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Abstract

The main objective of this thesis is to examine how the full configuration interaction quantum

Monte Carlo (FCIQMC) method can be best utilized for studying ultracold Bose gases.

FCIQMC is a stochastic approach for finding the ground state of a quantum many-body

Hamiltonian. It is based on the dynamical evolution of a walker population in Hilbert space,

which samples the ground state configuration vector over many iterations. The method has

been previously applied to studies of the electronic structure of molecules, solids and certain

spin models, as well as recently to ultracold Fermi gases. Whereas in this work we are

interested in using the method to examine ultracold bosonic atoms. In this thesis, we cover

methodological developments and applications of the FCIQMC method. Firstly, we present a

modification of the original protocol in FCIQMC for walker population control of Booth et al.

[J. Chem. Phys. 131, 054106 (2009)] in order to achieve equilibration at a pre-defined average

walker number and to avoid walker number overshoots. Next, we investigate a systematic

statistical bias found in FCIQMC, known as the population control bias, that originates from

controlling a walker population with a fluctuating shift parameter and can become large in

bosonic systems. We use an exactly solvable stochastic differential equation to model the bias.

Lastly, we showcase an application of FCIQMC in studying the properties of the

lowest-energy momentum eigenstates, known as yrast states, of Bose gases coupled with a

mobile impurity in one spatial dimension. Based on the results of our computations, we

identify different dynamical regimes: the polaron and depleton regimes and transitions

between them.
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Chapter 1
Introduction

The study of ultracold atoms has attracted increasing interest in the past decades thanks to

advances in quantum and optical technologies [1]. As the names suggests, ultracold atoms are

studied at very low temperatures of tens of microkelvin and lower, where thermal effects are

suppressed and quantum properties become more pronounced [2]. Quantum phenomena

observed in ultracold atom experiments include Bose–Einstein condensation (BEC) [3],

quantum phase transitions [2], superfluidity [4], quantum vortices [5–7] and vortex rings

[8, 9], as well as solitons [10, 11]. Furthermore, ultracold atoms are also used in novel research

directions such as quantum simulators [12] and quantum computers [13].

The rapidly developing technologies of ultracold atom experiments have enabled

well-controlled experimental setups with manipulations on the level of individual atoms. For

example, optical and magnetic traps are applied to generate desired external potentials [3, 14],

e.g., in order to confine a system to a lower spatial dimension [15, 16]. Meanwhile the

interatomic interaction can be tuned with Feshbach resonances by changing an external

magnetic field [17, 18], making the atoms interact weakly or strongly, and attractively or

repulsively.

To complement experiments, theoretical studies can provide more in-depth understanding

of a quantum system. Furthermore, theoretical works can often predict quantum phenomena,

or offer guides for designing experiments before committing any laboratory resources.

However, this does not mean that theoretical predictions come with no costs. On the contrary,
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theoretical work can be extremely challenging due to the complexity of quantum many-body

systems. Moreover, most quantum many-body systems, even when represented by very simple

models, have no exact analytical solutions. For example, a two-dimensional Hubbard model

can be used to model high-temperature superconductivity [19]. This simple model involves

only on-site and nearest neighbor interactions. It has been realized and rigorously examined

experimentally in various setups [20–24] but cannot be solved analytically.

A particular quantum many-body system of interest for this thesis is a mobile impurity

coupled with an ultracold atomic gas [25, 26]. The study of a single quantum impurity in a

surrounding many-body medium has been a fascinating topic for many decades [27, 28],

including Pekar and Landau’s works on the motion of an electron in a crystal lattice [29–31],

impurity atoms in superfluid helium [32], and recent developments in the field of ultracold

atoms [26, 33, 34]. In a one-dimensional Bose gas with impurity and focussing on low energy

states, one can find two regimes depending on the total momentum of the system: For low

momenta, a Bose polaron is defined as a quasiparticle formed when a mobile impurity moves

relative to a Bose gas [35–37]; At higher momenta, an impurity can bind a gray or dark soliton

forming a “depleton” [38, 39]. Dark solitons are ubiquitous low energy excitations of

superfluids, which can be characterized by a localized density depression propagating with

zero velocity and a π phase jump [40–42]. A gray soliton forms when the density dip

propagates with a non-zero velocity, and a phase jump different from π. Experimentally, the

impurity–background interactions can be fine-tuned via Feshbach resonances [18] and the

excitation spectra can be probed with spectroscopic methods [43]. Theoretically, only certain

models have an analytical solution. For example the Yang-Gaudin model in one spatial

dimension via Bethe ansatz [44–46] when all particle masses and interaction strengths are

equal; or via a mean-field approaches with restrictions on either total momentum or interaction

strength [38, 39, 47].

Where analytical solutions cannot be obtained, one can invoke efficient numerical

approaches to provide answers. A Hamiltonian of a quantum many-body system can be

represented by a matrix. Diagonalizing such a matrix yields all eigenvalues and corresponding

eigenvectors. This approach is called the exact diagonalization method [48, 49]. It is a

conceptually straightforward deterministic approach, turning a quantum many-body problem

into a matrix eigenvalue problem. Each eigenvalue represents the energy of a quantum state
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and the corresponding eigenvector represents the wave function of that state. In particular, the

lowest eigenvalue of the Hamiltonian is the ground-state energy, and the corresponding

eigenvector is the ground-state wave function, which are properties of high interest for a

quantum many-body system.

Unfortunately, the exact diagonalization method quickly becomes infeasible when the size

of the quantum many-body system increases, due to the exponentially expanding dimension

of the corresponding Hilbert space. This typically leads to a Hamiltonian matrix, sometime

even a vector, being too large to be stored on any computer memory. Hence the usage of exact

diagonalization is limited to studies of fairly small many-body systems [50]. Alternatively, one

can exploit a gift from nature, randomness, to sample the exact solution from a deterministic

setup. Such approaches are called Monte Carlo methods.

Out of many variants of Monte Carlo methods in use to study quantum many-body

problems, the particular flavor we picked for this work is called full configuration interaction

quantum Monte Carlo (FCIQMC). The FCIQMC method works as a stochastic extension to

the exact diagonalization approach, by utilizing the population dynamics of a set of signed

random walkers to simulate the underlying Schrödinger equation. A “configuration” in

FCIQMC refers to one of the states in a many-body basis set (e.g., a Fock state) which spans

the corresponding Hilbert space. The ground-state wave function can be sampled by walkers

exploring the configurations to find their corresponding weights. The walkers do not actually

“walk” but evolve according to their population dynamics, governed by a set of rules including

three main probabilistic processes: spawning, death and annihilation.

1. Spawning: Each walker has a probability to spawn a single or multiple new walkers into

connected configuration(s). The spawning probability is proportional to the off-diagonal

Hamiltonian matrix element that connects two configurations. The sign of a newly

spawned walker is determined by the sign of the off-diagonal matrix element: if the

matrix element is negative, the spawned walker carries the same sign as the parent

walker; otherwise it carries the opposite sign to the parent.

2. Death: After spawning, each parent walker has a probability to die proportional to the

value of the diagonal Hamiltonian matrix element. The dead walkers are removed from

the simulation immediately.
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3. Annihilation: If there are any pairs of walkers, whether they are newly spawned or

remaining parents, that carry opposite signs occupying the same configurations, these

pairs are annihilated.

The above processes happen at each discretized time step with a fixed order. At each time step,

a part of the eigenvector is being sampled, with its length bounded by the number of walkers

used in an FCIQMC calculation. The needed Hamiltonian matrix elements are computed and

accessed on the fly. This way the full eigenvector and the full matrix are never stored on a

computer, which allows us to study a system much larger than one that could be solved with

exact diagonalization. Moreover, the Monte Carlo algorithm is naturally parallelizable,

meaning the computation can be split into many parts of a shared or distributed computer

memory, and performed on many processors in parallel. The parallelization can significantly

reduce the computing time by utilizing more computational resources which are accessible on

a high performance computing (HPC) facility.

The main objective of this thesis is to examine howwe can best utilize FCIQMC for studying

bosonic quantum many-body systems. The FCIQMCmethod was originally designed by Booth

et al. in 2009 [51] for solving the quantum many-body Schrödinger equation in the context of

electronic structure of atoms andmolecules. Themethodological developments and applications

of FCIQMC so far have mainly been focused on molecular systems, solids and the Hubbard

model [52–57]. Previous application of FCIQMC to ultracold atoms were limited to spin-1
2

Fermi systems [58, 59]. In this work, we adopt the FCIQMC method for studying ultracold

atoms, especially bosons, and present the first applications to bosonic many-body systems.

Depending on the structure of the Hamiltonian, bosonic systems studied in this work can

be divided into two classes: sign-problem free or with sign problem. The definition of the sign

problem varies in different contexts, but its occurrence is universal in Monte Carlo methods.

Generally speaking, the sign problem refers to an increase in statistical noise in a Monte Carlo

simulation when sampling the (wrong) sign-structure of the wave function, causing an

exponential increase of the computing time with the number of particles [60]. In FCIQMC, the

sign problem is generated by walker(s) occupying a configuration with a wrong sign [61–63].

As bosonic wave functions are symmetric under particle exchange, bosonic Hamiltonians

can be stoquastic, meaning all matrix elements are real and off-diagonal matrix elements are
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also non-positive [64]. Hence, in an FCIQMC calculation with a stoquastic Hamiltonian, all

walkers have the same sign according to the spawning rule described previously, and the

FCIQMC simulation is sign-problem free. This reflects the property of the ground-state wave

function being nodeless.

In the absence of the sign problem, in principle, one can use a very small set of walkers to

explore a much larger Hilbert space, given that the time propagation is long enough and that

ergodicity conditions are fulfilled [65, 66]. In terms of FCIQMC walker dynamics, using a very

small set of walkers means requiring little computer memory. This implies that a stochastic

estimate of the exact solution of a very large quantum many-body system could be obtained on

very modest computing units with FCIQMC. If true, it would significantly extend deterministic

methods such as exact diagonalization. However, using a too small number of walkers in a

FCIQMC simulation produces a bias, known as the population control bias in Monte Carlo

algorithms [67–70] that introduces an unknown systematic error to the results of all calculations,

preventing us from obtaining exact solutions. In this thesis, we update the FCIQMC walker

population control mechanism (in Chapter 3) and make progress in understanding and modeling

the population control bias in FCIQMC (in Chapter 4).

The sign problem arises when a Hamiltonian is non-stoquastic, where off-diagonal matrix

elements appear with both signs. Common examples include fermionic Hamiltonians in

dimension greater than one, or bosonic Hamiltonians with repulsive interactions in

momentum-space representation. In FCIQMC, the walker annihilation process can mitigate

the sign problem. With the opposite-signed walkers canceling each other, the resulting wave

function has, for the most part, the correct sign structure. Yet the sign problem can still be

severe when an insufficient number of walkers is used in a FCIQMC simulation, which usually

occurs when the wave function is more spread out and/or the Hilbert space is very large [63].

In such cases, some configurations are occupied with only a single or few walkers, and the

annihilation events are not triggered frequently enough in order to produce the correct sign on

these configurations. This leads to the wave function being sampled incorrectly with an

incoherent sign structure [61]. Ground-state energy estimators becomes useless in this case.

To overcome the problem, the initiator approximation was introduced to FCIQMC in order to

control the sampling process by restricting the spawning process [71]. Configurations with a

sufficient number of walkers occupying them are classified as “initiators”, and only walkers on
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an initiator configuration can spawn new walkers into an unoccupied configuration. This

approach significantly improves the coherence in the sign structure of the sampled wave

function and reduces the number of walkers required in an FCIQMC simulation [71]. The

trade-off is that a systematic bias is introduced into the energy estimators. This initiator bias

can be gradually removed by increasing the number of walkers used in a FCIQMC simulation.

Comparing the requirement for eliminating the sign problem through walker annihilation

without initiators, the demand of computational resources with the initiator approximation is

much lower [72]. Moreover, the initiator approach can be systematically improved, further

lowering the computational costs and improving the accuracy of the calculation [73]. In this

work, we apply the initiator FCIQMC in order to study a complex Hamiltonian of the repulsive

impurity problem formulated in momentum space where the sign problem is severe

(Chapter 5).

This thesis is organized in the following way: In Chapter 2, we cover the background

knowledge essential for understanding the rest of the thesis. Section 2.1 begins with an

introduction of the second quantization formulation which is used to describe quantum

many-body systems throughout this thesis. Then we briefly describe the one-dimensional

Bose–Hubbard model, which is a well-studied quantum many-body system and intensively

used in this thesis as a test model. A more complex two-component Bose–Hubbard

Hamiltonian is also included. The two-component model is later used in the study of the

mobile impurity coupled with a Bose gas. Next, an overview of the numerical methods for

finding the ground-state properties of a quantum many-body system is provided in Section 2.2.

Starting with the exact diagonalization approach, a discussion on the inability of deterministic

methods for solving large quantum many-body systems leads to the introduction of quantum

Monte Carlo methods. After that, a detailed recapitulation of the FCIQMC method is included

in Section 2.3.

The main research outputs of this doctoral study are presented in Chapters 3-5 in forms of

published manuscripts. Chapter 3 describes an improved walker population control procedure

for FCIQMC. The original two-stage population control procedure from Booth et al. [51] allows

the walker population to grow exponentially until a cut-off value is reached, then a delayed

population control is applied which only suppresses the fluctuation in the walker population but

does not control themaximum and the equilibrated number of walkers. As the number of walkers
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directly connects to the computer memory usage, it is hard to allocate computational resources

accurately without the ability to control the maximum and the equilibrated walker population.

Moreover, the maximum and the equilibrated walker population can often be much higher than

the desired level due to the delay in stopping walker population growth in the original recipe,

causing excessive usage of computational resources or even crashing a calculation by exhausting

all available computer memory. This is called the walker overshoot problem. To solve such a

problem, we propose an update of the original FCIQMC population control procedure by adding

an additional forcing term in order to precisely bring the walker population to the predetermined

target. We show that the updated procedure can be mapped to a damped harmonic oscillator.

With the new procedure, we can eliminate the walker overshoot problem and achieve precise

walker population control with significantly reduced fluctuation in the number of walkers in

FCIQMC calculations. The new population control mechanism also simplifies the original two-

stage procedure to a single stage process. Furthermore, it only requires minimal changes to the

existing algorithm with negligible trade-off.

Chapter 4 addresses the population control bias in FCIQMC, also known as the stochastic

bias. This is a systematic error that originates from the population control procedure with a

fluctuating shift parameter [68]. Sign-problem free FCIQMC simulations can suffer

particularly badly from the population control bias, when a small number of walkers is used

for exploring a vast Hilbert space. In this Chapter, we use an exactly solvable stochastic

differential equation to model the bias. The model gives further insights into the nature of the

bias, providing crucial knowledge for potentially finding a cure for the population control bias.

We also find evidence for non-universal power-law scaling of the population control bias with

walker number, in contradiction to findings in Refs. [68, 74], in large Bose–Hubbard

Hamiltonians for various estimators of the ground-state energy.

Chapter 5 showcases an application of FCIQMC in describing a mobile spin impurity

coupled with a weakly interacting Bose gas in one spatial dimension. We compute the

lowest-energy momentum eigenstates (yrast states) with FCIQMC. This is enabled by

FCIQMC’s feature to preserve symmetries of the Hamiltonian during the imaginary-time

propagation. As such feature is not easily achievable in other quantum Monte Carlo algorithms

at the current stage, it justifies the choice of using FCIQMC for this study. A

momentum-space representation of the Hamiltonian is used in this study, making Monte Carlo
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calculations no longer sign-problem free. We employ the initiator approximation in the

calculations to mitigate the sign problem, and successfully reduce all biases in the energies to a

level lower than the statistical error. We further compute the momentum distribution of the

impurity, as well as the impurity–bath correlation function of yrast states with FCIQMC.

Based on the computed results, we identify different dynamical regimes and the transitions

between them: The polaron regime, where the impurity’s motion is affected by the Bose gas

through a renormalized effective mass; A transition regime where a gray soliton is weakly

correlated with a stationary impurity; And the depleton regime, where the impurity occupies a

dark or gray soliton. A super heavy regime is revealed by extracting the depleton effective

mass for the yrast spectrum, showing the magnitude of the (negative) depleton mass exceeds

the total mass of the finite Bose gas.

Lastly, Chapter 6 provides a conclusion of this thesis with outlooks on future studies.
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Chapter 2
Theoretical Background

In this Chapter, we cover the essential background knowledge required for understanding later

parts of this thesis. We begin with an introduction to the physical model — the Bose–Hubbard

model in one spatial dimension — in the second quantized form. The standard Bose–Hubbard

model is used in Chapters 3 and 4 as a test case for the methodological developments of the full

configuration interaction quantumMonte Carlo (FCIQMC)method. The two-component Bose–

Hubbardmodel is connected to the lattice discretized continuummodel for the quantum impurity

problem studied in Chapter 5. Then we provide an overview of numerical methods including

exact diagonalization and certain variants of Monte Carlo methods. Lastly, we recapitulate the

FCIQMC method in detail.

2.1 The Bose–Hubbard model

In this work, especially in Chapters 3 and 4, the usage of the Bose–Hubbard Hamiltonian is

mainly to validate the implementation of the bosonic FCIQMC algorithm, and to test the newly

developed methodologies. The Bose–Hubbard model has been well studied, both theoretically

[49, 75–77] and experimentally [2, 78–81]. Although, in this work, we do not wish to extract

new knowledge about the Bose–Hubbard model, it is still important to know the related physics

within the model in order to understand certain behaviors of bosonic FCIQMC. Before writing

down the Bose–Hubbard Hamiltonian, we firstly introduce the second quantization formulation

that is used throughout this thesis for describing quantum systems.
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2.1.1 Second quantization formulation for bosons

In this work we are mainly dealing with the quantum many-body systems consisting of many

identical particles, bosons in particular. We can express the many-body systems in a complete,

orthonormal basis set of many-body states — the Fock states, which are fully characterized by a

set of integer occupation numbers with respect to an underlying orthonormal single-particle basis

set. The Fock states span the so-called Fock space. The occupation number representation is a

convenient notation for Fock states. First, we introduce the state with no particle, the vacuum

state, denote by |vac〉. To construct a state with many particles, we introduce the creation

operator, â†i , and the annihilation operator, âi, in mode i. The vacuum state is an eigenstate

with eigenvalue zero to each annihilation operator,

âi|vac〉 = 0. (2.1)

The canonical annihilation and creation operators further follow the commutation relations,

denoted by the commutator, [, ], such as

[âi, â
†
j] = âiâ

†
j − â

†
j âi = δij, (2.2)

[â†i , â
†
j] = [âi, âj] = 0, (2.3)

where δij is the Kronecker delta. The commutation relations reflect the symmetric nature of

the bosonic wave function under particle exchange. The occupation number representation,

|n0, n1, n2, . . .〉, representing a normalized N -particle Fock state, is defined by

|n0, n1, n2, . . .〉 =
1√∏∞
i=0 ni!

(
â†0

)n0
(
â†1

)n1
(
â†2

)n2

. . . |vac〉, (2.4)

where the total number of particles N =
∑∞

i=1 ni, and the creation operator, â
†
i , crates a new

particle in the single-particle state i.

As in this work we are working with bosons, where previous implementations of the

FCIQMC algorithm addressed only fermionic systems, we need a new scheme for encoding

bosonic Fock states on a computer. To encode the occupation number representation of a

fermionic Fock state on a computer, one only needs a bit string with “0” or “1” to denote an
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2.1. The Bose–Hubbard model

empty or occupied mode, respectively, for each spin component. Differently for bosons, as

bosons do not obey the Pauli exclusion principle like fermions, multiple bosons can occupy a

same mode.

To encode the occupation number representation of a bosonic Fock state as a bit string, we

use a sequence of ni number of “1”s to encode ni particles in mode i, and “0”s are used as

separators between the modes. As an example, the state |0, 0, 4, 0, 3, 5〉would be encoded as the

bit string

0 0 1 1 1 1︸ ︷︷ ︸
4 bosons

0 0 1 1 1︸︷︷︸
3 bosons

0 1 1 1 1 1︸ ︷︷ ︸
5 bosons

.

Using this scheme, storing a bosonic Fock state withN particles inM modes requires a bit string

of length N +M − 1. This representation is very compact and allows for efficient on-the-fly

calculations through bit manipulations.

2.1.2 The Bose–Hubbard model in real space

The Bose–Hubbard Hamiltonian for a one-dimensional chain ofM lattice sites is written as

Ĥ = −J
M∑
i=1

(
â†i âi+1 + â†i+1âi

)
+
U

2

M∑
i=1

n̂i(n̂i − 1), (2.5)

where n̂i = â†i âi is the occupation number operator of mode i. Periodic boundary conditions

imply that âM+1 ≡ â1. The first term in Eq. (2.5) represents particle hopping to nearest neighbor

sites with hopping strength J > 0, and the second term is an on-site interaction with strength

parameter U . The interaction strength parameter can have both signs, where U > 0 indicates

repulsive and U < 0 attractive on-site interactions.

In order to represent the model Hamiltonian as a matrix, we use a basis of Fock states (also

referred to as configurations) withM number of lattice sites in real space such as

|n1, n2, . . . , nM〉 =
M∏
i=1

1√
ni!

(
a†i

)ni

|vac〉, (2.6)

with fixed particle number N =
∑M

i=1 ni. The number of independent Fock states with N

13



particles inM lattice sites gives the dimension of the Hilbert space,

dim =

(
M +N − 1

N

)
. (2.7)

From Eq. (2.5), one can see that, when written in the form of a matrix, the off-diagonal

elements of the Bose–Hubbard Hamiltonian are all zero or negative. This fulfills the conditions

for a stoquastic matrix [82], meaning the Hamiltonian does not suffer the sign problem.

Experimentally, in an optical lattice, the ratio of U/J can be controlled by tuning the

strength of the laser field [2]. For certain atomic species with magnetically tuneable Feshbach

resonances, the interaction parameter U can also be tuned independently. The on-site

interaction originates from the short-range van der Waals interaction between neutral ultracold

atoms. Other types of interactions can be also modeled by the Bose–Hubbard Hamiltonian by

adding extra terms. For example, with a nearest-neighbor interaction

Ĥextended = Ĥ + V
∑
i

n̂in̂i+1, (2.8)

new ground states such as a density-wave phase and the Haldane insulator phase appear in the

phase diagram [77, 83]. This model is called the extended Bose–Hubbard model. A recent

study [84] further shows that there is a supersolid-superfluid phase separation in the

one-dimensional extended Bose-Hubbard model. Another interesting extension for modeling

typical experimental situations consists in adding a harmonic trapping potential to the lattice,

Ĥtrapping = Ĥ + Ω
∑
i

n̂i(i− i0)2, (2.9)

where i0 is the center of the trap. This model is used to study the Bloch oscillations of ultracold

atoms [85–87]. There are many more non-standard Bose–Hubbard models that explore exotic

physical phenomena that have been summarized in the review of Ref. [88].

Although its Hamiltonian takes on a very simple form, the Bose–Hubbard model describes

a non-trivial quantum many-body problem. In the thermodynamic limit (M,N →∞, N/M =

constant), the one-dimensional Bose–Hubbard model features a quantum phase transition

between a Mott-insulating phase to a superfluid phase [75]. States with non-integer filling
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2.1. The Bose–Hubbard model

factor, N/M , are always superfluid. The phase transition from a superfluid to a Mott insulator

with increasing U/J happens at a value of U/J ≈ 3.5 [77] with an integer filling factor.

The superfluid is a phase with long-range coherence, characterized by a gapless excitation

spectrum [2]. With the Bose–Hubbard model, the superfluid phase can be found when the

hopping strength is dominating the system, i.e., J � U . When U = 0, the (superfluid)

ground-state wave function can be written as

|ΨSF〉U=0 ∝

(
M∑
i=1

â†i

)N

|vac〉. (2.10)

In contrast to the superfluid phase, the Mott insulator phase is characterized by an integer

number of particles per lattice site and a gapped excitation spectrum, with no phase coherence

across the lattice [2]. TheMott insulator is dominated by strong on-site repulsive interaction, i.e.

U � J . With J = 0 and for an integer filling factor n = N
M
, the (Mott insulating) ground-state

wave function can be written as

|ΨMI〉J=0 ∝
M∏
i=1

(â†i )
n|vac〉. (2.11)

Note that the Mott insulator phase only arises for integer filling factors.

Apart from the above two cases, there is no exact solution for the ground state with arbitrary

U/J values. Mean-field theories only provide approximate solutions. Hence numerical methods

such as the exact diagonalisation for small systems and quantum Monte Carlo for large systems

are employed.

2.1.3 The Bose–Hubbard model in momentum space

The 1D Bose–Hubbard Hamiltonian can be reformulated in momentum space [48],

Ĥ =
∑
k

εk ˆ̃nk +
U

2M

∑
spqr

ˆ̃a†sˆ̃a
†
p
ˆ̃aq ˆ̃arδs+p,q+r, (2.12)
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where εk = −2J cos(k) and ˆ̃nk = ˆ̃a†k
ˆ̃ak is the number operator. Single-particle mode operators

now refer to plane-wave eigenstates of the lattice momentum

ˆ̃a†k =M− 1
2

M∑
l=1

eiklâ†l ,

where k = −π + n2π/M for even M and k = −π(M + 1)/M + n2π/M for odd M and

n = 1, . . .M .

Reformulating the Bose–Hubbard model in momentum space allows us to study states with

non-zero total momentum, which contain information about dynamical properties of the system

[89, 90]. However, in themomentum-space formulation, the Hamiltonian is no longer stoquastic

when U > 0 because the off-diagonal matrix elements have a positive sign. Thus, FCIQMC

suffers the sign problem for such a Hamiltonian.

2.1.4 The two-component Bose–Hubbard model

The two-component Bose–Hubbard model can be used to describe ultracold atom systems with

two species of bosonic atoms. Some examples of interesting quantum many-body problems

with two components are quantum droplets [91–97], as well as bosonic impurities in a Bose gas

[98, 99].

The main motivation for implementing the two-component Bose–Hubbard model is to study

the interaction between a mobile impurity and a Bose gas in one spatial dimension, forming

either a polaron [100–102] or a depleton [38, 39, 44]. While polarons are impurities with positive

effective mass, depletons have a negative effective mass, signifying that the impurity is bound

to a dark soliton. A detailed introduction on polaron and depleton physics, and the simulation

results are presented in Chapter 5.

In this work, we are interested in systems with non-zero momentum. Hence we follow the

Bose–Hubbard formulation in momentum space as presented in the previous Section. We treat

the Bose gas and the impurity as two interacting components, Ĥa and Ĥb respectively,

Ĥa =
∑
k

εak
ˆ̃nak +

Ua

2M

∑
spqr

ˆ̃a†sˆ̃a
†
p
ˆ̃aq ˆ̃arδs+p,q+r, (2.13)
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2.2. Numerical methods for finding the ground state

where εak = −2Ja cos(k) and ˆ̃nak = ˆ̃a†k
ˆ̃ak are the kinetic and number operators in momentum

space. Similarly for the second component (impurity),

Ĥb =
∑
k

εbk
ˆ̃nbk +

Ub

2M

∑
spqr

ˆ̃b†s
ˆ̃b†p
ˆ̃bq
ˆ̃brδs+p,q+r, (2.14)

where εbk = −2Jb cos(k) and ˆ̃nbk = ˆ̃b†k
ˆ̃bk. A cross-component interaction term is needed to

complete the Hamiltonian:

Ĥ2C = Ĥa + Ĥb +
V

M

∑
spqr

ˆ̃a†s
ˆ̃b†p
ˆ̃bq ˆ̃arδs+p,q+r, (2.15)

where V is the strength of the on-site interaction between the impurity and a boson.

V U

J

Figure 2.1: A schematic diagram of the one-dimensional Bose–Hubbard model with a single mobile

impurity. Blue dots represent bosons (Ĥa) and the red dot represents the impurity (Ĥb).

2.2 Numerical methods for finding the ground state

In this Section, we briefly review some of the available numerical methods for finding the ground

state, including a deterministic approach known as the exact diagonalization method, as well as

some frequently used stochastic quantum Monte Carlo algorithms. These selected methods are

either connected to or sharing great similarities with the FCIQMC method, and are hence worth

to be covered.

2.2.1 Exact diagonalization

As previously mentioned in Chapter 1, finding the ground state of a quantum many-body

problem can be formulated into an eigenvalue problem. We are aiming to solve the
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time-independent Schrödinger equation,

Ĥ|Ψ〉 = E|Ψ〉, (2.16)

where Ĥ is the Hamiltonian, |Ψ〉 is the wave function andE is the corresponding energy. When

Ĥ is represented by a matrix, |Ψ〉 is an eigenvector and E is the corresponding eigenvalue.

For constructing the Hamiltonian matrix, we firstly expand the wave function using the set

of all configurations (i.e. Fock states) |D1〉, |D2〉, . . . as defined in Eq. 2.4 that span the Fock

space,

|Ψ〉 =
∑
i

ci|Di〉, (2.17)

where the ci are the expansion coefficients. The element in the ith-row and the jth-column of

the Hamiltonian matrix is given by

Hij = 〈Di|H|Dj〉. (2.18)

Figure 2.2 shows the sparsity pattern of the matrix representation of the one-dimensional

Bose–Hubbard model in real space [Eq. (2.5)] with five bosons and five lattice sites as an

example. With a repulsive interaction, all diagonal matrix elements have positive or zero

value. The off-diagonal elements connecting two configurations have negative values,

representing the tunneling term in the Bose–Hubbard model. The rest of the matrix elements

are zero.

Diagonalization of the Hamiltonian matrix yields all eigenvalues and eigenstates. The state

with the lowest eigenvalue is the ground state of the quantum many-body system. It represents

the most stable state with the lowest energy (the ground-state energy). Other eigenstates with

higher eigenvalues are the excited states.

With the exact diagonalization approach, the demands for computational resources grows

exponentially with increasing size of the system, as the corresponding Hilbert expands rapidly.

It quickly becomes very difficult when the matrix is too large to be stored in a computer memory.

There are implementations such as the Lanczos algorithm [103], which can reduce the full

diagonalization effort for a sparse matrix, and obtain a few lowest eigenstates without storing
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2.2. Numerical methods for finding the ground state
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Figure 2.2: An schematic example of a full Hamiltonian matrix with dimension 126 × 126 for a one-
dimensional Bose–Hubbard model in real space [Eq. (2.5)] with M = N = 5 and U/J = 6. All the
diagonal matrix elements are positive (red), and the off-diagonal elements are either negative (blue) or

zero (white).

the entire matrix. However, the number of operations in the Lanczos algorithm scales with the

third power of the dimension of the Hilbert space [104] which makes it too costly to use when

the size of system becomes large. Furthermore, the algorithm requires storing a few copies of

the full eigenvector, which also limits its applicability.

2.2.2 Projector Quantum Monte Carlo

In contrast to the exact diagonalization approach, quantum Monte Carlo is a type of stochastic

method utilizing random numbers and probabilities to tackle problems that are too large for

deterministic methods to solve.

Projector quantum Monte Carlo represents the stochastic integration of the Schrödinger

equation aimed at finding the ground state. The Monte Carlo integration is done through
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taking the ensemble average of a function that has been sampled randomly. It is important to

note that each “snapshot” within the ensemble does not reflect the correct state of that

function. The sampled variable will have a mean value and a variance. The law of large

numbers dictates that the mean value will converge to the expected value with a large number

of samples taken, and the statistical error decreases as 1/
√
τ where τ is a measure of the

sampling of the system [105].

