land class. This modulator 

also applied with ripening (the previous map)—reproductive class (the current map) and 

vegetative (the previous map)—ripening class (the current map). 

The prediction maps for rice growth stages were overlayed with sub-district maps. The 

intersect maps were calculated to obtain an area of rice growth stages over a 12-day period 

for each sub-district (using Geographic Information System software) to compare with the 

local statistical records. 
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5.3.5 Cross-correlation 

The similarity between rice growth stages and rice planting and harvesting area in time 

series was calculated using cross-correlation. Cross-correlation allows finding the best 

correlation and lag days between two-time series data. The time series pair datasets are 

from the generated rice growth-stage maps (vegetative, reproductive, and ripening) and 

time series from monthly locally collected statistics (planting area and harvested), as shown 

in Table 5.1. The lag days information with correlation index shows how strong the 

relationship between the two classes has the same temporal pattern but at different times.



 

135 

 

Table 5.1 The five time-series pair datasets. 

# Pair Name Time-Series 1  Time-Series 2 

1 Vegetative – Planting Vegetative area based on remote sensing Planting area based on local statistics 

2 Vegetative – Harvested Vegetative area based on remote sensing Harvested area based on local statistics 

3 Reproductive – Harvested Reproductive area based on remote sensing Harvested area based on local statistics 

4 Ripening – Harvested Ripening area based on remote sensing Harvested area based on local statistics 

5 Planting – Harvested Planting area based on local statistics Harvested area based on local statistics 
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The cross-correlation (r) on five pair datasets can be calculated as follows (Holmes & 

Ward, 2019): 

𝑟𝑘
𝑥𝑦

=

1
𝑛

∑ (𝑦𝑡 − 𝑦̅)(𝑥𝑡+𝑘 − 𝑥̅)𝑛−𝑘
𝑡=1

√𝑆𝐷𝑥𝑆𝐷𝑦

 (1) 

where 𝑟𝑘
𝑥𝑦

 = cross-correlation coefficient for a k period lag for x and y time series, 𝑦̅ = 

mean of y time series, 𝑦𝑡 = value of time series y on period t, 𝑥𝑡−𝑘 = value of time series k 

periods before period t 𝑥̅ = mean of x time series, 𝑆𝐷𝑥 and 𝑆𝐷𝑦 are the standard deviation 

of the x and y time series, respectively. The p-value with the two-tailed test was also 

calculated using the highest correlation value on a specific range for each pair of time 

series. 

In addition, distribution maps of the correlation and the lag time among sub-districts to 

show the spatial information were created to understand the spatial distribution. Moreover, 

the classification of correlation value can be grouped as follows: 1) high (0.6 < r ≤ 1.0), 

medium (0.4 < r ≤ 0.59), and low (r ≤ 0.39). 

5.4 Results 

5.4.1 Spectral bands of PROBA-V and VH backscattering 

Figure 5.6 (a) illustrates the distribution of surface reflectance of different rice growth 

stages. The graph shows that bare land and rice growth stages have distinctive spectral 

features. The bare land is significantly different from rice growth stages in the SWIR region 

due to its high surface reflectance, while the vegetative stage has lower values. On the other 

hand, reproductive and ripening phases have overly similar reflectance values. 

The backscattering of VH signatures over three consecutive acquisitions show that the 

vegetative stage has the lowest value (<−22 dB) due to water scattering from wet soil (Liu 

et al., 2016) (Figure 5.6 (b)). The reproductive stage tends to decrease from −18 to −21 dB, 

which is the same as the ripening phase but in the higher value range from −16 to −23 dB. 

Additionally, the bare land has a steady increase in backscattering value from −19 to −16 

dB due to less biomass on the ground (Soo Chin et al., 1998). The SAR data show a more 

significant separation between the reproductive and ripening phases than the optical data. 
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Figure 5.6 (a) Spectral band of PROBA-V related to rice growth stages and (b) 

backscattering of VH on three consecutive dates. 

5.4.2 Accuracy of the machine learning model 

Table 5.2 shows the accuracy of rice growth stages of the PROBA-V model has higher OA 

(83.87%) than the Sentinel-1 model (71.74%). The majority of rice growth stages were 

predicted with high accuracy (>80%), except for the ripening stage with PA (50.00%) for 

the PROBA-V model. The UA of the ripening class shows the least accuracy than other 

classes. 

On the other hand, the rice growth stages of the Sentinel-1 model shows an acceptable PA 

and UA (>66%) for all classes except the ripening class. The highest PA was noticed with 

the bare land (75.00%) and the highest UA with the reproductive stage (80.77%). The 

vegetative stages are more likely to overlap with bare land due to the limitations of 

Sentinel-1 detecting the wet soil from land preparation and vegetative stage.
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Table 5.2 The confusion matrix performance on the test dataset on PROBA-V and Sentinel-1. 

 Rice Condition Bare Land Vegetative Reproductive Ripening Sum UA (%) 

Test data for PROBA-V with five predictors 

Predicted 

data 

Bare land 26 0 2 2 30 86.67 

Vegetative  2 19 0 1 22 86.36 

Reproductive 0 2 26 4 32 81.25 

Ripening 1 0 1 7 9 77.78 

Sum 29 21 29 14 93  

 PA (%) 89.67 90.61 89.67 50.00   

 OA (%) 83.87      

Test data for Sentinel-1 with three predictors 

Predicted 

data 

Bare land 21 6 2 2 31 67.74 

Vegetative  1 14 3 0 18 77.78 

Reproductive 2 1 21 2 26 80.77 

Ripening 4 0 3 10 17 58.82 

Sum 28 21 29 14 92  

PA (%) 75.00 66.67 72.47 71.43   

OA (%) 71.74      

Note: PA = Producer’s accuracy, UA = User’s accuracy, and OA = Overall accuracy.
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5.4.3 Rice growth stages maps from the integration of PROBA-V and Sentinel-1 

Figure 5.7 displays the predicted maps of different rice growth stages using PROBA-V 

alone and Sentinel-1 alone and the integration of both sensors data. The imaging dates are 

5–16 August, 17–28 August, and 29 August–9 September 2017. The PROBA-V in 5–16 

August 2017 is affected by cloud cover. Thus, the rice growth stage map of Sentinel-1 can 

be used to fill the gap (Figure 5.7). The Sentinel-1 based maps have a high similarity of 

PROBA-V on 17–28 August 2017, which show the prediction model can estimate the rice 

growth stages with acceptable accuracy. However, the downside of the Sentinel-1 rice 

growth stage map is less sensitive to the ripening phase (Figure 5.S4, See Supplementary 

material section). Nonetheless, the integration of two satellites data can significantly 

improve data continuity of the rice growth stages every 12-days (more maps are available 

on Supplementary material (Figures 5.S1–5.S16)). 

 

Figure 5.7 Example of integration PROBA-V and Sentinel-1 image on 5–16 August 

2017, 17–28 August, and 29 August–9 September 2017. 

5.4.4 Time-series rice growth stages area 

Figure 5.8 shows the temporal pattern of the rice growth stage area predicted from remote 

sensing images. In the Indramayu Regency, the bare land area increased steadily until April 
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2017 and then decreased. The second planting time was also captured in April–May 2017 

as the vegetative stages area increased on Indramayu and Subang Regency. Conversely, 

the Karawang Regency had a different peak of planting time in July 2017 (Figure 5.8). The 

harvested area in the three regencies also fluctuates and is lower than the vegetative area, 

except for Indramayu on April–May 2018. 

 

Figure 5.8 The temporal area of rice growth stages for Indramayu, Karawang, and Subang 

Regency from 1 January–23 July 2017. 

Figure 5.9 shows the planting and harvested area calculated from local statistics and remote 

sensing data (vegetative and ripening regions). The temporal trend was closely aligned with 

both methods. However, remote sensing data overestimated the vegetative area, which was 

almost double the actual rice planting area. This phenomenon is due to double counting of 

the vegetative stage from flooding to maximum tillering, lasting for four months. The 

ripening phase also has a similarity of paddy harvested area in three regencies in February 
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2017, August 2017, March 2018, and May 2018. However, it has less area than the paddy 

harvested area due to the ripening stage during the last 30 days. 

 

Figure 5.9 The comparison of temporal rice growth stages (vegetative and ripening) with 

local statistics (planting and harvested area) for Indramayu, Karawang, and Subang 

Regency from 1 January 2017–23 July 2018. 

Figure 5.10 compares rice growth stages in temporal at the six sub-districts with >7000 ha. 

It shows that every sub-district has its unique temporal data, but some sub-districts had 

similar trend and cropping patterns, such as Gantar, Kroya, and Terisi in the Indramayu 

Regency. Those areas had a peak of planting time in April 2017, December 2017, and May 

2018. On the other hand, sub-districts in Subang, such as Ciasem and Patokbeusi, had later 

planting times in February 2017, June 2017, January 2018, and June 2018. 
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Figure 5.10 The comparison of temporal rice growth stages area for six sub-districts with 

rice area >7000 ha on Indramayu, Karawang, and Subang Regency from 1 January 2017–

23 July 2018. 

Figure 5.11 shows the temporal comparison between vegetative and ripening stages and 

rice planting and harvested area in the sub-districts level. Most of the sub-district indicates 

that there is a temporal relationship between predicted data and observation data. There 

was some overlap between the rice planting area and vegetative stage in March–April 2017 

on sub-districts such as Gantar, Kroya, and Terisi. Moreover, the vegetative stage peak was 

higher than the rice planting area, and the ripening stage also less than the rice harvested 

area such as Ciasem, Subang Regency. More details of each sub-district temporal plots can 

be seen on https://github.com/FadhlullahRamadhani/Remote-sensed-correlation-statistics/ 

tree/master/Results_PROBA_S1/sd, accessed date: 13 April 2021. 

https://github.com/FadhlullahRamadhani/Remote-sensed-correlation-statistics/%20tree/master/Results_PROBA_S1/sd
https://github.com/FadhlullahRamadhani/Remote-sensed-correlation-statistics/%20tree/master/Results_PROBA_S1/sd
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Figure 5.11 The comparison of temporal rice growth stages area (vegetative and ripening) 

with local statistics area (planting and harvested) for six sub-districts with rice area >7000 

ha on Indramayu, Karawang, and Subang Regency from 1 January 2017–23 July 2018. 

5.4.5 Results of cross-correlation analysis 

Multitemporal rice growth stage maps were compared with local statistics, especially at the 

sub-districts level (n = 91). Figure 5.12 (a) shows the correlation values of predicted values 

to the local statistics. The paired comparison between rice growth stages have a high 

correlation (>0.6), and the lag time is similar to rice cultivation time (Figure 5.12 (b)). The 

vegetative stage area has a 5.27 day lag time with rice planting (r = 0.52, p < 0.01) and 

89.47 day lag time with the harvested area (r = 0.50, p < 0.01), which is similar to the rice 

planting area and harvested area (Table 5.S1, See Supplementary material section). The 

correlation between reproductive and harvested area has a medium relationship (r = 0.57, 

p < 0.01) and the lag day (44.04 days), also consistent with the rice farming in the study 

area. However, the lag time for ripening and harvested pair is 12 days (r = 0.60, p < 0.01), 

which is less than the 30 days for ripening stages, indicating that the model only predicted 

half of the period of ripening. 

Most of the sub-districts have high correlation values, such as Cikedung, Cilamaya Wetan, 

and Cipunagara (r > 0.7, p < 0.01). Nevertheless, some sub-districts have the least 

correlation value, such as Gantar, Klari, and Cipeundeuy (r < 0.3, p > 0.05) (Table 5.S1). 
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Figure 5.12 The distribution of correlation value (a) and lag (b) from temporal analysis of 

rice growth stages and local statistics with jitters position. 

Figure 5.13 shows the map of the correlation coefficient’s distribution in the study area 

from cross-correlation analysis. It shows that most of the north of the study area has a high 

to medium correlation for five paired time-series, especially reproductive–harvested and 

ripening–harvested pairs. Moreover, many sub-districts have more high correlation values 

on the three pair dataset, such as the reproductive–harvested, ripening–harvested, and 

planting–harvested dataset. However, the south part of Subang Regency has the lowest 
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correlation for all comparisons except the planting–harvested stage area, especially 

Cijambe, Cisalak, Ciater, Kasomalang, Jalancagak, Sagalherang, and Serapanjang sub-

district.  

 

Figure 5.13 Distribution map of correlation value from cross-correlation analysis in sub-

district level for Indramayu, Karawang, and Subang Regency. 

The distribution map of lag time for three regencies is illustrated in Figure 5.14. The lag 

time for vegetative–planting is well distributed through three regencies with a lag time of 

0–12 days. The distribution of lag days on vegetative–the harvested area is also similar to 

the distribution of local statistics (96–108 days). Only seven sub-districts are less than 72 

days, particularly the Cikampek sub-district. 

However, other comparisons have varied lag days, indicating the relationship variability 

between rice growth stages and local statistics tabulation. For example, the reproductive 

stage—harvested area pair has a varied lag time (24–60 days), which should be around 45–

60 days. Moreover, some inconsistency in lag time (0–12 days) in the reproductive stage—

the harvested area should be 24–36 days in 15 subdistricts, mainly located north of 

Karawang and Subang. 
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Figure 5.14 Distribution map of lag time from cross-correlation analysis in sub-district 

level for Indramayu, Karawang, and Subang Regency. 

5.5 Discussion 

This study has demonstrated the capability to integrate PROBA-V and Sentinel-1 satellite 

images to produce a cloud-free multitemporal map from 1 July 2017–23 July 2018. The 

approach was one solution to increase data availability, certainty, and consistency 

compared with the locally derived statistics. The integration approach between optical and 

radar sensors has been demonstrated to increase the accuracy and data accessibility in other 

studies (Ramadhani et al., 2020a; Roy et al., 2019). The radar sensor can generate maps in 

the wet season when the optical sensor fails to provide the required information. However, 

the accuracy of the Sentinel-1 model in the dry season is lower than the wet season due to 

scattering on dry land being indistinct from the vegetative stage, especially in July–August 

on the north of Subang and Indramayu regencies. Conversely, the PROBA-V model will 

give a more accurate result on the dry season, which has less cloud. 

The results of this study show that the integration of PROBA-V and Sentinel-1 can be one 

alternative to deliver rice growth stage maps in the near-real-time with high accuracy of 

each rice growth stage models with cloud-free data, compared with a previous study 

(Ramadhani et al., 2020b). Figure 5.15 shows the fluctuation of the composition of the 

integration of two sensors. It illustrates that PROBA-V based maps have >60% in the dry 

season (April–September), and Sentinel-1’s rice growth stages maps are more dominant in 
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the wet season (January–February, and October–December). The advantage of fusion at 

the decision level is an easily implemented monitoring system than pixel-level or features-

level fusion, which requires pixel co-registration and high memory requirements 

(Ghassemian, 2016). 

 

Figure 5.15 The monthly average sensor’s composition is based on clear images from 1 

January 2017–23 July 2018. 

The correlation analysis on the sub-districts level shows a high similarity of the 

vegetative—harvested area from generated maps with planting—harvested area (Figure 

5.12b). Other similarities also applied to vegetative—planting area and reproductive—

harvested area. However, the pair of ripening and harvested areas with low similarity may 

be due to remote sensing maps failing to capture the harvested area in a specific time. The 

other explanation is that many farmers are still harvested with manual labour, only cutting 

half of the rice canopy to get the grain rather than all rice stem with a combined harvester, 

leading to false classification to ripening class in the model. 

Moreover, the correlation value distribution map shows that the south of Subang Regency 

has low correlation values (Figure 5.13). The low correlation between those areas is due to 

different irrigation schemes with the north Subang Regency based on the ground truth. The 
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south of Subang Regency is mostly a rainfall-dependent area where the model can have 

false classification predominantly vegetative with bare land class and ripening to bare land. 

Moreover, the rice area on those areas is small patches in the valley or hillside where remote 

sensing is difficult to capture due to interference with other canopies, such as trees on 

Sentinel-1 and limited pixel resolution PROBA-V. 

Nevertheless, our rice growth stage maps are similar to previous studies on the north of 

West Java island, where rice cultivation season starts from the south of the Indramayu 

region in September and end on the north of Karawang Regency in February (Rudiyanto et 

al., 2019). Moreover, Sianturi et al. (2018) investigated that the north of the study area is 

prone to flood due to sea-level rise every wet season. 

Our study can be compared with the work of Rudiyanto et al. (2019) using time-series 

Sentinel-1 data with the unsupervised method to produce rice area and monthly rice growth 

stages area in the same study location. The advantage of their work on rice growth stage 

maps is the ability to distinguish secondary non-rice patterns where our study assumed that 

all crop cultivation on the area is rice cultivation. However, this proposed method indicates 

the simplicity of the implementation classification procedure. It can be used for the near-

real-time application due to high accuracy in two rice growth stage models where their 

work depends on local knowledge expertise. The temporal resolution of our study is 12-

days, representing a significant improvement compared to Rudiyanto et al. (2019), which 

have a monthly period. A shorter period is preferred by stakeholders as the rice cultivation 

period is a short duration farming, and where the change of rice growth stages is imminent 

and easy to verify, it can also be complemented with crop modeling to produce rice 

production estimation (Arumugam et al., 2020). 

The overall result of the present work shows that a 100 m spatial and 12-day temporal 

resolution period can be one of the methods for filling the data gap with other information 

that has been available from MODIS (250 m, 16 days revisited time), Landsat-8 OLI (30 

m, 16 days revisited time), and Sentinel-2 (10 m, five days revisited time). The three 

mentioned methods have difficulties compared with the existing local statistics data due to 

cloud interference in temporal space. 

This study proved that remote sensing data obtained from multiple platforms could have a 

beneficial impact on the prediction model accuracies (Table 5.2). Therefore, it can be 
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integrated into rice growth stage mapping efforts from regional to country scales. Our 

methodology can be evaluated and deployed elsewhere, with other crops using new training 

and test datasets. The source code can be viewed on https://github.com/Fadhlullah 

Ramadhani/Remote-sensed-correlation-statistics, accessed date: 01 April 2021. 

Additionally, the machine learning classifier can be changed to deep learning classifiers 

where previous studies may increase the accuracy and the speed of image processing (Cao 

et al., 2020; Y. Chen et al., 2017; Ndikumana, Minh, et al., 2018; Zhu et al., 2020). 

Despite the positive result of this study, some limitations need to be acknowledged in the 

future. The overall accuracy still depends on the capability and size of the ground-truthing 

data. The classification error could be caused by the presence of mixed pixels, where some 

regions commonly grow two-three crops at a time. Another limitation is that the official 

rice field area which we used as the masking area, may not be accurate in some areas, 

especially in the Karawang Regency, where it has a high land-use change frequency 

(Franjaya et al., 2017). In the future, this study can be combined with a scene-based 

classification of rice areas using an area sampling framework to increase the accuracy of 

the machine learning model, thus increasing the consistency over time (Gandharum et al., 

2021). Furthermore, the climate can shift the cropping pattern to some extent where the 

farmer is unable to cultivate rice in a few years, especially in the strong El-Nino season 

(Surmaini et al., 2015). 

5.6 Conclusions 

The rice production stakeholders for the public and private sectors need accurate 

information to provide supply and trade information efficiently. In this paper, we have 

developed a cloud-free method of mapping rice growth stages with a spatial resolution of 

100 m and a 12-day periodic time with a high correlation with local statistics, making the 

outputs more likely to be utilized by the agriculture stakeholder due to acceptable accuracy. 

Additionally, this method can be implemented or combined in near-real-time and automatic 

rice monitoring systems such as S-2 RGS to fill the missing information. 

This project was developed to increase the crop information availability of the Indonesian 

Ministry of agriculture to provide better information for more reliable policy, especially for 

climate change adaptation and mitigation action planning. In the future, the integration of 

multiple sensors (MODIS, PROBA-V, Landsat-8 OLI, Sentinel-1, Sentinel-2, or Sentinel-

https://github.com/Fadhlullah%20Ramadhani/Remote-sensed-correlation-statistics
https://github.com/Fadhlullah%20Ramadhani/Remote-sensed-correlation-statistics
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3) with different resolution data can be applied to provide a cloud-free map for rice 

production or other crops. Moreover, the application development in the GEE environment 

is a preferable option due to the free, fast, and less infrastructure needed to download the 

images, analyses processing, and information dissemination. The future launch of Landsat 

9, Sentinel-1 C and D, and freely available satellite data such as Hyperspectral Precursor 

of the Application Mission (PRISMA) can be used to increase data volume and variety, 

especially for the countries prone to crop failure due to natural climate variability and 

extreme weather events. 
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5.8 Supplementary material 

Table 5.S1 The cross-correlation between rice growth stages area (vegetative, reproductive, and ripening) and local statistics (rice planting and 

harvested area). 

