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Abstract

Motor imagery (MI) based Electroencephalogram (EEG) Brain-computer
interface (BCI) detects neural activity generated due to kinesthetic imagination
of limbs from brain scalp and translate it into control commands for external
devices. MI-BCIs are indeed very promising for people suffering from
neuromuscular disorder, but still lack adoption as access modalities outside
laboratories. The main reason that prevents EEG based MI-BCIs from being
widely used is there long calibration time. Due to considerable
inter-subject/inter-session and intra-session variations, a large number of
training trials are collected to calibrate systems at the beginning of each
MI-BCI session. This time consuming calibration is required to achieve good
performance with the BCI system but causes fatigue to user and leaves less time
for online BCI interactions. This thesis focuses on developing reliable signal
processing and classification pipeline that reduce MI-BCI calibration time while
keeping accuracy in an acceptable range.
In the first part of the study, we have provided an extensive review of current
state of art in designing a EEG based MI-BCI system. In doing so, I have
created an architectural framework which brings together interdisciplinary
concepts under a unified umbrella. We used this framework to identify key
signal processing, features extraction and learning algorithms and their
limitation that must be taken into consideration while designing novel pipeline
for reducing calibration in MI-BCI. This architecture is also useful to
understand current issues in BCI and to visualize the gaps to be filled by future
studies in order to further improve BCI usability. In the second part of the
study, we address long calibration issue in MI-BCI under two scenarios. First,
when there is only few training trials from new subject (user) is available and
no training data from previous sessions or other users is available. Second,
reducing (inter-subjects/sessions non-satationarity) calibration time of new

ix



subject when there is previous sessions or other subjects data is available along
with few trials from new subject.
In order to contribute to the progress of reducing calibration in MI-BCI, we
proposed novel signal processing and classification pipeline that uses spatial,
spectral, temporal and geometrical properties of subject’s trial from EEG
signals and achieve acceptable performance under reduce calibration setting.
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Chapter 1

Introduction

People suffering from neuromuscular disorders lose control of their voluntary
muscles. This leads to a condition known as locked-in syndrome, in which the
affected person is unable to communicate or control ordinary things in daily life.
For such people, communication with small motion-based systems such as
eye-tracking systems is not suitable. Brain-computer interface (BCI) is an
alternative way to communicate and control objects without using natural
muscle channels. BCI allows direct communication between neural activity and
external devices [1].
BCI systems fall into invasive and non-invasive categories based on the type of
brain imaging technique applied to acquire brain activity. Invasive BCI acquired
neural activity is recorded under the skull through surgery, where as a
non-invasive approach acquires brain activity from the scalp [2].
Electroencephalography (EEG) is one such non-invasive technique that
measures the projection of the cortical source (usually pyramidal cells) in the
scalp using an EEG sensor [3]. EEG sensors quantify neural activity as a
multivariate time series of potential difference between electrodes [4]. BCIs
broadly use two types of paradigms namely exogenous or endogenous, to
generate neural activity that is measured by EEG sensors. An exogenous
paradigm correspond to brain activity generated due to external stimuli.
Examples of EEG-based exogenous paradigms include control signals like
visual-evoked potentials (VEP), steady-state visual evoked potentials (SSVEP)
and P300 [2]. Essentially, exogenous BCI paradigms requires very little training
to generate a control signal although the user needs to be focused on the
presentation (for external stimulus). This causes fatigue to the users and is not
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suitable for people who cannot control eye movements. Furthermore, the
performance of the BCI system decreases with infrequent stimulus
presentation [4]. In contrast, endogenous paradigms corresponds to voluntarily
generated brain activity. Examples of EEG-based endogenous BCI paradigms
include control signals like slow cortical potentials (SCPs), sensorimotor
rhythms (SMRs) and other brain rhythms. Based on the application and user
requirements, different paradigms are employed to control external devices and
applications. One of the most widely used endogenous paradigms is based on
SMRs control signals and is also referred to as motor imagery (MI)-BCI.
Motor imagery (MI) is a cognitive technique which involves mentally rehearsing
the motor activity without performing it when a visual cue is displayed on a
screen. This mental imitation generates a similar neural activity pattern at the
sensorimotor area of the brain as if the subject is actually performing the motor
action. More specifically, imagination of the movements corresponds to the
increase or decrease in EEG signal power in specific frequency bands and
locations [5]. Different MI tasks (such as imagining left/right-hand movement)
produce different temporal, spectral, and spatial patterns. A common method
for detecting MI tasks from a multivariate time series is to obtain the covariance
matrix from preprocessed data in a specific frequency band (usually between 8
and 30 Hz) and the time period (usually after the cue). A covariance matrix of
the MI task contains the variance of the signal at each EEG sensor (or
electrode) at the diagonal position and the covariance between all pairs of EEG
electrodes at the position of the non-diagonal elements [6]. As EEG sensors
measure the projection of cortical sources at the scalp, therefore, with a large
number of electrodes with a high sampling rate we can notice cognitive changes
in real time but at the cost of high dimensionality. Subsequently, BCI pipeline
comprised of signal processing and classification algorithms extract the
spatiotemporal information contained in the covariance matrices for feature
extraction and classification of the MI task. MI-BCI operates in two phases: (a)
calibration phase and (b) online phase. In the calibration phase, the user learns
to generate neural activity for different MI tasks, and the BCI learns to assign
the neural activity for the control signal. To do this, the user must undertake
MI training in which they performs MI tasks, such as left- or right-hand
imagination, etc., and the BCI trains the signal processing and classification
pipeline to discriminate between the neural activity generated by the user in
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different MI tasks. Once the system is calibrated, it works in the online phase in
which BCI recognizes MI task-generated neural activity in real time and
translates it into control commands for external devices (or applications). This
whole MI-BCI architecture is summarized in Figure 1.1.

Figure 1.1: Block diagram of general online MI-BCI

Because EEG-based MI-BCIs enable computer control without voluntary muscle
movements, they promise to revolutionize many application areas, especially to
enable severely motor-impaired people to control assistive technologies, e.g.
wheelchairs [7] or smart typing systems [8], as rehabilitation devices for stroke
patients [9], as gaming input devices [10], or to develop adaptive
human-computer interfaces that can respond to the user’s mental states [11].
All these applications show the importance of developing a BCI system that can
be used in the real world. However, even after more than thirty years of active
BCI research, most of the EEG-based MI-BCI applications are still limited to
laboratories. There are many challenges that need to be addressed to make
MI-BCI usable in everyday life outside the laboratory environment.
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1.1 Problem Statement & Research
Contribution

MI-BCI offers a self-placed way that is close to natural and intuitive control.
However, there are still many limitations that need to be addressed in order to
develop reliable and accurate MI-BCI applications for daily practise. One of the
major limitations of MI-BCI is its long calibration time. At the beginning of
each MI-BCI session, a large number of training trials are carried out to
calibrate parameters (for signal processing and classification pipeline) of the
BCI system depending on the target user. Typically, this calibration phase can
take up to 20 to 30 minutes for each new session. Blankertz et al. [12] in their
study found that 40 trial per class are necessary to obtain a reasonable
performance in BCI system. This is very time consuming, causes fatigue, and
leaves less time for online BCI interactions.
There are a few possible reasons for this long calibration time. First, EEG
signals are non-stationary. This non-stationarity could be caused by many
factors such as variation in users’ mental and psychological states variations,
fatigue and miss-concentration; also it may also be affected by variance in
measurements [13]. Because of this non-stationarity, the characteristics of
neural activity vary between sessions/between subjects and within sessions.
Therefore, the classifier usually performs poorly in new session data if trained
using the features extracted from data of the previous sessions recorded on a
different day. Thus, a large number of training trials before every session
ensures that the BCI can reliably and accurately decode a new user’s neural
activity in the context of different MI tasks. Second, EEG signals are high
dimensional and very noisy. Because of this, it is hard to estimate probability
distributions of the features, especially few trials with high-dimensional signals
are available for training [13]. High dimensional, noisy EEG signals get
adversely impacted by outliers. Third, is the uniqueness of brain patterns for
every person. Thus, it is not straightforward to calibrate a BCI model for a new
subject from EEG data collected from previous subjects or sessions.
These challenges could be considered at different levels, e.g. at the human level
by developing more advanced and successful user training techniques; or at the
signal processing level, to build more robust approaches which could be
calibrated with the least possible data [13]. Our main aim is to improve the
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usability of BCI as a future technology by reducing such long calibration
sessions by building more robust signal processing and classification pipeline.
To address the problem of long calibration time, one popular approach is
regularization [14] that mitigate the issue of signal processing and classification
pipeline that rely on reliable covariance matrices that represent EEG activity
during MI. However, if few trials are available then data does not reflect most of
the variability occur during BCI use and leads to covariance matrices may be
poorly estimated. Another popular approach is user-to-user transfer that uses
data from other users to improve calibration for the target user for which few
training data is available [15]. Semi-supervised learning another approach that
uses labelled and unlabelled data to calibrate signal processing and classification
pipeline under small training setting [16]. Another way to reduce calibration
time is to use a-priori information about which features or channels are likely to
be useful, in order to guide the optimization of the BCI pipeline [16]. All the
above approaches fail to notice a very distinctive characteristic of data
(covariance matrices): their structure (geometry), or more specific, the manifold
space and the interrelation across the manifold space [17]. Data treatment based
on the concept of manifolds have been proved to be more effective and adopted
in many applications. Recently, geometry-aware algorithms have gained more
attention in the field of BCI as they have shown that understanding the intrinsic
geometry of the data provides the advantage of using geometric features along
with spatial and temporal information in covariance matrices, leading to better
classification of MI tasks under small training set [18]. However, performance of
popular geometry-aware algorithms such as Riemannian Geometry based
classification declines as the size of covariance matrices grows. As
high-dimensional covariance matrices are ill conditioned with respect to
inversion, jeopardizing the numerical stability of all Riemannian geometry
manipulations, which are based on spectral functions of the eigenvalues such as
the logarithm, inverse, etc. [6, 19]. This curse of dimensionality inevitably limits
Riemannian Geometry based classification performance.
The main motivation of this thesis is providing novel BCI signal processing
pipeline that combine best of both Euclidean and geometry-aware approaches to
such that they mitigate issues of dimensionality as well as lead to better BCI
system with less calibration time and improved accuracy. As there is a trade-off
between calibration time and performance of the system, my goal is to reduce
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this calibration time as much as possible without losing performance
(classification accuracy) and even with improving it. Moreover, while reducing
calibration, we aim to achieve high classification accuracy which is comparable
to traditional state of the art methods. To achieve this aim, two main
challenges needed to be addressed based on the available training data from the
current user, and previous sessions or users. First, reducing intra-session non
stationarity, i.e. when there is no training data available from previous sessions
or other users is available. Second, reducing (inter-subjects/sessions
non-satationarity) the calibration time of a new subject when there is previous
sessions or other subject’s data are available. Figure 1.2 summarizes the aim
and challenges that have been addressed in this research.

Figure 1.2: The aim and challenges addressed in this thesis

In order to contribute to the progress of reducing calibration in MI-BCI, we will
be setting off with the following objectives:

• Developing an architectural framework for MI-BCI which assists in clear and
methodological visualization of all the BCI system components and their
possible interactions. This architecture will help in identifying key learning
algorithms and any limitations that must be taken into consideration while
designing pipeline for reducing calibration in MI-BCI.
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• Developing a novel signal processing and classification pipeline that utilize
most discriminative characteristics of a new subject’s training trials and is
able to improve MI-BCI performance when only a few training samples are
available for the new subject.

• Developing a novel signal processing and classification pipeline that
explore and utilize common information across subjects and sessions, to
improve feature extraction and classification of MI tasks for new subjects
with limited training trials .

The developed pipelines are evaluated using a classical offline training-test
framework where a bootstrap technique systematically reduces the number of
trials to simulate reduction of calibration time. We check our proposed pipelines
performance with respect to the standard BCI pipeline. Moreover, their
performance is evaluated across different groups of users trained with different
number of electrodes to analyze performance under different dimension of
covariance matrices. The advantages and disadvantages of these pipelines are
discussed in terms of accuracy under different training set and computational
time. As per Blankertz et al. [12] study 40 trials per class are necessary to
obtain a reasonable BCI performance. Thus, performance of pipelines will be
compared with BCI pipelines calibrated with 40 trials per class to measure
success of achieving the aim.

1.2 Structure of the Thesis

The rest of this thesis is organised as follows.

• Chapter 2 provides a comprehensive review of the
electroencephalogram-based MI-BCI. This review presents an
architectural framework that describes the current state of the art in
different stages of MI-BCI. Moreover, this framework helps in finding
answers to following research questions: (a) what are the most useful
methods (e.g., spectral filtering , temporal filtering, spatial filtering etc.)
for signal processing components in the pipeline? (b) what are the best
feature extraction and classification techniques and their possible
interaction? This architectural framework is also useful for mapping the
literature onto each of the MI-BCI components in order to understand
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current limitations that must be taken into consideration while designing
novel pipeline for reducing calibration in MI-BCI. In addition, literature
review shows recent studies focus on reducing calibration time. Apart
from the calibration issue, we visualized the gaps to be filled by future
studies in order to further improve BCI usability.

• Chapter 3 introduces the subject-specific learning framework that uses
covariance matrices as a feature and Riemannian distance as a pattern
recognition metric for classification. The performance of a Riemannian
metric based classifier degrades when the number of training samples are
low and the size of the covariance matrices is large. To address this, the
approach described in Chapter 3 uses a priori information about channels
that are likely to be useful, in order to guide the optimization of the spatial
filters. Optimized spatial filters leads to transforming covariance matrices
into lower dimensions as well as maximizing the ratio of variance between
MI classes. A Riemannian geometry based classifier is employed to classify
these transformed covariance matrices.

• Chapter 4 presents a novel transfer learning approach that reduces
calibration time using spatio-temporal features and Riemannian metric
based classification. The classification performance of Riemannian metric
based classifiers declines under high-dimensional covariance matrices
under the small training trials setting. To address this issue, Chapter 4
approaches the same problem by optimizing the spatial filter using MI
trials from other subjects or previous sessions data from the target
subject. In the same vein as Chapter 3, optimized spatial filters transform
covariance matrices into lower dimension and classify them using
Riemannian based classifiers. This improved the performance of MI-BCI
system under small sample setting.

• Chapter 5 introduces a classical offline training-test framework that uses
a bootstrap technique to systematically reduce the number of training
trials and check the performance of our proposed pipelines with respect to
the standard Riemannian geometry-based BCI pipeline. Moreover, we
statistically verify our results and discuss the reasoning behind the
performance of the proposed methods.
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• Chapter 6 This chapter concludes the thesis along with the discussion on
some of the future directions that may originate from this research.
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1.3 Research outcomes

This research has produced the following peer-reviewed publications.

Journal publications

• Amardeep Singh, Sunil Lal and Hans W. Guesgen. “Reduce calibration
time in motor imagery using spatially regularized symmetric
positives-definite matrices based classification”, Sensors 2019, 19(379),
2879.

• Amardeep Singh, Sunil Lal and Hans W. Guesgen. “Small Sample Motor
Imagery Classification Using Regularized Riemannian Features” in IEEE
Access, vol. 7, pp. 46858-46869, 2019.

• Amardeep Singh, Ali Abdul Hussain, Sunil Lal and Hans W. Guesgen.
“A Comprehensive Review on Critical Issues and Possible Solutions of
Motor Imagery Based Electroencephalography Brain Computer Interface”
in Sensors 2021.

Conference publications

• Amardeep Singh, Sunil Lal and Hans W. Guesgen. “Architectural review
of co-adaptive brain computer interface”, In 2017 4th Asia-Pacific World
Congress on Computer Science and Engineering (APWC on CSE), 200-207,
2017.

• Amardeep Singh, Sunil Lal and Hans W. Guesgen. ”Motor Imagery
Classification Based on Subject to Subject Transfer in Riemannian
Manifold.” In 2019 7th International Winter Conference on
Brain-Computer Interface (BCI),1-6, 2019
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Chapter 2

A Review on Critical Issues and
Possible Solutions of Motor
Imagery based BCI

Quick Summary

Motor imagery (MI) based brain-computer interface (BCI) aims to provide a
means of communication through the utilization of neural activity generated
due to kinesthetic imagination of limbs. Every year a significant number of
publications related to new improvements, challenges and breakthrough in
MI-BCI are made. This chapter provides a comprehensive review of the
electroencephalogram (EEG) based MI-BCI system. It describes the current
state of the art in different stages of the MI-BCI pipeline. Although MI-BCI
research has been going for many years, this technology is confined mostly to
controlled lab environments. We discuss recent developments and critical
algorithmic issues in MI based BCI for commercial deployment.

Related Paper

• Amardeep Singh, Ali Abdul Hussain, Sunil Lal and Hans W. Guesgen.
“A Comprehensive Review on Critical Issues and Possible Solutions of
Motor Imagery Based Electroencephalography Brain Computer Interface”
in Sensors, 2021.
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2.1 Introduction

Numerous people with serious motor disorders are unable to communicate
properly if at all. This significantly impacts their quality of life and ability to
live independently. In this respect, brain-computer interface (BCI) aims to
provide a means of communication. BCIs translate the acquired neural activity
into control commands for external devices [2]. Primarily, BCI systems can be
cast into various categories based on interactions with a user interface and
neuroimaging technique applied to capture neural activity. Based on users
interaction with brain-computer interface, the EEG-BCI system is categorized
into synchronous and asynchronous BCI. In the synchronous BCI system, brain
activity is generated by the user, based on some cue or event taking place in the
system at a certain time. This cue helps in differentiating between intentional
neural activity for a control signal from unintentional neural activity in the
brain [20]. On the other hand, asynchronous BCI works independently of a cue.
The asynchronous BCI system also needs to differentiate between neural
activity intentionally generated by a user from the unintentional neural
activity [21].
Based on neuroimaging techniques, BCI systems fall into invasive and
non-invasive categories. In an invasive BCI, neural activity is captured under
the skull, thus requiring the surgery to plant the sensors in different parts of the
brain. This results in a high-quality signal but prone to scar tissue build-up over
time resulting in loss of signal [22].Additionally, once implanted sensors cannot
be moved to measures the other parts of the brain [23]. In contrast to this,
non-invasive BCI captures brain activity from the surface of the skull. A signal
acquired through non-invasive technologies has a low signal to noise ratio. Some
examples of invasive neuroimaging techniques are electrocorticography (ECoG)
and micro electrodes. Examples of non-invasive neuroimaging techniques are
electroencephalography (EEG), magnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI), and functional near infrared (fNIR) [24].
All these methods work on different principles and provides different levels of
portability, spatial and temporal resolution [25]. Among these brain imaging
methods, an EEG is widely employed because of its easy of use, safety, high
portability, relatively low cost and most importantly high temporal resolution.
Electroencephalography (EEG) is one of the non-invasive and portable
neuroimaging techniques that records electrical activity generated due to the

13



Chapter 2: A Review on Critical Issues and Possible Solutions

synchronized activity of cerebral neurons. Primarily, pyramidal neurons’
activity contributes more to EEG recordings because of their very stable
orientated electric field to the cortical surface [24]. This is due to the
perpendicular orientation of pyramidal cells with respect to the cortical
surface.As a result, the electrical field is projected stably towards the scalp in
contrast to the other brain cells whose electrical field is very dispersed and
cancels out [25] . The measured EEG signal is due to the complex firing pattern
of billions of neurons in the brain. Owing to this pattern, the EEG signal is a
combination of various rhythms which reflect certain cognitive states of the
individual [25]. These rhythms have different properties like frequency,
amplitude and shape etcetera. These properties depends upon individual,
external stimulus and the internal state of the individual. Broadly, these
rhythms are classified into various categories based on their frequency,
amplitude, shape and spatial localization [24]. Furthermore, these rhythms are
broadly categorized under six frequency bands: delta band (1 − 4 Hz), theta
band (4 − 8 Hz), alpha band (8 − 12 Hz), mu band (8 − 12 Hz), beta band
(13 − 25Hz) and gamma band (> 25 Hz). EEG control signals can be
categorized as evoked and spontaneous. An evoked signal corresponds to neural
activity generated due to external stimuli. Examples of evoked control signals
are steady-state visual-evoked potentials (SSVEP), visual-evoked potentials
(VEP), and P300 [22]. On the other hand, a spontaneous control signal is due
to voluntarily neural activity without any aid of external stimulus. Slow cortical
potentials (SCPs) and sensorimotor rhythms (SMRs) are such control
signals [22]. As mentioned above, an evoked control signal requires external
stimulus, thus the user needs to focus on presentation to generate neural
activity. This continuous focus causes fatigue in users. Although much less
training is required to generated evoked control signals. Spontaneous control
signals offer natural control over neural activity but require long training to
master self regulation of brain rhythms. To do so, different cognitive tasks are
employed to generate spontaneous control signals.
One of the most widely used cognitive tasks is motor imagery (MI) which
corresponds to sensorimotor rhythms (SMRs) as a control signal. Motor
imagery has advantages for brain-computer interface in both synchronous and
asynchronous mode. MI can be defined as the user sending a command to a
system through the imagination of a kinesthetic movement of his/her limbs. For
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example, a user moving a prosthetic arm by imagining his/her left/right hand
moving. Imagination of movement creates a similar brain activity to that of an
actual movement which decreases the percentage of power relative to a reference
baseline in both the mu and beta frequencies over the sensorimotor cortex; this
is known as event related desynchronization (ERD) [26]. Immediately after the
user’s imagination task, the user’s brain activity can experience an event-related
synchronization (ERS) which is the increase to the percentage of power relative
to the reference baseline [26]. Since ERD/ERS are mixed with other brain
activity created unintentionally by the user, such as involuntarily muscle
movements and eye blinks, the signal to noise ratio (SNR) is low. The
algorithm designed for MI-BCI must able to differentiate between MI activity
for control signal from other involuntary activity. In doing so, the MI-BCI
pipeline consists of many stages like data acquisition, preprocessing, feature
extraction and classification. Therefore, the objective of this manuscript is to
review the MI based BCI system with regards to algorithms utilized at different
stages of MI-BCI pipeline. This brief survey is structured under an architectural
framework which helps in mapping literature to each component of the MI-BCI
pipeline. In doing so, this article identifies critical research gaps which warrant
further exploration along with current developments to mitigate these issues.

Figure 2.1: Breakdown of the chapter
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Figure 2.1 breaks down the contents of the entire chapter. This review article is
divided into two parts. The first part of this article introduces the Architecture
of MI based BCI. More specifically, how the EEG signal is captured from the
brain is described under subsection “data acquisition”. In subsection “MI
training” we discuss how during the calibration phase the user acquires skills to
modulate brain waves into control commands. The signal pre-processing
subsection explains how unwanted artifacts are removed from the EEG signal to
improve signal to noise ratio. Subsection on “feature extraction” discusses
different approaches to extract information related to a motor imagery event in
terms of features that are finally classified into control commands. Subsection
on “channel and feature selection” and “dimensionality reduction” deals with
issues related to finding optimal channels or features and reducing
dimensionality of feature space in order to improve BCI performance.
Subsection “classification” provides details of how features are classified into
control commands. Lastly, subsection “performance evaluation” covers how to
evaluate the performance of BCI. The last part of this article discusses key
issues that need further exploration along with the current state of the art that
address these research challenges.

2.2 Architecture of MI based BCI

We present a framework of MI-BCI pipeline encompassing all the components
responsible for its working in Figure 2.2. In short, MI-BCI works in calibration
and online mode respectively. During calibration mode, the user learns
voluntary ERD/ERS regulation in the EEG signal and BCI learns ERD/ERS
mapping through temporal, spectral and spatial characteristics of the user’s
EEG signal. In online mode, the user’s characteristics are translated into a
control signal for external application and feedback is given to the user. In
framework, optional steps enclosed in yellow box such as channel selection,
feature selection and dimensionality reduction. This framework is also helpful in
mapping the literature to different components of the MI-BCI pipeline in order
to understand the current research gaps.
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Figure 2.2: Block diagram showing the typical structure of MI-based
BCI

2.2.1 Data Acquisition

The signal acquisition unit is represented by electrodes whether they are
invasive or non-invasive. In non-invasive approach, usually electrodes are
connected with the skin via conductive gel to create a stable electrical
connection for a good signal. The combination of conductive gel and electrode
attenuate the transmission of low frequencies but take very long time to setup.
Another alternative is dry electrodes which make direct contact with skin
without conductive gel. Dry electrodes are easy and faster to apply but more
prone to motion artifacts [23]. EEG signals are usually acquired under unipolar
and bipolar modes. In unipolar mode, a potential difference between all the
electrodes with respect to one reference are acquired. Each electrode-reference
pair form one EEG channel. On the contrary, in bipolar mode, the potential
difference between two specified electrodes are acquired and each pair make a
EEG channel [27]. To standardize positions and naming, electrodes are placed
on scalp under international 10–20 standard. This help in reliable data

17



Chapter 2: A Review on Critical Issues and Possible Solutions

collection and consistency among different BCI sessions [28]. Figure 2.3 shows
the international 10–20 electrodes’ placement scheme from the side and top
view of the head. Once the potential difference has been identified by the EEG
electrodes, it is amplified and digitized in order to store it in a computer. This
process can be expressed as taking one sample (discrete snapshots) of the
continuous cognitive activity. This discrete snapshot (sample) depends upon the
sampling rate of the acquisition device. For example, an EEG acquisition device
with a sampling rate of 256 Hz can take 256 samples per second. High sampling
rates and more EEG channels are used to increase temporal and spatial
resolutions of an EEG acquisition device.