There are numerous variants of quantum Monte Carlo algorithms. Variational Monte Carlo

(VMC) algorithms [106, 107] aim at approximating the ground state using a variational

principle combined with stochastic integration. Alternatively, Projector Monte Carlo

[68, 108–111] methods are based on stochastic realizations of the power method [112] for

finding the dominant eigenvector of a matrix: A projector P̂ is repeatedly applied to an initial

(trial) wave function |Ψ(0)〉 to project out the ground state |Ψ0〉,

|Ψ0〉 = lim
T→∞

P̂ T |Ψ(0)〉. (2.19)

FCIQMC belongs to this class of projector Monte Carlo methods. Here, before introducing the

method in detail in Section 2.3, we briefly discuss two other common Projector Monte Carlo

algorithms: the Diffusion Monte Carlo (DMC) method and the Auxiliary Field QuantumMonte

Carlo (AFQMC) method.

2.2.2.1 Diffusion Monte Carlo

DMChas been intensively used in cold-atom physics [113–115], including the quantum impurity

problem [116–118] which is studied in Chapter 5. With DMC, the wave function is expressed

in real space in first quantization language and represented by the density of a set of discrete

“walkers” distributed throughout the available space. These walkers evolve in imaginary time

to reach the ground state distribution in the long-time limit.

Imaginary time evolution works as follows: The imaginary-time Schrödinger equation can

be written as

−∂|Ψ(r, τ)〉
∂τ

= (Ĥ − S1)|Ψ(r, τ)〉, (2.20)

where the wave function depends on the imaginary-time τ = it as well as the spatial-coordinate
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2.2. Numerical methods for finding the ground state

vector r for all particles. The shift S is an estimate of the ground state energy and 1 represents

the unit matrix. The projector for Eq. (2.19) used in DMC is

P̂ = e−τ(Ĥ−S1). (2.21)

The initial wave function can be decomposed into a complete set of eigenstates |Φi〉 of Ĥ , such

as

|Ψ(τ = 0)〉 =
∑
i

ci|Φi〉, (2.22)

with eigenvalues Ei where

Ĥ|Φi〉 = Ei|Φi〉. (2.23)

When S in the projector is taking the value of the ground-state energy E0, which is the lowest

eigenvalue such as Ei ≥ E0, for any Ei > E0 the exponential term decay faster such as

|Ψ(τ →∞)〉 = lim
T→∞

P̂ T |Ψ(0)〉 (2.24)

= lim
T→∞

∑
i

e−Tτ(Ei−E0)ci|Φi〉 (2.25)

= c0|Φ0〉, (2.26)

projecting out only the ground state |Φ0〉 in the long-time limit.

To see the “diffusion” part in DMC, given a guiding function ΨG(r) and defining a

distribution function f(r, τ) = ΨG(r)Ψ(r, τ), with Ψ(r, τ) satisfying the Schrödinger

equation, one can show that f(r, τ) is a solution of the equation [68],

ΨG(r)(Ĥ − S)ΨG(r)
−1f(r, τ)

= −1

2
∇2f(r, τ) +∇ · [V(r)f(r, τ)]− [S − EL(r)]f(r, τ) (2.27)

= −∂f(r, τ)
∂τ

, (2.28)

where V(r) = ∇ΨG(r)
ΨG(r)

is the “velocity” and EL(r) = ĤΨG(r)
ΨG(r)

is the local energy in DMC. The

above equations take similar mathematical form to the general diffusion equation. Other

technical details of DMC including the use of importance sampling are covered in Ref. [68].

When calculating the ground state of a bosonic system, DMC can provide exact solutions
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thanks to the ”nodeless” structure of bosonic wave functions. Otherwise, in order to find

antisymmetric wave functions for fermionic systems, the fixed-node approximation [119] has

to be applied, making DMC results no longer exact. Furthermore, as we are interested in

dynamical properties of cold-atom systems, a momentum-space representation is desired. As

DMC is formulated in real-space first quantization language, it is not the most suitable method

to use in this work.

2.2.2.2 Auxiliary-field quantum Monte Carlo

Auxiliary-field quantum Monte Carlo (AFQMC) is also a projector Monte Carlo method based

on imaginary time evolution, sharing the same projector with DMC [120–122]. In contrast to

DMC, it is formulated in second quantization with a non-orthogonal single-particle basis [105].

Furthermore, in AFQMC, the Hamiltonian is split into one- and two-body parts, Ĥ1 and Ĥ2

respectively, for application in the projector via the second-order Suzuki-Trotter decomposition,

e−τĤ = e−
τ
2
Ĥ1e−τĤ2e−

τ
2
Ĥ1 ≡ P̂ . (2.29)

The two-body operator in the exponential is further rewritten in a quadratic form. This permits

applying the Hubbard-Stratonovich transformation, which converts two-body interaction terms

into integrals over random one-body potentials [123], such as

e−τĤ2 = e−
τ
2

∑
γ v̂2γ =

∏
γ

∫
dxγe

−
x2γ
2 e

√
−τxγ v̂γ . (2.30)

Using the above transformation, the projector can be expressed as a multi-dimensional integral

over normally distributed auxiliary fields x, such as

P̂ =

∫
dxp(x)B̂(x), (2.31)

where B̂(x) now only contains exponentials of one-body operators [124].

The AFQMC method has been widely used to study lattice models [123, 125, 126]. In

particular, it is sign-problem free for the attractive balanced Fermi–Hubbard model [127].

However, the Hubbard-Stratonovich transformation involved in this method breaks

symmetries of the Hamiltonian, which implies that quantities like momentum may not be
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2.3. The FCIQMC algorithm

conserved. This is a disadvantage for AFQMC to be used in this work as we aim to calculate

properties with fixed non-zero momentum. Attempts have been made to preserve the

symmetries of Hamiltonians [128]. Similarly to DMC, when dealing with antisymmetric wave

functions, AFQMC also suffers the sign problem which requires approximations such as the

constrained path [123] or the phaseless approximation [121].

2.3 The FCIQMC algorithm

Here, we present a brief recapitulation of the FCIQMC algorithm. The FCIQMC method falls

under the projector Monte Carlo category introduced in the previous section. Contrasted to

DMC, FCIQMC is formulated in second quantization; Different from AFQMC, FCIQMC can

use an arbitrary fixed orthogonal single-particle basis and does not apply the

Hubbard-Stratonovich transformation. For a suitably chosen single-particle basis, it can thus

be made to preserve arbitrary symmetries of the Hamiltonian that can be expressed as

one-body operators. Moreover, FCIQMC uses a different projector to DMC/AFQMC for

imaginary time evolution.

2.3.1 Imaginary time evolution in FCIQMC

In FCIQMC, a linear projector is used instead of the exponential projector in both DMC and

AFQMC,

P̂ = 1− τ(Ĥ − S1) (2.32)

which can be understood as the first-order approximation to the exponential projector of

Eq. (2.21). To discretize the time evolution equation, we can divide imaginary time τ into T

numbers of small time steps such as δτ = τ/T , hence

|Ψ0〉 = lim
T→∞

[
1− (Ĥ − S1)δτ

]T
|Ψ(τ = 0)〉. (2.33)

Note that with such a setup, FCIQMC does not suffer the so-called time step error because the

ground state eigenvector is an exact fixed point of Eq. (2.33). However, the propagator requires
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a strict criterion on the size of the time step to ensure convergence [51, 105],

δτ <
2

Emax − E0

, (2.34)

whereEmax−E0 are the highest and lowest eigenvalues, respectively. We can rewrite Eq. (2.33)

in the iterative form with a single time step,

|Ψ(n+1)〉 =
[
1− τ(Ĥ − S1)δτ

]
|Ψ(n)〉. (2.35)

Now, we expand the wave function |Ψ〉with all configurations in the Fock space, identically

to how it is done for exact diagonalization in Eq. (2.17). Substituting the wave functions with

Eq. (2.17) into the iterative equation above, we have

∑
i

c
(n+1)
i |Di〉 =

[
1− τ(Ĥ − S1)δτ

]∑
i

c
(n+1)
i |Di〉. (2.36)

Further separating the terms with diagonal and off-diagonal Hamiltonian matrix elements, the

main working equation in FCIQMC updating ci coefficients at each time step is written as

c
(n+1)
i = [1− (Hii − S(n))δτ ]c

(n)
i − δτ

∑
j 6=i

Hijc
(n)
j . (2.37)

This fundamental evolution equation governs the population dynamics in the FCIQMC

algorithm. The population dynamics is a stochastic process that evaluates the coefficients ci

through the population of a set of signed random walkers occupying configurations within the

Hilbert space. The population dynamics consists of three steps performed for each walker at

each timestep with length δτ : spawning, death and annihilation. Note that the shift S can be a

variable or constant depending on the update procedure and/or the simulation stage (see

Sec. 2.3.3 and Chapter 3).

2.3.2 Walker population dynamics

The FCIQMC walker population dynamics may vary depending on many factors, such as

whether the physical system is stoquastic, the choice of the population control mechanism, as
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2.3. The FCIQMC algorithm

well as how the spawning, death and annihilation steps are implemented.

The original recipe from Booth et al. [51] uses integer walkers, i.e. every coefficient ci

is represented by a signed integer. The integer-walker algorithm is the most straightforward

approach and fully captures the characteristics of the population dynamics, hence it is used in

Chapters 3 and 4 due to its simplicity.

Beyond the integer-walker algorithm, the state-of-the-art additions used in this work include:

a floating-point-walker algorithm [70, 129], the initiator approximation [71], and the dynamic

semi-stochastic FCIQMC [130]. These concepts are introduced in later parts of this Section.

2.3.2.1 The spawning step

In some of the literature [61, 131], walkers are referred as psips* in FCIQMC as they do not

actually “walk” in real space, in contrast to some other QMC methods, but rather spawn

copy(s) of them to connected configurations. As per Eq. (2.18), the connectivity between

configurations is determined by the off-diagonal matrix elements of the Hamiltonian. For

example, the spawning event attempts to create a copy of a walker(s) on configuration Di into

configuration Dj where i 6= j with a probability

pspawn(j|i) =
δτ |Hji|
pgen(j|i)

, (2.38)

where pgen(j|i) is the probability of choosing stateDj givenDi. Typically, we assume a uniform

distribution for pgen(j|i), i.e., each connected configuration will have the same chance to have

a spawning attempt (with no guarantee to be successful), and the probability depends on how

many connected configurations exist (i.e. how many non-zero off-diagonal matrix elements),

as ∑
j

pgen(j|i) = 1. (2.39)

This is usually adequate for Hubbard models, but for molecular Hamiltonians, other strategies

like the heat-bath sampling can be more efficient [132, 133].

*Stands for psi-particles.
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Figure 2.3: A schematic diagram showing a single FCIQMC iteration involving three configurations.

The different colors represent the different signs on each walker.
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2.3. The FCIQMC algorithm

The spawning probability pspawn can be separated into its integer and decimal parts as

pspawn = p(i)spawn + p(d)spawn. (2.40)

where p
(i)
spawn = bpspawnc and p(d)spawn = pspawn−bpspawnc. In a single spawning event, p(i)spawn number

of walker(s) will be spawned. An additional walker can be further spawned with the probability

p
(d)
spawn. As each walker carries either a positive or negative sign, the sign for newly spawned

walker(s) depends on the Hamiltonian elementHji. IfHji < 0 the new walker carries the same

sign as the parent, or opposite to the parent otherwise.

Additional restrictions can be introduced during the spawning step. For example, the initiator

approximation [71] limits the spawning to happen only with the configurations that are marked

as initiators. These initiators are determined based on whether their population exceeds a pre-

determined threshold (usually set to one walker). With the initiator approximation, the only

spawns possible are initiator ↔ initiator and initiator ↔ non-initiator. Walkers on a non-

initiator cannot spawn walkers into other non-initiators. The initiator approximation is proven

powerful to tackle the sign-problem in FCIQMCby improving the coherence of the sign structure

of the wave function [61, 71, 72].

With floating-point walkers, spawning is split into the integer and the decimal parts. For

example, if a configuration has n non-integer walkers (ignoring signs), n is split into its integer

and decimal parts,

n = n(i) + n(d), (2.41)

where n(i) = bnc and n(d) = n − n(i) < 1. The total number of spawning attempts is n(i) + 1.

The first n(i) are spawning like integers with the probability pspawn and the last spawn is scaled

down to pspawn · n(d).

2.3.2.2 The (diagonal) death step

The death step is where walker(s) are removed from the population dynamics, according to the

first term in (2.37). Each (parent) walker can die during this step, and the death probability is

given by

pdeath(i) = δτ(Hii − S). (2.42)
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With integer walkers, if pdeath(i) > 0, the walker dies with probability pdeath(i). If pdeath(i) < 0,

the walker is cloned with probability |pdeath(i)|. If pdeath(i) > 1, an anti-particle (walker with

opposite sign) will be created. With non-integer walkers, the walker population on a

configuration is modified by pdeath(i) exactly.

This step is referred as the diagonal death because it only depends on the diagonal

Hamiltonian matrix element Hii and happens on the configuration Di itself, no other

configuration is involved.

2.3.2.3 The annihilation step

The annihilation is the final and crucial part of the FCIQMC algorithm in a single time step.

Any pairs of walkers, including newly spawned, cloned, and surviving parents, with opposite

sign found on the same configuration will be annihilated. The annihilation step is extremely

important for mitigating the sign problem in QMC simulations [61]. By canceling the walkers

with opposite signs on each configuration, the eventually surviving walkers have the same sign

on each configuration, which determines the sign of the ci coefficients.

How efficiently the walkers are annihilating directly influences the quality of the QMC

results. When there is an insufficient number of walkers, some less important configurations

tend to have a single walker occupying them, hence no annihilation events will be triggered.

This will produce an incorrect sign structure of the ground state wave function. The initiator

approach introduced in Sec. 2.3.2.1 is designed to mitigate this problem.

2.3.3 Population control mechanism

In the FCIQMC algorithm, the shift plays an extremely important role. It controls the walker

population, i.e. the norm of coefficient vector, which is directly linked to the amount of computer

memory required for the simulation. It also serves as an energy estimator, as the shift will

fluctuate around the ground state energy E0 after equilibration.
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2.3. The FCIQMC algorithm

The original implementation in Ref. [51] looks like the following,

S(n) = S0 Stage 1, (2.43a)

S(n+A) = S(n) − ζ

Aδτ
ln

(
N

(n+A)
w

N
(n)
w

)
Stage 2. (2.43b)

Initially, during the Stage 1, the shift is kept constant to keep the walker populationNw growing

until it reaches a desired level. After that the walkers will equilibrate such that the coefficient

vector is proportional to the ground state wave function, where the shift becomes an adaptive

variable and updated according by (2.43b). The logarithmic term attempts to damp out any

changes in the walker population tomaintain a constant norm of the wave function. The damping

strength is controlled by the damping parameter ζ in (2.43b).

In Chapter 3, we present an updated walker population control procedure which does not

separate the walker growth and the equilibration stages. The entire dynamics is controlled by a

single equation throughout a calculation,

S(n+A) = S(n) − ζ

Aδτ
ln

(
N

(n+A)
w

N
(n)
w

)
− ξ

Aδτ
ln

(
N

(n+A)
w

Nt

)
. (2.44)

The design adds an additional restoring force to the damping mechanism in (2.43b). With the

additional term the above equation can be mapped to a damped harmonic oscillator. The new

procedure is used throughout this work, and has been shown to have advantages such as precise

walker population control. An intensive study has been carried out and is discussed in Chapter

3.

2.3.4 Energy estimators and the blocking method

As mentioned before, the shift S can be used as an energy estimator by time-averaging over T

time steps after equilibration, such as

〈S〉 = 1

T

T∑
n=0

S(n). (2.45)
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The projected energy is defined as

Eproj =
〈Ψtrial|Ĥ|Ψ(n)〉
〈Ψtrial|Ψ(n)〉

(2.46)

where |Ψtrial〉 is a trial wave function and |Ψ(n)〉 is the instantaneous wave function. The

reference configuration is usually the most populated Fock state in Hilbert space to ensure a

decent overlap 〈Ψtrial|Ψ(n)〉. However, if the wave function is very spread out, the quality of

the projected energy becomes worse. Either multiple configurations, or a so-called trial wave

function are better options to be used in these cases. It is straightforward to see that Eproj = E0

when |Ψ(n)〉 = |Ψ0〉 as

Eproj =
〈Ψtrial|Ĥ|Ψ0〉
〈Ψtrial|Ψ0〉

=
E0〈Ψtrial|Ψ0〉
〈Ψtrial|Ψ0〉

= E0. (2.47)

Similarly to the shift, E
(n)
proj is also a fluctuating quantity that needs to be time-averaged to obtain

an approximated E0. Note that since E
(n)
proj is a quotient, the ratio of means, instead of the mean

of ratios, should be taken in order to obtain correct statistics of the projected energy, or any

sampled quotient.

Both the shift and the projected energy are fluctuating quantities. To obtain meaningful

results, proper error analysis needs to be done. In FCIQMC, the energy estimators usually

fluctuate around the exact value after the equilibration. Hence the standard error can be

evaluated by performing statistics on the equilibrated data.

However, additional difficulties are imposed by correlations that exist in the QMC data.

FCIQMC is a Markov chain [70], hence a correlated time series is produced as in any other

Markov chain-based methods. Flyvbjerg-Petersen’s blocking analysis [134] is the standard

procedure to remove the correlation in Monte Carlo data [111, 135, 136]. By performing the

re-blocking transformations, two neighboring and correlated data points are combined together

to produce a new data point. Afterwards the standard error is re-calculated. This will reduce

the number of available data points, while it decreases the correlation among the data. The

same procedure is repeated until all newly generated data points are uncorrelated, or one runs

out of data points if the time series was not long enough. As more re-blocking steps are

performed, the standard error rises and reaches a plateau where the newly formed data are
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Figure 2.4: (Top) A schematic diagram shows the blocking transformation that combines two

neighboring points to form a new point. (Bottom) The blocking analysis for the standard error on the

shift with 215 timesteps after equilibration.
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independent of each other.

A schematic diagram is shown in Fig. 2.4 (top) and a real example is given in Fig. 2.4

(bottom) with actual FCIQMC data. Here, 215 equilibrated FCIQMC data points are taken.

Two neighboring data points are successively combined to form new series. After transforming

the data five times, the length of data was reduced to 210 in Fig. 2.4 (bottom) and the calculated

standard error reached a plateau that indicated successful data decorrelation. The standard error

later increased again due to the reduction of the number of data points. The standard error in the

simulation was determined from the plateau with an error bar. A hypothesis test † was developed

to automate the decorrelation process by Jonsson [137]. It is shown that the hypothesis test can

reliably determine the correct standard error without actually plotting these standard errors and

identifying the plateau with the naked eye. The test is applied to results throughout this thesis.

†Sometimes informally referred as the “M-test”
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Chapter 3
Improved Walker Population Control for

Full Configuration Interaction Quantum

Monte Carlo

Opening words We begin the presentation of the research results of this thesis with an

improved walker population control mechanism for full configuration interaction quantum

Monte Carlo (FCIQMC). The original walker population control in Booth et al. [51] only

suppresses the changes in the walker population after a threshold population is reached. With

such a mechanism, the maximum and final average number of walkers in a FCIQMC

simulation are not directly determined by the parameters, which complicates the planning of

computational resources and may be met with an over-allocation of resources, or requires

elaborate estimation for each individual simulation. Here we present a modification of the

original protocol for walker population control in order to achieve equilibration at a

pre-defined average walker number and to avoid walker number overshoots. The dynamics of

the walker population is described by a noisy damped harmonic oscillator and controlled by

two parameters responsible for damping and forcing, respectively, for which reasonable values

are suggested. Features of the new population control procedure such as precise walker

number control and fast equilibration are demonstrated. The standard error of the shift

estimator for the ground state energy as well as the population control bias are found to be

unaffected by the population control procedure or its parameters. The improved control of the
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walker number, and thereby memory consumption, is a desirable feature required for

automating FCIQMC calculations and requires minimal modifications to existing code.

Furthermore, the scalar model of walker population dynamics developed in this Chapter

provides a starting point for the investigation of the so-called population control bias via an

exactly solvable stochastic differential equation in Chapter 4.

The follow text is a verbatim copy of the published work: Mingrui Yang, Elke Pahl and

Joachim Brand, “Improved walker population control for full configuration interaction

quantum Monte Carlo,” The Journal of Chemical Physics, 153(17), 174103 (2020).

3.1 Introduction

Quantum Monte Carlo methods have proven invaluable tools for providing accurate results for

strongly-correlated quantum many-body problems in different areas of physics and chemistry

[108, 110, 138, 139]. One of the most straightforward approaches to solve a quantum problem

with a definite particle number is to build a matrix representation of the Hamiltonian in a Fock

basis, i.e. the properly symmetrized or anti-symmetrized product wave functions of N bosonic

or fermionic quantum particles, respectively, in a finite number M of single-particle modes.

Diagonalizing this matrix to obtain the ground or excited quantum states is known as exact

diagonalization or full configuration interaction [140]. The full configuration interaction

quantum Monte Carlo (FCIQMC) method [51] is a particular protocol to sample the ground

state eigenvector stochastically and sparsely, allowing one to obtain accurate energies and

properties of many-body problems with huge Hilbert-space dimension (e.g. up to 10108 in

Ref. [141]). In such problems neither the matrix nor the full ground state vector could be

stored in computer memory at one time. FCIQMC is classified as a projector quantum Monte

Carlo approach [105] aimed at approximating the ground state, although variations of the

FCIQMC protocol have been introduced to compute excited states [142], finite-temperature

problems [143] with density matrices [144], transcorrelated non-hermitian Hamiltonians with

three-body interactions [58, 145, 146], real-time evolution [147, 148], and driven-dissipative

problems for open quantum systems [149]. The method itself is fairly young and under active

development [71, 73, 129, 132, 150–154].

During an FCIQMC simulation, the quantum state is represented, at any one time, by a set of
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3.1. Introduction

discretewalkers or psi-particles, which have to be represented in computermemory [51]. Storing

these walkers presents the primary memory requirement for large-scale simulations. While the

storage of walkers that share the same configuration can be optimized, and walker storage can

be distributed over many compute nodes in a high-performance computing environment [150],

the total number of walkers that can be used is limited by the memory hardware resources. On

the other hand it is usually desirable or even required to work with as large walker numbers

as possible. Large walker numbers may be required to mitigate the sign problem by enabling

annihilation of walkers with different signs [51, 61], to eliminate a systematic bias if the initiator

approximation is used [71, 73], to eliminate the population control bias [70], or simply to reduce

statistical noise in estimators for desired observables like the ground state energy.

In the original FCIQMC algorithm [51] the walker number is controlled by an energy shift

parameter S and there are two stages of walker population dynamics during the time evolution

through iterations: In the first stage the shift is kept at a constant value S0 and the number of

walkers Nw is allowed to grow exponentially up to a threshold value Ncut. In the second stage

the shift is updated dynamically to counteract the growth of the walker number, controlled by a

damping parameter ζ . In the long-time limit the walker number will settle to fluctuate around a

mean value

Nw ≈ Ncut exp

[
(S0 − E0)δτ

ζ

]
, (3.1)

as is shown in this work, where δτ is a time-step parameter. The final mean value Nw is larger

than the preset value for Ncut and depends on the a priori unknown value of the ground state

energy E0. Moreover, it is possible to get overshoots, where the walker number significantly

exceeds both the target value Ncut and the final mean value Nw at intermediate times before

settling to fluctuate around Nw. An example of such behavior is shown in Fig. 3.1, where the

dashed orange lines show the evolution of the shift S (top) and walker number Nw (bottom)

in the two-stage procedure of Ref. [51]. The fact that the maximum and final average number

of walkers are not directly determined by the parameters of the simulations complicates the

planning of computational resources and may be met with an over-allocation of resources or

requires elaborate estimation or multi-step procedures. A tighter control of the walker number

with a pre-defined target value is clearly desirable.
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Figure 3.1: Walker population control in the two-stage procedure (TSP) used in the original FCIQMC

[51], where ξ = 0, and the single-stage procedure of Eq. (3.4) with the restoring force set to critical
damping (ξ = ζ2/4). The top panel shows the shift and the dotted line indicates the value of the exact
ground state energy E0. The walker number is shown in the bottom panel. Without the restoring force,

the maximum of the walker number reaches Nw,max ≈ 124, 000 and later equilibrates to Nw ≈ 115, 000
indicated by the upper dotted line. The value of Ncut = Nt = 105 is indicated by the lower dotted line.
We have chosen a time step of δτ = 0.001J−1 and set the damping parameter to ζ = 0.08 for both
procedures. Parameters of the Bose–Hubbard model are U/J = 6, N = M = 20.
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In this work we propose a modified population control procedure for FCIQMC by

introducing an additional “forcing” term characterized by a new parameter ξ and a target

walker number Nt. The new term represents a restoring force that will push the walker

population towards the target value Nt. The behavior of the new procedure is shown in Fig. 3.1

by the full blue lines, where the shift is adjusted from the beginning of the simulation and the

walker number quickly equilibrates around the pre-defined value Nt. Analyzing the population

dynamics by a simplified scalar model reveals that the logarithm of the walker number follows

the dynamics of a damped harmonic oscillator equilibrating at Nw = Nt. The walker number

control in the original FCIQMC [51] corresponds to the special case without restoring force or

ξ = 0. We argue that the optimal choice for the new parameter ξ is the value ξ = ζ2/4 for

critical damping in the scalar model, which removes it as a free parameter from the algorithm.

A more detailed discussion of Fig. 3.1 will follow in Sec. 3.5.1.

An important aspect of the original protocol is the possibility to diagnose the sign problem

by closely examining the walker number growth [51, 70]. The sign problem is sometimes

referred to as the fermion sign problem, as it is inevitable for some fermionic Hamiltonians

[60] but it also appears as a dynamical sign problem in time-evolution problems [155], or even

for bosonic Hamiltonians (see Appendix 3.B). In FCIQMC it manifests itself by the lack of

sign coherence in the walker population when the walker number is insufficient. The sign

problem is overcome by the annihilation of positive and negative walkers once the walker

number has surpassed a threshold [51, 70]. Observing a plateau of stagnant growth during the

walker growth stage with constant shift has been used to semi-automatically detect this

important threshold value [63]. In this work we introduce a quantity called growth witness,

constructed from the logarithmic growth rate of the walker number and the instantaneous shift.

The growth witness is able to detect the annihilation threshold by a tell-tale maximum feature.

Detection of the annihilation threshold is possible while the population growth is dynamically

controlled even though a plateau in the walker number may not be present, thus obviating the

need for an uncontrolled growth phase.

This paper is organized as follows: After introducing the FCIQMC algorithm with

modified walker population control in Sec. 3.2 we briefly introduce the model and

computational details in Sec. 3.3. In Sec. 3.4 we derive a scalar population dynamics model for

the walker dynamics and discuss the solutions with and without forcing term in a simplified
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differential equation formulation as well as stability thresholds for the discrete-time dynamics.

Walker number overshoots and long-time limits are discussed in Sec. 3.5.1 where we also

derive Eq. (3.1). The growth witness is introduced in Sec. 3.5.2 where we discuss the

annihilation plateau and the detection of the annihilation threshold. Section 3.6 deals with

fluctuations in the equilibrium phase of the simulation and examines the influence of the

damping parameter and parameters of the model Hamiltonian before concluding in Sec. 3.7.

Details of the Bose–Hubbard model are presented in Appendices 3.A (real space) and 3.B

(momentum space). The effect of delaying the shift update is analyzed and summarized in

Appendix 3.C. We finally show that introducing the additional “forcing” term to the

population control mechanism has no effect on the intrinsic population control bias of

FCIQMC in Appendix 3.D.

3.2 Walker population control in FCIQMC

In the configuration interaction approach, the many-body quantum state or wave function is

represented by a vector c composed of coefficients that give the signed weights of individual

Fock states, or configurations. Correspondingly, the quantum Hamiltonian is represented by a

matrix H. The FCIQMC algorithm is based on the iterative equation describing the update of

the coefficient vector c(n) at the n−th time step in discrete time steps δτ :

c(n+1) = [1+ δτ(S(n)1−H)]c(n). (3.2)

Here 1 represents the unit matrix, S(n) is the energy shift at time step n, and we use units

where ~ = 1. The iteration prescription of Eq. (3.2), if performed exactly, will make the vector

c(∞) proportional to the ground state eigenvector, the dominant eigenvector of −H. The

procedure can be understood either as a repeated matrix-vector multiplication and variant of

the power method, or as executing Euler steps of the discretized imaginary time evolution in

the Schrödinger equation. The actual FCIQMC algorithm is a stochastic procedure involving

discrete walkers that is aimed to solve Eq. (3.2) on average [51, 150]. The coefficient vector cn

at any one time is made up of integer numbers and its one-norm ‖c‖1 ≡
∑

i |ci| is interpreted

as the number of walkers Nw. Representing the coefficients as integers and controlling the

total number Nw = ‖c‖1 allows for a sparse representation of the coefficient vector, where
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3.2. Walker population control in FCIQMC

only non-zero elements have to be stored in memory. This is particularly efficient in the

typical scenario where the dimension of the linear space is much larger than the number of

walkers. The walker number Nw thus controls the demand for physical memory consumption

of an FCIQMC simulation. While the notion of integer walkers was relaxed to include

fractional walkers, and floating-point coefficients in a limited subspace of Hilbert space in the

context of semi-stochastic FCIQMC [129, 151], the basic principle remains the same. The

walker number (defined by the one-norm Nw = ‖c‖1) still controls the memory consumption

in addition to demands for representing the deterministic space .

In order to control the number of walkers, the original FCIQMC algorithm [51] proposed a

two-stage procedure

S(n) = S0 Stage 1, (3.3a)

S(n+A) = S(n) − ζ

Aδτ
ln

(
N

(n+A)
w

N
(n)
w

)
Stage 2. (3.3b)

During Stage 1 the shift is kept at a constant value S0, usually set to the lowest diagonal matrix

element ofH, in order to let the walker number grow from a small starting value until it reaches a

threshold valueNcut. After the threshold is reached, Stage 2 is activated and the shift is updated

every A time steps according to Eq. (3.3b), where ζ is a dimensionless damping parameter and

parameter ranges of ζ = 0.05–0.1 and A = 5–10 are proposed in Ref. [51]. The shift update

procedure counteracts any exponential growth of the walker number caused by Eq. (3.2) by

lowering the shift, and conversely also counteracts exponential damping by raising the shift S.

An equilibrium is reached when the coefficient vector c(n) is proportional to the ground state

vector c0 and the shift equal to the ground state energy, S = E0. A steady state is reached

where neither the walker number nor the shift changes. In the typical case where the stochastic

realization of Eq. (3.2) introduces noise, both the shift and the walker number will fluctuate

around their equilibrium values. The equilibrium value of the walker number is not predefined

in the procedure of Eq. (3.3) but depends on the initial conditions.

Motivated by the walker control mechanism in diffusion Monte Carlo, where an energy

control parameter is adjusted when the walker number deviates from a target value [68], we
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propose the following modified shift-update procedure

S(n+A) = S(n) − ζ

Aδτ
ln

(
N

(n+A)
w

N
(n)
w

)
− ξ

Aδτ
ln

(
N

(n+A)
w

Nt

)
, (3.4)

which reduces to the original update equation (3.3b) for ξ = 0. The dimensionless parameter ξ

represents a forcing strength and Nt is the target walker number. It is easily seen that under

steady-state conditions the last two terms must vanish and thus the walker number will

equilibrate at the target walker number Nt. In contrast to the original FCIQMC procedure

where the shift is updated only after a threshold number of walkers has been reached, the new

shift update procedure of Eq. (3.4) can be used from the start of a simulation, even if the initial

walker number is very different from the desired final number Nt.

In the remainder of this paper we setA = 1 for simplicity, unless specified otherwise. I.e. the

shift is updated in every time step. Our experience with using larger values of A indicates that

there is little benefit in such a choice. The arguments and numerical result are summarized in

Appendix 3.C.

