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Abstract

Biological sequences have long been known to contain many classes of repeats. The

most studied repetitive structure is the tandem repeat where many approximate copies of

a common segment (the motif ) appear consecutively. In this thesis, a complex repetitive

structure is investigated. This repetitive structure is called a nested tandem repeat. It

consists of many approximate copies of two motifs interspersed with one another.

This thesis is a collection of published and in progress papers. Each paper addresses

a computational problem related to the analysis of nested tandem repeats. Nested tan-

dem repeats have been observed in the intergenic spacer of the ribosomal DNA gene in

Colocasia esculenta. The question of whether such repeats can be found elsewhere in

biological sequence databases is addressed and NTRFinder, a software tool to detect

nested tandem repeats, is described. Another problem that arises after detecting a nested

tandem repeat is the alignment of the nested tandem repeat region against its two motifs.

An algorithm that guarantees an optimal solution to this problem is introduced. After

detecting nested tandem repeats and identifying their structures, the identification of the

motif boundaries is an unsolved problem which arises not only in nested tandem repeats

but in tandem repeats as well. Heuristic solutions to this problem are implemented and

tested. In order to compare two tandem repeat sequences an algorithm that aligns a hy-

pothetical ancestral sequence of both sequences against each sequence is presented. This

algorithm considers substitutions, deletions, and unidirectional duplication, namely, from

ancestor to descendant.
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Chapter 1

Introduction

The subject of this thesis is the detection and analysis of nested tandem repeats (NTRs),

which are repetitive structures found in DNA consisting of repeats of two different motifs

interspersed with each other. The initial motivation for the work came from the discovery

of NTRs in the intergenic spacer region of the rDNA in the taro Colocasia esculenta. Taro

is a staple food crop that is widely spread around the world. The origin of taro is believed

to be Southeast Asia (Matthews, 1991), and its dispersal was helped by the migration of

people around the world. Taro is one of the important food sources in the Pacific and it is

spread all over the Pacific islands. A population genetic study of this plant may lead to a

better understanding of Polynesian migration history.

The function and the implication of NTRs in the genome are not well understood, nor

is the mechanism that generates them. Finding these repetitive structures and identifying

their functions are fundamental objectives of biologists. NTRs were only recently ob-

served in DNA sequences (Newman and Cooper, 2007; Hauth and Joseph, 2002; Rolland

et al., 2010), hence, there are few software tools that can help biologists to analyse them.

In this thesis, our main goal is to develop tools to analyse NTRs and facilitate their use

as genetic markers for evolutionary studies. However, some of our results can be used to

analyse tandem repeats too.

In general, ordinary tandem repeats have been known for much longer (Hatch et al.,

1976), and it is known that tandem repeats have implications for some genetic diseases

such as FragileX, myotonic dystrophy, and Huntington diseases (Verkerk et al., 1991;

Fu et al., 1992; Verkerk et al., 1993). It is also known that some tandem repeats have a

significant role in some cancers (Buard and Jeffreys, 1997). However, most are thought
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to be neutral hence their role in population genetic studies.

Tandem repeats are observed to contain polymorphism in the number of copies and

copy variants. An interesting application of tandem repeat sequences is the study of hu-

man migration history. For example, (Armour et al., 1996) use the tandem repeats MS205

(D76S309) in the human Y chromosome to support the recent African origin for modern

human diversity. We expect NTRs to provide yet another source of valuable genetic in-

formation.

In the next section, some definitions are introduced along with some examples fol-

lowed by an overview of the thesis.

1.1 Candidate’s Note

This thesis is written based on a collection of papers I have worked on through my PhD

candidacy. Each chapter is in a stand-alone format. This means there is some redundancy

in the contents of the thesis. I have tried to eliminate as much redundancy as possible and

be as consistent as possible through the whole thesis.

1.2 Definitions

In this section, some terms that will be used throughout the thesis are defined.

1.2.1 Sequences, edit operations and the edit distance

A DNA sequence is a sequence of symbols from the nucleotide alphabet Σ = {A, C, G, T}.

We define a DNA segment to be a string of contiguous DNA nucleotides and define a site

to be a position in a segment. For a DNA segment

X = x1x2 · · ·xn,

xi ∈ Σ is the nucleotide at the i-th site and |X| = n is the length of X.

Copying errors happen in DNA replication due to different factors. These changes are

on different scales, that is changes on the nucleotides level which include substitution,

insertion, and deletion of single nucleotides and changes on the segments level such as
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duplication and segment deletion. We refer to these as edit operations. These operations

may be used to define a distance function on segments, by associating a weight to each

edit operation. We can then in principle find a series of edit operations, which transform

segment X to segment Y, of minimal total weight. We will refer to this sum as the edit

distance, and denote it by d(X,Y). These weights represent the cost associated with

the edit operation; less frequent operations will have a greater weight, corresponding to

a higher cost. For the purposes of this thesis, the edit operations allowed in calculating

the edit distance between segments are restricted to single nucleotide substitutions, and

single nucleotide insertions or deletions (indels).

For notational purposes, let θ denote a single nucleotide transformation θ ∈ {α, β, γ},

where, following the Kimura 3ST substitution model (Kimura, 1981), the transformation

types are

α = A↔ G, C↔ T;

β = A↔ T, G↔ C;

γ = A↔ C, G↔ T.

The substitution iθ in a segment S denotes θ applied to the nucleotide at the site i in S.

1.2.2 Classification of Tandem Repeats

Many classifications of tandem repeat schemas have been introduced in the computational

biology literature. We list some classifications which are commonly used:

• (Exact) Tandem Repeats: An exact tandem repeat (TR) is a sequence comprising

two or more contiguous copies XX · · ·X of identical segments X (referred to as

the motif).

• k−Approximate Tandem Repeats: A k−approximate tandem repeat (k−TR) is

a sequence comprising two or more contiguous copies X1X2 · · ·Xn of similar seg-

ments, where each individual segment Xi is edit distance at most k from a template

segment X.

• Multiple Length Tandem Repeats (MLTR): A multiple length tandem repeat is

a tandem repeat of the form (Xxn)m, where n is a constant larger than one and
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d(X,x) is greater than some threshold value h.

Example Below is a list of examples for each of the repeat classes:

• Tandem repeat:

AGG AGG AGG AGG AGG. The motif is AGG.

• 1−Tandem repeat:

AGG AGC ATG AGG CGG. The template motif is AGG.

• Multiple length tandem repeat:

GACCTTTGG ACGGT ACGGT ACGGT GACCTTTGG ACGGT ACGGT ACGGT.

The motifs are x = ACGGT and X = GACCTTTGG, with n = 3,m = 2.

Approximate tandem repeats are also classified based on the length of their repeated

motif. These classes are: microsatellites, where the length of the repeated motif is in the

range 1-6 bp (Jarne and Lagoda, 1996); minisatellites, where the length of the repeated

motif is in the range 7-100 bp (Buard and Jeffreys, 1997); and satellites or megasatellites

for any repeated motif of length above 100 bp (Rolland et al., 2010).

1.2.3 Nested Tandem Repeats

In this section, a more complex repetitive structure is introduced, the nested tandem repeat

(NTR), also referred to as a variable length tandem repeat (Hauth and Joseph, 2002).

Let X and x be two segments (typically of different lengths) from the alphabet Σ =

{A, C, G, T}, such that d(X,x) is greater than some threshold value h.

Definition 1. An exact nested tandem repeat is a string of the form

xs0Xxs1X · · ·Xxsn ,

where n > 1, si ≥ 1 for each 0 < i < n, and sj ≥ 2 for some j ∈ {0, 1, · · · , n}.

The motif x is called the tandem motif and the motif X is the interspersed motif. The

concatenations of the tandem repeats xsi alone, and of the interspersed motifs X alone,

each form exact tandem repeats. We allow the possibilities s0 = 0 and sn = 0, so that
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the NTR can start and/or finish with the interspersed motif X, and we will describe the

structure of the above NTR by specifying the (n+ 1)-tuple (s0, s1, . . . , sn).

Example x = ACGGT, X = GACCTTTGG, n = 7, s0 = 0, s1 = 3, s2 = 5, s3 = 2, s4 = 4,

s5 = 1, s6 = s7 = 2, so

x0

7∏
i=1

Xxsi = XxxxXxxxxxXxxXxxxxXxXxxXxx

=GACCTTTGG ACGGT ACGGT ACGGT

GACCTTTGG ACGGT ACGGT ACGGT ACGGT ACGGT

GACCTTTGG ACGGT ACGGT

GACCTTTGG ACGGT ACGGT ACGGT ACGGT

GACCTTTGG ACGGT

GACCTTTGG ACGGT ACGGT

GACCTTTGG ACGGT ACGGT.

The structure of this NTR is given by (0,3,5,2,4,1,2,2).

In practice, it is expected that any nested tandem repeats occurring in DNA sequences

will be approximate rather than exact. In what follows, we will write X̃ to mean an ap-

proximate copy of the motif X, and x̃s to mean an approximate tandem repeat consisting

of s (not necessarily identical) approximate copies of the motif x.

Definition 2. A (k1,k2)-approximate nested tandem repeat is a string of the form

x̃s0X̃x̃s1X̃ · · · X̃x̃sn ,

where n and si satisfy the same conditions as in Definition 1, and x̃s0x̃s1 · · · x̃sn is a

k1-approximate tandem repeat with motif x, and X̃X̃ · · · X̃ is a k2-approximate tandem

repeat with motif X.

Example Below is an exact nested tandem repeat and an example of an approximate

nested tandem repeat.
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• NTR:

AGG AGG CTCAG AGG CTCAG AGG AGG AGG CTCAG.

The template motifs are AGG, CTCAG.

• (1, 2)−NTR:

AGA AGG CTTCG AGG CTCAG AG AGA AGG CTTCG AGG CTCAG AAG.

The template motifs are x = AGG, X = CTCAG.

1.3 A duplication model for tandem repeats and nested

tandem repeats

Let S be a DNA sequence of symbols from the nucleotide alphabet Σ = {A, C, G, T}, and

suppose that S has the structure of a tandem repeat TR or nested tandem repeat NTR.

To study Swe can map it to a macro alphabet Σv = {a, b, . . . , A,B, . . . }, whose symbols

represent the motif variants occurring in S. In the case of a nested tandem repeat, we will

use lower case letters for variants of the tandem motif, and upper case letters for variants

of the interspersed motif. We define an (N)TR map of S to be the sequence Sv obtained

by replacing each motif of S by the corresponding symbol in Σv. This process is also

known as variant mapping (Berard and Rivals, 2003).

An evolution model on Sv is defined by the following edit operations:

• k-Duplication: the process of copying a substring of length k and placing it after

the duplicated segment, for example, a 2–duplication: a(bc) → a(bc)(bc), a 1–

duplication (a)bc→ (a)(a)bc.

• k–Deletion: the process that removes k contiguous symbols from Sv. For example,

a 1–deletion abc→ ac.

• repeat copy substitution: the process of replacing a symbol a ∈ Σv with another

symbol b ∈ Σv by applying single nucleotide events such as deletion, insertion, and

substitution.

In this thesis, the model of duplication considered is obtained from (Sammeth and

Stoye, 2006), which suggests that duplications and deletions may occur at any position

in the sequence Sv, and they may have any size (k-duplication and k-deletion). The
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duplication operation in this model is of arity 1 (1-duplication) (Rivals, 2004b; Sammeth

and Stoye, 2006; Berard and Rivals, 2003).

In the case of nested tandem repeats, where interspersed motifs {A,B, . . . } are not

observed adjacent to each other, it is assumed that duplications always start or end with a

symbol from the alphabet {a, b, . . . }. Moreover, a deletion is assumed not to start at the

end of one interspersed motif and end at the start of another interspersed motif.

In this model, it is also assumed that duplication and substitution events occur at a

fixed relative rate, and that the motif copies remain contiguous and oriented in the same

direction in the genome. Under these assumptions the duplication history of a tandem

repeat can be described by a duplication history tree (DHT).

Example We illustrate in Figure 1.1 how a DHT may be inferred from a tandem repeat

with chosen start and end boundaries. Consider the following sequence which contains

the tandem repeat

TTATGTCATGGTTATGGACATGGTTATGGACACGCT

CACGCTTATGGTCAAGGTCACGGTCAATAG, (1.1)

which for the parsing displayed, is an approximate tandem repeat with mode motif CATGGT.

There are six motif variants, in order as ababccdef , where

a = CATGGT, b = TATGGA, c = CACGCT,

d = TATGGT, e = CAAGGT, f = CACGGT.
(1.2)

These variants may be represented by the graph in Figure 1.1(a), in which the edge

between variants u and v is labelled by the substitution iθ that transforms u into v. Fig-

ure 1.1(c) shows a DHT in which each edge is labeled with zero or more substitutions of

the form iθ.

By removing one edge of the a − e − f cycle (edge a − e was chosen arbitrarily)

in Figure 1.1(a) and adding leaves for each of the 9 segments, we obtain the maximum

parsimony tree in Figure 1.1(b). In Figure 1.1(b) if we place the root of the tree on the

edge arrowed, we get a DHT (this edge is the only edge where a root can be placed to get
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Figure 1.1: Construction of a duplication history tree for the tandem repeat in Equa-
tion (1.2). See text for details.

a duplication tree (Gascuel et al., 2003)). Each duplication is identified by the segment to

be duplicated enclosed in a rectangle. When the duplicated block encloses more than one

segment, the descendant motifs alternate as shown in Figure 1.1(c). The approximate tan-

dem repeat is fully described by the duplication tree T with 6 duplications, the ancestral

motif at the root (CATGGT), and the 5 substitutions on the edges of T .

1.4 Overview

This thesis investigates Nested Tandem Repeats (NTRs). In Chapter 2, an overview of

related work is presented. A detailed analysis of the nested tandem repeat in taro is

introduced in Chapter 3, where some observations on the nested tandem repeat structure

are presented.

After having a close look at the nested tandem repeats in taro, we set our first target

to search for nested tandem repeat structures in order to understand their distribution

in DNA sequences. This target was the main motivation for building the software tool

NTRFinder. NTRFinder is introduced in Chapter 4. The algorithm has been tested

on both real and simulated data. A list of nested tandem repeats found in some real DNA

sequences is presented.
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Once NTRs are found, an alignment algorithm to solve the problem of aligning two

motifs against a region that contains the NTR is crucial. It is crucial not only for the veri-

fication phase in the NTRFinder program but also for the analysis phases. Chapter 5 de-

scribes an alignment algorithm for the verification phase of the software tool NTRFinder

developed for database searches for NTRs. When the search algorithm has located a sub-

sequence T containing a possible NTR, with motifs X and x, a verification step aligns T

against an exact NTR built from the templates X and x, to confirm whether T contains

an approximate NTR and determine its extent. Chapter 5 describes an algorithm to solve

this alignment problem in O(|T|(|X|+ |x|)) space and time.

An important step before starting the analysis of an NTR is to identify the repeated

motif pattern. Namely, it is important to know where the boundaries of the repeated

pattern are. We call the problem of inferring the motif boundaries the parsing problem

for nested tandem repeats. In Chapter 6, three heuristic methods for solving the parsing

problem, under the assumption that the parsing is fixed throughout the duplication history

of the tandem repeat, are proposed and compared. The three methods are: PAIR, which

minimises the number of pairs of common mutations which span a boundary; VAR, which

minimises the total number of variants of the motif; and MST, which minimises the length

of the minimum spanning tree connecting the variants, where the weight of each edge is

the Hamming distance of the pair of variants. These methods were tested on simulated

data (for which the true parsing is known) over a range of motif lengths and relative rates

of substitutions to duplications, and these tests show that all three perform better than

choosing the parsing arbitrarily (note, when choosing the boundary arbitrarily, we expect

to hit the true boundary with frequency 1
`
, where ` is the length of the repeated motif).

Of the three, MST typically performs the best, followed by VAR then PAIR. To test the

methods on real data, the three methods were applied on four tandem repeats that belong

to two different families. Our expectation is that tandem repeats that belong to the same

family will have similar parsing points.