No Sub-district Area (ha) Veg – Plant Veg – Harv Repro – Harv Ripe – Harv Plant – Harv 

  

Corr. Lag Corr. Lag Corr. Lag Corr. Lag Corr. Lag 

 Indramayu 

1 Anjatan 6,419 0.68** 0 0.66** 84 0.75** 48 0.86** 0 0.61** 90 

2 Arahan 1,958 0.58** 0 0.56** 90 0.67** 48 0.79** 12 0.66** 90 

3 Balongan 1,085  0.58** 0 0.59** 84 0.62** 48 0.75** 12 0.64** 84 

4 Bangodua 3,601  0.69** 0 0.65** 90 0.65** 48 0.77** 0 0.57** 90 

5 Bongas 3,831  0.62** 0 0.55** 90 0.81** 48 0.85** 0 0.51** 84 

6 Cantigi 697  0.69** 0 0.52** 90 0.55** 36 0.68** 12 0.48* 108 

7 Cikedung 4,120  0.76** 0 0.58** 84 0.66** 48 0.52** 12 0.71** 84 

8 Gabuswetan 6,241  0.63** 0 0.64** 84 0.68** 36 0.58** 0 0.72** 84 

9 Gantar 8,059  0.1 0 0.67** 84 0.64** 36 0.68** 12 0.46* 108 
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10 Haurgeulis 4,403  0.57** 0 0.64** 84 0.75** 36 0.57** 0 0.68** 84 

11 Indramayu 1,711  0.55** 0 0.51** 90 0.66** 48 0.72** 12 0.69** 90 

12 Jatibarang 2,609  0.52** 0 0.55** 90 0.61** 48 0.78** 24 0.61** 90 

13 Juntinyuat 3,697  0.65** 0 0.53** 84 0.73** 36 0.81** 0 0.57** 90 

14 Kandanghaur 5,941  0.64** 0 0.39* 90 0.69** 36 0.72** 0 0.47* 90 

15 Karangampel 2,066  0.57** 0 0.63** 90 0.62** 48 0.64** 12 0.59** 90 

16 

Kedokan 

Bunder 2,301  0.65** 0 0.54** 90 0.57** 60 0.65** 12 0.45* 84 

17 Kertasemaya 2,485  0.35* 0 0.56** 90 0.74** 48 0.72** 12 0.47* 90 

18 Krangkeng 4,623  0.47* 0 0.64** 108 0.75** 48 0.72** 12 0.43* 108 

19 Kroya 10,064  0.42* 0 0.66** 84 0.67** 36 0.64** 0 0.42* 90 

20 Lelea 4,709  0.65** 0 0.61** 90 0.62** 60 0.61** 24 0.49* 108 

21 Lohbener 2,479  0.63** 0 0.61** 90 0.68** 48 0.70** 12 0.58** 90 

22 Losarang 5,066  0.38* 0 0.62** 108 0.72** 60 0.73** 24 0.35* 108 

23 Pasekan 597  0.63** 0 0.48* 90 0.65** 48 0.8** 12 0.54** 90 



 

153 

 

24 Patrol 2,523  0.6** 0 0.65** 84 0.76** 48 0.77** 12 0.65** 90 

25 Sindang 1,381  0.69** 0 0.51** 108 0.65** 48 0.8** 12 0.51** 90 

26 Sliyeg 4,607  0.63** 0 0.6** 90 0.75** 48 0.79** 12 0.62** 90 

27 Sukagumiwang 2,245  0.51** 0 0.48* 108 0.50** 48 0.64** 12 0.51** 108 

28 Sukra 3,351  0.41* 0 0.53** 84 0.77** 48 0.79** 12 0.65** 90 

29 Terisi 7,297  0.65** 0 0.71** 84 0.75** 48 0.56** 12 0.73** 84 

30 Tukdana 3,692  0.58** 0 0.62** 90 0.65** 48 0.82** 12 0.50** 84 

31 Widasari 3,011  0.69** 0 0.55** 90 0.54** 48 0.72** 12 0.56** 90 

 Karawang 

32 Banyusari 4,332  0.75** 0 0.66** 90 0.82** 60 0.72** 12 0.58** 108 

33 Batujaya 4,881  0.56** 0 0.48* 84 0.82** 36 0.81** 0 0.84** 90 

34 Ciampel 1,213  0.37** 0 0.14 84 0.33* 48 0.49* 36 0.29** 84 

35 Cibuaya 4,772  0.68** 0 0.55** 90 0.80** 36 0.86** 0 0.79** 90 

36 Cikampek 341  0.5** 24 0.55** 108 0.59** 36 0.68** 12 0.44* 60 
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37 Cilamaya Kulon 5,424  0.73** 12 0.62** 90 0.71** 36 0.81** 0 0.78** 90 

38 Cilamaya Wetan 5,031  0.73** 12 0.64** 90 0.75** 48 0.80** 0 0.63** 84 

39 Cilebar 5,243  0.7** 0 0.60** 90 0.82** 36 0.81** 0 0.80** 90 

40 Jatisari 3,968  0.76** 0 0.61** 90 0.70** 60 0.70** 24 0.47* 108 

41 Jayakerta 3,393  0.54** 0 0.43* 90 0.59** 48 0.68** 24 0.74** 90 

42 Karawang Barat 2,248  0.59** 12 0.50** 108 0.54** 60 0.72** 12 0.63** 90 

43 

Karawang 

Timur 1,358  0.59** 0 0.45* 90 0.55** 48 0.67** 12 0.68** 90 

44 Klari 2,509  0.29 0 0.35* 60 0.14 36 0.20 0 0.25 108 

45 Kotabaru 1,416  0.71** 0 0.63** 108 0.59** 36 0.73** 12 0.62** 90 

46 Kutawaluya 4,440  0.40* 0 0.55** 90 0.54** 48 0.75** 0 0.65** 90 

47 Lemahabang 4,034  0.65** 0 0.59** 90 0.59** 36 0.59** 0 0.61** 90 

48 Majalaya 2,417  0.64** 12 0.42* 90 0.61** 36 0.66** 12 0.52** 90 

49 Pakisjaya 3,013  0.23 0 0.46* 84 0.75** 48 0.79** 12 0.48* 108 

50 Pangkalan 3,025  0.6** 0 0.48* 84 0.59** 36 0.48* 12 0.71** 84 
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51 Pedes 5,342  0.65** 0 0.59** 90 0.68** 36 0.78** 12 0.8** 90 

52 Purwasari 1,768  0.62** 0 0.51** 108 0.73** 60 0.78** 24 0.62** 90 

53 Rawamerta 3,516  0.48* 12 0.68** 90 0.66** 48 0.79** 12 0.44* 108 

54 Rengasdengklok 2,469  0.19 24 0.35* 108 0.47** 36 0.32* 0 0.27 90 

55 Talagasari 4,144  0.74** 12 0.63** 108 0.64** 60 0.61** 12 0.50** 90 

56 Tegalwaru 1,968  0.69** 0 0.48* 84 0.61** 36 0.71** 24 0.58** 84 

57 

Telukjambe 

Barat 2,625  0.31* 0 0.15 90 0.55** 36 0.67** 0 0.62** 84 

58 

Telukjambe 

Timur 1,029  0.31* 24 0.26 108 0.48* 60 0.53** 36 0.47* 84 

59 Tempuran 7,215  0.66** 24 0.61** 108 0.67** 48 0.76** 12 0.50** 90 

60 Tirtajaya 5,061  0.61** 0 0.63** 90 0.79** 48 0.81** 12 0.79** 90 

61 Tirtamulya 3,508  0.72** 0 0.63** 108 0.61** 48 0.65** 24 0.58** 90 

 Subang 

62 Binong 4,014  0.52** 0 0.31* 72 0.37* 48 0.44* 0 0.59** 84 
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63 Blanakan 5,234  0.65** 0 0.64** 84 0.66** 24 0.64** 0 0.68** 90 

64 Ciasem 8,817  0.54** 0 0.51** 84 0.76** 36 0.82** 0 0.68** 84 

65 Ciater 951  0.15 24 0.14 108 0.02** 60 -0.10 36 0.74** 84 

66 Cibogo 1,990  0.48* 0 0.56** 72 0.54** 36 0.63** 0 0.61** 84 

67 Cijambe 2,316  0.39* 24 0.27 108 0.36* 60 0.16 36 0.76** 84 

68 Cikaum 2,723  0.45* 0 0.41* 84 0.52** 48 0.53** 0 0.67** 84 

69 Cipeundeuy 1,933  0.13 24 0.20 72 0.24 48 0.04** 36 0.51** 90 

70 Cipunagara 5,974  0.73** 0 0.69** 84 0.74** 48 0.57** 12 0.57** 84 

71 Cisalak 1,328  0.20 48 0.11 60 0.01 48 -0.07 12 0.66** 90 

72 Compreng 5,492  0.21 0 0.41* 84 0.39* 36 0.40* 0 0.69** 90 

73 Dawuan 597  0.20 24 0.23 72 0.42* 36 0.20 24 0.74** 90 

74 Jalancagak 582  0.39* 24 0.41* 108 0.24 60 0.23 36 0.65** 90 

75 Kalijati 2,549  0.57** 12 0.29 108 0.29 48 0.38* 36 0.48* 84 

76 Kasomalang 695  0.32* 12 0.27 90 0.39* 48 0.18 36 0.77** 84 
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77 Legonkulon 2,694  0.58** 0 0.57** 90 0.50** 24 0.65** 0 0.87** 90 

78 Pabuaran 5,441  0.64** 0 0.46* 84 0.60** 36 0.66** 12 0.66** 90 

79 Pagaden 2,691  0.45* 0 0.51** 72 0.58** 36 0.48* 0 0.76** 84 

80 Pagaden Barat 3,151  0.48* 0 0.55** 72 0.39* 36 0.52** 0 0.68** 90 

81 Pamanukan 2,127  0.54** 0 0.72** 84 0.65** 36 0.72** 0 0.56** 90 

82 Patokbeusi 7,066  0.52** 0 0.47* 84 0.60** 36 0.62** 12 0.72** 84 

83 Purwadadi 1,418  0.05** 24 0.1 60 0.22 24 0.07** 24 0.60** 90 

84 Pusakajaya 4,529  0.74** 0 0.67** 90 0.72** 60 0.74** 12 0.61** 108 

85 Pusakanagara 2,399  0.66** 0 0.56** 90 0.68** 36 0.81** 12 0.80** 90 

86 Sagalaherang 939  0.17 0 0.13 84 0.08** 24 0.26 0 0.79** 84 

87 Serangpanjang 1,599  0.34* 24 0.15 108 0.16 48 0.11 36 0.76** 90 

88 Subang 1,312  -0.01 48 0.21 60 0.03 24 -0.05 24 0.64** 84 

89 Sukasari 3,298  0.46* 0 0.71** 84 0.63** 24 0.7** 0 0.7** 90 

90 Tambakdahan 5,334  0.52** 0 0.66** 84 0.71** 36 0.73** 0 0.54** 108 
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91 Tanjungsiang 1,281  0.26 24 0.17 108 0.21 60 0.19 36 0.68** 84 

Total/ Average 309,046 0.52** 5.27 0.50** 89.47 0.57** 44.04 0.60** 12.00 0.61** 90.40 

Note: Corr = Correlation, Veg = Vegetative stage area (remote sensing), Repro = Reproductive stage area (remote sensing), Ripe = Ripening stage area (remote 

sensing), Plant = Paddy planting area (local statistics), Harv = Paddy harvested area (local statistics),, unit in Lag is day (s), ** = p<0.01 (highly significant) and 

* = p<0.05 (statistically significant) 
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Figure 5.S1 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel-1 on three periods (1 – 12 January 2017, 13 – 24 January 

2017, and 25 January – 5 February 2017). 

 

Figure 5.S2 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (6 – 17 February 2017, 18 February – 1 

March 2017, and 2 – 13 March 2017). 
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Figure 5.S3 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (14 – 25 March 2017, 26 March – 6 April 

2017, and 7 – 18 2017) 

 

Figure 5.S4 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (19 – 30 April 2017, 1 – 12 May 2017, and 

13 – 24 May 2017). 
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Figure 5.S5 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (25 May – 5 June 2017, 6 – 17 June 2017, 

and 18 – 29 June 2017). 

 

Figure 5.S6 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (30 June – 11 July 2017, 12 – 23 July 

2017, and 24 July – 4 August 2017). 
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Figure 5.S7 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (5 – 16 August 2017, 17 – 28 August 

2017, and 29 August – 9 September 2017). 

 

Figure 5.S8 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel-1 on three periods (10 – 21 September 2017, 22 September – 

3 October 2017, and 4 – 15 October 2017) 
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Figure 5.S9 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and S-1 on three periods (16 – 27 October 2017, 28 October – 8 November 

2017, and 9 – 20 November 2017). 

 

Figure 5.S10 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and S-1 on three periods (21 November – 2 December 2017, 3 – 14 

December 2017, and 15 – 26 December 2017). 
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Figure 5.S11 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (1 – 12 January 2018, 13 – 24 January 

2018, and 25 January – 5 February 2018). 

 

Figure 5.S12 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (6 – 17 February 2018, 18 February – 1 

March 2018, and 2 – 13 March 2018). 
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Figure 5.S13 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (14 – 15 March 2018, 16 March – 6 April 

2018, and 7 – 18 April 2018) 

 

Figure 5.S14 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (19 – 30 April 2018, 1 -12 May 2018, and 

13 – 24 May 2018). 
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Figure 5.15 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on three periods (25 May – 5 June 2018, 6 – 17 June 2018, 

and 18 – 29 June 2018). 

 

Figure 5.16 The rice growth stages map from PROBA-V, Sentinel-1, and the integration 

of PROBA-V and Sentinel -1 on two periods (30 June – 11 July 2018, and 12 – 23 July 

2018).  
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Chapter 6 Monitoring rice area and its growth stages on 

the lowland area in Indonesia using multisource 

remote sensing data 

 

The objective of chapter 6 is to investigate the use of GEE to determine rice area using 

multitemporal Sentinel-1 and rice growth stages using Sentinel-2, Landsat-8, MOD13Q1. 

This chapter is based on a manuscript which will be submitted to a respected publication. 

Supplementary material and source code can be downloaded on https://github.com 

/FadhlullahRamadhani/Rice-Growth-Stages-with-Google-Earth-Engine.  

Participating authors: 

• Fadhlullah Ramadhani: Conceptualization, investigation, data curation, formal 

analysis, methodology, software, visualization, and writing—original draft preparation 

• Reddy Pullanagari: Conceptualization, methodology, supervision, and writing—

review and editing,  

• Gabor Kereszturi: Conceptualization, methodology, supervision, visualization, and 

writing—review and editing, 

• Jonathan Procter: Supervision, and writing – review & editing 

  



 

168 

 

Abstract 

Regular monitoring of rice crop using remote sensing technology is important to ensure 

food security in a sustainable manner under continuous pressure from climate and land 

cover changes. However, the traditional deployment of rice monitoring systems involves 

high computation costs to process a large volume of remote sensing data. Google Earth 

Engine (GEE) is an alternative powerful cloud-based platform made available to 

researchers to analyse and render remote sensing data. The objective of this study is to 

explore the capability of GEE to produce rice area and rice growth stage (RGS) maps on 

Java Island – especially within a lowland area (~2.1 million ha) using three classification 

algorithms (Random Forest, Classification & Regression Trees, and Support Vector 

Machine) in 16 days period using Sentinel-1, Sentinel-2, Landsat-8, and MOD13Q1 

images. The accuracy was tested at 12 sites from 01 November 2019 to 30 October 2020. 

Rice area was classified based on multitemporal Sentinel-1 imagery with an accuracy of 

82.8% using the random forest method relative to the Indonesian official rice area map. 

The classification maps for RGS were generated using Random Forest and achieved an 

accuracy of 76.4% relative to the Indonesian Sentinel-2 RGS monitoring project (S-2 

RGS). Combining multiple remote sensing data improved the availability of RGS maps 

significantly in the wet season (13.6 – 56.9%). This study proved that GEE could be a great 

tool for developing rice monitoring systems globally. Other countries can utilise it to 

evaluate rice production and help to predict and minimise hunger from failed production 

due to climate change-related disasters. 
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6.1 Introduction 

Rice is an important staple crop in Asian countries as almost three billion consume it daily 

(FAO, 2020). Since 1970, rice production has dramatically increased due to high-yielding 

varieties and extensive use of chemical fertilisers (Yanai et al., 2020). Rice production is, 

however, put under pressure by the growing global population, which is estimated to reach 

11.1 billion people in 2050 (FAOSTAT, 2020b), land-use changes (Duro et al., 2020; 

Schmitz et al., 2014), and climate-related disasters (Schneider & Asch, 2020). The latter is 

becoming more common and acute at an alarming rate, especially in lowland areas due to 

increased sea level, coastal flooding, and drought (Redfern et al., 2012; Surmaini et al., 

2015). Thus, rice production is an important task that should be monitored closely to avoid 

food security issues and economic turmoil, especially in developing countries. Some rice 

monitoring projects have been established in recent years, such as Asia-Rice Crop 

Estimation & Monitoring (Asia-RiCE) with RADARSAT-2, ALOS, and ALOS-2 SAR 

data (Oyoshi et al., 2016), Remote Sensing-based Information and Insurance for Crops in 

Emerging Economies (RIICE) project with COSMO Skymed and TerraSAR-X (Nelson et 

al., 2014). Both projects relied on synthetic aperture radar (SAR) remote sensing data to 

overcome the problem of cloud cover and predicted with high accuracies. Nonetheless, the 

coverage of the project is limited due to the high cost of imagery and limited information 

of existing RGS in the rice field. 

Mapping rice area using satellite images has been developed in recent decades using three 

types of imagery inputs: a) optical data using MODIS (Li Liu et al., 2020), Landsat (Jin et 

al., 2016), and Sentinel-2 (Son et al., 2020); b) SAR data COSMO Skymed (Mascolo et al., 

2019), TerraSAR-X (Koppe et al., 2013), RADARSAT (Chakraborty & Panigrahy, 2000), 

ALOS/PALSAR (Wang et al., 2009), and Sentinel-1 (Bazzi et al., 2019); c) the 

combination of optical and SAR data; Sentinel-1/Landsat-8 (Tian et al., 2018), Sentinel-
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1/Sentinel-2 (Fiorillo et al., 2020; Inoue et al., 2020b), and ALOS AVNIR-2/MODIS 

(Panuju et al., 2021). These studies claimed that accuracy varies depending on the 

availability of time-series data (70-95%) on a single input source in the country area 

depending on spatial resolution. The multisource inputs give more results at a regional level 

with more accuracy (~93%) (Han et al., 2021). However, the rice map area that has been 

reproduced is not published in the public repository, which causes difficulties investigating 

more in the rice area, such as rice growth stages, cropping dynamics, carbon accounting, 

and water management (Peng et al., 2011; Wassmann et al., 2019; G. Zhang et al., 2020).  

Mapping rice growth stages (RGS) using vegetation indices from multispectral sensors 

such as MODIS and Landsat-8 OLI are widely used because of their availability and high 

sensitivity in discrimination ((LAPAN, 2019; Ramadhani et al., 2020b). Previous studies 

indicated that high accuracy could be achieved with Sentinel-2 (OA >90%) (Ramadhani et 

al., 2020a) which was higher than Landsat-8 OLI (OA >73%) (Ramadhani et al., 2020b)). 

A regular and operational mapping of RGS is required for making timely decisions. 

However, downloading and analysing the regional/national scale data required intensive 

resources (e.g. four workstations and two webservers) and relying on a single remote 

sensing data source compounded by severe cloud coverage in the wet season.  

 To overcome the problem of cloud cover, SAR data have been used and proved to be 

accurate with an accuracy of >90% to detect rice area in many countries (Clauss et al., 

2018), (Bazzi et al., 2019), (J. Liu et al., 2019), (Mandal et al., 2018), (Nguyen et al., 2016), 

where it uses the temporal backscatter profiles to assess rice area as it has a different profile 

than other land uses such as urban (a flat line >-16 dB) or water body (a flat line < -22 dB) 

(Bazzi et al., 2019; Clauss et al., 2018; Lasko et al., 2018). The rice profiles usually have 

one or two decreased values in a short period on multitemporal backscattering values, 

indicating that it was inundated at the start of rice farming. For example, Rudiyanto et al. 
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(2019) has mapped rice area using Sentinel-1 combined with a semi-supervised K-Means 

clustering algorithm and achieved high accuracy in Malaysia (98.2%, n=500) (Rudiyanto 

et al., 2019) and Indonesia (94.8%). Hoang-Phi Phung [29] investigated the potential of 

time-series Sentinel-1 images to determine rice age where the VH polarization has a high 

sensitivity to changes in growth stages. However, some challenges remain using the SAR 

data. For example, difficulties in deploying over large areas due to variable radar incidence 

angle and more diversity in rice cropping. Moreover, SAR data has less potential to collect 

detailed information than optical sensors, which leads to misclassification errors.  

The combined use of optical and SAR remote sensing data could potentially improve 

accuracy and minimize the cloud cover problems. Another attempt of mapping RGS 

without cloud intervention using Sentinel-1 and PROBA-V with 100 m resolution, and the 

accuracy of these two sources images is 71 and 83%, respectively (Ramadhani et al., 2021).  

This study investigates the potential of integrating optical and RADAR data to map rice 

area and RGS at a regional scale to fill in data gaps and improve monitoring accuracy using 

the GEE platform. The study aims are 1) to provide accurate RGS maps using multiple 

sensors in GEE environment, 2) to measure the accuracy of classification on 12 sites and 

12 months (23 of 16-days periods), and 3) to build an interactive application that the user 

can be utilized for evaluating the rice area and RGS map in a temporal perspective.  

6.2 Background, study area, data, and classifier 

6.2.1 Rice growth stages (RGS) 

The rice cultivation period on short varieties is ~120 days which is common in Indonesia. 

RGS can be divided into three main stages: The vegetative stage (germination to tillering; 

45-60 days), the reproductive stage (panicle initiation to flowering; 35 days), and the 

ripening stage (grain milking to harvest 25-30 days) (Bouman, 2019; Ramadhani et al., 
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2020a, 2020b). The rice cultivation in Indonesia mainly uses the transplanting method to 

ensure the seeds are safe from rodents and easy to maintain in the nursery bed until 25 days 

after sowing- then transferred to the main field. The examples of RGS can be seen in Figure 

6.1.  

 
 

Figure 6.1 The example of the rice growth stages. 

6.2.2 Study area 

The study area is located in the lowland area of Java Island, where irrigated rice is the main 

crop (Figure 6.2). The area has an average elevation of 100 meters above sea level with a 

slope of less than 10° (Rabus et al., 2003). The main soil type is alluvial and receives an 

average rainfall of <2,000 mm per year. The rainy season is from October to March and 

the dry season is between April and September. The lowland area is also classified as a 

tropical rainforest climate (Af.) in Köppen climate classification (Kottek et al., 2006). Due 

to the monsoonal rainfall type, rice cultivation typically occurs two times, the first crop 

starts from December, and the second crop starts from February. Some areas close to 

irrigation lines or big rivers are cultivated three times a year. The complete rice cropping 

pattern in the sub-district level can be accessed on http://katam.litbang.pertanian.go.id (last 

accessed 11 October 2020). The main area of rice cultivation is the north of West Java 

province which has been repeatedly investigated as the study area in remote sensing 

research due to data availability in the dry season (Gandharum et al., 2021; Ramadhani et 

al., 2020a, 2020b; Sianturi et al., 2018). The main rice varieties are IR64 related varieties, 

http://katam.litbang.pertanian.go.id/


 

174 

 

such as Ciherang, Inpari, glutinous rice, which have a short growing duration and are easy 

to maintain due to resistance to brown planthopper and rodent attacks (Triwidodo, 2020).  

6.2.3 Satellite imagery 

a) Sentinel-1 for rice area detection 

The Sentinel-1 mission is a constellation of Sentinel-1 A and B with a C-band synthetic 

aperture radar with dual-polarization at a 10 m spatial resolution and a revisit time of 6-12 

days. The Sentinel-1 GRD has been pre-processed into level 1-A in decibels (dB) using the 

Sentinel-1 toolbox (Veci et al., 2014). The Sentinel-1 instrument can transmit in vertically 

transmitted-horizontally received (VH), and vertically transmitted-vertically received (VV) 

from the ascending and descending orbits on Interferometric Wide Swath mode to classify 

the rice area as mentioned in many previous studies (Clauss et al., 2018; Inoue et al., 2020a; 

Lasko et al., 2018; Son et al., 2017). As suggested by Orengo and Petrie (2017), we 

aggregate the multitemporal backscatter values with the median function. Moreover, the 

median values were filtered using a morphological median using a 30 m circle kernel to 

remove the speckle noise. Complete multi-looking images from Sentinel-1 with VH/VV 

mode in ascending orbit for training area comprised of 109 images and in the descending 

orbit of 159 images from January 2014 to September 2020. Furthermore, the total images 

for the whole Java island area were 1,334 for ascending images and 1,410 images for 

descending orbit between January 2014 and September 2020 (Table 6.1). Furthermore, we 

used SRTM Digital Elevation from NASA (GEE id: USGS/SRTMGL1_003) with 30 m x 

30 m resolution to delineate the area based on its elevation and slope. 

  



 

175 

 

Table 6.1 The number of images of Sentinel-1 acquired for detecting rice area on the 

training area and applied area. 

No Year 

Training area Applied area 

Ascending Descending Ascending Descending 

1 2014 - 3 - 10 

2 2015 - 19 - 66 

3 2016 - 26 - 96 

4 2017 26 30 310 333 

5 2018 29 30 380 358 

6 2019 31 28 381 333 

7 2020 23 23 273 214 

# Total  109 159 1,344 1,410 

b) Sentinel-2, Landsat-8 OLI, and MOD13Q1 for RGS extraction 

The Sentinel-2 Multispectral Instrument (MSI) with surface reflectance (GEE id: 

COPERNICUS_S2_SR) is available from 2018, providing 12 bands, covering 443.9 – 

2,185.7 nm wavelength spectrum from Sentinel-2A and Sentinel-2B satellites. The bands 

have four bands with 10 m resolution, six bands with 20 m resolution and two bands with 

60 m resolution (Drusch et al., 2012). This dataset has been pre-processed, such as 

radiometric, geometric, and atmospheric corrections to change Top of Atmosphere 

reflectance into Bottom of Atmosphere reflectance (Level 2A product) using sen2cor 

software (Louis et al., 2016). The Level 2A product is the highest ready-to-analysis product 

in the GEE dataset for the Sentinel-2 processing scheme (ESA, 2015). 

The composition of multispectral bands are used to build the RGS predictors are ten bands, 

as follows: B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 as representative of surface 

reflection of rice conditions which provides better accuracy rather than depend on 

vegetation indices (Ramadhani et al., 2020a). All spectral bands were resampled to 10 m 
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spatial resolution. We also used Sentinel-2 cloud probability data (GEE id: 

COPERNICUS_S2_CLOUD_PROBABILITY) to mask the cloud area using 40% cloud 

probability images to balance the number of images with accuracy and data availability. 