Figure 2.3: The international 10–20 standard electrode position
system. The left image presents a left side view of the head with
electrode positions, and the right image shows a top view of the
head.

2.2.2 MI training

During calibration phase, the user learns how to modulate EEG signals with MI
task pattern. Just as with any skill, MI training helps in acquiring the ability
to produce a distinct and stable EEG pattern while performing the different MI
tasks [29]. The Graz training paradigm is the standard training approach for
motor imagery [26] [29] . The Graz approach is based on machine learning where
the system adapts with the user’s EEG pattern. During this training paradigm,
the user is instructed through a cue to perform a motor imagery task such as left
and right-hand imagination. EEG signals collected during different imagination
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tasks are used to train the system differentiate between the MI-tasks from the
EEG pattern. Once the system is trained, users are instructed to perform MI
tasks, but this time feedback is provided to the user. This process is repeated
multiple times over different sessions. Each session has further multiple runs of
the Graz training protocol.
The trial time vary depending on scenario. Typically, one trial of graz training
protocol lasts eight seconds as illustrated in figure 2.4. At the outset of each MI
trail, that is t = 0s, a fixation cross is displayed to instruct the user that the trial
has started. After a two-second break (t = 2s), a beep is used to prepare the user
for the upcoming MI task. This 2s break acts as a baseline period to see the MI
task pattern in the EEG signal in the upcoming MI task at t = 3s. After three
seconds, an arrow appears on the screen indicating the MI task. For example,
the arrow in the right direction means right hand motor imagery. During the
initial training phase, no feedback is provided. After the system is calibrated,
feedback is provided for four seconds. The direction of the feedback bar shows
recognition of the MI pattern by system and the length of the bar represents
confidence of the system in its recognition of the MI class pattern.Various other
extensions of the Graz paradigm is proposed in the literature, mostly focusing
on providing alternative MI instructions and feedback from the system. For
example, the bar feedback is replaced by auditory [5] and tactile [30] feedback
to reduce the workload on the visual channel. Similarly, virtual reality based
games and environments are explored to provide MI instructions and feedback
for training [31], [32].

2.2.3 Signal pre-processing and artifacts removal

Artifacts are nothing but unwanted activities during signal acquisition. They
are comprised of an incorrect collection of signal or signals acquired from areas
other than the cerebral origin of the scalp area. Generally, artifacts are
classified into two major categories, termed as endogenous and exogenous
artifacts. Endogenous artifacts are generated from the human body excluding
the brain, and extra-physiologic artifacts are generated from external sources
(i.e. sources from outside the human body) [25]. Some of the common
endogenous and exogenous artifacts that accrue during EEG signal acquisition
are bad electrode position, poor ground electrode, obstructions to electrode
path (e.g. hair), eye blinks, electrode impedance, electromagnetic noise,
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Figure 2.4: An illustration of one trial’s timing in the Graz protocol

equipment problem, power line interference, ocular artifacts, cardiac artifacts
and muscle disturbances [33]. The signal pre-processing block is responsible for
the removal of such exogenous and endogenous artifacts from the EEG signal.
MI-BCI systems mainly rely on a temporal and spatial filtering approach.
Temporal filtering is the most commonly used pre-processing approach for EEG
signals. Temporal filters are usually low pass or band pass filters used to restrict
signals in the frequency band where neurophysiological information relevant to
the cognitive task lies. For MI, this usually means a Butterworth or Chebyshev
bandpass filter of 8 − 30 Hz frequency. This bandpass filter keeps both the mu
and beta frequency bands as they are known to be associated with
motor-related tasks [26]. However, MI task-related information is also present in
the spatial domain. Similar to temporal filters, spatial filters extract necessary
spatial information associated with a motor-related task embedded in EEG
signals.
A common average reference (CAR) is a spatial filter which removes the
common components from all channels, leaving channels with only channel
specific signals [34]. This is done by removing the mean of all k channels from
each channel:

V CAR
i = V ER

i − 1
k

k∑
j=1

V ER
j . (2.1)
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where V CAR
i is the filtered ith channel (electrode) by the CAR method and V ER

i is
the potential difference between ith electrode and reference electrode. An updated
version of CAR is the Laplacian spatial filter. The Laplacian spatial filter aims
to remove the common components of neighboring signals which increases the
difference between channels [35]. The Laplacian spatial filter is calculated through
the following equation:

V LAP
i = V ER

i −
k∑

j∈Si
gijV

ER
j (2.2)

gij = 1/dij∑k
j∈Si 1/dij

(2.3)

where V LAP
i is the ith channel filtered by the Laplacian method, Si is the set of

neighboring electrodes to the ith electrode, dij is the Euclidean distance between
ith and jth electrode [35].

2.2.4 Feature Extraction

Feature extraction is about converting input data into a set of features.
Features are distinctive properties of input patterns that help in differentiating
between categories of input patterns. For MI-BCI, the feature extraction
methods can be divided into six categories: (a) time domain methods that
exploits temporal information embedded in the EEG signal; (b) spectral
methods extract information embedded in the frequency domain of EEG
signals;(c) time-frequency methods works together on information in the time
and frequency domain; (d) spatial methods extract spatial information from
EEG signals coming from multiple electrodes; (e) spatio-temporal methods
works together with spatial and temporal information to extract features;(f)
spatio-Spectral methods use spatial and spectral information of the multivariate
EEG signals for feature extraction; (g) Riemannian Manifold methods which are
essentially a sub category of spatio-temporal methods that exploits manifold
properties of EEG data for feature extraction. Table 2.1 summarizes all the
feature extraction methods discussed in the following subsections.
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Time Domain Methods

An EEG is a non-stationary signal whose amplitude, phase and frequency
changes with SMR modulations. Time domain methods investigate how the
SMR modulation changes as a function of time [36]. Time domain methods
work on each channel individually and extract temporal information related to
the task. Extracted features from different channels are fused together to make
a feature set for a single MI trial. In MI-BCI literature, statistical features like
mean, root mean square (RMS), integrated EEG (power of signal), standard
deviation, variance, skewness and kurtosis are vastly employed to classify MI
tasks [37] [38]. Other alternative time domain methods based on variance of
signal are Hjorth parameters. A Hjorth parameter measures power (activity)
,mean frequency (mobility) and change in frequency (complexity) of EEG
signal [39]. Similarly, fractal dimension (FD) is non-linear method that
measures EEG signals complexity [40]. Another typical time domain approach
is auto-regressive (AR) modeling of EEG signal. The AR models signal from
each channel as a weighted combination of its previous samples and AR
coefficients are used as features. An extension of AR modelling is adaptive auto
regressive modelling (AAR) and is also used for MI-BCI studies. Unlike AR,
coefficients in AAR are not constant and, in fact, varies with time [39].
Information theory-based features like entropy, are also used in time domain to
quantify complexity of the EEG signal [41]. Temporal domain entropy works
with amplitude of EEG signal [42].
Another way of extracting temporal information is to represent the signal in
terms of peaks (local maximum) and valley (local minimum) [43]. In this
peak-valley representation, various features points are extracted between
neighbouring peak and valley points. Using the peak-valley model, Yilmaz et
al. [44] approximated EEG signal in 2D vector that contains cosine angle
between transition points (peak or valley) and normalised the ratio of Euclidean
distance in a left/right transition (peak or valley) points. In the same vein,
Mendoza et al. [45] proposed a quaternion based signal analysis that represent
multi-channel EEG signal in terms of their orientation and rotation then
obtained statistical features for classification. Recently, EEG signal analysis
based on graph theory and functional connectivity (FC) are employed in
MI-BCI [46]. These methods take advantage of the functional communication
between the brain regions during cognitive task like MI. In graph based
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methods, the EEG data is represented through graph adjacency matrices
corresponding to temporal correlations (correlation approaches used like
Pearson or Correntropy) between different brain regions (electrodes). Features
are extracted from this graph in terms of the graph node’s importance such as
centrality measure [34].
The advent of data driven approaches like deep learning has largely alleviated
the need for hand crafted features. In these approaches, a raw or preprocessed
EEG signal is passed through different convolution and pooling layers to extract
temporal information [47]. In the same vein, Lawhern et al. [48] proposed
EEGNET deep learning architecture that works with raw EEG signals. It starts
with a temporal convolution layer to learn frequency filters (equivalent to
preprocessing), another depth-wise convolution layer is used to learn
frequency-specific spatial filters. Lastly, a combination of a depth-wise
convolution along with point wise convolution are used to fuse features coming
form previous layers for classification. Instead of using a raw or preprocessed
signal, another approach is for the signal to be approximated then passed to a
deep neural network model. One way of achieving this is a one
dimension-Aggregate approximation (1d-AX) [49]. 1d-AX takes a signal from
each channel in a single trial, normalize it and apply linear regression. These
regression results are passed as features to the neural network.

Spectral domain methods

Spectral methods extract information from EEG signals in the frequency
domain. Similar to the temporal method, statistical methods are also applied in
the frequency domain. Samuel et al. [37] used statistical methods in both time
and frequency domain to decode motor imagery. Most used spectral method is
the power of EEG signals in specific frequency band. Usually, spectral power is
calculated in mu (µ), beta (β), theta (θ) and delta (δ) frequency bands. This is
done by decomposing the EEG signal into its frequency components at the
chosen frequency band using Fast Fourier Transform (FFT) [50] [51]. Other
frequency domain based method is Power Spectral Density (PSD). PSD is the
measure of how the power of a signal is distributed over frequency. There are
multiple methods of estimating it, such as Welch’s averaged modified
periodogram [52], Yule-Walker equation [53] or Lomb-Scargle periodogram [54].
Spectral entropy is another spectral feature that relies on PSD to quantify
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information in the signal [55].

Time-Frequency Methods

Time-frequency (t-f) methods works simultaneously in both temporal and
spectral domains to extract information in signal. One of the approaches used
in t-f domain is the short Term Fourier Transform (STFT) which segments the
signal into overlapping time frames on which FFT is applied by the fixed
window function [50]. Another way to generate t-f spectra is through a wavelet
transform [56] that decomposes the signal into into a family of wavelets. Unlike
sinusoids, which are symmetric, smooth, and regular, wavelets can be either
symmetric or asymmetric, sharp or smooth, regular or irregular. This captures
the signal characteristics in the joint time-frequency domain. Another similar
method in the t-f domain is empirical mode decomposition (EMD) [57].
However, instead of decomposing the signal into wavelets, it decomposes a
signal x(t) into simple oscillatory functions called Intrinsic Mode Functions
(IMFs) [58]. IMFs are orthogonal representation of signals such that first IMF
captures a higher frequency and subsequent IMFs capture lower frequencies in
EEG signals. Table 2.1 sum up all the t-f methods.

Spatial Domain Methods

Unlike temporal methods which work with only one channel at a time, spatial
domain methods work with multiple channels. Spatial methods try to extract
features by finding a combination of channels. This can be achieved using blind
source separation (BSS) [59]. BSS assumes that every single channel is the sum
of clean EEG signals and several artifacts. Mathematically this looks like the
following:

x(t) = As(t)

where x(t) is the channels, s(t) is the sources, and A is mixing matrix. They aim
to find a matrix B that reverse the channels back into their original sources:

s(t) = Bx(t).
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An example of a BSS algorithms are Cortical current density (CCD) [60] and
independent component analysis (ICA) [61]. In the literature, most employed
spatial method is common spatial pattern (CSP). CSP finds spatial filters such
that the variance of the transformed data is maximized for one class while it is
minimized for the other one [14]. The solution of the following objective function
is the desired spatial filters.

J(w) = wTC1w

wTC2w

where w denotes the spatial filter, T denotes transpose operation and C1, C2

represent the estimated co-variance matrix of each MI class. The above
equation can be solved using the Lagrange multiplier method. CSP is known to
be highly sensitive to noise and performs poorly under small sample settings,
thus a regularized version has been developed [14]. There are two ways to
regularize the CSP algorithm (also known as regularized CSP ), either by
penalizing its objective function J(w), or regularizing its inputs (covariance
matrices) [14]. One can regularize the objective function by adding a penalty
term to the denominator:

J(w) = wTC1w

wTC2w + αP (w)

where P (.) is a penalty function, and α is a constant determined by the user
(α = 0 for CSP) [14]. While CSP inputs can be regularized by:

C̃c = (1− γ)C̄c + γI

C̄c = (1− β)stCc + βGc

where st is a scalar, and Gc is a “generic” covariance matrix [14]. CSP
performance becomes limited when the EEG signal is not filtered in the
frequency range appropriate to subject. To address this issue, filter bank CSP
(FBCSP) algorithm is proposed that passes the signal though multiple temporal
filters and CSP energy features are computed from each band [62]. Finally, CSP
features from sub-bands are fused together for classification. This results into a
large number of features that limits the performance. To address this
alternative method, sub-band common spatial pattern (SBCSP) is proposed
that employs linear discriminant analysis (LDA) to reduce dimensionality.
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Finding multiple sub-bands to compute CSP energy features increases the
computational cost. To solve this, discriminant filter bank CSP (DFBCSP) is
proposed that utilizes the fisher ratio (FR) to select most discriminant
sub-bands from multiple overlapping sub-bands [63].

Spatio-temporal and Spatio-spectral methods

Spatio-temporal methods are algorithms that manipulate both time and space
(channels) domains. The main spatio-temporal methods used in past MI-BCI
studies are Riemannian Manifold-based methods (discussed in the next section).
Other spatio-temporal methods are usually based on deep learning. One such
approach is proposed by Echeverri et al. [64] that uses BSS algorithm to
separate the input signal x(t) from a single channel into an equal number of
estimated source signals ŝ(t). These source signals are sorted, based on a
correlation between their spectral components. Lastly, continious wavelet
transform is applied to sorted source signals to achieve t-f spectra images that
are further subjected to a convolution neural network (CNN) for classification.
In the same vein, Li et. al. [65] proposed an end-to-end EEG decoding
framework that extracts the spatial and temporal features from raw EEG
signals. In a similar manner, Yang et al. [66] propose a combination long
short-term memory network (LSTM) and convolutional neural network that
concurrently learns temporal and spectral correlations from a raw EEG signal.
In addition, they used discrete wavelet transformation decomposition to extract
information in the spectral domain for classification of the MI task.
Like spatio-temporal methods, spatio-spectral methods extract information
from spectral and spatial domains. Usually, temporal and spatial filters are
learned in sequential (linear) order whereas, if they are learned simultaneously,
a unified framework will be able to extract information from spatial and
spectral domains. For instance, Wu et al. [67] employs a statistical learning
theory to learn most discriminating temporal and spectral filters simultaneously.
In the same vein, Suk and Lee [68] used a particle-filter algorithm and mutual
information between feature vectors and class labels to learn spatio-spectral
filters in a unified framework. Similarly, Zhang et al. [69] proposed a deep 3-D
CNN network based on AlexNet that learns spatial and spectral EEG
representation. Likewise, Bang et al. [70] proposed a method that generates 3D
input feature matrix for the 3-D CNN network by stacking multiple-band
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spatio-spectral feature maps from multivariate EEG signal.

Riemannian geometry based methods

Covariance matrices (CM) calculated from EEG signals are widely used in BCI
algorithms. Let Xi ∈ Rn×t be a MI trial, n being the number of electrodes and t
the epoch duration expressed in number of samples. A trace normalized sample
covariance matrices Ci for trial X is given by:

Ci = XiX
T
i

tr(XiXT
i )

Covariance matrices lie in the space of symmetric positive definite (SPD)
matrices SPD(n) = {C = CT , uTCu > 0,∀u ∈ Rn, ∀u 6= 0} which forms a
Riemannian Manifold of m = n(n + 1)/2 dimensional [71] . Given two SPD
matrices X and Y there could be several curves passing through them but the
unique and shortest curve connecting two points (matrices) is called geodesic
curve. The length of such geodesic curve from X and Y gives Riemannian
distance (δr) [72]. It is given by δr(X, Y ) = ‖Log(X−1/2Y X−1/2)‖2

F .
Riemannian distance poses three fundamental properties of metric space:
positivity, symmetry and triangle inequality [6]. One of the most important
properties of the Riemannian distance is the invariance of linear transformation.
Riemannian geometry a differentiable manifold in which the tangent space at
each point is a finite-dimensional Euclidean space. Riemannian distance
computations in the manifold can be well approximated by Euclidean distance
computations in the tangent space. Furthermore, logarithmic mapping can
project points from manifold to tangent plane and inverse operation exponential
mapping project an element of the tangent space back to the manifold. Figure
2.5 illustrate Riemannian Manifold and corresponding local tangent space at C.
The logarithmic map LogC(.) projects the data point (matrix) Ci into the
tangent space. The Exponential map ExpC(.) projects the element of the
tangent space Si back to the manifold.
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Figure 2.5: An illustration of the Riemannian Manifold displaying
tangent space at point C

A summary of feature extraction methods
Temporal Methods Spectral Methods Time-frequency Methods Spatial Methods Spatio-temporal Methods
Statistical Features [37] [38]
Hjorth features [39]
RMS [38]
IEEG [38]
Fractal Dimension [40]
Autoregressive modeling [39]
Peak-Valley modeling [43] [44]
Entropy [41] [42]
Quaternion modeling [45]

Band power [37]
Spectral entropy [42]
Spectral statistical features [37]

STFT [50]
Wavelet transform [56]
EMD [57]

CSP [14]
BSS [60]

Covariance matrices [71]

Table 2.1: This table provides a summary of the feature extraction
methods

2.2.5 Channel and Feature Selection

EEG data is usually recorded through a large number of locations across the
scalp. This provides a higher spatial resolution and benefits in identifying
optimal locations (channels) relevant to BCI application or task. Here channel
selections techniques significantly contribute to identify optimal channels for
particular BCI application. Finding optimal channels not only reduces the
computational cost of the system, but also reduces the subject’s inconvenience
due to the large number of channels. Thus, the main objective of channel
selection methods is to identify optimal channels for the BCI task for improving
classification accuracy and reducing computation time in BCI. The channels’
selection problem is similar to that of feature selection where a subset of
important features are selected from a vast number of features. Therefore,
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channel selection techniques are derived from feature selection algorithm. Once
the channels are selected, still we need to extract features for classification of
the BCI task. Sometime we are even required to use the feature selection
algorithm on selected channels to improve the performance of the system.
Feature or channel selection algorithms have many stages. Firstly a candidate
subset of features or channels are generated from an original set for evaluation
purposes. This candidate subset is evaluated with respect to some selection
criterion. This process is repeated for each candidate subset until a stopping
criterion is reached. The selection criteria are what differentiates feature
selection approaches. There are two stand-alone feature selection approaches
filter approach and wrapper approach [73]. Sometimes combination of both are
used to make hybrid approaches also known as embedded approach. Embedded
method exploits strengths of both filter and wrapper approaches by combining
them in feature selection process.

Filter Approach

Filter methods starts with all the features and selects the best subset of features
based on some selection criteria. Usually this selection criteria is based on
characteristics such as information gain, consistency, dependency, correlation,
and distance measures [74]. The advantage of filter methods are their low
computational cost and selection of features is independent of the learning
algorithm (classifier). Some of the most widely employed filter methods are
correlation criteria, and mutual information. Correlation detects linear
dependence between variables xi (features) and target Y (MI task classes). It is
defined as:

R(i) = cov(xi, Y )√
var(xi)var(Y )

where cov() is the covariance and var() the variance. Mutual information (I)
and its variant are widely used feature selection filter approaches in the MI-BCI
literature. Mutual Information [75] I(ci; f) is the measure of the mutual
dependence and uncertainty between two random variables: the features f and
the classes ci. This is measured by subtracting the uncertainty of the class
H(ci) (also called initial uncertainty) from the uncertainty of the class given the
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features H(ci|f):

I(ci; f) = H(ci)−H(ci|f)

Both class uncertainty H(ci) and class uncertainty given the features H(ci|f) can
be measured using Shannon’s information theory entropy:

H(ci) = −
2∑
i=1

P (ci) logP (ci)

H(ci|f) = −
Nf∑
f=1

P (f)
( 2∑
i=1

P (ci|f) logP (ci|f)
)

where P (ci) is the probability density function of class ci, and P (ci|f) is the
conditional probability density function. When mutual Information is equal to
zero I(ci|f) = 0, the class ci and the feature f are independent and as MI gets
higher the more relevant feature f to class ci. Thus, MI can be used to select the
features by relevance.
Similarly, t-test [76] measures relevance of a feature to a class. It achieves this
by examining mean µi,j and σi,j variance of a feature fj between class i = {1, 2}
through the following equation:

T (fj) = |µ1,j − µ2,j|√
σ2

1,j
n1

+ σ2
2,j
n2

where ni (n1 and n2) is the number of trials in class i = {1, 2}. This is then used
to select a subset using the highest scoring features. Correlation based feature
selection (CFS) [77] evaluate subsets of features based on the hypothesis that a
good subset is the one that contains features highly correlated with the output
classes and not correlated between them. This is computed using heuristic metric
MetricS that divides productiveness of k feature subset S by the redundancy that
exists in the k features that compose the subset S:

MetricS = krcf√
k + k(k − 1)rff

where rcf is the mean of the class-feature correlation, rff is the mean of the
inter-feature correlation.

30



Chapter 2: A Review on Critical Issues and Possible Solutions

F-score [78] is another feature selection approach that quantify the discriminative
ability of variables (features) based on the following equation:

F − scorei =
∑c
k=1

(
x̄ki − x̄i

)2

∑c
k=1

[
1
Nk
i
− 1∑Nk

i
j=1

(
xkij − x̄ki

)](i = 1, 2..., n)

where c is the number of classes, n is the number of features, Nk
i number of

samples of feature i in class k, xkij is the jth training sample for feature i in
class k. Features are ranked based on F-score such that higher F-score value
corresponds to most discriminative feature.

Wrapper Approach

Wrapper approaches select a subset of features, present them as input to a
classifier for training, observe the resulting performance and stop the search
according to a stopping criterion or propose a new subset if the criterion is not
satisfied [74]. Algorithms that fall under the wrapper approach are mainly
searching and evolutionary algorithms. Searching algorithms start with an
empty set and add features (remove features) until a maximum possible
performance from the learning algorithm is reached. Usually, a searching
algorithm’s stopping criteria is until the number of features reaches a maximum
size specified for the subset. On the other hand, evolutionary algorithms such as
particle swarm optimization (PSO) [79], differential evolution (DE) [80, 81] and
artificial bee colony (ABC) [82, 83] find an optimal feature subset by
maximizing fitness function’s performance. Wrapper methods find a more
optimal feature subset compared to filter methods but the computational cost is
very high, thus not suitable for very large data-sets.