Our main goal is to use NTRs structures as markers to build phylogenies. In Chap-

ter 7, the problem of comparing two repeated structures is investigated. This comparison

involves reconstructing an approximate ancestral sequence then aligning it against each

sequence. An algorithm to align an ancestral sequence against its descendant sequence

is constructed. This algorithm has quadratic time and space complexity. The algorithm
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produces an asymmetric alignment, where the duplication events happen in the ancestral

sequence and are observed in the descendant sequence, but not the other way around.
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Chapter 2

Literature Review

2.1 Motivation

The focus of this thesis is on nested tandem repeats. Nested tandem repeats are a com-

plex repetitive structure containing two motifs, which were first noticed by Matthews et al.

(1992). The rapid development in sequencing technology has permitted us to get more

DNA sequences, and hence given us the opportunity to explore the world of DNA rig-

orously. Recently, several nested tandem repeats have been reported (Hauth and Joseph,

2002; Newman and Cooper, 2007; Rolland et al., 2010) which leads to the question of

how common nested tandem repeats are in biological sequences, and what are their roles.

Tandem repeats, on the other hand, have been known for much longer (Hatch et al.,

1976). Tandem repeats exist in most DNA sequences and some genomes consist of

more than 50% repeats. Tandem repeats are classified based on the length of their motif

(e.g. microsatellite, minisatellite, satellite/megasatellite).

Microsatellites are tandem repeats with motifs of no more than 6 bp long. They are

the most studied repetitive structures, due to their simple structure and their wide dis-

tribution throughout most eukaryotic genomes. It is known that the existence of some

microsatellites have health implications (Verkerk et al., 1993, 1991; Boland and Goel,

2010). Microsatellites are commonly used as genetic markers in evolutionary studies,

mainly due to their length polymorphism. The length polymorphism feature makes the

microsatellites easy to genotype using fragment length analysis (Waters and Wallis, 2000;

Nikula et al., 2011; Queller et al., 1993; Dib et al., 1996). A comprehensive literature re-

view of microsatellites and their implications, models of evolution, and applications can
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be found in (Goldstein and Schlotterer, 1999).

Minisatellites are tandem repeats with motif length in the range 7-100 bp. They are

more difficult to sequence and assemble than microsatellites. They are difficult to de-

tect due to a high evidence of polymorphism (single substitutions, single indels) amongst

repeat copies. Minisatellites have also proved to have health implications (Buard and Jef-

freys, 1997; Bois and Jeffreys, 1999). Due to the polymorphism in the repeated copies

and the copy numbers, minisatellites are used as genetic markers for phylogenetic stud-

ies (Jeffreys et al., 1991).

Recently, advances in computational tools have facilitated the detection of larger tan-

dem repeats such as satellites and megasatellites (Rolland et al., 2010). However, the

implications of these large repeats are yet to be understood.

The implications and applications of tandem repeats raise the question of whether

nested tandem repeats have similar implications and applications. The goal of this thesis

is to investigate nested tandem repeats, in particular, to detect and analyse nested tandem

repeats.

2.2 Models of tandem repeat evolution

In this section, we give an overview of the common evolution models for tandem repeats,

with an emphasis on minisatellites.

In the literature, there are several models for tandem repeat evolution. Microsatel-

lites have been studied more than other tandem repeat categories, and therefore a larger

number of evolution models have been introduced. It is acknowledged that the main

mutational mechanism that affects microsatellites is replication slippage, a process that

duplicates one or more and removes one or more repeat units (Levinson and Gutman,

1987). Other mutational mechanisms may be single nucleotide substitutions and dupli-

cations (Goldstein and Schlotterer, 1999). Microsatellites are simple repetitive structures

yet they have complex histories of evolution. The mutational process on microsatellites

depends on many factors such as the number of copies, length of the motif, GC content

and the location in the genome (Goldstein and Schlotterer, 1999).

The mechanisms that generate minisatellites are not yet well understood. The widely

used minisatellite mutational mechanisms are duplication, single substitutions, single in-
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dels, and segmental deletions. Duplication is the process of copying one or more motif

copies in tandem. Some models allow duplication of only one copy at a time (Berard

and Rivals, 2003), whereas other models allow for more than one copy to be duplicated,

e.g. (Sammeth and Stoye, 2006). The start of the duplication is typically considered to

fall on the motif boundary (fixed boundaries) (Fitch, 1977b; Sammeth and Stoye, 2006;

Berard and Rivals, 2003), however, Benson and Dong (1999a) have proposed a different

model of evolution where duplications may start at any site (dynamic boundaries).

2.3 Detection of tandem repeats

Various algorithms have been introduced to find exact tandem repeats. Such algorithms

were developed mainly for theoretical purposes, namely, to solve the problem of finding

squares in strings (i.e. adjacent repeats) (Apostolico and Preparata, 1983; Crochemore,

1981; Kolpakov et al., 2001; Main and Lorentz, 1984; Stoye and Gusfield, 2002). These

algorithms are not easily adapted to finding the approximate tandem repeats that usually

occur in DNA.

A number of algorithms (Delgrange and Rivals, 2004; Landau et al., 2001) consider

motifs differing only by substitutions, using the Hamming distance as a measure of simi-

larity.

Most algorithms used to search biological sequences take into account insertions and

deletions. They generally have two phases, a scanning phase that locates candidate tan-

dem repeats, and an analysis phase that checks the candidate tandem repeats found during

the scanning phase e.g. (Benson, 1999; Hauth and Joseph, 2002; Domaniç and Preparata,

2007; Wexler et al., 2005).

Benson (1999) addressed the problem of finding tandem repeats of different lengths.

Benson’s program scans the sequence once looking for all exact k-tuple matches (there

are 4k possible k-tuples) and records their positions. A list of distances is created to

record the differences between the indices of subsequent occurrences for each k-tuple.

The list of distances is used in two tests (the sum of heads and apparent size criteria tests)

to detect candidate tandem repeats. The program uses another two tests to help cut off

spurious signals; these are the random walk test and waiting time test. Any candidate

tandem repeats that pass these tests are then verified by an alignment algorithm in the
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verification phase.

ATRHunter due to Wexler et al. (2005) is another program constructed to find tan-

dem repeats. The screening phase scans the whole sequence once for each motif length.

To detect tandem repeats of length `, the similarity between adjacent sequences of length

` is tested. The similarity test is carried out by running two windows of length k through

the sequence, a distance ` apart. The size of k depends on `; for ` in the interval [7,100],

k is in the interval [3,5]. For each pair of adjacent sequences of length `, a vector of

length ` − k + 1 is created, where a 1 is recorded if the two windows are approximate

matches, and 0 otherwise. Score and gap criteria on the vectors are tested to decide if

these adjacent segments are candidate tandem repeats. The number of matches must be

larger than a threshold value S`(i), and the number of consecutive mismatches must be

smaller than ∆`(i). These thresholds are determined based on random walks on a graph

whose vertices represent all binary strings of length k. In the verification phase, a global

alignment is done between every pair of adjacent segments which were reported as can-

didate tandem repeats. If the score of the alignment is larger than a given threshold value,

a tandem repeat is reported, otherwise the candidate is dismissed.

Domaniç and Preparata (2007) introduced a new algorithm to find tandem repeats.

The main innovation of their algorithm is in the detection phase. A window of length k

is run through the sequence, and at each point the position of the immediately preceding

occurrence of the current k-tuple is recorded.

To date, the only algorithm specifically designed to look for NTRs is that of Hauth

and Joseph (2002), which searches for tandem motifs of length at most six nucleotides. A

more general definition of tandem repeats is introduced, as well as a definition of nested

tandem repeats. Their algorithm is able to find most short tandem repeats, due to their

conserved structure. It also finds nested tandem repeats where the repeat motif is no

more than 6 bp long. The detection component has a window of length k that screens the

sequence and creates a histogram of distances by recording the distance to the previous

occurrence of the k-tuple. Then peaks of the histogram are further investigated.
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2.4 Alignment

String similarity problems arise in many contexts, and as a result many algorithms exist to

address them. Finding the exact similarity between two strings is a fundamental computer

science problem, and a number of good solutions have been introduced by several authors

(see (Gusfield, 1997) for an overview). However, such exact matching algorithms gen-

erally are not useful when applied to molecular data, which tend to contain approximate

rather than exact matches due to the mutations that have occurred over time.

Many string similarity problems of biological interest can be phrased as alignment

problems (for a precise definition of alignment, see Section 5.3.4). These include the

problem of aligning two entire strings A and B (global alignment (Needleman and Wun-

sch, 1970)); the problem of aligning substrings of a string A against substrings of B (local

alignment (Smith and Waterman, 1981)); and the problem of finding all occurrences of

string B within string A. See (Navarro, 1999) for a survey. Such alignment problems are

commonly solved using the technique of dynamic programming.

Of greatest interest to us is the problem of finding the substring of T which best

matches a substring of xs for some s > 1 (tandem repeat alignment). To solve this prob-

lem efficiently Fischetti et al. (1993) introduced wrap-around dynamic programming,

which has O(|T||x|) space and time complexity. Chapter 5 solves the motif alignment

problem for nested tandem repeats by extending the algorithm of Fischetti et al. (1993).

2.5 Alignment of two tandem repeat sequences

Tandem repeats are informative markers for phylogenetic studies due to the high poly-

morphism in the number of motif copies as well as variation in the motif. Tandem repeat

genotyping has been used for many genetically monomorphic bacterial pathogens, such

as Yersinia pestis (Klevytska et al., 2001), Bacillus anthracis (Keim et al., 2000), and

Mycobacterium leprae (Truman et al., 2004).

Comparing tandem repeats and finding the distance between them is the first step

toward inferring evolutionary relationships. A pairwise tandem repeat alignment can be

considered as a primary goal to achieve a multiple tandem repeat alignment. The pairwise

tandem repeat alignment problem has been addressed under different tandem repeat evo-

lution models. Benson and Dong (1999b) developed exact and heuristic algorithms for
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comparing and aligning two tandem repeat sequences. Their model considers dynamic

boundaries, which means a duplication can occur at any position in the nucleotide se-

quence. Alignment of tandem repeats under insertion, substitution, duplication and dele-

tion of a single segment has been introduced by Behzadi and Steyaert (2003) and Berard

and Rivals (2003), Their algorithms have cubic time complexity. A more general model

of evolution, where a duplication of any size can occur (one or more adjacent copies of the

motif are duplicated in a single duplication event), is considered by Sammeth and Stoye

(2006). They introduced an algorithm to align tandem repeats; however, their algorithm

has exponential time complexity.

The algorithms which have been introduced in the literature are either restricted to

single duplication (such as (Behzadi and Steyaert, 2003) and (Berard and Rivals, 2003)),

which cannot be easily extended to multi-duplication, or are computationally expensive

(such as (Sammeth and Stoye, 2006)). In Chapter 7, we introduce an algorithm that

estimates the distance between two tandem repeats. Our algorithm has quadratic time and

space complexity.
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Chapter 3

Observations on the nested tandem

repeat found in taro

In this chapter, we discuss some observations on the nested tandem repeats in taro. Taro,

Colocasia esculenta, is a crop which belongs to the plant family Araceae. Taro is spread

from Southeast Asia to southern China, Australia and Melanesia (Matthews, 1991). The

population genetic study of this plant could provide information on the spread of agricul-

ture and trade in these regions.

The nested tandem repeats (NTRs) in taro were first observed by (Matthews et al.,

1992) in a 2800bp segment. With the help of newer sequencing technology a more de-

tailed analysis of NTRs suggests that they can be useful phylogenetic markers. The even-

tual goal of this study is to sequence cultivars from the Pacific region and use nested

tandem repeats as a marker to build a phylogeny of those cultivars. The nested tandem

repeats found in taro exist in the intergenic spacer of the nuclear ribosomal DNA gene.

The rDNA genes exist in arrays of hundreds of copies in the nuclear genome.

At this stage of the study (January, 2013), I have been provided with full sequences of

the NTR region for two cultivars, one from New Zealand (NZ1) and one from Japan (JP1).

The two sequences show a substantial similarity (similar NTR structures and similar sets

of motif variants), and this clearly shows that the NTR structure is naturally present in

Colocasia esculenta. The wide distribution of the NTRs in taro, in diploids and triploids,

and in wild and cultivated forms, makes it likely that the NTR structure is ancient in this

plant. Detailed analysis of these two NTRs is presented in this chapter.
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motif length pattern
x 11 TCGCACAGCCG

X 48 TTCTGGGCAAAACGGCTGGGCGACGTGCTGGACTGGCCAGCTGGTTCG

Table 3.1: The consensus motifs x and X which form the nested tandem repeats in taro.

3.1 Nested tandem repeat structures in NZ1 and JP1

The nested tandem repeats (NTRs) in NZ1 and JP1 show a substantial similarity which

suggests that they are homologous. The NTRs in NZ1 and JP1 consist of two repeated

motifs interspersed with one another. The two consensus motifs are listed in Table 3.1.

In NZ1, there are 89 approximate copies of motif x and 12 approximate copies of

motif X, whereas in JP1 there are 98 approximate copies of motif x and 13 approximate

copies of motif X. Recall from section 1.2.3 that the structure of an NTR of the form

xs0Xxs1X · · ·Xxsn , may be presented in the form (s0, s1, . . . , sn). Using this notation,

the nested tandem repeat structures in NZ1 and JP1 are as follows:

NZ1: (5,3,1,6,10,5,10,8,13,14,13,4)

JP1: (4,3,1,6,7,8,4,10,12,10,16,13,4)

The JP1 48 bp repeats are shown in Table 3.2.

3.2 Nested tandem repeat variants sequence

There are 21 variants of the tandem motif in the NTRs in NZ1 and JP1, with the motif

TCGCACAGCCG being the most frequent variant in each. These variants are listed in

Table 3.3. These variants differ from each other by single nucleotide substitutions, apart

from variant ‘v’ which is of length 13. The frequencies of the variants follow a power law

(see Figure 3.1).

3.3 Variants graph

As a result of mutational events that happened in the past, at the present time, we observe

an NTR containing a set of variants. Each variant may have a frequency which is the

number of its occurrences in the NTR. These frequencies depends on the rate of mutation

(single nucleotide mutation), rate of duplication and rate of deletion (segment duplication
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and deletion). We expect the frequencies of any two variants on average to be in the

approximate ratio of 1:1 if the relative rate of mutation to duplication is high. On the

other hand, if the relative rate of mutation to duplication is low we expect to have a small

number of variants.

The variants are hypothesised to be homologous (to have evolved from a single an-

cestral segment) with an ancestral history of duplication, substitution and deletion. If we

knew this history, we could illustrate it by a tree T , rooted at the common ancestor, where

each vertex represents a variant (historical or contemporary), and each edge represents

a set of edit operations transforming an ancestor to its descendant. We use a parsimony

principle for finding a tree T connecting the variants, where the total number of edit op-

erations to transform the connected variants is minimal.

When the variants are closely connected we consider the 1−cluster graphG1 = (V,E)

motif symbol variant sequence NZ1 JP1
a T C G C A C A G C C G 38 39
b T C G C C C A G C C G 18 19
c T C G C A C G A C C G 7 9
d T C G C A C A G C C A 5 7
e T C G C C C A C C C G 4 3
f T G G C A C G G C C A 3 5
g T C G C A C A G T C G 4 3
h T C G C A C A G T C A 2 2
i T C G C C C A T C C G 3 1
j T T G C A C A G C C G 1 2
k T C A C A C A G C C G 1 3
l T T G C C C A G C C G 1 1
m T C G C A C A T C C G 1 1
n T C A C A C A G C C A 1 1
o T C G T A C A G C C G 1 1
p T C G T A C G A C C G 1 1
q T C G C A C G G C C G 2 0
r T C G C A C A G C T G 0 1
s T C G C A C C G C T G 0 1
t T C G C A C C G C C G 1 0
v T C C CCC A C A G C C G 1 1

Table 3.3: The 21 tandem motif variants of JP1 and NZ1. Each variant is assigned a
character a, . . . , v. The frequency of each variant is listed in the third and fourth columns.
Variants b to t comprise 11 bp, and differ from a by 1, 2 or 3 substitutions shown in boxes.
Variant v comprises 13 bp with CCCCC replacing CGC in the 2, 3, and 4 sites.
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Figure 3.1: Frequencies of all variants in NZ1. The ratios of the three most common
variants a, b, and c appear to follow a power law. The frequencies of the variant a, b, and
c are in the approximate ratio 4:2:1.
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(Hendy et al., 1980), where V is the set of contemporary variants and the set of edges

E = {(u, v)|u, v ∈ V ; d(u, v) = 1} connects each pair of variants which differ by a

single edit operation (single site substitutions and indels). However G1 will not usually

be a tree. The graph G1 may contain circuits, for example, the four variants a, d, q, z in

Figure 3.2. This may be the consequence of a parallel mutation, which can happen when

the density of substitutions is high and the segments are short.

k

n
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i

m

u

t

o

r

s

Figure 3.2: The variants graph of the taro variants with the template motif being
TCGCACAGCCG, which is the variant a. The graph has two components, with variant
f at distance 2 from its closest neighbours. An additional (unobserved) variant z is added
to make the graph connected, which is not observed in the NTR region of JP1 and NZ1.
Variant v=TCCCCCACAGCCG is not included. The set of edges in this graph is the union
of the sets of edges of all minimum spanning trees. In each cycle in the graph, the edge
that connect the two least frequent variants is drawn as a dashed line.