The cloud probability was calculated using a cloud detector library with supervised 

classification. We used 27 images of Sentinel-2 for the training area to build the RGS model 

on 16 – 29 May 2020, and the Java Island area with a total of 3,963 images from 1 

November 2019 to 30 October 2020 (Table 6.2).  

Moreover, we also used Landsat-8 OLI surface reflectance (GEE id: 

LANDSAT_LC08_C01_T1_SR) with 30 m spatial resolution, which has been pre-

processed using LaSRC (USGS, 2020) to cover the missing data for Sentinel-2 data. 

Landsat-8 has been the frontier of high-resolution providers on a global scale since 2013. 

The legacy of the Landsat mission continues in the Landsat-9 mission, which was launched 

in September 2021. Total images for training were four images from 17 – 24 May 2020. 

Moreover, the total images for Landsat-8 to cover Java Island was 4,102 images, with an 

average for 16 days was 178 images (Table 6.2). 

Table 6.2 The number of images of Landsat-8 and Sentinel-2 acquired for analyzing rice 

growth stages for training and predicting each period. 

No Period Landsat-8 Sentinel-2 

Training 

# 16 – 29 May 2020 4 27 

Predicted 

1 01 – 16 November 2019 191 168 

2 17 November – 02 December 2019 207 165 

3 03 – 18 December 2019 178 169 

4 19 – 31 December 2019 129 141 
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5 01 – 16 January 2020 136 175 

6 17 January – 01 February 2020 181 168 

7 02 – 17 February 2020 175 169 

8 18 February – 04 March 2020 191 176 

9 05 – 20 March 2020 181 184 

10 21 March – 05 April 2020 187 171 

11 06 – 21 April 2020 200 176 

12 22 April – 07 May 2020 196 166 

13 08 – 23 May 2020 192 175 

14 24 May – 08 June 2020 190 172 

15 09 – 24 June 2020 176 168 

16 25 June – 10 July 2020 177 183 

17 11 – 26 July 2020 181 177 

18 27 July – 11 August 2020 157 171 

19 12 – 27 August 2020 189 178 

20 28 August – 12 September 2020 181 177 

21 13 – 28 September 2020 164 188 

22 29 September – 14 October 2020 174 161 

23 15 – 30 October 2020 169 161 

# Total 4,106 3,966 

 

Finally, MODIS Terra was used to fill the missing data if the Sentinel-2 and Landsat-8 OLI 

images were covered with cloud data in a single period. MOD13Q1 is a product from 

compositing a daily image of MODIS Terra into 16 days period with 250 m spatial 

resolution (GEE id: MODIS_006_MOD13Q1). The daily acquisition would help increase 

data availability on RGS. The compositing scheme was the highest value of NDVI/EVI in 
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each day images of MODIS Terra and most little cloud and low angle 

(https://lpdaac.usgs.gov/products/mod13q1v006/, accessed on 16 October 2021). The 

complete specification of all products can be seen in Table 6.3. In this study, two vegetation 

indices of MODIS Terra bands are also used as predictors besides red, near-infrared (NIR), 

and blue bands. The two vegetative indices were a product of the reflectance, which is 

usually used to discriminate the rice cultivation (Pandey et al., 2015), namely NDVI and 

EVI, which calculated as follows: 

NDVI=
ρNIR - ρRed

ρNIR + ρRed 
, (1) 

EVI=2.5 ×
ρNIR - ρRed

ρNIR + 6 × ρRed - 7.5 × ρBlue +1
 (2) 

where NIR = near-infrared. 

https://lpdaac.usgs.gov/products/mod13q1v006/
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Table 6.3 The specifications of remote sensing data for detecting rice area and rice growth stages (adapted from 

https://developers.google.com/earth-engine/datasets/catalog/, accessed 16 October 2021). 

The dataset in the Google Earth Engine data catalogue for this study 

Specification Sentinel-1 MOD13Q1 Landsat-8 Sentinel-2 

Revisited time 

(days) 

6-12 16 15 5-10 

Source ESA USGS USGS ESA 

Constellations 2 1 1 2 

Spatial 

resolution (m) 

10 250  30 10-60 

Number of bands 2 6 7 10 

Details • Radar: Type C band 

• Polarization: VH/VV 

• Orbit type: Ascending 

and Descending 

• Instrument mode: 

Interferometric Wide 

Swath 

Bands: 

• NDVI 

• EVI 

• B1/ Red (645 nm) 

• B2/ NIR (858 

nm) 

• B3/ Blue (469 

nm) 

• B7/ MIR (2130 

nm) 

Bands: 

• B1/ Ultra blue (435-

451 nm) 

• B2/ Blue (452-512 nm) 

• B3/ Green (533-590 

nm) 

• B4/ Red (636-673 nm) 

• B5/ NIR (851-879 nm) 

• B6/ SWIR1 (1,566-

1,651 nm) 

• B7/ SWIR2 (2,107-

2,294 nm) 

Bands on Sentinel-2A: 

Spatial resolution 10 m: 

• B2/ Blue (496.6 nm) 

• B3/ Green (560 nm) 

• B4/ Red (664.5 nm) 

• B8/ NIR (835.1 nm) 

Spatial resolution 20 m: 

• B5/ Red Edge 1 (703.9 nm) 

• B6/ Red Edge 2 (740.2 nm) 

• B7/ Red Edge 3 (782.5 nm) 

• B8A/ Red Edge 4 (864.8 nm) 

• B11/ SWIR 1 (1,613.7 nm) 

• B12/ SWIR 2 (2,202.4 nm) 

Spatial resolution 60 m: 

• B1/ Ultra blue (443.9nm) 

• B9/ Water vapour (945 nm) 

Bands on Sentinel-2B: 

Spatial resolution 10 m: 

• B2/ Blue (492.1 nm) 

• B3/ Green (559 nm) 

• B4/ Red (665 nm) 

• B8/ NIR (833 nm) 

Spatial resolution 20 m: 

• B5/ Red Edge 1 (703.8 nm) 

• B6/ Red Edge 2 (729.1 nm) 

• B7/ Red Edge 3 (779.7 nm) 

• B8A/ Red Edge 4 (864 nm) 

• B11/ SWIR 1 (1,610.4 nm) 

• B12/ SWIR 2 (2,185.7 nm) 

Spatial resolution 60 m: 

• B1/ Ultra blue (442.3 nm) 

• B9/ Water vapour (943.5 nm) 

Note: ESA: European Space Agency, USGS: United States Geological Survey, NIR: Near-infrared, MIR: Mid-infrared, and SWIR: Shortwave-

infrared 

https://developers.google.com/earth-engine/datasets/catalog/


 

180 

 

 
Figure 6.2 Map of the study areas on Java Island, Indonesia. The inset shows the detailed locations of the test areas. The background image of test 

areas is Sentinel-2 surface reflectance with false colour (SWIR 1, NIR, Green)  
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6.2.4 Training dataset preparation 

The training dataset consists of (1) the rice area training dataset and (2) the RGS training 

dataset. The rice area training dataset came from Copernicus Global Landcover layers, 

which provide the global land cover map in 13 classes with 100 m spatial resolution (GEE 

id: COPERNICUS/Landcover/100m/Proba-V-C3/Global). CGLCL was downloaded from 

GEE with 100 m resolution (GEE id: COPERNICUS/Landcover/100m/Proba-V-

C3/Global) derived from multitemporal PROBA-V from 2015-2019 (version 3.0.1). 

CGLCL only has one crop layer to describe the map's agricultural activity, which does not 

distinguish rice or other crops area. Thus, the rice training area was confirmed with the 

official rice area map from the Indonesian Ministry of Agriculture. Here, we reclassify into 

three classes which are urban/ built-up (272 points), water (343 points) and cropland on a 

specific area, the test area number 6 in Cirebon Regency (Figure 6.3) with a total of 1,273 

points. The cropland area intersected with the official rice area to increase the accuracy; 

hence the total training points for the rice area was 658 points. 

The training dataset for RGS model was obtained from Sentinel-2 which can be 

downloaded from http://katam.litbang.pertanian.go.id/SC/ (S-2 RGS) with an accuracy of 

70-87% in the Indonesia rice area. We have generated random 640 points to capture the 

map on the north of West Java Province on 24 May 2020 due to the availability of four 

classes (bare land, vegetative, reproductive, and ripening) in a single 16-days period 

(Figure 6.3) with composition bare land (139 points), vegetative (212 points), reproductive 

(133 points), and ripening (156 points). All training datasets were converted into GEE 

assets for generating different RGS maps for training points. The spatial resolution input 

and output image were resampled into 30 m through the whole processing. It is worth 

noting that the number of training datasets can be increased, but it can lead to memory 

limitation or time-out issues in the GEE platform. 

6.2.5 Classifiers 

We have used three classifiers to train the training dataset to become a rice area and 

RGS classification model. They are Random Forest (RF), Classification And Regression 

Tree (CART), and Support Vector Machine (SVM). These are commonly used in remote 

sensing for solving classification problems because they have a high potential to solve 

complex and nonlinear problems (Bazzi et al., 2019; Son et al., 2017)  

http://katam.litbang.pertanian.go.id/SC
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RF classifier is an ensemble classification consisting of decision tree classifiers trained 

individuals from the original training dataset. The output of RF is the majority voting from 

the output of the trees (Breiman, 2001) and has been appraised in many articles (Belgiu & 

Drăguţ, 2016; Cutler et al., 2007; Sarica et al., 2017). Previous studies demonstrate that RF 

is accurate and high performing in a high-dimensional data classifier but sensitive to 

sampling size (Belgiu & Drăguţ, 2016). The recommended number of trees to be calculated 

is between five to 128 trees to avoid memory limitation and time-consuming data analysis 

(Probst & Boulesteix, 2017). Moreover, RF can show the importance of predictor 

measurement using out-of-bag cross-validation.  

CART is a simple classifier that discriminates classes by splitting two child nodes 

(branch) for each dataset repeatedly until it finds the maximum sensitivity and specificity 

(recursive partition). CART also has been used to solve classification problems in previous 

studies (W. Chen et al., 2017; Heung et al., 2016). However, the accuracy is less than RF 

and SVM, but it uses less memory due to its simplicity (Shao & Lunetta, 2012).  

The SVM is one of the kernel-based machine learning approaches to classify different 

classes by dividing with a hyperplane and assisting with support vectors to maximize the 

margin between the closest data hyperplane (Cortes & Vapnik, 1995). SVM is also one of 

the most applied classifiers in previous studies due to its high accuracy in limited training 

data (Hu et al., 2019; Shelestov et al., 2017; W. Zhang et al., 2020). Our previous study 

shows that SVM with radial function has the best accuracy to classify the RGS than the 

neural network (Ramadhani et al., 2020b), thus using the same kernel function in a 

classification task. 

6.3 Methods  

Figure 6.3 shows the proposed flowchart for combining four satellite resources into a single 

model for mapping the rice area and the RGS within a GEE environment. In the workflow, 

there are four main steps as follows: 1) Rice area detection for all Java Island, 2) RGS 

monitoring on the detected rice area in 16 days period, and 3) Testing model performance 

on independent sites. 4) building an interactive application based on the GEE environment 

which can be quickly published using the internet. 
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6.3.1 Rice area mapping using multitemporal Sentinel-1 data 

In this study, we used a multi-look approach to simplify the classification process in GEE 

and has been used by (Chini et al., 2018) to classify land use with 92% accuracy. The multi-

look method uses the increase of the cross-polarization effect on the rice area where 

multiple-backscatter bounces in different rice growth stages. The machine learning model 

of rice area from multitemporal Sentinel-1 backscatter values from 2014 to 2020 with 1,887 

images for ascending orbit and 1,431 images for descending one. The machine learning 

model for the rice area classification can be formulated as follows:  

𝑅𝑖𝑐𝑒 𝑎𝑟𝑒𝑎 (𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙1) ~ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑉𝑉 𝐷𝑒𝑠𝑐) + 𝑚𝑒𝑑𝑖𝑎𝑛(𝑉𝑉 𝐴𝑠𝑐)

+  𝑚𝑒𝑑𝑖𝑎𝑛(𝑉𝐻 𝐷𝑒𝑠𝑐) +  𝑚𝑒𝑑𝑖𝑎𝑛(𝑉𝐻 𝐴𝑠𝑐) 

(3) 

The final classification of rice area on Java island was masked with SRTM information to 

delineate the rice area with elevation < 100 m and slope < 10° to mask the lowland rice 

area only. 

6.3.2 Multi-temporal RGS maps using Sentinel-2, Landsat-8 OLI, and MOD13Q1. 

The RGS maps from Sentinel-2 analysis were used as the primary source of data. If there 

were any gaps, they would be filled up with Landsat-8 OLI based prediction maps, and if 

any other gaps exist, then the MOD13Q1 based prediction maps were used. The RGS maps 

were highlighted by masking irrelevant information. The model for rice growth stages can 

be formulated based on three input datasets as follows on specific periods: 

• 𝑅𝑖𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑠𝑡𝑎𝑔𝑒𝑠 (𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙2) ~ (𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7, 𝐵8, 𝐵11, 𝐵12, 𝐵8𝐴) 
(4) 

• 𝑅𝑖𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑠𝑡𝑎𝑔𝑒𝑠 (𝐿𝑎𝑛𝑑𝑠𝑎𝑡8 𝑂𝐿𝐼) ~ (𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6, 𝐵7) 
(5) 

• 𝑅𝑖𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑠𝑡𝑎𝑔𝑒𝑠 (𝑀𝑂𝐷13𝑄1) ~ (𝑁𝐷𝑉𝐼, 𝐸𝑉𝐼, 𝐵1, 𝐵2, 𝐵3) 
(6) 

The RGS maps were generated from 1 November 2019 to 30 October 2020 every 16 days, 

with a total of 23 temporal maps were produced.  
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Figure 6.3 The workflow of classifying the rice area and RGS in the GEE environment. 

6.3.3 Accuracy assessment  

a) Confusion matrix 



 

185 

 

As shown in Figure 6.3, the performance of prediction maps was assessed on independent 

test areas, representing the lowland rice area in Java Island. The total rice area for 12 sites 

is 224,758 ha or 10.4% from a total area of lowland rice area of Java Island (2,156,805 ha) 

based on the official rice area map from the Indonesia Ministry of Agriculture (MoA, 

2019). The rice map was released in December 2019, derived from local maps, high-

resolution remote sensing data (SPOT images). Moreover, it has been validated with the 

Indonesia Ministry of Agrarian Affairs and Spatial Planning (Indonesia Ministry of 

Agrarian Affairs and Spatial Planning, 2020).  

The accuracy of RGS maps was evaluated using a confusion matrix. The confusion matrix 

was calculated by comparing generated RGS maps with reference maps. These 

comparisons were conducted every 16 days during a period from November 2019 to 

October 2020. The original classes in S-2 RGS are five classes: bare land, flooding, 

vegetative, reproductive, and ripening. The original classes were reclassified as flooding, 

vegetative, reproductive, and ripening.  

From the confusion matrix, the Producer’s accuracy (PA), user’s accuracy (UA), and 

overall accuracy (OA) are calculated as follows: 

𝑃𝐴 (𝑐𝑙𝑎𝑠𝑠 𝑋) =
∑  𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

∑ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑋
𝑥100%  

(7) 

𝑈𝐴 (𝑐𝑙𝑎𝑠𝑠 𝐴) =
∑  𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

∑ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑋
𝑥100%  

(8) 

𝑂𝐴 =
∑  𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠

∑ 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠
𝑥100%  

(9) 

Note: PA shows the accuracy of a classifier to classify the class based on the testing dataset, 

UA shows the accuracy of the classified pixel belonging to a specific class on the testing 

data, and the OA shows the accuracy of all classes with total testing points. Class X is one 

of rice growth stages such as vegetative, reproductive, ripening, and bare land. 

c) Rice area comparison  

The rice area was calculated and compared with a reference map at the regency level. Based 

on official data, the overall lowland rice area is 2,156,805 ha or 62.1% over 3,472,864 ha 
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of the rice area in Java Island (BPS, 2020). The accuracy of rice area evaluated with 

correlation coefficient (R2), root means square root (RMSE) and mean absolute error 

(MAE) as follows: 

𝑅2 = 1 −  
∑  (𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

∑  (𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠)2
 

(10) 

𝑅𝑀𝑆𝐸 =  √∑(𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2

𝑛

𝑖=1

 

(11) 

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑢𝑒| 

(12) 

where n = total number of regencies  

Note: Higher R2 is a better result since the classifier has a similar trend, and lower RMSE 

and MAE is preferable due to less error in classification. 

6.3.4 Building interactive application 

We built the rice monitoring application using a straightforward JavaScript programming 

language to support user-friendly interaction, especially for non-expert users. The 

flowchart of the application was started from building a machine learning model in a 

specific period and training dataset. The next step is applying the model to a specific area 

and time based on user requests. The model creates spatial prediction maps in 16-days 

periods for four months from the selected current date. There are four map outputs for 

rendering that display four 16-days period maps, allowing the user to examine rice 

farming's dynamic growth in certain areas based on user request. The user can change the 

search period, classifier, and the area.  

6.4 Results 

6.4.1 Backscattering profiles for extracting rice area  

The backscatter values of multitemporal images of Sentinel-1 were used to detect rice areas 

from other land uses. The distribution backscatter values in different modes corresponding 

to different RGS are shown in Figure 6.4. The values are clearly separated between three 

land uses. The backscatter coefficients of urban/ built-up are higher than the rice area, while 
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the water bodies value is less than the rice area. This pattern comes from multitemporal 

backscatter values where even all values have fluctuated over the months, backscatter 

values of rice area are between urban/ built-up and water bodies (Figure 6.S1, see 

Supplementary material section) 

 
Figure 6.4 The median values of backscatter coefficients from the rice area training 

dataset between 2014 to 2020. Error bar indicates the standard deviation. The position of 

points is dodged to avoid overlap points Spectral profiles for extracting RGS. 

6.4.2 Spectral profiles for extracting RGS 

The mean spectral values of Sentinel-2 images of different RGS are shown in Figure 6(5a). 

The spectral profile of bare soil is different from the remaining RGS. The vegetative stage 

has less reflected values than reproductive and ripening stages but is slightly similar to the 

bare land profile. The apparent differences between vegetative and bare land appeared in 

the Red Edge 4 band, where bare land reflectance is higher than the vegetative stage. 

Although the spectral patterns from Landsat-8 OLI’s are similar to Sentinel-2 but the RGS 

are clearly not distinguishable as Sentinel-2 (Figure 6(5b)). 

The average spectral profiles of different RGS for MOD13Q1 are illustrated in Figure 5(c 

and d), where the reproductive stage had the highest values, followed by ripening, bare 

land, and vegetative stages. However, the bare land and vegetative stage shows have 

similarities on NDVI and EVI with different deviations.  
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Figure 6.5 The mean values of (a) Sentinel-2, (b) Landsat-8 OLI, and (c and d) 

MOD13Q1 predictors from the RGS training dataset at 15 – 30 May 2020. NIR= Near-

infrared and SWIR= Shortwave-infrared. Error bar indicates the standard deviation. The 

position of points is dodged to avoid overlap points. 

6.4.3 Rice area accuracy 

Table 6.4 shows that the highest OA of rice area classification is 84.5%, with SVM as a 

classifier with the second-best is RF (82.8%) and CART is the least accurate (77.6%). 

Moreover, PA and UA for all classifiers have high accuracy (>75%) except for urban/ built-

up classifications. There is some confusion between rice and urban areas, which may come 

from the seasonal non-rice cultivation area, especially in the East Java province.  

Table 6.4 The accuracy assessment based on the test dataset for the rice area. 

Classifier 

Rice area Urban/ built-up Water 
OA 

(%) 
PA (%) UA (%) PA (%) UA (%) 

PA 

(%) 
UA (%) 

Test dataset (n= 13,300 points) 

RF 81.3 82.1 74.9 74.3 92.6 92.1 82.8 

CART 70.5 80.8 74.2 67.8 91.9 82.8 77.6 

SVM 89.6 79.3 73.0 83.3 87.7 95.9 84.5 
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Note: n = number of data, PA = Producer’s accuracy, UA = User’s accuracy, and OA= Overall 

accuracy 

The test areas chosen for evaluating the model performance are shown in Figure 6.6. 

Overall, the RF and SVM showed good matching with the official reference map, and 

CART based model showed the lowest accuracy. With all test sites, the RF and SVM 

models showed similar performance (Figure 6.S2 and 6.S3). However, test area-12 on 

Situbondo Regency shows that the rice area from RF and CART is different from the 

official rice map, except for SVM (Figure 6.S3), because of the presence of secondary crops 

(Ramadhani et al., 2020a). 

 
Figure 6.6 The rice area map of the four test sites (1-4) is based on the official rice area 

map, RF, CART, and SVM. The other test area is available on the supplementary material 

in Figure 6.S2 and Figure 6.S3. 
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Figure 6.7 illustrates the correlation between official data and predicted rice area at the 

regional level for 100 regencies in Java Island. It shows that RF and SVM models followed 

almost the same trend with a high correlation coefficient (>0.94) with RMSE=6,218 ha. 

The actual rice area in Java Island was 2,156,805 ha. However, the SVM slightly 

overestimated 2,276,026 ha using SVM, while the RF and CART model was 

underestimated the area, 1,887,672 and 995,739 ha, respectively.  

 
Figure 6.7 The correlation between actual and predicted rice area using (a) RF, (b) SVM, 

(c) CART methods over 100 regencies. 

6.4.4 The prediction accuracy for different RGS 

The classification accuracy for different growth stages and sensors is shown in Table 6.5. 

The RGS was accurately predicted with Sentinel-2 images on test sites compared to other 

remote sensing data, while the data from MOD13Q1 was predicted with the lowest 

accuracy (OA = 44.3-50.1%). Overall, most high PA and UA come from the vegetative 

stage and bare land due to distinctive spectral profiles. With Sentinel-2 image, the bands 

B4 (Red), B8A (Red Edge 4), B12 (short wave infrared [SWIR] 2) were found to be 

essential for discriminating the RGS. In the case of Landsat, the bands such as B5 (NIR), 

B7 (SWIR 2), and B6 (SWIR 1) were found to be important.  

The OA of integrating three types of remote sensing data shows higher accuracy with the 

average of OA from 23 periods is 76.4% with RF, which is comparable with Sentinel-2’s 

accuracy (78.8%) with the same classifier. Additionally, the PA and UA for four classes 

are higher than 74%, except for UA for the ripening class with the RF classifier (Table 

6.5(d)). SVM and CART models show lower accuracy, with the average OA is 67.9% and 

68 %, respectively.  
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Table 6.5 The accuracy comparison for RGS from three individual sensors and integration based on three classifiers on the 23 periods.  