2.2.6 Dimensionality Reduction

In contrast to feature selection techniques, dimensionality reduction methods
tends to reduce the number of features in data, but they do so by creating new
combinations (transformation) of features, whereas, feature selection methods,
achieve this by including and excluding features from the original feature set.
Mathematically, dimensionality reduction can be defined as the transformation
of high dimensional data (X ∈ RD) into a lower dimensional data (Z ∈ Rd),
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where d << D. The dimensional reduction techniques can be categorized based
on their objective function [84]. Those based on optimizing an convex (no local
optima) objective function are convex techniques where as techniques whose
optimization function may have local optima are non-convex techniques.
Furthermore, these techniques can be linear or non-linear based on the
transform function used to map high dimensional to low dimension. The most
used linear-convex technique is the Principal Component Analysis (PCA) which
transforms data in a direction that maximizes the variance in the data
set [85] [86]. Linear Discriminant Analysis (LDA) [87] is another linear
dimensional reduction technique that finds a subspace that maximizes the
distance between multiple classes. To do so, it uses class labels whereas PCA is
an unsupervised technique. Independent Component Analysis (ICA) is another
linear method found in EEG-BCI literature for dimensionality reduction that
works on the principle that the EEG signal is a linear mixture of various sources
and all sources are independent of each other [88]. To address the non-linearity
in a data-points structure, PCA can be extended by embedding it with a kernel
function (KPCA) [88]. KPCA first transforms data from the original space into
kernel space using non-linear kernel transformation function, then PCA is
applied in kernel space. Likewise, Multilayer Autoencoders (AE) is an
unsupervised, non-convex and non-linear technique to reduce dimensionality of
data [84]. AE [89] takes the original data and reconstructs into lower
dimensional output using neural network. The drawback of the above discussed
methods is that they do not consider geometry of data prior to transformation.
Thus, manifold learning for dimensionality reduction has recently gained more
attention in MI-BCI research.
Manifold learning-based methods recovers the original domain structure in
reduced dimensional structure of data. Generally, these methods are non-linear
and divided into global and local categories based on data matrix used for
mapping high-dimensional to low-dimensional. Global methods used full EEG
data covariance matrix and aims to retain global structure and do not take into
account the distribution of neighbouring points [90]. Isometric feature mapping
(Isomap) [91] [92] and diffusion maps [93], [91] are some of these global
methods. In order to preserve global structure of manifold, isomap and diffusion
maps aims to preserve pairwise geodesic distance and diffusion distance between
data-points respectively. In contrast, local methods use a sparse matrix to solve
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eigenproblems and their goal is to retain the local structure of the data. Locally,
Linear Embedding [94] [95], Laplacian eigenmaps [92], local tangent space
alignment (LTSA) [96] are some of these local methods. LLE assume manifold
is linear locally and thus reconstruct data point from linear combination of its
neighbouring points. Similar to LLE, Laplacian Eigenmaps [92] preserve the
local structure by computing low-dimensional subspace in which the pairwise
distance between a datapoint and its neighbours is minimal. Similarly,
LTSA [96] map datapoints in high dimensional manifold to its local tangent
space and there reconstruct the low dimensional representation of the manifold.
All the above methods are designed for a general manifold thus approximate the
geodesic distance without information of the specific manifold. The EEG
covariance matrix lies in Riemannian manifold, therefore, more methods focused
on dimensionality reduction are developed.
Considering the space of EEG matrices in Riemannian manifold, Xie et al. [96]
proposed bilinear sub-manifold learning (BSML) that preserve the pairwise
Riemannian geodesic distance between data points instead of approximating the
geodesic distance. Likewise, Horev et al. [72] extended PCA in Riemannian
manifold by finding a matrix W ∈ Rn×t that maps the data from the current
Riemannian space to a lower dimension Riemannian space while maximising
variance. Along the same context, Davoudi et al. [97] proposed a nonlinear
dimensionality reduction methods that preserves the distances to the local mean
(DPLM) and takes into account geometry of the symmetric positive definite
manifold. Tanaka et al. [98] proposed creating a graph that contains the
location electrodes and their respective signals, and later applies the graph
Fourier transform (GFT) to reduce the dimensions.

2.2.7 Classification

Classification is the mapping of the feature space (Z ∈ Rd) into the target space
(y ∈ TargetSpace). This mapping is usually created by three things: a mapping
function f ∈ FunctionSpace, an objective function J(w), and a
minimisation/maximisation algorithm (iterative or by direct calculation). Each
of these has a role in the classifications process. The mapping function f

determines both the space at that is being worked on and the approximation
abilities of the classifier, whereas, the objective function J(w) describes the
problem that the classifier aims to solve. Finally, the
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minimisation/maximisation algorithm aims at finding the best (optimal)
mapping function f : FeatureSpace → TargetSpace that maps the data to its
targets based on the objective function J(w). Classification algorithms falls into
Euclidean and Riemannian manifold based on how they interpret EEG feature
space.

Euclidean space methods

Euclidean space Rn is the space of all n-dimensional real number vectors. Most
classification algorithms work in this space. One of such algorithms is linear
discriminant analysis (LDA) [99]. LDA is an algorithm that creates a projection
vector w that maximises the distance between classes SB and minimises the
variance within a class SW

(
JLDA(w) = maxw∈Rn

wTSBw
wTSWw

)
. This is done by

finding a generalized eigenvector of SBw = λSWw. The classification is achieved
by finding a threshold c that separates both classes, such as, if the dot product
is below the threshold c, it belongs to class 1, otherwise it belongs to class 2.
Duda et al. [100] described extension of LDA for multi-class problem.
Another classification algorithm that works in the Euclidean space is the
support vector machine (SVM) [99]. we discuss later the extension of this
algorithm into the Riemannian manifold. The objective of SVM is to find a
hyperplane that has the maximum margin, i.e the maximum distance between
data points of both classes. Maximizing the margin distance provides some
reinforcement so that future data points can be classified with more confidence.
SVM works by projecting the data points {xi}Mi=1 onto a hyperplane H
{φ(xi)}Mi=1. A plane in the hyperplane H is then created by using quadratic
programming JSVM(α) = maxα∈Rm

(∑
i αi − 1

2
∑
i,j αiαjyiyj < φ(xi), φ(xj) >H

)
subject to αi ≥ 0 and ∑i αiyi = 0 where <,>H is the dot product in hyperplane
H. This plane is then used to distinguish between classes
fSVM(x) = sgn (b+∑

i yiαik(x, xi)) where k(x, xi) =< φ(xi), φ(xj) >H is the
hyperplane kernel. Different kernels exist for hyperplanes, such as, the linear
kernel k(x, xi) = xTxi, the polynomial kernel k(x, xi) = (xTxi + c)d where c is a
constant, and the exponential kernel k(x, xi) = exp (−γ‖x− xi‖2).
Amother popular classifier is multilayer perceptron (MLP). MLP as the name
suggests, f(x) = ∑

iw
(2)
i ψ

(1)
i (∑j w

(1)
j xj + b), is a multilayer algorithms with each

layer containing perceptrons that can fire ψ(.). The layers are connected by
weights w that are trained using a minimisation algorithm, such as, stochastic
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gradient descent (SGD) or Adam algorithm. An extension to MLP is a
convolutional neural network (CNN). It extends the MLP algorithm by adding
a convolution and pooling layers. In the convolution layer, the high-level
information is extracted by using a matrix kernel that is applied to each part of
the data matrix. While in the pooling layer, it extracts dominant features and
decreases the computational power required to process the data by finding the
maximum or average of the sub-matrices.

Riemannian space methods

When the EEG data is taken and converted into sample covariance matrices
(SCM), a Riemannian manifold is created. This Riemannian manifold differs for
the Euclidean space. For example, a metric for measuring distances between
two points in the Riemannian manifold is not equivalent to its Euclidean
counterpart. The minimum distance to Riemannian mean (MDRM) is the most
popular classification algorithm in the Riemannian manifold [71]. MDRM is the
extension of the Euclidean classification algorithm in the Riemannian manifold.
This algorithm take in the data in the form of sample covariance matrices
(SCM) and calculates the Riemannian mean
Π(C1, . . . ,Cm) = arg minC∈SPD(n)

∑m
i=1 δ

2
R(C,Ci) for each class using it to label

data where δR(C1,C2) = ‖Log(C−1
1 C2)‖F=

[∑n
i=1 log2 λi

]1/2
is the Riemannian

distance. The Riemannian mean equation could be thought of as its objective
functions J(P), while the algorithm used to find it could be conceptualised as a
minimisation algorithm. MDRM has the following mapping function:

fMDRM(Cm+1) = arg min
j∈{1,2,... }

δR(Cm+1,CΩj)

where CΩj is the mean of class j. Similarly, Riemannian SVM (R-SVM) [71], is
the natural extension of SVM algorithm into the Riemannian manifold. It uses
the tangent space of a reference matrix Cref as its hyper plane. This results in
the following kernel:

kR(vect(Ci), vect(Cj)); Cref) =< φ(Ci), φ(Cj) >Cref

where vect(C) = [C1,1;
√

2C1,2;C2,2;
√

2C1,3;
√

2C2,3;C3,3; . . . ;CE,E] is the
vectorized form of a symmetric matrix, φ(C) = LogCref

(C) is the map from the
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Riemannian manifold to the tangent space of Cref, and
< A,B >C= tr(AC−1BC−1) is the scalar product in the tangent space of Cref.

Mapping function Objective function Min/Max algorithm

LDA f(x) =


1 wTx < c

−1 otherwise
J(w) = maxw∈Rn

wTSBw
wTSWw Eigen value solver

SVM
f(x) = sgn(b+∑

i yiαik(x, xi)) maxα∈Rm
(∑

i αi − 1
2
∑
i,j αiαjyiyjk(xi, xj)

)
Quadratic Programming

R-SVM

MLP f(x) = ∑
iwiψi(.) MSE, Cross entropy, Hinge SGD, Adam

CNN f(x) = conv + pool +MLP

MDRM f(P) = arg minj∈{1,2,... } δR(P,PΩj) J(PΩ) = arg minPΩ∈P (n)
∑
i δ

2
R(PΩ,Pi) Averaging approaches

Table 2.2: This table provides a summary of the classification
methods describe in the section 2.2.7

2.2.8 Performance Evaluation

The general architecture of motor-imagery based brain-computer interface is
well understood, yet numerous novel MI based interfaces and strategies are
proposed to enhance the performance of MI-BCI. Thus, performance evaluation
metrics play an important role to quantify diverse MI strategies. The most
widely used performance evaluation is accuracy, which measures the
performance of algorithm in terms of correctly predicting target class trials.
Accuracy metrics is mostly employed where the number of trials for all classes
are equal and there is no bias towards a particular target class [101]. In the case
of unbalanced (unequal number of trials) classes, Cohen’s kappa coefficient is
employed [102]. Kappa coefficient equates an observed accuracy with respect to
an expected accuracy (random chance). If kappa coefficient is 0, it means there
is no correlation with the target class and predicted class where as kappa
coefficient 1 denotes perfect classification. If the MI classification is biased
towards one class then the confusion matrix (CM) is an important tool to
quantify the performance of the system. Table 2.3 illustrates the confusion
matrix for a multi-class problem. Metrics like sensitivity and specificity can be
obtained from CM to identify percentages of correctly classified trials from each
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MI class.

Prediction

Class1 Class2 Classk Classn

Target

Class1 D11 D12 D1k D1n

Class2 D21 D22 D2k D2n

Classk Dk1 Dk2 Dkk Dkn

− − − − −
Classn Dn1 Dn2 Dn3 Dnn

Table 2.3: Multi class Confusion matrix

MI-BCI can be interpreted as a communication channel between user and
machine, thus the information transfer rate (ITR) of each trial can be calculated
to measure the bit-rate of the system. ITR can be obtained through CM (based
on Accuracy) according to Wolpaw et al.’s [103] method as well as based on
performance and distribution of each MI classes [104]. The metrics discussed
above are summarized in Table 2.4 and applicable for both synchronized and
self-placed (asynchronized) as well as multi-class MI-BCIs. As a BCI can be
defined as an encoder-decoder system where the user encodes information in EEG
signals and the BCI decodes it into commands. The above metrics evaluate how
well the BCI decode user’s MI task into commands but does not quantify how
well the user modulates EEG patterns with MI tasks [105]. Therefore, there is
room for improving performance metrics that measure user MI skills or a user’s
encoding capability.
To address some of the limitations mentioned above, Lotte and Jeunet [105]
have proposed stability and distinctiveness metrics. Stability metrics measure
how a stable MI EEG pattern is produced by a user. It is done by measuring
the average distance between each MI task trial covariance matrix and mean
covariance matrix for this MI task (left/right etc.). Distinct metrics measures
distinctiveness between MI task EEG patterns. Mathematically, distinct metrics
is defined as the ratio of the between class variance to the within class variance.
Both stability and distinct metrics are defined in the Riemannian manifold as
described in Table 2.4.
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Metrics Two Class
Multi Class
(N-Class)

BCI decoding
capabilty

Accuracy D11+D22
Nall

∑N

i=1 Dii
Nall

, where Nall = ∑N
i,j=1Dij

Kappa Accuracy−expected accuracy
1−expected accuracy , expected accuracy(Ae) =

∑
i=1 N

Di:D:i

sensitivity D22
D21+D22

Dkk
Nk

, where Nk = ∑N
i=1Dk,i

ITRWolpaw ITRWolpaw = log2N + Acc. log2(Acc) + (1− Acc) log2(1−Acc
N−1 )

User encoding
capability

Stability 1
1+σ

CA

Distinct
∑N

1 δr( ¯CAi ,
¯̄

CA)∑N

1 σ
CAi

Table 2.4: Summary of all the Metrics

2.3 Key issues in MI-BCI

MI based BCI still face multiple issues for it to be commercially usable. A
usable MI based BCI should be a plug and play, self paced, highly responsive
and consistent that everybody can use it. This could be achieved by solving the
following challenges:

2.3.1 Enhancement of MI-BCI performance

A high performance MI-based BCI is important as it increases the responsiveness
of the device and prevents user frustration hence improves the users experience.
Improving the performance could be achieved by improving its pre-processing
stage, channel selection stage, feature selection stage, dimensionality reduction
stage, or a combination of them.

Enhancement of MI-BCI performance using preprocessing

Recent enhancements in the pre-processing step have revolved around two
aspects: enhancing the incoming signal or enhancing the filtering of the signal.
The former can be achieved by reconstructing the signal [106, 107], enhancing
the spatial resolution [108], or adding artificial noise [109]. In Casals et al. [106],

38



Chapter 2: A Review on Critical Issues and Possible Solutions

they reconstructed corrupted EEG channels by using a tensor completion
algorithm. The tensor completion algorithm applied a mask to this corrupted
data to estimate it from observed EEG data. They found that this
reconstructed the data of the corrupted channels and improved the classification
performance in MI-BCI, whereas, Gaur et al. [107] used multivariate empirical
mode decomposition (MEMD) to decompose the EEG signal into a set of
intrinsic mode functions (IMFs). Based on a median frequency measure, a set of
IMFs are selected to reconstruct EEG signals. CSP features are extracted from
the reconstructed EEG signal for classification. One can enhance the spatial
resolution of the EEG signal by using local activities estimation (LAE)
method [108]. The LAE method estimates the recorded value of an EEG
channel based on the weighted sum of local values of all EEG channels. The
weights assigned to each channel for a weighted sum is based on the distance
between channels. Similarly, enhancing the filtering of the signal can be
achieved by automated filter (subject specific) tuning based on optimization
algorithm like particle swarm optimization (PSO), artificial bee colony (ABC)
and genetic algorithm (GA) [110]. Both Kim et al. [111] and Sun et al. [112]
proposed filters that are aimed to remove artifacts. Kim et al. [111] removed
ocular artifacts by using an adaptive filtering algorithm based on ICA. Sun et
al. [112] removed EOG artifacts by a contralateral channel normalization model
that aims at extracting EOG artifacts from the EEG signal while retaining
MI-related neural potential through finding the weights of EOG artifact
interference with the EEG recordings. The Hijorth parameter was then
extracted from the enhanced EEG signal for classification. In contrast to above
methods, Sampanna and Mitaim [109] have used PSO algorithm to search for
optimal Gaussian noise intensity to be added in signals. This helps in achieving
higher accuracy compared to a conventionally filtered EEG signal. The Signal
that is reliable at run time is very important for online evaluation of MI-BCI.
To address this, Sagha et al. [113] proposed a method that quantifies electrode
reliability at run time. They proposed two metrics based on Mahalanobis
distance and information theory to detect anomalous behaviour of EEG
electrodes.
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Enhancement of MI-BCI performance using channel selection

Channel selection can both remove redundant and non task relevant
channels [114] and reduce power consumption of the device [115]. Removing
channels can improve performance by reducing the search space [114], while
reducing the power consumption can increase the longevity of a battery-based
device [115]. Yang et al. [116] selected an optimal number of channels and time
segments to extract features based on Fisher’s discriminant analysis. They used
the F score to measure discrimination power of time domain features obtained
from different channels and different time segments. Jing et al. [117] selected
high quality trials (free from artifacts) to find an optimal channel for a subject
based on the “maximum projection on primary electrodes”. These channels are
used to calculate ICA filters for MI-BCI classification pipeline. This method has
shown good improvement in classification accuracy even in session to session
and subject to subject transfer MI-BCI scenarios. Park et al. [118] applied
particle swarn optimization algorithm to find subject specific optimal number of
electrodes. These electrodes’ EEG data is further used for classification. Jin et
al. [119] selected electrodes that contain more correlated information. To do
this, they applied Z-score normalization to EEG signals from different channels,
then computed pearson’s cofficients to measure similarity between every pair of
electrodes. From selected channels, RCSP features are extracted for SVM model
based classification. This significantly improves the accuracy compared to
traditional methods. Yu et al. [120] used Fly optimization algorithm(FOA) to
select the best channel for subject and extracted CSP features from these
channels for the classification. They also compared FOA performance with GA
and PSO. Ramakrishnan and Satyanarayana [115] used large (64) and small
(19) number of channels in data acquisition for training and testing phase
respectively. They calculated inverse Karhunen Loeve Tranform (KLT) matrix
from training trials. This inverse KLT matrix is used to reconstruct all the
missing channels in the testing phase. Masood et al [121] employed various
flavours of CSP algorithm [14] to obtain the spatial filter weights of each
electrode. Based on maximal values of spatial pattern coefficients electrodes are
selected to compute features for MI-CSP classification.
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Enhancement of MI-BCI performance using feature selection

Similar to channel selection, feature selection improve performance by finding
most optimal features. Like, Yang et al. [122] in their study decomposed EEG
signals from C3,Cz and C4 channels into a series of overlapping time-frequency
areas. They achieved this by cutting the filtered signals from filter bank of
width 4 Hz and step 1 Hz (e.g. 8-12, 9-13,...,26-30) into multiple overlapping
time segments. They used an F-score to select optimal time-frequency areas to
extract features for MI-BCI classification. Rajan and Devassy [123] used a
boosting approach that improved classification by a combination of feature
vectors. Baboukani et al [124] used an Ant Colony Optimization technique to
select a subset of features for SVM based classification of MI-BCI. Wang et
al [125] divided all the electrodes in several sensor groups. From these sensor
groups CSP features are extracted to calculate EDRs. These EDRs are fused
together, based on information fusion to obtain discriminate features for
ensemble classification. Liu et al. [126] proposed a feature selection method
based on firefly algorithm and learning automata. These selected features are
used to classify by a spectral regression discriminant analysis (SRDA) classifier.
Kumar et al. [127] used mutual information technique to extract suitable
features from CSP features from filter banks. Samanta et al. [128] used an auto
encoder-based deep feature extraction technique to extract meaningful features
from images of a brain connectivity matrix. The brain connectivity matrix is
constructed based on mutual correlation between different electrodes.

Enhancement of MI-BCI performance using dimensionality reduction

Xie et al. [129] learned low dimensional embedding on the Riemannian manifold
based on prior information of EEG channels. Where as, She et al. [130]
extracted IMFs from EEG signals then employed Kernel spectral regression to
reduce the dimension of IMFs. In doin so, they constructed a nearest neighbour
graph to model the IMFs intrinsic structure. Özdenizci and Erdoğmuş [131]
proposed information theory based linear and non-linear feature transformation
approach to select optimal feature for multi-class MI-EEG BCI system. Pei et
al. [89] used stacked auto-encoders on spectral features to reduce dimension and
achieve high accuracy in a multi class asynchronous MI-BCI system. Razzak et
al. [132] applied sparse PCA to reduce the dimensionality of features for SVM
based classification. Horev et al. [72] extended the PCA to SPD manifold space
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such that it preserved more variance in data while mapping SPD matrices to a
lower dimension. Harandi et al. [133] proposed an algorithm that maintains, the
SPD matrices geometry while mapping it in a lower dimension. This is done by
preserving the local structure’s distance with respect to the local mean. In
addition to it, this mapping minimize the geodesic distance in samples
belonging to the same class as well as maximizes the geodesic distance between
samples belonging to a different class. Davoudi et al. [97] adapted Harandi’s
geometry preserving the dimensionality reduction technique in an unsupervised
manner. Similarly, Tanaka et al. [98] proposed graph fourier transform for
reducing dimensionality of SPD matrices through Tangent space mapping. This
method has shown improvement in performance for a small training dataset.

Enhancement of MI-BCI performance with combination of all

Li et al. [134] use the TPCT imaging method to fix the electrode positions and
assign time-frequency feature values to each pixel in the MI-EEG image. This
way promotes feature fusion from time, space and frequency domains respectively.
These high dimensional images are fed to the modified VGG16 network [135].
Wang et al. [136] extracted a subset of channels from the motor imagery region.
From these extracted channels a subject-specific time window and frequency band
is obtained to extract CSP features for classification. Sadiq et al. [137] manually
selected channels from the sensorymotor cortex area of the brain. The EEG signal
from these selected channels is decomposed into ten IMFs using on adaptive
empirical wavelet transform. The most sensitive mode out of ten is selected
based on PSD and the Hilbert transform (HT) method extract instantaneous
amplitude (IA) and instantaneous frequency (IF) from each channel. Statistical
features are extracted from IF and IA components for classification. Selim et
al. [138] used bio-inspired algorithm (attractor metagene (AM)) to select the
optimal time interval and CSP features for classification. Furthermore, they used
Bat optimization algorithm (BA)) to optimize SVM parameters to enhance the
classifier’s performance. Athif and Ren [139] proposed the waveCSP technique
that used wavelet transform and CSP filtering technique to enhance the signal
to noise ratio of the EEG signal and to obtain key features for classification. Li
et al. [140] optimized the spatial filter by employing Fisher’s ration in objective
function. This not only avoids using regularization parameters but also selects
optimal features for classification. Li et al [141] designed a spectral component
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CSP algorithm that utilized ICA to extract relevant motor information from EEG
amplitude features obtained from CSP. Liu et al. [142] proposed an adaptive
boosting algorithm that selects the most suitable EEG channels and frequency
band for CSP algorithm.

2.3.2 Reduce or Zero calibration time

Everyday a BCI user is required to go through a calibration phase for him/her
to use BCI. This can be inconvenient, annoying, and frustrating. This section
describes an on-going research solution to reduce the calibration phase or
completely remove it. There are three categories of solutions: subject specific
methods, transfer learning methods, and subject independent methods.

Subject-specific methods

Subject-specific methods for the reduction of calibration time aim mostly at
extracting features more efficiently (i.e. with a small amount of training data).
This can be achieved by particle swarm optimization based learning strategy to
find optimal parameters for spiking neural model (SNM) (deep learning
model) [143]. This method automatically adjusts the parameters, removes the
need for manual tuning, and increases the efficiency of SNM. However, this
requires very subject-specific optimization of parameters for best results [144].
Whereas, Zhao et al. [145] proposed the use of a framework that transforms
EEG signals into three-dimensional space to preserve the temporal and spatial
distribution of EEG signal and uses multi-branch 3D convolutional neural
network to take advantage of temporal and spatial features in EEG signal.
They showed that this approach significantly improves the accuracy under a
small training dataset. Another approach of reducing calibration time is by a
subject specific modification of the CSP algorithm. For example, Park and
Chung [146] improved CSP by electing CSP features from good local channels
rather than all channels. They selected good local channels based on variance
ratio dispersion score (VRDS) and inter-class feature distance (ICFD).
Furthermore, they extended this approach in Filter Bank CSP by selecting good
local channels for each frequency band, whereas, Ma et al. [147] optimized SVM
classifier’s kernel and penalty parameters through a particle swarm optimization
algorithm to obtain optimal CSP features. Furthermore, Costa et al. [148]
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proposed an adaptive CSP algorithm to overcome the limitation of CSP in short
calibration sessions. They iteratively update the coefficients of the CSP filters
using a recursive least squares (RLS) approach. This algorithm can be
enhanced based on right channel selection and training free BCI system by
modifying the algorithm with unsupervised techniques. Kee et al. [41] proposed
Renyi entropy as a new alternative feature extraction method for small sample
setting MI-BCI. Their method outperforms conventional CSP and regularized
CSP design in small training datasets. Lotte and Guan [14] proposed Weighted
Tikhonov Regularization for CSP objective function that gives different
penalties for different channels based on their degree of usefulness to classify a
given mental state. They also extended the conventional CSP method for a
small sample setting in [149] by penalizing the CSP objective function through
prior information of EEG channels. Prior information of EEG channels was also
used by Singh et al. [150] to obtain a smooth spatial filter to reduce the
dimension of covariance matrices of trials under a small training set. They used
MDRM for classification of covariance matrices. This approach had shown
higher performance under a high dimensional small sample setting.

