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Abstract

Voice-based respiratory diagnosis research aims at automatically screening and di-

agnosing respiratory-related symptoms (e.g., smoking status, COVID-19 infection)

from human-generated sounds (e.g., breath, cough, speech). It has the potential

to be used as an objective, simple, reliable, and less time-consuming method than

traditional biomedical diagnosis methods. In this thesis, we conduct one compre-

hensive literature review and propose three novel deep learning methods to enrich

voice-based respiratory diagnosis research and improve its performance.

Firstly, we conduct a comprehensive investigation of the effects of voice features on

the detection of smoking status. Secondly, we propose a novel method that uses the

combination of both high-level and low-level acoustic features along with deep neural

networks for smoking status identification. Thirdly, we investigate various feature

extraction/representation methods and propose a SincNet-based CNN method for

feature representations to further improve the performance of smoking status iden-

tification. To the best of our knowledge, this is the first systemic study that applies

speech processing with deep learning for voice-based smoking status identification.

Moreover, we propose a novel transfer learning scheme and a task-driven feature

representation method for diagnosing respiratory diseases (e.g., COVID-19) from

human-generated sounds. We find those transfer learning methods using VGGish,

wav2vec 2.0 and PASE+, and our proposed task-driven method Sinc-ResNet have

achieved competitive performance compared with other work. The findings of this

study provide a new perspective and insights for voice-based respiratory disease

diagnosis.

The experimental results demonstrate the effectiveness of our proposed methods

and show that they have achieved better performances compared to other existing

methods.
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Chapter 1

Introduction

This chapter provides an overview of this thesis. The background of this re-

search is introduced briefly in Section 1.1. The motivations are explained in

Section 1.2. The contributions of this thesis are summarised in Section 1.3.

Finally, the organisation of this thesis is listed in Section 1.4.

1.1 Overview

Human vocal architecture is a complex and unique anatomical structure that enables

us to vocalise a wide range of acoustic signals that are coordinated and meaningful

[1]. The complexity of speech production makes it a suitable indicator for various

health conditions [2]. Hence, speech signals can carry a speaker’s basic information,

such as age, gender, emotional status, psychological status, intoxication level, and

smoking status, which are powerful biomarkers for voice-related health diagnosis

[3–5]. There is an active and growing area of deep learning research in this voice-

based health diagnosis domain, which focuses on developing paradigms to objectively

determine such health status. Specifically, the applications of voice-based health

1



Introduction 2

diagnosis research have been studied include intoxication and fatigue [6]; Alzheimer’s

disease (AD) [7]; upper respiratory tract infection [8] and depression [9].

In the application to intoxication detection, researchers use acoustic features, prosodic

features, speech rate features and glottal pulse features to detect the degree of in-

toxication from the speech signal by means of statistical classification [10]. It is a

widely accepted hypothesis that Alzheimer’s disease affects verbal fluency, which is

reflected by the patient’s slow speech rate, or other speech impairments [11]. The

speech-based detection of AD with an attention-based hybrid network demonstrates

that voice features have the potential of being a useful tool for early screening of AD

[12]. An upper respiratory infection affects the upper part of patients’ respiratory

system and can make their voices distinctive, creating recognizable voice signatures

and enabling the training of deep learning algorithms to grade the severity of the

disease. Results show that using vocal biomarkers to aid the diagnosis of upper res-

piratory infections are promising [8]. Voice symptoms seem more frequent in people

with high levels of cortisol [13], which is common in patients with depression; there-

fore, voice features such as Mel-Frequency Cepstrum Coefficient (MFCC) are used

to discriminate symptoms of depression in combination with deep neural networks

[9].

Voice analysis using speech processing and deep learning opens new opportunities for

healthcare. Voice-based health diagnosis has advantages over traditional biochemical

measures for diagnosis, risk prediction, and remote monitoring of various clinical

outcomes and symptoms, due to the costs and ease of the sample collection process

[14]. Voice-based health diagnosis is especially useful under the current COVID-

19 pandemic, where movement restrictions may make other methods more difficult

or expensive than usual. Voice-based respiratory diagnosis, one of the voice-based

health diagnosis applications, has not been fully studied yet. There is an urgent,

unmet need for reliable, intelligent voice-based respiratory diagnosis systems based



Introduction 3

on artificial intelligence to support objectively assessment of respiratory diseases.

Hence, it motives us to conduct research of speech processing and deep learning

methods to fill the gap and improve the performance of the voice-based respiratory

diagnosis research.

1.2 Motivations

Smoking status is an important indicator of the human health status, since auto-

matic smoking status identification has a variety of applications, including smoking

status validation [15], smoking cessation tracking [16] and speaker profiling [17].

However, the way to use speech processing with deep learning techniques to deter-

mine smoking status (i.e., smoker or non-smoker) still has not been fully studied.

This motivates us to conduct research on smoking status identification studies, by

conducting a comprehensive literature review to find theoretical support for smoking

status identification research, to specifying identification methods and determining

the best acoustic features using deep learning techniques to increase the performance

of smoking status identification.

Concurrently, under the current COVID-19 pandemic, voice-based automatic meth-

ods for screening and diagnosing respiratory symptoms (e.g., COVID-19) have re-

cently gained increased attention and became an emerging topic in the voice-based

health diagnosis research [4, 18, 19]. Multiple deep learning methods have been

developed to identify respiratory diseases (e.g., COVID-19) from human-generated

sounds (e.g., breath, cough, speech) [5, 20, 21]. However, deep learning methods

are typically data-hungry, and the current amount of available COVID-19 labelled

data is normally limited. How to tackle the scarcity of well-labelled data, learning

effective speech feature representations and improving diagnosis performance are

still long-standing and challenging tasks. This motivates us to propose a transfer
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learning scheme to identify the COVID-19 disease by fine-tuning the pre-trained

representation models (i.e., VGGish, wav2vec 2.0, problem-agnostic speech encoder

(PASE+)) on datasets with COVID-19 labels. We also propose a task-driven feature

representation network Sinc-ResNet (SincNet as the frontend, with ResNet as the

backend) to learn feature representations effectively.

1.3 Contributions

To address the issues mentioned above, one comprehensive literature review and

three novel deep learning methods are proposed in this thesis, and summarised

below:

• Chapter 2 refers to our published paper ”Towards the objective speech assess-

ment of smoking status based on voice features: a review of the literature” in

the Journal of Voice, 2021. To find theoretical support for the smoking status

identification study, we conducted a comprehensive investigation of the effec-

tiveness of voice features for smoking status identification [22]. To the best

of our knowledge, this is the first study that has conducted a comprehensive

literature review for smoking status identification based on voice features.

• Chapter 3 refers to our published paper ”Automatic speech-based smoking

status identification” in the Computing Conference, 2022. To develop an au-

tomatic voice-based smoking status identification system, we proposed a novel

method that uses the combination of both high- and low-level acoustic features

along with deep neural networks [23]. We also proposed a dataset that can be

used for the smoking status identification experiments. In addition, the data

augmentation technique (i.e., SpecAugment) is also applied to further improve

smoking status identification accuracy. To the best of our knowledge, this is
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the first study that has comprehensively explored both high- and low-level

acoustic features for smoking status identification from voice.

• Chapter 4 refers to our published paper ”Determining the best acoustic fea-

tures for smoking status identification” in the IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2022. To determine the

best acoustic features for smoking status identification, we compared two fea-

ture extraction/learning techniques: (i) hand-crafted feature sets including the

extended Geneva Minimalistic Acoustic Parameter Set and the Computational

Paralinguistics Challenge Set; (ii) the Bag-of-Audio-Words representations;

and proposed a novel neural representation method that extracted features

from raw waveform signals by SincNet [24]. To the best of our knowledge,

this is the first study that has explored acoustic feature extraction/learning

techniques for smoking status identification from speech.

• Chapter 5 refers to our submitted paper ”Transfer learning and task-driven

feature representations for COVID-19 diagnosis from respiratory sound data”

in the ACM Transactions on Speech and Language Processing (TSLP), 2022.

To address the scarcity of COVID-19 well-labelled data and to learn feature

representations effectively, we proposed a novel transfer learning scheme and a

task-driven feature representation network for diagnosing respiratory diseases

(e.g., COVID-19) from audio signals (i.e., breath, cough, and speech) [25].

The findings of this study provide new perspective and insights for voice-based

respiratory diseases (e.g., COVID-19) diagnosis.

1.4 Organization of Thesis

This is a thesis by publications. It contains four individual studies (Chap-

ter 2 to Chapter 5), either published in a journal/conference or submitted
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to a journal/conference. All references related to each chapter are listed

at the end of each chapter.

Chapter 2 presents a comprehensive literature review of the effects of voice features

for smoking status identification.

Chapter 3 presents the proposed novel method that incorporating low-level and high-

level acoustic features with data augmentation, and using deep neural network as a

classifier for smoking status identification.

Chapter 4 presents the proposed feature extraction/learning method to determine

the best acoustic features for smoking status identification.

Chapter 5 presents the proposed transfer learning scheme and task-driven feature

representation network for COVID-19 diagnosis from respiratory sound data.

Chapter 6 summarises this thesis and discusses future work.
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Chapter 2

Literature Review of Smoking

Status Identification Based on

Voice Features

In smoking cessation clinical research and practice, objective validation of self-

reported smoking status is crucial for ensuring the reliability of the primary

outcome. Speech signals convey important information about a speaker, such

as age, gender, body size, emotional state, and health state. We investigated

(1) if smoking could measurably alter voice features, (2) if smoking cessation

could lead to changes in voice, and therefore (3) if the voice-based smoking

status identification the potential to be used as an objective smoking cessation

validation method. We found that fundamental frequency, jitter, shimmer,

harmonics to noise ratio, and other voice features are affected by smoking and

could be used to assess smoking status. Speech assessment of smoking status

based on voice features has potential as a smoking status validation method.

Furthermore, this study provides recommendations for future research on the

objective speech assessment of smoking status based on voice features.

11
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2.1 Introduction

Smoking remains as one of the leading preventable causes of illness worldwide [1].

Conversely, stopping smoking (smoking cessation) dramatically reduces the risks of

future disease and premature death. In smoking cessation research, the propor-

tion of smokers who remain abstinent from smoking for a sustained period of time

(typically measured at 6 months after the date of quitting) is the primary outcome

measure used to evaluate the effectiveness of new interventions, policies, and prac-

tices for reducing smoking [2, 3]. It is regarded as best practice in clinical trials and

in the clinical treatment of smoking that self-reported abstinence should be con-

firmed with biochemical verification to validate smoking status. Several biological

markers can be used to validate smoking status using biological samples. Different

biological means of validating smoking status will be suitable in different studies,

depending on the sample collection methods available, exclusion and/or inclusion of

alternative nicotine delivery, the relevant timeframes for assessing smoking status,

and availability of technical expertise. A consensus of experts in the field of smoking

cessation suggest that carbon monoxide measures in expired breath and cotinine as-

say measured in urine or saliva are the most valid and feasible methods to validate

smoking status [4], due to their relatively low cost and ease of use compared to other

validation methods (see Table 2.1).

However, for some studies, the available biological methods for validating smoking

status may not be feasible due to costs, remoteness, and sample collection. In

such cases, self-report measures are widely used as alternative methods for estimate

information concerning the smoking status [5, 6]. However, self-report measures can

be subject to bias and misreporting and may compromise the validity of the study

findings and affect the trial outcome. Specifically, self-report measures in smoking

cessation trials may be subject to social desirability bias, and participants may be

biased to report non-smoker status because of a desire to “help” the researcher be
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Table 2.1: Comparison of biochemical smoking status validation methods.

Validation
Methods

Types of
Sample

Maximum
Detection
Window

Advantages Disadvantages

Nicotine Blood,
saliva, urine

8-12 hours High specificity,
samples can be
sent for testing.

Short half-life,
expensive, tech-
nical difficulty,
not suitable
for Nicotine
Replacement
Therapy (NRT)
trials.

Carbon
Monoxide

Expired air,
blood

12-24 hours Relatively in-
expensive,
commercially
available instru-
ments, simple,
portable, imme-
diate feedback.

Marginal util-
ity for light
cigarette use,
sensitive to
environmental
sources of CO
(i.e. pollution,
second-hand
smoke, mar-
ijuana use),
short detection
window, in
person testing,
not suitable for
non-combustible
tobacco prod-
ucts.

Cotinine
(Nicotine
Metabolite)

Blood,
saliva, urine

80-100 hours High specificity,
longer half-life,
inexpensive,
can be assessed
remotely (i.e.,
saliva test-
strips).