The set V may not contain all ancestral variants, as some may have been lost by dele-

tion, and hence G1 might not be connected. This may occur if the substitution rate is

higher than the duplication rate. Connectivity can be achieved by adding edges (u, v)

with d(u, v) > 1, where u, v are in different components of G1, and Steiner points (new

vertices which could represent ancestral variants) when adjacent edges share some com-

mon edit operations, to reduce the total number of edit operations across the edges. For

example, the variant f differs by more than one substitution from any other observed

variant, and so we add the unobserved variant z (see Figure 3.2).
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We will refer to a connected graph G which connects all the variants, and which

may include additional hypothetical variants, and in which every edge represents an edit

operation, as a variants graph. The construction of the variants graph is NP-hard (Foulds

and Graham, 1982).

The variants distance graph is the weighted complete graph with vertex set the set of

variants, in which the edge between variants u and v is given weight d(u, v).

3.4 Expected number of parallel substitutions

Single point substitutions happen in the duplication history of tandem repeats. These

single substitutions produce a set of variants that we observe at the current time. The

number of substitutions that occurred in the past is unknown, but a lower bound on the

number of substitutions is the length of the Steiner tree of the variants, which can be

approximated by the length of the minimum spanning tree of the distance graph. Note that

the length of the Steiner tree is equal to the length of the minimum spanning tree when the

variants graph is an 1−cluster (Hendy et al., 1980). However, some parallel substitutions

may have occurred during the evolution of the nested tandem repeat, whereby an existing

variant is created again.

In this section, we calculate the likelihood P (k, i) that i observed substitutions are

the result of k ≥ i substitutions on a motif of size n. There are 3n possible substitu-

tions, where n is the length of the motif. A substitution can either be a new substitution

or it can be parallel (it duplicates an existing substitution); in the second case the num-

ber of substitutions does not increase. If we observe i substitutions after k substitutions

have occurred, then the (k + 1)−th substitution produces either a new substitution (with

probability 3n−(i−1)
3n

), or reproduces an existing substitution (a parallel substitution with

probability i
3n

). Thus the probability P (k, i) of observing i substitutions after k > 0

substitutions can be calculated using the recursive formula

P (k, i) = P (k − 1, i− 1)× 3n− (i− 1)

3n
+ P (k − 1, i)× i

3n
,

for k > 0, i > 0,

23



19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

5 · 10−2

0.1

0.15

0.2

P (k, 19)

Figure 3.3: The likelihood distribution of the number of substitutions to produce 19 vari-
ants of a motif of length 11 bp. Bars representing likelihood values greater than 0.1 are
coloured in red.

with initial values

P (0, 1) = 1, P (0, i) = 0, P (k, 0) = 0 for i 6= 1.

Figure 3.3 plots P (k, i) for n = 11 and i = 19, as is the case for the tandem motifs in

NZ1. This suggests that the number of parallel substitutions in NZ1 is more likely to be

in the range 24− 19 = 5 to 32− 19 = 13.

3.5 Variants frequency distribution

Nested tandem repeat copies contain variants observed in different frequencies. For ex-

ample, in NZ1, variant ‘a’ is observed 38 times, while variant ‘b’ is observed 18 times.

The 2:1 distributions in Figure 3.1 suggests an early distribution is ‘aab’, ‘aba’ or ‘baa’.

Ten possible duplication history scenarios that lead to a segment that consists of two ‘a’s

and one ‘b’ are shown in Figure 3.4.

There are eight minimal paths to generate ‘aab’, ‘aba’, or ‘baa’ from ‘a’, and two to
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Figure 3.4: Duplication history scenarios. The dashed lines represent substitutions and
the solid lines represent duplications. There are 10 possible minimal paths to produce a
segment of three characters that consists of two ‘a’s and one ‘b’ from a single segment ‘a’
(8 paths) or ‘b’ (2 paths). Note that there are two ways to obtain ‘aaa’ from ‘aa’, because
we may duplicate either the first or the second character.

generate them from ‘b’. Therefore, we will choose ‘a’ as the more likely ancestral variant.

We assume that the duplication mechanism has no preference on which variant to copy.

Therefore, the ratio of frequencies for the more frequent variants are expected to remain

similar through the later stages of the duplication history. Variants occurring with low

frequencies and close to each other in the sequence suggest they are recent.

3.6 Variants spread

The distribution of variants in a repeated region is correlated with the time at which the

variants were introduced. The earlier variants in the evolution of the NTR have a greater

opportunity to be duplicated and therefore are likely to have both a greater spread in

the sequence and a greater frequency. The spread here refers to the difference between

the right most copy position and the left most copy position for a particular variant. A

later variant must have a restricted spread unless there has been one or more parallel

substitutions to independently produce additional copies. In Table 3.2 the variant ‘a’

occurs 38 times in NZ1 and 39 times in JP1 and is spread all over the NTR sequence,

which leads to the conclusion that ‘a’ is the oldest variant and probably the ancestral

variant. The frequency of variant ‘b’ is 18 which suggests it is more likely that the change

from ‘a’ to ‘b’ happened in an early stage of the duplication history tree.

Figure 3.3 suggests that the total number of substitutions is likely to be in the range 24

to 32, and so the number of parallel substitutions is likely to be in the range 5 = 24− 19
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to 13 = 32− 19. If such a parallel substitution occurs in widely separated variant copies,

then these variants will have a larger spread to frequency ratio. In Figure 3.6, we note

that variants h, q, g, f have larger spread to frequency ratio. This suggests that it is more

likely that these variants copies were a result of parallel substitutions.

It is important to take the information on the spread of the variants into account when

inferring the duplication history.
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Figure 3.5: Variant frequency
plotted against spread. The
spread refers to the difference
between the positions of the
right most and left most copies.
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Figure 3.6: Variant spread to
frequency ratio. The variants c,
g, f , and q have higher spread
to frequency ratios, suggesting
that they are likely to be the re-
sult of parallel substitutions.
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Chapter 4

NTRFinder: A Software Tool to Find

Nested Tandem Repeats

This chapter reproduces the text of NTRFinder: a software tool to find nested tandem

repeats, A. Matroud, C. Tuffley, and M. Hendy, Nucleic Acids Research (Matroud et al.,

2012b). It has been reformatted for consistency with the rest of thesis, and some back-

ground and definitions have been moved to Chapter 1.

4.1 Abstract

We introduce the software tool NTRFinder to search for a complex repetitive struc-

ture in DNA we call a nested tandem repeat (NTR). An NTR is a recurrence of two or

more distinct tandem motifs interspersed with each other. We propose that nested tandem

repeats can be used as phylogenetic and population markers.

We have tested our algorithm on both real and simulated data, and present some real

nested tandem repeats of interest.

NTRFinder can be downloaded from http://www.maths.otago.ac.nz/

˜aamatroud/.

4.2 Introduction

Genomic DNA has long been known to contain tandem repeats: repetitive structures

in which many approximate copies of a common segment (the motif ) appear consecu-
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tively. Several studies have proposed different mechanisms for the occurrence of tandem

repeats (Weitzmann et al., 1997; Wells, 1996), but their biological role is not well under-

stood.

Recently we have observed a more complex repetitive structure in the ribosomal DNA

of Colocasia esculenta (taro), consisting of multiple approximate copies of two distinct

motifs interspersed with one another. We call such structures nested tandem repeats

(NTRs), and the problem of finding them in sequence data is the focus of this paper.

Our motivation is their potential use for studying populations: for example, a preliminary

analysis suggests that changes in the NTR in taro have been occurring on a 1,000 year

time scale, so a greater understanding of this NTR offers the potential to date the early

agriculture of this ancient staple food crop.

The problem of locating tandem repeats is well known, as their implication for neuro-

logical disorders (Verkerk et al., 1993; Fu et al., 1992), and their use to infer evolutionary

histories has urged some researchers to develop tools to find them. This has resulted in a

number of software tools, each of which has its own strengths and limitations. Most of

these software tools use statistical criteria on the distances between k-tuple matches (these

distances are generally multiples n·` of the pattern length ` , where n ∈ {1, 2, . . . }). How-

ever, the distances between matching k-tuples in NTRs are of the form a ·α+ b ·β, where

α and β are the lengths of the two patterns and a, b ∈ {1, 2, . . . }. Consequently these

software tools do not generally find NTRs. In this paper we present a new software tool,

NTRFinder, which is designed to find these more complex repetitive structures.

We report here the algorithm on which NTRFinder is based and report some of the

NTRs it has identified, including an even more complex structure where copies of four

distinct motifs are interspersed.

4.3 Material and Methods

In this section we present the algorithm we have developed to search for nested tandem

repeats in a DNA sequence. The algorithm requires several preset parameters. These are:

k1 and k2 which bound the edit distances from the tandem and interspersed motifs; and

the motif length bounds mint1 ,maxt1 ,mint2 ,maxt2 . Other input parameters are discussed

below.
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Search phase Our search is confined to seeking NTRs with motifs of length l1 ∈

[mint1 ,maxt1 ] and l2 ∈ [mint2 ,maxt2 ]. A (k1, k2)−NTR must contain a k1−TR, so we

begin by scanning the sequence for approximate tandem repeats. To do this we have cho-

sen to adapt the tandem repeat search algorithm ATRHunter of Wexler et al., in which the

sequence is searched for tandem motifs of length l1 by scanning the sequence with two

windows w1 and w2 of width w, at distance l1 apart. This may be adapted to find non-

adjacent copies of the tandem motif (as occur in NTRs) by holding w1 fixed, and moving

w2 further away.

The user may set the k1, k2 values, preset with default values

k1 = l1(1− pm) +
√
l1(1− pm)pm (4.1)

k2 = l2(1− pm) +
√
l2(1− pm)pm, (4.2)

following Domaniç and Preparata (2007), with matching probability pm given the default

value pm = 0.8.

Once a TR has been found and its full extent determined, the right-most copy of the

repeated pattern is taken as the current TR motif x, and further approximate copies of x

are sought, displaced from the TR up to a distance of maxt2 nucleotides to the right. This

is done by moving the second scanning window w2 to the right, while holding the first

fixed in the current copy of x. If no further approximate copies of x are located, this TR

is abandoned, and the TR search continues to the right. If a displaced approximate copy

of x is observed, then both x and the interspersed segment X are recorded in a list, as

we have found a candidate NTR. Further contiguous copies of x are then sought, with the

rightmost copy x replacing the previous template motif.

The steps above are repeated with successive motifs x and interspersed segments

copied to the list, until no additional copies of the last recorded motif x are found. This

search phase is illustrated in Figure 4.1.

At this point the algorithm builds consensus patterns for x and X using majority rule.

After constructing the two consensus patterns the algorithm moves to the verification

phase.
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Example: An example will help illustrate the procedure. Suppose that S contains an

NTR of the form

xX0xxxX1xxxxxxX2xxX3.

The algorithm will scan from the left until it locates the tandem repeat consisting of three

copies of x between X0 and X1. It will then start searching for additional non-adjacent

copies of x to the right, locating the first copy to the right of X1. Having found this it will

record the intervening segment X1, and then continue the tandem repeat search from this

point until the full extent of the tandem repeat between X1 and X2 is found.

This procedure is repeated once more, locating the tandem repeat between X2 and

X3, recording the segment X2, and then searching for further copies to the right. At this

point no more copies of x are found, and the process of verification begins. The segments

X0, X3 and the initial copy of x are found during this stage.

Verification phase: Each candidate NTR is checked to determine whether it meets the

NTR definition. This is accomplished by aligning the candidate NTR region, together

with a margin on either side of it, against the consensus motifs x and X, using the

nested wrap-around dynamic programming algorithm of Matroud et al. (2011), presented

in Chapter 5 of this thesis. The nested wrap-around dynamic programming parameters

are set to be 2 for a match, −5 for a mismatch, and −7 for a gap. These parameters

were chosen following (Wexler et al., 2005). The nested wrap-around dynamic program-

ming algorithm has complexity O(n|x||X|), where n is the length of the NTR region and

|x| and |X| are the length of the tandem motif and the length of the interspersed motif

respectively.

A remark on tandem repeat detection, and the role of verification The definition

of a k-TR requires that each repeat be a distance at most k from some template motif.

However, this template is unknown during the search phase. We follow ATRHunter’s

algorithm to compare each repeat copy with its preceding copy. Comparisons between

adjacent copies will not miss any tandem repeats, provided the distance threshold is set

appropriately, but may result in false positives due to “drift”. Such false positives are

eliminated during the verification phase, when the candidate tandem repeat is aligned

against the consensus motif.
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Suppose that x1x2 · · ·xn is a k-TR with motif x. Then since d(x,xi) ≤ k we have

d(xi,xj) ≤ d(xi,x) + d(x,xj) ≤ 2k,

by the triangle inequality. It follows that a tandem repeat search that correctly detects

when d(xi,xi+1) ≤ d will find all (d/2)-TRs.

We note however that a segment x1x2 · · ·xn satisfying d(xi,xi+1) ≤ d for all i need

not be a tandem repeat, since xj may “drift” away from xi as j increases. A simple

example is

aaaa aaac aacc accc cccc,

in which adjacent copies are distance 1 apart, but the first and last copies are distance 4

apart.

4.4 Results

4.4.1 Tests on simulated data

In order to measure the accuracy of NTRFinder, we generated synthetic sequence data

containing NTR subsequences with varying probabilities of substitution and insertion

and deletion (indels), and determined the proportion of the NTRs that were found by

NTRFinder. In our simulation we first generated one random DNA sequence of 100000

nucleotides, with each nucleotide occurring with probability 0.25. Within this sequence

we embedded 100 exact NTRs with repeats of randomly generated motifs X and x of

varying lengths. From this sequence we generated four additional sequences by intro-

ducing indels and substitutions. Indels were introduced to each sequence with a constant

probability of 1% per site, and substitutions were introduced with varying probabilities

of 1%, 2%, 3% and 4% per site. NTRFinder recovered 95%, 84%, 83%, 83% and 80%

of the NTRs respectively. These results are plotted in Figure 4.2. No false positives were

detected.

The first phase of NTRFinder uses a modification of the algorithm ATRHunter pre-

sented by Wexler et al. (2005). Wexler et al. report that ATRHunter has a 74%–90%

success rate for finding ATRs in synthetic sequences, with average score of an ATR over

all sequences being 238 with a standard deviation 116. These results suggest the accuracy
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of the Wexler algorithm provides the major limitation on the accuracy of NTRFinder.

4.4.2 Tests on real sequence data

To test NTRFinder on real sequence data we searched all intergenic spacer (IGS) se-

quences available in Genbank. The IGS sequences were chosen because we already knew

of an NTR in the IGS region of C. esculenta. We also searched the entire Human Y

chromosome from (Fujita et al., 2010).

The size ranges used for this search were [mint1 ,maxt1 ] = [mint2 ,maxt2 ] = [2, 100],

with the parameters k1 and k2 set to their default values given in equations (4.1) and (4.2)

on page 29. NTRs found in IGS sequences are listed in Table 4.1. We searched 27 IGS

sequences and found NTRs in 12 of them.