Classifiers n 
Bare land Vegetative Reproductive Ripening OA (%) 

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)  
(a) Sentinel-2 

RF 57,968 80.8 88.7 81.1 85 74.3 78.1 75.6 58 78.8 

CART 49,292 72.8 85 75.8 75.5 51.5 77.9 74.1 45.1 70.2 

SVM 65,389 85.4 65.9 72.0 75.2 56.7 76.3 52.4 63.4 69.9 

(b) Landsat-8 OLI 

RF 34,845 73 84.0 80 73.1 48.1 67.2 60.0 43.6 68.5 

CART 29,452 64.4 76.9 77.9 67.8 48.9 68.6 54.3 40.4 64.5 

SVM 39,451 76.1 77.7 77.4 71.2 42.2 70.3 58.0 44.8 67.1 

(c) MOD13Q1 

RF 61,136 33.4 61.6 56.3 56.3 54.1 58.3 50.0 25.8 47.6 

CART 52,024 26.4 50.5 49.7 55.5 55.9 51.1 39.5 19.3 41.9 

SVM 68,897 33.4 46.7 37.9 64.0 63.0 54.6 47.9 22.5 42.7 
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(d) Integration (Sentinel-2/ Landsat-8 OLI/ MOD13Q1) 

RF 61,181 76.9 87.3 78.4 83.2 73.3 76.4 74.4 53.9 76.4 

CART 52,053 69.0 83.9 73.4 74.1 51.1 75.2 72.6 42.3 68.0 

SVM 68,997 81.7 65.7 69.1 74.6 56.3 74.1 52.3 55.5 67.9 

Note: n= number of points, PA = Producer’s accuracy, UA = User’s accuracy, and OA= Overall accuracy 
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The classification accuracy of RGS over the periods is illustrated in Figure 6.8. Three 

classification methods achieved the highest OA in January 2020, while the lowest OA was 

recorded in December 2019. After February 2020, the OA was high (75-80%) and 

maintained the same level until the end of the sample period. The other classifier follows 

almost the same trend, but RF is higher on all periods, especially on the 02 – 17 February 

2020 and 24 May – 08 June 2020 period.  

 

Figure 6.8 The overall accuracy (OA) of RGS maps is based on three classifiers for 23 

periods. 

The spatiotemporal distribution of prediction maps generated from three different methods 

(RF, CART and SVM) were displayed in Figure 6.9. It shows that the integration of three 

sources of remote sensing data can provide continuous temporal maps. The generated maps 

also show high consistency with the rice cultivation period, where the 16 – 21 April 2020 

period was the vegetative stage for most area vegetative stages. The rice has grown to the 

reproductive stage from the 22 April – 07 May 2020 period until 08 – 23 May 2020 period. 

Moreover, the last stage is the ripening was started in the 24 May – 08 June 2020 period. 

Figure 6.9 also shows that RF is more consistent than the SVM classifier and the CART 

shows less accurate over the periods.  
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Figure 6.9 The RGS map of Test area number 3 (Karawang) from 06 April to 24 June 

2020 based on Sentinel-2 rice monitoring (S-2 RGS), RF, CART, and SVM. Other 

periods of test area number 3 are available in Figure 6.S4 – 6.S7 (Supplementary 

material). 
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6.4.5 The data proportion of multisource 

The contribution of each source of remote sensing data for 16 day periods (November 2019 

to October 2020) with the RF classifier can be seen in Figure 6.10. The Sentinel-2 can 

provide 43.1 – 97% (average=80.4%) data and Landsat-8 has least contribution (5.8%). As 

expected, the data proportion of Sentinel-2 fluctuates over the periods. It has the lowest 

period in the wet season (January 2020) and the highest proportion was in June – August 

2020 (dry season). Moreover, the Landsat-8 can significantly contribute (>10%) only on 

three periods where MOD13Q1 can provide it for 12 periods, which mainly during the wet 

season. The highest proportion of Sentinel-2 was 09 – 24 June 2020. Meanwhile, Landsat-

8 and MOD13Q1 were the 22 April – 07 May 2020 and 19 – 31 December 2019. 

 

Figure 6.10 The source proportion over 23 periods between Sentinel-2, Landsat-8, and 

Sentinel-2 on Random Forest classifier. 

6.4.6 The development of the RGS area over the periods 

Figure 6.11 illustrates the area under different RGS from November 2019 to October 2020. 

It can be seen that the total area of bare land reduced in January 2020 as rice season began, 

then it became stable until March 2020. After that, the bare land area gradually increased 



 

196 

 

with the harvesting. The vegetative growth in two seasons is also captured as there are two 

peaks from January – to June 2020. Consequently, the reproductive growth was also 

detected once in February – May 2020 for the first season. The second season was a small 

peak in June 2020. However, the ripening phase yields entirely unexpected findings as there 

is no sign of peaks or big spikes and stabilization over 500,000 – 625,000 ha. Overall, RF 

shows a better capability to capture rice-growing areas in an extended period. 

 
Figure 6.11 The RGS area development from 01 – 16 November 2019 to 15 – 31 October 

2020. 

6.4.7 Rice maps from GEE 

An interactive rice monitoring system using GEE was developed 

(https://danicool98.users.earthengine.app/view/rice-growth-stages-monitoring-using-

multisource-remote-sensing). Figure 6.12 shows that the generated RGS maps can confirm 

the consistency of changing RGS over four 16-days periods as the ripening stage captured 

on 28 August – 12 September 2020 and become harvested or bare land on the next period. 

Some area shows the changes from the reproductive stage on the 13 – 28 September period 

to the ripening stages in the next period. The speed of rendering the maps varies depending 

on the network and the region. The rendering maps on a specific region in Figure 6.12 

https://danicool98.users.earthengine.app/view/rice-growth-stages-monitoring-using-multisource-remote-sensing
https://danicool98.users.earthengine.app/view/rice-growth-stages-monitoring-using-multisource-remote-sensing
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required 77 seconds, and for all Java Island is 53 seconds with lower resolution. However, 

it took 10-20 seconds to render for zooming in or panning to another area. Furthermore, a 

separate script was needed to download the RGS area in raster format for further analysis 

which needs ~60 minutes to acquire one map for the Java Island region. 

 
 

Figure 6.12 The screenshot of rice monitoring application on GEE platform from 28 

August – 12 September to 15 – 30 October 2020. 

6.5 Discussion 

The GEE is a sophisticated geospatial computation platform for simultaneously 

determining rice area and RGS from multi-source remote sensing data. Despite variable 

cloud conditions in tropical countries, accurate rice maps were generated using 

multitemporal S1. The rice area accuracy was comparable with other studies OA (94-98%) 

(Rudiyanto et al., 2019) (Bazzi et al., 2019) (Tian et al., 2018) (Mascolo et al., 2019). This 

study found that dual-polarization (VV and VH) provided better accuracy than single 

polarization. However, it was found that VH polarization has a high potential to detect rice 

area as it is sensitive to structural changes of vegetation [26 and 28]. Generally, S1 data is 

associated with noise. Although this study has used a median filter to minimize noise, other 

de-noising approaches such as Lee (Lee, 1981), refined Lee, or geometric filter (Lee et al., 

1994) could improve the accuracy by 4% (Bioresita et al., 2018). Since the S-1 data is a 

freely available and cost-effective solution to analyse large areas using GEE, continuous 

rice maps can be generated for effective management decisions.  

The overall accuracy of detecting RGS using the integration of three optical sensors was 

acceptable (76.4%), which is comparable with other studies regarding rice phenology using 

other sensors such as PROBA-V (83.8%) (Ramadhani et al., 2021), TerraX SAR (79.3 – 
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84%) (Ç et al., 2016) and ALOS PALSAR (76.4%) (Miyaoka et al., 2013). Moreover, this 

study shows that the MOD13Q1 has the lowest accuracy and Sentinel-2 has the highest 

accuracy (Table 6.5). The integration accuracy is below 2.4% on Sentinel-2’s accuracy, 

with more information revealed. Thus, multi-sensor techniques and multitemporal images 

with optical sensors can retain accuracy compared with single sensors by capturing rice's 

critical growth stages, as shown in a previous study (Sun et al., 2020). 

Regarding classifiers' performance, the RF shows a better OA than CART in classifying 

rice area and RGS because RF can combine the output of multiple trees with cross-

validation where CART depends on one tree where the model can easily have overfitting 

problems (W. Chen et al., 2017; W. Zhang et al., 2020). Other studies also have similar 

accuracy results, such as Youssef et al. (2016) on mapping landslide susceptibility and 

Zhang, Liu, Wu, Zhan, and Wei [46] on mapping the rice area in China. However, SVM 

accuracy is underperformed compared to other similar studies (Rudiyanto et al., 2019; W. 

Zhang et al., 2020) due to poor generalization. For discriminating against RGS, Sentinel-2 

was found as a better source of information compared to other sensors data. In Sentinel-2, 

the bands were 670 – 864 nm and 1613 – 2202 nm.  

The integration of multiple source information (Sentinel-2, Landsat-8, and MODIS) 

significantly improved the data availability across different times, thus increasing the 

information's consistency, as X. Zhang et al. (2018) reported. For instance, the data 

availability from Landsat-8 and MOD13Q1 was improved positively from 3 to 56.7% 

(average: 19.6%) compared to Sentinel-2 data alone over 23 periods (Figure 6.10). The 

result of the study demonstrates the novelty method for providing a cloud-free RGS map 

using GEE, which is easier to develop than the previous method involving unsupervised 

time-series analysis (Sun et al., 2020). High temporal frequency maps could enable the 

government and stakeholders to provide timely resources to improve productivity (Cai & 

Sharma, 2010). The GEE environment can be deployed on a global scale to be evaluated 

by other investigators without concerning the IT infrastructure, which may have a high cost 

for several developing countries. For example, the S-2 RGS system requires one day to 

download the data, classify it with a pre-trained model, and render it into an interactive 

web. Simultaneously, the proposed work uses the GEE environment to deliver it in less 

than two minutes to render the map. 
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The other limitation is that the model of RGS is still assuming that all vegetation on the 

rice area is rice during the whole year. Some areas in East Java and Banten farmers usually 

grow secondary crops such as maize, soybean, or watermelon to increase the land 

productivity when water is limited, which have similar reflectance of rice crop, especially 

within ripening stages during the August-September period (Figure 6.S8 and 6.S9). In the 

future, automated cropping pattern detection needs to be included in the classification 

process by detecting a sudden drop of VH value of Sentinel-1, as the previous study has 

been done by Ramadhani et al. (2020a).  

The last limitation to be considered is from the GEE environment, where the grid search 

feature is not available. This feature allows the classifier to be tuned up with some 

hyperparameters, especially for the SVM classifier, to find the best model through cross-

validation (Kuhn, 2008). However, it can be solved with Keras (Ketkar, 2017) and 

TensorFlow (Abadi et al., 2016) approach with a higher cost for the users. Moreover, an 

automated machine learning toolkit such as Google AutoML (Bisong, 2019) or AWS 

AutoGluon (Erickson et al., 2020) can be used to increase the accuracy and elevate this 

approach to an operational level with other classifiers where GEE lack, such as XGBoost, 

and gradient boosting.  

Future study is needed to increase data availability by adding more sensors such as 

PROBA-V and Sentinel-3 to automatically detect RGS or using Sentinel-1 with a more 

extensive field campaign dataset to detect rice area. Moreover, pixel-level also need to be 

developed in the GEE environment because it can increase accuracy using STARFM and 

descendent, which combine coarse resolution such as MODIS with the Sentinel-2 Landsat 

image family as suggested by (Cai et al., 2019; Gevaert & García-Haro, 2015). The latest 

algorithm called Flexible Spatiotemporal DAta Fusion (FSDAF) version 2.0 can lower 

RMSE down to 7% compared with the original STARFM method with MODIS products 

(MOD09GA) and Landsat 7 ETM+ using spatial prediction and edge detection (Guo et al., 

2020). The ideal spatial resolution for rice area is 10 m because our results show that OA 

Sentinel-2 is 25% higher than MOD13Q1. Research shows that using Farmosat-2 with 8 m 

spatial resolution and GIS-based objects can detect rice area in fragmented areas for the 

urban region (Shiu et al., 2012).  



 

200 

 

6.6 Conclusion 

This study has developed an automated near-real-time workflow to monitor rice area and 

RGS using a GEE environment and multi-source remote sensing data. This study 

demonstrated that the big data and cloud computing approach is a cost-effective solution 

for regular monitoring of large areas from national to local (village) scale. This approach 

is more favourable for the stakeholders to predict and mitigate environmental factors 

(climate change) or economic factors (export-import) to secure food production by 

examining rice field dynamics spatially because the information of vegetative area can be 

used to indicate the rice cropping production in two-three months ahead. Integrating 

multisource remote sensing data can overcome cloud and shadow problems in tropical 

countries. Therefore, this workflow can be one of the alternatives of crop monitoring 

techniques which can be transferred easily into other significant cereal products such as 

maize, soybean, cassava, sugarcane cultivation on a global scale with faster and more 

accurate results to combat hunger and poverty, especially in developing countries with 

limited internet access and information technology infrastructure.  
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Supplementary material 

 

Figure 6.S1 The example of multitemporal backscatter mean value from Sentinel-1 for 

three land-use classes in monthly period for rice area (Long.: 108.424, Lat.: -6.709), 

urban/ built-up (Long.: 108.561, Lat.: -6.711), and water bodies (Long.: 108.589, Lat.: -

6.711). 
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Figure 6.S2 The rice area map of the four test sites (5-8) based on the official rice area 

map, RF, CART, and SVM 



 

203 

 

 
 

Figure 6.S3 The rice area map of the four test sites (9-12) is based on the official rice area 

map, RF, CART, and SVM. 
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Figure 6.S4 The rice growth stages map of test area number 3 (Karawang) from 01 – 16 

November 2019 to 01 – 16 January 2020 based on Sentinel-2 rice monitoring, and RF, 

CART, and SVM.  
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Figure 6.S5 The rice growth stages map of test area number 3 (Karawang) from 17 

January – 01 February to 21 March – 05 April 2020 based on Sentinel-2 rice monitoring, 

RF, CART, and SVM.  
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Figure 6.S6 The rice growth stages map of test area number 3 (Karawang) from 25 June – 

10 July to 28 August – 12 September 2020 based on Sentinel-2 rice monitoring, RF, 

CART, and SVM.  
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Figure 6.S7 The rice growth stages map of test area number 3 (Karawang) from 13 – 28 

September to 15 – 30 October 2020 based on Sentinel-2 rice monitoring, RF, CART, and 

SVM.  
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Figure 6.S8 The rice growth stages map of test area number 1 (Pandeglang) from 25 June 

– 10 July to 28 August – 12 September 2020 based on Sentinel-2 rice monitoring, RF, 

CART, and SVM.  
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Figure 6.S9 The rice growth stages map of test area number 12 (Situbondo) from 25 June 

– 10 July to 28 August – 12 September 2020 based on Sentinel-2 rice monitoring, RF, 

CART, and SVM. Other test areas and biweekly periods are available and 

https://github.com/FadhlullahRamadhani/Rice-Growth-Stages-with-Google-Earth-

Engine/tree/master/Temporal BoxMap.  

https://github.com/FadhlullahRamadhani/Rice-Growth-Stages-with-Google-Earth-Engine/tree/master/Temporal%20BoxMap
https://github.com/FadhlullahRamadhani/Rice-Growth-Stages-with-Google-Earth-Engine/tree/master/Temporal%20BoxMap
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Chapter 7 General Discussion 

 

Accurate and timely mapping of the rice growth stages (RGS) is important for precision 

input management, yield improvement, and food security. In-situ methods, such as field 

surveys, are widely used to assess the RGS, but those methods are associated with high 

costs, labour and time. Remote sensing data can provide timely information on rice crops 

covering large spatial extents (e.g., regional to continent scales). Many studies have been 

conducted using different satellites with various spectral and spatial configurations. This 

research aimed to investigate and develop a methodology for the accurate mapping of RGS 

using multiple remote sensing data with various machine learning algorithms, which would 

add some knowledge to the remote sensing community. Moreover, accurate RGS mapping 

is valuable information for government policy and decision-makers to regulate and 

sustainably manage the available resources, thus minimising the impact of agriculture 

production on the environment. In our context, the map of RGS supports the improvement 

of four key areas: water management, fertiliser supply, nutrient management and harvesting 

facilities in Indonesia. The proposed methods can also be applied elsewhere globally. 

7.1 A summary of remote sensing data for detecting RGS 

In this thesis, Chapter 1 explained the importance of rice crop production in Indonesia and 

its role in food security, while an extensive literature review has been conducted into 

remote sensing for mapping rice areas and growth stages in Chapter 2. The review also 

pointed out the research gaps, which are set as objectives in this research. Initially, we have 

studied the potential Landsat-8 OLI imagery combined with ground webcam stations data 

for mapping RGS in Chapter 3. The results showed that using all (six) bands of information 

as an input in the model significantly improved the accuracy by 10.3%, compared to 

vegetation indices, indicating the importance of multiple bands for mapping (Table 3.3). 

However, the prediction performance was inconsistent in the mixed and fragmented crop 

areas’ results, leading to increased misclassification due to the mixed pixels. Consequently, 

the high spatial resolution imagery of Sentinel-2 was used in Chapter 4 to improve the 

accuracy. Since Sentinel-2 has a high spectral and spatial resolution, its classification 

performance proved to be 20% better than Landsat-8. Sentinel-2 images were integrated 

with MOD13Q1 and Sentinel-1 (S-1) to fill gaps and negate cloud interference. S-1 offers 



 

212 

 

the clear advantage of collecting information from the Earth’s surface irrespective of the 

weather conditions. The polarised SAR backscattering profile is highly sensitive to crop 

phenology and canopy volume, thereby allowing continuous monitoring from space.  

Alternative to MODIS, Chapter 5 explored the potential of PROBA-V combined with 

Sentinel-1 to produce a cloud-free map for RGS. The results show that the prediction map 

has a high correlation with local statistics with a moderate 100-meter resolution. The lag 

time between the stages is similar to the existing rice cropping pattern with an average r> 

0.52, p < 0.01. 

In Chapter 6, multisource remote sensing based on Sentinel-2, Landsat-8 OLI, MOD13Q1 

with rice area detection from the multi look of Sentinel-1 was integrated to improve the 

temporal and spatial resolutions. Processing multisource remote sensing data at a national 

scale is challenging due to the large volume of data and high computational power required. 

Recently, Google Earth Engine (GEE), a sophisticated geospatial platform, was introduced 

for processing planetary-scale data with unprecedented speed by parallelising the analysis 

on many CPUs in Google data centres (Gorelick et al., 2017). Chapter 6 investigated the 

potential of using GEE for mapping RGS using multisource remote sensing data. Since 

Indonesia’s spatial data infrastructure is less developed due to economic constraints, GEE 

provides realistic solutions for processing big data to provide timely decisions for the 

precision management of rice. The flowchart of the thesis’s summary is illustrated in Figure 

7.1. 

The automation system that has been investigated in Chapters 4, 5, and 6 shows that the 

machine learning model can be transferred in the area as a pre-trained model to get a quick 

analysis of rice growth stages in a particular area. A similar method was also used in 

detecting damaged buildings for timely assessment for helping the disaster victims by 

Valentijn et al. (2020), where the collection of ground truth datasets was difficult and 

expensive. They also found that the machine learning model has retained its accuracy in 

different 19 disasters in several scenarios with very high spatial resolutions (<0.7 m) using 

Convolutional Neural Networks. However, they recommended that a larger dataset and 

collaboration with other information is needed to make better information for end-user, 

which this study drew the same conclusion. 
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Figure 7.1 The flowchart of the research summary and its main finding for each objective.  

The main reason for the integration of multisource remote sensing data is to increase its 

potential applications by combining each sensor’s strengths. The optical sensors show 

greater accuracy than the radar-based sensors, but clean data’s availability is minimal due 

to the almost permanent cloud cover and shadows, especially in tropical areas. Moreover, 

the strengths and weaknesses of different remote sensors are detailed in Table 7.1. 
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Table 7.1 The list of strengths and weaknesses of sensors and sensor combinations used for mapping RGS 

Sensors/ Fusion sensors Strengths Weaknesses 

MOD13Q1 Better accuracy than Sentinel-1 in the training model, easy 

to implement 

Clouds, 16 days periodically, 250-meter resolution, fewer 

bands, mixed pixels, less accurate in ripening stages 

PROBA-V Better accuracy than MOD13Q1 in the training model, 

two-three days revisit time, easy to implement 

Clouds, 100-meter resolution, fewer bands, mixed pixels 

Sentinel-2 Highest accuracy from all sensors in the training model, 

better resolution: 10-60-meter resolution, five days revisit 

time, easy to implement 

Clouds, less accurate in the ripening stage 

Sentinel-1 Can penetrate through clouds, more moderate accuracy 

than MOD13Q1, better resolution: 10 m 

12 days revisit time, difficult to implement, speckles noise, 

less accurate in reproductive stages 

MOD13Q1/ Sentinel-1 Higher accuracy than Sentinel-1 Prone to clouds, difficult to transfer to other areas 

Sentinel-2/ MOD13Q1/ 

Sentinel-1 

No cloud, higher accuracy than Sentinel-1, 10-meter 

resolution 

Difficult to be transferred to other areas, and in the rainy 

season 

PROBA-V/ Sentinel-1 No cloud, lower accuracy than Sentinel-2/ 

MOD13Q1/Sentinel-1 but easy to implement all year 

round 

Difficult to be transferred to other areas, 100-meter resolution 

Sentinel-2/ Landsat-8 

OLI/ MOD13Q1  

Less cloud, higher accuracy than Sentinel-2/ 

MOD13Q1/Sentinel-1 but easy to deploy to other lowland 

areas.  

No cropping pattern detection, 30-meter resolution, 

challenging to download in the broader area due to GEE 

memory limitation 
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7.2 The limitation of mapping rice growth stages using RS and machine learning 

Vegetation indices (VI) are commonly used as an input for mapping RGS due to their 

inherent simplicity. Different VI have been proposed to maximise the sensitivity of the 

variable of interest while minimising the role of confounding factors such as soil 

background and the atmosphere. For modelling VI information, parametric and non-

parametric methods have shown excellent results in various environments. Non-parametric 

approaches, such as SVM, outperform simple linear regressions and provide accurate 

results due to their ability to explain the complex nonlinear relationships that classify RGS. 

The vegetation undergoes a series of changes in volume, structure, and chemical attributes 

during crop growth. As most publicly available satellite sensors suffer from coarse 

resolution and have limited and discrete spectral bands, machine learning approaches can 

still extract useful information from the mixed pixel (i.e. a mix of different RGS in one 

course pixel).  

Zhu et al. (2018) suggested that mixed pixels occurrence in course pixels cannot be 

avoided; thus, the higher resolution or more bands in a sensor will decrease the probability 

of mixed pixels (study case on classification land-use types). However, ML classification, 

such as the SVM, can increase the accuracy by considering more bands in a high 

dimensional plane with mixed training pixels and still have high accuracy (Foody & 

Mathur, 2006). In our case, the confusion matrix on Landsat-8 and Sentinel-2 shows that 

the classification accuracy for the ripening stages is lower than the vegetative stage but still 

can be classified over > 55%, which was acceptable (Ramadhani et al., 2020a, 2020b).  

Although the study was conducted in different rice ecosystems (flood-prone, rainfed 

lowland and irrigated areas), the proposed methodology in this thesis provided a robust 

methodology for mapping RGS for near-real monitoring. However, the proposed approach 

still has a few limitations: 

a) In the study areas, some of the farmers in particular parts of Java, such as in Brebes 

and Nganjuk Regency (Figure 7.2), have cultivated rice and shallots (Allium 

ascalonicum L.) interchangeably, depending on the shallots’ price in the market. If 

their price is predicted to be high, then the farmers would prefer to grow shallots. 

Despite the high accuracy achieved in most of the areas in the RGS model, it failed to 

distinguish the shallots in the vegetative stage when mixed side-by-side with rice, using 
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a 10 m spatial resolution (Figure 7.2). This misclassification happened because shallots 

and rice have similar optical features and the same wet soil conditions. In their 

vegetative stage, shallots also need to have ditches/water irrigation surrounding the 

fields. With a lower-middle infrared band than dry soil, wet soil makes it challenging 

to analyse for a limited number of the bands. Moreover, the growing period of shallots 

and rice is nearly the same, between 115 and 130 days (Putra et al., 2020). Field level 

studies are required to understand the optimal bands required for discriminating 

shallots and rice. 