Transfer learning methods

An investigation on inter-session and inter-subject variabilities in multi-class
MI-based BCI revealed the feasibility of developing calibration-free BCIs in
subjects sharing common sensorimotor dynamics [151]. Based on this concept of
using other subjects/sessions, transfer learning methods have been developed.
Transfer learning methods aim to use other subjects data either to increase the
amount of data that the classifier can be trained on or to regularize (prevent
overfitting) the algorithm. The former can be seen in He and Wu [152], Hossain
et al. [153], and Dai et al. [154]. He and Wu [152] used Euclidean-space
alignment (EA) on top of CSP to enable transfer learning from other subjects.
EA projects all subjects into a similar distribution using the Euclidean mean.
Hossain et al. [153] extended FBCSP by adding selective informative instance
transfer learning (SIITAL). The SIITAL trains the FBCSP with both source
and target subjects by iteratively training the model and selecting the most
relevant samples of the source subjects based on that model. Dai et al. [154]
proposed unified cross-domain learning framework that uses the FBRCSP
method [155] to extract features from source and target subjects. This is
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achieved by ensemble classifiers that are trained on misclassified samples and
contribute to the overall model based on their classification accuracy, while the
latter can be seen in Azab et al. [156], Singh et al. [157, 158], and Jiao et
al. [159]. Azab et al. [156] proposed a logistic regression-based transfer learning
approach that assigns different weights to a previously recorded session or
source subject to represent similarities between these sessions/subjects features
distribution and the new subject features distribution. Based on
Kullback-Leibler divergence (KL) metrics similar source/session feature space to
target subject is chosen to obtain subject-specific common spatial patterns
features for classification. Singh et al. [157, 158] proposed a framework that
takes advantage of both Euclidean and Riemannian approaches. They used a
Euclidean subject to subject transfer approach to obtain optimized spatial filter
for the target subject and employed Riemannian geometry-based classification
to take advantage of the geometry of covariance matrices. Park et al. [155]
extended the FBCSP with regularization. They obtained an optimized spatial
filter for each frequency band using information from other subjects trials. The
CSP features from each frequency band are obtained and lastly, based on
mutual information most discriminate CSP features are selected for
classification. Jiao et al. [159] proposed Sparse Group Representation Model for
reducing calibration time. In their work, they constructed a composite
dictionary matrix with training samples from source subjects and target
subject. A sparse representation-based model is then used to estimate the most
compact representation of a target subject samples for classification by
explicitly exploiting within-group sparse and group-wise sparse constraints in
the dictionary matrix. The former has the advantage of being applicable to all
trained subjects over the latter.

Subject independent methods

Subject-independent methods aim to eliminate the calibration stage, allowing the
user to plug and play the BCI device. One way of achieving this is by projecting
all different subjects/sessions’ data into a unified space. Rodrigues et al. [160]
proposed the Riemannian Procrustes Analysis as a projection based method. It
transforms subject-specific data into a unified space by applying a sequence of
geometrical transformations on their SCMs. These geometrical transformations
aim to match the distribution of all subjects in high-dimensional space. These
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geometrically transformed SCMs are then fed to the MDRM classification model
to discriminate MI tasks. However, this method still requires the creation of
the geometrical transformations based on the targets’ session thus is not entirely
calibration-free but pave way for fully subject independent MI-BCIs. Another
way of achieving subject-independence is to create a universal map which can
take in any subject data and output the command. Zhu et al. [161] proposed a
deep learning framework for creating a universal neural network called separate
channel CNN (SCCN). SCCN contains 3 blocks: CSP block, Encoder block, and
recognition block. The CSP block was used to extract the temporal features
from each channel. The encoder block then encodes those extracted features
followed by a concatenation of the encoded features and feeding them into the
recognition block for classification. Joadder et al. [162] also proposed a universal
MI-BCI map that extracts sub-band energy, fractal dimension, Log Variance
and Root Mean Square (RMS) features from spatial filtered EEG signal (CSP)
for Linear Discriminant Analysis (LDA) classification model. They evaluated
their design on a different time window after cue, different frequency band and
different number of EEG channels and obtained good performance compared to
existing subject-dependent methods. Although both Zhu et al. [161] and Joadder
et al. [162] classifiers are subject-independent, the CSP extracted features are
not. Zhao et al. [163] hypothesised that there exists a universal CSP that is
subject-independent. They used a multi-subject multi-subset approach where
they took each subject in the training data and randomly picked samples to
create multiple subsets and calculated a CSP on each subset. This was followed
by a fitness evaluation-based distance between these CSP vectors (density and
distance between highly dense vectors). They also proposed a semi-supervised
approach as a classifier, however, unlike the universal CSP, it required unlabelled
target data. In the same vein, Kwon et al. [164] followed the same universal
CSP concept. Unlike Zhao et al. [163], they trained only one CSP on all of the
available source subject’s data and, since they had a larger dataset, they assumed
it would find the universal CSP. Mutual information and CNN was then used for
a complete subject-independent algorithm.

2.3.3 BCI illiteracy

BCI illiteracy subject is defined as the subject who cannot achieve classification
accuracy higher than 70% [29, 165–170]. BCI illiteracy indicates that the user is
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unable to generate required oscillatory pattern during MI task. This leads to
poor performance of MI-BCI. Some researchers focus on predicting whether a
user falls under BCI illiterate category or not. This can help us to design better
algorithm for decoding MI or design better training protocol to improve user
skills. For instance, Ahn et al. [171] demonstrated that self-assessed motor
imagery accuracy prediction has a positive correlation with actual performance.
This can be valuable information to find BCI inefficiency in the user. While,
Shu et al. [166] in their work proposed two physiological variables, that is,
laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI
performance prior to clinical BCI usage. Their proposed predictors exhibited a
linear correlation with BCI performance, whereas, Darvishi et al [172] proposed
a simple reaction time (SRT) as the BCI performance predictor. SRT is a
metrics that reflects the time required for a subject to respond to a defined
stimulus. Their results indicate that SRT is correlated with BCI performance
and BCI performance can be enhanced if the feedback interval is updated in
accordance with the subject’s SRT. In the same vein, Müller et al. [173] has
theoretically shown that adaptation that is too fast may confuse the user while
an adaptation that is too slow might not be able to track EEG variabilities due
to learning. They created an online co-adaptation BCI system by ever-changing
feedback according to the user and the system’s learning. In the same vein,
co-adaptive approach to address BCI illiteracy has also been proposed by
Acqualagna et al. [167]. Their paradigm composed of two algorithms: a
pre-trained subject independent classifier based on simple features, and a
supervised subject optimized algorithm that can be modified to run in an
unsupervised setting based. Acqualagna et al. approach is based on Vidaurre et
al. [174] classification of users. Vidaurre et al. [174] in their study classify users
in three categories: For category I users (Cat I), the classifier can be
successfully trained and they gain good BCI control in the online feedback
session. For Category II users (Cat II) the classifier can be successfully trained
however, good performance cannot be achieved in the feedback phase. For
Category III users (Cat III), successful training of the classifier is not achieved.
In the same vein, Lee et al. [175] found that that a universal BCI illiterate user
does not exist (i.e. all participants were able to control at least one type of BCI
system). Their study paves way to design BCI system based on user’s skill.
Another way of addressing BCI illiteracy problem is to design novel solutions
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that can improve performance even in the case of BCI illiterate user. Like,
Zhang et al [176] addressed BCI illiteracy through a combination of CSP and
brain network features. They constructed a task-related brain network by
calculating the coherence between EEG channels, the graph-based analysis
showed that the node degree and clustering coefficient have intensity differences
between left and right-hand motor imagery. Their work suggests that there is a
need to explore more feature extraction methods to address the BCI illiteracy
problem. Furthermore, Yao et al. [165] proposed a hybrid BCI system to
address the BCI inefficiency based on somatosensory attentional (SA) and
motor imagery (MI) modalities. SA and MI are generated by attentional
concentration intention (at some focused body part) and mentally simulating
the kinesthetic movement respectively. SA and MI are reflected through EEG
signals at the somatosensory and motor cortices respectively. In their work,
they demonstrate that the combination of SA and MI would provide distinctive
features to improve performance and increase the number of commands in a
BCI system. In the same vein, Sannelli et al. [177] created an ensemble of
adaptive spatial filters to increase BCI performance for BCI inefficient users.
External factors can also improve BCI accuracy. For instance, Vidaurre et
al. [178] proposed assistive peripheral electrical stimulation to modulate activity
in the sensorimotor cortex. It is proposed that this will elicit short-term and
long-term improvements in sensorimotor function thus improve BCI illiteracy
among users.

2.3.4 Asynchronised MI-BCI

MI-based BCI is usually trained in a synchronous manner, that is, there exists a
sequence of instructions (or cue) which user follows to produce an ERD/ERS
phenomenon. However, in a real-world application, user want to execute control
signal at his own will rather than waiting for cue. Therefore, there has been an
increasing interest in creating an asynchronous MI. That is, MI-based BCI can
detect that the user has an intention to do a Motor imagery then classifies MI
task. This is done by splitting the incoming data into segments with
overlapping periods. Each segment represents a potential MI command. One
way of determining whether this potential MI command is an actual MI
command is to build a classifier for that purpose. For example, Yu et al. [179]
study presents the self-paced operation of a brain-computer interface (BCI),
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which can be voluntarily used to control a movement of a car (starting the
engine, turning right, turning left, moving forward, moving backward and
stopping the engine). The system involved two classifiers: control intention
classifier (CIC), and left/right classifier (LRC). The CIC is implemented in the
first phase to identify the user intention being ”idle” or ”MI task-related”. If an
MI task-related is identified, a second phase follows the first phase by classifying
it. Similarly, both Cheng et al. [180] and Antelis et al. [181] proposed a deep
learning method that is trained to distinguish between resting state, transition
state, and execution state. However, Cheng proposed a convolutional neural
network followed by a fully connected network (CNN-FC) while Antelis
proposed Dendrite morphological neural networks (DMNN). Another approach
is to let the subject achieve a set number of consistent right/left classification
within a set period for an action to be taken thus confirming the command and
avoiding randomness [182], both adding a classifier and classifying multiple
times, adds computational time and complexity to the system, the latter also
adding time required for classification. Sun et al. [183] suggested a method that
avoids these constraints by using a threshold on an existing classifier that
separates idle from MI task-related. He et al. [184] proposed a similar approach
for continuous application such as mouse movement. This is achieved through
moving the object (in this case a mouse) by confidence level of the classifier.
The threshold-based method of addressing this challenge requires defining a
threshold which could be difficult and user-dependent. This brings us to the last
methodology of addressing this challenge, that is, by adding an idle class into
the classifier [185–188]. All of the above-motioned methods, except Yousefi et
al. [188] proposed method, use a target-oriented paradigm where the user is
asked to perform a task and the algorithm is evaluated based on the user’s
ability to achieve that task. However, Yousefi et al. [188] tested their algorithm
by giving the user a specified time interval to perform any task the user desired
and after the time has passed, the user provides feedback as to whether the
algorithm responded to his commands. In conclusion, all algorithm can run
asynchronously given they have a reasonable run time.

2.3.5 Increase number of commands

More diverse and complex applications like spellers etcetera can be developed with
high ITR and increased number of classes in MI-BCI. Traditionally, MI-BCI was
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designed as binary class (left and right) problem. The first way to extend MI-BCI
into multi-class is by employing a hybrid approach during which the MI paradigm
is complemented with another mental strategies. For example, Yu et al. [189]
proposed a hybrid asynchronous brain-computer interface based on sequential
motor imagery (MI) and P300 potential to execute eleven control functions for
wheelchairs. The second way to achieve multi-class MI-BCI is algorithmically.
For example, the traditional CSP algorithm is extended to recognize four MI
tasks [190]. In the similar manner, Wentrup and Buss [191] proposed information
theoretic feature extraction frameworks for CSP algorithm by extending it for
multiclass MI-BCI system. In the same vein, Christensen et al. [192] extended
FBCSPs for five class MI-BCI system. Similarly, Razzak et al. [193] proposed
novel multiclass support matrix machine to handle multiclass MI imagery tasks.
Likewise, Barachant et al. [194] presented a new classification method based on
Riemannian geometry that uses covariance matrices to classify multi-class BCI.
Faiz and Hamadani [195] controlled humonoid robotic hand gentures through
five class online MI BCI using a commercial EEG headset. They user AR and
CSP feature extractions and PCA to reduce the dimension of AR features. Lastly,
CSP and AR features are concatenated and trained by a SVM classifier to achieve
multi-class recognition.

2.3.6 Adaptive BCI

One of the issues still being worked in EEG based MI-BCI is the consistency of
the accuracy of the classifier during long sessions. This is because EEG is a
non-stationary signal that get impacted over time as well as when there is
change in recording environment and state of mind (e.g. fatigue, attention,
motivation, emotion etc). Adaptive methods have been proposed to address this
challenge. For instance, Aliakbaryhosseinabadi et al [196] demonstrated that it
is possible to detect a user’s attention diversion during a MI task, whereas,
Dagaev et al. [197] extracted target state (LH, RH) from background state
(environment, emotional and cognitive condition etc.). This was achieved by
asking subjects in the training stage to open and close their eyes during the
trials. These instructions act as the two different background conditions.
Methods that detect cause of change in user signals other than MI task could
pave the way for adaptive MI-BCI by giving both the user real-time
neurofeedback and giving the adaptive algorithm additional information to work
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with while decoding MI task.
Another way to address this challenge is to modify the training protocol or
extracting more information during it. Both Mondini et al. [198] and Schwarz et
al. [199] modified the training protocol. By creating an adaptive training
protocol, Mondini et al. [198] fulfil three tasks: (a) adapt the training session
based on the subject’s ability, that is, make the training short and restart the
training from the beginning with different motor imagery strategy if the system
performance is lower than a certain threshold; (b) present training cue
(left/right) in a biased manner that is present left cue more often manner if left
imagery performance is low compared to the right; (c)keep challenging the
performance of the user by only giving feedback if it exceeds an adaptive
threshold. Schwarz et al. [199] by proposed a co-adaptive online learning BCI
model that uses the concept of semi-supervised retraining. Schwarz model uses
a few initial supervised calibration trials per MI tasks and then perform
recurrent retraining by using artificially generated labels. This ensures feedback
to the user after a very short training and engages the user in mutual learning
with the system. Information gathered during training protocol such as
command delivery time (CDT), and the probability of the next action could be
used to address this challenge. CDT has been used by Saeedi et al. [200] to
provide a system that delivers adaptive assistance that is, if the current trial is
long, then the system will slow down to give enough time to the user to execute
the MI tasks. Their study suggests that brain pattern is different for short, long
and time-out commands. They were able to differentiate between command
type using only one second before the trial started, while Perdikis et al. [201]
proposed to use probability of next action to adapt the classifier. Specifically,
they implemented an online speller based on the BrainTree MI text-entry
system that uses probabilistic contextual information to adapt an LDA
classifier. The final method observed in the literature to address this challenge
was to create an adaptive classifier. Faller et al. [202] proposed an online
adaptive MI-BCI that auto-calibrates. Their system in regular interval not only
discriminates features for classifier retraining but also learns to reject outliers.
Their system starts to provide feedback after minimal training and keeps
improving by learning subject-specific parameters on the run. Raza et al. [203]
proposed unsupervised adaptive ensemble learning algorithm that tackles
non-stationary based co-variate shifts between two BCI sessions. This algorithm
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paves the way for online adaption to variabilities between BCI sessions. In the
same vein, Rong et al. [204] proposed an online method that handles the
statistical difference between sessions. They used an adaptive fuzzy inference
system.

2.3.7 Online MI-BCI

After an adaptive BCI, one key factor that determines MI based system’s
usability and efficacy is BCI mode. MI-BCI systems are operated in offline or
online mode through cue-based paradigms where as self-placed (asynchronous)
are mostly online systems. Mostly, literature proposed improvements in offline
mode of MI-BCI systems; very few test their proposed algorithms in online
environment. In online BCI studies, Sharghian et al. [205] proposed MI-EEG
which uses sparse representation-based Classification (SRC). Their approach
obtains an online dictionary learning scheme from extracted band power from a
spatial-filtered signal. This dictionary leads to reconstruction of sparse signal
for classification. In the same vein, Zhang et al. [206] proposed an incremental
linear discriminant analysis algorithm that extract AR features from preferable
incoming data. Their method paved way for fully auto-calibrating an online
MI-BCI system. Similarly, Yu et al. [185] proposed an asynchronous MI BCI
system to control wheelchair navigation. Perez [207] extended the fuzzy logic
framework for adaptive online MI-BCI system and evaluated it through realistic
navigation of a bipedal robot. Ang and Guan [208] introduced an adaptive
strategy that continuously compute the subject-specific model during an online
phase. Abdalsalam et al. [209] controlled the screen cursor through a four class
MI-BCI system. Their results suggest that online feedback increase ERDs over
mu (8 − 10Hz) and upper beta (18 − 24Hz) band which results into a higher
cursor control success rate. Many studies have demonstrated the efficiency of
virtual reality (VR) and gaming environment in a online BCI [210].
Achanccaray et al. [211] in the same vein, verified that virtual reality based
online feedback has positive effects on the subject. It has been observed that
motor cortex increases its activation level (in alpha and beta band) due to an
immersive VR experience. This is very helpful in supporting upper limb
rehabilitation of post-stroke patients. Similarly, Alchalabi and Faubert [212]
used VR based neurofeedback in the Online MI-BCI session. Cubero et al. [213]
proposed an online system based on an endless running game that runs on three
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class MI-BCI. They used graphic representation of EEG signals for
multi-resolution analysis to take advantage of spatial dimension along with
temporal and spectral dimensions .

2.3.8 Training Protocol

Similar to other normal user skills, BCI control is also a skill that can be
learned and improved with proper training. A typical BCI training protocol is a
combination of user instructions, cues on screen to modulate the user’s neural
activity in a specific manner and, lastly, a feedback mechanism that represents
confidence of the classifier in recognition of the mental task to user.
Unfortunately, standard training protocol does not satisfy the psychology of
human learning; being usually boring and very long. Meng and He [214] studied
effect of MI training on users. They found out that with a few hours of MI
training, there is change in electrophysiological properties. There study
suggested design engaging training protocol and multiple training sessions
rather than a long training session for low BCI performers. In the same vein,
Kim et al. [215] proposed a self placed training protocol in which the user
performs MI task continuously without an inter-stimulus-interval. During each
trial the user has to imagine a single MI task (e.g. RH for 60 sec). The results
of this protocol showed that it reduces calibration time compared to
conventional MI training protocol. Jeunet et al. [216] surveyed the cognitive and
psychological factors related to MI-BCI and categorized these factors into three
categories (a) user-technology relationship,(b) attention and (c) spatial abilities.
Their work is very useful to design new training protocol that take advantage of
these factors. Furthermore, in another study Jeunet et al. [29] found that spatial
ability plays an important role in BCI performance of a subject. They suggested
having pre-training sessions to explore spatial ability for BCI training.
Many studies proposed new training strategies which uses other mental
strategies to compliment MI training (kinesthetic imagination of limbs). For
instance, Zhang et al. [217] proposed a new BCI training paradigm which
combine conventional MI training protocol with covert verb reading. This
improves the performance of MI-BCI and paves the way for utilizing semantic
processing with motor imagery. Along the same lines, Wang et al. [218]
proposed hybrid MI-paradigm that uses speech imagery with motor imagery. In
this paradigm, the user repeatedly and silently reads move (left/right) cues
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during imagination. Standard training protocols are fixed that is not tailored
made to user’s need and experience. With respect to this, Wang et al. [219]
proposed MI training with visual-haptic neurofeedback. Their findings validate
that their approach improves cortical activations at the sensorimotor area, thus
leads to an improvement in BCI performance. Liburkina et al. [220] proposed a
MI training protocol that gives cue to perform and feedback to the user through
vibration. Along the same lines, Pillette et al. [221] designed an intelligent
tutoring system that provides support during MI training and enhance user
experience/performance on MI-BCI system. Skola et al. [222] proposed a virtual
reality-based MI-BCI training that uses a virtual avatar to give feedback. Their
training helps in maintaining high levels of attention and
motivation.Furthermore, their proposed method improves BCI skills of first time
users.

2.4 Conclusion

In this chapter, we have provided an extensive review of methodologies for
designing an MI-BCI system. In doing so, we have created a generic framework
and mapped literature related to different components (data acquisition, MI
training, preprocessing, feature extraction, channel and feature selection,
classification and performance metrics) in it. This will help in visualizing gaps
to be filled by future studies in order to further improve BCI usability.
Despite many outstanding developments in MI-BCI research, some critical
issues still need to be resolved. Mostly, studies are on synchronised MI-BCI in
offline mode. There is a need to have more studies on online BCI. Typically,
researchers use performance evaluation metrics as per their convenience. It
would be better to have general BCI standards that can be widely adhered by
researchers. Our literature survey found that enhancing the performance is still
a critical issue even after two decades of research. Due to availability of high
computational resources, present studies employ methods based on deep
learning and Riemannian geometry more than traditional machine learning
methods. With current advancement in algorithms, future research should
concentrate more on eliminating or reducing long calibration in MI-BCI. Future
studies should focus on more diverse BCI applications which can be developed
with increased number of commands. Our review shows that BCI illiteracy is
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critical issue that can be addressed either by using better training protocol that
suit users’ requirements or through smart algorithms. Finally, EEG is a
non-stationary signal that changes over time as user’s state of mind changes.
This cause inconsistency in BCI classifier’s performance, thus it is important to
make progress in development of adaptive methods to address this challenge in
an online settings.

55



DRC 16 

GRS Version 5 – 13 December 2019 
DRC 19/09/10 

STATEMENT OF CONTRIBUTION 
 DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have consented to 
their work being included in the thesis and they have accepted the candidate’s contribution as indicated 
below in the Statement of Originality. 

Name of candidate: 

Name/title of Primary Supervisor: 

In which chapter is the manuscript /published work: 

Please select one of the following three options: 

The manuscript/published work is published or in press 

Please provide the full reference of the Research Output:

The manuscript is currently under review for publication – please indicate: 

The name of the journal:

The percentage of the manuscript/published work that
was contributed by the candidate:

Describe the contribution that the candidate has made to the manuscript/published work:

It is intended that the manuscript will be published, but it has not yet been submitted to a journal 

Candidate’s Signature: 

Date: 

Primary Supervisor’s Signature: 

Date: 

This form should appear at the end of each thesis chapter/section/appendix submitted as a manuscript/ 
publication or collected as an appendix at the end of the thesis. 



Chapter 3

Reduce Calibration Time Using
Spatially Regularized Symmetric
Positive-Definite Matrices

Quick Summary

One major challenge in the development of a brain–computer interface is to
reduce calibration time or completely eliminate it. To address this problem,
existing approaches use covariance matrices of electroencephalography (EEG)
trials as descriptors for decoding BCI but do not consider the geometry of the
covariance matrices, which lies in the space of Symmetric Positive Definite
(SPD) matrices. This inevitably limits their performance. We focus on reducing
calibration time by introducing SPD based classification approach. However,
SPD-based classification has limited applicability in small training sets because
the dimensionality of covariance matrices is large in proportion to the number
of trials. To overcome this drawback, we proposes a new framework that
transforms SPD matrices in lower dimension through spatial filter regularized
by prior information of EEG channels.