NTRs found in the Human Y chromosome are listed in Table 4.2. The 11 NTRs found

in the Y chromosome all appear to be in the psuedoautosomal region.

4.4.3 More complex structures

In addition to the nested tandem repeats in Table 4.2, NTRFinder also reported an NTR

in Linum usitatissimum (accession number gi| 164684852 | gb|EU307117.1|) which on

further analysis by hand turned out to have a more complex structure. The IGS region

of the rDNA of this species contains an NTR with four motifs interspersed with each

other. The four motifs are w=GTGCGAAAAT, x=GCGCGCCAGGG, y=GCACCCATAT, and

z=GCGATTTTG, and the structure of the NTR has the form

25∏
i=1

wqixrizsiyti ,

where qi ∈ {1, 2, 3}; ri ∈ {1, 2}; si ∈ {0, 1}; ti ∈ {0, 1}.

4.4.4 Running time

The running time for NTRFinder searching some sequences from GenBank is shown in

Figure 4.3. It can be seen that the run time is approximately linear in the length of the

sequence. However, it must be noted that the run time depends not only on the length of

the input sequence, but also on the number of tandem and nested tandem repeats found in
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the sequence. The program spends most of the time verifying any tandem repeats found.

4.5 Discussion

In the last decade a number of software tools to find tandem repeats have been introduced;

however, little work exists on more complex repetitive structures such as nested tandem

repeats. The problem of finding nested tandem repeats is addressed in this study. The

motivation for our study is the potential use of NTRs as a marker for genetic studies of

populations and of species.

We have done some analysis on the nested tandem repeat in the intergenic spacer re-

gion in C. esculenta (taro), noting some variation in the NTRs derived from domesticated

varieties sourced from New Zealand, Australia and Japan. Further varieties are currently

being analysed.

4.6 Conclusion

The nested tandem repeat structure is a complex structure that requires further analysis

and study. The number of copy variants in the NTR region and the relationships between

these copies might suggest a tandem repeat generation mechanism. In this paper, we have

introduced a new algorithm to find nested tandem repeats. The first phase of the algo-

rithm has O(n(maxt1)(maxt2)) time complexity, while the second phase (the alignment)

needs O(n(maxt1)(maxt2)) space and time, where n is the length of the NTR region, and

maxt1 ,maxt2 are the maximum allowed lengths of the tandem and interspersed motifs.
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Figure 4.1: Flowchart of the NTRFinder algorithm.
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Figure 4.2: Percentage of NTRs found in the synthetic sequences.

Species NTR structure |x| start index
Accession number (s0, s1, ..., sn) |X| end index

Nicotiana sylvestris (0,1,2,3,4,2,3,2,3,3,3,5,4,3,2,3,3,1,2,5,3,5,4,2,2,4,3) 10 960
X76056.1 13 2,111

Brassica juncea (9,12,2,6,2,5,4,1) 21 1,403
X73032.1 30 2,605

Brassica olerecea (1,1,1,3,3,1,3,2,1,1,2,1,3,1,1,2,1,2,1,1,2) 30 1,031
X56978.1 44 2,902

Brassica olerecea (1,1,1,3,3,1,3,1,3,2,1,1,2,1,3,1,1,2,1,2,1,1,2) 30 1,036
X60324.1 44 3,133

Brassica rapa (1,2,2,3,3,2,2,2,3) 12 385
S78172.1 45 1,337

Brassica campestris ( 6,4,4,7,4,4,4,3,1) 21 1,558
X73031.1 51 2,580

Colocasia esculenta (5,3,1,6,10,5,10,9,13,14,15,4) 11 725
Not published 48 2,384

Nicotiana tomentosiformis ( 1,1,2,2,1,2,4,2,1) 20 1,016
Y08427.1 46 1,969

Arabidopsis thaliana (3,2,1,1) 13 32,189
CP002685.1 17 32,365

Zea mays (2,2,1) 19 2,984
AJ309824.2 52 3,113

Olea europaea (3,1,3,6,5,6,4,3,4) 75 961
AJ865373.1 11 3,743

Herdmania momus (3,1,1,1,1,0) 107 6,363
X53538.1 91 7,642

Table 4.1: Nested tandem repeats found in some IGS sequences searched from GenBank
and an additional unpublished sequence (C. esculenta).
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NTR structure |x| start index
(s0, s1, ..., sn) |X| end index

(1,2,2,1,2,1,2,1,1,2,2,2,2,1) 12 143,865
56 144,880

(7,22,23,12,14,4) 2 234,183
88 234,767

(1,1,2,1,1,1,1,,1,1,1,1,1,1,1,1,1,1,1,1) 15 465,369
14 466,397

(1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1, 11 647,659
1,1,1,1,1,1,1,1,1,1,1,1,1) 16 649,721

(17,15,31,28,72,62) 2 901,237
49 902,037

(3,6,8,11,7,6,4,4,5,4,11) 12 1,279,754
32 1,280,875

(26,27,25,25,25,20,17,13,26) 1 1,397,128
48 1,397,735

(1,2,1,2,1,2,2,2,2,2,1,2,1,1,1,2,2,2,1,2,2,1,1) 16 1,516,157
22 1,517,560

(1,1,2,6,2,2,2,1,2) 19 1,626,578
35 1,627,258

(1,1,1,0,2,1) 19 2,102,194
56 2,102,594

(2,2,2,1,2,1,1,1,1,2,6) 21 2,164,541
15 2,165,091

Table 4.2: Nested tandem repeats found in the Human Y chromosome (accession number
NC 000024).
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Figure 4.3: Running time of NTRFinder (on a Pentium Dual core T4300 2.1 GHz) plotted
against segment length on a log-log scale. The search was performed on segments of
different lengths, with the minimum and maximum tandem repeat lengths set to 8 and
50 respectively. The distribution suggests the running time is approximately linear with
sequence length.
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Chapter 5

An algorithm to solve the motif

alignment problem for approximate

nested tandem repeats in biological

sequences

This chapter reproduces the text of An algorithm to solve the motif alignment problem

for approximate nested tandem repeats in biological sequences, A. Matroud, C. Tuffley,

and M. Hendy, Journal of Computational Biology (Matroud et al., 2011). It has been

reformatted for consistency with the rest of thesis.

5.1 Abstract

An approximate nested tandem repeat (NTR) in a string T is a complex repetitive struc-

ture consisting of many approximate copies of two substrings x and X (“motifs”) inter-

spersed with one another. NTRs have been found in real DNA sequences and are expected

to be important in evolutionary biology, both in understanding evolution of the ribosomal

DNA (where NTRs can occur), and as a potential marker in population genetic and phylo-

genetic studies. This chapter describes an alignment algorithm for the verification phase

of the software tool NTRFinder developed for database searches for NTRs. When the

search algorithm has located a subsequence containing a possible NTR, with motifs X

and x, a verification step aligns this subsequence against an exact NTR built from the
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templates X and x, to determine whether the subsequence contains an approximate NTR

and its extent. This chapter describes an algorithm to solve this alignment problem in

O(|T|(|X| + |x|)) space and time. The algorithm is based on the wrap-around dynamic

programming of Fischetti et al. (1993).

5.2 Introduction

An approximate nested tandem repeat (NTR) in a string T is a complex repetitive struc-

ture consisting of many approximate copies of two substrings x and X (“motifs”) inter-

spersed with one another. The name derives from the fact that an NTR may be thought of

as two tandem repeats nested within one another.

Approximate nested tandem repeats have been found in real DNA sequences, such as

that of Colocasia esculenta, the ancient staple food crop taro (Matroud et al., 2012b).

The intergenic spacer (IGS) region in the taro ribosomal DNA contains an NTR consist-

ing of eleven approximate copies of a 48 bp motif, interspersed within a tandem repeat

consisting of 96 approximate copies of an 11 bp motif. The NTR found in taro, used as a

genetic marker, offers the potential to elucidate the prehistory of the early agriculture of

this ancient food crop, as mutation events appear to be accumulating on a thousand-year

time scale. NTRs in general also offer an opportunity to investigate concerted evolution

whereby mutations are propagated throughout the many hundreds of copies of the IGS

region in the taro genome.

To develop a fuller understanding of the nature of NTRs, we have developed software

to find them (Matroud et al., 2012b). This comprises two phases. The first phase is the

detection phase, where the sequence is scanned to locate candidate NTRs and construct

their consensus motifs X and x. The second phase is the verification phase where a sub-

sequence containing a possible NTR, with motifs X and x, is aligned against all patterns

of the form

xs0Xt0xs1Xt1 · · ·xskXtk .

Such an alignment is needed to find the extent and structure of the NTR (that is, to find

the exponents si, ti occurring above), and may also be used to evaluate the fit of the

template motifs x and X. We call this problem the motif alignment problem for NTRs, to

distinguish it from the mapping problem (variants alignment problem) that arises at later
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stages of the analysis.

The purpose of this chapter is to present an algorithm to solve the motif alignment

problem for approximate NTRs, given a sequence T, and the motifs x and X identified

by our NTR search algorithm NTRFinder (Matroud et al., 2012b). Our alignment algo-

rithm runs in O(|T|(|x| + |X|)) space and time, and plays a key rule in the verification

phase of NTRFinder. It is based on the wrap-around dynamic programming technique

introduced by (Fischetti et al., 1993) to solve the corresponding problem for (ordinary)

tandem repeats. We show it can be readily adapted for use with more complex repetitive

structures built from three or more motifs.

5.3 Definitions

5.3.1 Alphabets and strings

An alphabet is a nonempty set Σ of symbols or characters, and a string over Σ is a finite

sequence of elements of Σ. We write Σ∗ for the set of all strings over the alphabet Σ, and

|S| for the length of the string S.

Given a string S and integers i, j such that 0 < i ≤ j ≤ |S|, we will write S[i] for the

ith character of S, and S[i, j] for the substring consisting of the ith to jth characters of S.

Given a second string T, the concatenation of S and T is the string ST, where

(ST)[i] =

S[i] if i ≤ |S|,

T[i− |S|] if i > |S|.

In applications to DNA sequences Σ is typically the set {A, G, C, T}, and we will use

this alphabet in examples. However, our algorithm is not restricted to this case.

5.3.2 The edit distance

In order to compare two strings X and Y it is useful to have some measure of the extent

to which they differ. For the purposes of this chapter we will use the edit distance, where

the edit operations we permit are the insertion of a single character; the substitution of a

single character; or the deletion of a single character.
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Given a set of allowed edit operations, such as those listed above, the edit distance

from X to Y, d(X,Y), is the minimum number of allowable edit operations needed to

transform X into Y. With the choice of permitted edit operations made above, it is straight

forward to verify that d is a metric.

5.3.3 Tandem repeats and nested tandem repeats

An exact tandem repeat is a string of the form Xl for some l ≥ 2. Thus, an exact tandem

repeat is a string comprised of two or more contiguous exact copies of the same substring

X. This substring is called the motif of the tandem repeat. We obtain an approximate

tandem repeat by allowing approximate rather than exact copies of the template motif X.

More precisely, an approximate tandem repeat is a string of the form X1X2 · · ·Xl, where

d(X,Xi) ≤ k|X| for each i, for some fixed k < 1 and template motif X. Where the value

of the parameter k is important we may say that we have a k-approximate tandem repeat

(k-TR). For simplicity of notation, we will write X̃l to mean an approximate tandem

repeat, consisting of l approximate copies of X.

Given two motifs X and x such that d(X,x)� 0, an exact nested tandem repeat is a

string of the form

xs0Xt0xs1Xt1 · · ·xsnXtn ,

where n > 1, si ≥ 1 for each i > 0, and ti ≥ 1 for each i < n. We again obtain an

approximate nested tandem repeat by allowing the copies of the motifs X and x to be

approximate rather than exact. Thus, an approximate nested tandem repeat is a string of

the form

x̃s0X̃t0x̃s1X̃t1 · · · x̃snX̃tn ,

where n > 1, si ≥ 1 for each i > 0, and ti ≥ 1 for each i < n, and such that x̃s0x̃s1 · · · x̃sn

is an approximate tandem repeat with motif x, and X̃t0X̃t1 · · · X̃tn is an approximate

tandem repeat with motif X.

Note that the definition of an approximate nested tandem repeat includes exact nested

tandem repeats as a special case. “Nested tandem repeat” or “NTR” by itself will always

mean an approximate nested tandem repeat, unless explicitly stated otherwise.

Remark. The definition of an NTR given here is slightly more general than that given

in Chapter 4. In Chapter 4, a nested tandem repeat is required to satisfy ti ≤ 1 for each i.
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5.3.4 Alignment

Given an alphabet Σ, let Σ̄ be the alphabet Σ ∪ {−}, where “−” (“gap”) is a character

that does not belong to Σ. We define φ : Σ̄∗ → Σ∗ to be the function that deletes all gaps.

Given two strings A,B ∈ Σ∗, an alignment of A and B is a choice of a pair of strings

(Ā, B̄) ∈ Σ̄∗ × Σ̄∗ satisfying the following conditions:

A1. φ(Ā) = A and φ(B̄) = B;

A2. |Ā| = |B̄|; and

A3. there is no index i for which Ā[i] = B̄[i] = −.

Thus, Ā and B̄ are obtained from A and B respectively by inserting gaps in such a way

that the resulting strings have the same length, and do not both have a gap in the same

position.

σ − A C G T

− −∞ −2 −2 −2 −2
A −2 1 −1 −1 −1
C −2 −1 1 −1 −1
G −2 −1 −1 1 −1
T −2 −1 −1 −1 1

Table 5.1: A sample scoring matrix for DNA sequences. This matrix rewards matching
characters from Σ with a score of +1, and penalises mis-matching characters from Σ with
a score of −1. The penalty for aligning a gap against a character from Σ is −2. The value
σ(−,−) = −∞ reflects condition A3, which prohibits a gap being aligned against a gap.

To score an alignment we use a scoring matrix σ, which specifies the reward or penalty

for aligning any two characters of Σ̄ against each other. See Table 5.1 for an example.

We will assume throughout that σ penalises gaps (that is, σ(−, α) and σ(α,−) are both

negative for all α ∈ Σ̄), and we set σ(−,−) = −∞ to reflect condition A3 above. Given

an alignment (Ā, B̄) for which |Ā| = |B̄| = L, the alignment score of (Ā, B̄) is then

defined to be

σ(Ā, B̄) =
L∑
i=1

σ(Ā[i], B̄[i]).

An optimal global alignment is an alignment of A and B which maximises the alignment

score over all such alignments. See (Navarro, 1999) for a survey of this and other align-

ment problems.
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5.4 The motif alignment problem for approximate nested

tandem repeats

5.4.1 The problem

The motif alignment problem for approximate nested tandem repeats is the following:

Given

1. a string T and motifs x and X over the alphabet Σ, and

2. a scoring matrix σ defined over Σ̄× Σ̄,

find an optimal alignment of T against substrings of strings of the form

xs0Xt0xs1Xt1 · · ·xskXtk .

Thus, given a string T that is presumed to contain an approximate nested tandem

repeat with motifs x and X, and a scoring matrix σ, the problem is to find an optimal

alignment of T against substrings of exact nested tandem repeats with motifs x and X.

5.4.2 Solution to the problem via nested wrap-around dynamic pro-

gramming

The motif alignment problem for NTRs is closely related to the corresponding problem for

tandem repeats, which was solved by (Fischetti et al., 1993) using wrap-around dynamic

programming. We solve the problem by adapting their technique. The key differences are

the introduction of a second matrix, to hold information relating to the second motif, and

a modification to the update rule used between the first and second passes.

In what follows we let n = |T|, m = |x|, and l = |X|. An optimal alignment will

be calculated using two matrices D(1) and D(2). The matrix D(1) is (m + 1) × (n + 1),

and will record scores related to aligning portions of T against x, while the matrix D(2)

is (l + 1) × (n + 1), and will record scores related to aligning portions of T against X.

Both matrices will be indexed starting from 0, and we will denote the (i, j) entry of D(k)

by D(k)[i, j]. We write D(k)
i,j for the upper-left (i+ 1)× (j + 1) submatrix of D(k).
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The score matrices D(1) and D(2) are filled as follows:

1. We initialise the two matrices by setting

D(k)[0, j] := 0, D(k)[i, 0] := 0

for all i, j and k.