 

Moreover, rice varieties cause different spectral profiles. However, the existing studies 

only used proximal/UAV sensors to capture the image. Darvishsefat et al. (2011) 

reported that a field spectrometer could differentiate the rice canopy of seven Iranian 

local rice varieties. The study shows that rice varieties significantly differ on visible 

and near middle infrared (1425 - 1800 nm) wavelength. Another study also concluded 

that rice varieties have different spectral profiles in different RGS using a UAV with 

RGB bands (Afdhalia et al., 2019) in Indonesia. Ciherang varieties have a higher 

spectral value than the other two varieties, such as IR42 and IR64. More research is 

needed to discriminate the rice varieties using 10-100 spatial resolution data to increase 

the information at the field level.  

 

Multispectral satellites contain few spectral bands with a broad spectral resolution 

which has limited capacity to discriminate vegetation types. As indicated in Chapter 2, 

hyperspectral sensors that collect continuous high spectral resolution data such as 

EnMAP and PRISMA can give detailed information about different vegetation types, 

such as forest type classification (Jędrych et al., 2017; Vangi et al., 2021). Moreover, 

the data from hyperspectral satellites can improve vegetation monitoring, such as 

canopy nitrogen content (Verrelst et al., 2021), soil organic carbon (Ward et al., 2020), 

soil macronutrients (Misbah et al., 2021), and leaf chlorophyll content (Cui et al., 

2019).  

 



 

217 

 

 
Figure 7.2 The comparison between (a) shallots and (b) rice cultivation in the vegetative 

stage. 

 

b) The Sentinel-1 has proven an excellent sensor to detect the total rice area and flooding 

and vegetative phases due to a specific profile of low backscattering values (L. R. 

Mansaray et al., 2017). However, the reproductive and ripening classes were poorly 

determined. The main reason for this poor performance is that the rice plant, in both 

stages, is nearly the same, where the water background is covered with a dense canopy. 

Due to coarse resolution, the backscattering signal is weak and confounded with other 

environmental factors. Moreover, the Sentinel-1 has limited polarisation modes (VH 

and VV) to extract structural information of different RGS. Another method to improve 

the accuracy is to use multi look data from ascending and descending data sets in a 

short period (Umutoniwase & Lee, 2021). Moreover, the temporal dataset of S-1 also 

increases the probability of RGS classification in better resolution because it can detect 

the RGS change more precise than the longer temporal resolution area (Dirgahayu & 

Made Parsa, 2019). In some cases, the correction of the incident angle also raises the 

precision by normalizing the variance of temporal incident angle, which sometimes 

difference over the regional area (Kaplan et al., 2021). 

c) GEE has limited memory to protect against the overuse of parallel processing by free 

users. This limitation leads to difficulties in making a regional scale in a single request 

within the custom application (e.g. Arjasakusuma et al. (2020)). Moreover, with many 

bands used as predictors, the classification process also needs a massive memory to 

process a wide area. Thus, the proposed method requests a smaller area or tiles by a 

time-based period and then combines the tiles into a wide area. Another solution is to 

make the classification process into a Google machine learning product (AutoML) with 

a subscription fee applied. 

d) The model uncertainty in this study is inevitable and one of the challenges in the 

machine learning approach for solving classification problems; even the ML is 



 

218 

 

considered the best and easy to apply rather than linear programming or expert rules 

(Maxwell et al., 2018). Model uncertainty comes from three sources such as model fit, 

dataset quality, and space compliance (Kläs & Vollmer, 2018). The form of uncertainty 

can be produced from the overfitting or underfitting in the model fit case. The training 

dataset which is not verified can decrease the quality of classification accuracy. For 

example, the training dataset, which has a longer gap than the field survey data, will 

cause the wrong label dataset. Moreover, the uncleared scope of the classification can 

increase the uncertainties in space compliance, such as applying the RGS model in the 

sugarcane area will cause incorrect interpretation. The advances in quality and number 

of data sampling using drone and machine learning techniques such as deep learning 

can improve the accuracy and information used for decision-making in agriculture 

policy (Wang et al., 2022; Wei et al., 2022). 

 

In tropical areas, there are three main barriers to implementing monitoring RGS using 

remote sensing. The first is extensive cloud cover, especially in the wet season (e.g. 

December – February for Indonesia). The second is the availability of (free) satellites data 

to make monitoring operational in a timely fashion. Some projects have been operational 

but short due to depending on grants or external funding, such as the International Asian 

Harvest mOnitoring system for Rice (INAHORT) based on images from the ALOS-2 

satellite (Oyoshi et al., 2016). The third is the high uncertainty of implementing SAR-based 

RS datasets such as Sentinel-1 alone on discriminating RGS using the supervised method. 

This is challenging since the farmer's planting time can be shifting in Indonesia due to water 

distribution problems (G. Zhang et al., 2017). Thus, multitemporal and multi-dataset should 

be used to discriminate the RGS in the near real-time. The supervised classification using 

machine learning has been investigated in previous studies in different objects, such as 

detecting damaged buildings and wildfires with acceptable accuracy (Sulova & Jokar 

Arsanjani, 2020; Valentijn et al., 2020; Wen et al., 2019). 

7.3 Future opportunities 

Despite a growing number of studies into rice mapping using remote sensing, producing 

accurate high-frequency maps remains challenging. Although our research provided 

promising results, we believe further research is required to advance our understanding and 

mapping of RGS accurately. The following areas needed more attention, as follows: 
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7.3.1 Increasing ground sampling for validation 

In Indonesia, rice areas are categorised into different ecosystems: rain-fed lowland-, 

upland-, and flood-prone rice ecosystems. The spectral signatures of these ecosystems are 

significantly different due to their variable management practices. Thus, sampling is 

needed as a valuable database to represent the variability in the training database. The web 

camera network can be expanded across the country for timely information and to validate 

the satellites’ images. Furthermore, the automatic system for calibrating the satellites’ 

images using webcam data is essential to simplify the process. 

7.3.2 Improving the temporal frequency of satellite information 

The increased frequency of information from multiple satellites (Sentinel-2, Sentinel-1, 

Landsat, MODIS and PROBA) would complement filling in the temporal gaps. In Figure 

7.3, we have designed a system for mapping RGS on a regular time scale. The integration 

of optical and radar-based data can give a ‘temporary’ map of RGS in near-real time (5 to 

16 days). Initial mapping started with Sentinel-2 with a 5-day temporal frequency, and 

missing/cloudy images were filled in by PROBA-V. The same step was applied to fill the 

missing value using Sentinel-1, Landsat-8, and MOD13Q1 for mapping RGS every 16 

days. New generation hyperspectral missions, such as PRISMA and EnMAP, can further 

provide complementary information to understand the role of different spectral bands for 

mapping RGS. 

 

Figure 7.3 The future planning of rice monitoring with the fusion method 
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7.3.3 Data fusion approaches to improve the accuracy 

Data fusion is another advanced approach, which takes the information from multiple 

sensors to improve the accuracy and temporal frequency. The accuracy of ripening stage 

classification can be increased with time-series data using a vegetation index, such as NDVI 

or EVI. The rice-growing phase can be drawn with EVI profile wherein the vegetative 

stage, the value of EVI is started lower than the reproductive stages. Over time, the value 

of EVI will reach the peak in the reproductive stages and decrease down through the 

ripening stages until its harvest. However, this technique needs clean data in two 

consecutive periods. Chen et al. (2015) and Gevaert and García-Haro (2015) reported that 

the models for data fusion could be implemented in different ways: 

a) The spatial and temporal adaptive reflectance fusion model (STARFM) 

The STARFM implemented the prediction of a high-resolution image based on a lower 

resolution one with the same date and one pair of high and low-resolution sensors 

before or after the predicted date (Feng et al., 2006). The STARFM algorithm uses 

local weights to replace poor quality pixels with better quality ones based on spectral, 

temporal, and distance differences.  

b) The enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) 

The enhanced STARFM uses two pairs before and after the predicted date of the lower 

resolution images (Zhu et al., 2010). It uses a weight function and a conversion 

coefficient. It claims to have better accuracy, even in complex landscapes, due to its 

consistent weighting function through the timeline. 

c) The flexible spatiotemporal data fusion (FSDAF) 2.0 

This pixel-based fusion is from the ESTARFM model. The FSDAF model is 

effectively used for land cover detection with an enhanced pixel quality (Guo et al., 

2020). 

Zhang and Lin (2019) have applied the STARFM model and object-based analysis for 

mapping the rice area in China. They used MODIS-NDVI and Landsat-NDVI to make 

phenological profiles of rice and non-rice areas with a 16-day period. The result shows that 

the overall accuracy was increased by ~11%. Similar works were also shown with different 

models (Kim et al., 2020; Li et al., 2017; Zhuang et al., 2016). Moreover, another study 

used the ESTRAFM model for mapping sugarcane areas in China with MODIS-NDVI and 

HJ-1 CCD with an accuracy of >90% (Chen et al., 2020). We believe the above data fusion 

approaches should be considered and implemented in the GEE environment to improve the 
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classification accuracy and temporal frequency of RGS. Moreover, deep learning methods 

can be applied for RGS classification. Future research should focus on different sensor 

combinations, including Sentinel-2/MODIS-NDVI, Sentinel-2/PROBA-V, Sentinel-

2/Sentinel-3, or Landsat/Sentinel-2/MODIS-NDVI. For example, the higher accuracy was 

achieved by simulated NDVI value of spectral values of lower resolution but a higher 

temporal resolution to predict the value of the missing data from the sensor with higher 

resolution but a less revisited date. Xiao et al. (2022) demonstrated that the fusion of 

MODIS and Sentinel-2 can achieve an overall accuracy of 87% in classifying water periods 

in China because the fusion method enables a shorter interval in the training datasets to 

detect the changes over the period. 

7.3.4 Feature extraction and deep learning to improve the accuracy 

Extracting textural features from optical images and combining them with existing spectral 

metrics improve prediction accuracy (Sun et al., 2019; Tian et al., 2019). One of the textural 

analyses that can be used for mapping the rice growth stages’ statistical texture provides 

the spatial distribution of grey levels in an image using a statistical approach, such as the 

Grey level co-occurrence matrix (GLCM) method. GLCM can give information about 

features, such as homogeneity, contrast, entropy, angular second moment, variance, 

correlation and inverse difference moment. Okubo et al. (2010) found that homogeneity 

and contrast are important to increase land use separability. Moreover, Tassi and Vizzari 

(2020) have successfully integrated GLCM with spectral data in the GEE environment, 

with 82% accuracy, for mapping land cover in China from three different sources (e.g. 

Landsat-8, Sentinel-2, and PlanetScope). 

Furthermore, deep learning methods have matured to a sufficient level to allow for 

quantitative analysis due to their more affordable memory and processing unit and free 

deep learning libraries, such as keras and TensorFlow. For example, a deep convolutional 

neural network is proved to be a robust classifier that combines spectral and spatial features 

to map rice areas with an accuracy of 97.06% (Zhang et al., 2018) with 31 variables from 

Landsat-8 and MODIS-NDVI data sources. By combining textual analysis and deep 

learning approaches, the accuracy of the rice growth map could be increased by >10% since 

the textual analysis can reveal useful hidden information and deep learning to solve high 

dimensional classification problems (X. M. Zhang et al., 2017). Moreover, textual analysis 

can also reduce the salt-and-pepper effect in the resultant prediction maps. 



 

222 

 

7.4 Future development in information dissemination 

The present thesis focused on mapping RGS in near-real-time, over time with high 

accuracy. This can be used by agriculture stakeholders, such as public policymakers or 

fertiliser-, seed- and other trading companies. Moreover, online and mobile users have 

increased to 4.66 billion globally (Joseph, 2021). Disseminating information from remote 

sensing analysis to the users is quite difficult since most end-users are still on the learning 

curve of geospatial technology, such as Google Maps and Google Earth. Some 

improvements can be made in a few years to speed up the uptake of geospatial information 

at the decision-making level by developing a new rice monitoring system, as shown in 

Figure 7.4. The new rice monitoring system consists of five main subsystems: satellite data 

acquisition, data pre-processing, data analysis, information dissemination using an 

interactive website, and an android application. One of the future developments is 

combining RGS information with crop modelling and soil and weather data to improve the 

accuracy of rice yield predictions. 

 

Figure 7.4 The suggested framework of a rice monitoring system 

One example developed based on the thesis is the rice crop monitoring application using 

Sentinel-2. Chapter 4 workflow with Sentinel-2 reached overall accuracy as high as 90.6% 

have been used to model the RGS for rice monitoring system. This system has four 
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workstations and two web servers to provide a rice-growing map for Indonesia, which 

comprises 7.4 million ha and is available at the sub-district level. The users can use the 

application by browsing a website for exploring the RGS maps interactively (http://katam. 

litbang.pertanian.go.id/sc/). Moreover, the maps can also be viewed easily using an 

Android application that has been published on Google PlayStore under the name 

‘Monitoring of Sentinel-2 Rice Growth Stages’. Figure 7.5 shows screenshots of two 

interactive applications in the “Bahasa Indonesia” language.  

 

Figure 7.5 The example of remote sensing analysis for the user interface in (a) an 

interactive website and (b) an interactive Android application that was developed to 

disseminate the rice growth stage (RGS) information directly to the stakeholders. 

The information of RGS in real-time will benefit the stakeholder on their related business 

such as farming management from the input and subsidise management until the off-farm 

activities such as combine harvester allocation (e.g. Table 7.2). Moreover, the RGS can be 

one of the alternatives for tracking rice productivity every year by combining it with a crop 

model, as suggested by previous studies (Ji et al., 2021; Rudiyanto et al., 2019; Setiyono et 

al., 2019). 

Moreover, the machine learning model can be treated as a pre-trained model to predict the 

rice growth stages. In Indonesia, there are 73,713 extension workers distributed in 34 

provinces (Apriyana et al., 2021; PUSDATIN, 2020). The extension workers or the farmers 

can check the RGS information using a mobile application to inform that the predicted 

analysis is right or wrong with any auxiliary information such as place, time, cropping 

calendar, or water distribution schedule. Thus, the data analysis can create a new model for 
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specific spatial and time to increase the temporal accuracy. Moreover, if the data collection 

reaches over 10,000 data points, the deep learning classifier can increase the computation 

time (Jo et al., 2020; Ndikumana, Minh, et al., 2018). 
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Table 7.2 The relationship between RGS information and farming management actions 

Rice growth stage Timespan (days after 

planting) 

Actions Stakeholders 

Vegetative 0 – 60 • Input management (fertiliser, seeds, 

pesticide) 

• Water management and distribution 

• Private Companies  

• Ministry of Agriculture 

• Ministry of Public Works 

• Farmers 

Reproductive 61 - 90 • Pesticide allocation • Private Companies  

• Ministry of Agriculture 

• Farmers 

Ripening 91 - 120 • Combine harvester management 

• Estimation production of every 

administration level 

• Storage management 

• Private Companies  

• Ministry of Agriculture 

• Ministry of Commerce 

Bare land - • Secondary management for adding 

more crops depends on water 

availability 

• Ministry of Agriculture 

• Farmers 
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7.5 Conclusion 

The present thesis has proved new machine learning-based techniques for mapping RGS in 

a timely fashion with multiple sensors. Sentinel-2 returned the best accuracy among the 

different satellites due to its higher spatial and spectral resolution with a high level of 

sensitivity to rice crop changes. To fill the gaps in the optical imagery (Sentinel-2), the 

prediction maps from MOD13Q1 and Sentinel-1 were integrated, which improved the 

availability of time series maps (from one month to a 16-day period) under variable 

environmental conditions. The estimated vegetative and harvested areas correlated well 

with the local statistics monthly. The findings are encouraging for forecasting harvested 

areas since they indicate a moderate correlation between vegetative and harvested areas 

with a sufficient lag time. The proposed method and results can be a part of global rice 

monitoring, which consumes less time and labour than traditional practices. Additionally, 

our web application using multitemporal data could be one of the solutions for deploying 

rice monitoring to other parts of Indonesia and globally, especially for those developing 

countries with limited infrastructure. 

Although the result of this study is promising to some extent, future research must produce 

better information in near-real-time combined with deep learning approaches to provide 

more robust solutions. Robust training data need to be developed to represent different rice 

ecosystems, such as rice cultivation in swampland, upland, or peatland areas. The proposed 

methodology can be easily embedded into other cloud computing systems such as Google 

Cloud, Amazon Web Service or Microsoft Azure, providing a flexible computational 

environment to extract additional features and implement deep learning approaches. The 

final maps could be combined with the existing rice monitoring projects globally, ensuring 

food security in regional areas. The method can also be made easily transferable to monitor 

other crop growth stages if the land use and cropping pattern are consistent over time.  

Accurate RGS information can help farmers and stakeholders minimise risks and predict 

their fertiliser usage, pesticide usage, harvesting time and pricing mechanism to ensure both 

producer and consumer have a fair price. Moreover, the information can help the 

government adopt economic policies, such as to balance exports and imports, to protect 

smallholder farmers and food distribution in developing countries, especially in Indonesia 

with its 267 million people, and maintain food security on a regional scale. The technical 

information supports insurance companies for making transparent and reliable decisions, 
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enabling crop insurance schemes for smallholders viable. Overall, the mapping of RGS can 

be a tool to monitor the United Nations Sustainable Development Goals: Goal 2 Zero 

Hunger (Target 2.4) and decreased food prices anomalies by timely supply and demand 

information (Target 2.C) (Whitcraft et al., 2019). 
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Appendices 

 

Appendix 1 Github address for source codes, data, and maps 

1. Chapter 3 

https://github.com/FadhlullahRamadhani/LS8-OLI-MAPPING  

2. Chapter 4: 

https://github.com/FadhlullahRamadhani/S2-PADDY-MAPPING  

3. Chapter 5: 

https://github.com/FadhlullahRamadhani/Remote-sensed-correlation-statistics  

4. Chapter 6: 

https://github.com/FadhlullahRamadhani/Rice-Growth-Stages-with-Google-Earth-

Engine  

5. Some field survey photos and documents: 

https://github.com/FadhlullahRamadhani/Mapping-Rice-Growth-Stages---A-Thesis  
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Appendix 2 - Statements of contribution doctorate with publications/manuscripts (DRC 

16). 

1. Chapter 3. 
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Appendix 3 Specifications of satellite-based sensors/satellites 

1. PROBA-V and MODIS Terra 

a) Platform, orbit, and geometric specifications 
 

PROBA-V MODIS Terra 

Altitude 820 km 705 km 

Inclination Sun-synchronous orbit + 0.13° sun-synchronous, near-polar, circular 

Coverage daily above 35° latitude; full coverage every 2 

days 

2,330 km and views the entire surface of the Earth 

every one to two days. 

Payload Mass 33.3 kg 228.7 kg 

Payload dimensions 0.2 m × 0.8 m × 0.35 m 1.0 x 1.6 x 1.0 m 

Power 43.2 W payload 162.5 W  

Life 2.5–5 years 6 years 

Downlink 11.1 Mb s–1 (after compression) 10.6 Mbps (peak daytime); 6.1 Mbps (orbital 

average) 

Field-of-view and swath 102.4° and 2295 km 2330 km (cross track) by 10 km (along track at nadir) 

Launched year 7 May 2013 18 December 1999 

b) Radiometric specifications for PROBA-V 

Band Name/ Description Band centre (nm) Bandwidth (nm) Wavelength range (nm) Pixel size (m) 

Blue 463 56 435-491 100 

RED 655 79 615-694 100 

NIR 845 144 773-917 100 

SWIR 1600 73 1563-1636 100 

a) Radiometric specifications for MODIS Terra 
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Band Name/ Description Band center (nm) Bandwidth (nm) Wavelength range (nm) Pixel size (m) 

Band 1/ Red 645 50 620 - 670 250 

Band 2/ NIR1 858 35 841 - 876 250 

Band 3/ Blue 469 20 459 - 479 500 

Band 4/ Green 555 20 545 - 565 500 

Band 5/ NIR2 1240 20 1230 - 1250 500 

Band 6/ SWIR1 1640 24 1628 - 1652 500 

Band 7/ SWIR2 2130 50 2105 - 2155 500 

Band 8-36 - - 405 - 14385 1000 

 

2. Sentinel-2 and Landsat-8 OLI 

a) Platform, orbit, and geometric specifications 
 

Sentinel-2A/B Landsat-8 

Altitude 786 km 705 km 

Inclination Sun-synchronous Sun-synchronous, near-polar orbit 

Coverage All land areas/islands covered (except Antarctica) 

/Five days from two-satellite constellation (at 

equator) 

16-day repeat cycle with an equatorial crossing 

Payload Mass 275 1,512 

Payload dimensions 3.4 × 1.8 × 2.35 m 3 m x 2.4 m 

Power 1,700 W 3.750 watt 

Life Seven years  Five-year life span  
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Downlink 1.3 Gbit/s to 0.45 Gbit/s 384 Mbps on X-band frequency; 260.92 Mbps on S-

band  

Field-of-view and swath 290 km 185 km x 180 km 

Launched year 6 January 2015 & 7 March 2017  February 11, 2013 

 

b) Radiometric specifications for Sentinel-2A 

Band Name/ Description Band center (nm) Bandwidth (nm) Wavelength range (nm) Pixel size (m) 

Band 1/ Aerosols 443 27 430–457 60 

Band 2/ Blue 497 98 448–546 10 

Band 3/ Green 560 45 538–583 10 

Band 4/ Red 665 38 646–684 10 

Band 5/ Red Edge 1 703 19 694–713 20 

Band 6/ Red Edge 2 740 18 731–749 20 

Band 7/ Red Edge 3 783 28 769–797 20 

Band 8/ NIR 835 145 763–908 10 

Band 8A/ Red Edge 4 864 33 848–881 20 

Band 9/ Water vapor 945 26 932–958 60 

Band 10/ Cirrus 1373 75 1336–1411 60 

Band 11/ SWIR 1 1613 143 1542–1685 20 

Band 12/ SWIR 2 2202 242 2081–2323 20 

 

c) Radiometric specifications for Sentinel-2B 
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Band Name/ Description Band center (nm) Bandwidth (nm) Wavelength range (nm) Pixel size (m) 

Band 1/ Aerosols 442.3 45 419-464 60 

Band 2/ Blue 492.1 98 443-541 10 

Band 3/ Green 559 46 536-582 10 

Band 4/ Red 665 39 645-684 10 

Band 5/ Red Edge 1 703.8 20 693-713 20 

Band 6/ Red Edge 2 739.1 18 730-748 20 

Band 7/ Red Edge 3 779.7 28 765-793 20 

Band 8/ NIR 833 133 766-899 10 

Band 8A/ Red Edge 4 864 32 848-880 20 

Band 9/ Water vapor 943.2 27 929-956 60 

Band 10/ Cirrus 1376.9 76 1338-1414 60 

Band 11/ SWIR 1 1640.4 141 1569-1710 20 

Band 12/ SWIR 2 2185.7 238 2066-2304 20 

 

d) Radiometric specifications for Landsat-8 OLI 

Band Name/ Description Band center (nm) Bandwidth (nm) Wavelength range (nm) Pixel size (m) 

Band 1/ Coastal aerosol 443 20 433–453 30 

Band 2/ Blue 482 65 450–515 30 

Band 3/ Green 562 75 525–600 30 

Band 4/ Red 655 50 630–680 30 

Band 5/ NIR 865 40 845–885 30 

Band 9/ Cirrus 1375 30 1360–1390 30 
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Band 6/ SWIR1 1610 100 1560–1660 30 

Band 7/ SWIR2 2200 200 2100–2300 30 

Band 8/ Panchromatic 590 180 500–680 15 

Band B10/ Brightness temperature 1089 59 1060-1119 100 to 30 

Band B11/ Brightness temperature 1200 101 1150-1251 100 to 30 

 

3. Sentinel-1 

a) Platform, orbit, and geometric specifications 
 

Sentinel-1A 

Altitude 693 km 

Inclination Sun-synchronous orbit 

Coverage 12-day repeat cycle 

Payload Mass 2,170 kg 

Payload dimensions 3.9 m × 2.6 m × 2.5 m 

Power 5,900 W 

Life 7-year lifetime (12 years for consumables) 

Downlink 520 Mbit/s; S-band 64 kbps uplink and 128 kbps / 2 Mbps downlink for TM/TC. 

