Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Efficacy of Using the EPCIS Standard for Livestock and Meat Traceability

Thesis for Master of Logistics and Supply Chain Management

Massey University Palmerston North New Zealand

Gary L Hartley

2013

Abstract

Radio Frequency Identification (RFID) systems have been used for many years in identification applications. The efficacy of using UHF RFID technologies for livestock traceability and related applications has been widely repudiated within the global livestock sector. Technical inadequacies and constraints of physics are typically identified as the basis for discrediting the RFID form.

The EPCglobal Network is a secure means to connect servers containing information related to items identified by using globally unique numbers known as EPC (Electronic Product Code) numbers. The servers, called Electronic Product Code Information Services – or EPCIS - is an open public standard used to track the progress of objects as they move through the supply chain.

Published research into the use and efficacy of using the suite of EPC RFID standards, especially the EPCIS Standard to assess traceability performance outcomes in any industry sector, let alone the livestock sector is minimal. This thesis investigates, examines and assesses the use of UHF RFID technology within the context of the EPCglobal suite of standards, focusing specifically on the component EPCIS standard to determine efficacy for livestock traceability.

The thesis examines regulatory based definitions of traceability in order to adopt a reference definition and uses a multi-stage proof of concept process model to assess and draw conclusions in determining the efficacy of using the EPCIS Standard for livestock traceability.

A definition of *Chain Traceability*, defined by the Food Business Forum (CIES 2005 p.7) was adopted as a benchmark reference against which objectives were measured and assessed. Because all EPC identifiers and relevant associations used in the research was able to be identified, recorded and reported using the EPCIS standard and database, chain traceability was demonstrated, thereby verifying traceability objectives and the efficacy of the EPCIS standard as a tool for livestock traceability.

Acknowledgements

I would like to thank those who have worked with me on a difficult journey over the past six years in evangelising the use of EPCglobal Standards for livestock traceability in New Zealand. A special thanks to colleagues at GS1 New Zealand and The New Zealand RFID Pathfinder Group Incorporated but also to those who have in some way been involved in our research and trials.

Special thanks also to evangelist colleagues from across the world especially those of GS1 Hong Kong, GS1 Denmark and Invengo Limited, China. To Ian Robertson, former Director of EPCglobal Incorporated without you beside me all the way, this would not have been possible – thanks so much.

To Dr Norman Marr, Massey University. Thanks for your counsel and patience. You gave me the confidence to undertake this assignment and then complete it; I never thought I could - my sincere thanks.

To my mum and dad (Alan Doig) - Agnus Dei, qui tollis peccata mundi, dona nobis pacem.

I write the dedication to my wife on a special day in our calendar, August 11th, the feast day of St Suzanne. I need say no more.

Table of Contents

	Title	Page
	Abstract	i
	Acknowledgements	ii
	List of Figures	iii
	List of Tables	ĬV
Chapter 1	Introduction	1
	1.1 Introduction	1
	1.2 Background	2
	1.3 Objectives	3
	1.4 Format of the Thesis	3
Chapter 2	Background	6
	2.1 Introduction	6
	2.2 The EPCglobal Network Elements	6
	2.3 The EPCglobal Architectural Framework	11
	2.4 Electronic Product Code Information Service – EPCIS	12
Chapter 3	Literature Review	15
	3.1 Introduction	15
	3.2 RFID Technology – Background	15
	3.3 EPCIS Case Studies – Food Industries	19
	3.4 EPCIS Case Studies – Other Industry Sectors	24
	3.5 Defining Traceability for Agriculture and Food	28
	3.6 Traceability in the Open Supply Chain	33
	3.7 RFID and EPCIS in Livestock	35
	3.8 The New Zealand NATT Livestock Traceability Scheme	39
	3.9 Creating a Global Traceability Standard	42
	2.11 Conclusion	43
		45
Chapter 4	Methodology	48
	4.1 Introduction	48
	4.2 Objectives	48
	4.3 Methodology	48
	4.4 Research Alternatives	49
	4.5 Justification for Selected Research Methodology	55
	4.7 Sampling and Data Collection	56
Chantar E	Analysis and Discussion	60
Chapter 5	5.1 Introduction	60 60
	5.2 Defining Traceability	60
	5.3. EPColobal Core Business Vocabulary Standard	61
	5.4 Analysis and Discussion	62
	5.5 Levels of Traceability	65
	5.6 EPC Sector Based Headers and Identifiers	66
	5.7 EPC Discovery Services	66
	5.8 Current Livestock Traceability Initiatives in New Zealand with Dee	r 69
	5.9 Data Collection and Discussion	76