Related Paper

• Amardeep Singh, Sunil Lal and Hans W. Guesgen. ”Reduce calibration
time in motor imagery using spatially regularized symmetric
positives-definite matrices based classification” Sensors 2019, 19(379),
2879
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3.1 Introduction

Electroencephalogram (EEG) based brain–computer interfaces (BCI) detect
neural activity from brain scalp and translate them into control commands for
external devices [2]. EEG based BCI systems can be categorized as exogenous
or endogenous, according to paradigm used to generate neural activity [223]. An
exogenous BCI derives its output from neural activity (EEG signals) generated
due to attentional selection of an external stimulus among many [22]. An
endogenous BCI derives its outputs from oscillatory neural activity, which is
spontaneously controlled by the user [22]. Endogenous BCI does not require
external stimulus to generate specific neural pattern for BCI, in fact the user
can control BCI system voluntarily. Motor imagery (MI) is one such endogenous
BCI paradigm where neural activity is generated at the sensorimotor cortex due
to the kinaesthetic imagination of a body part (left/right hand) movement [71].
During MI, there is a rhythmic power decrease or increase in measured EEG
signals from the sensorimotor cortex. These phenomena are also known as event
related desynchronization (ERD) and event related synchronization (ERS),
respectively [224]. BCIs distinguish different MI tasks through spatial and
temporal properties of measured EEG signals [63]. Therefore, to increase the
spatial and temporal resolution, electroencephalogram (EEG) signals are
recorded with multi-channel electrodes system with high sampling rate. This
results in high-dimensional signals.
MI-based BCIs are indeed very promising for people suffering from
neuromuscular disorder, but still lack adoption as access modalities outside
laboratories. The main reason that prevents MI-based BCIs from widely being
used is high performance variations among and within subjects. These
performance variations are due to change in the external (user’s muscle
movements, recording condition and machine related causes) and internal
(user’s cognitive state of mind) state of the user [225]. Therefore, it requires
extensive training compared to exogenous BCI systems. During training and
calibration phase, new subjects learn to voluntarily regulate oscillatory EEG
pattern and training trials are collected to obtain discriminative features that
are fed into machine learning algorithms for MI classification [16].
The standard feature extraction techniques for motor imagery use covariance
matrices of trials. One such technique is common spatial pattern (CSP) that
aims to determine optimal spatial filters that discriminate two MI task
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(left/right) [226]. CSP requires large number of subject specific calibration trial
sessions to achieve good MI classification. These calibration sessions are very
time consuming and not user-friendly. Thus, it is desirable to reduce or remove
the calibration entirely.
However, in the case of a small EEG calibration trials set, these covariance
matrices poorly estimate MI and therefore lead to poor performance of CSP. To
address this, Lu et al. [227] proposed Regularized CSP, which uses other
subjects’ trials to construct MI classes spatial covariance matrices for new
target subjects that will be used to extract CSP features. In the same vein, Dai
et al. [228] also employed transfer learning technique to learn domain invariant
CSP features from source and target subjects. Both approaches rely on other
subjects (source) to subject (target) transfer learning, which, in the worst case,
might hurt the performance of the target subject. This situation is often called
negative transfer [229].
Unlike the above methods, Arvaneh et al. [230] suggested a technique that does
not rely on source subjects trials. Rather, this approach optimizes obtained
CSP filters by using channels from brain regions that have high variances
between MI classes, and attenuates the noisy channels from regions with low
and irregular variances. Similarly, Lotte et al. [149] used spatial information of
electrodes as prior knowledge to regularize objective function of the CSP
algorithm to obtain spatial filters. In similar manner, Park and Chung [231]
used electrodes from certain brain regions to extracted diverse CSP features and
obtain high accuracy compared to standard CSP under small training samples
(trials).
The efficiency of spatial filter is sensitive to individual’s temporal and frequency
characteristics. To address subject specific frequency characteristics issue, Ang
et al. [226] proposed filter bank CSP (FBCSP) that uses multiple bandpass
filters to extract CSP features. FBCSP may lose important frequency
information, as it uses fixed partition of the frequency (frequency width of 4 Hz,
varying from 4 Hz to 30 Hz). To address this problem, Yang et al. [232]
proposed CSP feature extraction based on varying partition of the frequency
bands with different bandwidth to cover as many bands as possible. In a similar
way, Park and Lee [233] extended FBCSP by regularizing CSP features
obtained from multiple filter banks. They used other subjects’ trials covariance
matrices to regularize filter bank CSP features. Zhang et al. [234] proposed a
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method that simultaneously optimizes filter bands and time window used to
obtain CSP features to further boost classification accuracy of MI. Filter
bank-based methods result in a high dimensional CSP feature set, therefore
requires a feature selection algorithm to select discriminative CSP features for
MI classification. To address the feature selection problem, Selim et al. [138]
used bio-inspired optimization algorithm for feature selection. They also
selected optimal time interval for each subject to extract CSP features. Unlike
the above methods, Tang et al. [235] used a convolutional neural network model
to classify MI tasks based on spatiotemporal characteristics of EEG.
Furthermore, Tabar and Halici [236] combined convolutional neural network and
stacked autoencoders to classify EEG Motor Imagery signals.
All methods discussed above use covariance matrices of trials to extract CSP
features (log variance) into a vector in Euclidean space. Furthermore, pattern
recognition metrics used to classify features also lies in Euclidean space. As
covariance matrices lie in the symmetrical positive definite (SPD) matrices
manifold, these methods fail to notice distinct characteristic of EEG data such
as their interrelation across the manifold dimensions [17].
The effectiveness of data treatment based on the concept of geometrical
properties was proved by Barachant et al. [194]. They proposed minimum
distance to Riemannian mean (MDRM) classification technique that adopts
Riemannian distance as pattern recognition metric to classify test trials.
MDRM outperforms standard CSP approach, but performance of MDRM
declines as the size of covariance matrices grows. Under small training set, the
size of covariance matrices are larger than the number of trials. Therefore,
MDRM algorithms encounter the curse of dimensionality problem [97].
To address dimensionality problem, Horev et al. [72] adapted PCA to the space
of SPD matrices, which conserves more data variance and maps covariance
matrices to a lower-dimensional SPD manifold. In a similar manner, Harandi et
al. [237] learned mapping that maximizes the geodesic distances between
inter-class samples and simultaneously minimizes the distances between
intra-class samples. This was done via optimization on Grassmann manifolds.
This algorithm tries to preserve the local structure of the data by preserving
distance to local means, considers the geometry of SPD matrices, provides an
implicit mapping and applies the supervised information for embedding to
lower-dimensional space. Furthermore, Davoudi et al. [97] extended Harandi’s
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work by proposing another dimensionality reduction algorithm for the manifold
of SPD matrices which preserves the local structure of data by preserving
distance to local mean (DPLM). This algorithm can work in a supervised
(sDPLM) or unsupervised (uDPLM) manner and projects a high-dimensional
SPD manifold to a lower-dimensional one. In the same vein, Kumar et al. [238]
also addressed dimensionality issue of covariance matrices by using spatial
filtering. The drawback of this method is that it requires many subject-specific
trials to optimize spatial filter performance. In this chapter, we propose a
method that uses the best of both Euclidean and SPD space. We use prior
information of EEG electrodes to obtain spatial filter that transform sample
covariance matrices (SCM) into lower dimension. Then, Riemannian distance is
used as pattern recognition metric for classification as it is invariant to any
linear invertible transformation [152].
The rest of the chapter is organized as follows. In Section 3.2, we review the
space of SPD matrices and MDRM classification approach. Section 3.3 presents
our proposed SR-MDRM classification approach. Section 3.4 describes the
experiment as well as datasets. In Section 3.5, we discuss and compare results
of the experiment with existing studies. Section 3.6 draws the conclusions
regarding proposed approach.

3.2 Geometry of SPD Matrices

An n × n square matrix C falls in the space of symmetric positive definite
SPD(n) if {C = CT , uTCu > 0,∀u ∈ Rn, ∀u 6= 0}. Symmetric positive definite
matrices are always diagonalizable with strictly real positive eigenvalues. For
SPD matrices in SPD(n), the exponential matrix of C is obtained using the
eigenvalue decomposition of C :

C = Udiag([λ1, ..., λn])UT (3.1)

where λ1 > λ2 > ... > λn are the eigenvalues and U the matrix of eigenvectors of
C. It reads:

exp(C) = Udiag([exp(λ1), ..., exp(λn)])UT (3.2)
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The inverse operation is the logarithm of a SPD matrix [194] :

log(C) = Udiag([log(λ1), ..., log(λn)])UT (3.3)

Equivalently, SPD matrices have the following properties [194]:

1. ∀C ∈ SPD(n), C−1 ∈ SPD(n) i.e., SPD matrices are invertible.

2. ∀C ∈ SPD(n), det(C) > 0

Covariance matrices of EEG trial lies in symmetric positive definite matrices
manifold [239]. Covariance matrices hold spatial-temporal information for EEG
trial and can directly be used for classification. SPD matrices lie on a
differentiable Riemannian manifold.

Figure 3.1: Illustration of Tangent space of manifoldM at point C.
The Logarithmic map projects the matrix Ci ∈M into the tangent
space. The Exponential map projects the element of the tangent
space Si back to the manifold. Geodesic curve illustrate unique and
shortest curve connecting Ci and C.

3.2.1 Riemannian Manifold

A Riemannian manifoldM is a differentiable manifold in which the tangent space
at each point is a finite-dimensional Euclidean space [71]. That means, derivatives
at a point C (i.e. covariance matrix of MI trial) on manifold lies in a vector space
TCM, which is the tangent space at that point. The manifoldM and the tangent
space are m = n(n+ 1)/2 dimensional [17]. This tangent space is Euclidean and
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locally homomorphic to the manifold and Riemannian distance computations in
the manifold can be well approximated by Euclidean distance computations in
the tangent space [71]. A point (matrix) Ci is projected to tangent space using
logarithmic mapping LogC(Ci) as

Si∈ TCM = LogC(Ci) = C1/2logm(C−1/2CiC
−1/2)C1/2 (3.4)

where C is a reference point in the manifold where the tangent plane is mapped
and logm(.) is logarithm of SPD matrix given in Equation (3.3). Furthermore,
the tangent vector Si from tangent space is projected back to manifold using
exponential mapping ExpC(Si) given by

Ci∈M = ExpC(Si) = C1/2expm(C−1/2SiC
−1/2)C1/2 (3.5)

where expm(.) is exponential of SPD matrix, as shown in Equation (3.2). Figure
3.1 illustrate logarithmic mapping operator and exponential mapping operator
on Riemannian Manifold and corresponding local tangent space at C.

3.2.2 Riemannian Distance

The minimum length curve connecting two points on the manifold is geodesic,
and the Riemannian distance between the two points is given by the length of this
curve as illustrated in Figure 3.1. Mathematically, Riemannian distance between
two SPD matices C1 and C2 in the Riemannian manifold M is given by:

Rd(C1, C2) = ‖log(C−1/2
1 C2C

−1/2
1 )‖F= (

n∑
i=1

log2 λi)1/2 (3.6)

where ‖.‖F is the Frobenius norm and λi’s are the positive eigenvalues of
C
−1/2
1 C2C

−1/2
1 . The Riemannian distance Rd(C1, C2) is invariant to any linear

invertible transformation [152]:

Rd(ATC1A,A
TC2A) = Rd(C1, C2) (3.7)

where A is an invertible matrix. The Riemannian distance between two points in
manifold can be approximated in tangent space by approximating the distance
between projected tangent vectors through a reference point C. To obtain a good
approximation of the Riemannian distance, reference point C needs to be close
to two points in the manifold. Usually, the Riemannian mean ΠM is the most
suitable choice for the reference point.
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3.2.3 The Choice of a Reference SPD matrix

The reference SPD matrix is free parameter that defines the point in the
manifold M where the tangent plane is computed [71]. The most common
choice of reference matrix Cref is the average of the whole set of covariance
matrices. All the averaging approaches such as arithmetic, geometric, and
harmonic mean estimate the centrality of manifold M [240]. In this thesis, we
used the geometric mean ( also known as Riemannian mean) of SPD matrices
that minimizes the sum of squared Riemannian distances. It is given by:

ΠM(C1, ..., CI) = arg min
C∈SPD(n)

I∑
i=1

Rd
2(Ci, C) (3.8)

The mean of I ≥ 1 SPD matrices such as EEG trials covariance matrices
keeps shifting due to the non-stationarity of EEG signals. Therefore, it needs to
be iteratively computed whenever any new trials are collected. The computation
of the Riemannian mean ΠM goes through the following steps until it converges.
Firstly, projecting the covariance matrices in the tangent space, estimating the
arithmetic mean in the tangent space and projecting the arithmetic mean back
in the manifold. Then iterate the three above steps until convergence. Chebbi
and Moakher [241] provide a detail discourse on the computation of Riemannian
mean.

3.2.4 Minimum Distance to Riemannian Mean (MDRM)

MDRM is a classification approach that uses the Riemannian mean of each class
and its Riemannian distance to test covariance matrix of the trial to predict a
label for it. In this approach, the Riemannian mean is calculated for each class
using its labeled training trials, and then the Riemannian distance of each class
is calculated with respect to test trial’s covariance matrix. The class mean that
is closest to test trial covariance becomes the trial’s label.

pred(Cx) = arg min
ϕ=1,2..K

Rd(Cx, CΠ) (3.9)

where Cx is the covariance matrix of the test trial, CΠ is the Riemannian mean
of Class ϕ and pred(Cx) is the prediction of its class label. The MDRM
approach is not robust to noise [97], therefore, some filtering over SPD matrices
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is required. Barachant et al. [242] suggested geodesic filtered MDM (FGMDM)
approach, which computes set of filters by applying a supervised Fisher geodesic
discriminant analysis (FGDA) to the tangent (Euclidean) space projection of
covariance matrices. The obtained filters are applied through geodesic filtering
approach [242] over SPD matrices. This filtering operation do not change any
dimension of the SPD matrices. Finally, the filtered SPD matrices are used for
MDRM classification.

Figure 3.2: Framework for proposed approach.

3.3 Methodology

The conceptual framework of our proposed methodology is shown in Figure 3.2.
EEG signals are often divided into trials based on the label given during training
phase. Let Xi ∈ (RN×T ) be a bandpassed EEG trial where N is number of
electrodes and T is sampled time points in the trials and trial labels ϕi ∈ (1, 2).
Therefore, the training set can be given as {Xi, ϕi}Mi=1 where M is the total
number of training trials. The normalized sample covariance matrix Ci [243] for
trial Xi is calculated as follows:

Ci = XiX
T
i

tr(XiXT
i ) (3.10)

65



Chapter 3: Reduce Calibration Time Using Spatially Regularized Symmetric
Positive-Definite Matrices

where tr(.) denotes the trace operator of the matrix, and the superscript T denotes
the transpose of the matrix. Normalization on covariance matrices to reduce
remaining sources of variability such as variations related to electrode impedances
[243]. The sample covariance matrix for class can be obtained by taking sum of
sample covariance matrices for M trials that belong to it. It is calculated as
follows:

Cϕ =
M∑
m=1

C(ϕ,m) (3.11)

where M is the total trial number of each class, and m is the index of the trial
(m ≤M). ϕ denotes the class index, and we consider only two classes (ϕ ∈ {1, 2})
in this paper. Spatial filters w through CSP are obtained by extremizing the
following function:

J(w) = wTC1w

wTC2w
(3.12)

This is an optimization problem that can be solved by Lagrange multiplier
method using Equation (3.13):

L(λ,w) = wTC1w − λ(wTC2w − 1) (3.13)

The filters w extremizing L are such that the derivative of L with respect to
w equals 0:

∂L

∂w
= 2wTC1 − 2λwTC2 = 0

⇔ C1w = λC2w

⇔ C−1
2 C1w = λw (3.14)

Equation (3.14) is a standard eigenvalue problem. The matrix C−1
2 C1

containing the first k/2 vectors explains the maximum of the variance of class 1
and the minimum of class 2, while the last k/2 vectors explains the maximum of
the variance of class 2 and the minimum of class 1. if k is too small , the
classifier would fail to fully capture the discrimination between two classes after
spatial filtering. To get optimal results, k = 6, i.e., three eigenvectors from both
ends of C−1

2 C1 are used as the spatial filters w. Alternatively one can choose the
eigenvectors according to different criterion or use cross-validation to determine
the number of components [244]. From a neuro-physiological point of view,
neighboring neurons tend to function similarly, so if the two electrodes are close
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enough could measure similar brain signals [245] (As there are thousands of
neuron comes under the area of single electrode) . Thus, we can expect that
neighboring channels of the spatial filter should have similar weights (i.e.,
smooth spatial filter). To obtain smooth spatial filter, we use the spatial
information of electrodes as a prior knowledge [149] to penalize objective
function of CSP algorithm. Smooth spatial filters w can be obtained by
extremizing the following functions:

JP1(w) = wTC1w

wTC2w + αP (w) and JP2(w) = wTC2w

wTC1w + αP (w) (3.15)

The penalty term P (w) measures the spatial smoothness of the spatial filters
w, where P (w) = wTKw with K = D − G. G is a Gaussian Kernel such that
Gij = exp−1

2( ||vi−vj ||
2

r2 ), with vi a vector containing 3D coordinates of the ith
electrode. D is a diagonal matrix such as Dii = ∑

j Gij. Therefore, wTKw =
wT (D − G)w = ∑

i,j Gij(wi − wj)2. There are two hyperparameters (r, α) in
regularized objective function. The first hyperparameter r defines how far two
electrodes can be to be still considered as close to each other and the second
hyperparameter α defines the level of spatial smoothness the filters should reach.
Equation (3.15) becomes:

JP1(w) = wTC1w

wTC2w + αwTKw
and JP2(w) = wTC2w

wTC1w + αwTKw
(3.16)

using Lagrangian multiplier method, the solution is obtained as,

M1 = (C2 + αK)−1C1 and M2 = (C1 + αK)−1C2 (3.17)

We construct the projection matrix Wp ∈ R2N×N using Equation (3.18)

Wp = [M1M2] (3.18)

The EEG signal trial is transformed with Wspatial made from the first and last
k columns of Wp by using Equation (3.19)

Zi = WspatialXi (3.19)

where Zi ∈ R2k×T is transformed signal corresponding to Xi. Sample covariance
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matrices Ctrain
i of filtered EEG trials Zi from the target’s training set are

calculated using Equation (3.10). The MDRM classification algorithm is based
on shortest Riemannian distance between the test covariance matric and two MI
class means. The main limitation of this approach is that due to noise related
distance between two matrices can make class related information based
distance get vanish. Therefore, it is preferable to perform some filtering over
SPD matrices before applying MDRM classification. In order to discard
irrelevant information and support class-related information geodesic filtering is
applied on covariance matrices Ctrain

i in the tangent space using an algorithm,
as mentioned in [242]. This algorithm is an extension of Fisher Linear
Discriminant Analysis in the tangent space. After geodesic filtering, filtered
SCMs (STraini and STesti ) for target subject’s training and test trials are
obtained. Finally, filtered SCMs of the target subject’s training set (STraini ) are
used in calculating Riemannian mean CΠRϕ for both motor imagery classes.
These Riemannian means are used for MDRM classification [242] of test trials
(STesti ).

3.4 Data and Experiment

To assess the performance of our method for small training setting, we used the
EEG Dataset IVa from BCI Competition III. Furthermore, we compared it with
existing methods designed for small training set scenario. To confirm the
robustness of proposed approach, we evaluated it over two publicly available
datasets with a different number of EEG channels from BCI competition.
A summary of the three datasets is given in Table 3.1.

Dataset IVa, BCI Competition III

Dataset IVa [246] contains EEG signals of binary (right hand and foot) motor
imagery tasks from five healthy subjects. EEG signals were recorded using 118
electrodes at 100 Hz sampling rate. There are a total 280 trials per subject that
are unevenly divided into training and testing set for each subjects, as shown in
Table 3.1.
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Dataset IIIa, BCI Competition III

Dataset IIIa [246] comprises of EEG signals of multi-class (right hand, left hand,
tongue and foot) motor imagery (MI) tasks from three subjects (“k3b”, “k6b”
and “l1b”). EEG signals were sampled at 250 Hz rate and recorded using 60
electrodes. In this study, we used EEG signals from trials corresponding to binary
MI class (left/right). There are total 180 trials for subject “k3b” and 120 trials
for subjects “k6b” and “lib”, respectively.

Dataset IIa, BCI Competition IV

Dataset IIa [247] contains of data recorded from 22 EEG channels and 3 EOG
channels at sampling rate of 250 Hz. Dataset IIa contains multi class EEG signals
from nine subjects, namely A01–A09. In this experiment, we considered data
collected from 22 EEG electrodes corresponding to left and right MI class from
each of nine subjects. Table 3.1 shows number of training and testing trials for
all subjects.

Table 3.1: Summary of Dataset IVa, Dataset IIIa and Dataset IIa
from BCI competitions (BCIC).

BCI Competition (BCI-C)
Dataset

BCI-C III BCI-C IV
Dataset IVa Dataset IIIa Dataset IIa

Electrodes 118 60 22
Sampling Rate 100 Hz 250 Hz 250 Hz
Subject aa al av aw ay k3b k6b l1b A01–A09
Train 168 224 84 56 28 90 60 60 144
Test 112 56 196 224 252 90 60 60 144

3.4.1 Experimental Setup

This study was carried out using a Windows 10 computer with specification
Intel (R) Core TM i5–6500 CPU @3.20 GHz with 8 GB RAM. All conventional
methods (CSP and MDRM) and proposed algorithm were implemented in
Matlab R2018a.
The study comprised six steps. Firstly, we used a time segment from 0.5 s to 2.5
s after the visual cue for all the datasets considered for this study [14, 248].
Thus, trials respective to Dataset IVa, Dataset IIIa and Dataset IIa comprised
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200, 500 and 500 sampled time points. Secondly, all trials were filtered in
frequency range within 7–30 Hz through fifth order Butterworth bandpass IIR
filter. This frequency band was selected as it comprises the alpha and beta
frequency bands, which have been shown to be most important for MI task
classification [249, 250]. Thirdly, spatial filters were learned using
hyper-parameters α ∈ [10−10, 10−9, ..., 10−1] and r ∈ [0.01, 0.02, ..., 0.09, 0.1]. In
the fourth step, the EEG signals were transformed into lower dimension using
regularized spatial filter. In the fifth step, covariance matrices for training trials
were employed to obtain FGDA filters. Lastly, after geodesic filtering,
Riemannian mean for each MI class was calculated using training trials
covariance matrices and labels were assigned to test trials based on their
distance from the Riemannian mean of MI classes. For CSP and MDRM, we
used the same time-segment, filter order and frequency band as described for
the proposed method.

3.4.2 Evaluation Metrics

To evaluate the performance of proposed method, we used classification accuracy
and kappa coefficient as evaluation metrics. In binary classification case, accuracy
can be calculated as described in Equation (4.19).

Accuracy = a+ b

a+ b+ c+ d
(3.20)

where a is the number of positive samples correctly identified, b is the number of
negative samples correctly identified, c is the number of negative cases incorrectly
identified, and d is the number of positive cases incorrectly identified. Kappa
coefficient compares the accuracy of the system to the accuracy of a random
system. It is defined as

kappa = observeredAccuracy − randomAccuracy
1− randomAccuracy (3.21)

where random accuracy [251] is given by

randomAccuracy = ( a+ b

a+ b+ c+ d
)∗( a+ c

a+ b+ c+ d
)+( c+ d

a+ b+ c+ d
)∗( b+ d

a+ b+ c+ d
)

(3.22)
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3.5 Results and Discussion

We evaluated the performance of the proposed approach (SR-MDRM) on the
three datasets, and compared it with conventional (CSP and MDRM) methods
as well as benchmark results reported in the literature. Table 3.2 shows
hyper-parameters used in SR-MDRM classification for all subjects belonging to
different datasets.

Table 3.2: Hyper-parameters α,r of SR-MDRM for all subjects
belonging to different datasets.

Parameters Dataset IVa Dataset IIIa Dataset IIa

aa al av aw ay k3b k6b l1b A01 A02 A03 A04 A05 A06 A07 A08 A09

α 10−1 10−4 10−5 10−5 10−1 10−4 10−3 10−10 10−4 10−2 10−3 10−3 10−4 10−2 10−3 10−10 10−10

r 0.06 all r
values

0.07 0.07 0.08 0.1 0.08 0.01 0.06 0.07 0.05 0.09 0.07 0.04 0.06 0.01 0.01

3.5.1 Dataset IVa, BCI Competition III

Table 3.3 shows the classification accuracy proposed method, winner of BCI
Competition III on Dataset IVa, CSP method and other benchmark results
reported in the literature on Dataset IVa. As shown in Table 3.3, our method
outperformed the existing studies in the literature, except for the winner. In
this study, we used same approach for all subjects; on the contrary, winner [246]
did not use the same approach for all subjects. Wang et al. (winner) [246] used
an ensemble classifier based on CSP, autoregressive (AR) and Temporal waves
of readiness potential (RP). Only CSP method was applied for subject “al”,
“aw” and “ay” but for subject “aa” and “av” combination of all three methods
(CSP–AR–RP) was used. Moreover, for subjects with fewer training data (“aw”
and “ay”), they used former classified test sample as extended training samples,
whereas our proposed approach used only training samples even for subjects
with limited training trials. Therefore, it is unfair to compare our simple
methods with the first winner.
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Table 3.3: Classification accuracy (Mean and Standard deviation
in percent) of the proposed approach and other MI classification
approaches on Dataset IVa, BCI Competition III.

Studies Methods Year aa al av aw ay Mean Std

Conventional Method Csp 66.07 96.43 47.45 71.88 49.6 66.28 19.83
Belwafi et al. [252] Wola-Csp 2018 66.07 96.07 52.14 71.43 50 67.29 18.54
Arvaneh et al. [230] Sscsp 2011 72.32 96.42 54.10 70.53 73.41 73.35 15.09
Lotte and Guan [149] Srcsp 2010 72.32 96.43 60.20 77.68 86.51 78.63 13.77
Selim et al. [253] Rms/Lda 2016 69.64 89.29 59.18 88.84 86.90 78.77 13.65
Dai et al. [228] Tkcsp 2018 68.10 93.88 68.47 88.40 74.93 79.17 11.78
Park and Lee [233] Sbrcsp 2017 86.61 98.21 63.78 89.05 73.81 82.69 13.53
Park and Chung [231] Sss-Csp 2018 74.11 100 67.78 90.07 89.29 84.46 13.05
Selim et al. [138] csp/am-ba-svm 2018 86.61 100 66.84 90.63 80.95 85.00 12.30
Proposed Method sr-mdrm 79.46 100 73.46 89.28 88.49 86.13 10.15
Wang et al. [246] Winner 96.00 100 81.00 100 98.00 94.20 8

Selim et al. [138] used subject specific optimal time interval for CSP feature
extraction. Furthermore, they used hybrid bio-inspired algorithms for feature
selection and classifier optimization. They achieved 85% classification accuracy,
which is slightly (1.13%) less than the proposed approach. One drawback of this
approach is that the classifier optimization takes a very long time. Park and
Chung [231] used a set of various local channels region to extract CSP features.
They used eigenvalue disparity score to select CSP features from the local
channel region and support vector machine (SVM) classifier to classify
extracted features. They obtained 84.46% accuracy, which is less than the
proposed approach by 1.67%. Park and Lee [233] (SBRCSP) focused on
regularizing CSP features from filter bank using other subjects training trials.
Their results were less than the proposed approach by 3.44%. In the same vein,
Dai et al. [228] implemented a “Transfer Kernel CSP” (TKCSP) approach to
learn a domain-invariant kernel by directly matching distributions of source
subjects and target subjects. Similar to our approach, they employed all 118
channels to obtain 82.69% which is less than our approach by 6.96. Both
TKCSP and SBRCSP have the same drawback, as they rely on other subjects’
(source) training trials.
Selim et al. [253] used root mean square (RMS) features for LDA classifier to
obtain 78.77% accuracy with 7.36% less than that of proposed approach. Lotte
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and Guan [149] penalized CSP objective function to obtain smooth filters to
extract features and achieved 78.63%, which is less than proposed approach by
7.50%. Similarly, Arvaneh et al. [230] implemented “Spatially Sparsed CSP”
(SSCSP) filters to extract CSP features. Their results were less than the
proposed approach by 12.63%. Belwafi et al. [252] used weighted overlap-add
(WOLA) algorithm to perform dynamic filtering of EEG-signals for filter bank
CSP method. Their method achieved 67.29% classification accuracy, which is
less than our approach by 18.85%. Our method improved the mean
classification accuracy by 19.85% compared to CSP method.
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Figure 3.3: Classification accuracy of all subjects from Dataset IVa
with respect to hyper-parameter r and best value of α.