Field-of-view and swath Interferometric Wide Swath 250 km 

Launched year 3 April 2014 

 

b) Backscattering specifications 

• VV: single band co-polarization, transmit in vertical / receive in vertical 
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• HH: single band co-polarization, transmit in horizontal / receive in horizontal 

• VV + VH: dual-band cross-polarization, transmit in vertical / receive in horizontal 

• HH + HV: dual-band cross-polarization, transmit in horizontal / receive in vertical 

 

4. Source of the specifications:  

a) Sterckx, S., Benhadj, I., Duhoux, G., Livens, S., Dierckx, W., Goor, E., Adriaensen, S., Heyns, W., Van Hoof, K., Strackx, G., Nackaerts, 

K., Reusen, I., Van Achteren, T., Dries, J., Van Roey, T., Mellab, K., Duca, R., & Zender, J. (2014). The PROBA-V mission: image 

processing and calibration. International Journal of Remote Sensing, 35(7), 2565-2588. https://doi.org/10.1080/01431161.2014.883094 

b) https://modis.gsfc.nasa.gov/about/specifications.php  

c) https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document 

d) https://www.usgs.gov/media/files/landsat-8-data-users-handbook  

e) https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Specification  

 

  

https://doi.org/10.1080/01431161.2014.883094
https://modis.gsfc.nasa.gov/about/specifications.php
https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document
https://www.usgs.gov/media/files/landsat-8-data-users-handbook
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Specification
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Appendix 4 The webcam station list and its attributes 

ID Code Name Province Regency Sub District Village Latitude Longitude Altitude Direction 
Irrigation 

type 

0 balitklimat1 Sukamandi West Java Subang Sukamandi Sukamandi -6.3579943 107.646811 100 150 TI 

2 CCTV02 Kedunggalar East Java Ngawi Kedunggalar Njenggrik -7.4070458 111.3274918 86 164 TI 

3 CCTV03 Banggal Sari East Java jember Banggal Sari Sukorejo -8.2378611 113.5255556 34 180 Semi-TI 

4 CCTV04 Tenggarang East Java Bondowoso Tenggarang Tamsil Kulon 

-

7.90583333 113.8607222 242 280 Semi-TI 

5 CCTV05 Sumberrejo East Java Bojonegoro Sumberrejo Pekuwon -7.1828132 111.9931946 24 207 TI 

6 CCTV06 Pontang Banten Serang Pontang Sukanegara -6.0608292 106.2623749 12 2 TI 

7 CCTV07 Songgom 

Central 

Java Brebes Songgom Jati Roket -6.99894 109.01736 24 315 TI 

8 CCTV08 Dukuhwaru 

Central 

Java Tegal Dukuh Waru Dukuh Waru -6.96976 109.09492 28 180 Semi-TI 

9 CCTV09 Kebonpedes West Java Sukabumi Kebonpedes Sasagaran -6.9489465 106.9631577 568 176 

Village 

irrigation 

10 CCTV10 Kepanjen East Java Malang Kepanjen Tegal Sari -8.1656944 112.5739722 337 0 Semi-TI 

13 CCTV13 Bangsal East Java Mojokerto Bangsal Ngrowo -7.500699 112.5141296 33 28 Semi-TI 

14 CCTV14 Rogo Jampi East Java Banyuwangi Rogo Jampi Watugebo -8.3236111 114.3343611 54 0 TI 

15 CCTV15 Kota Anyar East Java Probolinggo Kota Anyar Sukorejo -7.7570278 112.5423056 68 330 Semi-TI 

16 CCTV16 Cibadak Banten Lebak Cibadak Tambakbaya -6.3701558 106.1986313 28 32 Semi-TI 

17 CCTV17 Sidoharjo 

Central 

Java Sragen Sidoharjo Jetak -7.435961 110.977272 124.8 313 TI 

18 CCTV18 Godong 

Central 

Java Purwodadi Godong Ketitang -7.024819 110.757754 39.8 200 TI 

19 CCTV19 Wonosari 

Central 

Java Klaten Wonosari Sukorejo -7.603896 110.719147 164.5 37 TI 
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20 CCTV20 Petarukan 

Central 

Java Pemalang Petarukan Petarukan -6.89645 109.4596 10 225 TI 

22 CCTV22 Binangun 

Central 

Java Cilacap Binangun Binangun -7.66415 109.26797 11 20 TI 

23 CCTV23 Tambakromo 

Central 

Java Pati Tambakromo Tambakromo -6.873058 111.044163 41.5 338 TI 

24 CCTV24 Tanjunganom East Java Nganjuk Tanjunganom Kedungrejo -7.6034384 112.0178757 60 33 TI 

25 CCTV25 Papar East Java Kediri Papar Ngampel 

-

7.70433333 112.1084167 105 10 TI 

26 CCTV26 Grogol 

Central 

Java Sukoharjo Grogol Parangjoro -7.637659 110.808781 133.9 189 TI 

27 CCTV27 Cepu 

Central 

Java Blora Cepu Kentong -7.167052 111.562841 70.3 132 TI 

28 CCTV28 Bandongan 

Central 

Java Magelang Bandongan Bandongan -7.46424 110.19247 418 135 Semi-TI 

30 CCTV30 Nanggulan Jogjakarta 

Kulon 

Progo Nanggulan Kembang -7.742206 110.204971 138 180 TI 

31 CCTV31 Wates Jogjakarta 

Kulon 

Progo Wates Kulwaru -7.891701 110.120255 25.5 180 Semi-TI 

32 CCTV32 Sukaratu West Java Tasikmalaya Sukaratu Sukaratu -7.2765684 108.1466827 517 60 Semi-TI 

35 CCTV35 Kertajati West Java Majalengka Kertajati Babakan -6.693284 108.1843262 75 30 TI 

36 CCTV36 Rancaekek West Java Bandung Ranca Ekek Haurpugur -6.99 107.7882 685 8 

Simple 

irrigation 

37 CCTV37 Ponjong Jogjakarta 

Gunung 

Kidul Ponjong Genjahan -7.973322 110.708369 235 360 TI 

38 CCTV38 Tikung East Java Lamongan Tikung Bakalan Pule -7.1751986 112.3983688 25 156  

39 CCTV39 Lelea West Java Indramayu Lelea Telaga Sari -6.4722905 108.2275696 26 343 TI 

40 CCTV40 Kasemen Banten Kota Serang Kasemen Sawah Luhur -6.0437851 106.2035065 20 160 TI 

42 CCTV42 Pandak Jogjakarta Bantul Pandak Gilang Harjo -7.897091 110.307341 63.1 180 Semi-TI 
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45 CCTV45 Kadungora West Java Garut Kadungora Gandamekar -7.1816773 107.8966263 706 356 TI 

46 CCTV46 Haurwangi West Java Cianjur Ciranjang Karangwangi -6.8083773 107.2738495 280 181 TI 

47 CCTV47 Kronjo Banten Tangerang Kronjo Kronjo -6.060047 106.4210892 20 188 TI 

49 CCTV49 Talagasari West Java Karawang Telagasari Pasirkamuning -6.254 107.395 27 21 TI 

50 CCTV50 Gegesik West Java Cirebon Gegesik Gegesik Kidul -6.6019359 108.4152985 21 358 TI 

51 CCTV51 Cimanuk Banten Pandeglang Cimanuk Sekong -6.3826122 106.0387421 154 200 TI 

53 CCTV53 Cariu West Java Bogor Cariu Cariu -6.5017605 107.1215363 84 332 TI 

54 CCTV54 Compreng West Java Subang Compreng Mekarjaya -6.3747673 107.8795776 32 155 TI 

55 CCTV55 Prambanan Jogjakarta Sleman Prambanan Madurejo -7.7898488 110.491188 144 180 Semi-TI 

56 CCTV56 Imogiri Jogjakarta Bantul Imogiri Kebon Agung -7.927869 110.381589 68.2 360 TI 

Note: TI = Technical irrigation 
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Appendix 5 The raw data of field campaign in 2018 

No Date By Regency code UTM X Y GPS DEM Phase 
Cropping 

Pattern 

1 20-Jul-18 Ronal Bojonegoro E2361 49S 612012 9201338 G76 28 Soybean PPO 

2 20-Jul-18 Ronal Bojonegoro E2368 49S 611385 9201588 G76 24 Soybean PPO 

3 20-Jul-18 Ronal Bojonegoro E2393 49S 613234 9202110 G76 32 Soybean PPO 

4 20-Jul-18 Ronal Bojonegoro E2433 49S 612934 9206897 G76 18 Ratoon PPO 

5 20-Jul-18 Ronal Bojonegoro E2436 49S 614874 9202853 G76 26 Maize PPO 

6 20-Jul-18 Ronal Bojonegoro E2478 49S 602153 9204057 G76 24 Ratoon PPO 

7 20-Jul-18 Ronal Bojonegoro E2479 49S 600603 9203921 G76 24 Ratoon PPO 

8 20-Jul-18 Ronal Bojonegoro E2483 49S 611379 9203672 G76 22 Soybean PPO 

9 20-Jul-18 Ronal Bojonegoro E2507 49S 606264 9204574 G76 21 Soybean PPO 

10 20-Jul-18 Ronal Bojonegoro E2509 49S 614178 9204712 G76 23 Soybean PPO 

11 20-Jul-18 Ronal Bojonegoro E2511 49S 615571 9204657 G76 23 Soybean PPO 

12 20-Jul-18 Ronal Bojonegoro E2548 49S 599112 9205249 G76 19 Soybean PPO 

13 20-Jul-18 Ronal Bojonegoro E2564 49S 609301 9205173 G76 23 Soybean PPO 

14 20-Jul-18 Ronal Bojonegoro E2583 49S 615717 9206056 G76 18 Soybean PPO 

15 20-Jul-18 Ronal Bojonegoro E2661 49S 597387 9206663 G76 17 Soybean PPO 

16 20-Jul-18 Ronal Bojonegoro E2669 49S 596283 9207510 G76 19 Soybean PPO 

17 20-Jul-18 Ronal Bojonegoro E2683 49S 615404 9207581 G76 18 Ratoon PPO 

18 20-Jul-18 Dani Bojonegoro E2463 49S 612931 9206897 TJ 18 Ratoon PPO 

19 20-Jul-18 Dani Bojonegoro E2566 49S 604616 9205622 TJ 21 Soybean NA 

20 20-Jul-18 Dani Bojonegoro E2619 49S 601344 9206581 TJ 18 Late ripening NA 

21 20-Jul-18 Dani Bojonegoro E2632 49S 609947 9206765 TJ 18 Ratoon NA 

22 20-Jul-18 Dani Bojonegoro E2636 49S 606028 9206028 TJ 20 Ratoon PPO 
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23 20-Jul-18 Dani Bojonegoro E2710D 49S 604744 9207773 TJ 16 Late ripening NA 

24 20-Jul-18 Dani Bojonegoro E2714 49S 600678 9208170 TJ 16 Late ripening NA 

25 20-Jul-18 Dani Bojonegoro E2760 49S 613328 9209230 TJ 15 Ratoon PPO 

26 20-Jul-18 Dani Bojonegoro E2771 49S 615782 9208779 TJ 14 Ratoon NA 

27 21-Jul-18 Ronal Bojonegoro E0000 49S 606001 9209708 G76 15 Late vegetative PPP 

28 21-Jul-18 Ronal Bojonegoro E0001 49S 599564 9210029 G76 18 Late vegetative PPP 

29 21-Jul-18 Ronal Bojonegoro E0002 49S 617976 9216827 G76 10 Late vegetative PPP 

30 21-Jul-18 Ronal Bojonegoro E2710R 49S 604702 9207756 G76 17 Late ripening  PPO 

31 21-Jul-18 Ronal Bojonegoro E2749 49S 624949 9208311 G76 14 Drought PPT 

32 21-Jul-18 Ronal Bojonegoro E2793 49S 626863 9209245 G76 14 Drought PPO 

33 21-Jul-18 Ronal Bojonegoro E2863 49S 601973 9211400 G76 18 Early ripening PPP 

34 21-Jul-18 Ronal Bojonegoro E2903 49S 610117 9212227 G76 15 Early-Middle Vegetative PPP 

35 21-Jul-18 Ronal Bojonegoro E2985 49S 618574 9214231 G76 10 Middle vegetative PPP 

36 21-Jul-18 Ronal Bojonegoro E2989 49S 623013 9215090 G76 13 Middle vegetative PPO 

37 21-Jul-18 Ronal Bojonegoro E3003 49S 613534 9216590 G76 10 Land preparation PPP 

38 21-Jul-18 Ronal Bojonegoro E3013 49S 612905 9218015 G76 14 Land preparation PPP 

39 21-Jul-18 Dani Bojonegoro E2520 49S 562742 9204966 TJ 30 Early-Middle Vegetative PPP 

40 21-Jul-18 Dani Bojonegoro E2524 49S 563292 9205225 TJ 31 Early-Middle Vegetative NA 

41 21-Jul-18 Dani Bojonegoro E2573 49S 565232 9206127 TJ 31 Early-Middle Vegetative NA 

42 21-Jul-18 Dani Bojonegoro E2593 49S 565858 9205758 TJ 38 Groundnut NA 

43 21-Jul-18 Dani Bojonegoro E2690 49S 570444 9207259 TJ 33 Early-Middle Vegetative NA 

44 21-Jul-18 Dani Bojonegoro E2743 49S 574157 9208941 TJ 27 Early-Middle Vegetative NA 

45 21-Jul-18 Dani Bojonegoro E2780 49S 577166 9209684 TJ 24 Ratoon NA 

46 21-Jul-18 Dani Bojonegoro E2789 49S 594066 9209044 TJ 17 Ratoon NA 

47 21-Jul-18 Dani Bojonegoro E2846 49S 590753 9210956 TJ 21 Early-Middle Vegetative PPB 
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48 21-Jul-18 Dani Bojonegoro E2872 49S 590169 9211418 TJ 20 Early reproductive PPO 

49 21-Jul-18 Dani Bojonegoro E2914 49S 588248 9212441 TJ 22 Ratoon NA 

50 21-Jul-18 Dani Bojonegoro E2925 49S 581459 9212695 TJ 24 Early-Middle Vegetative NA 

51 21-Jul-18 Dani Bojonegoro E2943 49S 587350 9212621 TJ 21 Ratoon PPB 

52 21-Jul-18 Dani Bojonegoro E2955 49S 585844 9213622 TJ 22 Ratoon NA 

53 22-Jul-18 Ronal Bojonegoro E2070 49S 572001 9194631 G76 96 Maize POB 

54 22-Jul-18 Ronal Bojonegoro E2108 49S 569375 9195587 G76 68 Other crop PTB 

55 22-Jul-18 Ronal Bojonegoro E2110 49S 570641 9195879 G76 71 Tobacco POB 

56 22-Jul-18 Ronal Bojonegoro E2116 49S 570161 9196057 G76 70 Maize POB 

57 22-Jul-18 Ronal Bojonegoro E2121 49S 572927 9195484 G76 82 Maize POB 

58 22-Jul-18 Ronal Bojonegoro E2189 49S 569037 9197241 G76 68 Maize POB 

59 22-Jul-18 Ronal Bojonegoro E2213 49S 568570 9198203 G76 66 Maize POB 

60 22-Jul-18 Ronal Bojonegoro E2265 49S 571505 9199083 G76 56 Maize POB 

61 22-Jul-18 Ronal Bojonegoro E2289 49S 571517 9199824 G76 53 Green beans POB 

62 22-Jul-18 Ronal Bojonegoro E2301 49S 572565 9199897 G76 57 maize POB 

63 22-Jul-18 Ronal Bojonegoro E2371 49S 573233 9201782 G76 46 Maize POB 

64 22-Jul-18 Ronal Bojonegoro E2409 49S 568795 9202377 G76 44 Maize POB 

65 22-Jul-18 Ronal Bojonegoro E2442 49S 572683 9203425 G76 40 Maize POB 

66 22-Jul-18 Ronal Bojonegoro E2540 49S 571561 9205062 G76 51 Early-Middle Vegetative PPB 

67 22-Jul-18 Ronal Bojonegoro E2582 49S 572351 9206069 G76 37 Bare land POB 

68 22-Jul-18 Dani Bojonegoro E2020 49S 580289 9192950 TJ 70 Bare land NA 

69 22-Jul-18 Dani Bojonegoro E2050 49S 583921 9193977 TJ 93 Maize NA 

70 22-Jul-18 Dani Bojonegoro E2084 49S 579793 9194799 TJ 66 Maize NA 

71 22-Jul-18 Dani Bojonegoro E2131 49S 578256 9196182 TJ 61 Tobacco PB 

72 22-Jul-18 Dani Bojonegoro E2220 49S 584413 9198313 TJ 63 Maize NA 
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73 22-Jul-18 Dani Bojonegoro E2338 49S 583435 9198700 TJ 70 Maize NA 

74 22-Jul-18 Dani Bojonegoro E2377 49S 584026 9201040 TJ 54 Bare land PB 

75 22-Jul-18 Dani Bojonegoro E2499 49S 583476 9203491 TJ 49 Maize NA 

76 22-Jul-18 Dani Bojonegoro E2587 49S 583364 9205543 TJ 44 Maize PB 

77 22-Jul-18 Dani Bojonegoro E2591 49S 578834 9205315 TJ 38 Maize NA 

78 22-Jul-18 Dani Bojonegoro E2591E 49S 579446 9209364 TJ 27 Early-Middle Vegetative NA 

79 22-Jul-18 Dani Bojonegoro E2627 49S 582668 9206820 TJ 39 Maize NA 

80 22-Jul-18 Dani Bojonegoro E2670 49S 584114 9207536 TJ 38 Green beans NA 

81 22-Jul-18 Dani Bojonegoro E2735 49S 583040 9208487 TJ 33 Maize NA 

82 26-Jul-18 Ronal Lamongan E3195 49S 651013 9195532 G76 48 Other crop PPO 

83 26-Jul-18 Ronal Lamongan E3203 49S 652222 9197503 G76 46 Other crop PPO 

84 26-Jul-18 Ronal Lamongan E3211 49S 653570 9198281 G76 39 Bare land PPO 

85 26-Jul-18 Ronal Lamongan E3220 49S 655461 9198842 G76 31 Other crop PPO 

86 26-Jul-18 Ronal Lamongan E3231 49S 649829 9199403 G76 49 Green beans PB 

87 26-Jul-18 Ronal Lamongan E3304 49S 656495 9207705 G76 7 Other crop PPB 

88 26-Jul-18 Ronal Lamongan E3374 49S 656832 9205592 G76 16 Drought PPB 

89 26-Jul-18 Ronal Lamongan E3414 49S 656217 9206840 G76 10 Drought PPB 

90 26-Jul-18 Ronal Lamongan E3431 49S 656495 9207705 G76 7 Drought PPB 

91 26-Jul-18 Ronal Lamongan E3442 49S 660487 9207527 G76 20 Bare land PPB 

92 26-Jul-18 Ronal Lamongan E3452 49S 660176 9208546 G76 24 Bare land PPB 

93 26-Jul-18 Ronal Lamongan E3463 49S 659071 9208059 G76 25 Bare land PPO 

94 26-Jul-18 Ronal Lamongan E3476 49S 617083 9216358 G76 11 Bare land PPB 

95 26-Jul-18 Ronal Lamongan E3520 49S 656845 9210745 G76 6 Bare land PPO 

96 27-Jul-18 Ronal Lamongan E3551 49S 663006 9212590 G76 5 Late ripening  Paddy-pond 

97 27-Jul-18 Ronal Lamongan E3619 49S 661984 9214519 G76 5 Early ripening Paddy-pond 
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98 27-Jul-18 Ronal Lamongan E3628 49S 663101 9214700 G76 4 Early ripening Paddy-pond 

99 27-Jul-18 Ronal Lamongan E3649 49S 665375 9215461 G76 4 Early ripening Paddy-pond 

100 27-Jul-18 Ronal Lamongan E3717 49S 667639 9216871 G76 6 Early ripening Paddy-pond 

101 27-Jul-18 Ronal Lamongan E3773 49S 668500 9218393 G76 6 Early ripening PB 

102 27-Jul-18 Ronal Lamongan E3793 49S 665428 9218833 G76 3 Late vegetative Paddy-pond 

103 27-Jul-18 Ronal Lamongan E3880 49S 664756 9223398 G76 7 late vegetative Paddy-pond 

104 27-Jul-18 Ronal Lamongan E3902 49S 666555 9224258 G76 3 Land Use Change Fish pond 

105 27-Jul-18 Ronal Lamongan E3911 49S 659744 9224761 G76 8 Early ripening PB 

106 27-Jul-18 Ronal Lamongan E3950 49S 652701 9226259 G76 4 Late ripening Paddy-pond 

107 27-Jul-18 Dani Lamongan E3580 49S 638867 9213001 TJ 11 Bare land NA 

108 27-Jul-18 Dani Lamongan E3584 49S 635117 9213502 TJ 14 Bare land NA 

109 27-Jul-18 Dani Lamongan E3615 49S 641053 9214231 TJ 7 Bare land NA 

110 27-Jul-18 Dani Lamongan E3623 49S 638729 9214073 TJ 9 Maize NA 

111 27-Jul-18 Dani Lamongan E3641 49S 634197 9215175 TJ 8 Early ripening PPO 

112 29-Jul-18 Ronal Lamongan E3050 49S 631502 9187161 G76 97 Tobacco PPT 

113 29-Jul-18 Ronal Lamongan E3065 49S 628271 9187729 G76 81 Tobacco PPT 

114 29-Jul-18 Ronal Lamongan E3136 49S 642880 9192618 G76 60 Ratoon PPT 

115 29-Jul-18 Ronal Lamongan E3159 49S 639443 9191517 G76 72 Tobacco PPT 

116 29-Jul-18 Ronal Lamongan E3170 49S 645022 9193400 G76 66 Bare land NA 

117 29-Jul-18 Ronal Lamongan E3177 49S 633654 9194001 G76 84 Maize PPT 

118 29-Jul-18 Ronal Lamongan E3178 49S 638620 9194353 G76 95 Maize PPT 

119 29-Jul-18 Ronal Lamongan E3233 49S 633088 9199928 G76 62 Tobacco PPT 

120 29-Jul-18 Ronal Lamongan E3273 49S 627225 9201235 G76 37 Drought PPT 

121 29-Jul-18 Ronal Lamongan E3322 49S 627015 9204489 G76 22 Tobacco PPT 

122 29-Jul-18 Ronal Lamongan E3394 49S 626954 9206616 G76 17 Tobacco PPT 
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123 29-Jul-18 Dani Lamongan E3341 49S 638219 9205042 TJ 36 Green beans POB 