Not suitable
for NRT trials,
biohazard risk
constraints for
collection and
carriage of a
specimen, half-
life varies across
groups

Minor
Tobacco
Alkaloids
(Anabasine,
Anatabine)

Urine 50-80 hours High specificity,
differentiates
NRT.

Expensive, tech-
nical difficulty.
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a “good” participant and avoid stigma [7]. Research suggests that there is a high

rate of misclassification for self-reported abstinence, which varies across populations

[8, 9]. Due to demand characteristics, misclassification may be highest among ethnic

minority groups and lower socioeconomic groups, where the burden of harm from

tobacco is highest [10, 11].

As such, there is a need to develop new methods of validating smoking status that

are simple, noninvasive, low-cost, able to be used across a widely dispersed popu-

lation and do not require face-to-face contact. The development of such methods

would revolutionise the way that smoking cessation studies are evaluated and pop-

ulation smoking trends monitored, thus improving the feasibility of smoking status

validation, particularly in large studies.

Speech signals convey a speaker’s important information such as age, gender, body

size, emotional state, and health state [12–16]. The physiological effects of cigarette

smoking have been well-documented [17–19] and include pharyngeal diseases and

disorders resulting from prolonged effects of a variety of harmful chemicals in the

cigarette smoke. Exposure to tobacco smoke can affect throat tissues, causing in-

flammation to vocal-folds and misfunction of the vocal cords [20–22], along with

degrading lung function and thereby decreasing the airflow through the vocal cords

[21, 23, 24]. The changes in the vocal tract can eventually lead to a dramatic varia-

tion in the speaker’s speech signals. This raises the possibility that smoking status

validation via speech analysis (as well as smoking behaviour detection) could be used

to identify if a person is a smoker from a given speech signal by comparing his and/or

her voice features with other smokers’ and/or non-smokers’ voice features. Advances

in speech signal processing and machine learning could enable such analyses to be

done in real time. There has been a set of research works on machine learning

methods applied to the broad voice analysis research area such as pathological voice

detection [25, 26], and voice activity detection [27, 28]. A number of studies have
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investigated voice analysis based on specific machine learning algorithms such as

decision trees [29], support vector machine [30, 31], hidden Markov model [32, 33],

Gaussian mixture model [34, 35], and artificial neural networks [36, 37], which have

reported high accuracy and performance [38–40].

We hypothesised that when a person changes their smoking behaviour, the change

in their voice could be used to validate smoking status. The idea of identifying

a smoker from a given speech signal by comparing his and/or her voice features

with other smokers’ and/or non-smokers’ voice features has been explored in previ-

ous studies that concluded there is a correlation between a smoker’s speech signals

and his/her smoking status but were limited by a number of methodological fea-

tures. Yet the question remains regarding: what kind of voice features will be

affected by smoking? Voice features can be divided into two categories: linguistic

features and acoustic [41]. While linguistic features involve the analysis of language

form, language meaning, and language in context, acoustic features are the acoustic

components present in a speech that are capable of being experimentally observed,

recorded, and reproduced; they include fundamental frequency (F0), pitch, jitter,

shimmer, and harmonics to noise ratio (HNR). We were interested in the acoustic

features that enable the analysis of speech signals because these features contain

speakers’ discriminative information that can be extracted for further classification.

This chapter is organized as follows. The methods we utilised in this literature

review is given in Section 2.2. The results of voice features known to be affected by

smoking are introduced in Section 2.3. Sections 2.4 gives our discussions, and the

conclusions are shown in Section 2.5.
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2.2 Methods

In this research, we aimed to evaluate the effects of smoking and smoking cessation

on acoustic voice parameters. We sought to answer the following four questions:

1. Does smoking affect a speakers’ voice quality?

2. Which voice features are altered due to smoking and by how much?

3. After cessation of smoking, do these features recover to a normal level, and

over what period?

4. Is it possible to detect if a person is an active smoker or an ex-smoker from

these voice changes?

The following digital databases below were searched for relevant articles:

• ACM Digital Library [http://dl.acm.org/]

• IEEE eXplore [http://ieeexplore.ieee.org/]

• ScienceDirect [https://www.sciencedirect.com/]

• SpringerLink [https://link.springer.com/]

• MDPI (Multidisciplinary Digital Publishing Institute) [https://www.mdpi.com/]

• arXiv [https://arxiv.org/]

• Taylor & Francis Online [https://www.tandfonline.com/]

• PubMed [https://pubmed.ncbi.nlm.nih.gov/]

• Google Scholar [https://scholar.google.com/]
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The following search terms were used and linked: (smoking OR cigarette smoking

OR tobacco smoking) AND (voice features OR voice parameters OR speech signal)

AND/OR (voice analysis OR assessment) AND/OR (smoking cessation OR quit

smoking). The scope of the study was restricted from any period to 2020.

Initially, a total of 17 papers were found. We then widened the search with additional

keywords (smoker detection, voice analysis, acoustic analysis, etc.), leading to a total

of 34 articles included for review. The following section summarizes the key findings

from the review in relation to the research questions.

2.3 Results

In the following sections, we list the voice features of a speech signal known to be

affected by smoking.

2.3.1 Fundamental Frequency

Fundamental frequency (F0) is an important acoustic feature of speech signals. F0 is

the lowest, and usually, the strongest frequency produced by the complex vocal fold

vibrations, measured in Hertz (Hz). It is generally considered to be the fundamental

tone of sound and represents how high or low the frequency of a person’s voice

sounds. The F0 is calculated by using the period T of the speech signal:

F0 =
1

T
. (2.1)

However, for the speech signal, the period T is not constant since the input speech

signal contains amplitude and frequency perturbations [42]. Several improved algo-

rithms such as RAPT [43], SWIPE [44], YIN [45], and pYIN [46] have been proposed
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Table 2.2: Comparison of smokers’ vs non-smokers’ fundamental frequency.

Authors Methods Smokers Non-smoker

Horii and Sorenson [50]

Oral reading Male Female Male Female
Average 105.65 182.7 115.95 186.45
25-32 114.62 189.93 123.27 199.58
33-41 106.71 197.67 118.49 178.32
42-49 95.76 159.88 107.42 208.11

Gonzalez and Carpi [20]
Sustained Male Female Male Female
vowels 119.4 192.4 125.4 206.4

Lee et al. [51]
Sustained Female Female
vowels 229 234

to estimate the F0 based on acoustic features. Fundamental frequency values ob-

tained in speech signals are typically less than 300 Hz for children and greater than

100 Hz for adults, 120 Hz for men and 210 Hz for women [47–49].

Studies (Table 2.2) have consistently found lower F0 in smokers compared to age-

and sex-matched non-smokers: in a study of 80 participants aged 25-49 years, half of

whom were smokers [50], F0 was measured for oral reading and spontaneous speech.

The mean F0 values were lower in the smoker group than the non-smoker group

for males (105.65 Hz smokers vs 115.95 Hz non-smokers) and females (182.70 Hz

smokers vs 186.45 Hz non-smokers). Gonzalez and Carpi evaluated the effect of

cigarette smoking on voice features in young adults (n=134) who had smoked less

than 10 years [20]. F0 was lower in smokers than in non-smokers, but the difference

was only statistically significant in females (192.4 Hz smokers vs 206.4 Hz non-

smokers, P < 0.01). There was a dose-response effect with the number of cigarettes

smoked. The findings suggest that the effect of smoking on F0 is more significant for

women than for men. Lee et al. compared the voice features of non-smoking women

that were exposed to second-hand smoke (i.e., passive smoking) to those that were

not exposed [51]. There was no significant difference between passive smokers and

non-smokers in F0 (229 Hz passive smokers vs 234 Hz non-smokers), or for any of

the other voice features.
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2.3.2 Jitter

Jitter (measured in microseconds or % jitter) is a common perturbation measure of

the cycle-to-cycle frequency variation or instability of a speech signal, expressed as:

Jitter =
1

N − 1

N−1∑
i=1

|Ti − Ti+1| . (2.2)

where Ti is the extracted period of the ith speech signal segment and N is the number

of extracted speech signal segments [52].

Studies have found higher jitter measures in smokers compared to non-smokers (Ta-

ble 2.3). Gonzalez and Carpi found jitter increased between non-smokers and smok-

ers of less than 10 years, but the difference was only significant in men (47.67 ms

non-smoker male vs 62.78 ms smoker male, P < 0.05). This suggests that changes in

jitter may be related to long-term smoking [20]. In one study [53], authors confirmed

that the jitter value was higher in women aged 18-24 years who smoked compared to

nonsmoking women, but the difference was not significant. Women in the smoking

group had a relatively short history of smoking (3.5 years on average), which may

account for the study findings.

Three studies evaluated the voice changes over different smoking frequencies and

smoking histories. In one study [21], 32 adults (12 smokers without voice problems,

eight smokers with voice problems, and 12 non-smokers) were evaluated by the

phonatory tasks. The results of the jitter analyses shown that smokers with voice

problems present statistically significant higher jitter values for all speech tasks than

non-smokers. In another study [54], jitter values were significantly higher in smoking

males who smoked at least five cigarettes a day for five or more years (0.364%

smokers vs 0.283% non-smokers) than in non-smoking males. In an evaluation of

voice features comparing women who never smoked with women who smoked less
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Table 2.3: Comparison of smokers’ vs non-smokers’ jitter.

Authors Methods Smokers Non-smokers
Gonzalez and Carpi [20] Sustained Male Female Male Female

vowels 62.78 55.11 47.67 45.6
Awan [53] Sustained Female Female

vowels 0.40 ± 0.17 0.37 ± 0.15
Guimarães and Abberton [21] % Jitter Mixed Mixed

/a/ 1.1 0.52
/i/ 0.86 0.47
/u/ 0.73 0.51

Chai et al. [54] Sustained Male Male
Vowels 0.364 0.283

Vincent and Gilbert [55] Sustained < 10 years ≥ 10 years Non-smokers
Vowels 0.92 1.11 0.69

than 10 years, and women who smoked 10 or more years [55] the investigators found

that jitter value was increased in women who smoked compared to non-smokers,

but only the jitter difference between non-smokers and smokers who smoked 10 or

more years was significant (1.11% smoker ≥ 10 years vs 0.92% smoker < 10 years

vs 0.69% non-smoker). However, the authors also noted that the fact that women

who had a longer smoking habit also smoked more cigarettes per day and were older

than the other groups, could account for the difference in voice perturbation.

2.3.3 Shimmer

Shimmer (measured in decibels [dB] or % shimmer) is another common perturbation

measure in the acoustic analysis, which is a measure of amplitude variation of a

speech signal, and can be expressed as:

Shimmer =
1

N − 1

N−1∑
i=1

|20log(Ai+1/Ai)| . (2.3)

where Ai is the extracted peak-to-peak amplitude of the ith cycle of the speech signal

and N is the number of extracted cycles of the speech signal [52].
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Table 2.4: Comparison of smokers’ vs non-smokers’ shimmer.

Authors Methods Smokers Non-smokers

Chai et al. [54]
Sustained Male Male

vowels 4.569 2.497

Vincent and Gilbert [55]

< 10 years ≥ 10 years Female
/a/ 0.31 0.38 0.23
/i/ 0.2 0.34 0.2
/u/ 0.2 0.36 0.18

Zealouk et al. [56]

Male Male
/a/ 0.648 0.355
/i/ 0.51 0.379
/u/ 0.551 0.401

Tuhanioğlu et al. [57]

cigarettes e-cigarettes Male
Sustained vowels

% Shimmer 3.81±2.71 2.60±0.95 2.67±0.83
Shimmer dB 0.34±0.24 0.22±0.08 0.22±016

Studies have found higher shimmer values in smokers compared to non-smokers

(Table 2.4). In one study [54], the percentage of shimmer was significantly higher

in male smokers when compared to male non-smokers (4.57% vs 2.50%). Similarly,

in another study [55], the shimmer was significantly higher for female smokers who

smoked more than 10 years than for either non-smokers and smokers who smoked

less than 10 years (0.37 dB smoker ≥ 10 years vs 0.25 dB smoker < 10 years vs 0.21

dB non-smoker). Zealouk et al. examined the voice features of 40 male adults, and

20 smokers with a median duration of 13 years [56]. Both jitter and shimmer values

were significantly higher for smokers when compared to non-smokers (jitter: 51.997

ms smokers vs 36.989 ms non-smokers, P < 0.05; shimmer: 0.570 dB smokers vs

0.378 dB non-smokers, P < 0.01).

