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The field of robotics employs a vast amount of coupled sub-systems. These need to interact
cooperatively and concurrently in order to yield the desired results. Some hybrid algorithms
also require intensive cooperative interactions internally. The architecture proposed lends it-
self amenable to problem domains that require rigorous calculations that are usually impeded
by the capacity of a single machine, and incompatibility issues between software computing
elements. Implementations are abstracted away from the physical hardware for ease of de-
velopment and competition in simulation leagues. Monolithic developments are complex, and
the desire for decoupled architectures arises. Decoupling also lowers the threshold for using
distributed and parallel resources. The ability to re-use and re-combine components on de-
mand, therefore is essential, while maintaining the necessary degree of interaction. For this
reason we propose to build software components on top of a Service Oriented Architecture
(SOA) using Web Services. An additional benefit is platform independence regarding both
the operating system and the implementation language. The robot soccer platform as well
as the associated simulation leagues are the target domain for the development. Furthermore
are machine vision and remote process control related portions of the architecture currently
in development and testing for industrial environments. We provide numerical data based on
the Python frameworks ZSI and SOAPpy undermining the suitability of this approach for the
field of robotics. Response times of significantly less than 50 ms even for fully interpreted,
dynamic languages provides hard information showing the feasibility of Web Services based
SOAs even in time critical robotic applications.

Keywords: Robotics, Simulation, Machine Vision, Artificial Intelligence, Distributed Com-
puting, Service Oriented Architecture

1 Introduction

Robotic Systems are often used in place of humans or biological organisms. Their design specifica-
tion requires taking many interacting sub-systems into account. That usually includes: vision and
other sensory systems; motor control and other actuators; action and strategy planning; adaptabil-
ity; and possibly others. Each of these systems may be by itself composed of several sub-systems
employing a network of algorithms.

A typical setup for such a scenario is a robot soccer league’s system (FIRA MiroSot [1]) with a
central vision system (Fig. 1). It is convenient that a single computer may be used for all purposes.
This machine then provides all control functionality of a single team, but it may suffer from bottle
necks in computational resources.

As an example the simple case in the above mentioned setup: A robot wants to move from
location A to B.

1. The vision system detects the surrounding environment, by identifying object types and
their location through the position in the image.



62 Guy K. Kloss

Robots I

Figure 1: Physical setup in a MiroSot competition.
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Figure 2: Distribution of workflow components on the network.

2. The path planning algorithm requires the robot’s own position, the positions of the target
location B and the positions of obstacles.

3. The motion control system requires the robot’s own position/orientation and the target’s
position/orientation for the next way point. With the help of some physics equations, the
designated individual motor speeds and/or positions for its actuators can easily be calculated.

4. The motor control (for the physical motor) then requires the motion control’s designated
actuator states to map them to the devices using the hardware control interfaces. A control
loop with additional sensoric input (from the vision system) is required. Individual motor
compensation movements for slippage and an adaptive learning system for compensation of
constructional differences are used.

In this example, the various sub-systems ideally operate all at their individual rate (e. g. vision
system with the frame rate of the camera) and communicate through interfaces on demand with
other sub-systems (see Fig. 2). Thus, a complex system of concurrently acting and reacting com-
ponents (employing artificial intelligence) composes a working artificial “organism” meeting it’s
task.

This paper outlines the design decisions currently in the implementation phase for a new
robotics system, based on a Service Oriented Architecture (SOA) using Web Services. It pro-
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Figure 3: Difficulty: Coping with multiple — but related — problem domains.

vides implementation data and details of the previous design stages outlined in [2]. This paper
covers the proposed architecture, implementation, and finally information on the performance in
a real world application.

2 System Architecture

If dealing with one specific problem domain only (e.g. Robot Soccer in the MiroSot small league),
the software can be built on top of the (robot) vendor supplied software tool kit only. However,
ongoing alterations by multiple independent developers in this code base significantly decrease the
comprehensibility. Finally an implementation for multiple domains (e. g. for MiroSot and humanoid
league) will completely fail on the provided vendor’s development kit.

Implementing competing designs for the same application will usually be devastating to the
implementation. An implementation for multiple domains (e. g. for MiroSot and humanoid league)
will completely fail on the provided vendor’s development kit.

A goal was to cope with complexities introduced by the design for implementing (too many)
specializations. It requires addressing multiple domains and distribution/parallelization of tasks,
while still gaining independence of programming languages and the executing operating system.

Fig. 3 shows the related problem domains to be addressed at the corners of the triangle. The
arrows indicate an increasing character for the domain’s opposing directions. It is visible that the
dynamics and modelled properties for a “real” soccer game are identified to be quite different from
a simulation of robots’ hardware. This needs to be accounted for in the design of the system’s
common architecture. The goal is to be able to abstract away from individual, domain specific
implementations. The architecture and the developed components should be able to be assembled
and configured depending on the problems faced.