3.3 Simulation details

All FCIQMC simulations for this paper were done on the Bose–Hubbard model [75], which is

relevant to ultra-cold atom experiments in optical lattices [2, 14, 80, 156]. We use a

one-dimensional configuration with periodic boundary conditions. The Hamiltonian and

details of the model are summarized in Appendix 3.A. The simulations were performed with

the library Rimu.jl written in the programming language Julia by the authors for FCIQMC

with bosonic many-body models [157]. Other implementations of FCIQMC targeting quantum

chemical applications as well as the (Fermi) Hubbard model and spin models are publicly

available [158, 159].

While we use the original integer walker-number FCIQMC algorithm of Ref. [51] in all

numerical examples in this work, the proposed walker population (norm) control mechanism is

equally applicable to other variants and flavors of FCIQMC including the initiator approach

[71], semistochastic FCIQMC [129], and fast randomized iteration schemes [154]. All
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3.4. Scalar model of walker population dynamics

simulations shown in the main part of the paper were conducted with large enough walker

numbers to suppress the population control bias known to exist in diffusion Monte Carlo-like

schemes [68, 70] to levels smaller than our stochastic error bars. Quantifying the population

control bias with reduced walker number we found no detectable influence of the modified

shift-update procedure of Eq. (3.4) at the level of our stochastic errors, as shown in Appendix

3.D.

3.4 Scalar model of walker population dynamics

We will further analyze the effects of the shift-update procedure on the dynamics of the walker

number with a simple scalar model. In order to motivate the model, let us assume that the

coefficient-vector update of Eq. (3.2) is performed exactly and that the coefficient vector is

already proportional to the ground state with c(n) = N
(n)
w c0. Here c0 is an eigenvector of the

matrix-vector equation Hc0 = E0c0 with energy eigenvalue E0 and N
(n)
w the walker number in

the nth time step. Then Eq. (3.2) reduces to a scalar update equation for the walker number

N (n+1)
w = [1 + δτ(S(n) − E0)]N

(n)
w . (3.5)

Together with the shift update equation (3.4), it defines the walker number dynamics in discrete

time.

3.4.1 Population dynamics in continuous time

Aiming at approximating this dynamics by a differential equation, we introduce a time variable

t = nδτ and a new variable x for the logarithm of the ratio between the momentary and the

target walker number

x(n) = ln
N

(n)
w

Nt

−→ x(t) = ln
Nw(t)

Nt

. (3.6)
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The shift update equation (3.4) can be written in terms of x as

S(n+1) − S(n)

δτ
= − ζ

δτ

x(n+1) − x(n)

δτ
− ξ

δτ 2
x(n), (3.7)

which is a finite difference approximation of the differential equation

dS

dt
= − ζ

δτ

dx

dt
− ξ

δτ 2
x(t). (3.8)

After rearranging the walker number equation (3.5), it is seen to represent a finite difference

approximation to the logarithmic time derivative of the walker number

S(n) − E0 =
N

(n+1)
w −N (n)

w

δτN
(n)
w

≈ d lnNw

dt
=
dx

dt
, (3.9)

which yields the differential equation

dx

dt
= S(t)− E0. (3.10)

Equations (3.8) and (3.10) form a set of coupled first order ordinary differential equations, which

determine the time evolution of x(t) and S(t). By eliminating S(t), the equations can further

be combined into a single second order differential equation for x

d2x(t)

dt2
+

ζ

δτ

dx(t)

dt
+

ξ

δτ 2
x(t) = 0. (3.11)

This is the well-known differential equation for the damped harmonic oscillator. Here, ζ/δτ

represents a damping coefficient and ξ/δτ 2 the force constant of a restoring force.

3.4.2 Walker number dynamics with forcing

The general solution of the differential equation for the damped harmonic oscillator (3.11) can

be written as

x(t) = ae
− t

T+ + be
− t

T− , (3.12)
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3.4. Scalar model of walker population dynamics

with arbitrary constants a and b whose values are determined by the initial conditions. The two

independent solutions x±(t) = exp(−t/T±) will both decay to zero in the long-time limit. The

solutions for the time constant are

T± =
δτ

2ξ

(
ζ ±

√
ζ2 − 4ξ

)
. (3.13)

Depending on the value of the discriminant ζ2−4ξ we can distinguish three cases corresponding

to overdamped, critical and underdamped behavior. If ζ2 > 4ξ, the time constants are both real-

valued and both fundamental solutions show exponential damping. This is the overdamped

case. In the underdamped case of ζ2 < 4ξ, the square root has imaginary solutions and both

fundamental solutions are products of an oscillating component and an exponential damping

factor.

The case of critical damping with

4ξ = ζ2, (3.14)

is of particular interest since it is the point at which the damping is the fastest. The critical

damping time is given by

Tc =
δτ√
ξ
=

2

ζ
δτ. (3.15)

Since the exponential ansatz only provides a single fundamental solution of the second order

differential equation, another independent solution has to be found. It can be easily checked

that a second independent solution is t exp(−t/Tc). The general solution in the critical damping

case is then given by

x(t) = (a+ bt)e−
t
Tc . (3.16)

Note that the parameters ζ and ξ are dimensionless and determine the decay time scale in units

of δτ . I.e. the number of time steps until the solution decays, Tc/δτ , is dimensionless and

independent of the size of the time step δτ .

Figure 3.2 shows how the analytic solutions of the scalar model (3.11) match FCIQMC

simulations of the Bose–Hubbard model very well, demonstrating that underdamped, critical,
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Figure 3.2: Walker population dynamics in FCIQMC with the shift-update procedure of Eq. (3.4)

(symbols) for the Bose–Hubbard model compared with the scalar model of Eq. (3.11) (dashed lines).

The top panel shows the evolution of the walker number Nw for three different damping scenarios and

the middle and bottom panels show the logarithm x = ln(Nw/Nt), and the shift S, respectively. We used

ζ = 0.08 and set ξ = 0.0016, 0.0008, 0.0064 representing the critical, overdamped, and underdamped
regimes, respectively. The initial conditions were Nw = 20 and S = 0 at t = 0, and the target walker
number was set to Nt = 10, 000. The parameters of the Bose–Hubbard model are M = N = 6 and
U/J = 6. Other parameters used are δτ = 0.001J−1, andA = 1. The dashed lines show the asymptotic

valuesNt = 104, x = 0, andE0 = −4.0J in panels 1, 2, and 3, respectively. The simulation data is only

shown at every tenth time step for clarity.
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3.4. Scalar model of walker population dynamics

and overdamped walker number dynamics can be achieved with the new update procedure of

Eq. (3.4). The time evolution of the walker number is given by Nw(t) = Nte
x(t) according

to Eq. (3.6). In the steady-state (long-time) limit, the solution becomes time-independent with

x = 0, orNw → Nt. The time evolution of the shift is obtained from Eq. (3.10). In the long-time

limit the left hand side vanishes and S → E0.

3.4.3 Walker number dynamics without forcing

In the original FCIQMC of Ref. [51], after reaching Stage 2 of the two-stage procedure (3.3),

the evolution of shift and walker number experience damped motion without restoring force

(ξ = 0) and thus no predefined equilibrium exists. In this case it is more convenient to write the

differential equation in terms of

s(t) ≡ S(t)− E0 =
dx

dt
, (3.17)

which describes the deviation of the shift from the equilibrium value. Combining Eqs. (3.8) and

(3.10) we then obtain

ds(t)

dt
+

ζ

δτ
s(t) = 0. (3.18)

This is a simple damping equation with solution

s(t) = [S(0)− E0]e
− t

Td , (3.19)

with the damping time

Td =
δτ

ζ
. (3.20)

The time dependence for the walker number follows from Eq. (3.6):

Nw(t) = Nte
x(t) (3.21)
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Choosing the time axis to start at t = 0 when entering Stage 2 of Eq. (3.3) where Nw(0) = Ncut

and S(0) = S0, the exponential expression for the walker number Nw(t) can be expressed as

Nw(t) = Ncut exp

{
(S0 − E0)Td

[
1− exp

(
− t

Td

)]}
. (3.22)

Taking the long-time limit t→∞ and substituting Eq. (3.20) for Td we obtain Eq. (3.1) for the

final walker number.

Note that the time evolution described by Eq. (3.22) is monotonously growing or decaying

depending on the sign of S0 − E0. In the standard procedure the initial shift is larger than the

final ground state energy, in order to induce walker growth during Stage 1, and thus the scalar

model predicts further growth during Stage 2 to the final larger value of Eq. (3.1). The damping

time Td of Eq. (3.20) is smaller by a factor of 2 compared to the critical damping time Tc of the

damped harmonic oscillator, Eq. (3.15), at the same value of ζ . But this faster damping comes

with the cost of reaching a final walker number that depends on the a priori unknown value of

the ground state energy E0.

3.4.4 Population dynamics in discrete time

The damped harmonic oscillator differential equation (3.11) obtained in the continuous-time

limit is intuitive and provides much insight. However, it does not capture all aspects of the

discrete-time population dynamics described by Eqs. (3.4) and (3.5). The discrete-time

dynamics will follow closely the differential equation when the relevant time scales of the

damped harmonic oscillator of Eq. (3.13) are large compared to the discrete time step δτ ,

i.e. ξ, ζ � 1, ξ/ζ � 1. Outside of this regime we expect the discrete time dynamics to deviate

from the differential equation model.

We can study the discrete time dynamics by treating the system of equations (3.4) and (3.5) as

a two-dimensional iterated nonlinear map in the dynamical variables N
(n)
w and S(n). Assuming

ζ > 0 and ξ > 0, it is easily verified that the single fixed point of this iterated map is N fp
w = Nt

and Sfp = E0. This is completely consistent with the fixed point x(∞) = 0 of the damped

harmonic oscillator equation (3.11). While the fixed point of the differential equation model is

always stable, a standard linear stability analysis [160] reveals that the fixed point of the iterated
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3.5. Walker number dynamics in FCIQMC

map is a stable attractor only if

2ζ + ξ < 4, (3.23)

and is unstable otherwise. If we set the parameter ξ to the critical damping value of ζ2/4 as per

Eq. (3.14), the condition for stability becomes

ζ < 4(
√
2− 1) ≈ 1.66. (3.24)

In the region of stability the fixed point is a spiral attractor if ζ < 2
√
ξ − ξ and a node

attractor if ζ > 2
√
ξ− ξ. For small ξ this is asymptotically equivalent to the condition ξ > ζ2/4

for underdamped motion of the harmonic oscillator but for larger ξ and ζ the boundary between

underdamping (spiral attractor) and overdamping (node attractor) shifts to larger values of ξ.

The time scale for approaching the fixed point becomes smallest at ζ = ξ = 1 for the linearized

map where it reaches a single time step δτ . Since the basin of attraction shrinks for the larger ξ

values, we nevertheless propose to fix the restoring force coefficient ξ to the critical value ζ2/4

of Eq. (3.14) from the differential equation model.

For the value ξ = 0 as used in the two-stage procedure a separate stability analysis for the

shift-update equation yields the stability condition ζ < 2.

Numerical results concerning the stability of the full FCIQMC iterations and considerations

about the optimal choice of ζ will be discussed in Sec. 3.6.1.

3.5 Walker number dynamics in FCIQMC

3.5.1 Final walker number in two-stage procedure

In a real FCIQMC simulation the walker number will fluctuate due to updating the walker

number with the complicated and noisy evaluation of Eq. (3.2). Even without forcing (ξ = 0)

these fluctuations do not lead to a drift in walker number but instead the walker number is seen

to fluctuate around a stable average. This can be understood from the logarithmic update
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equation (3.3b), which is evaluated exactly during the simulation. The update equation (3.3b)

can be re-written in terms of the initial conditions as

S(n+A) = S0 −
ζ

Aδτ
ln

(
N

(n+A)
w

Ncut

)
, (3.25)

which reveals that the value of the shift at any time during the FCIQMC simulation depends

only on the initial conditions and the instantaneous walker number but not on the details of

fluctuations at intermediate times. Taking the average over many time steps we obtain

S = S0 −
ζ

δτ
ln

(
Nw

Ncut

)
. (3.26)

Replacing the average shift S in the long-time limit with the exact ground state energy E0 and

approximating the average of the logarithm by the logarithm of the average (with an error

O[Var(Nw/Ncut)]), we, once again, obtain Eq. (3.1). Note that Eq. (3.26) is an exact result that

does not rely on the assumptions of the scalar model and fully includes the effects of a noisy

simulation. This means, in particular, that the expression (3.1) for the final walker number is

valid for FCIQMC with forceless damping even in situations where the scalar model is not

sufficient to fully capture the dynamical evolution of the walker number.

In some cases we see initial growth and overshooting of the walker number before decaying

to the long term limiting value as e.g. in Fig 3.1. Such non-monotonous behavior of Nw(t) is

not captured by the scalar model solution of Eq. (3.22), which predicts monotonous growth. In

Fig 3.1 the walker number for the two-stage procedure grows rapidly at the beginning of Stage

2 until saturating at a maximum on a time scale that is consistent with the damping time Td ≈

12.5δτ . On the same time scale the shift decays to a minimum value, where it matches the value

of the shift obtained with the restoring-force (single-stage) procedure. A further equilibration

of the shift to the final value E0 then happens at a much longer time scale over hundreds of time

steps for both procedures. We attribute this behavior to the necessary equilibration of the walker

distribution to better represent the ground state vector c0. This mechanism is not captured by the

simplified Eq. (3.5), which formed the starting point of the scalar model analysis. During this

period of slow equilibration, the walker number follows the slowly changing shift adiabatically

according to Eq. (3.26) for the two-stage procedure without forcing.

The evolution of the walker number for the critical-damping update procedure seen in Fig 3.1
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3.5. Walker number dynamics in FCIQMC
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Figure 3.3: Final walker number and overshoot as function of the damping parameter ζ. The maximum
walker number reached during a simulation withNw,max (empty markers), and the long-time averageNw

(filled markers) with 106 time steps are shown for both the single-stage critical damping (ξ = ζ2/4) and
the two-stage procedure without restoring force (ξ = 0) andNcut = N0 withN0 = 105. The yellow solid

line shows the prediction for Nw without restoring force from Eq. (3.1). The blue dashed line shows the

prediction Nw ≈ Nt for the single-step procedure with critical forcing where ξ = ζ2/4 and Nt = N0.

The corresponding data for the single-stage procedure is close to the prediction and reveals the superior

walker number control and avoidance of overshoots compared to the unforced walker number control.

The parameters of the Bose–Hubbard model are M = N = 20 and U/J = 6, and δτ = 0.001J−1.

E0 ≈ −12.88J was obtained from long time average of the shift.

is very different though, as here the ξ term forces the walker number back to the target walker

number Nt on the time scale Tc = 25δτ . This time scale is again much faster than the time

scale of rearranging the walker population, which affects the slowly changing average of the

shift. The equilibration process of the walker population for FCIQMC in large Hilbert spaces

was recently discussed in Ref. [161].

Next, we examine the dependence of the overshoot and final walker number on the damping

parameter ζ in Fig. 3.3. Shown are both the final average walker number Nw as well as the

maximum number reached during the simulation Nw,max, which indicates the overshoot and is

the relevant number for computer memory resources. We find that the exponential dependence

predicted by Eq. (3.1) captures the results from FCIQMC simulations of the Bose–Hubbard

model very well. Equation (3.1) for Nw (supported by Fig. 3.3) then suggests that the increase

in walker number beyond the threshold value Ncut can be mitigated by increasing the damping

parameter ζ or decreasing the time step δτ . Another possible mitigation strategy would be to
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set a sequence of intermediate threshold values to smaller values than the final desired value

Ncut and alternate constant-shift and equilibration stages multiple times in order to decrease the

energy difference S0 − E0 in Eq. (3.1). The data from FCIQMC simulations with the one-

stage procedure at critical damping shown in Fig. 3.3 demonstrate, however, that both the final

and maximum walker number can be very well controlled regardless of the other simulation

parameters. Those parameters can then be chosen according to other criteria (e.g. larger time

steps for faster convergence and better numerical efficiency).

3.5.2 Sign problem, plateau detection, and growth witness

An important situation where the population dynamics deviates from the simplified model is

when a plateau in the walker number is seen during the constant-shift stage of the two-stage

procedure. This is in contrast to the exponential growth that would be expected from the scalar

model due to Eq. (3.5). The phenomenon was first described in Ref. [51] as manifestation of

the sign problem in FCIQMC and further analyzed in Ref. [61]. A typical annihilation plateau

is seen in Fig. 3.4 (a) for a calculation using the two-stage procedure on the momentum-space

Bose–Hubbard Hamiltonian as described in Appendix 3.B. The initial state was prepared with

20 walkers on the lowest-energy configuration. A phase of rapid growth of the walker number

Nw is followed by a stagnant period of almost no growth, which is followed by a second phase of

exponential growth. The figure also shows the transition to stage 2 where the walker number is

controlled after reaching the predefined value of Ncut = 30,000. The walker number dynamics

for the same Hamiltonian and initial state with the one-step procedure is seen in panel (b). It

does not show the same plateau due to the forcing term in Eq. (3.4) adjusting the shift as to

mandate walker growth before the target Nt is reached.

In order to disentangle the damped harmonic oscillator dynamics from the annihilation and

equilibration dynamics of the walker population it is useful to visit the approximations made

in deriving the scalar model. The essential simplification is made when the walker population

update of Eq. (3.2) is replaced by the scalar Eq. (3.5), which translates into Eq. (3.10) for the

amplitude x = ln(Nw/Nt). This motivates us to introduce the population growth witness

G(t) = S(t)− dx

dt
, (3.27)
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Figure 3.4: Dynamics of the walker number Nw and energy estimators comparing the momentum

space Bose–Hubbard model using (a) the two-stage procedure (TSP) and (b) walker number control

with critical damping (ξ = ζ2/4) with (c) the real-space Bose–Hubbard model with critical damping.
An annihilation plateau between growth phases of Nw is clearly seen in panel (a), but masked by the

population control mechanism in panel (b), and absent in the annihilation-free case of panel (c). The

growth witness G provides clear indications of the walker annihilation dynamics with the initial rapid

growth phase translating into a low minimum. The onset of the annihilation plateau is represented by

crossing the value of E0. G reaches a maximum before settling at the final value E0 in the equilibrated

phase of the simulation. These features are visible in panels (a) and (b), which are based on the same

Hamiltonian, whereas the annihilation maximum is absent in panel (c). The damping parameter is set

to ζ = 0.08 for all cases. The parameters of the Bose–Hubbard model are M = N = 10, U/J = 6
and δτ = 0.001J−1. The averaging time scale for G is set to b = 30. The exact ground state energy
E0 = −6.50J was calculated by Lanczos iterations.
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which removes the effect of the shift from the (negative) logarithmic growth rate of the walker

number. It is easily verified from Eq. (3.10) that G manifestly takes the constant value of the

ground state energy E0 for the scalar population dynamics model of Sec. 3.4.1. Any deviation

from this value indicates nontrivial dynamics beyond the scalar model. For actual FCIQMC

population dynamics, we define the growth witness at time step n as

G
(n)
b = S̄(n) − lnN

(n+b)
w − lnN

(n)
w

bδτ
, (3.28)

where b ≥ 1 is the number of time steps for averaging and S̄(n) = (b + 1)−1
∑n+b

i=n S
(n).

Averaging of this quantity is useful to smooth out fluctuations because G is related to the

derivative of a fluctuating quantity. We found values of b = 10–50 to be useful.

The growth witness G
(n)
b is shown as green dash-dotted line in the lower panels of Fig. 3.4

along with the exact ground state energy E0 and the shift. It is instructive to interpret the value

of the growth witness G during the three stages of walker number growth for the plateau

scenario of panel (a). While the shift is held at the constant value zero, G just represents the

negative logarithmic derivative of the walker number. During the initial growth phase (before

the plateau), the value of G drops to very low values, severely undercutting the actual ground

state energy. This can be rationalized by the population dynamics analysis of Ref. [61]: For

low walker numbers, while annihilation of positive and negative walkers is not yet efficient,

the FCIQMC iterations of Eq. (3.2) support growing a sign incoherent walker population with

a higher growth rate (i.e. lower G) than the actual ground-state eigenvalue E0 would support
*.

During the plateau phase, annihilation of walkers carrying positive and negative signs becomes

efficient as the walker population becomes large enough to increase the probability for positive

and negative walkers to meet on the same configuration. While the walker number Nw is

stagnant during this phase, the growth witness G rises above the value of E0. Finally, during

the second growth phase the overall sign of the walker population is coherent and the

population becomes approximately proportional to the actual ground state vector c0. During

this phase, the growth witness G drops from its maximum value to the ground state energy E0

as the assumed relation (3.5) of the scalar model is approximately fulfilled. Note that G is not

affected by the onset of walker number control in the second stage of the two-stage procedure

*According to Ref. [61] this is due to the presence of a larger dominant eigenvalue (compared to −E0) of

the incoherent transfer matrix. The growth witness measure the negative of this dominant eigenvector during the

incoherent phase of walker growth.
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3.5. Walker number dynamics in FCIQMC

because it successfully disentangles the effects of the walker population dynamics from the

damping (or forcing) effects of the shift-update procedure.

For the one stage procedure shown in Fig. 3.4(b) the growth witness G becomes a very

useful quantity for understanding the population dynamics. By removing the effect of the

dynamically adjusted shift from the population dynamics, it shows the same salient features of

annihilation-and-growth scenario observed in panel (a): An initial dip to values much lower

than the final asymptote is followed by a maximum at values above E0 indicating a phase of

efficient annihilation before the value of G finally drops down to the level of E0. The

maximum in G becomes the equivalent of the annihilation plateau and is the tell-tale sign of

the emergence of a coherent phase structure in the coefficient vector, which is necessary for

overcoming the sign problem. We have found that the walker number at the time when G

crosses the asymptotic value E0 from below before the annihilation maximum is a good

indicator of the minimum number of walker necessary for the long-term average of the shift to

settle at the correct value of the ground state energy E0. It thus replaces the observation of the

plateau. If Nt is set below this value, the shift settles at a value lower than E0 indicating that

the sign structure of the (fluctuating) coefficient vector is not fully coherent. Note that a small

temporary overshoot appears in the walker number beyond Nt, which we interpret as another

indicator for reaching a phase of efficient walker annihilation. The fact that the annihilation

maximum appears earlier and for a shorter time than in the two-stage procedure shown in

Fig. 3.4(a) can be rationalized by the fact that the walker number grows much earlier and that

the annihilation and equilibration phases will be a function of both total walker number and

time. The time scale of walker growth can be adjusted by changing ζ according to Eq. (3.15).

Figure 3.4(c) shows, for comparison the walker number, shift, and the growth witness for the

two-step procedure with the real-space version of the Bose–Hubbard Hamiltonian of Appendix

3.A. Since the real-space Hamiltonian has only non-positive off-diagonal matrix elements, all

walkers have the same sign and there are strictly no annihilation events. The real-space Bose–

Hubbard Hamiltonian is thus sign-problem-free or stoquastic. The growth witness G is seen

(after some initial fluctuations at low walker number) to monotonously increase to the ground

state energy from below. The slow approach of G to the asymptotic value of E0 signifies the

convergence time scale of FCIQMC. Importantly, the fact that G never rises above the value of

E0 but rather approaches from below indicates the absence of walker annihilation.
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3.6 Fluctuations in equilibrium

After an initial phase of dynamics in the walker number and the shift, an equilibrium is reached

where the walker number and the shift fluctuate around their long-time average values. The

fluctuations originate in the stochastic procedure of evaluating Eq. (3.2). During this equilibrium

phase the fluctuating coefficient vector c(n) samples the ground state and the average of the

fluctuating shift provides an estimator for the ground state energy.

3.6.1 Effect of the damping parameter

Figure 3.5 shows how various quantities of interest are affected by the damping parameter ζ in

the equilibrium phase for both the original two-stage procedure without forcing (ξ = 0) and for

the new procedure with the restoring force tuned to the critical value (ξ = ζ2/4). A trade-off

can be seen between fluctuations of the walker number, where the variance is suppressed for

increasing ζ (top panel), and the fluctuations in the shift, whose variance grows with increasing

ζ (second panel from top). This is not surprising, since the shift is related to the logarithmic

derivative of the walker number per Eq. (3.10) and thus the quantities are conjugate to each other.

It is also seen in Fig. 3.5 that the one-stage procedure with restoring force at critical value is more

effective in suppressing fluctuations in the walker number (for ζ < 0.6) than the two-stage

procedure without restoring force (ξ = 0) at the same value of ζ , while the opposite is true for

the variance of the shift. The shift estimator is shown in the third panel and it can be verified that

the obtained values all agree within error bars for all values of the ζ and ξ parameters. The error

bars signify the standard error (SE, values shown separately in the bottom panel) obtained from

an automated blocking analysis, where the data is de-correlated by blocking transformations

[134] and the success of the de-correlation established with the “M-test” method by Jonsson

[137].

The standard error of the shift estimator is an important quantity because it quantifies the

quality of the Monte-Carlo simulation †. It is remarkable to see that the same standard error

for the shift is obtained for the different values of the damping and forcing parameters (bottom

panel, Fig. 3.5), even though the variances of the shift vary greatly (second panel, Fig. 3.5).

†The standard error of the shift over a constant number of time steps reported here is equivalent to the inverse

of the statistical efficiency in the language of Ref. [154]. Smaller standard error means higher statistical efficiency.

54



3.6. Fluctuations in equilibrium

104

105

106
Va

r(N
w

)
critical, = 2/4
TSP, = 0

10 1

100

101

Va
r(S

)/J
2

12.90

12.88

12.86

S/
J

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.000

0.002

0.004

SE
(S

)/J

Figure 3.5: Fluctuating quantities in the equilibrium phase of an FCIQMC simulation as a function of the

damping parameter ζ with the restoring force set to critical damping (ξ = ζ2/4), and for the two-stage
procedure (TSP) without restoring force (ξ = 0). The top panel shows the variance of the walker number
and the second panel the variance of the shift. The shift estimator in the third panel was obtained from

averaging 106 time steps, and the standard error (shown separately in the bottom panel) was found by

blocking analysis. The same average walker number Nw = 100, 000± 500 after equilibration was used
for both procedures to ensure the results are directly comparable. The parameters of the Bose–Hubbard

model are set to M = N = 20, U/J = 6 and δτ = 0.001J−1. Error bars for the variances (calculated

from 10 blocks of data with 105 timesteps each) and the SE are small and mostly obscured by the markers.
The lines between markers are a guide to the eye. Mind the logarithmic scale for Var(Nw) and Var(S).
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This fact can be rationalized by considering that the standard error is not only affected by the

fluctuations of the shift captured by the variance but also by correlations in the time series. In

particular the squared standard error of the shift estimator (i.e. the variance of the sample mean

of S(n)) is obtained from the auto-covariance γ(h) by the sum [134]

[SE(S)]2 =
1

nd

[
γ(0) + 2

nd∑
h=1

(
1− h

nd

)
γ(h)

]
, (3.29)

where nd is the number of data points. The auto-covariance of the shift is

γ(h) = (S(n) − S)(S(n+h) − S), (3.30)

where · · · signifies the sample average over a sufficiently long time series of data. h is a delay in

time steps and for h = 0 the auto-covariance becomes the variance γ(0) = Var(S). Figure 3.6

shows the auto-covariance of the shift for a simulation using the two-stage procedure without

restoring force (ξ = 0) and one with the critical value of the restoring force (ξ = ζ2/4) at

otherwise identical parameters. While the critically damped simulation has a larger variance

of the shift (point for h = 0 in Fig. 3.6) it also features a zero crossing with anticorrelations

(negative values) during a significant interval. This makes it possible to yield the same standard

error while the variance is different, as seen in Fig. 3.5.

While a typical range of the damping parameter ζ = 0.05–0.1 was proposed Ref. [51], the

results of Fig. 3.5 suggest that larger values can be used during the equilibrium phase of an

FCIQMC calculation without sacrificing the quality (statistical efficiency) of the results. This

might be useful if a very tight control of the walker number is necessary. Consistent with the

analysis of Sec. 3.4.4, we find stable damped population dynamics for values of ζ / 1.6 (with

ξ = ζ2/4), and unstable dynamics for larger values (including oscillating dynamics for 1.7 /

ζ / 1.9). If values of ζ ' 0.5 together with ξ set to ζ2/4 or larger are used for growing

a walker population from a small size, we find that the target walker number Nt is reached

very quickly (time scale of the order of δτ ), which precludes the observation of the population

growth dynamics and the annihilation maximum in the growth witness G. For observing the

growth dynamics, we thus used ζ < 0.1. An optimal value may be found when the damping

time scale Tc = 2δτ/ζ of Eq. (3.15) is large compared to δτ but comparable to or smaller than

the FCIQMC convergence time scale on which the walker population becomes a representative
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3.6. Fluctuations in equilibrium
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Figure 3.6: Auto-covariance of the shift for the single-stage procedure with the restoring force set to

critical damping (ξ = ζ2/4) and for the two-stage procedure (TSP) without restoring force (ξ = 0). The
inset shows the details around the zero-crossing point for the critical damping curve. The parameters of

the Bose–Hubbard model are set to M = N = 6, U/J = 6. The parameters used are δτ = 0.001J−1,

and ζ = 0.08 for both procedures. The walker population is equilibrated to Nw = 105. Both data sets
used to calculate the auto-covariance contain results from 106 time steps.

sample of the ground state coefficient vector c0. The latter time scale will depend on the specifics

of the Hamiltonian.

3.6.2 Fluctuations in different physical regimes

The Bose–Hubbard model allows us to easily change the parameters of the model to access

different physical regimes. The details of the model are discussed in Appendix 3.A. Figure 3.7

shows the statistics of the walker number and the shift in the equilibrium phase of an FCIQMC

simulation as a function of the system size. The Hilbert space dimension grows rapidly with

system size from 462 for N = 6 particles inM = 6 lattice sites to 6.9 × 1020 for 20 particles

in 20 sites according to Eq. (3.33). With a walker population of Nw ≈ 105, the systems up to

M = 10 have smaller linear spaces than available walkers and thus are well sampled, whereas

the Hilbert space dimension rapidly exceeds the walker number for the larger systems.

Figure 3.7 also shows data for ground states with different interaction strengths: a Mott

insulator state with strong interactions U/J = 6, and a superfluid state with much weaker
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Figure 3.7: Statistics of the Monte Carlo sampling in the equilibrated regime comparing the population

control by the single-stage procedure with the restoring force set to critical damping (ξ = ζ2/4) and
the two-stage procedure (TSP) without restoring force (ξ = 0). Two distinct physical regimes for the
Bose–Hubbard model with unit filling factor are considered: the Mott insulating (MI, U/J = 6, filled
markers) and superfluid (SF, U/J = 1, empty markers). The parameters used are δτ = 0.001J−1, and

ζ = 0.08 for both procedures. For all data here the walker population is equilibrated toNw = 105±200.
One million time steps are used to obtain statistically meaningful results. Error bars are mostly within

the markers.
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3.7. Conclusion

interactions U/J = 1. The data clearly separate between the Mott insulator and superfluid state

for the larger system sizes whereas all data are very similar for the smaller systems.

The data for the standard error shows that consistently the two population control procedures

give the same quality of Monte Carlo data for the shift estimator, which further confirms the

observation made in the previous section. The rapid increase in the standard error of the shift

for the Mott insulator with system size indicates that this state becomes more difficult to sample

with the FCIQMC sampling procedure, and this is also reflected by increasing fluctuations of

the shift and the walker number. As discussed in more detail in Appendix 3.A, theMott insulator

state has a single dominant configuration and many small coefficients for other configurations

whereas the superfluid state is more evenly spread across Hilbert space, see also Fig. 3.8. A

remarkable difference between the unforced and forced population control procedures is seen

in the variance of the walker number in the top panel of Fig. 3.7. A rapid growth with system

size for the Mott insulator with the unforced (original FCIQMC) procedure is reduced to a much

more moderate increase with the forced procedure. Excessive fluctuations of the shift come with

a cost of memory resources that have to be provided for the largest expected demand, and thus

it is very desirable to suppress these fluctuations, as the forced shift-update procedure does.