In a study [57] with 81 men, 21 of whom were former cigarette smokers that had

been using e-cigarettes for one to three years, 30 were users of conventional cigarettes

with a smoking history of one to five years, and 30 were non-smokers, the absolute

shimmer was significantly different between conventional cigarette smokers and e-

cigarette smokers and non-smokers, with an increased shimmer in the conventional
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cigarette users (0.34 dB conventional cigarette vs 0.22 dB e-cigarette smokers vs

0.22 dB non-smokers), however, there was no significant difference between groups

for F0 or jitter.

2.3.4 Harmonics to Noise Ratio

Harmonics to noise ratio (HNR), expressed in dB, represents the degree of acoustic

periodicity. It is the ratio between a periodic component and a non-periodic compo-

nent of a speech, which is a measure that quantifies the amount of additive noise in

the voice signal. HNR is also used as a measure for the signal-to-noise ratio (SNR)

of a periodic signal to determine the voice quality [58]. HNR can be formulated as

the following equation according to [59]:

HNR = 10 ∗ log10

ACv(T )

ACv(0) − ACv(T )
. (2.4)

where ACv(0) is the autocorrelation coefficient at the origin consistent in all en-

ergy of the speech signal. The ACv(T ) is the component of the autocorrelation

corresponding to the fundamental period.

Although HNR has been labelled as an index of vocal ageing [60], studies have

found that HNR was lower among smokers in comparison with non-smokers (Table

2.5). In one study [61], Braun found that the HNR value in the smoker group

(9.4 dB) was lower than the non-smokers group (11.4 dB). Dı́az et al. found that

the amount of noise presented in the smokers’ voices was evidently higher than the

amount of noise in the voice of the non-smokers [62]. Studies have also found that

the HNR value is affected by the duration of smoking. Pinar et al. [24] evaluated

109 young adult men among whom were 58 smokers (52 of these had smoked for less

than ten years). The results indicated the smokers’ HNR (25.01 dB) was slightly
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Table 2.5: Comparison of smokers’ vs non-smokers’ HNR.

Authors Methods Smokers Non-smokers

Braun [61]
Oral reading Male Male
/a/ 9.4 11.4

Dı́az et al. [62]
Sustained Mixed Mixed
vowels 25.22 36.1

Pinar et al. [24]
Sustained Male Male
vowels 25.01 25.74

Tafiadis et al. [63]
Female Female

/a/ 24.65 24.94
/e/ 25.3 25.65

Pintoa et al. [64]
Mixed Mixed

Sustained
vowels

0.051 0.016

lower than non-smokers’ (25.74 dB). In a study involving 210 young (aver-age age

22 years) adult females attending smoking status identification [63], with average

years of smoking only 2.16 (SD: 1.29) and average number of cigarettes smoked daily

13.19 (SD: 6.65), no statistically significant differences were noted for HNR values

for smokers with short smoking years but heavy daily smoking habits compared to

non-smokers. Pintoa and Crespob investigated HNR as features to classify smokers

voice and non-smokers voice [64]. 40 smokers with an average smoking duration of

30 years and 40 non-smokers were measured, and the HNR value of smokers was

different from that of non-smokers (0.051% vs 0.016%).

2.3.5 Formant Frequencies

A formant frequency is a concentration of acoustic energy around a particular fre-

quency in the speech wave, which is a distinctive frequency component of the acoustic

signal produced by speech [65]. A formant frequency with the lowest frequency is

named F1 , the second F2 , the third F3, and the fourth F4 . Each vowel in English
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Table 2.6: Comparison of smokers’ vs non-smokers’ formant frequencies.

Authors Methods Smokers Non-smokers

Zealouk et al. [56]

F1 F2 F3 F4 F1 F2 F3 F4

/a/ 850 1600 2600 3500 900 2000 3050 4100
/i/ 400 1900 2700 3900 500 2100 3050 4300
/u/ 450 1500 2500 3700 550 1400 2950 4050

has three formant frequencies and most often, F1 and F2 are enough to determine a

vowel.

Zealouk et al. [56] reported that smokers’ formant frequencies F1 and F2 were close to

those of non-smokers, and smokers’ F3 and F4 were lower than that in non-smokers,

as shown in Table 2.6. On the other hand, F1 , F2 , and F3 values dramatically

decreased with age increasing, and these values for men were lower than those for

women.

2.3.6 Other Features

Pitch is the feature to judge sounds as its highness and lowness, which depends

on the vibrational frequency produced by the vocal cords during sound production.

Pitch can be quantified using fundamental frequency (F0), as it is correlated with

the physical feature of F0 [66]. Both pitch and F0 are often used interchangeably in

the literature. Nonetheless, a few studies found that smokers had lower pitch values

than those of non-smokers (Table 2.7) [21, 56]. In one study [56], Zealouk et al.

found that the pitch value for smokers was statistically lower than non-smokers.

Correlation dimension (D2 ) is a nonlinear dynamic quantitative measurement that

can be applied to voice signals [67]. Chai et al. indicated that D2 values were

sensitive to cigarette smoking and smokers had significantly higher D2 value than

non-smokers [54].
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Table 2.7: Comparison of smokers’ vs non-smokers’ other features.

Authors Features Smokers Non-smokers

Zealouk et al. [56]

Pitch (Hz) Male Male
/a/ 143 168
/i/ 140 159
/u/ 147 164

Chai et al. [54]

Male Male
SNR 18.076 21.863
ERR 0.324 0.03
D2 2.205 1.681

2.3.7 Effects of Smoking Cessation on Voice Features

Findings from a large longitudinal study suggest that changes in the fundamental

frequency (F0) are reversible when individuals quit smoking. Berg et al. evaluated

voice frequency in 2274 adults aged 40-79 years classified as non-smokers, former

smokers, and current smokers [68]. Regression analysis found significant differences

in F0, but found only marginal differences between former smokers and non-smokers

regardless of gender. F0 was significantly lower in current smokers compared to

non-smokers (103.7 Hz male smokers vs 112.5 Hz male non-smokers, P < 0.001;

159.1 Hz female smokers vs 170.7 Hz female non-smokers, P < 0.001) and former

smokers (103.7 Hz male smokers vs 114.7 Hz male former smokers, P < 0.001; 159.1

Hz female smokers vs 166.1 Hz female non-smokers, P < 0.001). However, the study

did not report on the abstinence duration. Therefore, it is unclear how soon changes

in F0 can be detected after quitting.

Three studies evaluated changes in voice features over short periods of abstinence.

In the first of these studies [22], F0 was measured before, during, and after a 40-hour

period of abstinence in two smokers and two non-smokers. There was a small increase

in F0 for smokers after 40 hours abstinence, with no changes in F0 for the control

subjects. In the second study [69], voice features were measured before abstinence,

one-week abstinence, and one-month abstinence in 18 smokers (5 female, 13 male).
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On average, F0 was higher during abstinence than before abstinence for both males

(103.27 Hz pre-abstinence vs 107.08 Hz one-week vs 109.71 Hz one-month) and

females (187.37 Hz pre-abstinence vs 192.91 Hz one-week vs 207.19 Hz one-month)

but the difference was not significant. In the third study, Dirk and Braun also

found a decrease in jitter across the abstinence period, but the difference was only

significant between the pre-abstinence and one-month abstinence time points (0.50%

pre-abstinence vs 0.21% one month, P = 0.00954). There was also a significant

decrease in shimmer across the abstinence period, with the largest difference between

the pre-abstinence and one-week abstinence time points (5.98% pre-abstinence vs

4.60% one week, P = 0.03189; 5.98% vs 4.64% one month, P = 0.00988). In another

study of 20 female smokers (duration and quantity of smoking not given) before and

after smoking cessation for 6 months, the results were compared with 40 age-matched

non-smokers [70]. The results found that an increase in F0 was present after Reinke’s

Edema microsurgery and 6-months of smoking cessation, but not fully reversible to

normal voice quality (as in non-smokers) due to the vocal alterations caused by

smoking.

2.4 Discussions

Fundamental frequency (F0 ), jitter, and shimmer are the voice features that have

been most used to analyse and discriminate between smokers and non-smokers.

Harmonics-to-noise ratio (HNR) acts as a supplement for the smoking voice analysis

tasks. A few papers have extracted formant frequency, pitch, and correlation di-

mension (D2 ) as a measurement. Although there are a number of limitations in the

literature (such as small samples, gender imbalance, and limited statistical analysis),

there is sufficient evidence to support our contention that smoking consistently af-

fects various voice features in specific ways. We also found evidence that the effects
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of smoking on voice features such as F0 , jitter, and shimmer may be reversed after

a period of smoking cessation but are not fully reversible.

Overall, it appears that F0 is affected by smoking in a relatively early stage of

smoking history. A period of smoking abstinence would also affect F0 , especially

in women. Findings also suggest that jitter and shimmer may be sensitive to the

duration of smoking history. Significant increases in both jitter and shimmer have

been found in studies where subjects have a long history of smoking but are mixed in

studies where subjects have a shorter history of smoking. Some studies also suggest

that perturbation measures may be sensitive to the number of cigarettes smoked per

day.

Table 2.8 below provides a summary of the strengths and the weaknesses of these

main voice features that have been evaluated in relation to smoking. In addition,

there is research to suggest a degree of specificity in detecting active versus passive

smoking [51], and traditional cigarettes versus e-cigarettes, non-combustible tobacco,

and water pipe smoking [57, 71, 72].

More work is needed to develop automated speech assessment for smoking status

based on voice features as an alternative objective smoking status validation method

to the point where a computer provided with the voice features extracted from speech

recordings of smokers and non-smokers may be able to discriminate whether a given

speech sample is from a smoker or non-smoker. Automated speech assessment for

smoking status would have many advantages, including quantitative and objective

assessment, able to be performed remotely, reducing analysis cost and time, and

readily integrated into screening and remote health monitoring applications. In a

future project, we will use F0 , jitter, and shimmer to distinguish smokers from non-

smokers by applying combinations of speech signal processing and machine learning

techniques.
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Table 2.8: A summary of voice features.

Features Advantages Disadvantages

Fundamental
Frequency

Sensitivity to smoking, especially
for heavy smokers

Affected by age and other fac-
tors

Specificity for active smoking Not a valid criterion to
Reversal with long-term absti-
nence

distinguish all smokers

Jitter
Sensitivity to smoking cessation Changes slower over a longer pe-

riod of time
Specificity for combustible to-
bacco

Affected by voice disorders

Sensitivity to the length of
smoking history

Shimmer
Significantly affected by smoking Sensitivity to the duration of

smoking
Sensitivity to smoking cessation

HNR
Significantly affected by smoking Changes slower over a longer pe-

riod
Sensitivity to smoking cessation Changes with ageing

Formant
Frequencies

Sensitivity to gender differences Affected by age
Degrades during signal trans-
mission
Affected by human noise

Although this literature review has revealed the effects of smoking on different voice

features of speech, the relationship of these voice features with speaker smoking

behaviour is complex. Smoking frequency, smoking history (duration and type of

product, including the use of newer products such as e-cigarettes and heat-not-burn

tobacco devices) need to be considered. Other factors, such as age, gender, presence

of chronic respiratory disease, use of inhaled steroids, and alcohol use should also be

accounted for. We found limited data on the length of time after quitting smoking

that it takes to measure a change, and the level of smoking reduction required to

create a change. An important issue is the lack of a reference database to establish

the methodologies for smoking status classification from speech signal analysis. We

aim to build a long-term smoking cessation voice recording corpus based on this
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study and implement our voice-based smoking status validation model in a mobile

application to provide an objective self-report measure method in smoking cessation

trials and clinical practice.

2.5 Conclusions

In this study, we conducted a comprehensive investigation of the effects of voice

features in the detection of smoker/non-smoker speech signals. This paper has pre-

sented a comparative review of smoker’s voice features affected by smoking. We

conclude that acoustic voice parameters appear to be influenced by smoking and

smoking cessation: Fundamental frequency (F0), jitter, shimmer, and harmonics to

noise ratio (HNR) are affected by cigarette smoking. Smokers have a lower funda-

mental frequency than non-smokers in both gender and age groups. Smokers present

higher jitter values for all vowels. Smokers’ shimmer values are higher than the val-

ues of non-smokers. During smoking cessation, HNR value increases dramatically.

Moreover, jitter and shimmer decrease significantly. F0 value rises during smoking

abstinence and decreases again after resuming smoking. However, more research

with larger samples is needed to refine the sensitivity and specificity of this method

to be able to translate it into a real-time tool.