By compartmentalising the systems, the ties between functional sections were loosened. Com-
munication between the components is only possible through the defined interfaces to them. The
interfaces are exposed in a Service Oriented Architecture (SOA) as Web Services to the rest of
the system, so that individual components can be placed on remote systems as well as locally. A
Web Service is a technology that allows applications to communicate with each other in a platform
and programming language independent manner. Therefore, all components can be implemented
using an implementation and platform fittest for the task. [3] gives an in depth overview of the
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benefits of using Web Services, and SOA in general, for robotics. This results in a building block
approach, to construct larger applications from available re-usable components in the “tool box.”
SOAs in general can also be found in other fields of scientific computing. A distributed component
approach — in some ways similar to the one proposed in this paper (but using CORBA for a SOA)
— is for many years successfully used for a distributed integration environment in simulation and
optimisation computations at the German Aerospace Centre [4].

This approach contrasts the tightly coupled, monolithic architecture provided by the hardware
vendors. In the vendor’s system all steps of the process chain are forced to run at the same beat.
Next to the vision system especially the strategy and path planning components require larger
amounts of computational power. Cycling through all additional components unnecessarily, thus,
will waste valuable resources that could be very well used otherwise. Thus, in a decoupled system
the number of executions for some sub-systems can be cut by a factor of 15.

3 Mapping to Robot Soccer Domain
The implementation needs to provide mainly two things:

e Utilise the domain independence of created components (robot soccer, soccer simulation,
robot simulation, robot rescue and others).

e Focus the development on one specific component, disregarding all other neighbouring com-
ponents (or mocking them by dummies).

To highlight this, Sect. 1 provides the necessary steps for an analysis. The vision system (step
1) requires computationally expensive operations at a high rate (frame rate of camera). So it will
be implemented most likely in a native/compiled language (e.g. Ct+) on a system that is capable
of interfacing the camera. Further path planning and motion/motor control can be performed on
another system. These could be implemented in languages that are by far more efficient in terms
of development effort (e.g. Python, Java, Visual Basic).

In Fig. 4 the communication paths between the components in our scenario are outlined. Most
sub-systems are interfacing a communication layer, managing requests transparently through Web
Services [5,6]. In case of changing demands this single layer only needs to be modified for an
alternative coupling. Only the vision system and the motor control feature a direct access to hard-
ware. Properly designed interfaces provided, these can easily be replaced by the virtual hardware
of simulation systems, or replaced by alternative specific hardware drivers without introducing
further dependencies.

The uni-directional arrows indicate requests to other sub-systems. These are interfacing a
communication layer (double arrows), and the requests will be transparently managed through
Web Services. In case of changing demands, just this single layer needs to be modified to imple-
ment alternative links (e.g. through CORBA, direct sockets, high speed UDP connections, local
method invocations, etc.). These then could be used either for dedicated links between individual
components or for the whole system.

The motor control component is connected directly to the motion control. This reflects a
common setup where the motor control is just an instance of a hardware controller used directly
through its specified interfaces.

The path planning algorithm would request a list of vectors (positional and velocity) for all
objects from the vision system. Even though the strategy and path planning may need only to be
updated twice every second, it can still take advantage of the precise computations of the vision
system performing synchronously with the 30 frames per second of the video capturing. This
ensures accurate and current information at the time of decision making.

New /updated paths result in an update of way points for the robots. These vectors are re-
quested on demand by the motion control, which, in turn, relays actuator settings to the motor
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Figure 4: Communication between various components.

control [7]. The motor control (or locomotion layer [8]) represents a robot’s embodiment. It con-
verts control signals from the motion control (steering layer) into motion of the robot’s “body.”
This motion is subject to constraints imposed by the body’s physically-based model, such as the
interaction of momentum and strength (limitation of forces that can be applied by the body). For
flexible change of implementations accessing alternative hardware or sub systems, this component
is separated from the motion control component. As this layer is dealing with the control of phys-
ical equipment it may take advantage of an increased update rate (10 Hz) due to the decoupled
system.

Unfortunately, at this point reality interferes with direct steering mechanisms. Due to heteroge-
neous motor torques, differences in construction, wheel slippage on the surface, maximum allowed
accelerations, etc. the motor control will yield individually different behaviours. For compensation
a closed control loop giving accurate feedback on robot positions is needed. This is most easily
accomplished by also accessing the vision system’s service.

The motor control should “learn” the physical differences of the motors in the robots through
adaptation. Thus the control of the motions of the robots will become more predictive, and the
rate for requesting actual positions can be handled dynamically on demand to reduce computations
and communication overheads.