3.7 Conclusion

The newly proposed shift-update procedure (3.4) with the forcing strength set to the value of

critical damping was shown to effectively control the walker number by adjusting it to a pre-

defined parameter valueNt. The fluctuations of the walker number are reduced compared to the

original procedure without forcing term, while the quality of the Monte Carlo simulation and the

shift energy estimator are unaffected by the procedure or the strength of the damping coefficient.

Varying the damping coefficient ζ was shown to have opposite effects on the variances of the

shift and particle number. Values of ζ / 0.1, possibly adjusted to the FCIQMC convergence

time scale, will be best for observing the walker growth dynamics and detecting an annihilation

threshold. However, larger values of 0.5 / ζ / 1 can safely be used during the equilibrium

phase of an FCIQMC simulation if the strongest suppression of the walker number fluctuations

is desired. The new procedure is simpler than the original one as it removes the necessity for

two simulation stages. Moreover it is easy to implement in any FCIQMC code.
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An important feature of the walker population dynamics in FCIQMC is the ability to detect

the mitigation of the sign problem through efficient walker annihilation. In previous works this

was done by detecting an annihilation plateau in the walker growth while the shift is held

constant [51, 63]. The detection of the plateau is not straightforward and a histogram analysis

of the logarithmic walker number has proven useful in Ref. [63] but could not be fully

automated. In this work we have introduced the growth witness G, which displays a maximum

at the annihilation plateau. It can be used to detect the threshold walker number at which

annihilation becomes efficient, an overall sign of the coefficient vector emerges, and the sign

“problem” is successfully mitigated. While the annihilation plateau in the walker number

disappears in the new shift-update procedure (if it is used during the walker growth phase), the

growth witness still displays the annihilation maximum and can be used to detect the

annihilation threshold. Further research is necessary to show whether the detection of the

annihilation threshold via the growth witness G can be successfully automated.

Data Availability

The data that support the findings of this study are available from the corresponding author

upon reasonable request. The Rimu.jl program library is available as an open source project

on GitHub [157].
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Appendix

3.A The Bose–Hubbard model in real space

The Bose–Hubbard Hamiltonian for a one-dimensional chain ofM lattice sites is written as

H = −J
M∑
i=1

(
â†i âi+1 + â†i+1âi

)
+
U

2

M∑
i=1

n̂i(n̂i − 1), (3.31)

where â†i (âi) is the creation (annihilation) operator for a particle at site i with bosonic

permutation relations [âi, â
†
j] = δij and [âi, âj] = 0, and n̂i = â†i âi is the number operator.

Periodic boundary conditions imply that âM+1 ≡ â1. The total particle number N̂ =
∑M

i=1 n̂i

is a good quantum number and in our simulation we set it to a fixed value N̂ = N . The first

term in Eq. (3.31) represents particle hopping to nearest neighbor sites with hopping strength

J , and the second term is an on-site interaction with strength parameter U . The Bose–Hubbard

model is a non-trivial many-body problem. It has been realized experimentally with ultra-cold

atoms in optical lattices [2], with quantum gas microscopes allowing single-atom-level

configuration readout [80].

In order to represent the model Hamiltonian as a matrix, we use an occupation number basis

(also Fock states, or configurations) in real space

|n1, n2, . . . , nM〉 =
M∏
i=1

1√
ni!

(
â†i

)ni

|vac〉, (3.32)

with fixed particle number N =
∑M

i=1 ni. The number of independent basis states with N
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Figure 3.8: The coefficients of the c0 vector for the Mott insulating (MI, red dots, U/J = 6) and
superfluid ground state (SF, blue squares, U/J = 1), ordered by magnitude. The coefficient vector was
normalized with the one-norm ‖c0‖1 = 1. The system size isM = N = 8 and the dimension of Hilbert
space is 6435.

particles inM lattice sites and thus the dimension of the matrix H is

dim =

(
M +N − 1

N

)
. (3.33)

It can be easily adjusted, as N andM are just parameters of the model and the code.

In the thermodynamic limit (M,N → ∞), the one-dimensional Bose–Hubbard model

features a quantum phase transition between a Mott-insulating phase characterized by an

integer number of particles per lattice site and a gapped excitation spectrum to a gapless

superfluid phase [75]. While states with non-integer filling factor N/M are always superfluid,

the phase transition happens for unit filling N = M at a value of U/J ≈ 3.5, where larger

values correspond to the Mott insulator and smaller values to the superfluid phase.

As all off-diagonal matrix element of the real-space Bose–Hubbard Hamiltonian are

non-positive, and thus the matrix is stoquastic [82], the annihilation of walkers in FCIQMC

algorithm will not be triggered. This allows us to bypass the “annihilation plateau” and avoid

the QMC sign-problem, hence to focus on the dynamics that is solely controlled by the
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3.B. The Bose–Hubbard model in momentum space

equation of the shift. In Figure 3.8 we show the coefficients of the ground state eigenvector c0

for two specific states of a finite system that are deep inside the Mott-insulating and superfluid

regimes, respectively. The Mott-insulating state has a single dominant configuration∏M
i=1 â

†
i |vac〉 in addition to many small-magnitude coefficients while the superfluid state is

much more evenly spread out across Hilbert space.

3.B The Bose–Hubbard model in momentum space

For the study of the plateau and the sign problem conducted in Sec. 3.5.2, we reformulate the

1D Bose–Hubbard Hamiltonian in momentum space [48],

H = −J
∑
k

εkm̂k +
U

2M

∑
kpqr

b̂†rb̂
†
q b̂pb̂kδr+q,p+k, (3.34)

where εk = −2J cos(k) and m̂k = b̂†kb̂k is the number operator. Single-particle mode operators

now refer to plane-wave eigenstates of the lattice momentum b̂†k = M− 1
2

∑M
l=1 e

iklâ†l , where

k = −π + n2π/M for even M and k = −π(M + 1)/M + n2π/M for odd M and n =

1, . . .M . In this formulation, the Hamiltonian is no longer stoquastic when U > 0 because the

off-diagonalmatrix elements have a positive sign. Since theHamiltonian appearswith a negative

sign in Eq. (3.2), every spawning event will reverse the sign of a walker. Since spawned walker

can arrive at a configuration from different origins with different signs, annihilation events can

occur. Evidence for the tell-tale annihilation plateau is seen in Fig. 3.4(a).

3.C Effect of the shift update delay A

For all simulations shown in the main part of the paper we setA = 1 for the delayed shift update

in Eqs. (3.3b) and (3.4). The parameter A was introduced in Ref. [51] where values between 5

and 10 were used. Here, we examine the role of A in the shift update and the population control

process in order to determine whether gains in statistical efficiency or savings in computational

cost can be made.

In the context of the scalar population dynamics model of Sec. 3.4, the effect of A is to

63



increase the size of the effective time step to Aδτ . Thus the stability boundaries of the discrete-

time model [e.g. Eq. (3.23)] remain independent ofA (since they do not depend on the time step

size) and the same differential equation (3.11) is obtained in the limit δτ → 0.

The effect of the parameter A is to separate the effective time step for the stochastic

coefficient vector update in Eq. (3.2) from the shift update of Eqs. (3.3b) and (3.4). With the

original two-stage shift update procedure, A does not affect the population dynamics in the

walker growth phase as the shift is initially kept constant. In contrast, the modified shift update

adjusts the shift according to Eq. (3.4) during the walker growth phase in order to achieve

damped oscillator motion for the logarithmic walker number. Values of A > 1 allow walker

growth or decay that is exponential in A and generally does not conform with the controlled

oscillator motion. This can lead to undesired overshoots or rapid walker number decline. Thus

we do not generally recommend using A > 1 during the walker growth phase.

As the shift serves not only as the population controller but also as an energy estimator, it is

relevant to study the role of A in the equilibrium phase. Results from an FCIQMC calculation

are shown in Fig. 3.9. Both the case of critical damping and the case of ξ = 0 show similar trends

as a function of A. The fluctuations in the shift reduce as A is increased while the variance of

the walker number grows significantly. Consistent with what is seen in other parts of this work,

the variance of the shift is smaller with the modified shift-update with critical forcing compared

to the original procedure with ξ = 0, with a trade-off in the increased fluctuations of the shift.

Importantly, neither the mean of the shift nor its standard error are significantly affected, which

means that the statistical efficiency is constant.

It remains to consider the computational costs. Updating the shift at each time step comes

with small constant cost for either procedure of Eq. (3.3b) or Eq. (3.4). Performing the updates at

everyAth step divides this cost byA. However, the main cost of the FCIQMC algorithm comes

from looping over the coefficient vector and performing spawning operations, which scales with

O(Nw). With our code Rimu.jl [157], the CPU runtime deviates by less than 1.3% for different

values of A.
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3.C. Effect of the shift update delay A
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Figure 3.9: Fluctuating quantities in the equilibrium phase of an FCIQMC simulation as a function of

the shift update delayA, with the restoring force set to critical damping (ξ = ζ2/4), and for the two-stage
procedure (TSP) without restoring force (ξ = 0). The top panel shows the variance of the walker number
and the second panel the variance of the shift. The shift estimator in the third panel was obtained from

averaging 106 time steps, and the standard error (shown separately in the bottom panel) was found by

blocking analysis. The same average walker number Nw = 100, 000± 500 after equilibration was used
for both procedures to ensure the results are directly comparable. The parameters of the Bose–Hubbard

model are M = N = 20, U/J = 6 and δτ = 0.001J−1. Error bars for the variances (obtained

by evaluating ten blocks of 105 data points) and the SE each are mostly within the markers. The lines

between markers are a guide to the eye.
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Figure 3.10: The averaged shift energy estimator displaying the population control bias resolved with

a small number of walkers Nw = 1, 000. For comparison, the dimension of Hilbert space is dim =
92,378. The parameters of the Bose–Hubbard model areM = N = 10 and U/J = 6. The exact ground
state energy of the system E0 = −6.50J calculated by Lanczos iterations is indicated by the dotted line.

We used ζ = 0.08 and set ξ = 0 representing the original FCIQMC shift update procedure, and ξ =
0.0016, 0.0008, 0.0032 representing the critical, overdamped, and underdamped regimes, respectively.
Other parameters used are δτ = 0.001J−1, and A = 1.

3.D Population control bias

A (typically) small bias that disappears with increasing walker number is known to affect

FCIQMC estimators for observables [70]. Due to the analogy with a conceptually related bias

in diffusion quantum Monte Carlo [68] it is known as the “population control bias”, but it was

also termed “statistical bias” in Ref. [154]. The bias is often difficult to detect and smaller than

statistical error bars when large walker numbers are mandated by the annihilation plateau for

overcoming the sign problem. In stoquastic problems like the real-space Bose–Hubbard model

of Appendix 3.A no such requirements exist and the bias can be detected by simply reducing

the walker number. Here we examine how the population control bias is affected by the new

shift update procedure of Eq. (3.4).

Figure 3.10 shows the population control bias resolved with Nt = 1000 walkers for the

shift energy estimator of a real-space Bose Hubbard Hamiltonian with 6 particles in 6 lattice

sites. The data points with different values of the forcing constant ξ represent the old shift-

update procedure of Eq. (3.3b) for ξ = 0 as well as the underdamped, critically damped, and
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3.D. Population control bias

overdamped regimes, respectively. We find that the population control bias remains unchanged

for the different shift-update procedures within our statistical error bars, and conclude that any

possible influence of the forcing term on the population control bias is undetectable with our

current data.
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Chapter 4
Stochastic Differential Equation Approach

to Understanding the Population Control

Bias in Full Configuration Interaction

Quantum Monte Carlo

Opening words As bosonic wave functions are symmetric under particle exchange, bosonic

Hamiltonians can be stoquastic, meaning all matrix elements are real and off-diagonal matrix

elements are also non-positive. When using the full configuration quantum Monte Carlo

(FCIQMC) method for solving a stoquastic Hamiltonian, the simulation is sign-problem free.

In principle, we can use a very modest number of walkers to sample a much larger Hilbert

space, given a long enough simulation time. However, when calculating the ground-state

energy of some large sign-problem free bosonic Hamiltonians, we noticed a non-negligible

and systematic bias persists in FCIQMC simulations, which can only be removed by

increasing the number of walkers used in the calculations. It is known as the population

control bias. In this Chapter, we investigate the population control bias found in FCIQMC,

which originates from controlling a walker population with a fluctuating shift parameter. We

show that the shift estimator has the nice property of providing an upper bound for the exact

ground state energy and all projected energy estimators, while a variational estimator is still an

upper bound to the exact energy with substantially reduced bias. We link the scalar model of
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the general FCIQMC population dynamics developed in the previous Chapter to an exactly

solvable Itô stochastic differential equation. It provides further insights into the nature of the

bias and gives accurate analytical predictions for delayed cross-covariance and

auto-covariance functions of the shift energy estimator and the walker number. The model

provides a toe-hold on finding a cure for the population control bias. We provide evidence for

non-universal power-law scaling of the population control bias with walker number in the

Bose-Hubbard model for various estimators of the ground state energy based on the shift or on

projected energies. For the specific case of the non-interacting Bose-Hubbard Hamiltonian we

obtain a full analytical prediction for the bias of the shift energy estimator.

The follow text is a verbatim copy of the published preprint: Joachim Brand, Mingrui

Yang and Elke Pahl, “Stochastic differential equation approach to understanding the

population control bias in full configuration interaction quantum Monte Carlo,” arXiv

2103.07800 (2021).

4.1 Introduction

Monte Carlo methods have the power to solve otherwise intractable computational problems by

random sampling. They provide estimators for quantities of interest that will give the correct

answer on average, but come with a statistical uncertainty, or Monte Carlo error. In addition

to the statistical uncertainty, the estimators can also have a bias when the ensemble average of

the estimator deviates from the exact value of the estimated quantity. Understanding and, if

possible, removing such biases is a big challenge for Monte Carlo methods. In this paper we

discuss the origin and nature of a systematic bias in the full configuration interaction quantum

Monte Carlo (FCIQMC) method [51].

FCIQMC samples the ground state eigenvector of a quantum many-body Hamiltonian as is

common for so-called projection Monte Carlo methods, which include diffusion Monte Carlo

[162] and Greens functionMonte Carlo [163]. FCIQMC provides access to statistical estimators

for physical observables like the ground state energy. While the method generally applies to

the computation of the dominant eigenvalue and eigenvector of an abstract square matrix as a

stochastic variant of the power method [164], we will continue to use the language of quantum

many-body physics where important applications lie. FCIQMC and its variations have been
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4.1. Introduction

used with great success in quantum chemistry [53, 165], the electronic structure of solid state

systems [54, 166], and ultra-cold atom physics [58, 59, 167]

A particular feature of FCIQMC is that the detailed sign structure of the sampled

coefficient vector is established spontaneously by the annihilation of walkers of opposite sign

for large enough walker numbers [51, 61]. Typically, the required walker number, known as

the annihilation plateau, scales proportionally to the linear dimension of Hilbert space [63] and

thus exponentially with the size of a physical system. This is a manifestation of the so-called

sign problem, which is also present in other flavours of quantum Monte Carlo [60, 168, 169].

Much effort has gone into analysing the sign problem for FCIQMC [61–63, 105, 170] and into

developing strategies and approximations for mitigating it [71, 73, 152, 171–174]. Note that

the sign problem is absent for real Hamiltonians with only non-positive off-diagonal matrix

elements because no competition arises in assigning signs of the coefficient vector elements.

Such matrices are known as stoquastic matrices [64]. The sign problem is equally absent from

matrices obtained from a stoquastic matrix by flipping the signs of basis states.

Surprisingly little attention has been paid to a systematic statistical bias in the FCIQMC

estimators that persists even for walker numbers above the annihilation plateau (or for FCIQMC

with stoquastic matrices) [70]. This bias is known as the population control bias and is common

to all known projection Monte Carlo methods that use population control [69]. In FCIQMC the

population is controlled by adjusting a scalar quantity known as the shift periodically during the

simulation. After an initial equilibration period, the mean of the shift becomes an estimator for

the exact ground state energy. During a long history of study [67–69, 74, 175], it was concluded

by several authors [67–69] that the population control bias in the eigenvector and in projected and

growth estimators scales withN−1
w , whereNw is the number of walkers used in the calculation. A

related result bounds the population control bias proportional to 1/m, wherem is the number of

sampled configurations (or non-zero coefficients of the stochastic representation of the ground

state vector) at any one time [176].

Remarkably, there is numerical evidence contrary to the seeming consensus in the

literature regarding the N−1
w scaling. For diffusion Monte Carlo, power law decay of the bias

with significantly slower decay exponents was reported in Refs. [74, 177]. In this paper we

report evidence for non-universal scaling of the population control bias with power law

exponents as weak as ≈ −0.4 in FCIQMC data for Bose Hubbard chains with repulsive
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interactions. We further find a quadratic scaling of the population control bias with the size of

the physical system. This is bad news for FCIQMC calculations on larger stoquastic

Hamiltonians, where the population control bias becomes increasingly difficult to mitigate and

poses a major challenge. Along similar lines, Ref. [177] concluded that the numerical

resources needed to retain a constant population control bias in diffusion Monte Carlo

simulations of spin chains scale exponentially with system size.

Due to its growth with system size, the population control bias is particularly relevant for

stoquastic Hamiltonians (typically found for bosonic problems) where it is the dominant

problem preventing accurate calculations of large scale quantum systems with limited memory

resources (i.e. limited number of walkers). For non-stoquastic Hamiltonians, on the other

hand, the requirement to overcome the sign problem limits the system size and at the same

time demands a minimum walker number such that typically regimes are accessed where the

population control bias is so small that it is hard to detect in the presence of statistical errors, or

of a larger systematic bias originating from the initiator approximation [71] when the latter is

used.

To mitigate the population control bias in projector Monte Carlo, it is possible to define

formally unbiased estimators [67, 68, 178]. The unbiased estimators can be obtained by

reweighting the Monte Carlo time series data in post processing at the expense of additional

stochastic errors. While this leads to an uncontrolled approximation, it has been shown to

work well in practice in many cases [68, 70, 178, 179]. An alternative strategy for suppressing

the population control bias is to minimize the sampling noise with importance sampling.

Reference [180] achieved this for Greens function Monte Carlo using a highly accurate neural

network guiding function. Very recently, both reweighting and importance sampling were

combined to suppress the population control bias in FCIQMC [181].

In this workwe derive exact relations for the population control bias in the shift and projected

energy estimators. Projected energy estimators for the ground state energy are commonly used in

projection Monte Carlo. We further analyze the effect of noise in the FCIQMC algorithm in the

framework of Itô stochastic calculus [182]. We assume that either the Hamiltonian is stoquastic,

or the walker number is sufficiently large that the sign structure of the sampled coefficient vector

is consistent with the exact eigenvector (i.e. the walker number is above the annihilation plateau).

The main results are as follows:
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4.1. Introduction

• The shift estimator is an upper bound for the exact ground state energy and for all

projected energy estimators, including the variational energy estimator, which is defined

by a Rayleigh quotient.

• We define a norm projected energy estimator. Excellent approximations to it are easy to

compute from readily available walker number and shift data, and contain less bias than

the shift estimator. While the norm projected energy is less biased than the shift estimator

we find that the difference scales with N−1
w in numerical data. The overall bias of the

norm projected energy exhibits the same non-universal scaling as the shift estimator.

• The variational energy estimator, which also provides an upper bound to the exact energy,

is found to have a much reduced population control bias compared to the shift or norm

projected energy estimators. We discuss an efficient way to calculate it numerically.

• We derive an Itô stochastic differential equation for the coupled dynamics of the walker

number and the shift. A simplified scalar model can be solved exactly and provides

valuable insights into the role of the time step size and walker number control

parameters. A particular prediction is that the population control bias in the energy

estimator is independent of these parameters, which is confirmed by full numerical

FCIQMC simulation results. The analytic model also provides explicit formulas for the

delayed auto- and cross-covariance functions of the walker number and the shift.

• We analyze the reweighted estimators of Refs. [67, 68, 178] and find that they successfully

remove most of the bias in our numerical examples. Unfortunately, the reweighting adds

stochastic noise that grows in the limit of large reweighting depth where the population

control bias is formally removed. Finding the optimal reweighting depth may require

further research.

• We derive explicit analytical expression for the population control bias in the

non-interacting Bose-Hubbard chain, where we find that the population control bias is

approximately intensive, i.e. scales linearly with particle number. Specifically for a

single particle in the Hubbard chain the population control bias is asymptotically given

by 2J/Nw for large walker numbers Nw, while it decays faster for small walker

numbers. J is the hopping parameter in the Hubbard chain.
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This paper is organized as follows: After introducing FCIQMC as a random process with

its main equations in Sec. 4.2, and stating computational details in Sec. 4.3 we provide

evidence for non-universal scaling laws of the population control bias in Sec. 4.4. Various

energy estimators are defined and exact relations for the population control bias are derived in

Sec. 4.5 before developing a scalar model that leads to a solvable stochastic differential

equation in Sec. 4.6. The reweighting procedure for unbiased estimators is derived and

analyzed in the context of the present work in Sec. 4.7. Section 4.8 discusses explicit

expressions linking the population control bias to the matrix structure of the Hamiltonian

within the integer walker number FCIQMC algorithm. These are further applied to the

non-interacting Bose-Hubbard chain, before concluding in Sec. 4.9. Appendix 4.A reports data

on the influence of simulation parameters on the outcome and finds no significant dependence

of the population control bias in the energy estimators on the forcing parameter of population

control and the time step parameter. A proof that the shift estimator is an upper bound for the

projected energies is provided in App. 4.B and a detailed derivation of the exact solution of the

stochastic differential equation with Greens functions in App. 4.C. Appendix 4.D analyzes the

detailed noise properties of the integer walker sampling algorithm and App. 4.E derives a

stochastic differential equation for the walker number in the sparse walker regime.

4.2 Full FCIQMC equations

The FCIQMC equations aim at sampling the ground state eigenvector of a matrix representation

H of the quantum Hamiltonian. The algorithm is based on the iterative equations updating a

coefficient vector c(n) and scalar shift S(n):

c(n+1) = [1+ δτ(S(n)1− Ȟ)]c(n), (4.1)

S(n+1) = S(n) − ζ

δτ
ln
N

(n+1)
w

N
(n)
w

− ξ

δτ
ln
N

(n+1)
w

Nt

, (4.2)

where δτ is a time-step parameter. The walker number N
(n)
w will be discussed in more detail

below together with its control parameters Nt, ζ , and ξ.

Equation (4.1) performs, in an average sense, the projection by repeatedly multiplying the
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4.2. Full FCIQMC equations

matrix H with the coefficient vector c(n). If done exactly, it will suppress the norm of excited

states exponentially in n compared to the ground state. With the symbol Ȟ we indicate that

deterministic matrix vector multiplication in Eq. (4.1) is replaced by a random process in

FCIQMC. In the original formulation with integer walker numbers [51] this was achieved by a

sequence of spawning, death and/or cloning steps for individual walkers. Modern variations of

FCIQMC like the semistochastic version [129, 151] and fast randomized iteration algorithms

[154, 176, 183] modify the sampling procedures in order to reduce stochastic noise.

While the details of the sampling procedure do not matter for most parts of this work (they

will be considered inApp. 4.D), it is important that the sampling procedure is designed to achieve

the correct vector-matrix multiplication on average, in the sense of an ensemble average for

every single iteration step:

E
(
[1+ δτ(S(n)1− Ȟ)]c(n)

)
= [1+ δτ(S(n)1−H)]c(n) (4.3)

where E(·) denotes the expected value of the sampling procedure for a given coefficient vector

c(n).

It is essential for the analysis in the rest of this work that we can think of Ȟ as a random

matrix, which (ensemble) averages to the full matrixH *. Note that this picture may fail for non-

stoquastic matrices when the walker number is too low to support sufficient walker annihilation.

As a manifestation of the sign problem, effectively a different matrix is sampled on average in

this case [61]. Thus we will assume in the following that H is a stoquastic matrix (as will be

true in all examples presented), or that the walker number is above the annihilation plateau.

Because Eq. (4.1) does not generally conserve the norm of the updated coefficient vector,

it needs to be supplemented by a population control procedure, which is provided by Eq. (4.2).

The number of walkersN
(n)
w is computed from the coefficient vector by the 1-norm at each time

step n

N (n)
w = ‖c(n)‖1 ≡

∑
i

∣∣∣c(n)i

∣∣∣ , (4.4)

where for now we assume that the elements of the coefficient vectors c(n) and the matrix H are

*This assumption justifies our notation that replaces the sampling process by a multiplication of the coefficient

vector with a random matrix.
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real numbers. The parameter ζ controls a damping term resisting the change in walker number

whereas ξ controls a restoring force that causes the walker number to eventually fluctuate around

the pre-set target walker numberNt. The last term in Eq. (4.2) was introduced in Ref. [184], and

the (more common) original walker control procedure of Ref. [51] is recovered as the special

case where ξ = 0.

The dependence of the simulation results on the parameters ζ and ξ was discussed in detail

in Ref. [184]. In particular, the population control bias in the shift was found to be independent

of the forcing parameter ξ implying that the new walker control procedure of Ref. [184]

produces the same bias as the original one of Ref. [51]. In App. 4.A we present further data

showing no significant dependence of the population control bias of the shift and various

projected energy estimators on either the forcing parameter ξ, or the time step size δτ even in

the presence of delayed update intervals. For this reason we set the forcing parameter to

ξ = ζ2/4 in all numerical simulations in the main part of the paper, which corresponds to

critical damping and produces optimal walker number control [184]. The full parameter

dependence is however considered in the analytical derivations of Sec. 4.6, the results of which

explain many findings of Ref. [184] including the insensitivity of the population control bias

on the details of the population control procedure.

4.3 Simulation details

Simulations were performed with the open source Julia package Rimu.jl [157], written by

the authors, and use the integer walker number FCIQMC algorithm of Ref. [51] supplemented

with the improved walker control protocol of Ref. [184], as per Eqs. (4.1) and (4.2). Energy

estimators are computed as averages from a time series collected from the simulation discarding

data from an initial equilibration phase.

4.3.1 Estimating uncertainties

Monte Carlo time series data is correlated over a finite time scale. In order to estimate the

standard error, we remove these correlations by re-blocking [134] augmented by hypothesis
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4.3. Simulation details

testing to check that the correlations have been reduced to undetectable levels [137].

For energy estimators defined by a ratio of expected values, we separately calculate the

sample means of the numerator and the denominator and treat them as correlated Gaussian

variables, which should be true for a sufficiently long time series by virtue of the central limit

theorem. The variances and the covariance of the sample means are estimated after

re-blocking using the same number of blocking steps such that autocorrelations in both time

series are below detection limit. In a second step we determine the confidence interval of the

corresponding ratio distribution with Monte Carlo error propagation using the package

MonteCarloMeasurements.jl [185]. Throughout this paper (in plots) we report the median

of the resulting distribution and error bars indicating the 68% confidence interval (which is

equivalent to a 1σ standard error for normally distributed random variables).

In general and unless explicitly noted we use long time series with Ω ∼ 106 Monte Carlo

steps for the data analysis after allowing for an ample equilibration period of ∼ 105 steps,

independent of other parameters being varied in the same plot (e.g. particle number N or target

walker number Nt). This naturally leads to varying sizes of statistical error bars.

4.3.2 Bose Hubbard Hamiltonian

While most of the theoretical results presented in this work are independent of the specifics of

the Hamiltonian, all numerical FCIQMC simulations reported in this paper were done with the

Bose Hubbard model [75] in one spatial dimension with periodic boundary conditions (chain

configuration) in real space. A total of N bosonic particles can access M lattice sites, which

brings the dimension of Hilbert space to
(
M+N−1

N

)
. The model comprises on-site interaction

between particles characterized by a strength parameter U and hopping to nearest neighbor sites

described by the hopping strength J > 0:

H = −J
∑
〈i,j〉

â†i âj + U
∑
i

n̂i(n̂i − 1). (4.5)

Here 〈i, j〉 denotes that the summation is performed over all adjacent lattice sites. The operators

â†i and âi create and annihilate particles at sites i, respectively, and follow canonical bosonic

commutation relations. The number operator n̂i = â†i âi counts the particles on lattice site i. For
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Figure 4.1: Population control bias vs. system size. Shown is the shift energy estimator for the energy per

particle in a Hubbard chain with fixed filling factor ofM/N = 1 for FCIQMC calculations with different

(fixed) values of the target walker numberNt ≈ 〈Nw〉 as indicated. Also shown are exact diagonalization
results for up to N = 12 particles (red squares) and the extrapolated energy per particle for an infinite
system (dashed black line). The deviation of the FCIQMC results from the exact (or extrapolated) values

represents the population control bias per particle at the given walker number, which is seen to grow

linearly with system size. FCIQMC calculations show data with up to N = 50 particle with a Hilbert
space dimension of

(
M+N−1

N

)
≈ 5× 1028. We used U/J = 6, which lies in the Mott insulating regime

and parameters ζ = 0.08 at critical damping (ξ = ζ2/4) and δτ = 0.001J−1.

a one-dimensional chain of M sites with periodic boundaries, the first summation consists of

2M terms, while the second one hasM terms.

The Bose Hubbard model is relevant to ultra-cold atom experiments [2], where readout at

single atom level can be achieved with quantum gas microscopes [80].

4.4 Non-universal scaling of the population control bias

In this section we explore the scaling behavior of the population control bias with numerical

results for the Bose Hubbard chain. Figure 4.1 serves to demonstrate how the population

control bias becomes a real problem when scaling up the size of the physical system while

being constrained with computer resources to work at fixed walker number. The walker
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4.4. Non-universal scaling of the population control bias

number is an upper bound on number of non-zero elements of the coefficient vector that have

to be stored and thus provides an excellent proxy for the memory requirement. Figure 4.1

shows estimators for the energy per particle for a Bose-Hubbard chain with one particle per

lattice site as a function of the system size. As the energy per particle is an intensive quantity it

is expected to become independent of particle number with deviations for small particle

numbers due to finite-size effects. This is seen in the data from exact diagonalization (red

squares) for up to 12 particles. The dashed line is the extrapolated energy per particle for the

infinite chain.

The Monte Carlo data for the shift energy estimator is seen to lie above the exact values,

which is a manifestation of the population control bias. The data also clearly suggests that the

bias in the energy per particle at fixed walker number grows linearly with system size. It follows

that the bias of the total energy grows quadratically with system size, and thus is not an intensive

variable. This quadratic scaling with the number of particles suggests that the origin of the bias

might be linked to the two-particle interactions present in the Hamiltonian.

The quantum state sampled in Fig. 4.1 correspond to a Mott insulator state, which is

characterized by small fluctuations of the number of particles per lattice site and a gap in the

excitation spectrum (which opens for U/J ' 3.4 [77]) as a consequence of the relatively high

energy cost of having more than one boson on a given lattice site.

Figure 4.2 shows how the population control bias scales with the walker number. In the plots

we report the target walker number Nt ≈ 〈Nw〉, since the fluctuations in the walker number are

small when using the walker control procedure of Eq. 4.2 introduced in Ref. [184]. The data

provides evidence that the bias scales as a simple power law ∼ Np
t over up to six decades for

the strongly-interacting data at U/J = 6. The power is also seen to depend strongly on the

interaction parameter U/J defying the predictions of universal N−1
t scaling in Refs. [67–70,

176]. In particular the strongly interacting Mott-insulating state presents a stubbornly slowly

decaying population control bias.

We note that we do findN−1
t scaling consistently in smaller systems, e.g. for theN =M =

10 Hubbard chain even in the Mott-insulating regime. The dimension of Hilbert space in this

case is ≈ 105, which is much smaller than the system of Fig. 4.2.