124 29-Jul-18 Dani Lamongan E3343 49S 631115 9205136 TJ 29 Ratoon PPB 

125 29-Jul-18 Dani Lamongan E3352 49S 635545 9204815 TJ 30 Ratoon PPB 

126 29-Jul-18 Dani Lamongan E3363 49S 642635 9205167 TJ 41 Maize PPB 

127 29-Jul-18 Dani Lamongan E3367 49S 632060 9206311 TJ 20 Weed PPB 

128 29-Jul-18 Dani Lamongan E3386 49S 647591 9206387 TJ 28 Bare land PPB 

129 29-Jul-18 Dani Lamongan E3411 49S 647863 9207564 TJ 14 Bare land PPB 

130 29-Jul-18 Dani Lamongan E3416 49S 637812 9206319 TJ 26 Soybean PPB 

131 29-Jul-18 Dani Lamongan E3458 49S 645041 9209036 TJ 15 Soybean PPB 

132 29-Jul-18 Dani Lamongan E3469 49S 649853 9209421 TJ 10 Ratoon PB 

133 29-Jul-18 Dani Lamongan E3515 49S 643272 9209875 TJ 19 Ratoon PPB 

134 29-Jul-18 Dani Lamongan E3522 49S 646538 9211004 TJ 9 Green beans PPO 

135 29-Jul-18 Dani Lamongan E3526 49S 649895 9210644 TJ 7 Bare land PPB 

136 29-Jul-18 Dani Lamongan E3605 49S 650284 9212852 TJ 5 Maize PPO 

137 31-Jul-18 Ronal Jombang E0527 49S 639640 9167690 G76 32 Sugarcane PPO 

138 31-Jul-18 Ronal Jombang E0557 49S 641154 9168528 G76 30 Maize PPO 

139 31-Jul-18 Ronal Jombang E0591 49S 647666 9169555 G76 27 Sugarcane PPO 

140 31-Jul-18 Ronal Jombang E0604 49S 645728 9169838 G76 26 Sugarcane PPO 

141 31-Jul-18 Ronal Jombang E0628 49S 642501 9170313 G76 26 Late ripening PPO 

142 31-Jul-18 Ronal Jombang E0634 49S 648845 9170628 G76 24 Early ripening PPB 

143 31-Jul-18 Ronal Jombang E0661 49S 638403 9171386 G76 32 Ratoon PPO 

144 31-Jul-18 Ronal Jombang E0694 49S 640234 9172299 G76 28 Late ripening PPB 

145 31-Jul-18 Ronal Jombang E0702 49S 645836 9172671 G76 25 Early ripening PPB 

146 31-Jul-18 Ronal Jombang E0738R 49S 636477 9173748 G76 29 Late ripening PPO 

147 31-Jul-18 Ronal Jombang E0744 49S 646156 9174040 G76 25 Late ripening PPB 
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148 31-Jul-18 Ronal Jombang E0782 49S 642487 9175149 G76 29 Late ripening  PPO 

149 31-Jul-18 Ronal Jombang E0783R 49S 640471 9174858 G76 30 Ratoon PPO 

150 01-Aug-18 Ronal Jombang E0825 49S 636417 9177231 G76 34 Land Use Change NA 

151 01-Aug-18 Ronal Jombang E0831 49S 639228 9177535 G76 30 Late ripening PTB 

152 01-Aug-18 Ronal Jombang E0846 49S 635720 9178043 G76 35 Tobacco PTB 

153 01-Aug-18 Ronal Jombang E0874 49S 633436 9179035 G76 37 Tobacco PTB 

154 01-Aug-18 Ronal Jombang E0876 49S 631087 9179472 G76 46 Tobacco PTB 

155 01-Aug-18 Ronal Jombang E0883 49S 639744 9179798 G76 32 Tobacco PTB 

156 01-Aug-18 Ronal Jombang E0906 49S 640951 9180235 G76 32 Tobacco PTB 

157 01-Aug-18 Ronal Jombang E0913 49S 640290 9180720 G76 34 Tobacco PTB 

158 01-Aug-18 Ronal Jombang E0916 49S 636117 9181233 G76 38 Tobacco PTB 

159 01-Aug-18 Ronal Jombang E0925 49S 640298 9181963 G76 47 Land Use Change NA 

160 01-Aug-18 Ronal Jombang E0936 49S 635006 9183348 G76 55 Tobacco PTB 

161 01-Aug-18 Ronal Jombang E0946 49S 634219 9184468 G76 75 Maize POB 

162 01-Aug-18 Ronal Jombang E0955 49S 634217 9185322 G76 73 Maize POB 

163 01-Aug-18 Dani Jombang E0411 49S 630935 9163445 TJ 44 Maize PPO 

164 01-Aug-18 Dani Jombang E0433 49S 630775 9164525 TJ 44 Harvested PPO 

165 01-Aug-18 Dani Jombang E0466 49S 626369 9165158 TJ 39 Ratoon PPO 

166 01-Aug-18 Dani Jombang E0472 49S 629807 9165700 TJ 42 Harvested PPO 

167 01-Aug-18 Dani Jombang E0485 49S 625843 9166111 TJ 42 Bare land PPO 

168 01-Aug-18 Dani Jombang E0532 49S 634117 9168076 TJ 36 Ratoon PPO 

169 01-Aug-18 Dani Jombang E0550 49S 634906 9168079 TJ 34 Ratoon PPO 

170 01-Aug-18 Dani Jombang E0565 49S 628403 9169993 TJ 35 Late reproductive PPO 

171 01-Aug-18 Dani Jombang E0571 49S 633192 9168355 TJ 37 Late ripening PPO 

172 01-Aug-18 Dani Jombang E0592 49S 637327 9169169 TJ 33 Maize POB 
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173 01-Aug-18 Dani Jombang E0646 49S 631499 9170807 TJ 33 Early ripening PPO 

174 01-Aug-18 Dani Jombang E0684 49S 634864 9171757 TJ 32 late ripening PPO 

175 01-Aug-18 Dani Jombang E0738D 49S 636307 9173474 TJ 30 late ripening PPO 

176 01-Aug-18 Dani Jombang E0783D 49S 640100 9174541 TJ 29 Soybean PPO 

177 02-Aug-18 Ronal Jombang E0044 49S 641069 9149255 G76 96 Early ripening PPB 

178 02-Aug-18 Ronal Jombang E0048 49S 638162 9149805 G76 106 Bare land NA 

179 02-Aug-18 Ronal Jombang E0059 49S 643819 9150445 G76 88 Early ripening PPP 

180 02-Aug-18 Ronal Jombang E0068 49S 638536 9151081 G76 90 Sugarcane PPO 

181 02-Aug-18 Ronal Jombang E0077 49S 636936 9151601 G76 94 Other crop POB 

182 02-Aug-18 Ronal Jombang E0107 49S 640101 9153055 G76 75 Late ripening  PPB 

183 02-Aug-18 Ronal Jombang E0118 49S 635814 9153531 G76 82 Ratoon PPO 

184 02-Aug-18 Ronal Jombang E0127 49S 636886 9154262 G76 81 Maize PPO 

185 02-Aug-18 Ronal Jombang E0145 49S 640101 9154618 G76 70 Maize PPO 

186 02-Aug-18 Ronal Jombang E0146 49S 634460 9155252 G76 73 Maize PPO 

187 02-Aug-18 Ronal Jombang E0160 49S 631332 9155789 G76 66 Land preparation PPB 

188 02-Aug-18 Ronal Jombang E0187 49S 638884 9157197 G76 65 Groundnut PPO 

189 02-Aug-18 Ronal Jombang E0199 49S 640414 9157740 G76 59 Bare land PPB 

190 02-Aug-18 Ronal Jombang E0230 49S 639140 9158620 G76 61 Groundnut PPO 

191 02-Aug-18 Ronal Jombang E0257 49S 637899 9158980 G76 59 Maize PPO 

192 02-Aug-18 Ronal Jombang E0275 49S 633395 9159855 G76 55 Maize PPO 

193 02-Aug-18 Dani Jombang E0214 49S 641108 9158263 TJ 57 land preparation PPP 

194 02-Aug-18 Dani Jombang E0217 49S 644063 9157638 TJ 52 Maize PPO 

195 02-Aug-18 Dani Jombang E0280 49S 646984 9159893 TJ 43 Maize PPO 

196 02-Aug-18 Dani Jombang E0319 49S 642172 9161248 TJ 45 Maize PPO 

197 02-Aug-18 Dani Jombang E0334 49S 645310 9161337 TJ 38 Maize PPO 
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198 02-Aug-18 Dani Jombang E0337 49S 640279 9161625 TJ 46 Bare land NA 

199 02-Aug-18 Dani Jombang E0362 49S 641535 9162538 TJ 40 Maize PPO 

200 02-Aug-18 Dani Jombang E0379 49S 647049 9162792 TJ 36 Maize PPO 

201 02-Aug-18 Dani Jombang E0424 49S 638977 9164056 TJ 41 Maize PPO 

202 02-Aug-18 Dani Jombang E0427 49S 647718 9164303 TJ 34 Maize PPO 

203 02-Aug-18 Dani Jombang E0440 49S 637672 9164578 TJ 43 Bare land PB 

204 02-Aug-18 Dani Jombang E0460 49S 644725 9164863 TJ 32 Maize POB 

205 02-Aug-18 Dani Jombang E0495 49S 645856 9166536 TJ 29 Maize PPO 

206 02-Aug-18 Dani Jombang E0503 49S 647085 9166993 TJ 28 Maize PPO 

207 04-Aug-18 Ronal Nganjuk E0979 49S 611573 9143966 G76 58 Early-Middle Vegetative PPP 

208 04-Aug-18 Ronal Nganjuk E0987 49S 611873 9144611 G76 61 Maize PPO 

209 04-Aug-18 Ronal Nganjuk E1019 49S 615414 9147046 G76 54 Maize PPO 

210 04-Aug-18 Ronal Nganjuk E1023 49S 613845 9147582 G76 57 Maize PPO 

211 04-Aug-18 Ronal Nganjuk E1036 49S 616653 9147768 G76 54 Maize PPO 

212 04-Aug-18 Ronal Nganjuk E1064 49S 616034 9148974 G76 51 Maize PPO 

213 04-Aug-18 Ronal Nganjuk E1136 49S 613156 9151290 G76 51 Sugarcane Sugarcane 

214 04-Aug-18 Ronal Nganjuk E1195 49S 614307 9152519 G76 54 Other crop Other crop 

215 04-Aug-18 Ronal Nganjuk E1220 49S 618788 9153047 G76 49 Maize PPP 

216 04-Aug-18 Ronal Nganjuk E1272 49S 613315 9154054 G76 49 Other crop PPO 

217 04-Aug-18 Ronal Nganjuk E1315 49S 613092 9155469 G76 52 Early-Middle Vegetative PPP 

218 04-Aug-18 Ronal Nganjuk E1334 49S 614244 9155910 G76 48 Early-Middle Vegetative PPP 

219 04-Aug-18 Ronal Nganjuk E1345 49S 619999 9155810 G76 45 Sugarcane PPO 

220 04-Aug-18 Ronal Nganjuk E1402 49S 617253 9157575 G76 49 Other crop PPO 

221 04-Aug-18 Ronal Nganjuk E1421 49S 615165 9158052 G76 46 Maize PPO 

222 04-Aug-18 Dani Nganjuk E1009 49S 609625 9146251 TJ 55 Maize PPO 
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223 04-Aug-18 Dani Nganjuk E1035 49S 611274 9148485 TJ 53 Early-Middle Vegetative PPO 

224 04-Aug-18 Dani Nganjuk E1082 49S 604406 9149896 TJ 55 Maize PPO 

225 04-Aug-18 Dani Nganjuk E1116 49S 609221 9150913 TJ 52 Maize PPO 

226 04-Aug-18 Dani Nganjuk E1126 49S 604968 9151162 TJ 53 Maize PPO 

227 04-Aug-18 Dani Nganjuk E1187 49S 605313 9152216 TJ 52 Maize PPO 

228 04-Aug-18 Dani Nganjuk E1203 49S 608598 9152692 TJ 50 Maize PPO 

229 04-Aug-18 Dani Nganjuk E1215 49S 605654 9153122 TJ 52 Maize PPO 

230 04-Aug-18 Dani Nganjuk E1247 49S 604537 9154263 TJ 51 Maize PPO 

231 04-Aug-18 Dani Nganjuk E1343 49S 605091 9155766 TJ 50 Maize PPO 

232 04-Aug-18 Dani Nganjuk E1394 49S 606691 9157548 TJ 48 Land preparation PPO 

233 04-Aug-18 Dani Nganjuk E1426 49S 604870 9157991 TJ 49 Ratoon PPO 

234 04-Aug-18 Dani Nganjuk E1452 49S 606945 9158678 TJ 46 Maize PPO 

235 05-Aug-18 Ronal Nganjuk E1527 49S 615504 9160764 G76 44 Maize PPO 

236 05-Aug-18 Ronal Nganjuk E1581 49S 618016 9162223 G76 41 Ratoon PPB 

237 05-Aug-18 Ronal Nganjuk E1603 49S 620461 9162679 G76 41 Ratoon PPB 

238 05-Aug-18 Ronal Nganjuk E1615 49S 619010 9163002 G76 41 Ratoon PPB 

239 05-Aug-18 Ronal Nganjuk E1678 49S 614533 9164780 G76 45 Early-Middle Vegetative PPB 

240 05-Aug-18 Ronal Nganjuk E1705 49S 623418 9165565 G76 42 Maize PPB 

241 05-Aug-18 Ronal Nganjuk E1761 49S 621271 9167154 G76 42 Sugarcane Sugarcane 

242 05-Aug-18 Ronal Nganjuk E1791 49S 623704 9167797 G76 41 Early ripening PPP 

243 05-Aug-18 Ronal Nganjuk E1826 49S 621381 9168719 G76 41 Ratoon PPB 

244 05-Aug-18 Ronal Nganjuk E1838 49S 620172 9170079 G76 48 Ratoon PPB 

245 05-Aug-18 Ronal Nganjuk E1847 49S 617998 9170841 G76 58 Ratoon PPB 

246 05-Aug-18 Ronal Nganjuk E1892 49S 626684 9169463 G76 39 Late ripening PPB 

247 05-Aug-18 Dani Nganjuk E1627 49S 609102 9163477 TJ 47 Shallots PB 
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248 05-Aug-18 Dani Nganjuk E1628 49S 611200 9163840 TJ 47 Early-Middle Vegetative PPP 

249 05-Aug-18 Dani Nganjuk E1680 49S 597987 9164091 TJ 57 Shallots PB 

250 05-Aug-18 Dani Nganjuk E1684 49S 605195 9164357 TJ 52 Shallots PB 

251 05-Aug-18 Dani Nganjuk E1697 49S 600750 9165300 TJ 56 Soybean PPO 

252 05-Aug-18 Dani Nganjuk E1704 49S 598129 9165463 TJ 59 Shallots PB 

253 05-Aug-18 Dani Nganjuk E1744 49S 600213 9166112 TJ 62 Soybean PPO 

254 05-Aug-18 Dani Nganjuk E1763 49S 598072 9166815 TJ 59 Shallots PB 

255 05-Aug-18 Dani Nganjuk E1770 49S 601662 9166784 TJ 60 Soybean PPO 

256 05-Aug-18 Dani Nganjuk E1792 49S 601260 9168144 TJ 64 Maize PPO 

257 05-Aug-18 Dani Nganjuk E1803 49S 602639 9168895 TJ 65 Early-Middle Vegetative PPP 

258 05-Aug-18 Dani Nganjuk E1805 49S 597232 9168077 TJ 67 Shallots PB 

259 05-Aug-18 Dani Nganjuk E1833JGNG 49S 601358 9169947 TJ 70 Maize PPO 

260 05-Aug-18 Dani Nganjuk E1833PADI 49S 601418 9169874 TJ 69 late vegetative PB 

261 06-Aug-18 Ronal Nganjuk E1150 49S 602220 9151572 G76 61 Maize PPO 

262 06-Aug-18 Ronal Nganjuk E1170 49S 599872 9152123 G76 65 Maize PPO 

263 06-Aug-18 Ronal Nganjuk E1290 49S 596327 9154751 G76 76 Maize PPO 

264 06-Aug-18 Ronal Nganjuk E1328 49S 596199 9155985 G76 71 Maize PPO 

265 06-Aug-18 Ronal Nganjuk E1370 49S 593060 9156229 G76 86 Maize PPO 

266 06-Aug-18 Ronal Nganjuk E1398 49S 595572 9157172 G76 69 Maize PPO 

267 06-Aug-18 Ronal Nganjuk E1454 49S 596975 9158906 G76 61 Maize PPO 

268 06-Aug-18 Ronal Nganjuk E1459 49S 595243 9158720 G76 63 Vegetative PPP 

269 06-Aug-18 Ronal Nganjuk E1561 49S 592608 9161787 G76 77 Shallots PPO 

270 06-Aug-18 Ronal Nganjuk E1637 49S 590575 9163671 G76 84 Shallots PPO 

271 06-Aug-18 Ronal Nganjuk E1650 49S 592858 9163981 G76 71 Shallots PPO 

272 06-Aug-18 Ronal Nganjuk E1669 49S 591524 9164636 G76 75 Early-Middle Vegetative PPP 
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273 13-Aug-18 Ronal Indramayu W1567 49S 209502 9288064 G76 4 Early reproductive PPB 

274 13-Aug-18 Ronal Indramayu W1667 49S 208011 9288779 G76 2 Reproductive PPB 

275 13-Aug-18 Ronal Indramayu W1727 49S 210560 9288898 G76 6 Late ripening PPB 

276 13-Aug-18 Ronal Indramayu W1807R 49S 208093 9289841 G76 3 Late reproductive PPB 

277 13-Aug-18 Ronal Indramayu W1887 49S 211199 9290402 G76 4 Early ripening PPB 

278 13-Aug-18 Ronal Indramayu W1997 49S 210004 9291760 G76 4 Late ripening PPB 

279 13-Aug-18 Ronal Indramayu W2127 49S 210382 9293106 G76 3 Late ripening PPB 

280 13-Aug-18 Ronal Indramayu W2187 49S 208258 9293614 G76 3 Early ripening PPB 

281 13-Aug-18 Ronal Indramayu W2207 49S 206423 9293859 G76 -1 Early ripening PPB 

282 13-Aug-18 Ronal Indramayu W2407 49S 204770 9295896 G76 1 Early-Middle Vegetative PPB 

283 13-Aug-18 Ronal Indramayu W2607 49S 205438 9299495 G76 1 Ratoon PPB 

284 13-Aug-18 Ronal Indramayu W2687 49S 205223 9301372 G76 0 Ratoon PPB 

285 13-Aug-18 Ronal Indramayu W2707 49S 202996 9302542 G76 0 Ratoon PPB 

286 13-Aug-18 Ronal Indramayu W2727 49S 203539 9303156 G76 0 Ratoon PPB 

287 14-Aug-18 Ronal Indramayu W0370 49S 202137 9276291 G76 12 late vegetative PPB 

288 14-Aug-18 Ronal Indramayu W0451 49S 200613 9277355 G76 11 Early-Middle Vegetative PPB 

289 14-Aug-18 Ronal Indramayu W0594 49S 202772 9279159 G76 10 Early reproductive PPB 

290 14-Aug-18 Ronal Indramayu W0875 49S 201657 9281529 G76 7 Late ripening PPB 

291 14-Aug-18 Ronal Indramayu W0956 49S 199818 9282572 G76 9 Ratoon PPO 

292 14-Aug-18 Ronal Indramayu W1036 49S 198966 9283367 G76 7 Ratoon PPB 

293 14-Aug-18 Ronal Indramayu W1177 49S 197177 9284550 G76 7 Ratoon PPB 

294 14-Aug-18 Ronal Indramayu W1337 49S 197867 9285236 G76 8 Ratoon PPB 

295 14-Aug-18 Ronal Indramayu W1597 49S 198167 9287730 G76 7 Ratoon PPB 

296 14-Aug-18 Ronal Indramayu W2037 49S 200712 9292050 G76 4 Land preparation PPB 

297 14-Aug-18 Ronal Indramayu W2057 49S 196933 9292291 G76 3 Late ripening PPB 
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298 14-Aug-18 Ronal Indramayu W2097 49S 199138 9292942 G76 3 Late ripening PPB 

299 15-Aug-18 Ronal Indramayu W0513 49S 191357 9278148 G76 13 Other crop PPO 

300 15-Aug-18 Ronal Indramayu W0614 49S 189058 9278589 G76 16 Bare land PPB 

301 15-Aug-18 Ronal Indramayu W0674 49S 192672 9279968 G76 11 Late ripening  PPB 

302 15-Aug-18 Ronal Indramayu W0855 49S 191319 9281604 G76 10 Late ripening PPB 

303 15-Aug-18 Ronal Indramayu W0896 49S 188806 9281742 G76 9 Ratoon PPB 

304 15-Aug-18 Ronal Indramayu W1076 49S 186479 9283356 G76 8 Ratoon PPB 

305 15-Aug-18 Ronal Indramayu W1157 49S 194138 9284356 G76 5 Ratoon PPB 

306 15-Aug-18 Ronal Indramayu W1357 49S 192467 9284998 G76 5 Late ripening PPB 

307 15-Aug-18 Ronal Indramayu W1557 49S 191804 9287333 G76 2 Early ripening PPB 

308 15-Aug-18 Ronal Indramayu W1577 49S 186562 9287628 G76 5 Ratoon PPB 

309 15-Aug-18 Ronal Indramayu W1697 49S 186594 9288405 G76 5 Ratoon PPB 

310 15-Aug-18 Ronal Indramayu W1837 49S 191917 9290157 G76 2 Late ripening PPB 

311 16-Aug-18 Ronal Indramayu W1197 49S 168713 9284008 G76 21 Bare land PPB 

312 16-Aug-18 Ronal Indramayu W1297 49S 171640 9285259 G76 15 Bare land PPB 

313 16-Aug-18 Ronal Indramayu W1377 49S 170260 9284841 G76 18 Bare land PPB 

314 16-Aug-18 Ronal Indramayu W1477 49S 176169 9286700 G76 14 Bare land PPB 

315 16-Aug-18 Ronal Indramayu W1497 49S 175361 9286937 G76 14 Ratoon PPB 

316 16-Aug-18 Ronal Indramayu W1777 49S 175755 9289650 G76 10 Ratoon PPB 

317 16-Aug-18 Ronal Indramayu W1857 49S 175102 9290267 G76 6 Harvested PPB 

318 16-Aug-18 Ronal Indramayu W2157 49S 177433 9293393 G76 2 Early ripening PPB 

319 16-Aug-18 Ronal Indramayu W2257 49S 178434 9294573 G76 2 Early ripening PPB 

320 16-Aug-18 Ronal Indramayu W2457 49S 184599 9296748 G76 2 Drought PPB 

321 16-Aug-18 Dani Indramayu W1056 49S 180141 9283509 TJ 12 Ratoon PPB 

322 16-Aug-18 Dani Indramayu W1277 49S 177353 9284547 TJ 15 Ratoon PPB 
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323 16-Aug-18 Dani Indramayu W1317 49S 179250 9284963 TJ 13 Ratoon PPB 

324 16-Aug-18 Dani Indramayu W1417 49S 177627 9285925 TJ 11 Ratoon PPB 

325 16-Aug-18 Dani Indramayu W1637 49S 178467 9288093 TJ 9 Ratoon PPB 

326 16-Aug-18 Dani Indramayu W1677 49S 177336 9288293 TJ 11 Ratoon PPB 

327 16-Aug-18 Dani Indramayu W1717 49S 179220 9288914 TJ 7 Drought PPB 

328 16-Aug-18 Dani Indramayu W1737 49S 187938 9289006 TJ 4 Early ripening NA 

329 16-Aug-18 Dani Indramayu W1807D 49S 184504 9290776 TJ 3 late ripening PPB 

330 16-Aug-18 Dani Indramayu W1877 49S 181190 9292024 TJ 4 Drought PPB 

331 16-Aug-18 Dani Indramayu W1917 49S 179946 9290338 TJ 6 Drought PPB 

332 16-Aug-18 Dani Indramayu W1937 49S 183502 9290857 TJ 4 Ratoon PPB 

333 17-Aug-18 Ronal Indramayu W2117 49S 168680 9292858 G76 9 Early ripening PPB 

334 17-Aug-18 Ronal Indramayu W2177 49S 172381 9293108 G76 5 Early reproductive PPB 

335 17-Aug-18 Ronal Indramayu W2517 48S 828994 9297651 G76 11 Early-Middle Vegetative PPB 

336 17-Aug-18 Ronal Indramayu W2557 48S 830771 9298280 G76 8 Early-Middle Vegetative PPB 

337 17-Aug-18 Ronal Indramayu W2617 48S 826525 9299109 G76 9 Land preparation PPB 

338 17-Aug-18 Ronal Indramayu W2637 49S 175420 9299906 G76 3 Early-Middle Vegetative PPB 