Our proposed method shows the highest classification accuracy for subject
“al”. Lotte and Guan [149] identified subject av as BCI illiterate with CSP
method because their performance was below 55% (close to random). However,
with SR-MDRM, subject “av” achieved 73.46% classification accuracy. Subject
“av” would no longer be identified as illiterate. Subject “ay”’s accuracy
improved drastically with only 28 training trials. Thus, we might hypothesize
that adding spatial prior along with geometry based classification increases
accuracy despite the limited amount of training data.
The hyper-parameter r controls the trade off between accuracy and filters
sparsity. Therefore, the optimal r value must be selected to increase the
accuracy. Figure 3.3 shows the effect of r values on the classification accuracy
values of all subjects with fixed (best) α value. Subject “al” reached maximum
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accuracy independent from value of r parameter. This is because “al” had
sufficient training data. Other subjects performance showed dependence on the
value of r and reached maximum accuracy for particular r and α value.
Table 3.4 shows performance of SPD manifold based classification methods for
all the subjects in kappa values. As shown in Table 3.4, our method
outperformed all existing methods. In addition, SR-MDRM obtained highest
kappa value for subjects “al”, “av” and “aw”. As Dataset IVa represents a small
sample setting, results obtained on it signify that SR-MDRM is suitable for
small sample scenarios.

Table 3.4: The performance of proposed approach and existing
Riemannian geometry based approaches on Dataset IVa of BCI
Competition III in terms of kappa values.

Studies Year aa al av aw ay Mean

Barachant et al. [194] Mdrm 0.22 0.86 0.25 0.13 0 0.29
Harandi et al. [237] Mdrm 2014 0.23 1.00 0.40 0.53 0.82 0.59
Horev et al [72] Mdrm 2017 0.62 0.96 0.42 0.68 0.60 0.65
Davoudi et al. [97]-uDplm 2017 0.57 1.00 0.39 0.64 0.72 0.66
Davoudi et al. [97]-sDplm 2017 0.63 1.00 0.46 0.66 0.78 0.70
sr-Mdrm 0.58 1 0.47 0.79 0.77 0.72

3.5.2 Dataset IIIa, BCI Competition III

Dataset IIIa is also a good test environment for proposed approach, as it also
has limited training samples and high EEG signals dimensionality. Table 3.5
presents classification accuracy of proposed method and other existing methods
on Dataset IIIa.
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Table 3.5: Classification accuracy (Mean and Standard deviation
in percent)of the proposed approach and other MI classification
approaches on Dataset IIIa, BCI Competition III.

Studies Methods Year k3b k6b l1b Mean std

Proposed Method sr-mdrm 100 76.67 100 92.22 13.46
Zhang et al. [234] Tsgsp 2018 99.2 67.2 96.5 87.63 17.74
Belwafi et al. [252] wola-csp 2018 97.77 61.66 93.33 84.25 19.69
Conventional Method csp 95.56 61.67 93.33 83.52 18.95
Horev et al. [72] horev-mdrm 2017 95.56 68.33 85 82.96 13.72
Barachant et al. [194] mdrm 96.66 60 88.33 81.66 19.21
Lotte and Guan [14] srcsp 2011 96.67 53.33 93.33 81.11 24.11

In Figure 3.4, the SR-MDRM method shows a higher mean classification
accuracy than the six other methods. In addition, the SR-MDRM method
shows the highest classification accuracy for individual subjects. That is, Figure
3.4 clearly shows that the SR-MDRM method is more efficient for binary motor
imagery classification than the other six methods. Zhang et al. [234] proposed
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Figure 3.4: Classification accuracy of the proposed approach
and other MI classification approaches on Dataset IIIa, BCI
Competition III.

temporally constrained sparse group spatial pattern (TSGSP) method; their
performance was slightly less than our method. In their study, they
simultaneous optimized filter bands and time window to extract CSP features
for classification to obtain mean accuracy of 87.63%. Dataset IIIa is recorded
with (60) electrodes, thus covariance matrices dimensionality is less compared
to Dataset IVa (118 × 118). MDRM method’s performance improved due to
small size of covariance matrices. As shown in Figure 3.4, it is marginally less
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(1.3%) than Horev’s MDRM [72] method, which adapted PCA to map
covariance matrices to a lower-dimensional SPD manifold. Interestingly,
standard CSP performed better than spatially regularized CSP method
proposed [14] on Dataset IIIa. Subject “k6b”’s performance improved
drastically with our proposed approach. Subject “k6b” gained 9.47%
classification accuracy more then the state-of-the-art method tgcsp [234].
Figure 3.5 shows the classification accuracy values of subject “k6b” according to
the hyper-parameters r and α, respectively. Subject “k6b” reached maximum
accuracy at α = (10−3) and r = 0.08 values. It proves our hypothesis that
spatial prior and geometry based treatment of data helps achieve the highest
classification accuracy under small training sample.
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Figure 3.5: Classification accuracy according to hyper-parameter
r and 10 log10(α) of the proposed approach on subject K6B from
Dataset IIIa, BCI Competition III.

3.5.3 Dataset IIa, BCI Competition IV

Dataset IIa has sufficient training trails per subjects and EEG signals are low
dimensional (22 channels), as shown in Table 3.1. It is a good test environment
to check for the robustness of our proposed approach under low dimensional and
sufficient training samples.
Table 3.6 shows the classification accuracy of existing methods and proposed
method (SR-MDRM) on Dataset IVa. For subjects A02, A03, A04 and A07, the
proposed method achieved highest accuracy compared to existing methods in
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the literature. Similar to our proposed approach, Gaur et al. [254] used
Riemannian geometry to classify features obtained through subject specific
multivariate empirical mode decomposition method (SS-MEMD). They
achieved higher accuracy for subject A09 and mean accuracy was slightly less
than proposed approach. Due to lower dimensionality of covariance matrices in
Dataset IIa, MDRM method outperformed other methods for subjects A01 and
A05.

Table 3.6: Classification accuracy (mean and standard deviation in
percent) of the proposed approach and other approaches on Dataset
IIa, BCIC IV.

Studies Methods Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean Std

Proposed Method Sr-mdrm 90.21 63.28 96.55 76.38 65.49 69.01 81.94 95.14 93.01 81.22 12.43
Gaur et al. [254] ss-memdbf 2018 91.49 60.56 94.16 76.16 58.52 68.52 78.57 97.01 93.85 79.93 14.14
Barachant et al. [194] Mdrm 91.61 57.03 90.21 73.61 73.94 68.31 75 95.14 90.21 79.45 12.92
Belwafi et al. [252] Wola-csp 2018 86.81 63.19 94.44 68.75 56.25 69.44 78.47 97.91 93.75 78.85 15.15
Lotte and Guan. [14] srcsp 2011 88.89 63.19 96.53 66.67 63.19 63.89 78.47 95.83 92.36 78.78 14.77
standard Method csp 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 78.01 17.01
Raza et al. [255] tlcsp1 2016 90.28 54.17 93.75 64.58 57.64 65.28 62.5 90.97 85.42 73.84 15.93
Raza et al. [255] tlcsp2 2016 90.28 57.64 95.14 65.97 61.11 65.28 61.11 91.67 86.11 74.92 15.42

3.6 Conclusion

We propose spatially regularized Symmetric positive definite (SPD) matrices
based motor imagery classification method. This method incorporates prior
information of EEG electrodes to obtain spatial filters that transform sample
covariance matrices into lower dimension and maximize the variance between
two motor imagery task in small sample setting. The proposed method takes
advantage of geometrical properties of covariance matrices by employing
Riemannian distance as pattern recognition metric for classification as it is
invariant to any linear invertible transformation. The efficacy of the proposed
approach was validated on three public datasets from BCI competition. Our
proposed method’s mean classification accuracy is better than other approaches
in existing studies on all three datasets.
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Chapter 4

Small Sample Motor Imagery
Classification Using Regularized
Riemannian geometry Features

Quick Summary

Motor imagery-based electroencephalogram brain-computer interface (BCI)
performance suffers from huge variations within and across subjects. This is due
to different spatial and temporal characteristics among the subjects. To address
these variabilities, a large number of labeled subject specific training trials are
collected to calibrate systems for new subjects. This results in long calibration
time that limits the BCI usage in practice. We focus on reducing calibration
time by introducing a Riemannian approach. However, in Riemannian approach
the performance degrades in small sample scenario as the dimensionality of
covariance matrices is large in comparison to the number of trials. To overcome
this limitation, we proposed a new framework that transforms covariance
matrices into a lower dimension through spatial filter regularized by data from
other subjects.

Related Paper

• Amardeep Singh, Sunil Lal and Hans W. Guesgen. ”Small Sample Motor
Imagery Classification Using Regularized Riemannian Features” in IEEE
Access, vol. 7, pp. 46858 - 46869, 2019.
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4.1 Introduction

The electroencephalogram (EEG) based brain computer interface (BCI)
translates neural activity in the brain into commands to control external
devices [2]. Motor imagery (MI) is a BCI paradigm where neural activity is
generated at the sensorimotor cortex due to the kinaesthetic imagination of a
body part (left/right hand) movement [71]. This neural response varies spatially
and temporally across the subjects even for the same motor imagery
task [63], [234]. Therefore, for every new subject calibration, trials are collected
to understand their neural response pattern to different motor imagery tasks.
The standard approach to do this, first captures temporal and spatial
characteristics of a subject in each MI calibration trial with high spatial and
temporal resolution. It is done with a multi-channel electrodes system with a
high sampling rate. This also results in a high-dimensional EEG signal. Second,
through different signal processing techniques, discriminative features from
high-dimensional EEG trials are obtained that are fed into machine learning
algorithms for MI classification [16].
One of the most effective techniques for feature extraction in motor imagery are
common spatial pattern (CSP) filters. CSP aims to determine optimal spatial
filters that discriminate two MI task classes [226]. For this, CSP uses sample
covariance matrices (SCM) of EEG trials as it encode the spatial information of
neural responses to the MI task. Although good performance can be achieved
with CSP [256] and deep learning based approaches [257, 258] but it requires a
large number of subject specific calibration trial sessions. These calibration
sessions are very time consuming and not so user-friendly [259]. Thus, it is
highly desirable to reduce or remove the calibration entirely.
In the case of a small EEG calibration trials set, these covariance matrices
poorly estimate MI and therefore lead to poor performance of CSP. To address
this, Lu et al. [227] suggested subject to subject transfer approach (RCSP) that
uses information from other subjects involved in similar motor imagery tasks to
construct a spatial covariance matrix for the target subject. In the same vein,
Dai et al. [228] (TKCSP) also used transfer learning approach to learn domain
invariant CSP features from source and target subjects. Both these approaches
uses data from other subjects. Unlike the above method, Arvaneh et al. [230]
proposed (SSCSP) a method that does not require data from other subjects to
obtain CSP features rather this approach emphasize more on those regions that
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have high variances between MI imagery classes, and attenuates the regions
with low variances. Similarly, Park and Chung [231] have also focused on those
channels that belong to the region that contributes to extracting diverse CSP
features and obtaining high accuracy compared to standard CSP. In the same
vein, Lotte et al. [149] extended conventional CSP method by adding prior
information of EEG channels. Their approach emphasizes the fact that
neighboring channels measure similar brain signals thus have a similar
contribution in the spatial filter. Lotte et al. proposed Spatial regularized CSP
(SRCSP) aims at regularizing the CSP objective function by penalizing filters
which are not spatially smooth, that is for neighboring electrodes which have
very different weights.
The performance of the spatial filter depends upon the subject specific
frequency band. To address this problem, Ang et al. [226] proposed filter bank
CSP (FBCSP) obtains features from multiple bandpass filters and spatial filters
then employs a feature selection algorithm to select discriminative CSP features
for classification. Belwafi et al. [252] (WOLA-CSP) choose subject specific
frequency by analyzing state of the subject before and during MI task. Park et

al. [233] extended the filter bank algorithm with regularization techniques
(SBRCSP). They used information from other subjects trials to regularized CSP
features from each filter bank and then employed feature selection algorithm to
extract most discriminative CSP features. Combination of filter bank and
regularization significantly improve performance of CSP technique in small
sample setting. Selim et al. [138] extended CSP approach (CSP/AM-BA-SVM)
by finding the optimal time interval for each subject to extract CSP features.
Furthermore, they used bio-inspired optimization algorithm (bat algorithm) for
feature selection and classifier optimization to boost classification accuracy.
Even though it improved performance of CSP algorithm, it takes a very long
time to optimize the classifier in the calibration phase. Zhang et al. [234],
proposed (TGCSP) a method which simultaneously optimizes filter bands and
time window within CSP to further boost classification accuracy of MI EEG.
Unfortunately, all the approaches discussed above extract CSP features (log
variance) from sample covariance matrices (SCM) into a vector in the Euclidean
space. Furthermore, pattern recognition and dissimilarity metrics between
features are built only for vectors in Euclidean space. Thus, these approaches
fail to notice a very distinctive characteristic of data: their structure
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(geometry), or more specific, the manifold space and the interrelation across the
manifold space [17]. Data treatment based on the concept of manifolds have
been proved to be more effective and adopted in many applications. Barachant
et al. [194], proposed a method named minimum distance to Riemannian mean
(MDRM) that uses geometric properties of the covariance matrix as the EEG
descriptor and adopts the Riemannian distance to discriminate among them.
The Riemannian distance follows congruence invariance [152], meaning it
remains unchanged under linear invertible transformation. MDRM performance
is better than the conventional CSP method, but starts deteriorating as the size
of covariance matrices increase (i.e. large number of EEG channels). Usually,
the dimensionalities of covariance matrices in BCI applications are large in
proportion to the number of trials and therefore, MDRM algorithms encounter
the curse of dimensionality problem [97].
To address this issue, Horev et al. [72] proposed an adaptation of PCA to the
space of SPD matrices, which extends the standard definition from Euclidean to
Riemannian geometries, preserves more data variance and also maps to a
lower-dimensional SPD manifold. Harandi et al. [237] learned mapping that
maximizes the geodesic distances between inter-class samples and
simultaneously minimizes the distances between intra-class samples. This was
done via optimization on Grassmann manifolds. This algorithm tries to preserve
the local structure of the data by preserving the distance to the local means by
considering the geometry of SPD matrices and providing an implicit mapping.
In addition it applies the supervised information for embedding to
lower-dimensional space. Furthermore, Davoudi et al. [97] extended Harandi’s
work, proposed another dimensionality reduction algorithm for the manifold of
SPD matrices which preserves the local structure of data by preserving the
distance to the local mean (DPLM). This algorithm can work in a supervised
(sDPLM) or unsupervised (uDPLM) manner and projects a high-dimensional
SPD manifold to a lower-dimensional one.
From our literature review, we found that CSP is good spatial filtering
algorithm which transforms the sample covariance matrices (SCM) of EEG
trials into lower dimension and promotes the variance between two motor
imagery classes. However, it requires a large number of subject specific
calibration trial sessions. A promising technique for reducing or eliminate these
calibration session is transfer learning (TL) [259]. Transfer learning is a practice
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of using data recorded in one task to increase the performance in another,
related task (for a comprehensive review, see [229]). For transfer learning, there
is a prior assumption that there exists some shared structure between source
and target tasks. The aim is to learn some representation of this structure so in
the future similar tasks can be solved easily.
In the context of BCIs, transfer learning become more important as EEG signals
are non-stationary, and so in a way every trial can be considered as a new task.
The challenge is determining how to transfer some kind of knowledge between
different trials. Looking at the literature, transfer learning can be done in two
general ways. First way is to find some structure in how the decision rules differ
between different sessions or subjects. This is known as rule adaptation based
transfer learning technique. Second way, attempts to find some structure in the
data that is invariant across data sets, this is known as domain adaptation
technique. BCI literature exclusively dominated by domain adaptation based
transfer learning approaches [229]. Many transfer learning approaches are tried
with CSP, largely based on assumption that there exists a set of linear filters
that are invariant across either subjects or sessions. Since covariance matrices
are used in CSP, whereas the target domain does not have enough labeled
samples to reliably estimate them, a direction to incorporate TL into CSP is to
utilize the source domain covariance matrices to obtain regularized covariance
matrix for each class(left/right), which is used to find an invariant subspace on
which to project the data of new subjects [15]. In this chapter, we propose a
method that uses the best of both Euclidean and Riemannian approaches. We
used subject to subject transfer properties of Euclidean approach [227] to obtain
spatial filter under small sample scenario that reduces the dimension of
covariance matrices for Riemannian geometry based classification. We used
Riemannian distance as a pattern recognition metric as it follows congruence
invariance i.e. it is invariant to linear invertible transformation.
The rest of the chapter is organized as follows. In section II, we discuss the
space of the sample covariance matrices (SCM) and the MDRM classification
approach in the Riemannian space. Section III presents our proposed
classification approach (Regularized MDRM). Section IV, describes the dataset
as well as the experiment. In section V, the results of our experiments are
discussed and compared to existing studies. Section VI draws the conclusions
regarding our proposed method.
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4.2 Geometry of SCM matrices

4.2.1 Data Model

Motor imagery BCI systems work in two phases, namely, calibration and
feedback. During calibration, subjects were given visual cues to perform a
motor imagery task. The acquired high-dimensional signal during calibration
phase is then divided into trials based on the cues. These trials are processed
through signal processing techniques [16] to extract features for the training
classifier. This trained classifier is then used in the feedback phase to classify
different motor imagery tasks of the user that are generated randomly by the
user without any cue.
A filtered single EEG trial Xi as shown in Figure 4.1 is a matrix of size N × T

where N is the number of Channels and T the number of sampled time points
which depend on the sampling frequency of the acquisition device. From this
single trial Xi, the normalized sample covariance matrix Ci is calculated as
follows:

Ci = XiX
T
i

tr(XiXT
i ) (4.1)

where tr(.) denotes the trace operator of the matrix, and the superscript T

denotes the transpose of the matrix. Covariance matrices encode
spatial-temporal information of the trial and lie in the symmetric positive
definite (SPD) space.
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Figure 4.1: Framework for MDRM approach

4.2.2 Riemannian Manifold

An n× n square matrix C lies in the symmetric positive definite SPD(n) matrices
space, if {C = CT , uTCu > 0,∀u ∈ Rn, ∀u 6= 0}. Equivalently, SPD matrices
have the following properties:

1. ∀C ∈ SPD(n), eigenvalues are positive i.e. λ(C) > 0

2. ∀C ∈ SPD(n), C−1 ∈ SPD(n) i.e. SPD matrices are invertible

SPD matrices in SPD(n) forms a Riemannian manifold of m = n(n + 1)/2
dimensional. A Riemannian manifoldM is a differentiable manifold in which the
tangent space at each point is a finite-dimensional Euclidean space [71]. That
means, derivatives at a matrix C on manifold lies in a vector space TCM, which
is the tangent space at that point. The tangent space is lying in the space of
symmetric matrices (S(n), ST = S) [71]. A matrix (point) Ci is projected to
tangent space TCM using logarithmic mapping LogC(Ci) as:

Si∈ TCM = LogC(Ci) = C1/2log(C−1/2CiC
−1/2)C1/2 (4.2)

where log(.) is logarithm of SPD matrix and CεM is a reference point where
the tangent plane TCM is mapped . Similarly, exponential mapping ExpC(Si)
is used to project back tangent vector Si from tangent space to manifold . It is
given by:

Ci∈M = ExpC(Si) = C1/2exp(C−1/2SiC
−1/2)C1/2 (4.3)
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where exp(.) is exponential of SPD matrix. Figure 4.2 illustrate Riemannian
Manifold and corresponding local tangent space at C.

Riemannian Distance

Riemannian Distance is defined as a length of shortest (called geodesic for curved
spaces) and unique path connecting two points C1 and C2 in the Riemannian
manifold M. It is given by:

Rd(C1, C2) = ‖log(C−1/2
1 C2C

−1/2
1 )‖F= (

n∑
i=1

log2 λi)1/2 (4.4)

where λi’s are the positive eigenvalues of C
−1/2
1 C2C

−1/2
1 and ‖.‖F is the

Frobenius norm of the matrix. As shown in Equation (4.5), Riemannian
distance (metric) Rd(C1, C2) possesses congruence invariance property [152] that
means Riemannian metric is invariant to any linear invertible transformation.

Rd(ATC1A,A
TC2A) = Rd(C1, C2) (4.5)

where A is an invertible matrix. The Riemannian distance between two matrix
in manifold can be approximated in tangent space by approximating the distance
between projected tangent vectors through a reference point. To obtain a good
approximation of the Riemannian distance, reference point needs to be close to
two points in the manifold. Usually, the mean is the most suitable choice for the
reference point.

The choice of reference point

The reference SPD matrix is free parameter that defines the point in the
manifold M where the tangent plane is computed [71]. The most common
choice of reference matrix Cref is the average of the whole set of covariance
matrices. All the averaging approaches such as arithmetic, geometric, and
harmonic mean estimate the centrality of manifold M [240]. In this thesis, we
used the geometric mean ( also known as Riemannian mean) of SPD matrices
that minimizes the sum of squared Riemannian distances. It is given by:

ΠM(C1, C2, .., CI) = arg min
C∈SPD(n)

I∑
i=1

Rd
2(Ci, C) (4.6)
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Figure 4.2: Illustration of Tangent space of manifoldM at point C.
Tangent vector Si is the projection of Ci. Geodesic curve illustrate
unique and shortest curve connecting Ci and C. The length of
geodesic curve is Riemannian distance between Ci and C.

For a manifold of non-positive sectional curvature like SPD(n), such local
minimum exists and is unique. However, there is no closed-form expression to
compute the mean and optimisation algorithms must be employed. An efficient
iterative algorithm to compute the Riemannian mean of I ≥ 1 SPD matrices.
Chebbi and Moakher [241] provide a detail discourse on the computation of
Riemannian mean.

4.2.3 Minimum Distance to Riemannian Mean (MDRM)

MDRM is a classification technique that utilizes the Riemannian mean of each
class and its Riemannian distance to covariance matrix of the new trial to
anticipate a label for it. The framework of MDRM is shown in Figure 4.1.
During this approach, the Riemannian mean is determined for each class
utilizing its labelled training trials, then the Riemannian distance of each class
is obtained with respect to new trial’s covariance matrix. The class mean, which
is nearest to new trial′s covariance, becomes its label.

pred(Cx) = arg min
ϕ=1,2..C

Rd(Cx, CΠ
ϕ ) (4.7)

where CΠ
ϕ is the Riemannian mean of Class ϕ, Cx is the covariance matrix of
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the new trial and pred(Cx) is the prediction of its class label. Algorithm 1 is the
pseudo code of the MDRM classification [242]. The MDRM approach is not
robust to noise [97], therefore, some filtering over SPD matrices is required.
Barachant et al. [242] suggested Geodesic filtered MDM (FGMDM) approach
which computes set of filters by applying a supervised Fisher geodesic
discriminant analysis (FGDA) to the tangent (Euclidean) space projection of
covariance matrices. The obtained filters are applied through Geodesic filtering
approach [242] over SPD matrices. This filtering operation do not change any
dimension of the SPD matrices. Finally, the filtered SPD matrices are used for
MDRM classification.

