The disjunctivities of ω-languages

Yow Tzong Yeh I.I.M.S., Massey University Albany Campus, Auckland, N.Z. y.t.yeh@massey.ac.nz

Abstract

An ω -language over a finite alphabet X is a set of infinite sequences of letters of X. Consider congruences I_L and $P_{\omega, L}$ on X* and a congruence O_L on X^{ω} introduced by an ω -language L. I_L , $P_{\omega, L}$, and O_L are called the infinitary syntactic-congruence, the principal congruence and the ω -syntactic congruence of L, respectively. If I_L ($P_{\omega, L}$, O_L) is the equality then L is called an I-disjunctive (P-disjunctive, O-disjunctive, respectively) ω language. Properties concerning such ω -languages are explored and relations between these ω -languages are also studied.

The disjunctivity concerning the infinitary syntactic-congruence IL

Given an ω -language L, by the infinitary syntactic-congruence I_L of L we mean the relation I_L on X* given by $u \equiv v(I_L) \Leftrightarrow \forall x, y \in X^*$, $x(uy)^{\omega} \in L$ iff $x(vy)^{\omega} \in L$. If I_L is the equality then L is called I-disjunctive. Every I-discrete I-dense ω -language is I-disjunctive. An ω -language is I-dense iff it contains an I-disjunctive language. A periodically generated ω -language L is I-dense iff L can be expressed as a disjoint union of infinitely many I-disjunctive ω -languages.

The disjunctivity concerning the principal congruence $P_{\omega,L}$

Given an ω -language L, by the principal congruence $P_{\omega, L}$ of L we mean the relation $P_{\omega, L}$ on X* given by $u \equiv v$ $(P_{\omega, L}) \Leftrightarrow \forall x \in X^*$ and $\alpha \in X^{\omega}$, $xu\alpha \in L$ iff $xv\alpha \in L$. If $P_{\omega, L}$ is the equality then L is called Pdisjunctive. Every P-discrete P-dense ω -language is P-disjunctive. A P-discrete ω -language is P-disjunctive iff the set of all its finite subwords is X*.

The disjunctivity concerning the ω -syntactic congruence OL

Given an ω -language L, by the ω -syntactic congruence O_L of L we mean the relation O_L on X^{ω} given by $\alpha \equiv \beta$ (O_L) $\Leftrightarrow \forall x \in X^*, x\alpha \in L$ iff $x\beta \in L$. If O_L is the equality then L is called O-disjunctive. If S is a left singular language then SL is O-disjunctive for any O-disjunctive ω -language L. If P is a finite prefix code then L is an O-disjunctive ω -language iff PL is O-disjunctive.

Families of Disjunctive ω -languages

Every I-closed I-disjunctive ω -language is P-disjunctive while not every P-disjunctive ω -language is I-disjunctive. Every O-disjunctive ω -language is P-disjunctive while not every P-disjunctive ω -language is O-disjunctive. Every O-disjunctive ω -language is I-disjunctive while not every I-disjunctive ω -language is O-disjunctive. Every P-disjunctive ω -language is P-dense

References

C. Calude and S. S. Yu, Language-theoretic complexity of disjunctive sequences, Discrete Applied Math., 80 (1997), 203-209.

S. W. Jiang, H. J. Shyr and S. S. Yu, Completely disjunctive languages, Periodica Polytechnica Transportation Engineering, Proceedings of the 2n^d International Mathematical Mini Conference, Budapest 1988, Part II, Vol 19(1991) 1-2, 101-110.

H. Jurgensen, H. J. Shyr and G. Thierrin, Disjunctive ω-languages, J. of Information Processing and Cybernetics EIK 19 (1983) 6, 267-278.

H. Jurgensen and G. Thierrin, Which monoids are syntactic monoids of ω -languages?, J. of Information Processing and Cybernetics EIK 22 (1986), 513-526.

H. Jurgensen and G. Thierrin, Some structural properties of ω-languages, in 13th Nat. School with Interat. Participation "Applications of mathematics in Technology", Sofia (1988), 56-63.

Lila Kari and G. Thierrin, Omega-syntactic congruences, J. of Automata, Languages and Combinatorics, 1 (1996) 1, 13-26.

R. C. Lyndon and m. P. Schutzenberger, The equation $a^{M} = b^{N}c^{P}$ in a free group, Michigan Math. J., 9, (1962), 289-298.

Oded Maler and Ludwig Staiger, On syntactic congruences for ω-languages, Theoret. Comput. Sci., 183 (1997), 93-112.

H. J. Shyr, Free monoids and languages, 2nd edt, Hon Min Book Company, Taichung, Taiwan, 1991.

H. J. Shyr, A characterzation of dense languages, Semigroup Forum, vol. 30 (1984), 237-240.

H. J. Shyr and D. C. Tseng, Some properties of dense languages, Soochow Journal of Mathematics, 10 (1984), 127-131.

L.Staiger, research in the theory of ω-languages, J. Comput. System Sci., 27 (1983), 434-448.