2. We compute each column of the matrices (starting from j = 1) in two rounds. In

the first round we compute D(1)[i, j] using the recursive function

D(1)[i, j] := max


D(1)[i− 1, j − 1] + σ(x[i],T[j]),

D(1)[i− 1, j] + σ(x[i],−),

D(1)[i, j − 1] + σ(−,T[j])

 .

We then compute D(2)[i, j] in a similar fashion.

In the second round, we update both matrix entries D(1)[0, j] and D(2)[0, j] with the

value max{D(1)[m, j], D(2)[l, j]}, and then update D(1)[i, j] for 1 ≤ i ≤ m using

the formula above, which simplifies to

D(1)[i, j] := max{D(1)[i, j], D(1)[i− 1, j] + σ(x[i],−)}

during the second round. The entries D(2)[i, j] for 1 ≤ i ≤ l are then updated in a

similar fashion.

The visualisation of the algorithm is shown in Figure 5.4.2. Pseudo-code for the matrix-

filling algorithm appears below.

Once the matrices are filled, an optimal alignment is found using the standard trace-

back procedure for dynamic programming (see for example (Fischetti et al., 1993)), be-

ginning from the largest entry in the righthand columns of D(1), D(2). The algorithm

clearly has space complexity O(n(m + l)), and the matrices D(1) and D(2) are filled in

time O(n(m+ l)).
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Data: Strings T, X, x and scoring matrix σ
Result: Matrices D(1), D(2) containing optimal alignment scores with respect to σ

of alignments of T against substrings of exact NTRs with motifs X and x
for j = 0 to |T| do

for i = 0 to |x| do
D(1)[i, j] := 0

end
for i = 1 to |X| do

D(2)[i, j] := 0
end

end
for j = 1 to |T| do

for i = 1 to |x| do
D(1)[i, j] := max{D(1)[i− 1, j − 1] + σ(x[i],T[j]),
D(1)[i− 1, j] + σ(x[i],−), D(1)[i, j − 1] + σ(−,T[j])}

end
for i = 1 to |X| do

D(2)[i, j] := max{D(2)[i− 1, j − 1] + σ(X[i],T[j]),
D(2)[i− 1, j] + σ(X[i],−), D(2)[i, j − 1] + σ(−,T[j])}

end
D(1)[0, j] := max{D(1)[|x|, j], D(2)[|X|, j]}
D(2)[0, j] := max{D(1)[|x|, j], D(2)[|X|, j]}
for i = 1 to |x| do

D(1)[i, j] := max{D(1)[i, j], D(1)[i− 1, j] + σ(x[i],−)}
end
for i = 1 to |X| do

D(2)[i, j] := max{D(2)[i, j], D(2)[i− 1, j] + σ(X[i],−)}
end

end
Algorithm 1: Pseudo-code for our nested wrap-around dynamic programming algo-
rithm for the motif alignment problem for NTRs.

5.4.3 Correctness of the algorithm

We now prove by induction that the matricesD(1) andD(2) have been calculated correctly

to produce the optimal alignment. In what follows let NTR(x,X) denote the set of all

strings N that occur as substrings of exact NTRs with motifs x and X.

Suppose that the two sub-matrices D(1)
m,j−1 and D(2)

l,j−1 have been correctly computed

for some j ≥ 1. That is, assume that D(1)[i, j − 1] is the optimal alignment score of

any alignment of T[1, j − 1] against a string N ∈ NTR(x,X) that ends with a suffix of

x[1, i], and similarly that D(2)[i, j − 1] is the optimal alignment score of any alignment

of T[1, j − 1] against a string N ∈ NTR(x,X) that ends with a suffix of X[1, i]. When
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D(1)

D(2)

A
C
A
G
A

G T C A C G A A C A G A G T C

Alignment:
G T C A C - G A A C A G A G T C
| | | | | | | | | | | | | | |
G T C A C A G A A C A G A G T C

Figure 5.1: Visualisation of the algorithm applied to the string T = GTCACGAACAGAGTC,
with template motifs x = GTC, X = ACAGA. The matrix D(1) lies in the (x,T) plane,
while D(2) lies in the (X,T) plane. The majority of the matrix entries have been omitted
for clarity. Solid arrows represent the optimal alignment path, while dashed arrows indi-
cate that the value at its tail is fed to the location at its head. The corresponding alignment
appears below the diagram.

i = 0 our assumption is that

D(1)[0, j − 1] = D(2)[0, j − 1] = max{D(1)[m, j − 1], D(2)[l, j − 1]},

so that this common value is the optimal score of an alignment of T[1, j − 1] against a

string N ∈ NTR(x,X) ending in either x[m] or X[l].

Consider an alignment (N̄, S̄) of S = T[1, j] against a string N ∈ NTR(x,X) ending

in x[1, i] or X[1, i]. We consider three cases, according to the final characters of S̄ and N̄:

1. If S̄ ends in T[j] and N̄ in x[i], then deleting these characters gives an alignment

of T[1, j − 1] against a string N′ ∈ NTR(x,X) ending in x[i − 1] if i > 1, or in

either x[m] or X[l] if i = 1. It follows that

σ
(
N̄, S̄

)
≤ D(1)[i− 1, j − 1] + σ(x[i],T[j]),

with equality when N̄ and S̄ are obtained by appending x[i] and T[j] to an optimal

alignment at D(1)[i− 1, j − 1]. A similar argument applies if N̄ ends in X[i].

2. If S̄ ends in T[j] and N̄ in a gap, then deleting these characters gives an alignment
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of T[1, j − 1] against N. If N ends in x[i] then

σ
(
N̄, S̄

)
≤ D(1)[i, j − 1] + σ(−,T[j]),

with equality when N̄ and S̄ are obtained by appending “−” and T[j] to an optimal

alignment at D(1)[i, j − 1]. A similar argument applies if N ends in X[i].

3. If S̄ ends in a gap then we may express S̄ in the form

S̄ = S̄′(−)s,

where s ≥ 1 is as large as possible. Let N̄ = N̄′M with |M| = s. Then
(
N̄′, S̄′

)
is

an alignment of one the types considered in cases 1 and 2 above, so

σ
(
N̄, S̄

)
= σ

(
N̄′, S̄′

)
+ σ(M, (−)s)

≤ D(k′)[i′, j] + σ(M, (−)s)

for integers i′ ≥ 1 and k′ ∈ {1, 2} determined by the tail of N′.

For conciseness let Y1 = x and Y2 = X. Then the string M is an element of

NTR(x,X) of length s ending with Yk[i] and beginning with

M[1] =

Yk′ [i
′ + 1] if i′ < |Yk′ |,

x[1] or X[1] if i′ = |Yk′ |.

So what we must show is that for such strings we have

D(k)[i, j] ≥ D(k′)[i′, j] +
s∑

a=1

σ(M[a],−).

By the update rules we have

D(k′′)[a, j] ≥ D(k′′)[a− 1, j] + σ(Yk′′ [a],−)

for k′′ = 1, 2 and a ≥ 1, so the necessary inequality will be true by induction
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provided we can show that we still have

D(k′′)[0, j] = max{D(1)[m, j], D(2)[l, j]} (5.1)

after the second update round. This equality follows from the fact that the larger

of D(1)[m, j], D(2)[l, j] is unchanged during the second round. Indeed, if the value

D(1)[m, j] is changed during the second round then it must have been increased to

D(1)[m, j] = D(1)[0, j] +
m∑
b=1

σ(x[b],−),

and this is strictly less than D(1)[0, j], because σ(α,−) < 0 for all α. A similar

argument applies to D(2)[l, j], so the larger of these is unchanged and remains the

maximum.

By the above we have σ(N̄, S̄) ≤ D(k)[i, j]. It remains to show that there is in fact

an alignment with score D(k)[i, j] when D(k)[i, j] = D(k)[i− 1, j] + σ(Yk[i],−).

Consider the trace back procedure beginning from D(k)[i− 1, j]. This must even-

tually reach an (i′, j)-entry of either D(1) or D(2) that derives from column j − 1

(since for example the largest entry in each column of each matrix must be derived

this way), and we obtain the desired alignment by appending suitable strings to an

optimal alignment at this point.

Cases 1–3 above show that D(1)[i, j] and D(2)[i, j] have been correctly computed for

i ≥ 1, and equation (5.1) shows that D(1)[0, j] and D(2)[0, j] have been too. It follows by

induction that both matrices D(1) and D(2) have been correctly computed.

5.4.4 Extension to nested tandem repeats with three or more motifs

Our algorithm is easily adapted to the motif alignment problem for more complex NTRs

built from three or more motifs X1,X2, · · · ,Xr. For each k = 1, . . . , r we introduce

an |Xk| × |T| matrix D(k),where |T| is the text containing the NTR, and we initialise

these as in Section 5.4.2. After the jth column of each matrix has been filled as in the

first round above we update D(k)[0, j] with max{D(i)[|Xi|, j]|i = 1, . . . , r} for each k,

and then run a second round as above to update the jth column of each matrix. Once

the matrices have been filled, an optimal alignment may then be found using the standard
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trace-back procedure. The time and space complexity for the r-motif alignment algorithm

isO(|T|(|X1|+|X2|+· · ·+|Xr|) as it takesO(|T||Xk|) time and space to fill each matrix

D(k). In the case where the motifs have the same length |X| then the complexity would

be O(|T|(k|X|)).

5.5 Conclusion

In this chapter, we presented an algorithm to solve the problem of the alignment of nested

tandem repeats. This algorithm has O(|T|(|x|+ |X|)) time complexity. The nested WDP

alignment is incorporated in the program NTRFinder (Matroud et al., 2012b) which is

described in Chapter 4, as part of the verification phase.
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Chapter 6

A comparison of three heuristic

methods for solving the parsing

problem for tandem repeats

This chapter is an extended version of the text of A Comparison of Three Heuristic Meth-

ods for Solving the Parsing Problem for Tandem Repeats, A. Matroud, C. Tuffley, D.

Bryant, and M. Hendy, Advances in Bioinformatics and Computational Biology (Ma-

troud et al., 2012a). It has been reformatted for consistency with the rest of thesis. Some

definitions have been removed to avoid redundancy. A list of the materials and text mod-

ified is given below:

• Comments on how the methods could test for dynamic boundaries and the result of

a further simulation with fixed and dynamic boundaries were added in section 6.6.1.

• The tests on real sequence data in 6.6.2 were added.

• Several corrections and consistency matters were addressed.

6.1 Abstract

In many applications of tandem repeats the outcome depends critically on the choice of

boundaries (beginning and end) of the repeated motif: for example, different choices

of pattern boundaries can lead to different duplication history trees. However, the best
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choice of boundaries or parsing of the tandem repeat is often difficult to determine: in

real biological sequences it is frequently observed that the flanking regions before and

after the tandem repeat contain partial approximate copies of the motif, making it difficult

to determine where the tandem repeat (and hence the motif) begins and ends. We define

the parsing problem for tandem repeats to be the problem of discriminating among the

possible choices of parsing.

In this paper we propose and compare three heuristic methods for solving the parsing

problem, under the assumption that the parsing is fixed throughout the duplication history

of the tandem repeat. The three methods are PAIR, which minimises the number of pairs

of common mutations which span a boundary; VAR, which minimises the total number of

variants of the motif; and MST, which minimises the length of the minimum spanning tree

connecting the variants, where the weight of each edge is the Hamming distance of the

pair of variants. We test the methods on simulated data over a range of motif lengths and

relative rates of substitutions to duplications, and show that all three perform better than

choosing the parsing arbitrarily. Of the three MST typically performs the best, followed

by VAR then PAIR.

6.2 Introduction

Genomic DNA has long been known to contain tandem repeats repetitive structures in

which many approximate copies of a common segment (the motif ) appear consecutively.

The copies of the motif are usually polymorphic, which makes tandem repeats a use-

ful tool for phylogenetics and for inter-population studies (Rivals, 2004a); in addition,

highly polymorphic tandem repeats can be used to discriminate among individuals within

a population, and have proved to be useful for DNA fingerprint techniques (Jeffreys et al.,

1980). Because of this, many algorithms have been developed to find tandem repeats;

align tandem repeats; compare DNA sequences containing tandem repeats (Behzadi and

Steyaert, 2003; Berard and Rivals, 2003; Sammeth and Stoye, 2006); and construct the

duplication history tree (DHT) of a tandem repeat (Rivals, 2004a; Lajoie et al., 2007;

Bertrand et al., 2008; Chauve et al., 2008).

In many important applications of tandem repeats the outcome depends critically on

the choice of boundaries (beginning and end) of the repeated motif. We will refer to a
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choice of boundaries as a parsing of the tandem repeat. For a tandem repeat with motif of

length ` there are ` possible parsings, and different choices of parsing can for example lead

to different duplication history trees. However, the “true” parsing is often ambiguous, as

the flanking regions (the ` nucleotides immediately preceding and following the tandem

repeat) often contain partial approximate copies of the motif, making it difficult to decide

where the tandem repeat (and consequently the motif) begins and ends. It is therefore

highly desirable to find methods to discriminate among the possible parsings, and we will

refer to the problem of doing so as the parsing problem for tandem repeats.

The parsing problem does not appear to have received a great deal of attention to date

in the literature, and in many tandem repeat search tools the criteria for setting bound-

aries appear to be subjective or arbitrary (for example (Crochemore, 1981; Matroud et al.,

2012b; Hauth and Joseph, 2002; Stoye and Gusfield, 2002; Benson, 1999; Sagot and My-

ers, 1998). To the best of our knowledge the only reference on this problem to date is

by (Benson and Dong, 1999b), who propose a method to solve the parsing problem based

on a tandem repeat duplication model which allows dynamic boundaries (that is, duplica-

tions may occur on different boundaries throughout the duplication history). The purpose

of this paper is to present three new criteria to select the parsing, under the assumption that

the pattern boundaries are fixed throughout the duplication process, which was suggested

by Fitch (1977a).

One possible method for selecting the parsing is to choose the parsing that minimises

the parsimony score of the resulting DHT. However, obtaining the maximum parsimony

DHT can be computationally expensive (especially when the motif is long or there are

many copies) (Foulds and Graham, 1982), and in some cases the maximum parsimony tree

cannot be expressed as a duplication tree (Gascuel et al., 2003). In these circumstances

it may be preferable to find more tractable measures for comparing parsings. The three

criteria we propose are heuristic, and are intended as easily computed surrogates for the

score of the maximum parsimony tree. They are each based on the observation that the

histories of two nucleotide substitutions that occur at nearby sites less than ` bases apart

at some stage in the evolution of the tandem repeat can be different depending on whether

they occur in the same or adjacent copies of the motif.

The three methods are

1. PAIR, which minimises the number of pairs of common mutations which span a
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boundary,

2. VAR, which minimises the total number of variants of the motif, and

3. MST, which minimises the length of the minimum spanning tree connecting the

variants, with each edge length being the Hamming distance of the pair of variants.

These three methods work on tandem repeats of the same length. However, if the tandem

repeat copies do contain insertion and deletion then these copies should be aligned using

available alignment algorithms such as (Fischetti et al., 1993) for tandem repeats and

(Matroud et al., 2011) for nested tandem repeats.

We test the methods on simulated data (for which the parsing used to generate the

tandem repeat is known) over a range of motif lengths and relative rates of substitutions

to duplications. We show that all three methods perform better than choosing the parsing

arbitrarily, and that of the three MST typically performs the best, followed by VAR then

PAIR.

We have applied our three methods on four tandem repeats taken from the microor-

ganisms tandem repeats database (Denœud and Vergnaud, 2004) and (Visca et al., 2011).

These four tandem repeats belong to two families. We show that the three methods sug-

gest a parsing region instead of a unique parsing point. There is a consistency in the

results using the MST and the PAIR methods.