This chapter has been published as follows:

Zhizhong Ma, Christopher Bullen, Joanna Ting Wai Chu, Ruili Wang, Yingchun

Wang, and Satwinder Singh. Towards the objective speech assessment of smoking

status based on voice features: a review of the literature. In the Journal of Voice,

2021. https://doi.org/10.1016/j.jvoice.2020.12.014
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Chapter 3

Automatic Speech-based Smoking

Status Identification

Previous research on smoking status identification mainly focuses on employ-

ing the speaker’s low-level acoustic features such as fundamental frequency

(F0), jitter, and shimmer. However, the use of high-level acoustic features,

such as Mel Frequency Cepstral Coefficients (MFCC) and filter bank (Fbank)

for smoking status identification, has rarely been explored. In this study, we

utilise both high-level acoustic features (i.e., MFCC, Fbank) and low-level

acoustic features (i.e., F0, jitter, shimmer) for smoking status identification.

Furthermore, we propose a deep neural network method for smoking status

identification by employing ResNet along with both high-level and low-level

acoustic features. We also apply a data augmentation technique in smoking

status identification to further improve the performance. Finally, we present

a comparison of identification accuracy results for each feature setting, and

obtain the best accuracy of 82.3%, a relative improvement of 29.8% on the

rule-based method.

39
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3.1 Introduction

Automatic smoking status identification used is to identify a speaker’s smoking sta-

tus by extracting and analysing the acoustic features that can be affected by cigarette

smoking based on the spoken utterances. Speech signals carry a speaker’s basic in-

formation, such as age, gender, emotional status, psychological status, intoxication

level, and smoking status [1]. Compared to traditional biochemical smoking status

validation methods (such as biochemical testing of urine or saliva for the nicotine

metabolite cotinine, or exhaled breath carbon monoxide) and on-site speech assess-

ments operated by experts, automatic smoking status identification from speech

signal is a simple, non-invasive, low-cost method that can be applied across a large

population and does not require face-to-face contact.

Automatic smoking status identification has a variety of applications such as smok-

ing status validation, smoking cessation tracking, and speaker profiling. Smoking

cessation tracking applications are implicitly or explicitly employing smoking status

information to record users’ quit smoking timelines. In speaker profiling systems,

knowledge of smoking status can be utilised for the normalisation of acoustic fea-

tures to increase the system’s performance. In general, automatic smoking status

identification from speech is essential for improving the flexibility of smoking status

validation and the performance of speaker profiling systems.

There is a rich literature on the effects of cigarette smoking on a smoker’s throat

tissues, including their vocal cords [2–5]. Smoking can also degrade lung function by

decreasing the airflow through the smoker’s vocal cords [6–10]. The signs of laryngeal

irritation and disturbed phonatory physiology caused by smoking occur even in

young smokers and affects women’s voices more than men’s voices [4, 8, 11, 12].

Changes in the vocal tract can result in a significant variation in the speaker’s

speech signals. Previous studies on smoking status identification have concluded
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that there is a relationship between a smoker’s speech signals and the corresponding

smoking status.

Research shows that the primary acoustic features affected by smoking are funda-

mental frequency (F0), jitter, and shimmer [10, 13–15]. The typical method to iden-

tifying smoking status has focused on the low-level acoustic features (e.g., F0, jitter,

and shimmer), such as mean, maximum, minimum, and standard deviation (SD)

from the on-site speech assessment including sustained vowels, oral reading, and

spontaneous speech tasks. Recent research focused on adopting high-level acoustic

features such as Mel-Frequency Cepstral Coefficient (MFCC) as the input in smoking

status identification models [16].

Recently, the performance of audio classification tasks such as emotion recognition

[17], acoustic event detection [18] and speaker verification [19] has been improved by

using a specific type of deep neural networks (DNNs) - Residual Network (ResNet).

ResNet [20] was initially designed for image classification and has shown more reli-

able performance than shallower convolutional neural network (CNN) architectures.

Inspired by Google’s recent work on audio classification [18], we adapted ResNet for

smoking status identification. To the best of our knowledge, our work is the first

use of ResNet in smoking status identification.

Our contributions include (i) the combination of both high- and low-level acoustic

features used for automatic speech-based smoking status identification for the first

time; (ii) deep learning is used for automatic speech-based smoking status identifi-

cation for the first time; and (iii) we developed a new smoking status identification

dataset based on two existing corpora.

This paper is organised hereon as follows: Section 3.2 introduces the various acous-

tic features for smoking status identification. Section 3.3 explains our proposed

method. Section 3.4 describes the dataset we used and explains our experimental



Automatic Speech-based Smoking Status Identification 42

setup. Section 3.5 presents our experimental results. Finally, the conclusion and

future directions are described in Section 3.6.

3.2 Acoustic Features for Smoking Status Identi-

fication

The acoustic features are the acoustic components present in a speech that are

capable of being experimentally observed, recorded, and reproduced. The following

features will be used in our method, which includes both high- and low-level acoustic

features.

3.2.1 MFCC and Fbank

Mel-Frequency Cepstral Coefficient (MFCC) and filter bank (Fbank) are two stan-

dard high-level acoustic features that are widely utilised in audio classification tasks

[21–23] and typically develop from a sub-band spectrum.

MFCC is a method for converting the real cepstral of a windowed short-time speech

signal derived from the Fast Fourier Transform (FFT) technique into parameters

according to the Mel Scale [24]. It represents short-term spectral features of a

speech signal [25].

Filter bank (Fbank) feature is a common alternative to MFCC [26], and has become

a trend in acoustic feature learning for very deep neural networks because it contains

additional information such as short-range temporal correlations [27].
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3.2.2 Fundamental Frequency

The fundamental frequency (F0) is an important low-level acoustic feature of speech

signals. F0 is the lowest, and typically the strongest frequency produced by the

complex vocal fold vibrations measured in Hertz (Hz).

Typical F0 values captured in the speech signal were 120 Hz for men and 210 Hz for

women [3]. Studies have consistently shown that lower F0 values existed in smokers

in comparison to the age and sex-matched non-smokers. In [7], F0 was assessed

through oral reading and spontaneous speech for 80 individuals, half of whom were

classified as smokers. The results indicated that the average F0 values for smokers

were lower than for non-smokers. However, the differences between the F0 values of

the female smokers and female non-smokers (182.70 Hz smokers vs 186.45 Hz non-

smokers) were not as significant as the male group (105.65 Hz smokers vs 115.95 Hz

non-smokers), but the same trends were noted.

Guimarães et al. [5] selected 32 adult subjects (20 smokers and 12 non-smokers)

based on their age, gender, and smoking history. The smokers were aged between 27

and 51 years, with a mean age of 37 years. The non-smokers ranged in age from 20

to 51 years, with a mean age of 32 years. The smokers in the study were all regular

smokers when they underwent the speech assessment. With the exception of one

subject, who had quit smoking ten years earlier, all non-smokers had a non-smoking

history. The speech assessment included oral reading tasks, sustained vowels tasks

and conversation tasks. The results indicate that a lower mean F0 value for all

speech assessments was found for the smoker group.
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3.2.3 Jitter

Jitter (measured in microseconds or % jitter) is a common low-level acoustic feature

used in the smoking status validation. It is a measure of the cycle-to-cycle frequency

variation or instability of a speech signal, which is mainly affected by the lack of

control of vocal fold vibrations.

Many studies have shown higher jitter values in smokers than non-smokers. In

[28], male non-smokers had substantially lower jitter values than male smokers who

smoked a minimum of five cigarettes per day for five years or longer (0.364% smok-

ers vs 0.283% non-smokers). Gonzalez and Carpi [4] indicated differences in jitter

between male non-smokers and male smokers who had been smoking for less than

10 years (47.67 µs non-smokers vs 62.78 µs smokers), implying that changes in jitter

are also associated with long-term smoking. A more recent study [29] found that

smoking women aged 18-24 years had a higher jitter value than non-smoking women.

However, the jitter difference was not significant due to the smokers’ smoking history

being relatively short (3.5 years on average).

In [6], an increasing trend of jitter was found in female smokers compared to female

non-smokers, but there were also differences between smokers who had smoked for

more than 10 years and those who had smoked for less than 10 years (1.11% smoker

≥ 10 years vs 0.92% smoker < 10 years vs 0.69% non-smoker). However, the authors

also observed that the women with a longer smoking habit smoked more cigarettes

per day and were older than the other groups, which might explain the difference in

voice perturbation.
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3.2.4 Shimmer

Another common low-level acoustic feature used in the smoking status analysis is

shimmer (measured in decibels [dB] or % shimmer), a measure of amplitude instabil-

ity of the sound wave. Studies have also found smokers have higher shimmer values

than non-smokers [6, 10, 28].

When compared to male non-smokers, male smokers had a considerably higher shim-

mer (4.57% smokers vs 2.50% non-smokers) [28]. Likewise, the shimmer was sub-

stantially higher for female smokers who had smoked for more than 10 years than

for either non-smokers and smokers who had smoked for less than 10 years (0.37

dB smokers ≥ 10 years vs 0.25 dB smokers < 10 years vs 0.21 dB non-smokers)

[6]. Zealouk et al. [10] studied the vocal characteristics of 40 male subjects, 20

of whom were smokers with an average smoking history of 13 years. Smokers had

substantially higher shimmer values than non-smokers (0.570 dB smokers vs 0.378

dB non-smokers).

3.3 Methodology

The smoking status identification task is typically considered as an audio classifica-

tion problem in the speech processing domain. Previous studies utilised either the

low-level acoustic features (e.g., fundamental frequency (F0), jitter, and shimmer)

based on the on-site speech assessments [10, 13–15] or the high-level acoustic features

such as Mel-Frequency Cepstral Coefficient (MFCC) with an i-vector framework that

was designed for speaker recognition tasks [16]. However, no studies have combined

both low- and high-level acoustic features for smoking status identification. Further-

more, the deep neural network (DNN) method has not been used to model smoking

status information from speech signals as far as we know. Our proposed method
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Figure 3.1: The architecture of our proposed automatic smoking status identi-
fication method.

utilises both low- and high-level acoustic features to distinguish smokers from non-

smokers along with deep neural network techniques. Our proposed architecture, as

illustrated in Figure 3.1, takes a speech recording as the input, and subsequently

passes it to the signal preprocessing module. Speech signal preprocessing is utilised

to reduce the influence of acoustic noise and silence on acoustic feature extraction,

allowing for more accurate identification of the smoking status output. For further

processing, the feature extraction module extracts acoustic features such as MFCC,

filter bank (Fbank), F0, jitter and shimmer from speech signal inputs. Data aug-

mentation (i.e., SpecAugment [30]) is utilised in the feature extraction process to

increase the diversity of the training set and further improve robustness.

In our method, we use ResNet-18 as the deep learning network to be trained with

the labeled data and obtain a classifier to determine the smoker/non-smoker label of

the unlabeled input test speech data (for more details please refer to below Section

3.4.2). We chose ResNet-18 rather than other variants of ResNet (e.g., ResNet-

34, ResNet-50, ResNet-101) because our dataset is a relatively small dataset that

contains approximately 45 hours of speech data and ResNet-18 can provide a better

trade-off between layers and performance for such dataset.
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3.4 Experiments

3.4.1 Datasets

In the absence of large-scale, well-designed datasets specifically for smoking status

identification experiments, we collected and created a new smoking status identi-

fication dataset based on two corpora, which are available at the Linguistic Data

Consortium (LDC): (1) the Mixer 4 and 5 Speech Corpus [31]; and (2) the Mixer

6 Speech Corpus [32]. The speech recordings in the Mixer 4 and 5 Speech Corpus

were used in 2008 National Institute of Standards and Technology (NIST) Speaker

Recognition Evaluation (SRE)1. The speech recordings in the Mixer 6 Speech Corpus

were used in 2010 NIST SRE2.

Both corpora comprise recordings made via the public telephone network and mul-

tiple microphones in office-room settings. The main difference in the setting is that

most of the 616 distinct speakers in the Mixer 4 and 5 Speech Corpus have English

as their native language, and the 594 distinct speakers in the Mixer 6 Speech Corpus

all have English as their native language.