As for the design of the implementation — and the abstraction for most flexible hardware, control
and simulation — the architecture of these implementation have been inspirational: RoboCup
Soccer Simulator [9], RoadNarrows Robotics’ [10] robotics demonstration application “Fusion”,
the Python Robotics package [11] and the Java “TeamBots” package [12].
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Figure 5: Industrial machine vision application of distributed image capturing/processing nodes
with central control and data aggregation facilities.

4 Experiments and Analysis

4.1 Industrial Machine Vision System

The discussed architecture has been initially implemented for an industrial application employing
machine vision. In this scenario several processing nodes are operating on images from a single
camera each (see Fig. 5). The images are retrieved through a streaming HTTP protocol from the
cameras. When certain criteria of the analysis data are met, a record of the analysis data is sent
off through a Web Service call to a central head node for collection and further processing. The
activity of all processing nodes can be monitored through remote GUI display and web access to
the individual cameras. A Web Services server implementation within the processing nodes them-
selves facilitates control functions (start, stop, change of configuration and process termination).
Monitoring and process control do not need to run at all times, and just need to be started on
demand.

Image retrieval and processing are implemented natively in compiled code (C*++) as a shared
library. Threaded retrieval and processing of each individual frame per camera through the whole
cascade of analysis stages takes an average of 70 ms (6 ms standard deviation). The process logic is
harnessed in to the communication layer by Python bindings using ZSI [13] to implement the Web
Services fabric. This combination yielded very good performance on the computationally intensive
image processing, while still enabling a rapid pace and ease of development for the management
layers.

The Web Service setup follows common (best) practises, by first defining Web Service Definition
Language (WSDL) interfaces in XML. These are used to generate stub code for client and service
implementations, which are used by the communicating instances. All complex data types have
been defined verbosely with hierarchical structures using the default data types as leaf elements. We
can therefore assume this implementation in an interpreted scripting language to reflect a “worst
case scenario” in terms of communication performance. However, the potential for optimisation
and “stream lining” of communication is quite large, many hints on this can be found in [14].
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Figure 6: Typical call time distribution of the remote Web Service sendKeyFrame () operation.

Table 1: Median request times (and inter quartile ranges parenthesised) for Web Services operations
in milliseconds.

isRunning() sendKeyFrame ()

local remote local remote
idle 11 (2) 35 (2) 115 (4) 206 (4)
processing | 25 (23) 60 (60) | 128 (6) 224 (5)
minimum 9 31 113 203

Due to task and thread switching, and therefore interfering other processes, the distribution of
call times to complete the Web Service operations has been “smeared” (see Fig. 6). Therefore, it is
relatively pointless to determine average values. The suitable value for this analysis has been the
median time, and the width of the distribution is described by the inter quartile range (IQR). As
it can also be seen in the figure, the distribution starts out with a very sharp rise, and a distinct
minimum time for the completion of the request can be identified. This time can be safely assumed
as describing the true overhead (or “cost”) of the operation, as the operating system and process
timing effects are accountable for the smearing towards longer times.

For testing of the implemented infrastructure, the application in question has been benchmarked
while idle and under load (actively processing images) on the one hand, and locally as well as in
a networked environment on the other hand. The system features an Intel Pentium D CPU,
3.20 GHz, 2 GB RAM, connected with 100 MBit/s on the same network switch. Two Web Service
operations were evaluated: The first one (isRunning()) represents a very cheap operation both
on the server and on the client. It directly returns a Boolean value stating whether the image
processing is active. Therefore no complex XML encoding into the SOAP message (Simple Object
Access Protocol) is necessary, and no complex dynamic structures for the results need to be built on
the receiving client. The other operation (sendKeyFrame()) transfers a complex nested structure
containing multi-dimensional arrays and various values in the SOAP message, which need to be
mapped dynamically to a Python object on the receiving side (in this case the server). The data
transferred by this structure is about 2 KB in size.

From the results (Table 1) we can see, that our system typically takes about 11 ms locally,
and 35 ms for a remote request (isRunning()). The variation in this time is with 2 ms for the
IQR also very low and close to the minimum times. The system is very robust in this condition.
Under load — while processing images in another thread — the likelihood of being interrupted by
the processing during execution rises with the time spent at it, increasing the times to 25 ms and
60 ms respectively for the remote calls. With the raw execution typically lasting 35 ms on the
remote calls, an interruption of the processing lasting 70 ms occurs in an average roughly every
second time, increasing the requests duration as well as the IQR well in line by the expected times.

The request times for the sendKeyFrame () operation indicate that sending extensive and/or
complicated data structures using Web Services can be quite expensive. Striking is, that although
the median times for the completed request are largely greater (compared with the isRunning()
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Table 2: Request times for alternative Web Services communications.
local remote
slim | < 3.5 ms < 10 ms
full < 30ms < 35 ms

call), the IQR increases only insignificantly, and the changes between idle and load calls are only
marginal. The reason for this can easily be found taking a look into the application: The request
to this call is performed right after the processing of a frame within the same thread. Therefore it
cannot be interrupted to increase the communication time.