Chapter 6	Conclusion		91
	6.1	Introduction	91
	6.2	Analysis of Objectives	91
	6.3	Research Limitations and Future Research	93
	6.4	Longitudinal Studies and Sample Size	93

Appendix Bibliography

List of Figures

Page

Figure 2.1	The EPCglobal Network	7
Figure 2.2	EPC Header	9
Figure 2.3	A 96 Bit sGTIN coding Structure (example) for a Livestock Application	11
Figure 2.4	The EPCglobal Network Architecture Framework	12
Figure 2.5	Process Steps Product /Information Flow - Manufacturer to Retailer	14
Figure 3.1	Technology Adoption Life Cycle	45
Figure 3.2	Gartner Hype Cycle For Emerging Technologies	46
Figure 4.1	The Nine Proof of Concept Process Steps Flow Chart	49
Figure 5.1	Object Name Service vs Discovery Service	67
Figure 5.2	Animals with UHF RFID ear tags	70
Figure 5.3	Reading UHF RFID ear tags	70
Figure 5.4	Recording tag reads in farm race	70
Figure 5.5	Truck leaving farm for processor	70
Figure 5.6	View from processors holding pen to inside truck	71
Figure 5.7	Inside the processors holding pen	71
Figure 5.8	Stun box	71
Figure 5.9	RFID reader at stun box	71
Figure 5.10	UHF RFID tag labels	72
Figure 5.11	UHF RFID tag label used on cartons	72
Figure 5.12	Cartons moving from boning room to chiller	72
Figure 5.13	Loading cartons into shipping container	72
Figure 5.14	Cartons of finished venison cuts loaded into shipping container	72
Figure 5.15	Reading shipping container RFID tag ID at processor	73
Figure 5.16	Reading shipping container tag ID at Port of Lyttleton, Christchurch	73
Figure 5.17	Palletised cartons after being unloaded	74
Figure 5.18	RFID reads as cartons are unloaded from the shipping container	74
Figure 5.19	Cartons palletised in preparation for final delivery	74
Figure 5.20	Delivery vehicle leaving importers warehouse in in Hamburg	74
Figure 5.21	Delivery of cartons in Hamburg	75

List of Tables

Page

		-
Table 2.1	Data Structure For Serialised Global Trade Item Number (sGTIN)	9
Table 2.2	Data Structure For Serialised Global Location Number sGLN)	10
Table 2.3	Data Structure For Serialised Shipping Container Number (SSCC)	10
Table 2.4	Process Steps From Manufacturer to Retailer	14
Table 4.1	The Proof of Concept Nine Step Process	59
Table 5.1	EPC Event Read Events at Identified Business Steps and Locations	63
Table 5.2	The Identification of Cartons of Venison Cuts Going to Cold Store	63
Table 5.3	The Identification of a Carcass Going Into the Boning Room	64
Table 5.4	The Identification of a Carcass Going Into the Chiller Room	65
Table 5.5	Identification of a single animal	76
Table 5.6	List of EPC identifiers in expanded view	77
Table 5.7	Commissioning event - tagging of animals on farm	78
Table 5.8	Shipping observation of animals in transit	79
Table 5.9	Animals received at processing plant	80
Table 5.10	Animals are deleted for processing	81
Table 5.11	Cartons moving from boning room to chiller	82
Table 5.12	Cartons being loaded into shipping container	83
Table 5.13	Container leaves processors site	84
Table 5.14	Container arrives at the Port of Lyttleton, Christchurch	85
Table 5.15	Receipt of cartons at wholesaler, Hamburg	86
Table 5.16	Cartons loaded into delivery truck	87
Table 5.17	Delivery of consignment to Hamburg retailer	88