In Mixer 4 and 5 Speech Corpus, only 89 of 616 speakers have valid smoking status

labels. There are 40 female smokers, 8 female non-smokers, 37 male smokers, and 4

male non-smokers. In Mixer 6 Speech, 589 of 594 speakers have valid smoking status

labels. There are 48 female smokers, 252 female non-smokers, 70 male smokers, and

219 male non-smokers. For balanced data training purposes, 200 speakers (50 female

smokers, 50 female non-smokers, 50 male smokers, and 50 male non-smokers) from

both corpora jointly are selected for experiments. Most of the speakers have two to

three 12 mins transcripts reading audio segments; a few of them only have one 12

mins transcript reading audio segment. We split the training set, validation set and

1https://catalog.ldc.upenn.edu/LDC2020S03
2https://catalog.ldc.upenn.edu/LDC2013S03

https://catalog.ldc.upenn.edu/LDC2020S03
https://catalog.ldc.upenn.edu/LDC2013S03
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Table 3.1: Speech features statistics divided by smoking status and gender.

F0 (Hz) Jitter (µs) Shimmer (%)

Male Smokers

Min 92.528 23.422 5.642
Max 220.618 59.754 13.624
Mean 108.287 35.199 8.979
SD 25.749 1.337 4.325

Male Non-smokers

Min 97.183 20.278 4.971
Max 249.035 47.925 12.48
Mean 116.592 24.734 6.491
SD 25.153 0.942 2.903

Female Smokers

Min 124.078 29.351 8.472
Max 277.399 53.201 13.172
Mean 181.021 33.635 11.716
SD 22.572 1.473 2.673

Female Non-smokers

Min 126.334 20.653 5.416
Max 297.481 39.714 11.669
Mean 210.359 23.786 7.695
SD 21.437 1.274 2.351

test set following the 8:1:1 ratio. We chose 5 female smokers, 5 female non-smokers,

5 male smokers, 5 male non-smokers as the test set and the rest of the speakers as

the training set. The fundamental frequency (F0), jitter, and shimmer statistics for

smokers and non-smokers in the training set are shown in Table 3.1.

3.4.2 Implementation Details

The input features are either 40-dimensional MFCC features or 40-dimensional log

Mel-filterbank features with a frame-length of 40 ms with 50% overlap. We extracted

the fundamental frequency (F0 ) of each speech in the dataset using Praat [33], an

open-source toolbox. Jitter and shimmer were calculated upon frames of 40 ms with

a time-shift of 20 ms by using the DisVoice toolkit [34].

Before being fed into the ResNet, the input features are mean-normalised along

the time-axis, and nonspeech frames (silent speech frame) are removed using an

energy-based voice activity detection (VAD) method. We chose SpecAugment in
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this study because it is a novel data augmentation method that is applied directly

to the feature inputs of a neural network (i.e., MFCC, Fbank). Other traditional

data augmentation methods that deformed the raw waveform by speeding it up or

slowing it down are not suitable for smoking status identification. In training, we

use ResNet-18 with 16-32-64-128 channels for each residual block. The model with

the best validation loss was selected for testing. In testing, the entire speech is

evaluated at once.

The models are implemented using PyTorch [35] and optimised by a stochastic

gradient descent (SGD) optimiser [36] with a momentum of 0.9. The mini-batch

size is 64, and the weight decay parameter is 0.0001. We set the initial learning rate

to 0.1 and decay it by a factor of 10 until convergence. All the models were trained

for 100 epochs.

3.4.3 Evaluation Metrics

In order to validate our proposed method, we evaluate our proposed method using

two metrics, which include accuracy and F1-score.

The confusion matrix for smoking identification uses a 2×2 matrix where one axis

of the matrix is the predicted class (smoker, non-smoker) and the actual class. Each

box in the matrix shows the number of True Smokers (TS), True Non-smokers (TN),

False Smokers (FS), and False Non-smokers (FN). Accuracy (ACC) is given by the

following equation (3.1):

ACC =
TS + TN

TS + TN + FS + FN
. (3.1)

Accuracy can be further analysed as precision (3.2) and recall (3.3). High precision

indicates a low degree of false positives, while high recall indicates a high degree of
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class recognition. The following equations are examples of precision and recall for

the validation of smokers.

Precision =
TS

TS + FS
. (3.2)

Recall =
TS

TS + FN
. (3.3)

The F1-score can be used to evaluate the accuracy of each given class label using

the following equation:

F1 = 2 × Precision×Recall

Precision + Recall
. (3.4)

3.5 Results and Discussions

According to the statistics of the acoustic features in Table 3.1 above, there is a con-

siderable variation within fundamental frequency (F0), jitter, and shimmer between

smokers and non-smokers for both genders. The mean F0, jitter, and shimmer values

show that the most significant difference is between smokers and non-smokers.

We developed the following rule to act as our baseline, based on the difference within

the mean F0, jitter, and shimmer between smokers and non-smokers: if the mean

F0 of the speaker is closer to the average F0 of male smokers than to the mean F0

of female smokers, and if both means of jitter and shimmer of the speaker are closer

to the mean jitter and shimmer of smokers than to the non-smokers, we identify

the speaker as a smoker. Otherwise, we identify the speaker as a non-smoker. We

employed this simple classification rule to classify our test dataset, and it achieved

an accuracy of 63.4%. Although this rule requires knowledge of the ground truth
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Table 3.2: Smoking status identification experiment results.

Features Accuracy F1-score
Rule-based 0.634 0.617
MFCC

w/o SpecAugment 0.714 0.714
with SpecAugment 0.734 0.745

Fbank
w/o SpecAugment 0.73 0.724
with SpecAugment 0.77 0.766

MFCC + F0 + jitter + shimmer
w/o SpecAugment 0.754 0.754
with SpecAugment 0.769 0.765

Fbank + F0 + jitter + shimmer
w/o SpecAugment 0.787 0.795
with SpecAugment 0.823 0.823

mean F0 for smokers and non-smokers, it indicates that a simple rule may identify

smoking status from speech signals.

In the rest of Table 3.2, the models are trained on the ResNet-18 described in

Section 3.4.2. The experimental results are presented with and without (w/o) the

SpecAugment in two types of feature settings (high-level acoustic features only and

a combination of both high- and low-level acoustic features) as inputs.

We obtained better smoking status identification accuracy and F1-score results by

using the data augmentation technique for different acoustic feature settings. MFCC

with SpecAugment achieved a relative improvement of 2.8% than without SpecAug-

ment. Fbank with SpecAugment achieved a relative improvement of 5.5% than

without SpecAugment.

On the other hand, we can see that Fbank always yielded better performance than

MFCC with or without other acoustic features. Without SpecAugment settings,

Fbank outperformed MFCC either by using itself or jointly with acoustic features.

A combination of Fbank with SpecAugment and low-level acoustic features (i.e., F0,
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jitter, and shimmer) provides the best accuracy of 82.3%, which is a relative improve-

ment of 12.7% and 29.8% on the initial Fbank-only method (without SpecAugment

and low-level acoustic features) and rule-based method, respectively.

3.6 Conclusions

Based on our experimental result, it is indicated that Fbank outperforms MFCC

if we only utilise high-level acoustic features. We have demonstrated for the first

time that the combination of both high- and low-level acoustic features along with

the deep neural network technique can achieve high performance in smoking status

identification. The data augmentation technique (i.e., SpecAugment) can further

improve the smoking status identification accuracy. The proposed automatic smok-

ing status identification model could be an alternative solution to obtain an accurate

and objective smoking status when the biological verification methods are not fea-

sible.

Our proposed method has outperformed the rule-based method and obtained the

best accuracy of 82.3%, which is a relative improvement of 12.7% and 29.8% on

the initial high-level acoustic features only method (without data augmentation and

low-level acoustic features) and rule-based method, respectively.

In future, we will build a long-term smoking status related speech recording corpus.

Additional features such as age, gender, smoking history and smoking frequency will

also be considered in the data collection and smoking status identification process.

We will also explore the smoking status identification deep neural network model to

further improve performance.

This chapter has been published as follows:
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Zhizhong Ma, Satwinder Singh, Yuanhang Qiu, Feng Hou, Ruili Wang, Christo-

pher Bullen and Joanna Ting Wai Chu. Automatic speech-based smoking status

identification,. In the Computing Conference, 2022. (Accepted)
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Chapter 4

Best Acoustic Features for

Smoking Status Identification

Speech-based automatic smoking status identification (also known as smoker/non-

smoker classification) aims to identify speakers’ smoking status from their

speech. This study focuses on determining the best acoustic features for smok-

ing status identification. In this paper, we investigate the performance of four

acoustic feature sets/representations that were extracted using three feature

extraction/learning techniques: (i) hand-crafted feature sets including the ex-

tended Geneva Minimalistic Acoustic Parameter Set and the Computational

Paralinguistics Challenge Set; (ii) the Bag-of-Audio-Words representations;

and (iii) the neural representations extracted from raw waveform signals by

SincNet. Experimental results show that: (i) SincNet feature representations

are the most effective for smoking status identification and outperform the

MFCC baseline features by 16% in absolute accuracy; (ii) the performance of

hand-crafted feature sets and the Bag-of-Audio-Words representations rely on

the scale of the dimensions of feature vectors.

59
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4.1 Introduction

Speech-based automatic smoking status identification (also known as smoker/non-

smoker classification) aims to identify a speaker’s smoking status from his or her

speech data. Automatic smoking status identification has a variety of applications

including smoking status validation [1], smoking cessation tracking [2] and speaker

profiling [3]. Speech-based smoking status identification has advantages over tradi-

tional biochemical measures for determining if an individual has successfully stopped

smoking, because of the costs and the ease of the sample collection process. Speech-

based automatic smoking status identification is especially useful for smoking cessa-

tion research under the current COVID-19 pandemic where movement restrictions

may make other methods more difficult or expensive than usual. Many studies have

shown that cigarette smoking negatively affects smokers’ vocal tissues and perma-

nently alters the acoustic properties of smokers’ speech compared with non-smokers

[4–7]. Such alterations are confirmed by assessing acoustic features like fundamental

frequency (F0), jitter and shimmer [8–11]. There has been some previous work in

the speech-based automatic smoking status identification field [3, 12]. In these two

papers, the authors utilised Mel Frequency Cepstral Coefficients (MFCC) to identify

smokers from their spontaneous speech. Recently, in the speech-health analysis re-

lated field, hand-crafted feature sets and learned neural representations, which were

not considered for smoking status identification, have proven to be more effective

acoustic features than MFCC [13–16].

The hand-crafted feature sets (e.g., eGeMAPS [17] and ComParE [18]) and the

Bag-of-Audio-Words (BoAW) [19] representations have been used successfully for

speech-health analysis related tasks [13, 14, 16, 20]. Furthermore, learning task-

driven features directly from the raw waveform by deep neural networks (DNNs)

has proven to be an effective feature extractor [21] for a variety of applications, such

as speech recognition [22], speaker recognition [23] and emotion recognition [24].
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For example, SincNet [23] is a Convolutional Neural Network (CNN) for learning

feature representations from raw waveforms. Compared with hand-crafted feature

sets, SincNet is more effective in learning the most suitable feature representations

for the given tasks [15, 23].

We hypothesise that the quality of the acoustic features is crucial for the perfor-

mance of speech-based smoking status identification systems. In this study, we

aim to identify speakers’ smoking status by using more advanced feature extrac-

tion/learning techniques. We compare the four acoustic feature sets/representations

extracted/learned by using three feature extraction/learning techniques: (i) hand-

crafted feature sets, i.e., eGeMAPS and ComParE; (ii) the BoAW representations

quantising acoustic low-level descriptors (LLDs); and (iii) the neural representations

extracted from raw waveform signals by SincNet.

However, there are just a few publicly available datasets for smoking status identifi-

cation tasks. The dataset we utilise is derived from the two corpora (i.e., the Mixer

4 and 5 Speech Corpus [25], and the Mixer 6 Speech Corpus [26]) which include rich

metadata regarding speakers’ smoking status, age,height, weight, etc., making them

applicable for smoking status identification experiments.

The main contributions of our paper are as follows:

(i) We identify that the most effective acoustic features are the feature representa-

tions learned by using deep neural networks.

(ii) We compare the effectiveness and generalisability of acoustic features extracted

by using three different feature extraction/learning techniques for smoking status

identification.

(iii) We propose a new dataset for smoking status identification experiments based

on two existing corpora.
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Table 4.1: Summary of feature sets/representations utilised in this study.

Name Type No. of Features
eGeMAPS Hand-crafted 88
ComParE Hand-crafted 6373
BoAW Hand-crafted+BoAW 1000
SincNet Raw Waveform 2048

The rest of this paper is structured as follows. Section 4.2 presents the related work

of the acoustic feature sets/representations we utilise in this paper. Section 4.3

presents our dataset. The design and methods are provided in Section 4.4. Section

4.5 describes the experimental results, and the conclusions and proposals for future

work are discussed in Section 4.6.