6.3 Definitions and Background

An exact tandem repeat is a string comprising two or more contiguous exact copies of

a substring X, called the tandem repeat motif. We obtain an approximate tandem repeat

by allowing approximate rather than exact copies of the template motif X. We will refer

to each copy of the motif as a segment. We define a mode motif to be a sequence of

length ` where the i−th nucleotide is a most common nucleotide at the i−th site among

the segments, for all 1 ≤ i ≤ `. Note the mode motif is not necessarily unique. We define

the set of variants of a tandem repeat with motif X to be the set of distinct segments that

are observed in the sequence.

We define the distance graph of the variants to be the weighted graph with vertex set

the set of variants, and an edge between each pair of variants with weight equal to their
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Hamming distance.

Let X[i] = xixi+1 . . . x`x1 . . . xi−1 be the ith cyclic permutation of the motif X (also

referred as the parsing point i of the motif X), where ` is the length of X. We define

the parsing problem for tandem repeats to be the problem of determining which of the `

possible cyclic permutations of X produces the minimal parsimony score of the tandem

repeat duplication history tree.

6.4 The importance of the parsing problem

In order to use a tandem repeat region in a phylogenetic study we need to infer the number

and size of the edit operations that occurred in this region, transforming a single segment

into the observed tandem repeat. However, the number and size of the inferred edit op-

erations depend on the parsing we select. In the following example, we illustrate the

implications of having two different parsing points on the inferred number and size of the

edit operations.

Example Consider the following sequence which contains an approximate tandem repeat

with periodicity 4:

AGACCACGAACGTACGAACGTATTA. (6.1)

There are 4 possible parsings. If we set the first boundary point such that the first repeat

copy is ACGA we obtain

AGACCACGAACGTACGAACGTATTA, (6.2)

with mode motif ACGA (note that in this case ACGT is another mode motif). If we shift the

frame one nucleotide to the left we obtain a different parsing

AGACCACGAACGTACGAACGTATTA, (6.3)

with a unique mode motif AACG.

The DHT that best describes the tandem repeat depends on the parsing. The minimal

DHT for the parsing of (6.2) is shown in Figure 6.4(a), and the minimal DHT for the

parsing of (6.3) is shown in Figure 6.4(b). The two trees involve different sets of edit

55



ACGA

GACC ATTA

single duplication
ACGA ACGA

substitution
ACGA ACGT

double duplication
ACGA ACGT ACGA ACGT

(a)

AACG
single duplication

AACG AACG
substitution

CACG AACG
double duplication

CACG AACG CACG AACG
substitution

CACG AACG TACG AACGGAC TATTA

(b)

Figure 6.1: The DHTs inferred from the two parsing of the example in Section 6.4. The
parsing (a) has a DHT with two duplications and a single substitution, in parsing (b) the
DHT has two duplications and two substitutions. In both cases we see that the number of
events is minimal for that parsing. By the parsimony principle, we prefer parsing (a) over
parsing (b) as its DHT requires fewer mutational events.

operations; the first requires fewer, and so is to be preferred on parsimony grounds. Note

that the parsing with mode motif CGAA that results from a frame shift one nucleotide to

the right in (6.2) gives the same DHT as Figure 6.4(a).

Similarly, duplication of nested tandem repeats can be modeled in the same way as tandem

repeats. However, a nested tandem repeat starts with two motifs x and X, then a series of

duplications, deletions, substitutions occurs on the two motifs which results in a nested

tandem repeat sequence.

6.5 Heuristic methods to estimate tandem repeat parsing

In Section 6.4, we were able to discriminate between the parsings of (6.2) and (6.3) on

the basis of the parsimony scores of their duplication history trees. However, when con-

sidering large and long tandem repeats, obtaining the maximum parsimony duplication

56



history tree of the motif copies can be computationally expensive, and in some cases the

maximum parsimony tree cannot be expressed as a duplication tree (Gascuel et al., 2003).

It may be preferable to avoid these constructions when comparing different parsings.

Below, we describe three heuristic approaches to discriminating between the different

possible parsings. They are each based on the observation that the histories of two nu-

cleotide substitutions that occur at nearby sites less than ` bases apart at some stage in the

evolution of the tandem repeat can be different depending on whether they occur in the

same segment or in adjacent segments.

Recall that iθ denotes a substitution of the type θ ∈ {α, β, γ} at site i. Suppose a

substitution iθ1 producing nucleotide ν occurs at site i in one segment in the sequence.

The variant containing ν may be duplicated a number of times before a second substitution

jθ2 producing nucleotide ω occurs at site j within ` bases of ν at site i1 ≡ i mod `, with

j = i1 + k, 0 < |k| < `. Now suppose there are further duplications producing further

copies of variants containing ν and ω.

If ω is in the same segment as ν, and there are no subsequent parallel substitutions

producing ω at any other site j1 ≡ j mod `, then we will observe variants with ν, variants

with ν and ω together, but no variants with ω alone. Hence each ω at site j2 will have a

companion ν at site i2 = j2 − k. Figure 6.2 illustrates this scenario.

However, if the substitution producing ω were in an adjacent segment, and there were

subsequent duplications, then we can observe variants containing ν alone, and variants

containing ω alone. In some of these cases there may be pairs of ν and ω still k nu-

cleotides apart, but there can also be copies of ω with no adjacent ν. For the purpose of

the arguments, we will assume that ν is to the left of ω in the segments that contain both.

The three methods we have introduced to exploit this observation are listed below.

We note the performance of these methods is dependent on the ratio m of substitutions

to duplications. If m is small there will only be a small number of (or possibly no) pairs

of close substitutions to indicate the likely parsing. In these cases, there may be multiple

locations that are optimal on some of our scores, and some additional criteria (or perhaps

random choice) would be required to identify a preferred parsing.
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Ancestral segment
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... ν

... ν ... ... ν

... νω ... ... ν

... νω ... ν ... νω ... ... νObserved TR

Figure 6.2: A schematic of the duplication process. The dashed arrows represent series
of duplication events of different sizes, and the solid arrows represent single nucleotide
substitutions.

6.5.1 PAIR — the adjacent pairs method

Here we consider all occurrences of a pair of substitutions ν and ω which occur at least

twice (to restrict attention to pairs which may have been duplicated) at sites less than `

bases apart, with the ν’s at some sites i mod `, and the ω’s at some sites j mod `, and with

each ω always adjacent to an ν. We then note all the sites mod ` between each adjacent ν

and ω and record their frequency. For the method PAIR we select those sites mod ` which

are counted in this way with lowest frequency as our preferred location for the bound-

ary of the motifs. Provided there are sufficient substitutions so that multiple substitutions

occur in some ancestral segment which is subsequently duplicated, then this should dis-

criminate between sites. This discrimination should remain as the ratio m of substitutions

to duplications grows, as the frequency of parallel substitutions should always be lower

than unique substitutions.

To illustrate this method, consider the tandem repeat in the example on page 7 in

Section 1.3. Indexing from site 1 in the first box, the substitutions from the mode motif

are: 7α, 12β, 19α, 24β, 27α, 29β, 33α, 35β, 37α, 45β, 51α. From this list we observe

the only sets of pairs at most 5 bases apart which occur more than once are (1α, 6β) at

sites (7, 12) and (19, 24), and (3α, 5β) at sites (27, 29) and (33, 35). These pairs do not

straddle the parsing boundary in (1.1), but either one or both pairs will straddle any other

proposed parsing boundary, and contribute 2 (the frequency of the pair) to the score of the

corresponding parsing. The resulting score for each parsing is shown in Table 6.1. The
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Consensus pattern of parsing
Method CATGGT TCATGG GTCATG GGTCAT TGGTCA ATGGTC

PAIR 0 2 2 4 4 2
VAR 6 7 8 7 7 7
MST 5 6 7 7 6 6

Table 6.1: The score under each of our three methods for each parsing of the tandem
repeat in the example on page 7 in Section 1.3. See Sections 6.5.1 to 6.5.3 for details. Each
method returns the first parsing CATGGT as the preferred parsing, since this minimises the
score with respect to each method.

method selects the generating parsing CATGGT of (1.1) as the preferred parsing.

6.5.2 VAR — the number of variants method

For this method we consider each of the ` possible parsings, and for each parsing we

count the number of variants. When the proposed parsing is correct, then the variants

containing ν and containing ν and ω together will be counted, leading to 2 additional

variants observed. However, if we propose a parsing which separates these, then we

may find variants containing ν alone, variants containing ω alone, and variants containing

both, with ω to the left of ν. Hence the VAR method selects the parsing or parsings which

minimise the number of distinct variants.

As the ratiom of substitutions to duplications grows, so too will the number of distinct

variants, and for m large, they may be almost all distinct, irrespective of the location

of the proposed parsing. Hence for larger values of m, the VAR method may lose its

discriminatory power.

To illustrate the method we again consider the tandem repeat in the example on page 7

in Section 1.3. For the parsing shown there are six variants, as listed in (1.2), so the score

for this parsing is 6. The scores for the other six parsings are given in Table 6.1. The

method selects the first parsing CATGGT as the preferred parsing, as this minimises the

score.

6.5.3 MST — the minimum spanning tree method

When m is small, so the number of variants is small, then the Maximum Parsimony (MP)

tree connecting the variants is likely to be 1−connected, and the length of the MP tree

will be the number of variants minus one. However as m grows, the MP tree may require
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Steiner points (representing ancestral variants that are no longer present in the extant set

of variants), and the length of the MP tree may be more discriminating in determining the

parsing. However, as the determination of the MP tree can be NP-hard, we can use the

length of the minimum spanning tree, as a quick measure of the relative relatedness of

the variants. To avoid the issue of connectedness and the requirement of Steiner points,

we take the minimum spanning tree of the distance graph of the variants. Recall that this

is the graph with vertex set the set of variants, and an edge between two variants a and b

with weight equal to their Hamming distance.

We propose the MST, the length of the minimum spanning tree of the variants as our

third measure. We expect MST to agree with VAR, but to be more accurate for larger

values of m.

We illustrate this method in Figure 6.3, which shows minimum spanning trees of the

variants distance graphs for two of the six parsings of the tandem repeat in the example

on page 7 in Section 1.3. The first parsing CATGGT has a minimum spanning tree of

length 5, while the fourth parsing GGTCAT has a minimum spanning tree of length 7.

Note that in this latter case the minimum spanning tree length is greater than VAR − 1,

illustrating the potential for MST to be more discriminating than VAR. The scores for all

six parsings appear in Table 6.1, and the method again selects the first parsing CATGGT

as the preferred parsing.

6.6 Results and discussion

6.6.1 Tests on simulated data

We generated 90000 synthetic DNA sequences to compare the accuracy of the three pro-

posed parsing methods. Each simulated sequence contained an approximate tandem re-

peat of around 100 copies of an ancestral motif of `bp (` = 10, 50, 100). These were

generated by a stochastic evolutionary process of motif duplication (where the frequency

of duplicating a segment of κ motif copies was proportional to 1
κ

), with nucleotide substi-

tutions accumulating at a frequency of m substitutions per duplication. We applied each

of the three proposed parsing methods to each simulated sequence and recorded whether

the predicted parsing agreed with the parsing used to generate the tandem repeat.

We generated 100 samples for each value of m = 0.1, 0.2, . . . , 30.0 and we report the
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Figure 6.3: Minimum spanning trees of the variants distance graphs for two of the six
parsings of the tandem repeat in the example on page 7 in Section 1.3. (a) A minimum
spanning tree of length 5 for the parsing CATGGT. (b) A minimum spanning tree of length
7 for the parsing GGTCAT.

percentage success for each method and value of m in Figure 6.4. For the purposes of

this plot, “success” means that the set of minima reported by the method contains the true

parsing, or one of the two parsings adjacent to the true parsing. The average number of

minima returned by each method is plotted in Figure 6.5 (plotted as a percentage of the

number of possible parsings (the motif length `)), which shows that each method typically

returned only a small fraction of the possible parsings — often only one or two in the case

of PAIR and MST. Figure 6.6 shows the number of times each method reports minima

that do not include the true parsing.

We note that the PAIR method performed poorly (at about 35% accuracy) over the

range of values of m, whereas VAR and MST showed above 90% accuracy for m in the

range of about 0.3 to 5. Nevertheless all three methods performed better than setting the

parsing arbitrarily, as the null method of randomly assigning a parsing would be expected
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(b) Motif length=50.
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(c) Motif length=100.

Figure 6.4: Percentage success plotted against the relative mutation rate for each of the
three methods. The y-axis represents the percentage of simulations for which the set of
minima contains the true boundary point or the points that are one step away from the
true boundary, plotted against each relative mutation rate m = 0.1, 0.2, . . . , 30. The motif
length is (a) ` = 10, (b) ` = 50 and (c) ` = 100.

62



0 5 10 15 20 25 30

0
20

40
60

80
10

0

Mutation to duplication ratio (m:1)

 %
 N

um
be

r o
f M

in
im

a 

MST

VAR

PAIR

(a) Motif length=10.

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Mutation to duplication ratio (m:1)

 %
 N

um
be

r o
f M

in
im

a 

MST

VAR

PAIR

(b) Motif length=50.
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(c) Motif length=100.

Figure 6.5: The number of minima plotted against the relative mutation rate. The y-
axis represents the average number of minima reported by each method, expressed as a
percentage of the number of possible parsings (the motif length `), plotted against each
relative mutation rate m = 0.1, 0.2, . . . , 30. The motif length is (a) ` = 10, (b) ` = 50
and (c) ` = 100.
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(b) Motif length=50.
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(c) Motif length=100.

Figure 6.6: Percentage failure plotted against the relative mutation rate for each of the
three methods. The y-axis represents the percentage of simulations for which the true
boundary is not among the reported minima, plotted against each relative mutation rate
m = 0.1, 0.2, . . . , 30. The motif length is (a) ` = 10, (b) ` = 50 and (c) ` = 100.
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to achieve accuracy of 3/` = 30%, 6%, 3% for ` = 10, 50, 100. We also note that the

PAIR method has lower sensitivity to the motif length than the other two methods. For

much of this range the MST method performs better than VAR. The VAR method does not

perform better than MST in terms of accuracy (Figure 6.4), and it also produces solutions

containing a larger number of optimal parsings (Figure 6.5).

The PAIR method has the computational advantage that the scores for all ` possible

parsings can be computed simultaneously, whereas the VAR and MST scores must be

computed for each possible parsing in turn. Nevertheless, their observed accuracy indi-

cates they are preferred to the PAIR method, when the motif length is not large. MST

performed better on average than VAR, so our results suggest MST to be the preferred

method of predicting parsing.

To test the assumption that the motif boundaries are fixed throughout the duplication

history of the tandem repeat, we ran a simulation that generated tandem repeats with

dynamic boundaries. Several tandem repeats of motif length 10 were generated, in which

the boundaries were either (a) fixed at parsing point 5 throughout the duplication history;

(b) randomly located at parsing points 0 and 5, with equal probabilities; or (c) uniformly

distributed throughout the motif. Each tandem repeat had around 100 copies of the motif,

and the substitution frequency used was 1 substitution per 10 duplications. The three

methods produce flat score distributions when the boundaries are not fixed as shown in

Figure 6.7(b) and Figure 6.7(c).

6.6.2 Tests on real sequence data

To test the three methods on real data we applied them on four tandem repeats that are

grouped into two families. Within each family, the tandem repeats are taken from the

same or closely related sequences, and have similar motifs of the same length.

Our expectation is that tandem repeats within the same family are likely to be ho-

mologous and so are likely to have the same parsing points. The tandem repeats used in

this test are taken from the minisatellite database in (Denœud and Vergnaud, 2004). The

details of the two datasets are as follows.

• Two tandem repeats with a common motif of length 18bp from two different lo-

cations (609417–610022 (SA1) and 604971–605498 (SA2)) in the DNA sequence

of Staphylococcus aureus 04 02981. The number of motif copies are 33 and 30
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respectively.

• Two tandem repeats with a common motif of length 18bp at locations (634730 to

635239 (SAC1) and 643148 to 643627 (SAC2)) in the DNA sequence of Staphylo-

coccus aureus COL. The number of motif copies are 28 and 27 respectively.

The results of applying our methods to each family are plotted in Figures 6.8 and 6.9.

We start our analysis by parsing the tandem repeats of the two Staphylococcus aureus

strains at the same point. This can be done by aligning the two tandem repeats. In this

data, the mode motifs of the tandem repeat of each strain are TCAGATAGCGATTCAGAT and

TCAGATAGCGACTCAGAT.