Figure 4.3 shows an interesting intermediate case with N = M = 20 where the dimension
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Figure 4.2: Non-universal power-law scaling of the population control bias with walker number. Shown

is the shift estimator vs. the walker number for different interaction parameters in the real-space Bose-

Hubbard chain with N = 50 particles in M = 50 lattice sites. Lines are fits to the power law 〈S〉 =
a+ b〈Nw〉p, where the power p varies significantly with the model parameters as indicated in the legend.
Other parameters as in Fig. 4.1.

of Hilbert space is≈ 1011. Here we observe a crossover between two regimes with slow power-

law scaling for small walker number, and N−1
t scaling for Nt & 104. In addition to the shift

energy estimator, Fig. 4.3 also shows the norm projected energy Ē1̃, which follows the shift

very closely for this example, and the variational energy estimator Ē〈c〉, which has a smaller

bias. Both estimators will be defined in Sec. 4.5, where theoretical arguments regarding their

scaling with walker number will be presented.

4.5 Exact relations for the population control bias

We consider the steady-state limit of the FCIQMC equations (4.1) and (4.2), where the

coefficient vector c(n) and the shift S(n) will be fluctuating around some expected value

(obtained as an ensemble average over noise/random number realizations), which is identical

to the long-time average. Let 〈·〉 denote the long time average over a stationary time series. We

consider the averages for the FCIQMC equations and start with the shift update equation (4.2).
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4.5. Exact relations for the population control bias
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Figure 4.3: Crossover power laws for different energy estimators. Shown are the shift (blue triangles),

norm projected energy (green squares), and variational energy estimators (orange diamonds) vs. walker

number for the real-space Bose-Hubbard chain with N = 20 particles in M = 20 lattice sites and

U/J = 6. For the shift and projected energy estimators two different regimes can be distinguished that
follow an approximate power-law behavior. Lines are power-law fits to the corresponding subsets of data

with exponents as indicated. Parameters of the calculation are ζ = 0.08 at critical damping (ξ = ζ2/4)
and δτ = 0.001J−1 withΩ = 4×106 time steps. The dimension of Hilbert space is

(
M+N−1

N

)
≈ 7×1010.

Noting that the time-series average is translationally invariant in the steady state and thus

〈
S(n+1)

〉
=
〈
S(n)

〉
≡ 〈S〉 , (4.6)〈

lnN (n+1)
w

〉
=
〈
lnN (n)

w

〉
≡ 〈lnNw〉 , (4.7)

most terms cancel. We obtain

0 =

〈
ln
N

(n)
w

Nt

〉
= 〈lnNw〉 − lnNt, (4.8)

or that the logarithm of the walker number averages to the logarithm of the target walker number

lnNt.

Averaging the coefficient vector update equation (4.1) yields

0 =
〈
S(n)c(n)

〉
−
〈
Ȟc(n)

〉
. (4.9)
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The second term on the right hand side can be simplified further. Because the long-time limit

is equivalent to (or implies) an ensemble average over sampling noise, we may take the latter

before the former. Equation (4.3) thus implies

〈
Ȟc(n)

〉
=
〈
Ȟ
〉 〈

c(n)
〉
≡ H 〈c〉 . (4.10)

This is the same result that we would have obtained by treating Ȟ as a random matrix with

independent random numbers that are uncorrelated with the fluctuations in the time series c(n).

From now on we will thus assume that this is the case, as it simplifies the analysis.

The first term in Eq. (4.9), however, is a product of fluctuating variables, which are not

independent and therefore

〈
S(n)c(n)

〉
= 〈S〉 〈c〉+ cov(S(n), c(n)), (4.11)

where we define the covariance as

cov(a, b) = 〈(a− 〈a〉)(b− 〈b〉)〉 . (4.12)

Note that the covariance between a scalar and a vector is to be taken elementwise on the vector.

The final result for the averaged equation for the coefficient update is

〈S〉 〈c〉 −H 〈c〉 = − cov(S(n), c(n)). (4.13)

For vanishing covariance we re-cover the time-independent Schrödinger equation (or eigenvalue

equation). The fact that fluctuations of the shift and the coefficient vector are coupled gives rise

to the population control bias as we will see in the following sections.
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4.5. Exact relations for the population control bias

4.5.1 Projected energy estimator

Projected energy estimators are commonly used in FCIQMC and other projector Monte Carlo

methods. For an arbitrary vector y we define the projected energy by

Ēy ≡
〈
y†Hc

〉
〈y†c〉

=
y†H 〈c〉
y† 〈c〉

, (4.14)

where a†b is the scalar product of two (column) vectors. When the coefficient vector samples

the exact eigenstate it will yield the exact ground state energy if y has non-negligible overlap

with the eigenvector. The quantity Ēy is easy to compute and can provide low fluctuations if a

good choice of y can be found. We can easily derive the following relation to the shift estimator

from Eq. (4.13) by projection with y† from the left

〈S〉 − Ēy = −
cov(S(n), y†c(n))

〈y†c〉
≥ 0. (4.15)

Although this equation has no direct information about the population control bias in either the

shift or the projected energy, it may still be useful by the fact that a difference between the

average shift and the projected energy indicates the presence of a non-negligible population

control bias. The quality of the projected energy estimator depends on both the quality of the

sampled coefficient vector 〈c〉 and the quality of the vector y. Clearly, if the exact eigenvector

is chosen for y, or a good approximation of it, the projected energy Ēy can be made arbitrarily

close to the exact energy, even when the quality of the sampled coefficient vector is poor.

The inequality in Eq. (4.15) requires a separate proof, which is provided in App. 4.B using

methods of Sec. 4.6. It states that the shift energy estimator is an upper bound on the projected

energy. This is a powerful result, because it is true for arbitrary choices of the vector y. We

explore the consequences for specific choices of y in the following.
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4.5.2 Population control bias of shift estimator

We can obtain an explicit expression for the population control bias of the shift energy estimator

by substituting the ground state eigenvector c0 for the vector y in Eq. (4.15) to obtain

〈S〉 − E0 = −
cov(S(n), c†0c

(n))〈
c
†
0c

〉 ≥ 0, (4.16)

whereE0 is the exact ground state energy. The right hand side of the equation provides an exact

expression for the population control bias in the shift estimator. The inequality further assures

that the shift estimator is an upper bound for the exact ground state energy. The covariance

expression is important conceptually, as it indicates how the coupled fluctuations in the shift

and projected coefficient vector cause the population control bias. From the properties of the

covariance we can also obtain an upper bound

〈S〉 − E0 ≤

√√√√√√var(S)
var
(
c
†
0c

)
〈
c
†
0c

〉2 , (4.17)

which indicates that reducing the fluctuations of both the shift and the coefficient vector is an

effective strategy to suppress the population control bias.

4.5.3 Norm projected energy estimator

As another special case let us consider the choice y = 1̃, where we define the vector 1̃ to have

entries of modulus 1 that carry the sign of the exact eigenvector c0. We have already committed

ourselves to the case where the walker number is above the minimum required to mitigate the

sign problem, and thus can further assume that the sign structure of the fluctuating vector c(n)

is consistent with that of the exact eigenvector. The overlap with the coefficient vector thus

produces the one-norm 1̃†c(n) = ‖c(n)‖1 = N
(n)
w . Hence we obtain from Eq. (4.15)

〈S〉 − Ē1̃ = −
cov(S(n), N

(n)
w )

〈Nw〉
≥ 0, (4.18)
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4.5. Exact relations for the population control bias

where the norm projected energy estimator is

Ē1̃ =

〈
1̃†Hc

〉
〈Nw〉

. (4.19)

Thus, the shift estimator is an upper bound for the norm projected energy. The advantage of the

norm projected energy estimator is that it can be easily calculated from Eq. (4.18) using only

shift and walker number data, which is collected anyway and thus does not require additional

computational load at run time.

An approximation to the norm projected energy can also be obtained from averaging

instantaneous time series data. This can be convenient for practical reasons. We define

G(n) = S(n) − N
(n+1)
w −N (n)

w

δτN
(n)
w

, (4.20)

and call the average 〈G〉 the growth estimator. It is easy to show that the average growth

estimator evaluates to

〈G〉 =

〈
1̃†Hc(n)

N
(n)
w

〉
. (4.21)

The growth estimator becomes equivalent to the norm projected energy estimator 〈G〉 = Ē1̃

for infinite time series averages. For finite averages it is still a good approximation due to the

fact that the walker number N
(n)
w in the denominator does not fluctuate strongly. In fact, the

fluctuations in the walker number can be controlled by the parameters ζ and ξ, as discussed in

Ref. [184], and are typically sub-Poissonian, i.e. var(Nw)� 〈Nw〉.

Figure 4.4 shows the norm projected energy and the growth estimator together with the shift

for the Bose Hubbard chain withM = N = 50 andU/J = 6. It is seen that the projected and the

growth estimators essentially agree, and have less bias than the shift estimator for small walker

numbers. Asymptotically, however they show the same scaling for large Nw. The inset shows

the difference of the shift and the norm projected energy (by the right hand side of Eq. (4.18)) on

a doubly logarithmic scale. We find that this difference exhibits 1/Nw scaling, which explains

why asymptotically both the shift and the norm projected energy show a population control bias

with the same slower-than-1/Nw scaling.
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Figure 4.4: Energy estimators for the Bose Hubbard chain withM = N = 50 and U/J = 6. The inset
shows the difference of the shift and the norm projected energy (by the right hand side of Eq. (4.18)) on

a doubly logarithmic scale. The dashed line is a power-law fit with exponent close to −1. Parameters as
in Fig. 4.2.

4.5.4 Variational energy estimator

Another interesting case is the projection onto the averaged vector y = 〈c〉. In this case the

energy estimator becomes the Rayleigh quotient

Ē〈c〉 =
〈c〉†H〈c〉
〈c〉†〈c〉

, (4.22)

which, by the variational theorem, provides an upper bound to the exact ground state energy

Ē〈c〉 ≥ E0. For the difference from the average shift we obtain the relation

〈S〉 − Ē〈c〉 = −
cov

(
S(n), 〈c〉†c(n)

)
〈c〉†〈c〉

≥ 0. (4.23)

Comparing this expression to the exact expression for the population control bias of Eq. (4.16),

we expect that the variational estimator Ē〈c〉 will be a much better estimator for the exact

ground state energy than the averaged shift 〈S〉, because most of the population control bias

has already been removed. A strong reduction of the population control bias in the variational
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4.5. Exact relations for the population control bias

energy compared to the shift and projected energy estimators can be seen in Fig. 4.3 in

calculations with the Bose Hubbard model with N = 20 particles inM = 20 sites.

Scaling with walker number

In order to quantify how the population control bias in the variational and the norm projected

energy estimators scale with walker number it is useful to introduce the difference between the

exact and the averaged eigenvector δ〈c〉 = 〈c〉−c0. From the definition of the variational energy

(4.22) we obtain

Ē〈c〉 − E0 =
δ〈c〉†(H− E01)δ〈c〉

〈c〉†〈c〉
≥ 0, (4.24)

where the inequality on the right holds because H−E01 is a positive semidefinite matrix. The

denominator can be bounded by the square of the walker number

〈c〉†〈c〉 =
∑
i

〈ci〉2 ≤

〈∑
i

|ci|

〉2

= 〈Nw〉2, (4.25)

where the equality will hold if the coefficient vector has a single nonzero element, or all walkers

congregate on a single configuration. Thuswe obtain a lower bound for the bias in the variational

energy estimator

Ē〈c〉 − E0 ≥
δ〈c〉†(H− E01)δ〈c〉

〈Nw〉2
≥ 0. (4.26)

A similar procedure can be performed for the norm-projected estimator to obtain

Ē1̃ − E0 =
1̃†(H− E01)δ 〈c〉

〈Nw〉
. (4.27)

We can now reason about the scaling with walker number. When the norm projected energy

estimator exhibits power law decay ∼ N−α
w we may expect a faster decay for the variational

energy estimator of Eq. (4.26) with ∼ N−2α
w because of the squared appearance of the walker-

number dependent quantities δ 〈c〉/〈Nw〉.

Note that Eq. (4.26) provides a lower bound, which will be a good estimate only when the

coefficient vector is highly concentrated on one or a few nonzero elements where stochastic
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noise will be small and the population control bias will not be a big issue anyway. A more

interesting regime is the sparse walker limit where the number of non-zero coefficients in the

exact eigenvector is much larger than the available number of walkers. In this regime we can

derive a tighter bound by assuming that the average number of walkers on each configuration is

smaller than unity and thus

〈c〉†〈c〉 =
∑
i

〈ci〉2 <

〈∑
i

|ci|

〉
= 〈Nw〉. (4.28)

This leads to a revised lower bound for the bias in the variational energy estimator

Ē〈c〉 − E0 >
δ〈c〉†(H− E01)δ〈c〉

〈Nw〉
(sparse walkers). (4.29)

Now, the bias in the variational energy estimator is bounded from below to a more slowly

decaying power law due to the changed exponent of the walker number in the denominator. In

cases where the bias scales as N−1
w overall the numerator on the right hand side of Eq. (4.27)

must be independent of walker number. We can thus expect the corresponding numerator in

Eq. (4.29) to be constant as well. For the variational energy bias this means that it is bounded

from below by N−1
w and thus it cannot decay any faster. In the situation of Sec. 4.4 where the

norm projected energy has a bias that decays with a slower power law ∼ N−α
w with α < 1, the

situation is worse because the lower bound for the bias in the variational energy bias of

Eq. (4.29) decays even more slowly with N1−2α
w .

Note that the sparse walker regime is not the asymptotic regime for large walker number

where, for any finite-sized matrix, the number of walkers on an individual configuration will

eventually become larger than one.

Computation via replica trick

In order to compute the variational energy estimator without keeping a long-time average of

the whole state-vector around we use the replica trick to propagate two statistically

independent fluctuating state vectors c
(n)
a and c

(n)
b with cov(c

(n)
a , c

(n)
b ) = 0 and

〈c(n)a 〉 = 〈c(n)b 〉 = 〈c〉. In Ref. [186] the replica trick was used to sample single and two-particle

reduced density matrices from which the numerator and denominator of the Rayleigh quotient
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4.5. Exact relations for the population control bias

(4.22) can be obtained. Here we show how the variational energy estimator can be calculated

directly without the intermediate sampling of reduced density matrices.

We denote the finite sample mean of a fluctuating quantity X(n) by X = Ω−1
∑

nX
(n),

whereΩ is the sample size. The numerator of the variational energy of Eq. (4.22) can be obtained

as the limit of samples means

〈c〉†H〈c〉 = lim
Ω→∞

c
†
aHcb = lim

Ω→∞
Sac

†
acb = lim

Ω→∞
Sbc

†
acb, (4.30)

where the last two equalities follow from Eqs. (4.9) and (4.10). Evaluating the sample mean

with the full Hamiltonian matrix yields a smaller variance than using the expressions with the

shift, but this does not result in a significant difference in the standard error. Using the shift

expressions instead avoids calculating overlaps with the Hamiltonian matrix and saves a

significant amount of computer time. Averaging the last two expressions yields better statistics

than taking each individually. We thus define the variational estimator of replicas a and b by

Ēvab =
(Sa + Sb)c

†
acb

2c†acb
, (4.31)

which only requires evaluating and storing a time series of dot products of the instantaneous

coefficient vector replicas (c
(n)
a )†c

(n)
b along with the value of the shift for each replica. This is

efficient in distributed calculations where the required parts of the coefficient vectors reside on

the same computer node. It also requires much less storage and computer time than sampling

reduced density matrices.

Obtaining this variational estimator becomes difficult in regimes of small walker number

and large Hilbert space size because the dot products of the sparse and statistically independent

coefficient vectors will be zero for most time steps. This leads to a small and wildly fluctuating

denominator in Eq. (4.31), which makes the distribution of the ratio ill behaved. The statistics

of the variational estimator can be vastly improved in this case by propagating more than two

replicas at the same time, and obtaining the variational estimator after averaging the denominator

and numerator separately over pairs of replicas. The finite sample variational estimator then
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becomes

Ēv =

∑R
a<b (Sa + Sb)c

†
acb

2
∑R

a<b c
†
acb

, (4.32)

where the sums run over distinct pairs out of the R replicas. Clearly, the variational energy of

Eq. (4.22) is obtained in the limit of large sample size:

Ē〈c〉 = lim
Ω→∞

Ēv. (4.33)

Adding more replicas has been found more efficient in reducing the standard error of the

denominator in Eq. (4.32) compared to increasing the number of time steps. Indeed, we have

found that the dot products of the coefficient vectors are only weakly correlated between

different combinations of replicas. Neglecting such correlations, the standard deviation of the

denominator in Eq. (4.32) then scales ∝ 1/
√
R(R− 1)Ω, where R is the number of replicas

and Ω is the number of time steps taken. As long as the computational cost of evaluating dot

products is negligible, the overall computational cost for replica calculations will scale with

RΩ. Thus increasing R leads to a better ratio of effect to cost. This will change for large R

when the quadratically growing computational cost of evaluating the dot products dominates

and thus increasing R further brings no relative advantage over increasing Ω.

The variational energies shown in Fig. 4.3 were obtained from Eq. (4.32) using R = 3

replicas, which dramatically reduced the fluctuations compared to a previous calculation with

only two replicas. The increase in CPU time compared to a single replica calculation is still

approximately given by the number of replicas, i.e. three in this case. On the other hand it can

be seen in Fig. 4.3 that the reduction of the population control bias by using the variational

estimator instead of the shift estimator is approximately equivalent to increasing the walker

number by an order of magnitude.

4.6 A scalar model

More insight into the causes and manifestations of the population control bias can be gained

by considering the effect of noise injected by the FCIQMC random sampling procedure on the

90



4.6. A scalar model

dynamics of scalar quantities. Here we consider the walker number N
(n)
w = 1̃†c(n) obtained

by projection of the coefficient vector with the 1̃ vector defined in Sec. 4.5.3. A generalized

procedure is used in App. 4.B to obtain the inequality of Eq. (4.15).

4.6.1 A stochastic difference equation

Projecting the FCIQMC equation (4.1) for the coefficient vector from the left with 1̃† yields a

scalar equation for the particle number

N (n+1)
w = N (n)

w + δτ
(
S(n)N (n)

w − 1̃†Ȟc(n)
)
. (4.34)

To make further progress, we separate the right hand side into a deterministic part and a noise

part:

N (n+1)
w = N (n)

w +
(
S(n)N (n)

w − 1̃†Hc(n)
)
δτ

+ µN (n)
w

√
δτ ř(n), (4.35)

where the noise term averages to zero:

〈µN (n)
w

√
δτ ř(n)〉 = 0. (4.36)

The noise term is written with the explicit factor
√
δτ to account for the fact that all individual

steps in the random sampling procedure have a variance linear in δτ . This is obtained from

detailed inspection of the FCIQMC sampling process in Sec. 4.8, and is due to the fact that the

individual random variables follow a scaled Bernoulli distribution and thus the variances are

proportional to the mean. As the scalar noise in Eq. (4.34) sums over many of such Bernoulli

random variables sampled in each time step, we may assume that it is normally distributed as

a consequence of the theorem of large numbers. We thus take ř(n) as a normally distributed

random variable with zero mean 〈ř(n)〉 = 0 and unit variance 〈(ř(n))2〉 = 1. This is significant

because the product∆W̌ (n) ≡
√
δτ ř(n) has all the properties of a Wiener increment [182]. We

have also included the factorN
(n)
w for later convenience and capture all remaining dependencies

of the variance with the parameter µ.
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As long as we are in or close to the steady-state limit considered in Sec. 4.5 we can assume

that the quantity 1̃†Ȟc(n) can be written in terms of the norm projected energy Ē1̃ of Eq. (4.19) as

Ē1̃N
(n)
w . We thus arrive at the stochastic difference equation formulated in terms of the walker

number N
(n)
w and the shift S(n)

N (n+1)
w = N (n)

w +
(
S(n) − Ē1̃

)
N (n)

w δτ + µN (n)
w ∆W̌ (n). (4.37)

Together with the deterministic update equation (4.2) for the shift, this provides a fully self-

consistent model for the dynamics of the shift andwalker number where the details of the random

sampling process are compressed into the single parameter µ. Assuming that µ is a constant

parameter is a useful simplification that makes the model solvable. This assumption will be

relaxed in App. 4.E.

4.6.2 Stochastic differential equation limit

It is most convenient to convert the stochastic difference equation into a stochastic differential

equation, which can then be treated with the powerful methods of stochastic calculus [182].

Since ∆W̌ (n) satisfies the properties of a Wiener increment, we can associate it with a well

defined underlying Wiener process in a continuous time t that is discretized into time steps of

length δτ . Then the coupled stochastic difference equations (4.37) and (4.2) can be identified

as the Euler-Maruyama discretization of the Itô stochastic differential equation

dNw =
[
S(t)− Ē1̃

]
Nw(t) dt− µNw(t) dW̌ (t), (4.38)

dS = − ζ

δτ
d lnNw(t)−

ξ

δτ 2
ln
Nw(t)

Nt

dt (4.39)

where S(t) andNw(t) are now continuous-time functions and dW̌ (t) is an infinitesimal Wiener

increment. Note that this noise source satisfies the requirements of Itô calculus to be in the

“future” of the dynamical variablesNw(t) and S(t), because the noise in the FCIQMC sampling

procedure that generated it [also see Eq. (4.34)] is generated by fresh random numbers in each

time step that do not depend on the instantaneous values of N
(n)
w or S(n).

It is now convenient to introduce a variable transformation and replace the walker number
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4.6. A scalar model

with the new variable

x(t) = ln
Nw(t)

Nt

. (4.40)

In the first place this transformation is convenient because it removes the logarithm terms in the

shift update equation. However, it also serves a second more important purpose in removing the

product of fluctuating variable on the right hand side of Eq. (4.38), as we will see.

In Itô calculus one has to be careful when performing variable transformations and counting

orders of differentials. This is to account for the fact that the standard deviation of the Wiener

increment gives
√
δτ . The resulting procedure is known as Itô’s Lemma [187]. The Itô rules

for the infinitesimal increments are

dW̌ 2 = dt, (4.41)

dt2 = dW̌ dt = 0. (4.42)

Recall that

df(y) = f ′(y) dy +
1

2
f ′′(y) dy2 + . . . , (4.43)

and thus

dx =
1

Nw

dNw −
1

2N2
w

dN2
w + . . . . (4.44)

Performing the variable transformation by inserting Eq. (4.38) for dNw into Eq. (4.44) and

applying Itô rules yields

dx =

[
S(t)− Ẽ − 1

2
µ2

]
dt− µ dW̌ (t), (4.45)

dS = − ζ

δτ
dx− ξ

δτ 2
x(t) dt, (4.46)

which is the final form of the coupled Itô stochastic differential equations (SDEs).

In the limit where no noise is present, µ = 0, the above SDE simplifies to a set of coupled
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linear ordinary differential equations (ODEs)

dx

dt
= S(t)− Ẽ, (4.47)

dS

dt
= − ζ

δτ

dx

dt
− ξ

δτ 2
x(t). (4.48)

These equations were previously derived for the population dynamics of FCIQMC in Ref. [184],

and describe the motion of a damped harmonic oscillator for x(t). The equilibrium solution (and

global attractor) is x(t) = 0 and S(t) = Ẽ. Note that x = 0 means Nw = Nt, i.e. the walker

number reaches the pre-set target walker number. The two fundamental solutions of the ODE

are exponentials x±(t) = exp(t/T±) with time constants T± = δτ(ζ ±
√
ζ2 − 4ξ)/(2ξ).

4.6.3 Population control bias for the shift estimator

In the previous section we have seen that without noise the time evolution is given by an

exponential decay to a steady state. In the presence of noise the long-time limit will not be

time-independent but sees fluctuations of x(t) and S(t) around some mean values. Taking the

ensemble average in this steady-state situation, we can thus expect to have

〈dx〉 = 0, (4.49)

〈dS〉 = 0. (4.50)

The Wiener increment by definition fulfills 〈dW 〉 = 0. Thus, taking the average of the coupled

SDEs (4.45) and (4.46), we obtain

〈S〉 − Ẽ =
1

2
µ2, (4.51)

〈x〉 = 0. (4.52)

The first equation yields an explicit expression for the population control bias in the scalarmodel,

i.e. the deviation of the averaged shift 〈S〉 from the target energy Ẽ. The second equation asserts

that the walker number Nw fluctuates around the target walker number Nt.
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4.6.4 Steady-state solution of the SDE

Because the coupled SDEs (4.45) and (4.46) are linear, their general solutions can be found

with a Greens function technique as shown in App. 4.C. Here we are specifically interested in

the long time limit where the only dynamics left is due to the injected noise. In this case the

solutions for the logarithmic walker number and the shift can be written as

x(t) = −µ
∫ t

−∞
g11(t− t′)dW (t′), (4.53)

S(t) = Ẽ +
1

2
µ2 − µ

∫ t

−∞
g21(t− t′)dW (t′). (4.54)

The Greens functions for the case of critical damping, where 4ξ = ζ , read

g11(t) = θ(t)(1− γt)e−γt, (4.55)

g21(t) = θ(t)(−2γ + γ2t)e−γt, (4.56)

where γ = ζ/(2δτ) is the damping constant. More general expressions for the overdamped

and underdamped case are derived in App. 4.C. Note that direct averaging of Eqs. (4.53) and

(4.54) yields the correct averages (4.51) and (4.52) that were previously obtained directly from

the SDE.

4.6.5 Covariances and correlation functions in the scalar model

The full solutions allow us to go further, though, and derive any correlation function. Starting

with auto-covariance functions with a time lag of h, we obtain for the logarithmic walker number

x

cov[x(t− h), x(t)] = µ2

4

(
1

γ
− |h|

)
e−γ|h|, (4.57)

and for the shift S

cov[S(t− h), S(t)] = µ2

4
(5γ − 3γ2|h|)e−γ|h|. (4.58)
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For the cross-covariances we obtain (for h ≥ 0):

cov[x(t− h), S(t)] = −µ
2

4
(2− γh)e−γh, (4.59)

cov[x(t), S(t− h)] = −µ
2

4
(2− 3γh)e−γh. (4.60)

Specifically, for the cross-covariance without lag (h = 0) we recover the value of the population

control bias in the shift:

cov(x, S) =
1

2
µ2 = 〈S〉 − Ẽ. (4.61)

Covariances of the walker number Nw(t) = Nt exp[x(t)] can easily be obtained when the

fluctuations of the walker number are small, i.e. std(Nw) � Nw from the method of small

increments. For arbitrary A(t), e.g., we find

cov[Nw(t), A(t)] ≈ Nt cov[x(t), A(t)], (4.62)

in this regime, where also 〈Nw〉 = Nt. Specifically, this provides us with an expression for the

equal-time covariance of the walker number and the shift [from Eq. (4.61)]

cov(Nw, S) =
1

2
Ntµ

2. (4.63)

With this information, we can thus determine the norm-projected energy estimator for the scalar

model from Eq. (4.18) as

Ē1̃ = 〈S〉 −
1

2
µ2 = Ẽ. (4.64)

I.e. the value is equal to the exact energy. This is also consistent with directly interpreting the

definition of the norm projected energy of Eq. (4.19) in the context of the scalar model, where

it necessarily reproduces the exact energy Ẽ. We can thus conclude that the norm-projected

energy estimator is not affected by the population control bias in the scalar model.

96



4.6. A scalar model

4.6.6 Evaluation of the scalar model and comparison to full FCIQMC

The scalar model in the form of the SDEs (4.38) turned out to be exactly solvable, which

provides a convenient source of insight into the population control bias in the shift estimator

and its parameter dependences. The population control bias for the shift estimator was found

to be completely determined by the coefficient µ describing the strength of the noise source by

Eq. (4.51). In particular, we find no dependence on the population control parameters ζ (for

damping) or ξ (for forcing) that appear in Eq. (4.2). Also, since the time step drops out of the

differential equation model, there is no dependence on δτ . All of this is consistent with

empirical observations on numerical FCIQMC simulation, as detailed in Appendix 4.2 (see

Figs. 4.12 and 4.13).

Unfortunately, the scalar model is not useful for studying the population control bias in

the projected energy estimators, as the only available projected energy estimator is unbiased

according to Eq. (4.64).

4.6.6.1 Nonlinear extension of the scalar model

The scalar model of Eqs. (4.38) also makes no predictions for the dependence of the

population control bias on the walker number Nt. A more careful analysis of the FCIQMC

sampling procedure is necessary to obtain this information. In Sec. 4.8 this will be done taking

into account the structure of specific Hamiltonian matrices. Within the scalar model we can

obtain a more realistic description by replacing

µNw → η
√
Nw, (4.65)

in Eq. (4.38), with some constant η. This can be motivated by the assumption that the collective

action of the sampling procedure can be treated as a sum of Bernoulli random variables, for

which the variance is proportional to the mean. While the resulting, modified, scalar model

is nonlinear and more complicated than the previous version, the steady state averages can be

obtained in analogy to Sec. 4.6.3 and yield

〈S〉 − Ẽ =
η2

2Nt

. (4.66)
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The prediction of this nonlinear scalar model is thus that the population control bias in the shift

estimator scales with N−1
t . This has been seen in projector Monte Carlo calculations in many

cases before, although the evidence presented in Sec. 4.4 gave examples to the contrary. In the

more detailed analysis of Sec. 4.8 we will see that the assumption (4.65) is too simplistic, and

indeed the details of the Hamiltonian matrix have to be taken into account.

4.6.6.2 Comparing correlation functions from FCIQMC and the scalar model

The exactly solvable scalar model makes interesting predictions for correlation functions of the

time series with Eqs. (4.57) to (4.60). The analytical results for the cross-covariance and the

auto-covariance of the shift are compared to numerical results of an FCIQMC calculation with

Nt = 100 in a Hilbert space of ≈ 9 × 104 in Fig. 4.5. It is striking to see the predictions

derived from the scalar model capturing the behavior of the cross-covariance functions in panel

(a) almost perfectly. The only free model parameter µ was adjusted to the value of the equal-

time covariance. The agreement is less perfect for the autocovariance of the shift in Fig. 4.5(b),

where the scalar model predicts a zero crossing at h = 5/(3γ), which is not seen in the FCIQMC

data.