4.2 Related Work

4.2.1 extended Geneva Minimalistic Acoustic Parameter Set

extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) is a low-dimensional,

frame-level, knowledge-inspired acoustic feature set containing a wide range of stan-

dardised relevant acoustic features [17]. eGeMAPS is extracted on two levels: (i)

low-level descriptors (LLDs); and (ii) statistical functionals.

eGeMAPS includes 88 acoustic features derived from 23 LLDs that cover spectral,

cepstral, prosodic and voice quality information of the speech, as shown in Table 4.1.

The efficiency of eGeMAPS has been proven successful in various areas of clinical

and paralinguistic speech analysis, including Alzheimer’s Dementia detection [13],

speech intelligibility assessment [14] and speech emotion recognition [27].
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4.2.2 Computational Paralinguistics Challenge set

Computational Paralinguistics Challenge set (ComParE) is a well-evolved, high-

dimensional brute-forced acoustic feature set that is extracted on three levels: (i)

low-level descriptors (LLDs); (ii) statistical functionals; and (iii) LLDs deltas [18].

It contains 6373 static features resulting from the computation of various functionals

over 65 LLDs. ComParE consists of fundamental frequency (F0), energy, spectral,

cepstral coefficients (MFCCs) and voicing related frame-level features. It also in-

cludes zero-crossing rate, jitter, shimmer, harmonic-to-noise ratio (HNR), spectral

harmonicity and psychoacoustic spectral sharpness. The statistical functionals ap-

plied to the LLDs include the mean, standard deviation, percentiles and quartiles,

linear regression functionals, and local minima/maxima related functionals.

The ComParE feature set has demonstrated its ability and robustness for capturing

acoustic information in many speech-health analysis related tasks, including COVID-

19 diagnosis [16] and upper respiratory tract infections (URTI) classification [28].

4.2.3 Bag-of-Audio-Words

Bag-of-Audio-Words (BoAW) is extended from the concept of Bag-of-Words [29], a

common representation of information in the Natural Language Processing (NLP)

field. BoAW is a sparse audio representation that first clusters the input frame-

level feature vectors (e.g., MFCC, eGeMAPS, ComParE), replaces each frame-level

feature vector by its cluster, and then uses a rich dictionary (i.e., codebook) of these

clusters to represent an utterance-level feature vector [19]. The main advantage

of BoAW is its capacity of summarising the meaningful information of a variable-

length input audio using a fixed-length vector (i.e., the histogram). The histogram

represents the distribution of quantised feature vectors from a given audio instance

[30].
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Recently, the BoAW representation method has become very popular and has demon-

strated its suitability in various speech-related fields [20, 30, 31].

4.3 Methodology

In this chapter, we propose a novel SincNet based CNN method for feature represen-

tations. SincNet is a novel CNN-based architecture, originally proposed for speaker

recognition [23]. Our method adopts a SincNet to only learns low and high cutoff

frequencies from raw waveform, instead of learning all elements from each filter in

the traditional CNN architecture. SincNet has embedded bandpass filters for ex-

tracting features from the raw waveform, and makes it more interpretable and faster

to converge.

SincNet has shown improved performance for research in different areas of speech-

related tasks, including neurodegenerative related disorder classification [15], speech-

based age and cognitive decline estimation [32] and speech emotion recognition [33].

As illustrated in Figure 4.1, all neural representations extracted by SincNet are fed

into a CNN classifier. The CNN classifier we implemented was proposed by Ravanelli

and Benjio [23], which has two standard convolutional layers, each with 60 filters of

length 5 to evaluate the neural representations. For both the input samples and all

convolutional layers (including the SincNet input layer), layer normalisation [34] is

employed. Following that, three fully-connected layers with a total of 2048 neurons

are applied and normalised with batch normalisation [35]. Leaky-ReLU [36] (with

variable nonlinearity) have been used in all hidden layers. The neural networks are

implemented with PyTorch1.

1https://pytorch.org/

https://pytorch.org/
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Figure 4.1: The architecture of our proposed method.

4.4 Experiments

4.4.1 Datasets

In the absence of large-scale, well-designed datasets expressly for smoking status

identification experiments, we collect and create our datasets by extracting from

two corpora released through the Linguistic Data Consortium (LDC): (i) the Mixer

4 and 5 Speech Corpus; and (ii) the Mixer 6 Speech Corpus. The speech recordings

in the Mixer 4 and 5 Speech Corpus were used in 2008 National Institute of Stan-

dards and Technology (NIST) Speaker Recognition Evaluation (SRE)2. The speech

recordings in the Mixer 6 Speech Corpus were used in 2010 NIST SRE3. Both cor-

pora comprise conversation recordings made via the public telephone network and

multiple microphones in office-room settings. The main difference in the setting is

that few of the 616 distinct speakers in the Mixer 4 and 5 Speech Corpus are bilingual

2https://catalog.ldc.upenn.edu/LDC2020S03
3https://catalog.ldc.upenn.edu/LDC2013S03

https://catalog.ldc.upenn.edu/LDC2020S03
https://catalog.ldc.upenn.edu/LDC2013S03
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Table 4.2: The status of the speaker’s age in our dataset.

Avg Min Max
Female Smokers 31.76 18 63
Female Non-Smokers 31.36 17 68
Male Smokers 30.38 19 60
Male Non-Smokers 28.10 19 60

English speakers, while the rest of the speakers of Mixer 4 and 5 Speech Corpus and

all 594 distinct speakers in the Mixer 6 Speech Corpus are native English speakers.

There is no overlap between the two corpora.

However, not all speakers in these two corpora have a valid smoking status label. In

Mixer 4 and 5 Speech Corpus, only 89 of 616 speakers have smoking status labels.

There are 40 female smokers, 8 female non-smokers, 37 male smokers, and 4 male

non-smokers. In Mixer 6 Speech Corpus, 589 of 594 speakers have smoking status

labels. There are 48 female smokers, 252 female non-smokers, 70 male smokers,

and 219 male non-smokers. For valid smoking status identification purposes and

balancing speakers’ gender and smoking status distribution, only those speakers

with valid smoking status labels are considered in our experiments. In the end, 200

speakers (50 female smokers, 50 female non-smokers, 50 male smokers, and 50 male

non-smokers) are selected for experiments. The details of the speaker’s status are

shown in Table 4.2. Most of the speakers have two or more 12 mins to 15 mins

transcript reading audio segments; a few only have one 12 mins transcript reading

audio segment. We split the training set, development set and test set following the

8:1:1 ratio. We chose 5 female smokers, 5 female non-smokers, 5 male smokers, 5

male non-smokers as the test set and the rest of the speakers for the training set

and the development set. To ensure our smoking status identification experiments

are speaker-independent, recordings from speakers who contributed more than one

recording are retained in the same division.
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4.4.2 Feature Extraction

Before extracting any acoustic features, we normalise the volume of all voice ut-

terances into the range [-1: +1] dBFS. The goal is to improve the smoking status

identification’s robustness against diverse recording conditions, such as microphone

distance from the subject’s mouth.

We use the openSMILE toolkit [18] and standard configuration files to extract fea-

tures for eGeMAPS and ComParE standard feature sets, respectively. We also

use an MFCC feature set (MFCC12 0 D A.conf) as our baseline feature set. The

openXBOW toolkit [19] is used to generate BoAW representations from the 23 LLDs

of eGeMAPS and the 65 LLDs of ComParE with the corresponding deltas, respec-

tively. For each of the LLDs and their deltas, a separate codebook is learnt using

random sampling of the LLDs from the training data. We test codebook sizes of

N = 500, 1000 and 5000. In order to get rid of the variation of scales between

LLDs, which have an influence on the quantisation step, LLDs are normalised to

zero mean and unit variance. The parameters mean and standard deviation have

been estimated from the training. We observe that the ComParE-BoAW feature

representations with a codebook size of 1000 achieved the best performance, hence

it is reported in the rest of our experiments.

The SincNet layer is applied to the raw waveform and acts as a feature extractor

to generate feature vectors. The raw waveform of each speech recording is chunked

using a frame size of 200 ms and fed into the SincNet architecture described in

Section 4.4.2.
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Table 4.3: Experimental results of different acoustic feature sets/representations
on the test set.

Features Accuracy F1-score
MFCC 0.71 0.70
eGeMAPS 0.78 0.77
ComParE 0.83 0.83
BoAW 0.81 0.80
SincNet 0.87 0.87

4.4.3 Classification Setups

For evaluating the extracted hand-crafted feature sets, a Support Vector Machine

(SVM) is utilised because of its high effectiveness in the acoustic-based speech clas-

sification fields [13, 28, 37]. For SVM, we set the cost parameter C as 0.01 and use

Radial Basis Function (RBF) kernels. The SVM classifier is trained by using the

hand-crafted feature sets extracted from the training and development sets. The

test set is used for evaluating the performance of the SVM classifier. SVM is imple-

mented with scikit-learn4.

4.5 Results and Discussions

A summary of experimental results for smoking identification is provided in Table

4.3. Our results show that all four proposed acoustic feature sets/representations

achieve better performances on the dataset than the MFCC baseline features.

For the hand-crafted feature sets, the ComParE feature set (6373 features) achieves

the higher classification accuracy with 83%, which is significantly better than the

MFCC baseline of 71%. The eGeMAPS feature set (88 features) achieves a clas-

sification accuracy of 78%. The performance is higher than the MFCC baseline

feature but is slightly lower than the one achieved by ComParE. This indicates that

4https://scikit-learn.org/

https://scikit-learn.org/
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hand-crafted feature sets including fundamental frequency (F0), jitter, shimmer etc.,

provide better performance than traditional conventional acoustic features such as

MFCC in this task-driven speech classification experiment. It also suggests that the

more features in the hand-crafted feature sets are used, the better the classification

performance will be.

The BoAW representation method (i.e., ComParE-BoAW) achieves a slightly lower

performance with an accuracy of 81% compared with using the ComParE feature set

directly. We also test the performance of BoAW built from the eGeMAPS feature set,

but the results are consistently lower than using the eGeMAPS feature set directly

and are not included in Table 4.3. A key direction for future research is determining

the most useful frame-level features for a BoAW model.

Compared with hand-crafted features, the neural representations learned from raw

waveform include more information for generating task-driven acoustic features. The

best experimental result based on SincNet achieves an accuracy of 87%. This sug-

gests that learning neural representations from raw waveform is capable of providing

better performance than most models using domain-knowledge based acoustic fea-

ture sets/representa-tions such as eGeMAPS, ComParE and BoAW representations

in smoking status identification tasks.

4.6 Conclusions

In this paper, we propose a dataset that can be used for the smoking status identifi-

cation study, and we investigate the efficiency of different acoustic features extract-

ed/learned using three extraction/learning techniques for smoking status identifica-

tion. We find that all proposed acoustic features perform better than traditional

conventional acoustic features (i.e., MFCC). To the best of our knowledge, this is
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the first study that comprehensively explores acoustic features for smoking status

identification from speech.

In the future, we will explore the effect of combining different acoustic feature set-

s/representations and also investigate the performance of using different deep neural

networks as the classifiers. We will extend this study to learn how the acoustic prop-

erties of smokers’ speech alter during the smoking cessation process (e.g., before they

have fully stopped smoking, when they have quit smoking for one week, quit smoking

for one month, etc.).

This chapter has been published as follows:

Zhizhong Ma, Yuanhang Qiu, Feng Hou, Ruili Wang, Joanna Ting Wai Chu and

Christopher Bullen. Determining the best acoustic features for smoking status iden-

tification,. In the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 8177-8181. IEEE, 2022.
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Chapter 5

Transfer Learning and Task-Driven

Feature Representations for

COVID-19 Diagnosis

Multiple deep learning methods have been developed to identify respiratory

diseases (e.g., COVID-19) from human-generated sounds (e.g., breath, cough,

speech). Currently, the amount of available COVID-19 labelled data is nor-

mally limited. To address the scarcity of well-labelled data, we propose a

transfer learning scheme to identify the COVID-19 disease by fine-tuning

the pre-trained representation models (i.e., VGGish, wav2vec 2.0, PASE+) on

datasets with COVID-19 labels. We also propose a task-driven feature rep-

resentation network Sinc-ResNet (SincNet as the frontend, with ResNet as

the backend) to learn feature representations effectively. With a ROC-AUC

of over 0.8, both proposed methods significantly outperform traditional hand-

crafted feature methods (e.g., OpenSMILE+SVM) and provide competitive

results as compared with other deep learning methods.