339 17-Aug-18 Ronal Indramayu W2677 49S 168319 9301101 G76 1 Early-Middle Vegetative PPB 

340 17-Aug-18 Ronal Indramayu W2717 48S 829803 9302561 G76 6 Bare land PPB 

341 17-Aug-18 Ronal Indramayu W2757 48S 826394 9303372 G76 5 Early-Middle Vegetative PB 

342 17-Aug-18 Dani Indramayu W0183 49S 173813 9272938 TJ 46 Ratoon PPB 

343 17-Aug-18 Dani Indramayu W0245 48S 828607 9274918 TJ 45 Ratoon PPB 

344 17-Aug-18 Dani Indramayu W0267 48S 826836 9273391 TJ 56 Ratoon PPB 

345 17-Aug-18 Dani Indramayu W0289 48S 830295 9276982 TJ 39 Ratoon PPB 

346 17-Aug-18 Dani Indramayu W0350 49S 170908 9275429 TJ 40 Ratoon PPB 

347 17-Aug-18 Dani Indramayu W0390 49S 169838 9277692 TJ 34 Ratoon PPB 
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348 17-Aug-18 Dani Indramayu W0410 49S 176461 9275363 TJ 36 Ratoon PPB 

349 17-Aug-18 Dani Indramayu W0431 49S 180899 9277358 TJ 24 Ratoon PPB 

350 17-Aug-18 Dani Indramayu W0472 49S 177926 9276939 TJ 30 Ratoon PPB 

351 17-Aug-18 Dani Indramayu W0694 48S 827191 9279067 TJ 32 Ratoon PPB 

352 17-Aug-18 Dani Indramayu W0755 49S 181399 9279497 TJ 21 Ratoon PPB 

353 17-Aug-18 Dani Indramayu W1116 48S 826978 9283028 TJ 23 Ratoon PPB 

354 17-Aug-18 Dani Indramayu W2577E 48S 829882 9300120 TJ 8 Early-Middle Vegetative PPB 

355 23-Aug-18 Ronal Subang W3490 48S 818655 9286954 G76 21 Late ripening PPB 

356 23-Aug-18 Ronal Subang W3572 48S 816659 9287948 G76 20 Early reproductive PPB 

357 23-Aug-18 Ronal Subang W3653 48S 814536 9288365 G76 19 Late vegetative PPB 

358 23-Aug-18 Ronal Subang W3773 48S 813576 9291510 G76 15 Early-Middle Vegetative PPB 

359 23-Aug-18 Ronal Subang W4194 48S 820895 9298129 G76 9 Early-Middle Vegetative PPB 

360 23-Aug-18 Ronal Subang W4375 48S 817961 9301679 G76 9 Early-Middle Vegetative PPB 

361 23-Aug-18 Ronal Subang W4475 48S 820952 9302873 G76 7 Early-Middle Vegetative PPB 

362 23-Aug-18 Ronal Subang W4575 48S 817769 9304971 G76 7 Ratoon PPB 

363 23-Aug-18 Ronal Subang W4696 48S 821383 9306670 G76 4 Other crop PPO 

364 24-Aug-18 Ronal Subang W3224 48S 804510 9280525 G76 59 Early-Middle Vegetative PPB 

365 24-Aug-18 Ronal Subang W3245 48S 811590 9280774 G76 41 Ratoon PPB 

366 24-Aug-18 Ronal Subang W3348 48S 810013 9283832 G76 34 Ratoon PPB 

367 24-Aug-18 Ronal Subang W3388 48S 804697 9284919 G76 41 Ratoon PPB 

368 24-Aug-18 Ronal Subang W3449 48S 810994 9286466 G76 29 Ratoon PPB 

369 24-Aug-18 Ronal Subang W3469 48S 806009 9286744 G76 30 Ratoon PPB 

370 24-Aug-18 Ronal Subang W3693 48S 806069 9290328 G76 22 Late ripening PPB 

371 24-Aug-18 Ronal Subang W3833 48S 808028 9291543 G76 23 Early ripening PPB 

372 24-Aug-18 Ronal Subang W3853 48S 809219 9292949 G76 17 Late vegetative PPB 
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373 24-Aug-18 Ronal Subang W4154 48S 807279 9297861 G76 9 Late vegetative PPB 

374 24-Aug-18 Ronal Subang W4215 48S 805413 9297966 G76 11 Late vegetative PPB 

375 24-Aug-18 Ronal Subang W4275 48S 810120 9299334 G76 9 Early-Middle Vegetative PPB 

376 24-Aug-18 Dani Subang W4315D 48S 786382 9301451 TJ 15 Early ripening PPB 

377 24-Aug-18 Dani Subang W4535 48S 787520 9304603 TJ 10 Early reproductive PPB 

378 24-Aug-18 Dani Subang W4555 48S 785676 9303749 TJ 10 Early ripening PPB 

379 24-Aug-18 Dani Subang W4615 48S 803516 9304089 TJ 2 Early-Middle Vegetative PPB 

380 24-Aug-18 Dani Subang W4635 48S 802103 9304840 TJ 2 Early-Middle Vegetative PPB 

381 24-Aug-18 Dani Subang W4655 48S 795505 9305803 TJ 1 Late vegetative PPB 

382 24-Aug-18 Dani Subang W4716 48S 792234 9307481 TJ 0 Early reproductive NA 

383 24-Aug-18 Dani Subang W4736 48S 790471 9307996 TJ 0 Early reproductive NA 

384 24-Aug-18 Dani Subang W4756 48S 804836 9306813 TJ 0 Early-Middle Vegetative PPB 

385 24-Aug-18 Dani Subang W4776 48S 789213 9308703 TJ 1 Late vegetative NA 

386 25-Aug-18 Ronal Subang W3368 48S 793553 9284461 G76 57 Early-Middle Vegetative PPB 

387 25-Aug-18 Ronal Subang W3428 48S 789440 9285677 G76 42 Early-Middle Vegetative PPB 

388 25-Aug-18 Ronal Subang W3592 48S 783055 9288882 G76 34 Ratoon PPB 

389 25-Aug-18 Ronal Subang W3632 48S 791595 9288839 G76 25 Early-Middle Vegetative PPB 

390 25-Aug-18 Ronal Subang W3673 48S 795547 9289720 G76 23 Ratoon PPB 

391 25-Aug-18 Ronal Subang W3753 48S 786951 9291386 G76 25 Ratoon PPB 

392 25-Aug-18 Ronal Subang W3793 48S 784471 9291920 G76 30 Ratoon PPB 

393 25-Aug-18 Ronal Subang W3874 48S 781620 9293358 G76 32 Late ripening PPB 

394 25-Aug-18 Ronal Subang W3954 48S 793100 9294173 G76 19 Ratoon PPB 

395 25-Aug-18 Ronal Subang W4014 48S 795334 9295611 G76 12 Ratoon PPB 

396 25-Aug-18 Ronal Subang W4074 48S 798098 9296162 G76 9 Late ripening PPB 

397 25-Aug-18 Ronal Subang W4235 48S 800301 9298717 G76 9 Early-Middle Vegetative PPB 
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398 25-Aug-18 Ronal Subang W4255 48S 796965 9299754 G76 9 Late ripening PPB 

399 25-Aug-18 Ronal Subang W4295 48S 800697 9299924 G76 7 Early-Middle Vegetative PPB 

400 25-Aug-18 Dani Subang WSBG01 48S 819606 9305068 TJ 5 Weed NA 

401 25-Aug-18 Dani Subang WSBG02 48S 818606 9307449 TJ 4 Weed NA 

402 25-Aug-18 Dani Subang WSBG03 48S 817010 9308291 TJ 3 Bare land PPB 

403 25-Aug-18 Dani Subang WSBG04 48S 815614 9305473 TJ 5 Early-Middle Vegetative PPB 

404 25-Aug-18 Dani Subang WSBG05 48S 812720 9307090 TJ 2 Bare land NA 

405 25-Aug-18 Dani Subang 
WSBG06-

W4796 
48S 813163 9308927 TJ 1 Bare land NA 

406 25-Aug-18 Dani Subang WSBG07 48S 810091 9308353 TJ 1 Early-Middle Vegetative PPB 

407 25-Aug-18 Dani Subang WSBG08 48S 807711 9307047 TJ 0 Early-Middle Vegetative PPB 

408 25-Aug-18 Dani Subang WSBG09 48S 805446 9305278 TJ 2 Early-Middle Vegetative PPB 

409 25-Aug-18 Dani Subang WSBG10 48S 801330 9302763 TJ 6 Early-Middle Vegetative PPB 

410 25-Aug-18 Dani Subang WSBG11 48S 798223 9304119 TJ 2 Late vegetative PPB 

411 25-Aug-18 Dani Subang WSBG12 48S 797460 9301834 TJ 6 Early reproductive PPB 

412 26-Aug-18 Ronal Subang W4054 48S 783572 9295742 G76 25 Ratoon PPB 

413 26-Aug-18 Ronal Subang W4094 48S 788250 9295858 G76 20 Late ripening PPB 

414 26-Aug-18 Ronal Subang W4315R 48S 786411 9300846 G76 16 Early ripening PPB 

415 26-Aug-18 Ronal Subang WSBGR_1 48S 807562 9301301 G76 8 Late vegetative PPB 

416 26-Aug-18 Ronal Subang WSBGR_10 48S 781469 9291051 G76 34 Green beans PPO 

417 26-Aug-18 Ronal Subang WSBGR_11 48S 787465 9298727 G76 19 Early reproductive PPB 

418 26-Aug-18 Ronal Subang WSBGR_2 48S 803399 9300240 G76 8 Early-Middle Vegetative PPB 

419 26-Aug-18 Ronal Subang WSBGR_3 48S 794908 9302448 G76 8 Late vegetative PPB 

420 26-Aug-18 Ronal Subang WSBGR_4 48S 800312 9295759 G76 5 Late vegetative PPB 

421 26-Aug-18 Ronal Subang WSBGR_5 48S 796686 9297220 G76 9 Ratoon PPB 
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422 26-Aug-18 Ronal Subang WSBGR_6 48S 794659 9291592 G76 17 Ratoon PPB 

423 26-Aug-18 Ronal Subang WSBGR_8 48S 789731 9288431 G76 28 Ratoon PPB 

424 26-Aug-18 Ronal Subang WSBGR_9 48S 786559 9289017 G76 29 Ratoon PPB 

425 26-Aug-18 Dani Subang WSBG15 48S 821851 9300941 TJ 7 Late vegetative PPB 

426 26-Aug-18 Dani Subang WSBG16 48S 819611 9298898 TJ 11 Early-Middle Vegetative PPB 

427 26-Aug-18 Dani Subang WSBG17 48S 819430 9295515 TJ 13 Late vegetative PPB 

428 26-Aug-18 Dani Subang WSBG18 48S 817764 9290422 TJ 20 Early ripening PPB 

429 26-Aug-18 Dani Subang WSBG19 48S 814958 9294860 TJ 12 Early-Middle Vegetative PPB 

430 26-Aug-18 Dani Subang WSBG20 48S 813669 9297781 TJ 10 Early-Middle Vegetative PPB 

431 26-Aug-18 Dani Subang WSBG21 48S 813687 9303152 TJ 5 Early-Middle Vegetative PPB 

432 26-Aug-18 Dani Subang WSBG22 48S 810194 9302827 TJ 5 Early-Middle Vegetative PPB 

433 26-Aug-18 Dani Subang WSBG23 48S 819375 9302872 TJ 7 Early-Middle Vegetative PPB 

434 26-Aug-18 Dani Subang WSBG24 48S 816417 9304378 TJ 5 Early-Middle Vegetative PPB 

435 26-Aug-18 Dani Subang WSBG25 48S 809243 9305969 TJ 3 Early-Middle Vegetative PPB 

436 30-Aug-18 Ronal Karawang W5347R 48S 755467 9306017 G76 -4 Early-Middle Vegetative PPB 

437 30-Aug-18 Ronal Karawang W5367 48S 755547 9307619 G76 6 Early-Middle Vegetative PPB 

438 30-Aug-18 Ronal Karawang W5377 48S 757996 9308323 G76 7 Ratoon PPB 

439 30-Aug-18 Ronal Karawang W5387 48S 753219 9307867 G76 9 Early-Middle Vegetative PPB 

440 30-Aug-18 Ronal Karawang W5404 48S 759063 9309067 G76 7 Ratoon PPB 

441 30-Aug-18 Ronal Karawang W5427 48S 754587 9310218 G76 12 Ratoon PPB 

442 30-Aug-18 Ronal Karawang W5474 48S 759616 9311107 G76 5 Ratoon PPB 

443 30-Aug-18 Ronal Karawang W5514 48S 754785 9312951 G76 5 Land Use Change NA 

444 30-Aug-18 Ronal Karawang W5534 48S 759691 9313723 G76 7 Late ripening PPB 

445 30-Aug-18 Ronal Karawang W5607 48S 759485 9315277 G76 3 Late ripening PPB 

446 30-Aug-18 Ronal Karawang W5614 48S 758076 9316606 G76 4 Ratoon PPB 
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447 30-Aug-18 Ronal Karawang W5624 48S 755755 9315632 G76 3 Late ripening PPB 

448 30-Aug-18 Ronal Karawang W5634 48S 760719 9316756 G76 3 Late vegetative PPB 

449 31-Aug-18 Ronal Karawang W5317 48S 769225 9305619 G76 7 Early ripening PPB 

450 31-Aug-18 Ronal Karawang W5357 48S 767254 9307221 G76 4 Late ripening PPB 

451 31-Aug-18 Ronal Karawang W5374 48S 769563 9307981 G76 1 Land preparation PPB 

452 31-Aug-18 Ronal Karawang W5407 48S 761703 9309398 G76 6 Ratoon PPB 

453 31-Aug-18 Ronal Karawang W5434 48S 762419 9309429 G76 6 Ratoon PPB 

454 31-Aug-18 Ronal Karawang W5444 48S 763730 9310259 G76 3 Ratoon PPB 

455 31-Aug-18 Ronal Karawang W5447 48S 762035 9310919 G76 5 Ratoon PPB 

456 31-Aug-18 Ronal Karawang W5454 48S 766309 9311167 G76 4 Early-Middle Vegetative PPB 

457 31-Aug-18 Ronal Karawang W5457 48S 771172 9308904 G76 0 Early-Middle Vegetative PPB 

458 31-Aug-18 Ronal Karawang W5484 48S 767186 9311613 G76 1 Early-Middle Vegetative PPB 

459 31-Aug-18 Ronal Karawang W5487 48S 760885 9311694 G76 5 Ratoon PPB 

460 31-Aug-18 Ronal Karawang W5494 48S 763151 9312062 G76 4 Late ripening PPB 

461 31-Aug-18 Ronal Karawang W5504 48S 765304 9312517 G76 5 Early ripening PPB 

462 31-Aug-18 Ronal Karawang W5517 48S 761519 9312494 G76 6 Late ripening PPB 

463 31-Aug-18 Ronal Karawang W5544 48S 767425 9313140 G76 1 Early-Middle Vegetative PPB 

464 31-Aug-18 Ronal Karawang W5577 48S 763257 9313509 G76 3 Early reproductive PPB 

465 31-Aug-18 Dani Karawang W5657 48S 755899 9319078 TJ 4 Early-Middle Vegetative PPB 

466 31-Aug-18 Dani Karawang W5687 48S 753991 9321449 TJ 7 Early-Middle Vegetative PPB 

467 31-Aug-18 Dani Karawang W5717 48S 753983 9323971 TJ 5 Early-Middle Vegetative PPB 

468 31-Aug-18 Dani Karawang W5744 48S 753366 9325854 TJ 2 Land preparation PPB 

469 31-Aug-18 Dani Karawang W5774 48S 750683 9327492 TJ 3 Early-Middle Vegetative PPB 

470 31-Aug-18 Dani Karawang W5787 48S 748436 9329592 TJ 2 Early-Middle Vegetative PPB 

471 31-Aug-18 Dani Karawang W5794 48S 745411 9329595 TJ 2 Land preparation PPB 
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472 31-Aug-18 Dani Karawang W5827 48S 754061 9330409 TJ 1 Land preparation PPB 

473 31-Aug-18 Dani Karawang W5834 48S 746688 9330108 TJ 0 Early-Middle Vegetative PPB 

474 31-Aug-18 Dani Karawang W5874 48S 753291 9333785 TJ 1 Early-Middle Vegetative PPB 

475 01-Sep-18 Ronal Karawang W5234 48S 782882 9301490 G76 14 Late vegetative PPB 

476 01-Sep-18 Ronal Karawang W5237 48S 778134 9301851 G76 15 Late ripening PPB 

477 01-Sep-18 Ronal Karawang W5257 48S 768958 9303223 G76 9 Ratoon PPB 

478 01-Sep-18 Ronal Karawang W5264 48S 777367 9302801 G76 13 Early ripening PPB 

479 01-Sep-18 Ronal Karawang W5267 48S 765353 9299650 G76 14 Ratoon PPB 

480 01-Sep-18 Ronal Karawang W5274 48S 770409 9303286 G76 9 Ratoon PPB 

481 01-Sep-18 Ronal Karawang W5304 48S 772679 9304961 G76 7 Late ripening PPB 

482 01-Sep-18 Ronal Karawang W5307 48S 782238 9304561 G76 10 Late ripening PPB 

483 01-Sep-18 Ronal Karawang W5327 48S 781265 9306171 G76 6 Early reproductive PPB 

484 01-Sep-18 Ronal Karawang W5344 48S 778082 9306783 G76 7 Late vegetative PPB 

485 01-Sep-18 Ronal Karawang W5354 48S 780317 9307262 G76 6 Late vegetative PPB 

486 01-Sep-18 Dani Karawang W5347D 48S 781282 9312462 TJ 8 Early-Middle Vegetative NA 

487 01-Sep-18 Dani Karawang W5364 48S 770863 9306774 TJ 2 Early ripening PPB 

488 01-Sep-18 Dani Karawang W5464 48S 786359 9312386 TJ -1 Early-Middle Vegetative PPB 

489 01-Sep-18 Dani Karawang W5467 48S 784295 9313414 TJ -2 Early-Middle Vegetative PPB 

490 01-Sep-18 Dani Karawang W5477 48S 772832 9310841 TJ -1 Early-Middle Vegetative PPB 

491 01-Sep-18 Dani Karawang W5529 48S 774829 9312925 TJ -1 Early-Middle Vegetative PPB 

492 01-Sep-18 Dani Karawang W5554 48S 778092 9314594 TJ -2 Early-Middle Vegetative PPB 

493 01-Sep-18 Dani Karawang W5564 48S 785375 9314012 TJ 0 Early reproductive NA 

494 01-Sep-18 Dani Karawang W5617 48S 775726 9316351 TJ 0 Early-Middle Vegetative PPB 

495 03-Sep-18 Dani Karawang W5837 48S 735696 9331026 
MI 

A1 
1 Early-Middle Vegetative PPB 
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496 03-Sep-18 Dani Karawang W5847 48S 738077 9330595 TJ 4 Late vegetative PPB 

497 03-Sep-18 Dani Karawang W5864 48S 735346 9331961 TJ 0 Early-Middle Vegetative PPB 

498 03-Sep-18 Dani Karawang W5894 48S 736660 9334509 TJ 0 Late vegetative PPB 

499 03-Sep-18 Dani Karawang W5897 48S 734071 9334494 TJ 0 Late vegetative PPB 

500 03-Sep-18 Dani Karawang W5904 48S 732868 9336068 TJ 2 Early-Middle Vegetative PPB 

501 03-Sep-18 Dani Karawang W5907 48S 732200 9336923 TJ 2 Bare land PPB 

502 03-Sep-18 Dani Karawang WKRWG1 48S 742304 9330507 TJ 1 Early-Middle Vegetative PPB 

503 03-Sep-18 Dani Karawang WKRWG2 48S 741329 9331931 TJ 2 Early-Middle Vegetative PPB 

504 04-Sep-18 Ronal Karawang W4877 48S 745448 9278717 G76 101 Early-Middle Vegetative PPB 

505 04-Sep-18 Ronal Karawang W4914 48S 743423 9281191 G76 72 Ratoon PPB 

506 04-Sep-18 Ronal Karawang W4917 48S 747757 9281861 G76 75 Ratoon PPB 

507 04-Sep-18 Ronal Karawang W4924 48S 743271 9282950 G76 51 Ratoon PPB 

508 04-Sep-18 Ronal Karawang W4927 48S 747924 9282512 G76 69 harvested PPB 

509 04-Sep-18 Ronal Karawang W4944 48S 746102 9284782 G76 37 Ratoon PPB 

510 04-Sep-18 Ronal Karawang W4967 48S 747555 9288557 G76 36 Other crop PPO 

511 04-Sep-18 Ronal Karawang W4997 48S 744556 9289816 G76 27 Ratoon PPB 

512 04-Sep-18 Ronal Karawang W5097 48S 744913 9295640 G76 23 Ratoon PPB 

513 04-Sep-18 Ronal Karawang W5114 48S 746488 9297596 G76 22 Early ripening PPB 

514 04-Sep-18 Ronal Karawang W5177 48S 748656 9300065 G76 16 Land preparation PPB 

515 04-Sep-18 Ronal Karawang W5214 48S 748812 9301766 G76 14 Ratoon PPB 

516 04-Sep-18 Ronal Karawang W5287 48S 750036 9303949 G76 14 Early reproductive PPB 

517 04-Sep-18 Dani Karawang W5594 48S 764892 9315461 TJ -1 Late vegetative PPB 

518 04-Sep-18 Dani Karawang W5644 48S 769227 9318295 TJ 2 Early-Middle Vegetative PPB 

519 04-Sep-18 Dani Karawang W5654 48S 772439 9318029 TJ 0 Early-Middle Vegetative PPB 

520 04-Sep-18 Dani Karawang W5674 48S 770943 9319581 TJ 1 Land preparation PPB 
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521 04-Sep-18 Dani Karawang W5677 48S 761074 9322183 TJ 5 Early-Middle Vegetative PPB 

522 04-Sep-18 Dani Karawang W5684 48S 768082 9321029 TJ 1 Early-Middle Vegetative PPB 

523 04-Sep-18 Dani Karawang W5754 48S 765102 9326511 TJ 3 Early-Middle Vegetative PPB 

524 04-Sep-18 Dani Karawang W5797 48S 761782 9328696 TJ 5 Early-Middle Vegetative PPB 

525 04-Sep-18 Dani Karawang W5887 48S 759170 9332807 TJ 2 land preparation PPB 

526 04-Sep-18 Dani Karawang WKRWG3 48S 770835 9313531 TJ 1 Early-Middle Vegetative PPB 

527 04-Sep-18 Dani Karawang WKRWG4 48S 764274 9319077 TJ 0 Early-Middle Vegetative PPB 

528 04-Sep-18 Dani Karawang WKRWG5 48S 755854 9329701 TJ -1 Ratoon PPB 

529 04-Sep-18 Dani Karawang WKRWG6 48S 760025 9326531 TJ 2 Early-Middle Vegetative PPB 

Note: G76 = Garmin 76CSx, TJ = Trimble Juno, PPO = Paddy-paddy-other crop, PPP = Paddy-paddy-paddy, POB = Paddy-other crop-bare land, PPB = Paddy-

paddy-bare land, PPT = Paddy-paddy-tobacco, PTB = Paddy-tobacco-bare land, PB = Paddy-bare land, and NA = Not applicable  
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Appendix 6 The examples of webcam images 
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Appendix 7 The examples of field survey photos. 

 

E2478- 20 July 2018 

 

W0183 – 17 August 2018 

 

E2524 – 21 July 2018 

 

W4535 – 24 August 2018 

 
E2872 – 21 July 2018 

 
W4255 – 25 August 2018 

 
E0571 – 1 August 2018 

 
W5717 – 31 August 2018 
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