The situation changes dramatically in a system with a larger Hilbert space as can be seen in

Fig. 4.6. Here the dimension of Hilbert space is
(
M+N−1

N

)
≈ 7 × 1010, almost seven orders of

magnitude larger than the walker number Nt = 10, 000. While the correlation functions now

show a fast initial decay consistent with the analytical prediction (here δτ/γ = 2δτ/ζ = 25δτ ),

the eventual decay of the correlation functions to zero is dominated by a second, much longer

time scale of the order of 103δτ . We attribute this longer time scale to the time it takes for

the walker population to explore Hilbert space. Eventually, this correlation time is bounded by

the Poincaré recurrence time of the sampling process, which can become very large in a large

Hilbert space. Clearly, such effects are not captured in the scalar model and its predictions of

Eqs. (4.57) to (4.60), because the noise was modeled by an uncorrelated scalar source term [see

Eq. (4.37)]. The scalar model could thus be made more realistic by injecting noise with a finite

correlation time.
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Figure 4.5: Covariances vs. time delay in the well-sampled regime. Panel (a) shows the cross-

covariances cov[x(t − h), S(t)] and cov[S(t − h), x(t)] and panel (b) shows the auto-covariance

cov[S(t− h), S(t)]. Symbols depict numerical (“FCIQMC”) results with Nt = 100 walkers for a Bose-
Hubbard chain with N = M = 10, U/J = 6. These numerical results are fairly well matched by the
analytical results (“predictions”) of Eqs. (4.59) in panel (a), and Eq. (4.58) in panel (b) from the scalar

model shown as lines. The decay rate in the scalar model γ = ζ/2 is already determined by the value
ζ = 0.08 used in the numerical calculation for population control and is not a free parameter. It fully
determines the correlation time scale δτ/γ = 2δτ/ζ = 25δτ . The remaining parameter µ was set to

µ2/2 = − cov(S, x) as obtained from the numerical results. Averaging was performed over Ω = 218

time steps with δτ = 0.001J−1 after equilibrating for 5,000 time steps. The forcing parameter was set

to ξ = ζ2/4.
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Figure 4.6: Evidence for long correlation times. Cross-covariances cov[x(t − h), S(t)] and cov[S(t −
h), x(t)] and the auto-covariance of the shift cov[S(t−h), S(t)] as function of the time delay are shown in
panels (a) and (b), respectively. Numerical data (“FCIQMC”) and analytical predictions from Eqs. (4.59)

and (4.58) (“prediction”) are shown as per legends. The FCIQMC results for the real-space Bose-Hubbard

chain withN = M = 20, U/J = 6withNt = 10, 000walkers demonstrate a much longer time scale for
the decay of the correlation functions than the analytical prediction of δτ/γ = 2δτ/ζ = 25δτ . The value
ζ = 0.08 at critical forcing ξ = ζ2/4 was used for population control in FCIQMC. The parameter µ was

set to µ2/2 = − cov(S, x) as obtained from the numerical cross-correlation at delay h = 0. Averaging
was performed over Ω = 4 × 106 time steps with δτ = 0.001J−1 after equilibrating for 50,000 time

steps. Statistical error bars for the numerical results (not shown) are comparable to the line width.
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4.7. Unbiased estimators by reweighting

4.7 Unbiased estimators by reweighting

In section 4.5 we argued that the population control bias originates from the non-vanishing

covariance of the fluctuating shift and coefficient vector in the product of the two quantities

in the FCIQMC master equation (4.1) [see Eq. (4.11)]. Hetherington [67] first discussed the

construction of unbiased estimators from weighted averages, which was put into practice in

Refs. [178, 179]. We briefly review the construction of unbiased estimators following Ref. [68]

(see also [181]).

4.7.1 The reweighting procedure

Suppose we replace the update equation for the coefficient vector (4.1) by

f(n+1) = [1+ δτ(Ef1− Ȟ)]f(n), (4.67)

where the fluctuating shift S(n) is replaced by a constant Ef. This equation is not practical

for forward propagation because it is unstable to exponential growth or decay. Let us assume,

however, that Ef is chosen such that the norm ‖f(nf)‖1 takes a given desired value at the final

point nf of a particular time series. Then the covariance cov(Ef, f
(n)) vanishes trivially. Thus

there is no population control bias, and the expected value 〈f〉 becomes collinear to the exact

ground state coefficient vector for sufficiently large nf.

The idea of the reweighting procedure is to approximately generate the time series for the

vectors f(n) (or derived quantities). This is achieved by undoing the effect of the fluctuating shift

S(n) on a given time series of c(n) andN
(n)
w , obtained using the standard procedure of Eqs. (4.1)

and (4.2) .

The effect of the shift can be undone for a single time step using

1+ δτ
(
Ef1− Ȟ

)
= exp

[
δτ
(
Ef − S(n)

)]
×[

1+ δτ
(
S(n)1− Ȟ

)]
+O

(
δτ 2
)
, (4.68)

where we have used the expansion of the exponential function exp(x) = 1 + x + O(x2). The
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effect of h̃ steps can consequently be undone by multiplying with a weighting factor made up

of products of exponential factors up to a small error of order δτ 2. Defining the weight factor

w
(n)

h̃
=

h̃∏
j=1

exp
[
δτ
(
Ef − S(n−j)

)]
, (4.69)

the quantity

f(n) = w
(n)
n−n0

c(n), (4.70)

approximately fulfills the iteration equation (4.67) for n ≥ n0 with initial condition f
(n0) = c(n0)

and is unbiased for n− n0 →∞. Unbiased estimators for observables can thus be obtained by

simply replacing the coefficient vector c(n) by w
(n)

h̃
c(n) in the corresponding expressions with a

suitably chosen reweighting depth h̃.

An asymptotically unbiased estimator for the ground state energy based on the projected

energy of Eq. (4.14), termed “mixed estimator” in Ref. [68], can be defined as

Emix(h̃) =

∑
nw

(n)

h̃
y†Hc(n)∑

nw
(n)

h̃
y†c(n)

(4.71)

where the sum runs over a sufficiently large part of an equilibrated time series (the sample).

Note that for h̃ = 0 no reweighting takes place and instead we recover the projected energy of

Eq. (4.14): 〈Emix(0)〉 = Ēy. The expected value of the estimatorEmix(h̃) is unbiased in the limit

h̃ → ∞ and δτ → 0. However, the variance grows with h̃, which makes it impractical to take

the large h̃ limit in numerical calculations.

Note that the actual value of the constant Ef is not very important as it can easily be seen

that the value Emix(h̃) is independent of Ef. In order to minimize rounding errors it should be

chosen such as to avoid extremely large or small weight factors and thus we setEf to the sample

mean of the shift.

The time series for the walker number N
(n)
w can likewise be unbiased by reweighting with

the weight factors w
(n)

h̃
[following from Eq. (4.70)]. An asymptotically unbiased version of the

102



4.7. Unbiased estimators by reweighting

growth estimator from Eq. (4.20) is given by [68]

Egr(h̃) = Ef −
1

δτ
ln

∑
nw

(n+1)

h̃
N

(n+1)
w∑

nw
(n)

h̃
N

(n)
w

. (4.72)

It is easy to show that the growth estimator without reweighting (h̃ = 0) is approximately equal

to a time series average over G(n) of Eq. (4.20): 〈Egr(0)〉 = 〈G〉 + O(δτ 2), which is obtained

in the limit of summing over a long time series. By the arguments of Sec. 4.5.3, the growth

estimator at h̃ = 0 thus becomes equivalent to the norm-projected energy estimator Ē1̃ of Eq.

(4.19).

The growth estimator is closely related to the shift estimator (sample mean of S(n)) and can

be understood as the improved and reweighted version of the shift. Since the weight factors

asymptotically remove the bias from the time series of the walker numbers, Egr(h̃) is formally

unbiased in the limit h̃→∞ and δτ → 0.

4.7.2 Reweighting for the scalar model

The effect of the reweighting procedure cannot be meaningfully studied in the scalar model

because the relevant energy estimators are already unbiased for h̃ = 0, i.e. without actual

reweighting.

4.7.3 Analysis of the unbiased estimators

Figures 4.7 and 4.8 show the reweighted estimators for FCIQMC calculations in Hilbert spaces

of different size. The data shows how initially the reweighted estimators move closer to the

exact result as the reweighting depth h̃ is increased. For larger h̃, however, the behavior is non-

monotonic while the error bars estimated from blocking analysis grow. In general, the observed

behavior is consistent to what has been reported previously in the literature, e.g. in Ref. [70].

It is interesting to think of h̃ δτ as a time scale and compare Figs. 4.7 and 4.8 to the

correlation functions shown in the corresponding Figs. 4.5 and 4.6. For both cases, the time

scale of correlations induced by the walker number control procedure is δτ/γ = 25δτ as per
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Figure 4.7: Reweighted estimators. The growth estimator Egr of Eq. (4.72) (green dash-dotted line) and

the mixed estimator Emix of Eq. (4.71) (dotted magenta line) from a single configuration trial vector are

shown as a function of the reweighting depth h̃ in comparison to the shift estimator 〈S〉 (blue solid line),
and the exact energy E0 (dashed black line). The FCIQMC calculation was done withNt = 100 walkers
in a Hilbert space with dimension ≈ 9 × 105 (Bose-Hubbard model with N = 10, M = 10). The time
scale h̃ δτ can be directly compared to the delay h of the correlation functions shown in Fig. 4.5. All

parameters as in Fig. 4.5.

Sec. 4.6.5, which is much shorter than the time scale on which the reweighting is efficient. It

rather appears that the longer time scale of ∼ 3, 000 time units observed for the decay of

correlations in Fig. 4.6 is relevant for the reweighted estimators, even though it is not evident

in the correlation functions of the smaller system in Fig. 4.5. However, we also see

non-monotonic behavior and significant growth of error bars on that time scale.

Reference [179] suggested to choose the time scale h̃ δτ such that detected autocorrelations

in the Monte Carlo time series have decayed below a statistically significant level. We have

found the reweighted estimators to deteriorate quite rapidly after initially approaching the exact

value and on time scales comparable to the decorrelation time scale. Accurate prediction of the

optimal reweighting depth may thus require further study.
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4.8. Noise in the stochastic FCIQMC algorithm
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Figure 4.8: Reweighted estimators for the data from Figs. 4.3 and 4.6. The FCIQMC calculation was

done with Nt = 104 walkers in a Hilbert space with dimension ≈ 7 × 1010 (Bose-Hubbard model with
N = 20, M = 20). The growth estimator Egr of Eq. (4.72) (green dash-dotted line) and the mixed

estimator Emix of Eq. (4.71) (dotted magenta line) from a single configuration trial vector are shown as

a function of the reweighting depth h̃ in comparison to the shift estimator 〈S〉 (blue solid line), and the
(extrapolated) exact energy E0 (dashed black line). The time scale h̃ δτ can be directly compared to the
delay h of the correlation functions shown in Fig. 4.6.

4.8 Noise in the stochastic FCIQMC algorithm

In this section we model the noise generated in the FCIQMC sampling process in the sparse

walker regime on the level of individual matrix elements. This allows us to derive explicit

relations for the shift and the projected energy estimators for specific cases of the Bose Hubbard

Hamiltonian.

4.8.1 FCIQMC sampling approximated by Wiener process

The random processes associated with the individual steps of the matrix-vector multiplication

in the walker update equation (4.1) are considered in detail in App. 4.D for the integer walker

FCIQMC algorithm of Ref. [51]. This analysis suggest the following representation of the
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walker update

c(n+1) − c(n) = (S(n)1−H)c(n)δτ −∆Ȟc(n), (4.73)

where the fluctuating matrix ∆Ȟ has zero mean and the matrix elements are given by

∆Ȟij =
√
|S(n)δij −Hij|∆W̌ij. (4.74)

This representation reproduces the mean and variances of the sampling procedure while

approximating Bernoulli distributed random numbers by normally distributed Wiener

increments as explained in more detail in App. 4.D. It presents an excellent starting point for

further analysis.

We can now proceed to derive an Itô differential equation for the walker number by

norm-projection and taking the differential equation limit. The procedure is analogous to the

derivation of the scalar model in Sec. 4.6 and is written out in detail in App. 4.E. Using a

variable transformation and Itô’s lemma to decorrelate the fluctuating shift from the walker

number yields the following expression for the difference between the shift and the norm

projected energy estimators:

〈S〉 − Ē1̃ =

〈
1

2N2
w

∑
i,j

|Sδij −Hij| cj

〉
. (4.75)

Comparing with Eq. (4.18) the above yields an explicit expression for the covariance of shift

and walker number. Equation (4.75) should be compared with the corresponding expression

(4.52) from the scalar model. In contrast to the scalar model, where the right hand side simply

evaluated to a constant of the model, we have a different situation here, where products of the

fluctuating quantities of shift S, walker number Nw, and state vector c appear explicitly.

Note that the right hand side of Eq. (4.75) depends on the fluctuating walker number Nw(t)

as well as on the individual coefficient vector elements cj(t). While the latter may be expected

to scale proportional to the norm Nw, which would lead to an overall N
−1
w scaling, this is not

necessarily the case in the sparse walker regime for which this equation was derived. However,

we have observed N−1
w scaling numerically even in the case of non-universal scaling of the

population control bias, as shown in the inset of Fig. 4.4.
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4.8. Noise in the stochastic FCIQMC algorithm

4.8.2 Application to Bose-Hubbard chain

In order to understand more about the scaling properties of the right hand side of Eq. (4.75), we

need to know something about the Hamiltonian and about where the state vector is probing it.

Thus it is plausible that the result will depend on the physics of the problem. The sum goes over

all non-zero coefficients cj and over all off-diagonal matrix elements that connect to it. We thus

specialize in the following to the Bose Hubbard Hamiltonian with N particles inM sites of Eq.

(4.5).

4.8.2.1 Low density superfluid

When the bosons are well separated in a mostly empty lattice, then each of them can hop left

or right, contributing 2J to the energy. The diagonal contribution is proportional to the shift,

since there is no interaction energy in this regime (we consider the limit where U is small and

negligible).

The bias term in Eq. (4.137) that we obtained from applying Itô’s lemma can be simplified

to

1

2N2
w

∑
i,j

|Sδij −Hij| cj =
|S|
2Nw

+
JN

Nw

. (4.76)

Equation (4.138) for the difference between average shift and projected energy thus becomes

〈S〉 − 〈E1〉 =
〈
JN + 1

2
|S|

Nw

〉
, (4.77)

where N is the number of bosons. The diagonal contribution is proportional to the shift, since

there is no interaction energy in this regime. One problem with this expression is that we still

have products of fluctuating and correlated quantities inside the averages and thus we cannot

rigorously separate them into a product of averages. However, under the assumption that the

variable transformation to the logarithmic walker number has already given us the leading

contribution to the covariance between shift and walker number, we may hope that the

remaining covariances are of smaller order of magnitude. Taking only the leading terms we
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Figure 4.9: Shift estimator for the energy per particle in the low density superfluid regime as a function

of particle number N in a lattice with M = 50 lattice sites with Nt = 100 walkers. The dashed black
line shows the value of the exact energy per particle E0/N = −2J . The deviation of the data from the

exact results represents the population control bias, which is seen to be weakly dependent on the particle

number N as predicted by Eq. (4.78).

approximate 〈E1〉 ≈ Ē1̃ and obtain

〈S〉
N
− Ē1̃

N
≈
J + 1

2
〈|S|/N〉
〈Nw〉

, (4.78)

where we have divided by particle number in order to relate to the intensive energy per particle.

It is seen that the right hand side is approximately independent of particle number except for a

small particle number dependence that could appear due to fluctuations in the shift.

Figure 4.9 shows the shift estimator and the projected energy estimator approximated by the

growth estimator 〈G〉 as a function of particle number N in the low density superfluid regime.

It is seen that the difference in the energy estimators per particle is indeed nearly independent

of N as suggested by Eq. (4.78). Furthermore, the projected energy estimator appears to have

very little remaining population control bias for this system.
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4.8. Noise in the stochastic FCIQMC algorithm

4.8.2.2 Single particle Hubbard

Further simplifications are found if we takeN = 1, where a very simple exact solution is known.

In this case the Hilbert space isM dimensional and spanned by the configurations â†i |vac〉. The

(unnormalized) ground state is given by

|Ψ0〉 =
M∑
i=1

â†i |vac〉, (4.79)

and thus the coefficient vector c0 of the exact ground state is a vector of all ones, i.e. it is identical

to the vector of all ones 1 that we previously used to obtain the one-norm by projection

c0 = 1. (4.80)

The ground state further has the eigenvalue E0 = −2J . The considerations of the previous

section still apply, with the difference that the norm projected energy estimator now becomes

the exact (non-fluctuating) ground state energy

E1 = Ē1̃ = E0 = −2J. (4.81)

We thus obtain an expression for the full population control bias from Eq. (4.77)

〈S〉 − E0 =

〈
J + 1

2
|S|

Nw

〉
, (4.82)

which is exact except for the assumptions made around Itô calculus of Gaussian noise elements

and an underlyingWiener process in continuous time. Approximating this expression further by

simply replacing the fluctuating walker number Nw by Nt and using S = −|S| and E0 = −2J ,

we obtain

〈S〉 − E0 ≈
2J

Nt

. (4.83)

as the leading term in 1/Nt.

Figures 4.10 and 4.11 demonstrate that the full prediction of Eq. (4.82) works very well but

the leading-order 1/Nw prediction shows a significant discrepancy at small walker number. This
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Figure 4.10: Shift estimator vs. walker number for the single particle Hubbard model (blue circles)

compared to the prediction of Eq. (4.82) (green diamonds) and the leading power law from Eq. (4.83)

(orange squares). The exact energy is shown as the full (black) horizontal line, and the red triangles

corresponds to the measured shift corrected by the covariance term, i.e. Ē
1̃
as per Eq. (4.18).

is attributed to the fact that the shift was fluctuating across zero with significant amplitude and

thus the assumption that the sign is consistently negative was not satisfied.

4.9 Conclusion

In this work we have analysed the FCIQMC algorithm using tools of stochastic calculus. This

enabled us to derive bounds for the various estimators and find explicit solutions for the

correlation functions in the time series of the walker number and the shift. The scalar model

explains in particular why the population control bias does not depend on the values of the

damping and forcing parameters of walker control. This independence was already seen

previously in numerical data [184].

Our derivations of Sec. 4.5 further showed that the shift estimator is an upper bound for the

exact energy and other estimators, like the projected energy. This was derived for

sign–problem free Hamiltonians and should also be true above the annihilation plateau for
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Figure 4.11: Energy error vs. walker number on doubly logarithmic scales with the same data as in

Fig. 4.10. Note that the measured shift estimator is consistent with the pure power law from Eq. (4.83)

(orange squares, leading prediction) for large walker numbers, but decays more rapidly for small walker

numbers.

general Hamiltonians. It further provides a justification for the heuristic rule that the shift and

projected energy estimators should agree when the population control bias has successfully

been controlled.

We were also able to derive exact expressions for the population control bias for a the very

simple Hamiltonian of a single particle in the Hubbard chain. While the norm projected energy

is an unbiased estimator in this case, the population control bias for the shift asymptotically

scales with the inverse walker number N−1
w . While the N−1

w scaling is consistent with previous

works that have argued for this to be a universal feature of projection Monte Carlo methods

[67–69, 176], it is remarkable that we found non-universal scaling with slower power laws for

Mott insulating states with particle numbers larger than about 20 in the BoseHubbardmodel. We

have verified numerically that the covariance of shift and walker number (and thus the difference

between the shift and projected norm estimator) scale with N−1
w , which indicates that the non-

universal, slow power law scaling affects both of the energy estimators equally and may have

a separate origin from the shift-walker number correlations. Our results were obtained with

the original integer-walker sampling procedure of Ref. [51] and it remains an open question
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whether other sampling procedures like semistochastic and non-integer FCIQMC [129, 151]

or fast randomized iteration algorithms [154, 176, 183] would exhibit the same non-universal

behavior.

An important question, naturally, is how the population control bias can be avoided, or

mitigated. The reweighting procedure [68, 178, 179] discussed in Sec. 4.7 is an interesting

option, which can remove the bias in existing Monte Carlo time series in post-processing. It

comes at the cost of increased stochastic errors, and determining the optimal reweighting depth

is difficult.

Reducing the sampling noise is an obvious strategy that will reduce the bias in the time

series along with stochastic errors. Improved sampling strategies like semistochastic FCIQMC

[129, 151], fast randomized iteration [154, 176, 183], or heat-bath sampling [132] can achieve

this. For strongly correlated problems in large Hilbert spaces, however, sampling noise cannot

be fully avoided. The insight obtained from Itô’s lemma is that the squared amplitude of the

sampling noise finds its way back into the average of the shift, and thus causes the population

control bias. An intriguing possibility is the option to inject additional imaginary noise, whose

squared amplitude provides a negative contribution and can thus compensate the bias caused by

the original sampling noise. We will concentrate future work in this direction and explore noise

compensation with complex walker populations.
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4.9. Conclusion

Note added

After the bulk of this work was completed we became aware of a recent preprint on the

population control bias in FCIQMC by Ghanem et al. [181]. While the results mostly

complement our work, there is some overlap with Sec. 4.5. We note that Ref. [181] argues for

an N−1
w scaling of the FCIQMC population control bias, while we provide counter examples

demonstrating non-universal scaling in Sec. 4.4. Reference [181] further present data on two

model systems where the bias could be removed by combining noise reduction by importance

sampling by reweighting of Monte Carlo data in post-processing (see Sec. 4.7, which was

added later, and Refs. [68, 70, 178]).
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Appendix

4.A Dependence of the bias on other simulation parameters

The FCIQMC equations (4.1) and (4.2) contain the time step δτ , the damping constant ζ , and

the forcing ξ as parameters of the simulation. One may wonder how these parameters influence

the values or the biases of the energy estimators considered in this work. We have not seen any

significant dependence of the energy estimators in our simulation, and present some exemplary

evidence for the absence of such a parameter dependence in this section.

Figure 4.12 shows various energy estimators while the forcing parameter ξ is varied over

several orders of magnitude. The limit ξ = 0 corresponds to the unforced population control of

Ref. [51] used in most of the literature to date, and ξ = ζ2/4 = 0.0016 is the value used in

Fig. 4.3 and recommended in Ref. [184]. The absence of any significant ξ dependence of the

energy estimators indicates that the population control bias for all energy estimators is not

affected by the population control mechanism introduced in Ref. [184]. Note that the

population control bias in the shift estimator was already reported for a smaller system in

Fig. 10 of Ref. [184].

It is well known [and easy to derive from Eq. (4.1)] that the deterministic FCIQMC

propagator has no time step error and is stable as long as δτ < 2/(Emax −E0), where Emax and

E0 are the largest and smallest eigenvalue of the Hamiltonian matrix [61]. As seen in Fig. 4.13

we find that also the population control bias in both the shift and the projected energy

estimator is independent of the time step parameter δτ . It can be clearly seen that the error bars
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Figure 4.12: Bias under forced population control. Biased energy estimators against the forcing

parameter ξ from the real-space Bose-Hubbard chain withN = M = 20. The projected energy estimator
Ēy (red circles) with a projector containing the non-interacting ground state and all 40 connected (singly-

excited) configurations shows much larger error bars than the other energy estimators. All estimators

including the shift 〈S〉 (blue triangles), the norm-projected energy Ē
1̃
fromEq. (4.15) (green squares), and

the variational energy Ē〈c〉 (orange diamonds) show no significant dependence on the forcing parameter ξ
within the error bars. This implies that the forced population control of Eq. (4.2) introduced in Ref. [184]

is neutral with respect to the population control bias compared to the original procedure of Ref. [51],

where ξ = 0. The calculation was performed with Nt = 103 walkers and 4 × 106 time steps after
equilibration. The reference ground-state energyE0 = 12.90J was obtained from an accurate calculation

with Nt = 107 walkers. All other parameters are chosen as in Fig. 4.3.

are decreasing with increased δτ , indicating that the simulation is more efficient for larger time

steps. As a trade-off, the number of non-zero elements in the coefficient vector fluctuates

more, as seen in the inset of Fig. 4.13. For δτ & 0.014J−1 we see rapid, uncontrolled growth

of the walker number and non-zero vector elements consistent with the instability of the

FCIQMC equations. For the specific Hamiltonian of Fig. 4.13 the stability boundary is

2/(Emax − E0) ≈ 0.0072J−1, so smaller by a factor of two compared to the observed value of

the instability.

In the original formulation of FCIQMC [51] it was suggested to update the shift parameter

not in every time step but rather only every 5 to 10 time steps. One might wonder whether

delaying the shift updates influences the population control bias, as the fluctuating nature of

the shift can be understood as the origin of the bias. Delayed shift updates can be achieved by
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Figure 4.13: Bias and stability as a function of the time step parameter. Shift (blue triangles) and

projected energy (red circles) vs. the size of the time step δτ for a Bose-Hubbard chain withN = M = 10
and U/J = 6. The exact energy (dashed line) was obtained from exact diagonalization. The bias in both

energy estimators is evident and largely independent of δτ . Stable simulation data was obtained for time
steps beyond the theoretical stability threshold of δτ ≈ 0.0072J−1 (see text) up to the largest value

shown δτ = 0.014J−1, which is marginally unstable. Due to the fixed number of time steps taken

(220), the error bars decrease with increasing time step size. The inset shows the mean (stars), standard
deviation (error bars) and the maximum (crosses) of the number of nonzero elements in the coefficient

vector during the simulation. Other parameters: Nt = 100, ζ = 0.08, ξ = ζ2/4.

generalising the shift update equation (4.2) to

S(n+A) = S(n) − ζ

Aδτ
ln
N

(n+A)
w

N
(n)
w

− ξ

Aδτ
ln
N

(n+A)
w

Nt

, (4.84)

where A ≥ 1 is the delay. In Ref. [184] we already examined in detail the effect of increasing

A and found that the variance of the shift decreases while the variance of the walker number

increases. Importantly, the standard error of the shift estimator after blocking analysis, which is

a measure for the statistical efficiency, was found unaffected by the parameter A.

In Fig. 4.14 we show the values of the shift and projected energy estimators as a function

of A in an example calculation where the population control bias is appreciable. No significant

dependence of the energies (or the bias) onA is detected. This can be rationalized by the fact that

the decrease of the variance of the shift for increasingA is accompanied by increased fluctuations
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Figure 4.14: Bias under delayed shift updates. Shift (blue triangles) and projected energy (red circles)

vs. the delay A in updating the shift parameter in comparison with the exact energy (dashed line). The

model and parameters are as in Fig. 4.13 and the time step is δτ = 0.001. Both energy estimators show
a population control bias, but no significant dependence on the parameter A is observed.

in the coefficient vector, and thus is not effective in suppressing the covariance responsible for

the bias as per Eq. (4.16). Furthermore, the population control bias is captured in the differential

equation limit of the scalar model in Sec. 4.6.2 where the parameter A disappears and thus

becomes irrelevant when the limit of an infinitesimal time step is taken. As setting A > 1

has the disadvantage of larger fluctuations in the walker number and thus increased storage

requirements for the coefficient vector while it brings no advantages, we recommend setting

A = 1, i.e. retaining Eq. (4.2) for performing shift updates.

The demonstrated independence of the population control bias of the values of the parameters

δτ , ζ , ξ, andA is expected and supported by the theoretical arguments of Secs. 4.6 and 4.8 where

these parameters drop out of the final expressions for the population control bias. The empirical

results of this appendix thus provide further support to the validity of our model. In addition, we

found empirically that FCIQMC simulations can be stable for values of the time step parameter

δτ almost twice the theoretical bound for instability.
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4.B Shift estimator as upper bound for projected energy

Here we show that

〈S〉 − Ēy ≥ 0, (4.85)

i.e. the inequality of Eq. (4.15), which means that the shift energy estimator is greater or equal

than any projected energy estimator. The proof follows a very similar logic and procedure as the

derivation of the scalar model for the walker number in Sec. 4.6 using Itô’s lemma. However,

instead of using projection onto the 1̃ vector, we project onto an arbitrary vector y. The only

important assumption is that overlap y†c(n) of the vector y with the coefficient vector c(n) is

non-zero at every time step.

Projecting the FCIQMC equation (4.1) for the coefficient vector from the left with y† yields

an equation for the scalar projection

y(n+1) − y(n) = y†δτ(S(n)c(n) − Ȟc(n)), (4.86)

where we have introduced the notation

y(n) = y†c(n), (4.87)

for the projection of the instantaneous vector. The right hand side of Eq. (4.86) is just the change

in the coefficient vector during a single FCIQMC time step. We may replace it by its ensemble

average (over an ensemble of random numbers in the sampling process), and a remaining noise

term

y†δτ(S(n)c(n) − Ȟc(n)) = δτ(S(n) − Ēy)y
(n) + r(n)∆W̌ (n). (4.88)

Since the noise term has a variance proportional to δτ (see arguments in Secs. 4.6.1 and 4.8) and

has to ensemble average to zero, we have written it as a product of a Wiener increment∆W̌ (n),

and a (still possibly fluctuating) factor r(n). The Wiener increment can be associated with a

Wiener process W̌ (t) in continuous time t. Following the logic of Sec. 4.6.2 we interpret the

difference equation (4.86) as the Euler-Mayurama discretization of the Itô stochastic differential
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equation

dy = [S(t)− Ēy]y(t)dt+ r(t)dW̌ (t). (4.89)

We aim at isolating the long-time average of the shift variable S(t), which, however here sits

in a product with the fluctuating variable y(t). The latter can be removed by a variable

transformation to

z(t) = ln y(t). (4.90)

The variable transformation has to be performed according to Itô’s lemma [187]. Using

dz =
1

y
dy − 1

2y2
dy2, (4.91)

together with the Itô rules (4.41) yields

dz =

[
S(t)− Ēy −

r(t)2

2y(t)2

]
dt+

r(t)

y(t)
dW̌ (t). (4.92)

In this form, a long time average can be taken term by term. In the steady state limit, the change

in z averages to zero, 〈dz〉 = 0, as does the average containing the Wiener noise term

〈
r(t)

y(t)
dW̌ (t)

〉
= 0. (4.93)

Collecting the remaining terms we obtain

S(t)− Ēy =
r(t)2

2y(t)2
, (4.94)

where the right hand side is non-negative due to being a product of squares of real numbers.

This completes the proof of inequality (4.85) .
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4.C Solutions of the SDEs with Greens functions

This appendix details the derivation of solutions of the SDEs (4.45) and (4.46), obtaining

expressions for the evolution of the logarithmic walker number x(t) and the shift S(t) for the

cases of critical and non-critical damping. For this purpose, we introduce a vectorized notation

u(t) =

(
x(t)

S(t)

)
. (4.95)

This leads to Eqs. (4.45) and (4.46) being re-written as

Adu+ Bu(t)dt = df(t), (4.96)

where  

A =

 1 0

ζ
dτ

1

 , (4.97)

B =

 0 −1
ξ

dτ2
0

 , (4.98)

df(t) =

(
−(Ẽ + 1

2
µ2)dt− µdW (t)

0

)
. (4.99)

In order to solve the inhomogeneous linear differential equation (4.96) we seek a matrix-valued

Greens function

G(t) =

g11(t) g12(t)

g21(t) g22(t)

 , (4.100)

that solves

A
dG(t− t′)

dt
+ BG(t− t′) = δ(t− t′)1, (4.101)

where 1 is the 2× 2 unit matrix. Then

u(t) = uh(t) +

∫ +∞

−∞
G(t− t′)df(t′), (4.102)
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is the general solution of the differential equation (4.96) where uh(t) is a solution of the

corresponding homogeneous equation.

Adu+ Bu(t)dt = 0. (4.103)

Being interested in the fluctuating steady-state solution, we take xh(t) = 0 = Sh(t) as the

homogeneous solution. From this we readily obtain Eqs. (4.53) and (4.54).

In order to find the correct Greens function, we go into the frequency domain by Fourier

transformation. Defining the Fourier transform by

G(t) =

∫ ∞

−∞

dω

2π
e−iωtG̃(ω), (4.104)

we can write Eq. (4.101) in the frequency domain as

−iωAG̃(ω) + BG̃(ω) = 1, (4.105)

and solve for the Greens function as

G̃(ω) = (−iωA+ B)−1, (4.106)

=
1

(ω − ω−)(ω − ω+)

 iω −1

−iω ζ
δτ

+ ξ
δτ2

iω

 , (4.107)

where

ω± = −i ζ
2δτ
± i
√

ζ2

4δτ 2
− ξ

δτ 2
, (4.108)

= −iγ ± iγ̃, (4.109)

are two complex poles corresponding to the two different damping coefficients, or frequencies,

of the damped harmonic oscillator solution. The Greens function in the time domain is obtained

by Fourier transformation

G(t) =

∫ ∞

−∞

dω

2π

e−iωt

(ω − ω−)(ω − ω+)

 iω −1

−iω ζ
δτ

+ ξ
δτ2

iω

 . (4.110)
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4.C. Solutions of the SDEs with Greens functions

The integral can be solved by contour integration after closing the contour in the upper or lower

complex half plane using Jordan’s lemma depending on the sign of t. Accordingly, the contour

integral either evaluates to zero (when no poles are enclosed), or is given by the sum of the

residues of the enclosed poles.