77



Transfer Learning and Task-Driven Feature Representations for COVID-19 Diagnosis 78

5.1 Introduction

The human voice carries the speaker’s information including age, gender, emotional

status, psychological status, and health status, which is a powerful indicator for

respiratory symptom prediction [1–3]. There has been increasing interest in de-

veloping a reliable, accessible, and contactless method for preliminary diagnosis of

respiratory diseases including COVID-19. In the current COVID-19 pandemic, a

contactless method is more desirable than ever.

Recently, several respiratory sound datasets for COVID-19 research (e.g., Virufy [4],

Coswara [5], COUGHVID [6], COVID-19 Sounds [7]) have been developed. With

these datasets, several deep learning-based methods have been developed to facilitate

automatic audio-based COVID-19 diagnosis research [8–12].

In principle, the diagnosis of the COVID-19 disease is a binary classification task

(i.e., either positive or negative). Most previous work is based on acoustic feature

extraction in different settings. Differences between individuals who tested COVID-

19 positive and negative in various acoustic parameters were found [8, 9]. Amir et

al. [8] extracted 25 acoustic features (e.g., fundamental frequency and its pertur-

bation, harmonicity, vocal tract function, airflow sufficiency, and periodicity) from

the vowel sustained vowel (i.e., /a/) and used a deep multi-layer feedforward neural

network for screening COVID-19 patients, which achieved an accuracy of 89.71%.

In addition, Maral et al. [9] demonstrated significant differences between COVID-19

patients and healthy participants in voice quality-related acoustic features (e.g., cep-

stral peak prominence, maximum phonation time, harmonic-to-noise). In [10], the

ComParE 2016 feature set was employed for the diagnosis of COVID-19 with ma-

chine learning models such as Random Forest and Support Vector Machines (SVM),

which achieved an ROC-AUC score of 0.85 on the first Diagnostics of COVID-19

using Acoustics (DiCOVA) Challenge [13]. Besides these, other extracted feature
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settings including Mel-frequency cepstral coefficients (MFCCs) and Mel log spectro-

grams in combination with Convolutional Neural Network (CNN), and Long Short-

Term Memory (LSTM) have also been explored [11, 12].

Previous research has primarily focused on fully-supervised feature extraction al-

gorithms that trained and evaluated on the same dataset. However, the fully-

supervised setting limits the selected dataset’s applicability and effectiveness. As

a result, the additional datasets cannot be used to improve the classification per-

formance. To address these limitations, we propose to leverage the knowledge

learned from pre-training models for audio classification tasks on other large-scale

corpora, and then fine-tune the pre-trained models for COVID-19 diagnosis. Such

pre-training and fine-tuning paradigms have shown to be a promising technique in

such health-related audio-based classification tasks (e.g., Parkinson’s disease iden-

tification [14], Alzheimer’s disease detection [15], COVID-19 diagnosis [16]) where

the training dataset is limited.

We also propose a task-driven feature encoder based on SincNet [17], to extract more

efficient and meaningful features directly from raw input waveform. In particular, for

acoustic feature extraction, task-driven feature extraction has outperformed other

traditional feature extraction methods under the same limited dataset scenario [18,

19].

In summary, our main contributions are as follows:

(i) We propose a transfer learning scheme using audio representations extracted from

the pre-trained deep neural models (i.e., VGGish [20], wav2vec 2.0 [21], PASE+ [22])

for the task of COVID-19 diagnosis from respiratory sounds.

(ii) We propose and implement a task-driven feature representation method Sinc-

ResNet to diagnose the COVID-19 disease. Applying SincNet [17] in the feature

extraction phase provides efficient and meaningful feature representations, while
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ResNet [23] enhances the performance in the feature encoder phase. To the best of

our knowledge, this is the first paper utilising task-driven representation learning

for the task of COVID-19 diagnosis from respiratory sounds.

(iii) Through extensive experiments on both the COVID-19 Sounds dataset [7] and

the Coswara dataset [5], we carefully evaluate our proposed method, which allows

us to draw more general conclusions on the performance and generalisability of our

proposed method.

The rest of this paper is structured as follows. Section 5.2 presents the related

work of the acoustic feature extraction methods we utilised in this paper. The

proposed methods and datasets are provided in Section 5.3. Section 5.4 describes

the experimental results and discussions. The conclusions and proposals for future

work are discussed in Section 5.5.

5.2 Feature Extraction

In this section, we introduce three pre-trained audio networks investigated in our

paper, namely, VGGish [20], wav2vec 2.0 [21] and PASE+ [22]. In addition to the

pre-trained audio networks, we also investigate SincNet [17] as a task-driven feature

representation method to extract efficient and meaningful features directly from the

raw input waveform.

5.2.1 VGGish

VGGish [20] is a modification of the VGG network [24] which is created by training

audio embeddings with the AudioSet dataset [25], a dataset of over 2 million human-

labelled 10-second YouTube video soundtracks with labels derived from an ontology
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of over 600 audio event types for audio classification tasks. VGGish extracts audio

input features into a high-level 128-dimensional embedding that can be fed into

a downstream audio classification model. All audio input is resampled to a mono

channel with a frequency of 16 kHz. The features are extracted from non-overlapping

audio patches that last 0.96 seconds and cover 64 mel bands and 96 frames of 10 ms

each. VGGish comprises four sets of convolutional and pooling layers. The output

of the final pooling layer is flattened, and a fully connected layer that acts as a

compact embedding layer is applied next. The dimensionality was reduced using

principal component analysis (PCA) [26].

5.2.2 Wav2vec 2.0

Wav2vec 2.0 [21] is a deep neural network representation of audio through self-

supervised learning to replace conventional feature extraction methods such as MFCC.

It allows us to build more robust audio classification systems with limited training

data. In the wav2vec 2.0 model, the raw input waveform is encoded via a multi-

layer convolutional neural network to obtain each 25 ms latent audio representation.

These representation vectors are fed into the quantiser and transformer [27]. The

quantiser selects a phonetic unit from the inventory of learned units as the latent

audio representation vector. Subsequently, spans of the resulting latent audio repre-

sentations are masked before being fed into the transformer. The transformer then

models the contextualised representation in around 25 ms and extracts a high-level

feature from the input. The transformer adds information from the entire audio

sequence, and the output is used to compute the loss function.
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5.2.3 Problem-Agnostic Speech Encoder

The problem-agnostic speech encoder (PASE+) model encodes raw input waveform

to capture relevant speech information and transmits it to an ensemble of small

neural networks (i.e., workers) [22], and is an improved version of the original PASE

model [28]. The first layer of the PASE+ model is SincNet, followed by a stack

of seven convolutional blocks that include a one-dimensional convolutional layer,

batch normalisation, and PReLU activation [29]. PASE+ employs a Quasi-RNN

layer (QRNN) [30] to learn long-term dependencies. Each worker contributes extra

prior knowledge to the encoder by giving a different view of the input signal. After

joint training of the encoder and the workers, PASE+ features are extracted. The

final encoder representation is the sum of the linearly projected intermediate features

computed by the seven convolutional blocks employing skipped connections and the

QRNN output. This enables information transmission between the different levels

of abstraction and the enhancement of gradient flows. The encoder’s output is fed

into twelve workers. Six regression workers are trained to estimate common speech

features including the speech waveform itself, log power spectrum (LPC), MFCCs,

prosody, FBANKS, and Gammatone. For LPS, MFCC, FBANKS, and Gammatone

features, PASE+ further added four workers that estimate features on longer analysis

windows (200 ms rather than 25 ms). Lastly, two workers are adopted for binary

tasks, namely Local Info Max (LIM) and Global Info Max (GIM).

5.2.4 SincNet

SincNet is a novel CNN-based architecture originally proposed for speaker recogni-

tion by Ravanelli and Benjio [17]. SincNet is based on parameterised sinc function

bandpass filters for extracting features. Instead of learning all elements from each
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filter in the traditional CNN architecture, SincNet only learns those low and high cut-

off frequencies from raw input waveform, making it more interpretable and faster to

converge. SincNet has shown improved performance for research in different areas of

speech-related tasks, including neurodegenerative related disorder classification [31],

speech-based age and cognitive decline estimation [32], and smoking status identifi-

cation [33]. Compared with our previous work [33], we have introduced the ResNet

architecture as the backend for the proposed Sinc-ResNet model in this paper (see

Section 5.3.2).

5.3 Methodology

The proposed audio-based COVID-19 diagnosis pipeline is illustrated in Figure 5.1.

The pipeline uses a transfer learning scheme (i.e., using the pre-trained audio neural

network models: VGGish, wav2vec 2.0, PASE+) or task-driven feature extractor

(i.e., SincNet) to better extract feature representations. The resulting feature rep-

resentations are used to train a feature encoder so that it can learn discriminative

representations and feed into the binary classifier. The output of this pipeline is

the predicted COVID-19 result (i.e., positive, negative). Detailed implementations

of our transfer learning scheme and proposed Sinc-ResNet are given in Section 5.3.1

and 5.3.2 respectively.



Transfer Learning and Task-Driven Feature Representations for COVID-19 Diagnosis 84

Figure 5.1: The proposed audio-based COVID-19 diagnosis pipeline.

5.3.1 Transfer Learning Scheme

The embedding features of raw input waveform are calculated by using three pre-

trained models (i.e., VGGish1 , wav2vec 2.02 , PASE+3 ), respectively. An adap-

tive average pooling layer handles the variable audio duration, resulting in a 128-

dimensional feature vector for each sound sample. The pre-trained model and the

succeeding fully connected layer are fine-tuned. Finally, the features are utilised for

training a linear classifier, followed by a ReLU activation, a batch normalisation

layer and a dropout layer.

1https://github.com/harritaylor/torchvggish/
2https://github.com/huggingface/transformers/
3https://github.com/santi-pdp/PASE+/

https://github.com/harritaylor/torchvggish/
https://github.com/huggingface/transformers/
https://github.com/santi-pdp/PASE+/
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Figure 5.2: An overview of our Sinc-ResNet architecture.

5.3.2 Task-Driven Feature Representation Network

We propose a task-driven feature representation network named Sinc-ResNet. An

overview of our proposed Sinc-ResNet architecture is illustrated in Figure 5.2. To

extract efficient and meaningful task-driven features from the raw input waveform,

a SincNet followed by Max pooling layers and layer normalisation is applied as the

first functional layer. The SincNet layer is composed of N=80 filters of length L=125

samples. The output of the SincNet layer is then fed into the ResNet-18 model, a

type of ResNet with 18 layers [23], followed by adaptive pooling layers in both the

time and frequency dimensions, as the backbone for our Sinc-ResNet model. Finally,

the output is passed through two linear layers, followed by a final predictive layer

with two neurones and a softmax activation function that predicts if the input audio

sample is COVID-19 positive or negative. For testing, the model with the best

validation loss was chosen.
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5.3.3 Datasets

We evaluate the performance of our proposed methods on two independent datasets:

the COVID-19 Sounds dataset [7], and the Coswara dataset [5]. To the best of

our knowledge, the COVID-19 Sounds dataset is the largest dataset of COVID-19

respiratory sounds (i.e., more than 550 hours duration sound samples), while the

Coswara dataset contains more than 50 hours sound samples which is the second

largest dataset.

The COVID-19 Sounds dataset has been developed by Cambridge University. Breath,

cough, and speech samples are collected from different countries. The data comes

in 2 to 30-second WAV files with up to 48kHz sampling rate. In our experiments,

we select the same two curated subsets of the COVID-19 Sounds dataset that are

described and evaluated in [7]. The two curated subsets refer to the following two

classification tasks: (i) Task 1 is designed to distinguish respiratory abnormalities

by detecting the participants’ various voice types. Note that Task 1 is a respi-

ratory symptom prediction task, not a COVID-19 diagnosis task, but it could be

considered to evaluate the performance and robustness of the proposed COVID-19

diagnosis methods [7]; (ii) Task 2 is a COVID-19 diagnosis task that aims to distin-

guish COVID-19 status among participants by examining their various voice types.

For these two tasks, 6,623 participants with 9,456 samples and 1,000 participants

with 1,486 samples are utilised, respectively.

The Coswara dataset has been developed by the Indian Institute of Science, which

aims to develop a COVID-19 diagnostic tool based on respiratory, cough, and speech

sounds. The audio files are categorised into four sound groups (breath, cough,

counting, and sustained phonation of vowel sounds). Since the available categories

and recording types of the Coswara dataset are different from the COVID-19 Sounds

dataset, in order to remain consistent, we filter the data for COVID-19 positive and
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negative participants that have contributed both breath and cough recordings. The

filtered samples are split into speaker-independent sets for training, validation, and

testing with a ratio of 8:1:1. Overall, 2,508 participants with 7,524 samples (i.e.,

one breath sample, one shallow cough sample, and one deep cough sample for each

participant) are utilised in this task.