Algorithm 1: MDRM classification [242]
Input: Train data set {(Xi, ωi)Mm=1, Xi ∈ RN×T and Class label

ωi ∈ 1, 2}, Test data set {(Xi)Nn=1, Xi ∈ RN×T

Input: Test trial Xi ∈ RN×T

Output: The class label (ϕ∗) for target test data set
1 Compute the normalized sample covariance matrices (SCM) Ci of target

subject training trials by Eq. (4.1)
2 Computer Riemannian mean of class 1 Cπ1= ΠM(Ci) with i|ω = 1
3 Computer Riemannian mean of class 2 Cπ2=ΠM(Ci) with i|ω = 2
4 Compute the sample covariance matrices (SCM) Ctest

i of target subject
test trial by Eq. (4.1)

5 δ = Rd(Ctest
i , Cπ1)−Rd(Ctest

i , Cπ2)
6 if δ ≤ 0 then
7 ϕx = 1;
8 else
9 ϕx = 2;

10 return ϕx

4.3 Methodology

The conceptual framework of our proposed methodology is shown in Figure 4.3
and the high level pseudocode is described in algorithm 2.
A normalized sample covariance matrix (SCM) [243] Ci for a single trial Xi ∈
RN×T can be obtained using equation (4.1) and its size is N × N . The covariance
matrix for each class can be obtain by taking the sum of normalized covariance

88



Chapter 4: Small Sample Motor Imagery Classification Using Regularized
Riemannian geometry Features

Figure 4.3: A block diagram of proposed approach

matrices for M trials that belong to it. It is calculated as follows:

Cϕ =
M∑
m=1

C(ϕ,m) (4.8)

where M is the total trial number of each class, and m is the index of the trial
(m ≤M). ϕ denotes the class index, and we consider only two classes (ϕ ∈ {1, 2})
in this chapter. The generic covariance matrix Ĝϕ for regularization is calculated
using the EEG collected for the other subjects as follows:

Ĝϕ =
M̂∑
m̂=1

C(ϕ,m̂) (4.9)

where M̂ is the number of trials in class ϕ from the other subjects. Based on
generic learning, Ĝϕ reduces the variance in calculating the regularized covariance
matrix. In addition, it provides more stable results [227]. In equation (4.9), Ĝϕ is
calculated using EEG samples from other subjects excluding the target subject.
In equation (4.10), Ĉϕ(β) is calculated using covariance matrices of target subjects
training samples as well as other subjects training samples covariance matrices.

Ĉϕ(β) = (1− β) · Pϕ + β · Ĝϕ

(1− β) ·M + β · M̂
(4.10)
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where β is the first hyper-parameter that controls the variance of the estimated
covariance. As the final regularization process, the regularized covariance matrix
R̂ϕ(β, γ) for each class can be obtained as follows:

R̂ϕ(β, γ) = (1− γ).Ĉϕ(β) + γ

N
tr[Ĉϕ(β)].I (4.11)

where γ is the second hyper-parameter, that reduces bias caused by small samples.
Like CSP, the mixed covariance matrix R̂(β, γ) is calculated using each class
regularized covariance matrix. Then, eigenvalue decomposition is performed as
follows:

R̂(β, γ) = R̂1(β, γ) + R̂2(β, γ) = UΛUT (4.12)

where R̂(β, γ) is symmetric, U is the eigenvector matrix and Λ is the diagonal
matrix with its element arranged in a descending order. The whitening
transformation matrix Q ∈ RN×N is computed using equation (4.13) and
covariance matrices of each class is transformed using equation (4.14)

Q = Λ−1/2UT (4.13)

S0 = QR̂1(β, γ)QT and S1 = QR̂2(β, γ)QT (4.14)

Transformed covariance matrices satisfy

S0 + S1 = I (4.15)

where I ∈ RN×N is an identity matrix. Therefore, eigen-decomposition is
performed as shown in equation (4.16).

S0 = UsD0U
T
s and S1 = Us(I −D0)UT

s (4.16)

Equation (4.16) shows both transformed covariance matrices S0 and S1 share the
same eigenvectors (Us) and associated eigenvalues (D0)) in reverse order [260].
We construct the projection matrix Wp ∈ RN×N using equation (4.17)

Wp = UT
s Q (4.17)

The EEG signal trial is transformed with Wspatial made from the first and last
k columns of Wp corresponding to k largest and smallest eigenvalues of S0(orS1)
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by using equation (4.18)
Zi = WspatialXi (4.18)

where Zi ∈ R2k×T is transformed signal corresponding to Xi.

Algorithm 2: Pseudo-code for proposed methodology
Input: Target subject’s train data set {(Xi, ϕi)M

m=1, Xi ∈ RC×S and ϕi ∈ 0, 1},
Target subject’s test data set {(Xi)N

n=1, Xi ∈ RC×S

Input: Other Subjects Training data {(Xi, $i)M̂
m̂=1}, Regularization coefficients

(0 ≤ β, γ ≤ 1) and parameter k is the no. of pairs spatial filter
Output: The class label (ϕ∗) for target test data set
// Step I: Obtain regularized spatial filters

1 Compute the sample covariance matrices Ci of target subject training trials by Eq.
(4.1)

2 Compute the covariance matrix of each class Pϕ of target subject training trials by
Eq. (4.1) and Eq. (4.8)

3 Compute the generic covariance matrix Ĝϕ of each class from other subject’s training
data according to Eq. (4.1) and Eq. (4.8)

4 Obtain k pairs regularized spatial filter by the following Eq. (4.10), (4.11), (4.12),
(4.14), (4.15), (4.16) and Eq. (4.17)

// Step II: Reduce dimensionality of SCMs
5 Obtain the transformed signal for target subject’s train Ztrainand test Ztest

i ∈ Rk×S}
trials respectively by using Eq. (4.18)

6 Compute the sample covariance matrices (SCM) of transformed target subject’s
training Ctrain

i
and test Ctest

i
trials respectively by Eq. (4.1)

// Step III: Classifying the SPD matrices
7 Obtain FGDA filters using target subject’s training trials SCMs Ctrain

i
and labels ϕi

by Algorithm in [242]
8 Using a Geodesic filtering approach [242], filter target subjects training Strain

i
and

testing trials Stest
i

covariance matrices are obtained.
9 Using Algorithm 1, classify the filtered SPD matrices Stest

i
of target subject’s test

trials.

Sample covariance matrices Ctrain
i of filtered EEG trials Zi from the target’s

training set are calculated using equation (4.1). These SCMs Ctrain
i are used to

obtain FGDA filter for geodesic filtering [242]. After geodesic filtering, filtered
SCMs (STraini and STesti ) for target subject’s training and test trials are
obtained. Finally, filtered SCMs of the target subject’s training set (STraini ) are
used in calculating Riemannian mean CΠRϕ for both motor imagery classes.
These Riemannian means are used for MDRM classification [242] of test trials
STesti .
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4.4 Data and Experiments

In order to evaluate the performance of the proposed algorithm in small sample
setting, we used the EEG data set IVa from BCI competition III. To ensure
the robustness of our method, we evaluated it over two other public benchmark
data sets from BCI competitions with a different number of EEG channels. A
summary of the three datasets is given in Table 4.1.

Table 4.1: Summary of dataset IVa, dataset IIIa and dataset IIa
from BCI competitions (BCIC)

BCI Competition (bcic) Subject Train Test

Dataset IVa ,bcic-III aa 168 112
Channels:118 al 224 56
Sampling Rate: 100 Hz av 84 196

aw 56 224
ay 28 252

Dataset IIIa,bcic-III k3b (45 Trials/task) 90 90
Channels: 60 k6b (30 Trials/task) 60 60
Sampling Rate: 250 Hz l1b (30 Trials/task) 60 60

Dataset IIa, bcic-IV A01 - A09
144 144Channels: 22

(9 Subjects)
Sampling Rate: 250 Hz

Data set IVa, BCI competition III:

This dataset [246] contains an EEG signals recorded using 118 channels from five
healthy subjects (“aa”, “al”, “av”, “aw” and “ay”). This data set contain EEG
signals of binary (right hand and foot) motor imagery tasks from each of the five
subjects. There are a total 280 trials per subject, among which 140 trials belong
to each class. Furthermore, trials are divided into uneven training and testing
sets for each subject as shown in Table 4.1 .

Data set IIIa, BCI competition III:

This dataset [246] comprises of 60 channels EEG signals from three subjects
(“k3b”, “k6b” and “l1b”) who performed multi-class (right hand, left hand, tongue
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and foot) motor imagery (MI) tasks. EEG signals in data set IIIa was sampled at
250 Hz rate with Notchfilter on between frequency 1 and 50 Hz. Subjects “k6b”
and “l1b” have the same number of trials (i.e. 60 trials/MI task) for each MI task
but subject “k3b” has more trials/MI task ( 90 trials/MI task). In this study,
we are using trials only from the left and right hand MI task. The trials from
the left/right hand task are divided equally into training and testing set for each
subject as shown in Table 4.1.

Data set IIa, BCI competition IV

The BCI competition IV dataset IIa [247] comprised of EEG data from nine
subjects, namely (A01 − A09) that perform four types of motor imagery tasks.
From the four classes, we considered only two classes (left and right hand) in this
study. During the tasks, EEG signals are recorded and sampled at the rate of
250 Hz using 22 EEG and 3 EOG channels. Only EEG channels are selected for
this study. All subjects performed two sessions, one for training and the other for
evaluation. The total number of trials per session are 288, with 72 trials per class.
As we are considering a binary problem. Both sessions are therefore comprised
of only 144 trials.

4.4.1 Experimental Setup

This study was carried out using a Windows 10 computer with specification
Intel(R) Core TM i5 − 6500 CPU @3.20 GHz with 8 GB RAM. All the
conventional methods (CSP , R-CSP and MDRM) including the proposed
algorithm, were implemented in Matlab R2018a.
The work comprised of six steps. Firstly, for the dataset mentioned above, we
used a time segment from 0.5 second to 2.5 seconds after the visual cue
instructing subjects for the MI task. Therefore, each trial of data set IVa, data
set IIIa and data set IIa contains 200, 500 and 500 sample points respectively.
Secondly, through fifth order Butterworth bandpass IIR filter each trial of all
datasets is filtered in frequency range 7 − 30Hz [249]. Thirdly, for each subject
three pairs of regularized spatial filters are learnt from the first and last rows
using hyper-parameters β, γ ∈ [0, 0.1, ..., 1] and training data available from
other subjects. In the fourth step, the signal is projected using a learned
regularized spatial filter; this step reduces the dimensionality of the signal. In
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the fifth step, we computed covariance matrices for each trial in the projected
space to obtain FGDA filters and Riemannian mean for each MI class. Lastly,
both training and testing trials covariance matrices were filtered through FGDA
filter and finally the label is assigned to each test trial based on its covariance
matrices minimum distance from the respective Riemannian mean of MI classes.
For CSP, RCSP and MDRM, we used the same time-segment, filter order and
frequency band as described for the proposed method

4.4.2 Evaluation Metrics

To evaluate the performance of proposed method, we used classification accuracy
and kappa coefficient as evaluation metrics. In binary classification case, accuracy
can be calculated as described in Equation (4.19).

Accuracy = a+ b

a+ b+ c+ d
(4.19)

where a is the number of positive samples correctly identified, b is the number of
negative samples correctly identified, c is the number of negative cases incorrectly
identified, and d is the number of positive cases incorrectly identified. Kappa
coefficient compares the accuracy of the system to the accuracy of a random
system. It is defined as

kappa = observeredAccuracy − randomAccuracy
1− randomAccuracy (4.20)

where random accuracy [251] is given by:

randomAccuracy = ( a+ b

a+ b+ c+ d
)∗( a+ c

a+ b+ c+ d
)+( c+ d

a+ b+ c+ d
)∗( b+ d

a+ b+ c+ d
)

(4.21)

4.5 Results and Discussion

We evaluated the performance of the proposed approach (R-MDRM) on the three
datasets, and compared it with conventional CSP, MDM and RCSP methods
result as well as benchmark results reported in literature.
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Table 4.2: Classification accuracy of the proposed approach and
other conventional approaches on dataset IVa, BCI Competition III

Dataset IVa

Subject Csp Rcsp Mdrm r-Mdrm (β, γ)
aa 66.07 66.96 58.03 81.25
al 96.43 96.43 89.28 100
av 47.45 63.27 59.4 76.53
aw 71.88 71.88 61.16 87.05
ay 49.6 84.29 48.41 91.26

Mean 66.28 76.56 63.25 87.21

4.5.1 Dataset IVa, BCI competition III

Table 4.2 shows the classification accuracy of all conventional methods and
proposed method (R-MDRM) on dataset IVa. We have highlighted the highest
accuracy for each subject. Table 4.3 shows regularization hyper-parameters used
in R-MDRM classification for all subjects belonging to different datasets.

Table 4.3: Regularization hyper-parameters β,γ of R-MDRM for all
subjects belonging to different datasets

Dataset IVa Dataset IIIa Dataset IIa

Parameters aa al av aw ay k3b k6b l1b A01 A02 A03 A04 A05 A06 A07 A08 A09
β 1 0 0.8 0 0.1 0.3 0.3 0 0 0 0.4 0.1 0.6 0 0 0.2 0
γ 0.3 0 0.3 0 0.1 0.4 0.9 0 0 0 0 0.2 0.1 0 0 0 0

As shown in Table 4.2, the R-MDRM method improves the mean
classification accuracy by 20.93%, 10.65%, and 23.96% compared to CSP, RCSP
and MDRM methods respectively. In addition, R-MDRM shows the highest
accuracy for all subjects in dataset IVa. As shown in Table 4.2, “al” showed
100% accuracy with parameters β, γ = 0. This makes sense as “al” had
sufficient training data, therefore, shows low dependence on covariance matrices
from other subject’s trials. Interestingly, subject “aw” classification accuracy
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does not improve with covariance matrices from other subjects as shown in
Figure 4.4.

Figure 4.4: Accuracy according to number of trials (M) from other
subjects

Figure 4.4 shows the classification accuracy values of all subjects according to
the number of training trials per class used from other subjects to regularize the
class covariance matrix. Subjects “al” and “aw” have shown low dependence on
other subject’s trials and thus reach their maximum accuracy independent from
value of M as shown in Figure 4.4. In the case of M = 10, our proposed method
achieves the mean accuracy of 80.08% which is higher than all the conventional
methods. ForM = 140 per class, our method achieves a mean accuracy of 83.83%.
At M = 140, subjects “ay” and “av” achieves 72.96% and 84.13% respectively.
With more trials (M > 140) from other subjects, performance of R-MDRM
further improves for subjects “aa”,“ay” and “av”. Subject “av” achieved 75.51%
accuracy with the β = 0.8 and γ = 0.3 whereas subject “ay” achieved 91.26%
classification accuracy with 28 training trials and hyper-parameters β, γ = 0.1.
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Figure 4.5: Accuracy of AA with respect to hyper-parameters β, γ
values

Figure 4.5 shows R-MDRM classification accuracy for subject “aa” according
to different β and γ hyper-parameter values. Subject “aa” achieved the highest
accuracy at β = 1 and γ = 0.3. This shows that using geometrical properties of
covariance matrices, along with subject to subject transfer helps in improving
the performance. With 28 training instances subject “ay” had shown huge
improvement compared to conventional and state of the art methods. so using
t-SNE [261], we have visualized the effect of spatial filters obtained through
transfer learning on covariance matrices of test trials from subject “ay” in
Figure 4.6. Spatially filtering done through filters obtained by transfer learning
maximizes the variance ratio between two MI classes in comparison to ordinary
filter obtained by CSP algorithm and therefore improved the classification
accuracy.
Figure 4.7 shows electrode weights of spatial filters obtained for subject “av”
and “ay”. In general, these plots show that filters obtained through normal CSP
algorithm appears messy, with large weights on various unexpected brain
regions from a neurophysiological point of view. On the contrary, spatial filters
obtained through transfer learning are generally smoother and physiologically
more relevant, with strong weights over the motor cortex areas, as expected
from the literature [262]. This suggests that transfer learning algorithms lead to
filters that are neurophysiologically more plausible and as such more
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interpretable.
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Figure 4.6: Covariance matrices of subject “ay” test trials
(a)without spatial filtering,(b) After spatial filtering done through
CSP filters and (c) After spatial filtering done through filters
obtained by transfer learning, visualize using t-SNE
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Figure 4.7: Electrode weights for filters obtained for different
subjects, (a) and (c) shows electrode weights of filters obtained
though CSP algorithm for subjects “av” and “ay” respectively.
Similarly (b) and (d) shows electrode weights for filters obtained
through transfer learning based CSP algorithm for subjects “av”
and “ay” respectively

As shown in Table 4.2, RCSP has shown good performance in comparison to
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CSP and MDRM in small sample situations. In particular, for subject “av” and
“ay” case where training trials were limited to 84 and 28 instances. For “aa”,
“al” and “aw”, RCSP has shown the same performance as CSP. MDRM was the
worst performing method on dataset IVa, as shown in Table 4.2. The reason
behind this is high dimensional covariance matrices resulting from use of 118
electrodes to record EEG signals. End results is 118 × 118 covariance matrix
per trial for classification.
As shown in Table 4.4, our method outperformed the existing studies in the
literature. Belwafi et al. [252] proposed weighted overlap-add (WOLA)
algorithm for dynamic filtering of EEG-signals under filter bank based
CSP(FBCSP) method. Their results were lower than the proposed approach by
19.92%. Arvaneh et al. [230] implemented “Spatially Sparsed CSP” (SSCSP).
They extracted CSP features by emphasizing more on those brain regions that
had high variances between MI imagery classes. They achieved 73.50%
classification accuracy, which is less than proposed approach by 13.71%. In the
same vein, Lotte and Guan [149] penalized CSP objective function through
prior information of EEG channels to obtain smooth filters for MI classification.
They achieved 78.63% accuracy, which is less than proposed approach by 8.58%.
Selim et al. [253] used LDA classifier over root mean square (RMS) features to
achieve 78.77% accuracy that is 8.44% lower than proposed approach.
Dai et al. [228] also proposed a transfer learning based CSP approach that
learned a domain-invariant kernel by directly matching distributions of source
and target subjects respectively. Like our proposed approach, they also
employed all 118 EEG electrodes to achieve 82.69% classification accuracy,
which is less than our approach by 8.04%. In the same vein, Park and Lee [233]
employed transfer learning through regularizing CSP features obtained through
filter bank by using other subjects training trials. Their results were less than
the proposed approach by 4.52%. She et al. [263] employed CSP approach to
filter raw EEG signals and used Fisher discrimination to obtain sparse coding
coefficients from the filtered data. Theses discriminative coefficients feed to
extreme learning machine (ELM) to achieve 80.68% classification accuracy.
They even increased the hidden layers in ELM and achieve classification
accuracy 79.33%, which less than proposed approach by 7.88%.
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Table 4.4: Classification accuracy of the proposed approach and
existing Euclidean approaches on dataset IVa, BCIC III

Studies Methods Year aa al av aw ay Mean

Belwafi et al. [252] Wola-Csp 2018 66.07 96.07 52.14 71.43 50 67.29
Arvaneh et al. [230] Sscsp 2011 72.32 96.42 54.10 70.53 73.41 73.50
Lotte and Guan [149] Srcsp 2010 72.32 96.43 60.20 77.68 86.51 78.63
Selim et al. [253] Rms/Lda 2016 69.64 89.29 59.18 88.84 86.90 78.77
Dai et al. [228] Tkcsp 2018 68.10 93.88 68.47 88.40 74.93 79.17
She et al. [263] H-ELM 2018 63.39 98.39 64.08 85.67 85.16 79.33
She et al. [263] FDDL-ELM 2018 61.70 100 73.88 88.17 79.64 80.68
Park and Lee [233] Sbrcsp 2017 86.61 98.21 63.78 89.05 73.81 82.69
Park and Chung [231] Sss-Csp 2018 74.11 100 67.78 90.07 89.29 84.46
Selim et al. [138] Am-Ba-Svm 2018 86.61 100 66.84 90.63 80.95 85.00
Singh et al. [150] Sr-Mdrm 2019 79.46 100 73.46 89.28 88.49 86.13
Park et al. [155] Fbrcsp 2018 91.07 94.64 75 76.78 93.65 86.23
Proposed Method R-Mdrm 81.25 100 76.53 87.05 91.26 87.21

Park and Chung [231] extracted CSP features under small sample scenario
by using set of local channels region. They selected useful CSP features from
the local channel region by using eigenvalue disparity score in conjunction with
support vector machine (SVM) to classify selected local channel features. They
obtained 84.46% accuracy, which is less than the proposed approach by 2.75%.
Selim et al. [138] extracted CSP features through subject specific time interval
and used hybrid bio-inspired (bat) algorithms for feature selection and classifier
optimization. They obtained 85% classification accuracy, which is less than the
proposed approach by 2.21% . Even though it obtains good accuracy, this
approach requires classifier optimization that takes a very long time. Singh et
al. [150] used spatially regularized filter to reduce dimensionality of covariance
matrices and employed Riemannian distance as pattern recognition metric to
obtain 86.13% which is slightly (1.08%) less than our proposed approach. Park
et al. [155] extracted regularized CSP features from filter bank then selected
useful features based on mutual information for ensemble based classification.
They obtained 86.23% classification accuracy, which is less than the proposed
approach by is 0.98% .
Lastly, we compared our method with the existing Riemannian manifold based

method used for small sample setting in literature. Table 4.5 shows that our
method gave the highest kappa values for all the subjects except “aa” and “av”,
where supervised dimensionality reduction technique (sDPLM) [97] and
spatially regularized MDRM shows better performance respectively. As data set
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Table 4.5: The performance of proposed approach and existing
Riemannian geometry based approaches on Dataset IVa of BCI
Competition III in terms of kappa values

Studies aa al av aw ay Mean

Barachant et al. [194]-Mdrm 0.22 0.86 0.25 0.13 0 0.29
Harandi et al. [237]Mdrm 0.23 1.00 0.40 0.53 0.82 0.59
Horev et al [72] Mdrm 0.62 0.96 0.42 0.68 0.60 0.65
Davoudi et al. [97]-uDplm 0.57 1.00 0.39 0.64 0.72 0.66
Davoudi et al. [97]-sDplm 0.63 1.00 0.46 0.66 0.78 0.70
Singh et al. [150] sr-Mdrm 0.58 1 0.47 0.79 0.77 0.72
r-Mdrm 0.62 1 0.53 0.74 0.82 0.74

Table 4.6: Classification accuracy of the proposed approach and
other conventional approaches on dataset IIIa, BCIC III

Dataset IIIa

Subject Csp Rcsp Mdrm r-Mdrm
k3b 95.56 98.89 96.66 97.78
k6b 61.67 45 60 75
l1b 93.33 93.33 88.33 100

Mean 83.52 79.07 81.66 90.93

IVa represents a small sample setting, results obtained on it signifies that
R-MDRM is suitable for small sample scenarios.

4.5.2 Dataset IIIa, BCI competition III

Dataset IIIa is also good test environment for proposed approach as it also have
limited training samples and high EEG signals dimensionality. Table 4.6 reports
the results of conventional methods and proposed method on dataset IIIa. On an
average, R-MDRM has outperformed the CSP, RCSP and MDRM methods by
6.85%, 11.3%, and 8.71% respectively. Our proposed method achieved the highest
accuracy for subject “k6b” and “l1b”. Subject “l1b” achieves 100% accuracy with
regularization hyper-parameters β,γ = 0. When β,γ hyper-parameters are zero,
it indicates that corresponding filter is obtained using normal CSP method (no
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regularization), thus shown low dependence on other subjects. Subject “k6b”
shows huge improvement compared to conventional methods as shown in Table
4.6. Therefore, we obtained the scalp plot of subject “k6b” to visualize the effect
of transfer learning on filter quality. As shown in figure 4.8 filter obtained through
transfer learning based algorithm have strong weights over the motor cortex areas
in contrast to filter obtained through normal CSP.
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Figure 4.8: Electrode weights for filters obtained for subjects “k6b”,
(a) shows electrode weights of filter obtained though CSP algorithm
and (b) shows electrode weights for filter obtained through transfer
learning based CSP algorithm

Table 4.7 presents the classification accuracy of our proposed approach in
comparison with other existing state of the art methods in the literature.Our
approach outperformed other subjects in case of subjects “k6b” and “l1b”. Subject
“k6b” shown better performance under optimized filter band and time window
as discussed in paper [234].