4.C.1 Greens function for critical damping

The special case ω+ = ω− ≡ −iγ = −i ζ
2δτ

= −i
√
ξ

δτ
corresponds to critical damping of the

harmonic oscillator. Here the residue theorem gives

G(t) = iθ(t) lim
ω→−iγ

− d

dω
e−iωt

 iω −1

−2iωγ + γ2 iω

 (4.111)

= θ(t)

 1− γt t

−2γ + γ2t 1− γt

 e−γt, (4.112)

where the Heaviside function θ(t) = 1 when t > 0 and θ(t) = 0 otherwise. From the first

column we obtain the explicit expression of Eqs. (4.55) and (4.56) for g11(t) and g21(t).

4.C.2 Greens function for over- and under-damped case

In the more general case, we have ω+ 6= ω− and the integrand of Eq. (4.110) has simple poles.

The integral evaluates to

G(t) = θ(t)
∑

σ∈{−,+}

iσe−iωσt

ω+ − ω−

×

 iωσ −1

−iωσ
ζ
δτ

+ ξ
δτ2

iωσ

 . (4.113)

Specifically

g11(t) = θ(t)e−γt

[
γ

γ̃
sinh(γ̃t)− cosh(γ̃t)

]
, (4.114)

g21(t) = θ(t)e−γt

[
ζ

δτ
cosh(γ̃t) +

ξ − 1
2
ζ

δτ 2γ̃
sinh(γ̃t)

]
. (4.115)

123



For the over-damped case γ̃ =
√

ζ2

4δτ2
− ξ

δτ2
is real-valued while for the under-damped case it

is purely imaginary, which serves to replace hyperbolic by trigonometric functions.

4.D Sampling noise in sparse walker regime

We specifically investigate the algorithm with integer walkers of Ref. [51], although the general

logic should apply to non-integer spawning with threshold and similar sampling algorithms as

well. We further simplify the analysis by assuming that we are in the low walker density regime

(i.e. the walker number is much smaller than the Hilbert space dimension) where we have at

most a single walker on each configuration. This is the regime where the effect of stochastic

noise will be the largest and the population control bias will be the most severe. Let’s rewrite

Eq. (4.1) to separate the spawning and diagonal death/cloning steps

c(n+1) − c(n) = δτ(S(n) − ȞD)c
(n) − δτȞODc

(n), (4.116)

where Ȟ = ȞD + ȞOD separates the fluctuating Hamiltonian into a diagonal matrix and a

purely off-diagonal matrix. First we consider noise in the off-diagonal part, which relates to

the spawning process, before turning to the diagonal part.

4.D.1 Off-diagonal sampling: Spawning noise

In a low density limit we assume that the elements of the coefficient vector c
(n)
i only ever take

the values 0 or ±1. A single spawning attempt corresponds to evaluating (at i 6= j)

−δτȞijc
(n)
j =

±1 if rand <
∣∣∣δτHijc

(n)
j

∣∣∣ ,
0 else,

(4.117)

where rand ∈ [0, 1) is a uniformly drawn random number and the sign is carried consistently.

This characterizes the spawning of a single walker and defines a random variable following a
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4.D. Sampling noise in sparse walker regime

Bernoulli distribution. We can now evaluate the expectation value

〈
−δτȞijc

(n)
j

〉
e
= −δτHijc

(n)
j , (4.118)

where 〈·〉e denotes an ensemble expectation value according to the random numbers drawn in

each spawning event, while c
(n)
j is just a given number. For the long-time averages considered

elsewhere in this work, these coefficients are considered fluctuating quantities. Since the

expression (4.118) only ever can take values of zero or ±1, the expectation value of the

squared expression can also be easily evaluated

〈(
−δτȞijc

(n)
j

)2〉
e

=
∣∣∣δτHijc

(n)
j

∣∣∣ . (4.119)

For the standard deviation σe(x) =
√
〈x2〉e − 〈x〉2e we thus obtain

σe

(
−δτȞijc

(n)
j

)
=

√∣∣∣δτHijc
(n)
j

∣∣∣− (δτHijc
(n)
j

)2
, (4.120)

≈
√∣∣∣δτHijc

(n)
j

∣∣∣, (4.121)

where we have used the fact that the squared factor is much smaller than 1, which can be assured

by considering the limit of small δτ .

It is thus justified to treat the randomness in the FCIQMC spawning process by a matrix ȞOD

with random elements Ȟij which is characterized by an expectation value

〈
Ȟij

〉
e
= Hij, (4.122)

and standard deviation as above.

It is convenient to write

−δτȞijc
(n)
j = −δτHijc

(n)
j +

√
|Hij|∆W̌ijc

(n)
j , (4.123)

where the coefficient c
(n)
j could be pulled out of the square root because its value is either 0 or

±1 and thus
√∣∣∣c(n)j

∣∣∣ = ∣∣∣c(n)j

∣∣∣. The right hand side of Eq. (4.123) has the correct expectation
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value and standard deviation [in the approximation (4.121)] if

〈∆W̌ij〉e = 0, (4.124)〈
(∆W̌ij)

2
〉
e
= δτ. (4.125)

In the following wewill identify∆W̌ij with aWiener increment, i.e. a Gaussian random variable

characterized by its expectation value and variance as above. This is not exactly true because the

spawning process is not Gaussian but instead follows a Bernoulli distribution, and thus higher

moments of the elementary process will differ. However, we will eventually be adding the

effects of many spawning events, which will lead to a binomial distribution and approximate a

normal distribution.Thus the Gaussian approximation at the single event level may not be such

a bad one. Note that the random numbers ∆W̌ij for different indices (i, j) are independent and

are also freshly drawn for each time step.

4.D.2 Diagonal death noise

The diagonal death step can be treated in a similar fashion as the spawning process in the previous

subsection. It relates to evaluating the first term on the right hand side of Eq. (4.116). A single

diagonal death attempt corresponds to evaluating

δτ(S(n) − Ȟjj)c
(n)
j =

±1 if rand < pd,

0 else,

(4.126)

where the pd = |δτ(S(n) − Hjj)c
(n)
j | is the death probability. The sign is carried consistently

such that

〈
δτ(S(n) − Ȟjj)c

(n)
j

〉
e
= δτ(S −Hjj)c

(n)
j , (4.127)〈[

δτ(S(n) − Ȟjj)c
(n)
j

]2〉
e

=
∣∣∣δτ(S(n) −Hjj)c

(n)
j

∣∣∣ . (4.128)

We can now follow the logic of the previous subsection to write the diagonal death step as

the sum of a deterministic process, and a random process with expectation value zero that is
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4.E. Stochastic differential equation for FCIQMC walker number

approximated with a Wiener increment:

δτ(S(n) − Ȟjj)c
(n)
j =(S(n) −Hjj)c

(n)
j δτ+

+
√
|S(n) −Hjj|∆W̌jjc

(n)
j . (4.129)

Combining the diagonal and off-diagonal processes of Eqs. (4.129) and (4.123), respectively,

to a matrix equation yields Eq. (4.73).

4.E Stochastic differential equation for FCIQMC walker

number

In this appendix we derive an Itô SDE for the FCIQMC walker number and shift in the sparse

walker regime starting from the representation of the coefficient update Eqs. (4.73) and (4.74).

We proceed by norm projection similar to Sec. 4.6.1, with the difference that we are keeping

track of the individual noisy matrix elements for now. It is further convenient to specialize to

a stoquastic Hamiltonian and assume that all coefficients ci are non-negative, i.e. either have

value 0 or 1 in the sparse walker regime. In this case we can obtain an equation for the walker

number (or one-norm) by projecting the vector valued equation on the vector of all ones 1:

‖c(n+1)‖1 − ‖c(n)‖1 =(S(n)‖c(n)‖1 − 1†Hc(n))δτ+

+ 1†∆Ȟc(n). (4.130)

Let us write this as a differential equation and use the notation ‖c(n)‖1 ≡ N
(n)
w → Nw(t) for the

norm as previously

dNw = (SNw − 1†Hc) dt+ 1†dȞc, (4.131)

where the last term represents a linear combination of many Wiener noises. In order to

eliminate the product of fluctuating variables Sc, we perform a variable transformation to
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x(Nw) = ln(Nw/Nt) and use Itô’s lemma with Eq. (4.44)

dx = (S − E1) dt−
1

2N2
w

(
1†dȞc

)2
+
1†dȞc

Nw

, (4.132)

where

E1 =
1†Hc

Nw

, (4.133)

is a (fluctuating) projected energy. The noise term evaluates to

1†dȞc =
∑
ij

√
|Sδij −Hij|dW̌ijcj. (4.134)

For the squared noise term we obtain

(
1†dȞc

)2
=
∑

i,j,i′,j′

√
|(Sδij −Hij)(Sδi′j′ −Hi′j′)| dW̌ijdW̌i′j′cjcj′ , (4.135)

=
∑
i,j

|Sδij −Hij| cj dt, (4.136)

because dWijdWi′j′ = dt δii′δjj′ according to Itô rules. We have also replaced the c2j by cj

consistent with the low-walker density limit. The Itô SDE for x(t) then finally takes the form

dx =

(
S − E1 −

1

2N2
w

∑
i,j

|Sδij −Hij| cj

)
dt+

1†dȞc

Nw

. (4.137)

In the steady-state regime, the statistical average of dx on the left, and the noise term on the

right, vanish. Thus we obtain

〈S〉 − 〈E1〉 =

〈
1

2N2
w

∑
i,j

|Sδij −Hij| cj

〉
, (4.138)

which is an approximate expression for the population control bias. Note that 〈E1〉 = 〈G〉 = Ē1̃

are all equivalent expressions for the norm projected energywithin Itô calculuswith infinitesimal

time step. This concludes the derivation of Eq. (4.75).
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Chapter 5
Polaron-Depleton Transition in the Yrast

Excitations of a One-Dimensional Bose

Gas with a Mobile Impurity

Opening words In the last two Chapters, we focused on the methodology development for

full configuration interaction quantum Monte Carlo (FCIQMC). In this Chapter, we conclude

the presentation of the research results in this thesis with the application of FCIQMC to study

a bosonic many-body problem. We calculate lowest-energy momentum eigenstates , known

as yrast states, of a spin impurity coupled to a one-dimensional Bose gas using FCIQMC. As

the symmetries in the Hamiltonian are preserved in FCIQMC time evolutions, we are able to

calculate such states. Furthermore, we use amomentum-space representation of the Hamiltonian

which is no longer sign-problem free. FCIQMC can effectively suppress the sign problem via

walker annihilation, as well as by the application of the initiator approximation. Based on the

energies and the first and second order correlation functions of yrast states, we identify different

dynamical regimes and the transitions between them: The polaron regime, where the impurity’s

motion is affected by the Bose gas through a renormalized effective mass; a regime of a gray

soliton that is weakly correlated with a stationary impurity, and the depleton regime, where the

impurity occupies a dark or gray soliton. Extracting the depleton effective mass reveals a super-

heavy regime where the magnitude of the negative depleton mass exceeds the mass of the finite

Bose gas.
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The follow text is a verbatim copy of the published work: Mingrui Yang, Matija Čufar,

Elke Pahl and Joachim Brand, “Polaron-depleton transition in the yrast excitations

of a one-dimensional Bose gas with a mobile impurity,” Condensed Matter, 7(1), 15

(2022).

5.1 Introduction

The study of a single quantum impurity in a surrounding many-body medium has fascinated

scientists for many decades [27, 28]. Beyond the historical interest around the influence of the

crystal lattice on the motion of an electron – the original “polaron” [188], or impurity atoms

in superfluid helium [32], there has recently been a surge of interest in the field of ultracold

atoms, where interactions can be readily tuned with the help of Feshbach resonances [18] and

excitation spectra probed with spectroscopic methods [43]. A particular focus of experimental

scrutiny has been the Bose polaron, where an impurity atom is coupled with a bosonic bath

[26, 34, 189, 190].

Restricting the dimensionality to one spatial dimension provides access to the special

physics of one dimensional quantum liquids [191, 192], where impurities have been predicted

to undergo Bloch oscillations [38, 100]: Due to the periodicity of the dispersion relation, an

impurity experiencing a weak force periodically alters its excitation state without contributing

to transport in real space, as originally predicted [193] and later observed [194, 195] for a

particle in an external lattice potential. The prediction of Bloch oscillations in a

one-dimensional quantum liquid even in the absence of a periodic potential [38, 100] was

debated [39, 196], but eventually confirmed in an experiment with spin impurities in a

one-dimensional gas of cesium atoms [197]. Other experiments probing impurity physics in

one-dimensional quantum gases also employed spin impurities (where the impurity atoms have

the same mass and only differ in a spin quantum number) [25, 198], or different types of atoms

[35, 199].

While experimental studies have started, the quantitative understanding of impurity physics

in a one-dimensional Bose gas is far from complete. The different theoretical approaches to the

problem range from mean-field theory [47, 200] and related variational theory [98, 201, 202]

via the path-integral approach [203, 204], the renormalization group [101, 205, 206] and flow
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5.1. Introduction

equation [207] method to multiconfiguration time-dependent Hartree [208] and quantumMonte

Carlo methods [36, 37, 209, 210].

Many of the mentioned works focus on ground state properties and effective mass of the

one-dimensional Bose polaron with either zero or very small total momentum. Although the

dynamics of impurities has also been actively studied [201, 202, 208, 211], limited

understanding has been achieved on the full dispersion relation of a Bose gas coupled with a

mobile impurity. There are analytical results on the dispersion relations restricted to specific

models, such as the Yang-Gaudin model [45], and the Luttinger liquid [212].

In a homogeneous one-dimensional gas, e.g. in a ring geometry with periodic boundaries,

translational invariance makes the total momentum a good quantum number. This allows for the

study of yrast states, which are eigenstates with lowest energy at given momentum. Yrast states

are stable as long as momentum is conserved, while adiabatic passage through the yrast states

of different momentum is responsible for the Bloch oscillation phenomena of Refs. [100, 197].

The yrast states of a bosonic superfluid in the absence of impurities are intimately connected

[41, 213–219] to localized nonlinear waves known as dark solitons [220]. Dark solitons are

ubiquitous features of superfluids, which can be characterized by a localized density depression

and a phase jump [40–42].

When a repulsive impurity is introduced into the Bose gas, two different low-energy

configurations can exist depending on the momentum: At a lower momentum, the impurity

moves relative to the quantum gas forming a polaron. At higher momentum, the bulk of the

momentum is taken by the Bose gas forming a gray or dark soliton modified by the presence of

the impurity. This situation was named the “depleton” in Refs. [38, 39].

For strongly correlated impurity problems that are outside the reach of analytically

solvable models, quantum Monte Carlo (QMC) methods have proven invaluable tools

[36, 37, 209, 210, 221]. In this work we employ the full configuration interaction quantum

Monte Carlo (FCIQMC) [51, 71] method. It can be seen as a natural stochastic extension to the

exact diagonalization method, which allows one to treat a larger Hilbert space that could

otherwise not fit into the computer memory. While different in detail it is similar in sprit to

earlier versions of projector Monte Carlo methods [222] in sampling the ground state wave

function. When applied to a translationally invariant Hamiltonian in momentum space,
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FCIQMC has the advantage over other QMC methods like diffusion Monte Carlo (which is

formulated in real space) or auxiliary field QMC that momentum is strictly conserved in each

elementary stochastic operation. Thus yrast states can be obtained easily by projection onto the

lowest-energy state within a total-momentum sector starting from an initial state with the same

momentum. Moreover, FCIQMC mitigates the sign problem by walker annihilation in many

systems when a sufficient number of walkers is present [61]. Additionally the initiator

approximation [71] can be applied to suppress the sign problem with the trade-off that a small

initiator bias is introduced.

The FCIQMC method was originally developed for fermionic many-body problems. It has

been applied to the electronic structure of molecules and solids [52–54] and the Hubbard model

[55–57]. Recently it was used to study the yrast states in a superfluid of spin-1
2
fermions [59].

Here we use FCIQMC for the first time to quantitatively study the physics of a bosonic many-

body problem, while previously bosonic Hamiltonians were employed when developing and

analysing the FCIQMC procedures [184, 223].

In this work we use the FCIQMC method to obtain numerical results for the yrast states of

a one-dimensional Bose gas containing a repulsive spin impurity. We characterize the polaron

and depleton regimes of the yrast dispersion, as well as the transitions between them, by

examining the energies and the first and second order correlation functions of yrast states. The

extracted depleton effective mass reveals a super-heavy regime where the magnitude of the

(negative) depleton mass exceeds the mass of the finite Bose gas. The results also show that

the depleton picture becomes inadequate for smaller impurity-boson interactions where the

impurity and Bose-gas motion decouples.

In Sec. 5.2 we introduce the lattice discretized model Hamiltonian with renormalized

coupling constants to be studied in this work. The FCIQMC algorithm and modifications made

for treating bosonic Fock states along with implementation details and parameter choices are

discussed in Sec. 5.3. Numerical results on properties of the yrast states and their interpretation

in terms of the different physical regimes are presented in Sec. 5.4 starting with the yrast

dispersion in Sec. 5.4.1. This is followed by the impurity momentum and the impurity-boson

correlation function in Secs. 5.4.2 and 5.4.3, respectively. The effective mass in the

soliton/depleton region of the dispersion is reported in Sec. 5.4.4 and the spin-flip energies in

Sec. 5.4.5. Finally, we draw conclusions in Sec. 5.5 and we outline possible future prospects of
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5.2. The Model

this work. Appendix 5.A presents data on the elimination of systematic biases in FCIQMC,

which is relevant for validating the computational method.

5.2 The Model

5.2.1 The Hamiltonian in one-dimensional real space

We consider a single impurity particle immersed in a one-dimensional interacting Bose gas of

N identical particles. The Hamiltonian reads

H = − ~2

2m

N∑
i=1

∂2

∂x2i
+ gBB

∑
i<j

δ(xi − xj)−
~2

2m

∂2

∂x2I
+ gIB

N∑
i=1

δ(xi − xI), (5.1)

where xi(i = 1, · · · , N) and xI are the coordinates of the bosons and the impurity, respectively.

We have already assumed that the impurity has the same mass m as the bosons do, and will

continue to do so throughout this work. This is adequate for a spin impurity where the impurity

atom becomes distinguishable from the remaining bosons by changing a spin quantum number,

e.g. changing a hyperfine quantum number of an ultracold atom. The N bosons are interacting

with a contact potential of strength gBB while the interaction of the impurity particle with the

bosons is described by a contact potential of strength gIB. We consider repulsive interactions

with gBB > 0 and gIB ≥ 0 in order to access the physics of the polaron–depleton transition. We

leave the detailed study of attractive impurities, which bind to bosons rather than to the hole-like

dark soliton excitations, to future work.

Following the definitions from previous works on polaron problems [36, 37, 47], we

introduce the dimensionless coupling parameters

γ =
mgBB
~2n

, η =
mgIB
~2n

, (5.2)

to represent the boson–boson and boson-impurity interaction strengths, respectively. The

density of the Bose gas is n = N/L. Note that with the impurity and the bosons having equal

mass, the reduced mass,mr, used in other works, becomesm/2.
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5.2.2 Lattice discretized continuum model

For our numerical simulations we consider a finite system in a one-dimensional box of length L

with periodic boundary conditions. We discretize the model using a lattice withM lattice sites

with renormalized contact interactions [224, 225]. In order to access yrast states numerically

with FCIQMC, we use a momentum-space representation of the Hamiltonian. In FCIQMC

individual stochastic sampling steps then conserve momentum, which allows us to access the

yrast states with this projector QMC method. The spatial domain is x ∈ (−L/2, L/2] and

the lattice constant is defined as α = L/M for M lattice points. In this representation, the

Hamiltonian reads

Hmom =
∑
k

εkâ
†
kâk+

∑
k

εkb̂
†
kb̂k+

U

2M

∑
spqr

â†sâ
†
pâqârδs+p,q+r+

V

M

∑
spqr

â†sb̂
†
pb̂qârδs+p,q+r, (5.3)

where â†k(âk) are the boson creation (annihilation) operators; the corresponding operators for

the impurity are b̂†k(b̂k). The plane-wave eigenstates 〈x|â
†
k|vac〉 = e−ikx/α of momentum ~kα

are indexed with the dimensionless quantum numbers

kj =

−π + j 2π
M

ifM is even

−πM+1
M

+ j 2π
M

ifM is odd

(5.4)

where j ∈ {1, 2, . . . ,M} is an integer. The kinetic energy dispersion is the same for bosons and

impurity (as they have equal mass)

εk =
~2k2

2mα2
=

1

2
M2k2ε0, (5.5)

where we have introduced the unit of energy that will be used throughout this work *

ε0 =
~2

mL2
. (5.6)

The parameters U and V are the lattice on-site interaction strengths for boson-boson and

boson-impurity, respectively. They are renormalized to generate the correct scattering length

*Note that Refs. [37, 47] choose the Fermi energy εF = π2~2n2

2m = π2N2

2 ε0 as the energy unit.
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5.2. The Model

for a two-particle scattering problem at zero energy [224, 225]:

Uα =
gBB

1 + gBB
g0

, V α =
gIB

1 + gIB
g0

, (5.7)

where g0 = π2~2/mα.

5.2.3 Connection to mean-field theory and choice of parameters

In the weakly interacting regime where γ � 1, nonlinear phenomena in the Bose gas like dark

and gray solitons are accurately described by the Gross-Pitaevskii equation [41, 220]. A similar

mean-field treatment is also available for a Bose gas with an impurity [39, 101]. The relevant

length scale in this theory is the healing length, which is the shortest length scale on which the

superfluid order parameter can change

lh =
~√

2mgBBn
=

L√
2γN

. (5.8)

In order to obtain insights into the physics of solitons and their interaction with impurities, we

need to choose the parameters of our model system such that L� lh. In order to obtain results

relevant for the thermodynamic limit it would be desirable to choose both the particle number

N and the box size L large. However, we are constrained by the fact that FCIQMC has a

sign problem, which limits the maximum number of particles and modes that can be accurately

computed. The sign problem also grows more severe with stronger interaction strength, which

affects the off-diagonal matrix elements in the Hamiltonian of Eq. (5.3). As a compromise we

choose to work withNtot = 20 particles andM = 50modes and explore the weakly-interacting

regime. This yields a ratio of box size to healing length of L/lh ≡
√
2γN ≈ 12 for γ = 0.2 and

L/lh ≈ 4 for γ = 0.02 for the two values of the Bose-gas interaction strength that we are using

in this work.
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5.3 Computational method and simulation details

Full configuration interaction quantumMonte Carlo is a projector quantumMonte Carlo method

that can be used to determine the ground-state energies of quantum many-body systems. It was

originally formulated to solve problems in quantum chemistry [51]. In this section, we describe

the algorithm and some of the modifications we implemented to extend the algorithm to describe

bosonic systems.

5.3.1 Bosonic Full Configuration Quantum Monte Carlo

In FCIQMC a basis of Fock states (occupation number basis) for N =
∑M

i=1 ni particles inM

lattice sites is used

|n1, n2, . . . nM〉 =
M∏
i=1

1√
ni!

(
â†i

)ni

|vac〉. (5.9)

Within this basis the Hamiltonian is represented as a matrix H and the quantum state (many-

body wave function) as a vector c containing the signed weights of the individual Fock states as

coefficients.

The ground-state coefficient vector is then found in an iterative manner by repeatedly

applying the equation

c(n+1) = c(n) + δτ
(
1S(n) −H

)
c(n), (5.10)

where the parameter δτ controls the size of the time step, c(n) is the approximation of the

eigenvector at the n-th time step, and 1 is the identity matrix. The shift S(n) is a real number

used to keep the norm of c(n) under control. It is adjusted by the following scheme:

S(n+1) = S(n) − ζ

δτ
ln

(
N

(n+1)
w

N
(n)
w

)
− ξ

δτ
ln

(
N

(n+1)
w

Nt

)
, (5.11)

where N
(n)
w ≡ ‖c(n)‖1 is the 1-norm of c(n), Nt the parameter for the target norm, and ξ and ζ

parameters that control the dynamics of the shift. In the steady state, the instantaneous normN
(n)
w

fluctuates around the value of Nt [184]. It is important to control the vector norm in FCIQMC

as it is a proxy for the number of (stored) non-zero elements of the coefficient vector and thus

for both memory and runtime requirements of the simulation.
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5.3. Computational method and simulation details

Because the size of the Hilbert space grows exponentially with system size, both H and c

quickly become prohibitively large. To get around this problem, we replace the matrix-vector

multiplication in Eq. (5.10) with a stochastic sampling process. The sampling process is

designed to reproduce the right hand side of Eq. (5.10) by expected value while at the same

time replacing most coefficients in the vector with zero, such that the values do not have to be

stored. Concretely, we divide the values of the entries in c into integer units called “walkers”.

At each time step, each walker attempts to “spawn” to a configuration connected by a non-zero

entry in the corresponding column of the matrix H.

The spawning from the configuration q to the configuration r 6= q can be described as

cr ← cr −
δτ

pspawn
Hr,qcq, (5.12)

where 1
pspawn

is the inverse probability of picking r, i.e. the number of nonzero off-diagonal entries

in the q-th column of H. If the occupation number cq is greater than the number of non-zero

entries in this column, the spawns can be performed exactly. In addition to the off-diagonal

spawns, the diagonal part of the matrix-vector multiplication in Eq. (5.10) is performed exactly.

After a step is complete, we stochastically project the entries vi of the vector c to a threshold t;

values |vi| < t are removed from the vector with probability p = 1− |vi|
t
. Otherwise, their value

becomes vi = t. In practice, we usually set t = 1.

By using this approach the length of the vectors c(n) can be much smaller than the

dimension of the Hilbert space while the expectation value of c(n) still approaches the exact

eigenvector of the ground state of H. At the same time, the shift S(n) equilibrates to fluctuating

around the ground state eigenvalue with a small stochastic bias [70, 223]. The spawning

process described above differs from the original one of Ref. [51] and is similar in spirit but

more efficient than the modifications discussed in Refs. [154, 176, 183]. It will be described in

greater detail elsewhere [130].

While Eq. (5.3) defines the Hamiltonian used in this study, the FCIQMC method is

completely agnostic to the nature of the Hamiltonian, as long as it results in a sparse matrix

where elements can be computed efficiently on the fly. Thus it is possible to study

multi-dimensional models, long-range interactions, or even complex-valued problems [54].
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5.3.2 Implementation Details

We have implemented the FCIQMC algorithm in the high-level and high-performance

programming language Julia [226]. Both the FCIQMC algorithm and all analysis tools are

implemented as a library. This way, calculations and all parameters can be defined in a concise

script, written in the same language as the library, without the need for input files in a different

format. The setup is very flexible and makes it easy to experiment interactively with

immediate visualization of data, e.g. in a notebook interface, or deploy code to a

high-performance computer. The library code Rimu.jl used for all calculations in this work is

available as an open-source software project [157].

While in practice the matrix H is extremely large, it is also extremely sparse and it is easy

to compute its matrix elements on the fly. To facilitate this, we index the matrix and vectors

with the Fock states of Eq. (5.9) directly. To encode the occupation number representation of

a bosonic Fock state, we use a bit string where a sequence of n ones encodes n particles in a

mode (lattice site) and zeros are used as separators between the modes. As an example, the state

|0, 0, 3, 0, 1, 2〉 would be encoded as the bit string “00111001011”. Using this scheme, storing

N particles inM modes requires a bit string of length N +M − 1. This representation is both

extremely compact and allows for efficient on-the-fly calculations through bit manipulations.

The Rimu.jl code makes extensive use of Julia’s type system and code optimization

capabilities through the multiple-dispatch paradigm and just-in-time compilation [226]. E.g.,

the number of particles N and modes M , and the length of a bitstring are all encoded in the

type of a Fock-state address as type parameters. This allows us to easily write generic, well

tested, and reusable library code for manipulating bit strings and matrix-element calculation

for bit strings of arbitrary length and type. As the type information is available at compile

time, part of the computational workload related to specializing the code to a specific physical

problem is off-loaded to the compiler. Julia’s just-in-time compiler can thus produce

optimized code for the particular parameters of the physics problem, which is easily defined in

the script that is used to initiate the computation. As a consequence of this approach some lag

from compilation is experienced in interactive use, but for the computationally intensive

Monte Carlo calculations, the benefits from optimized code compilation are appreciable.
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5.3. Computational method and simulation details

5.3.3 Data structures and distributed Computation

For representing the coefficient vector c it is important to access the data quickly based on the

Fock space address. This is important as spawns hitting the same configuration must be allowed

to annihilate [51], but also to save memory by encoding all walkers on a single configuration

in a single number. We thus use a dictionary data structure to store the non-zero elements of c,

which is realized as a hash table [150] and thus provides access times that are nearly independent

of the number on nonzero vector elements.

Another benefit of this approach is that it is relatively easy to distribute the data and

computations to be processed in parallel. Our approach to parallelization follows Ref. [150]

and divides the vector c into approximately equally-sized chunks, which are assigned to

different workers. The workers perform the spawning step independently. After each step, but

before the vector compression, a communication step is performed, where the newly spawned

entries are transferred to the correct workers. In our implementation, we use the Message

Passing Interface (MPI) [227] through its Julia bindings [228] to handle the data distribution

and communication between workers.

5.3.4 The Initiator Approximation

With some Hamiltonians, FCIQMC exhibits the sign problem. The problem manifests itself

when the number of walkers, which is equal to ‖c‖1, is too small. In such a regime, the energy

estimates given by FCIQMC become completely unusable [61].

A well-known solution to the sign problem in FCIQMC is the initiator approximation [71],

which trades the sign problem for a small bias. It works by suppressing spawns from

configurations with low walker occupation. To be precise, it divides the entries of c into two

classes: initiators, and non-initiators. For the initiators, the algorithm is unchanged, while the

non-initiators are only allowed to perform spawns to configurations that are themselves

initiators. A configuration is an initiator if its occupation number is strictly greater than a

chosen initiator threshold. In our computations, the initiator threshold was always set to 1.
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5.3.5 Simulation Details

All simulations were performed with the Rimu.jl [157] code (version v0.6.0) written by the

authors. Energy estimators are computed as averages from a time series collected from the

simulation discarding data from an initial equilibration phase. The projected energy is used

throughout this work as it has a much smaller fluctuation comparing to the shift estimator,

provided sufficient number of walkers occupies the reference configurations. Error bars were

determined using the blocking analysis of Ref. [134] supplemented by hypothesis testing of

Ref. [137].

When calculating an expectation value of an observable, such as the two-body correlation

and the momentum of the impurity, the replica trick [186] is used. It uses two independent

FCIQMC wave functions to avoid a bias that would appear if correlated data was used.

For most of the calculations, one million floating point walkers are used. As mentioned

previously, the initiator approach is applied to all calculations with a threshold value of 1. This

is necessary for controlling the sign problem in our simulations in the parameter regimes of

larger values of γ and η. We have performed extensive tests to control the biases introduced by

population control and the initiator approximation and present some exemplary data from these

efforts in App. 5.A.

For calculations with small η, the equilibration can take a very long time. To overcome this

problem, we used equilibrated wave functions from a system with much larger η as the starting

vector, and re-equilibrated the wave function with the desired small η. This procedure speeds

up the equilibration process significantly.

5.4 Results

Yrast states are the lowest energy states at a given non-zeromomentum. We denote the energy of

the yrast state |ΨP 〉 asEN,Nimp
(P ) [orE(P ) for short], whereN is the particle number of the Bose

gas, Nimp the number of impurities present, and P the total (conserved) momentum. We also

refer to the energy as a function of momentum as the “dispersion”. In the thermodynamic limit

where N,L → ∞ while the density n = N/L is finite, the momentum becomes a continuous
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Figure 5.1: Yrast excitation energies of a finite Bose gas withNtot = 20 particles with periodic boundary
conditions. The blue data (solid line as a guide to the eye) is for a weakly-interacting, pure Bose gas

(N = 20, Nimp = 0). A Bose gas containing a single spin impurity (N = 19, Nimp = 1) with repulsive
interactions (η = 0.5) is shown in orange (dashed line as a guide to the eye). The interaction strength in the
Bose gas is γ = 0.2. All data points are obtained from FCIQMC calculations with a fixed systems size of

M = 50. The dash-dotted line shows the center-of-mass dispersion relationE(P )−E(0) = P 2/2Ntotm
for reference. Finally, the dotted line depicts a quadratic polaron dispersion E(P ) − E(0) = P 2/2m∗,
wherem∗ = 1.3684(37)m is the fitted value of the polaron effective mass. The units of momentum and

energy are P0 = 2π~/L and ε0 = ~2/2mL2.

variable.