5.4 Experimental Results and Discussions

The findings of our experiments to identify the COVID-19 disease from human-

generated sounds (i.e., breath, cough, speech) are presented in this section. The area

under the receiver operating characteristic curve (ROC-AUC) with 95% confidence

intervals (CIs) is reported as the evaluation metric.

5.4.1 Results on the COVID-19 Sounds Dataset

The experimental results on the two tasks of the COVID-19 Sounds dataset are

presented in Tables 1 and 2, respectively. For Task 1 respiratory symptom prediction,

a ROC-AUC up to 0.81 (0.76-0.85) is achieved. For Task 2 COVID-19 diagnosis,

a slightly lower performance of ROC-AUC up to 0.67 (0.60-0.75) is obtained. We

considered the Cambridge team’s work in [7] as the baseline. Both our proposed

transfer learning methods and task-driven feature extraction network Sinc-ResNet

outperform all three baseline methods proposed in [7] for both tasks.

As the results are shown in Table 5.1 and 5.2, the PASE+ model achieves the best

scores for breath sounds, while our Sinc-ResNet model achieves the best scores for

cough sounds and speech sounds. Meanwhile, both VGGish model and wav2vec 2.0

model show competitive results.
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Table 5.1: A comparison of different sound types and methods for task 1 of the
COVID-19 Sounds dataset.

Types Methods ROC-AUC

Breath

OpenSMILE+SVM [7] 0.60 (0.58-0.63)
Pre-trained VGGish [7] 0.52 (0.50-0.56)
Fine-tuned VGGish [7] 0.65 (0.63-0.67)
VGGish 0.66 (0.62-0.69)
wav2vec 2.0 0.62 (0.60-0.65)
PASE+ 0.69 (0.66-0.71)
Sinc-ResNet 0.67 (0.62-0.72)

Cough

OpenSMILE+SVM [7] 0.70 (0.67-0.72)
Pre-trained VGGish [7] 0.66 (0.63-0.68)
Fine-tuned VGGish [7] 0.74 (0.72-0.76)
VGGish 0.75 (0.72-0.78)
wav2vec 2.0 0.74 (0.72-0.76)
PASE+ 0.76 (0.74-0.78)
Sinc-ResNet 0.81 (0.76-0.85)

Speech

OpenSMILE+SVM [7] 0.63 (0.66-0.71)
Pre-trained VGGish [7] 0.59 (0.57-0.62)
Fine-tuned VGGish [7] 0.69 (0.66-0.71)
VGGish 0.70 (0.69-0.72)
wav2vec 2.0 0.72 (0.70-0.74)
PASE+ 0.73 (0.70-0.75)
Sinc-ResNet 0.77 (0.75-0.79)

5.4.2 Results on the Coswara Dataset

The experimental results on the Coswara database are presented in Table 5.3. The

PASE+ model outperforms the other two pre-trained models (i.e., VGGish, wav2vec

2.0), reporting a ROC-AUC score of 0.78 (0.72-0.85), and 0.81 (0.75-0.88) for breath

sounds and cough sounds, respectively. The Sinc-ResNet model achieves the best

results in terms of ROC-AUC score in breath sounds (0.80) and cough sounds (0.83).
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Table 5.2: A comparison of different sound types and methods for task 2 of the
COVID-19 Sounds dataset.

Types Methods ROC-AUC

Breath

OpenSMILE+SVM [7] 0.56 (0.50-0.61)
Pre-trained VGGish [7] 0.59 (0.52-0.65)
Fine-tuned VGGish [7] 0.62 (0.56-0.69)
VGGish 0.61 (0.53-0.68)
wav2vec 2.0 0.60 (0.56-0.64)
PASE+ 0.64 (0.58-0.70)
Sinc-ResNet 0.63 (0.56-0.67)

Cough

OpenSMILE+SVM [7] 0.62 (0.56-0.68)
Pre-trained VGGish [7] 0.62 (0.56-0.68)
Fine-tuned VGGish [7] 0.66 (0.59-0.71)
VGGish 0.63 (0.56-0.70)
wav2vec 2.0 0.64 (0.58-0.71)
PASE+ 0.67 (0.59-0.75)
Sinc-ResNet 0.67 (0.60-0.75)

Speech

OpenSMILE+SVM [7] 0.52 (0.45-0.58)
Pre-trained VGGish [7] 0.61 (0.54-0.67)
Fine-tuned VGGish [7] 0.61 (0.55-0.67)
VGGish 0.61 (0.56-0.67)
wav2vec 2.0 0.58 (0.52-0.64)
PASE+ 0.63 (0.57-0.69)
Sinc-ResNet 0.64 (0.56-0.72)

Table 5.3: A comparison of different sound types and methods for experiments
on the Coswara dataset.

Types Methods ROC-AUC

Breath

VGGish 0.75 (0.70-0.81)
wav2vec 2.0 0.76 (0.69-0.84)
PASE+ 0.78 (0.72-0.85)
Sinc-ResNet 0.80 (0.73-0.87)

Cough

VGGish 0.77 (0.72-0.82)
wav2vec 2.0 0.78 (0.71-0.85)
PASE+ 0.81 (0.75-0.88)
Sinc-ResNet 0.83 (0.76-0.89)
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5.4.3 Discussions

For transfer learning methods, the PASE+ model achieves the best performance

compared with the VGGish model and the wav2vec 2.0 model, since the PASE+

model is the only pre-trained model that adopts SincNet as the first layer of the

encoder to extract the raw input waveform. On the other hand, our proposed task-

driven feature extraction network Sinc-ResNet provides competitive results as the

PASE+ model, and achieved the best performance in most sound types and tasks.

Based on our results, cough is the best sound type to identify the COVID-19 disease.

This finding is consistent on both datasets and suggests that cough is an informative

indicator in the diagnosis of the COVID-19 disease. In addition, breath and speech

can be considered as supplementary resources to build the multi-modality audio-

based COVID-19 diagnosis system.

5.5 Conclusions

In this paper, we propose and implement a classification pipeline for diagnosing

respiratory diseases (e.g., COVID-19) from audio signals (i.e., breath, cough, and

speech). The proposed pipeline is evaluated on the COVID-19 Sounds dataset and

the Coswara dataset. We find that transfer learning methods using VGGish, wav2vec

2.0 and PASE+, and our proposed task-driven method Sinc-ResNet have signifi-

cantly improved the performance. Experimental results show that both transfer

learning and task-driven methods achieve competitive performance. For transfer

learning methods, the PASE+ model achieves the best performance among all three

pre-trained models. We also demonstrate that our proposed task-driven represen-

tation network using SincNet as the frontend, with ResNet as the backend achieves
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the best performance in most sound types and tasks compared with transfer learn-

ing methods. The findings of this study provide a new perspective and insights for

audio-based COVID-19 diagnosis. In the future, we will investigate multi-modality

feature representation-based methods and more deep neural network architectures

for performance improvements.

This chapter has been submitted as follows:

Zhizhong Ma, Ruili Wang, Feng Hou, Yuanhang Qiu, Satwinder Singh, Joanna

Ting Wai Chu and Christopher Bullen. Transfer learning and task-driven feature

representations for COVID-19 diagnosis from respiratory sound data,. In the ACM

Transactions on Speech and Language Processing (TSLP). ACM, 2022. (Submitted)
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Chapter 6

Summary

This chapter provides a summary of this thesis. Firstly, we present a sum-

mary of the contributions in Section 6.1, which includes a comprehensive

literature review of speech assessment of the smoking status based on voice

features (Chapter 2); automatic speech-based smoking status identification

method (Chapter 3); determining the best acoustic features for smoking sta-

tus identification (Chapter 4); and transfer learning and task-driven feature

representations for COVID-19 diagnosis from respiratory sound data (Chap-

ter 5). Furthermore, we also discuss future work of the voice-based respiratory

diagnosis research in Section 6.2.

6.1 Research Summary

In this thesis, we propose one literature review and two novel methods for smoking

status identification and aim to fill the gap of the voice-based respiratory diagnosis

research, two novel methods for COVID-19 diagnosis from respiratory sound data

97
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to address the scarcity of well-labelled data so as to learn effective speech feature

representations. A recap of our methods and contributions is listed as follows:

• Chapter 2 presents a comprehensive investigation of the effects of voice features

in the detection of smoker/non-smoker speech signals [1]. We conclude that

acoustic voice parameters appear to be influenced by smoking and smoking

cessation: smoking permanently alters the acoustic parameters of smokers’

speech compared with non-smokers, while smoking cessation will partly undo

the permanent effect of smoking on various voice features. Overall, it appears

that smokers have a lower fundamental frequency than non-smokers in both

gender and age groups. Smokers present higher jitter values for all vowels.

Smokers’ shimmer values are higher than the values of non-smokers. During

smoking cessation, HNR value increases dramatically. Moreover, jitter and

shimmer values decrease significantly. F0 value rises during smoking abstinence

and decreases again after resuming smoking.

• Chapter 3 presents a novel method that uses the combination of both high- and

low-level acoustic features along with deep neural networks for smoking status

identification [2]. We propose a dataset that can be used for smoking status

identification study, and the data augmentation technique (i.e., SpecAugment)

is implemented to further improve the smoking status identification accuracy.

Based on our experimental result, it indicates that Fbank outperforms MFCC

if we only utilise high-level acoustic features. Our proposed method has out-

performed the rule-based method and obtained the best accuracy of 82.3%,

which is a relative improvement of 12.7% and 29.8% on the initial high-level

acoustic features only method and rule-based method, respectively. The pro-

posed automatic smoking status identification model could be an alternative

solution to obtain an accurate and objective smoking status when biological

verification methods are not feasible.
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• Chapter 4 presents a novel SincNet based CNN method for feature representa-

tions and investigates the performance of three different acoustic feature sets:

(i) the extended Geneva Minimalistic Acoustic Parameter Set; (ii) the Com-

putational Paralinguistics Challenge Set; and (iii) the Bag-of-Audio-Words

representations. We investigate the efficiency of different acoustic features ex-

tracted/learned by using three extraction/learning techniques and find that

all proposed acoustic features perform better than traditional conventional

acoustic features (i.e., MFCC).

• Chapter 5 presents a classification pipeline and two novel methods for diag-

nosing respiratory diseases (e.g., COVID-19) from audio signals (i.e., breath,

cough, and speech) [3]. The proposed pipeline is evaluated on the COVID-19

Sounds dataset and the Coswara dataset. We found that transfer learning

methods using VGGish, wav2vec 2.0 and PASE+, and our proposed task-

driven method Sinc-ResNet have significantly improved the performance. Ex-

perimental results show that both transfer learning and task-driven method

achieve competitive performance. For transfer learning method, the PASE+

model achieves the best performance among all three pre-trained models. We

also demonstrate that our proposed task-driven representation network us-

ing SincNet as the frontend, with ResNet as the backend achieves the best

performance in most sound types and tasks compared with transfer learning

methods.

6.2 Future Work

In this section, we propose some future work for the voice-based respiratory diagnosis

research.
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• Enlarge experiment scale. We will further conduct experiments with suf-

ficient speech data by including more realistic scenarios to evaluate the effec-

tiveness and robustness of our methods. The training data should consider as

many scenarios as possible to reflect the realistic environments and improve

the adaptability of the proposed model.

• Multiple features fusion for feature representation learning. Multi-

ple features fusion can provide multiple hierarchies of data representation for

model training and mapping learning. In many research areas, feature fusion

methods are used to achieve a more robust and effective model [4–7]. Thus,

further exploration about multiple features fusion in voice-related respiratory

diagnosis will be one of our future projects.

• Novel neural networks for voice-related health research. Recently,

several novel architectures were proposed which made a breakthrough in many

research areas such as attention based transformer architecture [8] and its

variants [9–11]. Those models, adopting a revolutionary concept by eliminating

recurrent or convolutional portions to improve information learning and result

inference, will be applied to the voice-based respiratory diagnosis research in

our future work.

• Applications of voice-based respiratory diagnosis. Voice-based respi-

ratory diagnosis research has numerous potential applications (e.g., smoking

status validation [12], smoking cessation tracking [13] and speaker profiling

[14]). We will apply our proposed methods to these applications in future

work.
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