The parsing points on the Staphylococcus aureus data set using the VAR methods are

{13, 14, 15, 16, 17, 18} as in Figure 6.8(a). The MST method suggests the parsing points

to be at any of the following points {16, 17, 18}, see Figure 6.8(b). The PAIR method

shows a unique minimum at point 7 and local minima at {16, 17, 18} (Figure 6.8(c)).

The three methods show some consistency in having minima at {16, 17, 18} and also a

drop in the score around the seventh site. The three methods also suggest that the tandem

repeat in both strains of Staphylococcus aureus can be parsed at similar regions, namely

{16, 17, 18}.

The Staphylococcus aureus COL tandem repeat data set shows consistency between

the PAIR and the MST methods in terms of minima produced by both methods (6.9(b)

and (c)). Both MST and PAIR suggest the parsing to be at any point between 10 and 12.

The VAR methods suggest the points between 13–15 (Figure 6.9(a)).

6.7 Conclusion

Three heuristic methods to solve the parsing problem have been proposed and tested.

These methods are intended as easily computed surrogates for the score of the duplication

history tree as a means of discriminating between alternate parsings.

Based on the assumption that the boundaries are fixed through the evolution history we

expect the scores of these three methods to discriminate among all possible parsing points.

We showed by a simulation that when this assumption is not imposed, the distribution of

minima for each of the three methods may indicate that the parsing point varied during

the evolution of the tandem repeats.

66



1 2 3 4 5 6 7 8 9 10

60

80

100

120

MST
V AR
PAIR

(a)

1 2 3 4 5 6 7 8 9 10

60

80

100

120

MST
V AR
PAIR

(b)

1 2 3 4 5 6 7 8 9 10

40

60

80

100

MST
V AR
PAIR

(c)

Figure 6.7: The scores of the three methods when the motif boundaries are (a) fixed at
point 5 through the duplication history tree; (b) randomly located at either at 0 or 5 with
equal probabilities at each duplication; (c) uniformly distributed through the motif. The
motif length was 10.
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Figure 6.8: The score of the three methods (a) MST, (b) VAR, (c) PAIR on two tandem
repeats from the same family in the DNA sequences of Staphylococcus aureus. The X
axis on each plot corresponds to different parsing points relative to the motif as parsed
initially. Each method shows a strong correlation between the two repeats, with both
VAR and MST indicating the best parsing point in the range of 4–9, whereas PAIR has a
minimum at 16.
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Figure 6.9: The score of the three methods (a) MST, (b) VAR, (c) PAIR on two tandem
repeats from the same family in the DNA sequences of Staphylococcus aureus COL. The
X axis on each plot corresponds to different parsing points. The methods show a weak
correlation between the two repeats. VAR and MST show minima at points 7–9 for SAC1
and 1–3 for SAC2, so it suggests these two families may have evolved with a different
parsing point.
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Chapter 7

Ancestor-descendant alignment of

tandemly repeated sequences

Tandem repeats and nested tandem repeats can serve as important markers for phyloge-

netic and population genetic studies. Comparing two tandem repeats and approximating

the distance between them is a first step toward solving the problem of building phyloge-

nies using tandem repeats.

When comparing two tandem repeats S1 and S2, which appear to be homologous with

closely related motifs, we assume that they are descendants of some most recent common

ancestral sequence A. We define the distance

d(S1, S2) := e(A, S1) + e(A, S2),

where e(A, Si) is the minimum weight evolution by which Si evolves from A, namely,

e(A, Si) is the edit distance from A to Si under the operations of single nucleotide substi-

tution, and duplication or deletion of entire copies of the motif. As we do not allow for

insertions, e is not symmetric, but by the definition d(S1, S2) = d(S2, S1).

As A will generally not be known, the problem of estimating the distance between S1

and S2 can be broken into two steps:

1. Estimate a possible common ancestral sequence A.

2. Estimate the edit distance from A to Si for each i, under the operations of single

nucleotide substitutions, tandem duplication and tandem deletion.
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The main contribution of this chapter is a solution to the second problem, based on an

asymmetric alignment algorithm. To address the first problem, we have chosen to use a

Longest Common Subsequence (LCS) approach, modified to allow approximate matches

between characters. We describe this in section 7.4. In solving both problems, we first

replace the DNA tandem repeat sequence with a sequence whose characters represent the

motif variants. This is known as an (N)TR map, and is described below in Section 7.1.

The problem we consider at step 2 above is an instance of what is known as the com-

parison (mapping) problem for tandem sequences (also called the alignment problem for

tandem repeat sequences). Recently, a number of algorithms to address this problem

under various models of tandem repeat evolution have been introduced. Benson (1997)

developed exact and heuristic algorithms for comparing and aligning two tandem repeat

sequences. The exact algorithm has O(n5) time complexity and O(n2) space complexity,

where n is the length of the tandem repeat sequences. Algorithms to align tandem repeats

under insertion, substitution, duplication and deletion of a single segment have been in-

troduced by Behzadi and Steyaert (2003) and Berard and Rivals (2003). Their algorithms

have time complexity O(max(m,n)3.ρσ) and O(max(m,n)4) respectively, where m and

n are the lengths of the two sequences, σ is the number of variants, and ρ (maximal arity)

is the maximum number of single duplications in one event. A more general model of

evolution, where a duplication of any size can occur (one or more adjacent copies are

duplicated in one single duplication event), is considered by Sammeth and Stoye (2006).

They introduced an algorithm to align tandem repeats; however, their algorithm has ex-

ponential time complexity.

7.1 TR maps

A TR map is a process by which a tandem repeat sequence S is replaced by a sequence

Sv whose characters represent the motif variants occurring in S. Given a tandem repeat

or nested tandem repeat S, let Σv = {a, b, . . . , A,B, . . . } be an alphabet whose symbols

represent the observed motif variants that occur in S. In the case of a nested tandem

repeat, we will use lower case letters a, b, . . . to represent variants of the tandem motif,

and upper case letters A,B, . . . to represent variants of the interspersed motif.

We define an (N)TR map of S to be the sequence Sv obtained by replacing each motif
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variant of S by the corresponding symbol in Σv. This process is also known as variant

mapping (Berard and Rivals, 2003).

The process of (N)TR mapping on the sequence S involves the following steps:

1. Set the boundaries of the tandem repeat motifs.

2. Build a consensus (modal) motif using the majority rules on the aligned motif

copies.

3. Identify all variants of the consensus motif using the motif alignment algorithm in

Chapter 5.

4. Assign a symbol from the alphabet Σv to each variant.

5. Replace the motif copies in S by their associated symbols.

The example on page 7 in Section 1.3 includes an example of a TR map. The set of

variants is Σv = {a, b, c, d, e, f} and the TR map is Sv = ababccdef .

7.2 Edit operations and edit distance

Let Sv be an (N)TR map. We define the following edit operations.

• k-Duplication: the process of copying a substring of length k and placing it af-

ter the duplicated segment, for example, a 2–duplication: a(bc) → a(bc)(bc), 1–

duplication (a)bc→ (a)(a)bc.

• k–Deletion: the process that removes k contiguous symbols from Sv. For example,

a 1–deletion abc→ ac.

• Variant substitution: the process of replacing a variant a with another variant by

applying one or more of the following single nucleotide events:

– Substitution:

TCGCACAGCCG→ TCGCACGGCCG .

– Deletion:

TCGCACAGCTG→ TCGCACAGCG .
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– Insertion:

TCGCACAGCCG→ TCGCACAGCACG.

Consider two tandem repeat sequences S1 and S2 with TR maps (S1)v and (S2)v.

Given the set of allowed edit operations listed above, and by setting weights for each edit

operation, we define the edit distance between (S1)v and (S2)v, d((S1)v, (S2)v), to be the

minimum weight needed to transform the ancestor Av to both (S1)v and (S2)v:

d(S1, S2) := e(Av, (S1)v) + e(Av, (S2)v),

where e(Av, (Si)v) is the minimum weight evolution by which (Si)v evolves from Av

under the edit operations above.

7.3 Ancestor-descendant repeat distance

In this section, we introduce an algorithm that approximates the distance between two

TR maps A and D, where A is hypothesized to be an ancestor and D is the observed

descendant sequence.

7.3.1 The ancestor-descendant alignment problem for (N)TR sequences

Let A = a1a2 · · · an be a string from the alphabet Σv. We define GA to be a directed

graph with n vertices, where the i-th vertex represents the i-th character ai appearing in

A. There is an edge from ai to all aj , for 1 ≤ j ≤ i + 1, 1 ≤ i < n, and an is connected

to all vertices (see Figure 7.1). We can define a string S of length m as a sequence of

symbols generated by a walk of length m in the directed graph GA. A walk of length k

starting at vertex a1 and ending at vertex an represents a string generated from A by a

number of duplications of substrings of A. Let Ad denote the set of all strings that occur

as a result of walks on GA.

We define ~δ=(δ0, δ1, . . . , δn) to be a vector which holds the cost of a duplication, where

a duplication of aiai+1 · · · aj costs δj−i. So for example, a 1-duplication ai → aiai costs

δ0, and a 2-duplication aiai+1 → aiai+1aiai+1 costs δ1. We assign weights to all edges of

the graph GA as follows.

• The weight of the edge (ai,ai+1) is 0.
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• The weight of the edge (ai,aj) is δ(i−j) if i ≥ j.

We require ~δ to satisfy the following conditions:

• δj ≤ δi for all i < j (longer duplications should be at least as expensive as shorter

ones).

• δi + δj ≤ δ(i+j) (loosely speaking, one duplication should be no more expensive

than breaking it into two smaller duplications).

An example of a vector ~δ that satisfies the above conditions is δi = d+(i×ε), d < 0, ε < 0.

Any string S generated by a set of duplications applied to the string A carries a cost

of duplication ∆(S) equal to the minimal weight of a walk that generates the string S in

the graph GA. Our goal is to align the descendant sequence D against such a string S.

Recall the definition of an alignment in Chapter 5. Given an alphabet Σv, let Σ̄v be

the alphabet Σv ∪ {−}, where “−” (“gap”) is a character that does not belong to Σv. We

define φ : Σ̄∗v → Σ∗v to be the function that deletes all gaps. Given two strings A,D ∈ Σ∗v,

whereA represents the ancestor andD represents the descendant, an ancestor-descendant

alignment of A and D is a choice of a pair of strings (S̄, D̄) ∈ Σ̄∗v × Σ̄∗v satisfying the

following conditions:

A1. S is the result of a walk in GA;

A2. φ(S̄) = S and φ(D̄) = D;

A3. |S̄| = |D̄|; and

A4. there is no index i for which S̄[i] = D̄[i] = −.

Thus, S̄ and D̄ are obtained from S and D respectively by inserting gaps in such a way

that the resulting strings have the same length, and do not both have a gap in the same

position.

To score an alignment we use a scoring matrix σ, which specifies the reward or penalty

for aligning any two characters of Σ̄v against each other, and we use a duplication cost

vector ~δ to hold the cost of duplications. Note σ holds the cost of converting one variant

to another (edit distance). In NTRs, the upper case symbols represent variants of the

interspersed motif, and the lower case symbols represent variants of the tandem motif, so

the edit distance between any upper case symbol and a lower case symbol is large.
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a1 a2 a3 · · · an

Figure 7.1: The directed graph GA with n vertices, where the i-th vertex represents the
i-th character ai appearing in A. A walk on G starting at a1 and ending at an represents a
sequence derived from A by k duplications where k = 0, 1, · · · .

We will assume throughout that σ penalises gaps (that is, σ(−, α) and σ(α,−) are

both negative for all α ∈ Σ̄v), and we set σ(−,−) = −∞ to reflect condition A4 above.

Given an alignment (S̄, D̄) for which |S| = |D̄| = L, the alignment score of (S̄, D̄) is

then defined to be

σ(S̄, D̄) =
L∑
i=1

σ(S̄[i], D̄[i]) + (∆(S̄)).

An optimal global alignment is an alignment of A and D which maximises the alignment

score over all such alignments.

The new alignment problem can be defined as follows:

Given

1. two strings A = a1a2 · · · an and D = d1d2 · · · dm over the alphabet Σv,

2. a scoring matrix σ defined over Σ̄v × Σ̄v, and

3. a duplication cost vector cost ~δ = (δ0, δ1, . . . , δn),

find a global optimal alignment of D against substrings of strings generated

by a walk in GA that starts at a1 and ends at an.

7.3.2 Solution to the ancestor-descendant alignment problem

The ancestor-descendant alignment problem is solved by using a similar technique to the

motif alignment technique of Matroud et al. (2011), presented here in Chapter 5. In this

problem, there will be two matrices M and Ω. M is (m + 1) × (n + 1), and holds the

score of aligning the string D against A, and Ω is of size (m+ 1)× (n+ 1) and holds the

score after the update round.

The score matrices are filled as follows:
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• Initialisation:

– M [i][0] = −∞ for all i.

– M [0][j] = 0 for all j.

– Ω[i][j] = 0 for all i and j.

• We compute each column of the matrix M in two rounds. In the first round we

compute M [i][j] using the recursive formula

M [i][j] := max



M [i− 1][j − 1] + σ(D[i], A[j]),

M [i− 1][j] + σ(D[i],−),

M [i][j − 1] + σ(−, A[j]),

Ω[i− 1][j] + σ(D[i], A[j])


.

In the second round, we update Ω[i][j] with the value max
j≤k≤n

{M [i][k] + δ(k−j)}, and

then update M [i][`] for 1 ≤ ` ≤ n, using the following formula

M [i][`] := max{max
`≤k≤n

{M [i][k]+

δ(k−`) + σ(−, A[j])},M [i][`− 1] + σ(−, A[j]),M [i][`]}.

:= max{Ω[i, `] + σ(−, A[`])},M [i][`− 1] + σ(−, A[`]),M [i][`]}.

The pseudo-code of the algorithm is shown in Algorithm 2.

7.3.3 Correctness of the algorithm

By induction we prove that the matrix M holds the optimal alignment score of aligning

D against a string W ∈ Ad.

Suppose that the sub-matrix Mi−1,n has been correctly computed for some i ≥ 1.

That is, assume that M [i − 1][j] is the optimal alignment score of any alignment of the

substring D[1, i− 1] against a string A′ ∈ Ad ending in aj .

Consider an alignment (W̄ , D̄) of D[1, i] against a string W ∈ Ad. We consider three

cases according to the final characters of D̄ and W̄ .

1. If D̄ ends in D[i] and W̄ in A[j], then deleting these characters gives an alignment

of D[1, i − 1] against a string W ′ ∈ Ad ending in A[j − 1] or A[k], where k ≥ j .
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Data: Strings A, D, a scoring matrix σ and a duplication vector cost ~δ
Result: Matrix M containing optimal alignment scores with respect to σ and ~δ of

alignments of D against substrings of strings in Ad.
for i = 0 to m=|D| do

M [i][0] := −∞
end
for j = 0 to n=|A| do

Ω[0][j] := −∞
end
for i = 1 to m do

for j = 1 to n do
M [i][j] := max{M [i− 1][j − 1] + σ(D[i], A[j]),
M [i− 1][j] + σ(D[i],−),M [i][j − 1] + σ(−, A[j]),Ω[i− 1][j] + σ(D[i], A[j])}

end
for j = 1 to n do

Ω[i][j] := max
j≤k≤n

{M [i][k] + δ(k−j)}

end
for j = 1 to n do

M [i][j] := max{Ω[i][j] + σ(−, A[j]),M [i][j − 1] + σ(−, A[j]),M [i][j]}
end

end
Algorithm 2: Pseudo-code for our algorithm to solve the ancestor-descendant align-
ment problem.

It follows that

σ
(
D̄, W̄

)
≤ max(M [i− 1][j − 1] + σ(D[i], A[j]),

max
j≤k≤n

{M [i− 1][k] + δ(k−j)}+ σ(D[i], A[j]),

with equality when W̄ and D̄ are obtained by appendingA[j] andD[i] to an optimal

alignment at M [i− 1][k], where k ≥ j − 1.