Table 4.7: Classification accuracy of the proposed approach and
existing approaches on dataset IIIa, BCIC III

Studies Methods Year k3b k6b l1b Mean

r-Mdrm 97.78 75 100 90.93
Zhang et al. [234] Tgcsp 2018 99.2 67.2 96.5 87.63
She et al. [263] Fddl-elm 2018 97.78 68.00 96.83 87.54
She et al. [263] H-elm 2018 98.56 60.00 98.33 85.63
Belwafi et al. [252] Wola-Csp 2018 97.77 61.66 93.33 84.25
Horev et al. [72] Mdrm 2017 95.56 68.33 85 82.96
Lotte and Guan [14] Srcsp 2011 96.67 53.33 93.33 81.11
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Table 4.8: Classification accuracy of the proposed approach and
other conventional approaches on dataset IIa, BCIC IV

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

Csp 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 78.01
Rcsp 86.11 60.42 93.75 56.94 49.31 65.28 81.25 93.75 88.19 75
Mdrm 91.61 57.03 90.21 73.61 73.94 68.31 75 95.14 90.21 79.45
r-Mdrm 91.61 63.28 97.02 72.91 64.08 69.71 81.25 96.52 92.30 80.98

Table 4.9: Classification accuracy of the proposed approach and
existing methods in literature on dataset IIa, BCIC IV

Studies Methods Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

Proposed Approach r-mdrm 91.61 63.28 97.20 72.91 64.08 69.71 81.25 96.52 92.30 80.98
Gaur et al. [254] ss-memdbf 2018 91.49 60.56 94.16 76.72 58.52 68.52 78.57 97.01 93.85 79.93
Belwafi et al. [252] Wola-csp 2018 86.81 63.19 94.44 68.75 56.25 69.44 78.47 97.91 93.75 78.85
Lotte and Guan [149] srcsp 2011 88.89 63.19 96.53 66.67 63.19 63.89 78.47 95.83 92.36 78.78
Wang et al. [49] AX-LSTM 2018 75.12 71.38 72.24 72.92 82.62 69.64 88.98 80.28 75.07 76.47
Raza et al. [255] tlcsd1 2016 90.28 54.17 93.75 64.58 57.64 65.28 62.5 90.97 85.42 73.84
Raza et al. [255] tlcsd2 2016 90.28 57.64 95.14 65.97 61.11 65.28 61.11 91.67 86.11 74.92
Lu et al. [264] [49] fdbn 2017 71.08 55.56 76.87 65.62 69.08 64.98 71.68 92.37 83.38 72.18

4.5.3 Dataset IIa, BCI competition IV

Dataset IIa has sufficient training trails per subjects and EEG signals are low
dimensional (22 channels) as shown in Table 4.1. It is a good test environment
to check for the robustness of our proposed approach under low dimensional and
sufficient training samples. Table 4.8 presents the results of standard methods
and R-MDRM on dataset IIa. R-MDRM improved average classification
accuracy by 2.97%, 5.98%, and 1.53% in comparison with CSP, RCSP and
MDRM respectively. As all subjects have sufficient data therefore most of them
(“A01”, “A02”, “A06”, “A07” and “A09”) have shown no dependence on other
subjects covariance matrices as shown by regularization hyper-parameters in
Table 4.3. Similarly, due to sufficient training samples, subjects “A03” and
“A08” shown no dependence on parameter γ that reduces bias in small sample
situation as γ = 0 according to Table 4.3. R-MDRM achieved highest accuracy
for subjects “A02”, “A03”, “A07” and “A08” as shown in Table 4.8. MDRM
performs better than CSP and RCSP in dataset IIa due to low dimensional
EEG signal. For subjects “A01”, “A04” and “A05” MDRM outperforms all the
methods as shown in Table 4.8. Table 4.9 reports the comparison of R-MDRM
with existing methods in literature on dataset IIa under binary classification
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(left/right). In case of 4 subjects R-MDRM performed better compared to other
methods as shown in Table 4.9 where as for subjects “A04”, “A08” and “A09”,
Gaur et al. [254] method outperforms R-MDRM by 3.25%, 0.49% and 1.55%
respectively. Similar to our method, the subject specific multivariate empirical
mode decomposition (SS-MEMD) [254] uses Riemannian geometry to classify
features obtained through Euclidean method. subject ”A05” and ”A07”
performance increase under the deep learning method proposed by Wang et

al. [49].

4.6 Conclusion

In this chapter, we proposed a Symmetric positive definite (SPD) matrices
based motor imagery classification method that not only is suitable for small
sample setting, but also reduces the dimensionality of SPD matrices. This
method incorporates inter and intra-subject variabilities through generic
learning based regularization technique to obtain spatial filter. This spatial
filter is used to maximize the variance ratio between two motor imagery task in
small sample setting. The proposed method takes advantage of geometrical
properties of covariance matrices in Riemannian Manifold to improve
classification accuracy. We compared our method with conventional method
and existing studies over all three datasets from BCI competition. Our method
outperforms the conventional methods and other methods in literature in small
sample setting. Moreover, R-MDRM has shown better performance on other
datasets in comparison with existing state of the art.
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Statistical Testing and Discussion

Quick Summary

In the BCI pipeline, the calibration time is decreased by reducing the number
of training trials for each subject. In this chapter we investigate the impact
of limiting the training trials for each subject on the classification accuracy. In
order to do so, a classical offline training-test framework is used where a bootstrap
technique systematically reduces the number of trials, and we check our proposed
pipeline performance with respect to the standard BCI pipeline. Moreover, we
statistically verify our results and discuss the reasoning behind the performance
of our proposed methods.
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5.1 Introduction

All the manifold based pipelines discussed so far are designed with the goal of
reducing the calibration time required by motor imagery (MI) based
brain-computer interfaces (BCIs). We can gain meaningful insights into the
performance of the proposed pipelines by systematically reducing training trials
for each subject. In order to do so, we used classical offline train-test settings
with bootstrap sampling (to choose training and test samples) rather than to
assess the ability of the proposed methods in limited training trials.
The rest of the chapter is organized as follows. In Section II, we present our
experiment methodology for reducing calibration settings. Section III, the
results of the experiment are discussed and compared to existing state-of-the-art
Riemannian methods. Section IV draws the conclusions.

5.2 Methodology

In order to evaluate the performance of the proposed algorithm in reduced
calibration setting, we used bootstrap sampling technique. The bootstrap offers
an easy and effective way to estimate the distribution of a statistic via
simulation, by drawing (or generating) new samples from an existing sample
with replacement.
Using the bootstrap, we can estimate accuracy with training trials
10, 20, 30, ...80 and compute the standard error of the mean accuracy and
confidence intervals. In a nutshell, the bootstrap procedure can be described as
follows:

1. Draw a sample training trials with replacements from a subject’s EEG trials.

2. Compute the accuracy from the test trials based on a machine learning
model trained on drawn sample training trials.

3. Repeat steps 1-2 for 20 times, for each training size in 10, 20, 30, ...80

4. Compute the standard deviation (standard error of the mean accuracy of
the statistic)

In simple terms, we can interpret the bootstrap by means of drawing a potentially
endless number of (new) samples from a population by re-sampling the original
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dataset. This would have provided a more suitable framework to evaluate the
superiority of the proposed methods as compared to the existing manifold method
for all the subjects.

5.3 Results and Discussion

In order to evaluate the performance under reduced calibration settings, two
proposed pipelines are tested on three publicly available databases comprising
five, three and nine subjects, respectively, for a total of 17 subjects. All three
public datasets are recorded on a different number of EEG channels (118, 60 and
22 respectively).
In the previous chapters, hyper-parameters have been optimized through a grid
search for each subject that led to an increase in performance. In this chapter,
the hyper-parameters are fixed for all the subjects in the different datasets. In
the proposed sr-MDRM pipeline, we have used r hyper-parameter equal to 0.08
that defines the size of the neighborhood considered for smoothing filter and
α equal to 10−1 that defines the level of spatial smoothness the filters should
reach. Similarly, for the proposed r-MDRM pipeline, we have used γ equals to
0.2 and β equal to 0.3, respectively. Here γ hyper-parameter shrinks the initial
covariance matrix estimate towards the identity matrix to counteract a possible
estimation bias due to a small training set. β shrinks the initial covariance matrix
estimate towards a generic covariance matrix (defined in equation 4.9), to obtain
a more stable estimate. This matrix is typically built by using signals from several
subjects whose EEG data has been recorded previously.
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(a) Subject AA (b) Subject AL

(c) Subject AV (d) Subject AW

(e) Subject AY (f) Average of all Subjects

Figure 5.1: Average classification accuracies according to the
number of training data available for the target subject.
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5.3.1 Data set IVa, BCI competition III

I have compared the performances obtained by our proposed pipelines with the
MDRM pipeline for dataset IVa in the Figure 5.1. On the data set used, my
results suggested that proposed pipelines improve the accuracy of the BCI,
especially when the amount of training data for the target subject is small.
Interestingly for all training trials (except subject “AL”), MDRM average
classification is below 70 percent which gives the false impression of BCI
illiteracy in subjects [29, 165, 166]. This is because dataset IVa is recorded with
118 electrodes that result in a high-dimension covariance matrices (118 × 118).
High-dimensional SPD matrices are ill-conditioned with respect to inversion,
jeopardizing the numerical stability of all Riemannian geometry manipulations,
which are based on spectral functions of the eigenvalues such as the logarithm,
inverse, etc. [6, 19].
As shown in Figure 5.1 (f), the proposed pipeline’s average classification
accuracy for all subjects is greater than or equal to 75 percent. This is because
the spatial filters in the proposed pipelines reduces the dimension of the
covariance matrices that lead to the numerical stability of all Riemannian
geometry manipulations in the pipeline. At the same time, spatial filters
maximizes the variance ratio between the two MI classes, which also results in a
better performance of the manifold-based classification model.
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(a) Subject AA (b) Subject AL (c) Subject AV

(d) Subject AW (e) Subject AY

Figure 5.2: Box-plot of all the subjects at 20 training trials in
dataset IVa.

Mean classification accuracies in Figure 5.1 can sometimes be misleading
because of outliers, therefore we have plotted a box-plot of classification
accuracies obtained through different BCI pipelines using only 20 training trials
in Figure 5.2. In this study, our focus was on using 20 trials (i.e. 10 trials per
class) to achieve good performance because it will take only approximately 2.5
minutes training time ( as the Graz protocol based single training trial takes
eight seconds) compared to Blankertz et al., who suggested that 80 trials (i.e.
approx. 11 minutes ) are necessary to obtain a reasonable BCI
performance [12]. In the box-plot shown in Figure 5.2, the middle red line
indicates median classification accuracy and the box indicates the 25th to 75th

percentile of classification accuracies of different BCI pipelines. Figure 5.2
shows that our proposed pipelines’ median performance is consistently higher
than the state of the art method (MDRM) for all the subjects in dataset IVa. In
addition, a paired t-test gives very strong evidence (pvalue << 0.001) that the
average classification accuracy (over all subjects and all values of training trials)
obtained by both of our proposed BCI pipelines was statistically higher
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Figure 5.3: Average classification accuracies according to the
number of training data available for the target subject.

than the standard MDRM pipeline. However, the difference is not statistically
significant between the r-MDRM and the sr-MDRM pipelines (with p = 0.0120)
at 1% significance level. We have chosen 1% significance value (critical value
equals to 0.01) as it reduces the chance of a false positive, but it also makes it
more difficult to reject the null hypothesis. Therefore, with a critical value of
0.01, the results are more trustworthy.

111



Chapter 5: Statistical Testing and Discussion

MDRM

Pro
posed sr-M

DRM

Pro
posed r-

MDRM

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

%
)

MDRM

Pro
posed sr-M

DRM

Pro
posed r-

MDRM

40

45

50

55

60

65

70

75

A
c
c
u

ra
c
y
 (

%
)

MDRM

Pro
posed sr-M

DRM

Pro
posed r-

MDRM

55

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y
 (

%
)

(a) Subject k3b (b) Subject k6b (c) Subject L1b

Figure 5.4: Box-plot of all the subjects at 20 training trials in
dataset IIIa.

5.3.2 Dataset IIIa, BCI competition III

Dataset IIIa is recorded with 60 electrodes thus the covariance matrices
obtained are of large size (60 × 60). Under a small training set, an MDRM
pipeline encounters the curse of the dimensionality problem, as the size of
covariance matrices are larger than the number of trials [17]. This is evident in
Figure 5.3 which shows that standard MDRM pipeline records lower
performance at training size 10, 20 and 30. Subject “K6b”’s average accuracy is
very poor with all the pipelines but with our proposed pipelines the average
accuracy increased a little bit in comparison with standard MDRM pipeline.
Once we reached 50 training trials, we were able to achieve reasonable average
accuracy. In addition to this, Figure 5.4 shows that the median accuracy of
subject K6b at 20 training set is above 60 percent, where as standard MDRM
pipeline median accuracy lies close to 55 percent. Similarly for subject L1b
median accuracy for the MDRM pipeline is below 65 whereas proposed
pipelines were able to achieve a median accuracy of 83 and 90.
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Figure 5.5: Average classification accuracies according to the
number of training data available for the target subject.

The performance difference between the MDRM pipeline and the proposed
BCI pipelines is statistically (p << 0.001) higher over all subjects and all
training set values. Figure 5.6(a) shows that the average performance of the
proposed pipelines is higher for all subjects at different training sizes.
Interestingly, the average performance difference between r-MDRM and
sr-MDRM is statistically significant (p < 0.001) over all subjects at different
training trials. This performance difference is hard to explain as each subject’s
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external (subject’s muscle movements, recording condition and machine-related
causes) and internal (like fatigue, concentration and stress) state causes the BCI
pipelines to respond differently.
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Figure 5.6: Average accuracies of all subjects in Dataset IIIa and
Dataset IIa, respectively.
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Figure 5.7: Box-plot of all the subjects at 20 training trials in
Dataset IIa.

5.3.3 Dataset IIa, BCI competition IV

Dataset IIIa was recorded with 22 electrodes, thus covariance matrices obtained
are comparatively small size (22× 22). Therefore, the standard MDRM pipeline
was able to perform better for subjects who were able to generate a distinguishable
MI pattern for left/right MI task. Figure 5.5 shows average performance of all
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the subjects under different training sizes. Figure 5.7 shows box plot of obtained
accuracies at 20 training trials. From both plots, we can conclude that our
proposed pipelines perform better than standard MDRM pipelines for all the
subjects. This was also statistically verified using paired t-test. The paired
t-test gave strong evidence that both proposed pipelines average accuracy over
all subjects and training sizes is statistically higher then the MDRM pipeline. The
difference in performance of r-MDRM and sr-MDRM pipeline is not significant
at the 1% (pvalue = 0.0972) level. Figure 5.6(b) shows average performance of
all subjects at different training sizes. Some subjects (such as 2, 5, 6 and 7
respectively) were not able to achieve good performance even at 80 training trials
and can be termed as BCI illiterate.
In addition, we compared the average training time of all three pipelines at 20
trials in Figure 5.8. For dataset IVa , the MDRM pipeline takes an average
time of 12 seconds to train a Riemannian geometry based classifier, whereas
both proposed pipelines takes less than 0.05 seconds. Similarly with Dataset
IIIa, MDRM takes an average time of around 0.4 seconds, whereas sr-MDRM
and r-MDRM takes less than 0.07 seconds. This is because computation of a
Riemannian distance involves a matrix inversion and a matrix diagonalization
operations whose computational time dramatically increases with the number of
electrodes. The r-MDRM pipeline takes more time than sr-MDRM because it
uses other subjects’ trials to obtain generic covaranice matrices per class for the
target subject.
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Figure 5.8: Average time in training algorithm on Single Subject in
different datasets

5.4 Conclusion

The motivation of our thesis was to reduce calibration time as much as possible
without losing performance. In this chapter we validated our approach in an
offline training-test setting by using a bootstrap sampling technique to
systematically reduce training size. The main finding of this chapter suggested
that applying the proposed pipelines leads to reduction in the calibration time
and enhances the average classification accuracy of the MI-BCI-based systems.
This gain in performance is more evident when EEG signals are recorded with a
large number of electrodes. From a theoretical point of view, this make sense, as
under high spatial and temporal resolution there is a high probability of
noticing cognitive changes. But due to the curse of dimensionality, the standard
MDRM pipeline failed to obtained good performance under small training sets.
Our proposed pipelines were able to mitigate the issue of the numerical stability
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of Riemannian geometry manipulations by reducing the size of covariance
matrices with the use of spatial filters. This can be seen in results from Figure
5.1(g) and Figure 5.6) shows average accuracy of all subjects with proposed
pipelines in comparison to standard pipeline. It can be seen at 20 trials
reasonable performance is achieved i.e. shows approximately 77 percent drop in
calibration time in comparison to 80 trials but at the cost of 9.6% drop in
average accuracy for dataset IVa, 6.09% drop in average accuracy for dataset
IIIa and 6.94% drop in average accuracy for dataset IIa for sr-MDRM pipeline.
Similarly, r-MDRM average accuracy drop 6.02% for dataset IVa, 7.05% for
dataset IIIa and 3.5% drop in dataset IIa. At the same time, both proposed
pipelines perform better than Standard pipeline trained with 80 trials.
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Conclusion and Future Work

The work presented in this thesis aims to make BCI more reliable as a daily use
system. Thus, our focus has been on developing novel approaches to reduce the
calibration time of BCI with minimum accuracy loss. To achieve this objective
two main challenges needed to be addressed based on the available training data
from the current user and previous sessions or users. First, reducing intra-session
non stationarity. Second, inter-subjects/sessions non-satationarity.

6.1 Conclusion

Through this thesis, we did a comprehensive review that equipped us with
knowledge to propose two novel approaches to address the challenging issues
and improve the usability of BCI. In Chapter 2, we provided a comprehensive
overview of motor imagery-based BCIs in all relevant aspects. More precisely,
the review is divided into two parts. In the first part, we discuss the various
components of the MI-BCI system including data acquisition techniques, signal
preprocessing techniques, feature extraction techniques, classification
techniques, and finally performance evaluation metrics for BCIs or user
performance. The second part of the study addresses current bottlenecks in the
MI-BCI system and focuses on reducing the calibration time specific to the two
main challenges.
In our literature review, we found that there are many research papers on
feature extraction methods based on spatial filtering and source separation.
These methods aim to decompose the sensor measurement into noise and EEG
signals [265]. This clean EEG signal part is used for feature extraction and
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classification. Mathematically, any linear spatial filtering is y(t) = Bx(t) where
x(t) is an N-dimensional EEG measurement vector and the spatial filter is
matrix B of size P × N with 0 < P ≤ N , realizing linear combinations of
samples x(t). Usually P is chosen smaller than the number of electrodes N ,
wherein the discarded N − P components explain EEG energy not related to
the task, i.e. the noise suppressed by the filter. While EEG scalp measurements
are approximated by a linear mixture of brain dipolar sources i.e. x(t) = As(t)
where s(t) is a vector holding the unknown source processes and A is the mixing
matrix, assumed here invertible, with its left-inverse B named the demixing
matrix.
Riemannian geometry gives an effective way to manipulate data points in the
sensor space equivalent to source space of the same dimension. Mathematically,
let Si and Sj be the covariance matrix of the unknown source process for any
two trials. Let two corresponding sensor covariance matrices be Ci = ASiA

T

and Cj = ASjA
T . Because of the congruence invariance property of the

Riemannian distance if P = N then the Riemannian distance between Si and Sj
is equivalent Ci and Cj. From a classification point of view, linear
transformation does not impact the Riemannian distance between covariance
matrices thus conserve a relatively good accuracy. High-dimensional covariance
matrices (N > 32) are ill conditioned with respect to inversion, jeopardizing the
numerical stability of all Riemannian geometry manipulations, which are based
on spectral functions of the eigenvalues such as the logarithm, inverse,
etc. [6, 19]. If we take P < N , meaning that we estimate fewer components than
available sensors, we can still find a projection in a source sub-space enhancing
the separation of the classes, that is, we can still improve the classification
achieved by the MDRM as applied in the sensor space [6].
Equipped with this knowledge in Chapters 3 and 4, we adapted a CSP spatial
filter in a preprocessing step before the Riemannian geometry based
classification. CSP filter (F ) is obtained by solving generalized eigenvector
eigenvalue decomposition. Matrix (F ) containing the first P/2 vectors explains
the maximum of the variance of class A and the minimum of class B, while the
last P/2 vectors explains the maximum of the variance of class B and the
minimum of class A. Each associated eigenvector in matrix (F ) projects the
data covariance in a mono-dimensional space where the ratio of the variance in
the two classes is maximized. That means CSP transformation not just
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suppresses noise but also maximizes the ratio of the variance between two
classes. Thus, the computation of the Riemannian distance between two filtered
covariance matrices (P < N) takes less time, and also provides more noise
suppression, making MDRM more robust, which increases the accuracy of the
BCI system. In Chapter 3, we have addressed the intra-subject challenge by
incorporating a CSP spatial filter [250] that is regularized by using apriori
information about electrodes which are most likely to be useful in MI activity.
MDRM classification is then applied on filtered covariance matrices. In the
same vein, in Chapter 4, we have adapted a CSP filter version that uses
common information across different subjects or sessions trials to obtain an
optimal spatial filter for the target subject under a small sample setting to
reduce the dimension of covariance matrices for classification. In both chapters,
hyper-parameters of CSP filters were optimized using grid-search. This increases
the computational cost but reduces the mental load as a limited number of trials
were utilized. Lastly, in the Chapter 5 the proposed approaches were evaluated
under reduced calibration settings. In order to do this, we utilized classical
offline training-test framework where a bootstrap technique was systematically
used to reduce the number of trials and check our proposed pipelines. Results
from Chapter 5 suggested that with N small enough (< 32) the difference in
accuracy obtained by the proposed pipelines and MDRM is very small, where as
for large N , the proposed approaches proves superior because more and more
irrelevant components are ignored by the CSP (P << N). Through our work,
we exploited the advantages of both Euclidean and Riemannian approaches.
The proposed pipelines were able to reduce calibration time 77 percent but at
the cost of drop of accuracy in comparison to proposed pipelines when trained
with 80 trials. At the same time, average classification accuracy proposed
pipelines trained with 20 trials is better then standard MDRM pipeline
calibrated with 80 trials. In summary, using the proposed algorithms we
addressed the mentioned challenging issues, and consequently we achieved our
objective to make BCI systems more robust with less calibration time.

6.2 Limitations and directions of future Work

The work presented in this thesis can potentially be extended to address the
limitations we faced as well as some other challenges in BCI, or even other areas.
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Some of these future extensions are listed below

• In this thesis, the results are obtained with an offline analysis. Although the
results are promising and the analysis holds, it is recommended to perform
an online evaluation of the proposed pipelines to verify the reliability of
the results in real-time scenarios. For example, in the online evaluation, we
need to explore methods (e.g. Riemannian potato [266], etc.) to reject bad
trials before training the model and predicting the label of the new trial.

• The effectiveness of the proposed pipeline in Chapter 5 can be further
improved by exploring new methods to measure the similarity between the
previous subjects/sessions data and the few trials from the new subject.

• The proposed algorithms rely on different pre-processing methods. Thus,
the classification results might be further improved, especially for subjects
with poor BCI performance, by combining these algorithms and
frameworks in a complementary way. Accordingly, different
complementary combinations need to be explored in order to design a
more accurate and effective BCI with minimum calibration time.

• This way higher accuracy may be obtained, however we need to estimate
a spatial filter specific to the available training data, losing generalization
power. Also, the Riemannian distance and mean are robust with respect to
the noise if we do not filter the data whenever N is small.

In addition to the above-mentioned future works, the following long-term
extensions might be of interest.

• In general, zero calibration is the ideal situation for a real-time BCI system
that may be utilised for tasks that are part of daily life. A BCI user’s
learning process may be adversely effected by too frequent recalibrations,
as well as leave the user perplexed about the received feedback. Therefore,
recalibration needs to be done extremely carefully to avoid confusing the
BCI user. To further enhance the BCI user learning process, research should
be done at the human level to develop more advanced and effective user
training methodologies. Future research in the BCI community would be
highly interesting and important if it involved modelling human learning
with signal processing and machine learning and utilising those models to
determine when recalibration is required.
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• It would be a worthwhile to extend our proposed pipelines to include
additional neurophysiological signals beyond motor imagery. Applying
and generalising the proposed algorithms to additional domains that are
impacted by noise and non-stationary data is very desirable in addition to
minimising the calibration time and enhancing the accuracy and
robustness of BCI.

• The discussions and analysis of the proposed pipelines in this study were
limited to two classes of motor imagery tasks. It would be ideal to develop
pipelines (algorithms) that can accurately classify more types of motor
imagery tasks (classes). More accurate identification of motor imagery
tasks translates to more commands issued by the BCI user to a
communication device. In the future, it will be necessary to evaluate EEG
signals from multi-class motor imagery tasks either by extending our
proposed pipelines to multi-class paradigms or by developing new
algorithms in order to increase the performance of multi-class BCIs with
minimum calibration time.
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[102] A. Schlögl, J. Kronegg, J. Huggins, and S. Mason, “Evaluation criteria for
bci research,” Toward Brain-Computer Interfacing, 01 2007.

[103] J. R. Wolpaw, H. Ramoser, D. J. McFarland, and G. Pfurtscheller,
“Eeg-based communication: improved accuracy by response verification,”
IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 3, pp.
326–333, Sep. 1998.

[104] T. Nykopp, “Statistical Modelling Issues for The Adaptive Brain Interface,”
Ph.D. dissertation, Helsinki University of Technology, 2001.

[105] F. Lotte and C. Jeunet, “Defining and quantifying users’ mental
imagery-based BCI skills: a first step,” Journal of Neural Engineering,
vol. 15, no. 4, p. 046030, jun 2018. [Online]. Available: https:
//doi.org/10.1088\%2F1741-2552\%2Faac577



References.
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