Yrast dispersions for a finite system with Ntot = N + Nimp = 20 particles are shown in

Fig. 5.1. Special points on the dispersion occur at integer multiples of the “umklapp”momentum

P = 2π~Ntot/L = NtotP0, where P0 = 2π~/L. At these umklapp points, the system’s internal

state is identical to the ground state with a Galilean boost applied, such that every particle gains a

momentum of unit P0. Thus, the umklapp points have the energyE(P ) = E(0)+P 2/(2Ntotm),

as indicated by the dash-dotted (green) parabola in Fig. 5.1.

For a pure one-dimensional Bose gas (whereNimp = 0), the yrast states and their energy can

be generated exactly via the Bethe ansatz [229]†. The yrast dispersion for N = 20 bosons from

FCIQMC is shown in Fig. 5.1 by the blue data (solid line). The umklapp points at P = NtotP0

(and integer multiples) have the meaning of a superfluid ring current [192]. The rest of the

yrast dispersion are associated with dark and gray soliton phenomena [220] characterized by a

localized dip in the density and step in the superfluid phase. While the momentum eigenstates

†Yrast states in the one-dimensional Bose gas were denoted as type II excitations by Lieb in Ref. [229]
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are translationally invariant and can be thought of as a superposition of the (localized) solitons

at various positions [217], wave-packet-like superpositions of nearby momentum eigenstates

reveal localized soliton solutions that move at the velocity of v = dE(P )/dP , given by the slope

of the yrast dispersion [41]. At the half umklapp momentum P = NtotP0/2, a dark soliton forms

with a π phase step. It is associated with a negative effective mass m∗ = (d2E/dP 2)−1, and

as a consequence will oscillate around localized density maxima created by trapping potentials

[230, 231]. At small momentum (and next to any umklapp point), the Bose gas dispersion is

linear and the slope becomes the Bogoliubov speed of sound in the thermodynamic limit [229].

An yrast dispersion in the presence of a spin impurity (Nimp = 1) is shown with orange data

(dashed line) in Fig. 5.1. The excitation energy of yrast states E(P )−E(0) is generally smaller

in the presence of a spin impurity compared to a Bose gas with the same number of particlesNtot

apart from the umklapp points. This can be attributed to the fact that the spin impurity is not a

part of the superfluid and thus does not fully contribute to the energy cost of forming a soliton

by creating a twist in the phase – a phenomenon that can be rationalized with the phase rigidity

of a superfluid [232]‡. The yrast dispersion in the presence of the impurity is approximately

quadratic at small momentum (and near the umklapp points), in contrast to the pure Bose gas,

and thus can be assigned an effective mass. The fitted, idealized parabola is shown in Fig. 5.1

as a dotted (red) line. The effective mass determined by the curvature may differ from the bare

massm of the impurity due to interactions with the bosonic superfluid. We refer to this quadratic

part of the dispersion near the umklapp points as the polaron.

Near the half umklappmomentum atP = NtotP0/2wemay expect the physics of a depleton,

i.e. a dark or gray soliton that is affected by the presence of the impurity [39]. While Fig. 5.1

depicts data for Ntot = 20 particles, the situation is generic (upon adjusting the scales) for finite

particle number where the umklapp momentum is found at P = NtotP0.

‡Phenomena associated to phase rigidity occur in a one-dimensional Bose gas even though Bose-Einstein

condensation is absent in the thermodynamic limit [41, 192].
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5.4. Results

5.4.1 Yrast dispersion with weak and strong boson-impurity coupling

strength

Figure 5.1 displays strong finite size effects in terms of the center-of-mass dispersion

P 2/2Ntotm, the classical kinetic energy associated with the translation of the whole system,

which provides a lower limit for the yrast excitation energies (shown as a dash-dotted line). In

the thermodynamic limit this energy contribution vanishes due to the total system mass

appearing in the denominator. The detailed relation between the yrast dispersion of a finite

system and its thermodynamic limit has been worked out for the pure Bose gas in Ref. [41] in

terms of quantities like the phase step, the associated superfluid backflow current, and the

depleted particle number for a dark/gray soliton. Here we correct for the dominant finite size

effect in a simple way by subtracting the center-of-mass kinetic energy from the yrast

excitation energy. We thus define the finite-size corrected yrast dispersion, Ω(P ), as

Ω(P ) = E(P )− E(0)− P 2

2Ntotm
, (5.13)

where E(P ) is the lowest energy at fixed momentum P . The finite-size energy correction is

equivalent to a Galilean boost into a reference frame that moves with the velocity P/Ntotm

that a classical particle of mass Ntotm would have at momentum P . By removing the center

of mass kinetic energy from the total energy, the yrast dispersion becomes periodic in P with

the umklapp momentum 2π~Ntot/L = NtotP0 as the period, as in the thermodynamic limit.

Additionally, the finite size corrected yrast dispersion has reflection symmetry across the half-

umklapp point NtotP0/2.

In Fig. 5.2, we present two sets of finite-size corrected yrast dispersions with boson-boson

coupling strengths of γ = 0.02 and γ = 0.2, which are both considered to be weak interactions.

The boson-impurity coupling is chosen in the range from η = 0.01 to 1.0, which covers both

η > γ and η < γ scenarios. Our results show that the yrast excitation energy is consistently

lower in the presence of the spin impurity compared to the pure Bose gas at any value of η, as

previously predicted [39, 212]. The quadratic polaron part of the dispersion near P = 0 and the

umklapp points reduces its curvature with increasing η, which is consistent with an increase of

the polaron effective mass. Quantitative results for the polaron effective mass were previously

reported from diffusion Monte Carlo calculations [37] and mean-field theory [47].
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Figure 5.2: Finite-size-corrected yrast dispersion of a pure Bose gas (N = 20, Nint = 0, black markers
with dotted line) and Bose gas with spin impurity (N = 19, Nint = 1, colored markers) according to
Eq. (5.13). The boson-boson coupling strength is (a) γ = 0.02 and (b) γ = 0.2. FCIQMC results are

shown with error bars for fixed systems size M = 50. The boson-impurity coupling strength is varied
between η = 0.01 and η = 1.0 as per legend. The pure Bose gas excitation energies are higher than
any of the impurity dispersion data. Note that a slight cusp develops in the impurity dispersion at the

half-umklapp point, P = 10P0 in the regime where η � γ in panel (b) as can be seen from the inset,

which magnifies the data in the region of the cusp.

As shown in Fig. 5.2, the shape of the yrast dispersion is smooth in general. However,

although very subtle, a cusp at the half-umklapp point can be seen in panel (b) when η � γ. A

cusp for weak coupling in an infinite systemwas predicted in Ref. [212] based on Luttinger liquid

theory. It was pointed out that in a Luttinger liquid the cusp is expected to vanish discontinuously

at some critical value of the coupling strength between the impurity and the quantum liquid,

but the exact transition point is difficult to determine. While we have only finite system data

available from our calculations, we examine this transition in the remainder of this work and

present further data that provides insights into the physics at play.

It is easiest to understand the origin of the cusp from the situation where the impurity does

not interact with the Bose gas at all. We thus show data for a non-interacting impurity (η = 0)

immersed in a weakly interacting Bose gas at γ = 0.2 in Fig. 5.3 , which demonstrates two

interesting transition points in the yrast dispersion. The transition points originate from a trade-

off between the energy cost of depositing momentum into either the impurity or the Bose gas.

While for small momentum it is favorable to deposit momentum into the impurity (dotted red

line), at P > P0 it becomes favorable to deposit additional momentum into the Bose gas instead

(orange squares show data where Pimp = P0). This is the first transition point. The second

transition happens at the half umklapp point (red diamond), where the yrast state (indicated
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Figure 5.3: Dispersion of a Bose gas with boson-boson coupling strength γ = 0.2 and a single impurity
with no coupling (η = 0). The total number of particles is Ntot = 20. The impurity is given zero (•) or
one (� ) unit of momentum. The solid line shows the actual yrast dispersion with lowest energy states

exhibiting a cusp at the half-umklapp point (P = 10Po) marked by the diamond. The dotted lines show

the free particle dispersion P 2/2mfree. The free particle mass differs slightly from the bare boson massm
due to the finite-size correction in Eq. (5.13). The inset shows the detail of the cusp near the half-umklapp

point (P = 10Po).

with a green line) switches again to one with zero impurity momentum Pimp = 0. This switch

generates a cusp in the yrast dispersion, connecting segments with a gray soliton moving to the

right (at P < 10P0) and a gray soliton moving to the left (P > 10P0).

A symmetrical scenario to the first transition happens near the umklapp point. Both

transitions become sharp quantum phase transitions (cusp with discontinuous derivative) in the

thermodynamic limit. These phase transitions are first order (level-crossing type) transitions

without diverging quantum fluctuations.

5.4.2 Impurity momentum

In order to understand the physical nature of an yrast state it is of great interest to understand

how the momentum is distributed between the impurity and the Bose gas. In the case of an
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interacting impurity, it’s momentum is no longer a good quantum number. Thus, we calculate

the expectation value of the impurity momentum with respect to the yrast state |ΨP 〉

〈P̂imp〉P =

kM∑
k=k1

kP0〈ΨP |b̂†kb̂k|ΨP 〉. (5.14)

Unbiased estimators for such a symmetric expectation value can be obtained from FCIQMC

using the replica trick: two propagating independent stochastic representations of the quantum

state are used for the bra and the ket state respectively [186].

Figure 5.4 shows the expectation value of the impurity momentum 〈P̂imp〉P as a function of

the total momentum of the yrast state for different values of the impurity coupling strength η as

blue dots. Because the total momentum is fixed to the value P for each state, the expectation

value of momentum in the Bose gas is given by the difference 〈P̂Bg〉P = P − 〈P̂imp〉P , where

P̂Bg =
∑kM

k=k1
kP0â

†
kâk is the operator for the momentum of the Bose gas alone.

In the case of weak impurity coupling (η = 0.01) shown in Fig. 5.4(a) the situation is very

close to the non-interacting limit of Fig. 5.3 discussed in the previous section: For small total

momentum P = P0 the impurity carries (almost) the full momentum of the system as this is

energetically favourable. At larger values of P , additional momentum is taken up by the Bose

gas while the impurity momentum stays at about P0, before switching abruptly to

approximately zero at the half umklapp point. At the full umklapp point P = 20P0 the

impurity momentum jumps back to P0 consistent with the expectation that every particle

including the impurity carries a single unit of quantised momentum at the umklapp point. The

abrupt change near the half-umklapp point P = 10P0 is consistent with the cusp observed in

the yrast dispersion in Fig. 5.2(b). An interesting situation occurs directly at the half umklapp

point where 〈P̂imp〉 ≈ 0.5P0, which indicates that this state is an entangled superposition of a

state where the impurity has momentum P0 and the Bose gas 9P0, and a state with 〈P̂imp〉 ≈ 0

where the Bose gas carries the full (half-umklapp) momentum 10P0.

At larger interaction strengths η shown in panels (b) to (d), the curves keep the inversion

symmetry around the half-umklapp point. At this point we find the entangled superposition

state as described with 〈P̂imp〉 ≈ 0.5P0. Strong changes are found in the polaron regions. At

intermediate interactions additional momentum is deposited in the impurity with a maximum of

〈P̂imp〉 ≈ 1.25 at η = γ = 0.2. Further increase of the impurity coupling then leads to a reduced
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Figure 5.4: The expectation value of the impurity momentum 〈P̂imp〉P against the total momentum P
in the system. The dots (•) are directly calculated data with FCIQMC. The crosses (×) show the mdE

dP

computed numerically from the yrast spectum in Fig. 5.2. The dotted line shows the value 〈P̂imp〉P =
0.5P0 as a guide to the eye. The boson-boson coupling is γ = 0.2 for all cases, andN = 19 andNimp = 1,
which means that P = 10P0 corresponds to half umklapp and P = 20P0 is the full umklapp point.
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expectation value for the impurity momentum going against 〈P̂imp〉 ≈ 0.5P0 over the whole P

range.

The panels of Fig. 5.4 also show mdE
dP
≡ mv where v is the group velocity of the system

with orange crosses. This data indicates that the impurity moves with the group velocity in

the polaron part of the dispersion relation (close to P = 0 or umklapp points) for a weakly-

interacting impurity, and over the whole dispersion relation when η ' γ. When η � γ and

outside of the polaron section, the impurity is rather transparent to the Bose gas and does not

follow the group velocity. This indicates that the depleton picture where the impurity hybridizes

with a dark or gray soliton is only valid when η ' γ.

5.4.3 Two-body correlation function

The two-body correlation function contains important information about how particles interact

with one another. In particular, the impurity-boson correlation provides direct evidence for

the transition from a polaron to a depleton. Here, we define the dimensionless impurity-boson

correlation function g
(2)
P (d) for the yrast state |ΨP 〉 in real space as

g
(2)
P (d) =

L

N

∫ L

0

〈ΨP | ψ̂†(x+ d)ψ̂†
imp(x)ψ̂imp(x)ψ̂(x+ d) |ΨP 〉 dx, (5.15)

where d is the distance between the impurity and a boson. In order to evaluate this correlation

function in the lattice discretized model we transform into momentum space using

â†k =
∫
eikx/αψ̂†(x) dx and b̂†k =

∫
eikx/αψ̂†

imp(x) dx, to obtain the equivalent representation

g
(2)
P (d) =

1

M

M∑
s,p,q,r=1

exp

(
−id(p− q)2π

L

)
〈ΨP | â†sb̂†pb̂qâr |ΨP 〉 δs+p,q+r. (5.16)

The chosen normalization ensures g
(2)
P (d) = 1 in a non-interacting system for any yrast state. In

an interacting system g
(2)
P still obeys a reflection symmetry g

(2)
P (d) = g

(2)
P (−d) and is a periodic

function with period L. Furthermore, as a function of the yrast momentum P , the correlation

function g
(2)
P of a finite system is periodic in P with reflection symmetry around P = 0 and

around the half-umklapp point, as does the yrast dispersion relation in the thermodynamic limit.

Due to these symmetries we show the correlation functions only in the nontrivial intervals 0 ≤
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Figure 5.5: The impurity-boson correlation function g
(2)
P (d) for yrast states with total momentum P as

indicated in the legend versus the real space distance d. Different values of the impurity-boson coupling
are shown in panel (a) η = 0.01, (b) η = 0.05, (c) η = 0.2 and (d) η = 1. The boson-boson coupling
is γ = 0.2 for all cases, and N = 19 and Nimp = 1, which means that P = 10P0 corresponds to half

umklapp.

151



d ≤ L/2 and 0 ≤ P ≤ NtotP0/2.

Figure 5.5 shows the correlation functions g
(2)
P (d) for yrast states with different momentum

over a range of impurity-boson coupling strengths for γ = 0.2. Significant changes in the

correlation functions with respect to different momentum values are clearly visible.

For the smallest interaction strength η = 0.01 in Fig. 5.5(a) we can identify clear evidence of

the two transitions discussed in Sec. 5.4.1: For P ≤ P0 the very small deviations of g
(2)
P (d) from

the background value of 1 indicate very weak correlations consistent with the polaron regime.

There is evidence for a weak correlation hole, and the shape of g
(2)
P (d) (negative curvature)

is consistent with an otherwise homogeneous Bose gas. In the intermediate momentum range

P0 < P < 10P0 the correlations are stronger and the shape of g
(2)
P (d) changes with displaying

positive curvature at small P to negative at larger P . This is consistent with the impurity weakly

correlating with a gray soliton forming in the Bose gas – explaining the shape of the correlation

function. Amuch stronger correlation is observed at the half umklapp pointP = 10P0 consistent

with the superposition state expected at the cusp of the dispersion as discussed in Sec. 5.4.2.

Increasing the impurity-boson coupling strength η in panels 5.5(b)–(d) the changes in the

correlation function for different P values become smaller. For η = 0.05 in panel (b) the

transition from the half-umklapp momentum P = 10P0 to smaller momentum values is less

dramatic and smoother, which indicates that the depleton picture of the impurity being localized

inside a (modified) gray soliton is becoming adequate. However, comparing with Fig. 5.4(b) we

see that this is not yet completely the case and still requires larger η to become fully accurate.

The physics of the polaron regime is more resilient and survives to larger values of η up

to η ≈ 0.2 as seen in panels 5.5(b) and (c). We note that the impurity carries almost the full

momentum of the system at P = P0 for η ≤ 0.2 as seen in Fig. 5.4, which is consistent with the

polaron picture. Seeing the (anti-)correlation with the Bose gas strengthened with increasing η

in panels 5.5(b) and (c) is consistent with the decrease in the curvature of the dispersion observed

in Fig. 5.2 and associated increase in polaron mass.

At the largest value of η = 1 shown in Fig. 5.5(d) the correlation function drops close to

zero at zero distance d = 0 for any value of P consistent with the picture that the impurity now

acts as a weak link in the Bose gas, almost severing the superfluid [39]. At the half umklapp

momentum P = 10P0 the shape of the correlation function now closely traces the shape of a
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dark soliton density ∼ tanh(d/lh)
2
, consistent with a healing length lh ≡ L/

√
2γN ≈ 4.2α.

5.4.4 Effective mass at half umklapp P = NtotP0/2.

At the half umklapp point P = NtotP0/2 we may expect the physics of the yrast states to be

dominated by a dark soliton in the interacting Bose gas, and by a depleton if an interacting spin

impurity is present. The effective mass m∗ = (d2E/dP 2)−1 is negative due to the concave

shape of the dispersion relation. We extract the effective mass by fitting a parabola to three

points of the finite-size corrected dispersion relation Ω(P ) of Eq. (5.13) near the half umklapp

point.

Figure 5.6 shows the extracted effective mass as a function of the impurity coupling

strength η for two different values of the Bose gas interaction constant γ. In the regime η > γ

our data shows a linear trend with η. A linear dependence of the effective mass on η is

expected from exact results for an equal-mass impurity in a Tonks–Girardeau gas (γ = ∞)

[39]. The effective mass becomes particularly heavy for small γ and large η, up to several

times the mass of the dark soliton at the same value of γ, as seen in Fig. 5.6(b). As the

magnitude of the extracted effective mass (from the finite-size corrected dispersion relation)

becomes larger than the total system mass of 20m, we call this the super-heavy regime. Note

that without the finite-size correction of Eq. (5.13), the curvature of the yrast dispersion

changes from concave to convex, which means that the uncorrected effective mass diverges

and changes sign (not shown). The heavy effective mass regime has potential experimental

relevance, as it is relevant for realizing physical phenomena such as Bloch oscillations

[38, 39]. Furthermore, a recent study demonstrates that the dynamical phenomenon of

temporal orthogonality catastrophe is exhibited, given the impurity-boson couplings are

sufficiently stronger than the intra-species background ones [201].

Another interesting feature shown in Fig. 5.6(b) is that the impurity effective mass is

approximately equal to the soliton mass for η = γ. In the regime where η < γ (seen for

γ = 0.2), the effective mass becomes very small in magnitude, trending towards zero. This is

consistent with the establishment of a cusp in the dispersion relation at the half-umklapp point,

a feature that was already discussed in Sec. 5.4.1. While the concept of an effective mass

breaks down in the cusp regime, our data can be used to determine that the transition happens
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Figure 5.6: Effective mass at half-umklapp. (a) Effective mass of the Bose gas with impurity at the

half-umklapp point P = NtotP0/2 (depleton massmdep) in units of the bare massm as a function of the

impurity coupling strength η. The dotted lines are linear fits to the data with η > γ and highlight the

linear trends. (b) Ratio of the effective mass of the impurity (depleton mass mdep) to the effective mass

of the pure Bose gas (soliton massmsol) at the half-umklapp point P = NtotP0/2. The dashed line in (b)
indicates a depleton/soliton mass ratio is 1. The soliton mass is msol = −14.47232(5)m for γ = 0.02
andmsol = −7.079(34)m for γ = 0.2.
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Figure 5.7: The spin-flip energy as a function of the boson-impurity coupling strength η, with boson-
boson coupling strength (a) γ = 0.02 and (b) γ = 0.2.The data for P > 10 are not presented, as they
follow the symmetry across P = 10 in the yrast spectrum, hence are overlapping with existing data on
this figure.

approximately where η = γ, thus shedding some light on the question of the critical coupling

which remains unsolved from Ref [212].

5.4.5 Spin-flip Energy

So far we have considered the yrast excitation energies, which measure how much energy is

required to deposit momentum into the system on top of the energy of the ground state at P = 0.

Now we want to examine the energy that is required to flip a spin in the Bose gas at fixed

momentum. We define the spin-flip energy ESF(P ) as

ESF(P ) = ENtot−1,1(P )− ENtot,0(P ). (5.17)

Figure 5.7 shows the spin-flip energy as a function of the impurity coupling strength η for

yrast states at different total momentum P . The two panels refer to different values of the boson-

boson interaction strength γ. The brown data shows the spin-flip energy for the P = 0 ground

state. It is separated by a gap from the spin-flip energies at other momentum values, which

are all lower. The ground state spin-flip energy increases with η and crosses zero, meaning

that for large η flipping the spin becomes energetically unfavorable. The vertical lines indicate
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where η = γ. At this point the impurity is distinguishable from the background Bose gas but all

physical properties such asmass and interactions are the same. The spin-flip energy is thus solely

due to quantum statistics. From the data shown in Fig. 5.7 we see that the spin-flip energies are

all negative at this point, and thus the system with impurity has lower energy than the pure Bose

gas, i.e. it is favorable to flip the spin, for any value of the total momentum P . Furthermore,

the energy gain is larger the higher the momentum (up to the half umklapp value). This trend is

remarkably not maintained when η < γ as seen in Fig. 5.7(b). This behavior can be rationalized

from the quantitative changes in the yrast dispersions shown in Fig. 5.2.

5.5 Conclusions

Using the FCIQMC method, we investigated the properties of the yrast states of Bose gases

coupled with a mobile impurity in one spatial dimension. Based on the energies and the first

and second order correlation functions of yrast states, we identified the polaron and depleton

regimes, as well as the transitions between them. The extracted depleton effective mass

revealed a super-heavy regime where the magnitude of the (negative) depleton mass exceeds

the mass of the finite Bose gas. We also observed a qualitative change in behavior crossing

η = γ in all calculated quantities. For the η > γ regime we can identify the formation of

depletons around the half-umklapp point where the impurity is more or less confined to the

density hole of the gray/dark soliton of the Bose gas. The depleton picture becomes inadequate

for smaller interactions between the impurity and the bosons, η < γ, with the impurity not

longer hybridizing with the soliton. This behavior is consistent with an observed break-down

of the effective mass concept below η = γ.

In this work, the FCIQMC method is applied to a bosonic many-body problem for the first

time. Due to the non-stoquastic nature of the momentum-space Hamiltonian (5.3), the sign

problem exists and becomes severe when either η or γ is large. Through this study, we

demonstrated the effective suppression of the sign problem in FCIQMC by the application of

the initiator approximation, showing the potential of FCIQMC for studying complex bosonic

many-body systems.

Outlook: The demonstrated computational method is extremely versatile and can be
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applied to a wide range of physics question. Possible future extensions of this study include

extrapolating the results to the thermodynamic limit. A transcorrelated Hamiltonian [58, 233]

can be applied to accelerate the basis set convergence to the infinite limit. There are also many

interesting set-ups that we wish to study further. In this work, we only focus on the cases

where the impurity and bosons all have identical mass and repulsive interactions, which could

be extended to unequal masses and attractively interacting impurities. Attractive

impurity-boson coupling has been studied in the polaron regime [37, 47] but not yet explored

in the context of depleton physics. In addition, the case of an impurity in a strongly interacting

Bose gas or with long-range interactions [117, 234–236] is interesting to study, where

perturbative and mean-field approaches are of limited use or invalid. A more complex system

with two impurity atoms, known as the bipolaron problem [98, 118, 237–239], at non-zero

momentum is also interesting due to its connection to high-temperature superconductivity

[118, 238].
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Appendix

5.A Eliminating Biases

While bosonic systems can often be described by stoquastic Hamiltonians characterized by

having only non-positive, real off-diagonal elements, the momentum-space Hamiltonian of

Eq. 5.3 considered here, is non-stoquastic. As a consequence, one has to deal with the QMC

sign problem, that originates from the fact that different configurations can spawn into the

same configuration with incoherent signs.

In FCIQMC, the initiator approach can be used to mitigate this sign problem by restricting

the walker spawning process to the dominant configurations. This enforces a better coherence

in the sign structure of the wave function. Albeit typically small [71, 150], an initiator bias can

be observed as a consequence of the initiator approximation when an insufficient number of

walkers is used to sample a much larger Hilbert space. Furthermore, the population control bias

[68, 181, 223] is a stochastic bias that appears as a result of sampling noise. It is typically much

smaller than the initiator bias (where the latter is applicable) and scales like a power law with

the number of walkers [223]. Both biases can be reduced below the size of statistical error bars

by increasing the walker population. To make sure our calculated energies are bias free and a

sufficiently large walker population is used, one can check the ground-state energy as a function

of the equilibrated walker number, Nw, as shown in Fig. 5.8.

It can be seen that when Nw > 104 the biases in the shift and projected energies are smaller

than the statistical errors, and converged to the same energy throughout. This convergence check
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Figure 5.8: Ground-state energy against the equilibrated walker numbers, Nw. The system size is the

same as used in other sections. The boson-boson coupling is γ = 0.2 and the impurity-boson coupling
is η = 2, This is a stronger interaction than in our other calculations and should lead to the largest bias.
For Nw > 104 the bias becomes smaller than the statistical errors.

is carried out with a larger interaction strength (η = 2, γ = 0.2) than used for any of the data

presented in the main article, and thus should overestimate the bias for the presented data. For

all energies presented in Sec. 5.4, a walker population of Nw = 106 is used. Hence we are

confident that the presented data is free of both, the initiator and the population control bias.
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Chapter 6
Conclusions and Outlooks

The topic of this thesis was the adaptation of the full configuration interaction quantum Monte

Carlo (FCIQMC) method for studying ultracold atomic Bose gases. The thesis can be divided

into two main themes: methodological developments and applications of the FCIQMC

algorithm. We firstly looked into the FCIQMC walker population control mechanism and the

population control bias. Then we applied FCIQMC to investigate the bosonic quantum

impurity problem.

We came up with a single-stage walker population control mechanism, by simply adding

an extra forcing term into the original FCIQMC shift-update equation. We were able to map

the newly proposed shift-update equation to a damped harmonic oscillator. From there, we

studied different damping scenarios and concluded that with the forcing strength set to the value

of critical damping, efficient control of the population of walkers can be achieved. The new

procedure not only simplifies the FCIQMC population control by removing the necessity for

two simulation stages, but also eliminates the overshoot problem where the maximum and the

equilibrated walker population can often be much higher than desired causing excessive usage

of computational resources.

As the shift is allowed to update during the walker growth stage with the new procedure,

the cloning events are encouraged via a automatically generated high value of the shift to

maintain a fast pace walker growth. When simulating a system with the sign problem, the

annihilation plateau is masked by the new shift-update procedure. Hence we have introduced a
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new quantity called the growth witness G, which displays a maximum at the annihilation

plateau. The detection of the annihilation plateau has always been a challenge in FCIQMC.

Both the growth witness and the shift showed certain characteristic behavior that can be used

to detect the annihilation threshold. Future work on this topic includes how to automate

annihilation plateau detection with the new population control mechanism. Furthermore, as the

variable shift in the new procedure influences the walker dynamics in the growth stage,

whether or how the new procedure influences the convergence to the ground state with

FCIQMC remains to be examined thoroughly.

Next, we had a closer look at the population control bias in FCIQMC. Previous

understanding on the population control bias in FCIQMC is very limited, as the bias is often

overshadowed by the much more severe sign problem when studying fermionic and molecular

systems. For a stoquastic bosonic Hamiltonian, the population control bias is more evident

because it is the only systematic bias, which becomes severe when the size of the system is

very large. While previous studies suggested that the population control bias scales universally

with the inverse walker number, we have found non-universal power-law scaling in systems

with more than 20 bosons. In order to trace the origin of the population control bias, we

analyzed the FCIQMC algorithm using tools of stochastic calculus. We modeled the bias with

an exactly solvable stochastic differential equation and found an expression for the bias from

Itô’s lemma. We further derived bounds for the various estimators and found explicit solutions

for the correlation functions in the time series of the walker number and the shift, as well as

exact expressions for the population control bias for certain simple bosonic models.

Despite all the effort made to fully understand the population control bias in FCIQMC, the

question of how the bias can be avoided or eliminated is still an open question. As the

population control bias arises from the covariance between fluctuations of the shift and the

coefficient vector, decoupling the two terms would eliminate the bias. So far no clear strategy

is known for achieving such goal. Alternatively, since the sampling noise contributes to the

rise of the bias and cannot be fully avoided, one could inject additional noise to counter or

reduce the existing one. As the population control bias is the main roadblock preventing us

from obtaining exact solutions for large sign-problem free bosonic systems, future work on

this front should be conducted and will prove valuable.

Lastly, we showcased an application of FCIQMC in the investigation of the properties of
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the yrast states of Bose gases coupled with a mobile impurity in one spatial dimension. The

ability to compute the lowest-energy momentum eigenstates (yrast states) is enabled by

FCIQMC’s feature to preserve symmetries of the Hamiltonian during the imaginary-time

propagation, which is not easily achievable with other available Monte Carlo methods. A

momentum-space representation of the Hamiltonian was used, meaning the sign problem

needed to be dealt with. We employed the initiator approach in FCIQMC calculations to

mitigate the sign problem, and successfully removed all biases in the energies within statistical

errors. We further computed the first and second order correlation functions in order to study

the momentum distribution of the impurity, as well as the impurity–bath correlation of yrast

states. Based on the computation results, we identified different dynamical regimes, namely

the polaron and depleton, as well as the transitions between them. We extracted the depleton

effective mass for the yrast spectrum, revealing a super-heavy regime where the magnitude of

the negative depleton mass exceeded the total mass of the finite Bose gas. Numerical results

showed that the depleton picture becomes inadequate for smaller interactions between the

impurity and the bosons, where the impurity is no longer hybridized with the soliton.

There were limitations with FCIQMC when studying such complex bosonic many-body

systems, which led to future aspects of this work. Severe sign problems occurred when

coupling strengths, either impurity–boson or boson–boson, were strong, which prevented us

from exploring some interesting regimes. A continuous effort on developing counter-sign

problem measures is needed. Furthermore, although FCIQMC does what deterministic

methods cannot do, as the Hilbert space expands rapidly with the numbers of particles and

basis states, we are still confined to a finite system size. Extrapolating the results to the

thermodynamic limit will provide more insights into the physical system. The convergence

rates with respect to the number of particles and modes remain to be determined. Additionally,

a transcorrelated Hamiltonian can be applied to potentially accelerate the basis set convergence

to the infinite limit. Physics-wise, the presented impurity model can be further modified to

explore other intriguing regimes. Yrast states of systems with attractive couplings, unequal

masses of the impurity and boson, as well as having two or more impurity atoms are all

interesting and waiting to be studied.

Other projects of a wider scope include ultracold fermionic atoms, systems with higher

spatial dimensions, as well as the real-time quantum dynamics with FCIQMC. The FCIQMC

165



method has huge potential to be a versatile and powerful tool in studies of ultracold atomic

physics, with the aim to provide exact numerical solutions to many complex yet fascinating

quantum many-body problems.
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