Using a different type of data encoding and a more flat structure can largely improve the
efficiency. As this particular application is only dependent on reasonable quick transfers (< 1 s)
no need for action is given. However, it is quite valuable to gain insight into the dynamics of
data structures and transfer mechanisms to be aware of potential bottle necks and strategies for
resolving them. Alternative communication strategies using Web Services in Python have been
tested to estimate their effects on timing. Only briefly an operation of the type isRunning() has
been tested. Next to ZSI also the Web Service implementation SOAPpy has been included in
the test. For brevity reasons of the pure estimation of possibilities only the ranges are stated in
Table 2. The slimmest communication within a single host using no WSDL interface descriptions
has been tested against a full-fledged WSDL request with dynamic mapping of objects (no prior
stub-generation) using introspection. In one case the request’s client and server were co-located
on one host, in the other they were again located again on the same switched 100 MBit/s network
segment.

4.2 Applied to Distributed AI for Robotics

Performance may be particularly crucial to the success of a robotics application, as many sub-
systems employing sophisticated Artificial Intelligence (AI) are chained together. This is true,
but only up to the point of where it needs to be “as performant as necessary.” The proposed
architecture demands its tributes for communication overhead (Web Services rather than a fast,
custom UDP protocol or even directly linked code), using interpreted languages rather than naively
compiled ones, etc.

The main advantage, however, is that it frees one from worries about other tasks, not di-
rectly related to the currently addressed problem introduced by the framework’s code used for
the implementation. Thus, a loosely coupled (and less static) application design will lead to more
performance in terms of (the quality of) research output. Coding against a clean interface design
has already given our research students the freedom to focus better on their specific topics. Using
SOA interfaces takes this programming paradigm “to the next level” by possible implementations
in almost arbitrary languages and enabling execution on distributed hosts. Additionally, services
in the decoupled SOA can be requested on demand, rather than at the time of availability. This
saves computational resources and enables one to deploy the components in distributed systems
to make use of resources most suitable, yielding a better efficiency.

In many publications on robotics a time frame of 33 ms for the maximum iteration duration of
the control system are given. This value has been derived from the frame rate (30 fps — 33 ms) of
cameras forcing the computationally dominant vision system as well as the rest of the control chain.
As a result of decoupling this force is removed from most sub-systems, giving the freedom to spend
clock cycles on the architecture and more suitable implementation languages. This application
continues with an implementation on top of the design considerations from [15].

Estimating from the highest determined request frequency (10/s) from Sect. 1, it can be seen
that the communication overhead can be low enough to perform sufficiently. Given an imple-
menting featuring slim and efficient interfaces, and reducing unnecessary calls in a loosely coupled
system, this should be possible. Employing an architecture like this strictly leads to a dramatic
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reduction of code complexity, as in most developments one only needs to care about the bounding
interfaces of the component, not the code beyond them. Furthermore message based architectures
greatly ease the use of concurrency by eliminating many of the problems involved in multi-threaded
programming.

5 Conclusions

Investment in re-architecturing the system yields an easier and more focused implementation of
sub-tasks. Freedom of choice for the implementation language away from C++ only, and freedom
not to have to worry about “neighbouring” functional components to a problem and dramatically
increase the speed of development. Due to a better focus on the current core problem, more
innovative and robust solutions were gained.

Someone e.g. interested in improving the path planning, therefore, would be relieved of the
impact on the rest of the infrastructure. Development can be performed in any programming
language that is suitable (or familiar). Additionally, a widely used and standardised protocol for a
SOA has been used to further reduce system induced barriers for communication. And finally, the
host and operating system used for a specific sub-task is independent from the rest of the system.

An industrial reference implementation with distinct similarities to the field of robotics has been
implemented and analysed toward suitability. Through decoupling processed, it is now possible
to concurrently conduct computationally expensive tasks — as sophisticated vision systems — in
parallel, utilising resources easily on remote systems.

Computational efficiency of the system could be gained. This was achieved by decoupling
components for distribution on hosts most suitable for them. All components work in parallel
at the most appropriate rate without being forced into the “dominant” beat (e.g. the camera’s
frame rate), to save valuable CPU cycles and utilise parallel environments (multiple CPUs/cores
or machines) most efficiently without sacrificing accuracy.

Our developments give a clear indication of feasibility for time critical robotic applications.
The response time studies based on this show — in contrast to the referenced sources — that even
with the case of a purely interpreted, dynamic language Python time constraints can be met. In
the future this system will be employed in the field of robot soccer to loosen the ties to frame rate
based processing, enable more sophisticated algorithms, and increase concurrency in the system.
Loosely coupled, simple software components will ease development, and further enhance research
ambitions in sub-tasks within the field of robotics.
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