2. If D̄ ends in D[i] and W̄ in a gap, then deleting these characters gives an alignment

of D[1, i− 1] against W ′. Then

σ
(
D̄, W̄

)
≤M [i− 1][j] + σ(−, D[i]),

with equality when W̄ and D̄ are obtained by appending “−” andD[i] to an optimal

alignment at M [i− 1][j].

78



3. If D̄ ends in a gap and W̄ ends in A[j] then we may write

D̄ = D̄′(−)s,

where s is as large as possible. We will prove by induction on s that

σ(D̄, W̄ ) ≤M [i][j].

In the base case s = 0, we have

σ(D̄, W̄ ) = σ(D̄′(−)0, W̄ ) = σ(D̄′, W̄ ) ≤M [i][j],

which is already established in cases (1) and (2) above.

Let W̄ = W̄ ′A[j]. If W̄ ′ ends in A[j − 1] then

σ(D̄, W̄ ) = σ(D̄′(−)s−1(−), W̄ ′A[j])

= σ(D̄′(−)s−1, W̄ ′) + σ((−), A[j]).

By our inductive assumption

σ(D̄′(−)s−1, W̄ ′) ≤M [i][j − 1],

and so

σ(D̄, W̄ ) ≤M [i][j − 1] + σ((−), A[j]) (7.1)

≤M [i][j], (7.2)

as required. Moreover, equality occurs in (7.2) if D̄ and W̄ are obtained by append-

ing (−) and A[j] to an optimal alignment entry at M [i][j − 1].

Now suppose that W̄ ′ ends in A[`] for some ` ≥ j. Then

σ(D̄, W̄ ) = σ(D̄(−)s−1, W̄ ′) + δl−j + σ(−, A[j]).
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By our inductive hypothesis we have

σ(D̄(−)s−1, W̄ ′) ≤M [i][`],

and so

σ(D̄, W̄ ) ≤M [i][`] + δl−j + σ(−, A[j]).

≤ max
j≤k≤n

{M [i][k] + δk−j}+ σ(−, A[j]).

Since

Ω[i][j] + σ(−, A[j]) ≤M [i][j],

we will have

σ(D̄, W̄ ) ≤M [i][`]

provided we can show that

Ω[i][j] = max
j≤k≤n

{M [i][k] + δk−j}.

Since Ω[i][j] is defined by this formula at the end of the first update round, we must

show that equality still holds at the end of the second round. In other words, we

must show that the value of

max
j≤k≤n

{M [i][k] + δk−j}

is unchanged during the second update.

If M [i][j] increased during the second update, it must have taken its value

• from M [i][j − 1] + σ((−), τ), where τ ∈ Σv, in which case M [i][j − 1] must

have increased too.

• or from max{M [i][k] + δk−j + σ((−), τ)} with k ≥ j.

Suppose it takes its value from M [i][k] + δk−j + σ((−), τ) and that p ≤ j. To show

that Ω[i][p] does not increase due to the increase in M [i][j], it is enough to show
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that

M [i][j] + δj−p ≤M [i][k] + δk−p.

Substituting M [i][j] = M [i][k] + δk−j + σ((−), τ) this is equivalent to

M [i][k] + δk−j + δj−p + σ((−), τ) ≤M [i][k] + δk−p,

which is equivalent to

δk−j + δj−p + σ((−), τ) ≤ δk−p.

Setting a = k − j and b = j − p, this is

δa + δb + σ((−), τ) ≤ δa+b,

and since σ((−), τ) < 0 this holds by our assumption δa + δb ≤ δa+b.

Now supposeM [i][j] takes its value fromM [i][j−1]+σ((−), τ). SinceM [i][j−1]

must also have increased, we may assume as an inductive hypothesis that for p ≤

j − 1 we have

M [i][j − 1] + δj−1−p ≤ Ω[i][p],

that is, the increase in M [i][j − 1] did not increase Ω[i][p] for p ≤ j − 1.

Suppose q ≤ j. If q ≤ j − 1 then

M [i][j] + δj−q = M [i][j − 1] + δj−q + σ((−), τ)

= M [i][j − 1] + δj−q + δj−q−1 − δj−q−1 + σ((−), τ).

Then we will have

M [i][j] + δj−q ≤M [i][j − 1] + δj−q−1 ≤ Ω[i][q]

provided

δj−q − δj−q−1 + σ((−), τ) ≤ 0.
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Letting a = j − q − 1 this is equivalent to

δa+1 + σ((−), τ) ≤ δa,

and since σ((−), τ) < 0 this holds by our assumption δa+1 ≤ δa.

Now consider the case q = j. Then choose k∗ such that

Ω[i][j − 1] = M̃ [i][k∗] + δk∗−j+1,

where M̃ is the matrix M after the first update round. Then from our inductive

hypothesis we have

M [i][j − 1] + δ0 ≤ M̃ [i][k∗] + δk∗−j+1.

Then

M [i][j] + δ0 = M [i][j − 1] + δ0 + σ((−), τ)

≤ M̃ [i][k∗] + δk∗−j+1 + σ((−), τ)

= M̃ [i][k∗] + δk∗−j − δk∗−j + δk∗−j+1 + σ((−), τ)

≤ M̃ [i][k∗] + δk∗−j

≤ Ω[i][j],

where we have used σ((−), τ) < 0 and δk∗−j+1 ≤ δk∗−j .

This completes the proof that Ω[i][j] does not increase after the second update,

which completes the proof of correctness of the ancestor-descendant alignment al-

gorithm.
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7.4 A Longest Common Subsequence approach to esti-

mating the most recent common ancestor

In this section, we introduce a modification of the Longest Common Subsequence (LCS)

algorithm, as one approach to the problem in step 1, of estimating the most recent common

ancestor A of two closely related tandem repeats. We construct the ancestral sequence

Av = LCS((S1)v, (S2)v) using the known dynamic programming technique (Gusfield,

1997). The dynamic programming matrix L has size |(S1)v| × |(S2)v|. The scoring ma-

trix σ specifies the reward or penalty for aligning any two characters of Σ̄v against each

other. The matrix L is filled using the following formula:

if σ((S1)v[i], (S2)v[j]) ≤ 2 then

L[i][j] := L[i− 1][j − 1] + 1,

else

L[i][j] := max

 L[i− 1][j],

L[i][j − 1]

 .

The backtracking procedure is modified to accommodate mismatches of edit distance

at most 2. If two characters at position i and j are mismatched and the distance between

them is less than or equal 2 then the LCS will contain their lowest common ancestor.

The lowest common ancestor problem of two variants x and y in a tree is the problem of

finding the vertex closest to x and y that appears in both shortest paths of x and y to the

“ancestral” vertex. The lowest common ancestor can be pre-calculated from a minimum

spanning tree of the variants graph in Section 3.3. There are a number of algorithms

constructed to solve the lowest common ancestor problem (Aho et al., 1976; Harel and

Tarjan, 1984).

7.5 An application to real DNA sequences

We have applied our algorithm on JP1 and NZ1. The ancestral sequence of both JP1 and

NZ1 is constructed using a modification of the longest common subsequence algorithm,
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as described in Section 7.4.

The duplication penalty function that is used in this test is δi = d + (i × ε), where

d = −10, ε = −1. The match function between two variants is calculated using the edit

distance between them. If a 6= b then σ(a,b) = edit distance(a,b)×(−10), and if a = b

then σ(a,b) = 40. The gap penalty is σ(α,−) = σ(−, α) = −40. The output of our

program is shown in Figure 7.2.

7.6 Conclusion

This chapter addresses the problem of aligning two closely related tandem repeat se-

quences. The model we have considered accommodates block duplications, deletions and

substitutions. The algorithm we have introduced has O(m× n) time and space complex-

ity, where m and n are the lengths of the two compared sequences. There are limitations

in using our approach, such as the fact that the duplications are considered before any

substitutions. For example, when aligning aa against abab our algorithm will give the

score of two substitutions and a 2-duplication, where the maximum parsimony history is

aa → (ab) → (ab)(ab). However, this problem can be overcome by aligning the an-

cestor sequence against its descendant twice. The ancestor can be corrected from the first

alignment and the corrected ancestor can then be aligned against the descendant sequence.
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JP1 = AacaAaAabkfddAabcakfdAjebecbcbBcafaAababecababBgaaaaag

qaddaAdbiabbbmabBahaaaaaacaaafohaAarababbbapjvlBggaa

NZ1 = AacaAaAabkfddAabeebecbcbBacafaAababecababBgaa

qaddaAdbiiaiabbbmabBahaaaacaaafohaAaaabaabbapjvlBggaa

LCAS = AacaAaAabkfddAabebecbcbBcafaAababecababBgaa

qaddaAdbiabbbmabBahaaaacaaafohaAaababbapjvlBggaa

LCAS= AacaAa(Aabkfdd) AabebecbcbBcafaAababecababBg(aa)

An = AacaAa(Aabkfdd)(Aa(b-)(bk)fdd)AabebecbcbBcafaAababecababBg(aa)(aa)(aa)

|||||| ||||||| || | *| | |* ||||||||||||||||||||||||| || || |*
JP1 = AacaAa Aabkfdd Aa bc ak fd- Aj-ebecbcbBcafaAababecababBg aa aa ag

LCAS= qaddaAdbiabbbmabBahaa(aa) caaafohaAa(a) bab(b) apjvlBggaa

An = qaddaAdbiabbbmabBahaa(aa)(aa)caaafohaAa(a)(a)bab(b)(b)apjvlBggaa

||||||||||||||||||||| || || |||||||||| * | ||| | | ||||||||||

JP1 = qaddaAdbiabbbmabBahaa aa aa caaafohaAa r a bab b b apjvlBggaa

e(LCAS,JP1)=14764

LCAS= AacaAaAabkfddAab(e) becbcbB(ca) faAababecababBgaa

An = AacaAaAabkfddAab(e)(e)becbcbB(ca)(ca)faAababecababBgaa

|||||||||||||||| | | ||||||| || || |||||||||||||||||

NZ1 = AacaAaAabkfddAab e e becbcbB -a ca faAababecababBgaa

LCAS= qaddaAdb ((i)a) bbbmabBahaaaacaaafohaAa(a) b(a) bbapjvlBggaa

An = qaddaAdb((i)(i)a)(ia)bbbmabBahaaaacaaafohaAa(a)(a)b(a)(a)bbapjvlBggaa

|||||||| | | | || ||||||||||||||||||||||| | | | | | ||||||||||||

NZ1 = qaddaAdb i i a ia bbbmabBahaaaacaaafohaAa a a b a a bbapjvlBggaa

e(LCAS,JP1)=14532

Figure 7.2: The comparison of NZ1 and JP1. Characters that have been duplicated are en-
closed in round brackets. The character “|” indicates a match, the character “*” indicates a
mismatch, and the character “−” represents a gap. The number e(LCAS, JP1) = 14764
is the score of aligning the longest common approximate subsequence of JP1 and NZ1
against JP1, and the number e(LCAS,NZ1) = 14532 is the score of aligning LCAS
against NZ1. Thus the estimated distance d(JP1, NZ1) is 14764 + 14532 = 29296.
Note that the two scores e(LCAS, JP1) and e(LCAS,NZ1) are approximately equal
to each other, as we would typically expect of the distances from two sequences to their
most recent common ancestor.
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Chapter 8

Conclusion

In this project, nested tandem repeats have been investigated. A close look at the taro

nested tandem repeat structure leads to a number of open problems that are of interest to

the computational biology community. Some of the questions that were addressed in this

thesis are not specific to nested tandem repeat structures but can also be raised in other

repeated structures. A summary of the key outcomes of this project is listed below:

• The main goal of Chapter 3 is to analyse the nested tandem repeats found in taro

and illustrate some observations. A number of issues have been addressed in this

chapter, such as the number of expected substitutions in a DHT and the variants

distribution.

• Once the nested tandem repeat structure in the IGS region of the rDNA of taro was

observed, the question of the ubiquitousness of such structures in DNA arises. To

address this issue, a software tool (NTRFinder) was constructed to search for nested

tandem repeats in DNA. This tool was presented in Chapter 4. NTRfinder consists

of two major components (detecting the signal of an NTR and aligning an NTR

against its two motifs). As a result, nested tandem repeat have been found in many

locations across species and across chromosomes. One interesting observation is

that a number of nested tandem repeat structures were found in the human Y chro-

mosome, and they are all found in the pseudoautosomal region. On the other hand,

NTRFinder did not find any nested tandem repeats in other parts of the Y chro-

mosome. It was found that some plant rDNA IGS regions contain nested tandem

repeat structures. Nested tandem repeats in different plants do not appear to have

significant similarity.
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• The problem of aligning two motifs against a nested tandem repeat was addressed

in Chapter 5. A solution using a dynamic programming technique that guarantees

optimality was introduced. This algorithm was implemented as part of the software

NTRFinder, as the verification component.

• In Chapter 6, the question of determining the boundaries of the motifs in a tandem

or nested tandem repeat is addressed. This problem has not been given much at-

tention in the literature to date. We have presented three heuristic criteria to help

in determining the boundaries in both tandem repeats and nested tandem repeats.

When there are a small number of copies and/or the copies are identical these crite-

ria are not of a great help in determining the parsing points.

• Chapter 7 addresses a specific segment alignment problem relating to comparing

two tandem or nested tandem repeats. An algorithm that guarantees optimality

is introduced. This algorithm aligns a hypothesized ancestor sequence against its

descendant sequence (the observed sequence). It is an asymmetric alignment. This

algorithm can be used to estimate the distance between two closely related repeated

sequences.

8.1 Future work

The early migration of people in the Pacific has been studied using genomic data from

several different organisms (Storey et al., 2013). The work in this thesis can be continued

on to study the population genetics of the taro plant. With the advances in sequencing

technology, it has become feasible to sequence a large number of taro IGS sequences

from the Pacific region. Studying the distribution of taro in the Pacific is an interesting

goal that will further enable us to understand the migration of people in this region.

Another important direction that this project can progress is the study of the concerted

evolution that is believed to occur in the rDNA of some organisms. rDNA genes exist in

arrays of thousands of copies in some genomes. The relationship between these copies can

provide hints about the mechanism of evolution of the rDNA copies in the one genome.

Nested tandem repeat structures that exist in the IGS of rDNA of some organism can be

used as a marker to infer the phylogeny of rDNA genes. Once third generation sequencing
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technology (single molecule sequencing) is ready to be used, it will be interesting to

proceed with a project that addresses the phylogeny of rDNA genes.
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Appendix A

Published chapters

A list of published papers are listed along with the front page of each paper as it appears

in the journal/proceeding.

For the purpose of consistency, background and definitions that appear in more than

one chapter were moved to Chapter 1.

• The text in Chapter 4 is a modification of the paper titled “NTRFinder: a software

tool to find nested tandem repeats”. The section “Sequences, edit operations and

the edit distance” and section “Classification of tandem repeats”, were moved to

Chapter 1.

• Chapter 5 contains the material of the paper “An algorithm to solve the motif align-

ment problem for approximate nested tandem repeats in biological sequences”.

• Chapter 6 contains an extended version of the text of the paper “A comparison

of three heuristic methods for solving the parsing problem for tandem repeats”.

This extended version was submitted to the journal of IEEE/ACM Transactions on

Computational Biology and Bioinformatics, and I have also incorporated a number

of changes suggested by the referees of that journal.

The completed DRC16 forms “Statement of contribution to doctoral thesis containing

publications”, together with the front pages of the published papers are shown in the next

pages.
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ABSTRACT

We introduce the software tool NTRFinder to
search for a complex repetitive structure in DNA
we call a nested tandem repeat (NTR). An NTR is a
recurrence of two or more distinct tandem motifs
interspersed with each other. We propose that
NTRs can be used as phylogenetic and population
markers. We have tested our algorithm on both real
and simulated data, and present some real NTRs of
interest. NTRFinder can be downloaded from http://
www.maths.otago.ac.nz/�aamatroud/.

INTRODUCTION

Genomic DNA has long been known to contain ‘tandem
repeats’: repetitive structures in which many approximate
copies of a common segment (the ‘motif’) appear consecu-
tively. Several studies have proposed different mechanisms
for the occurrence of tandem repeats (1,2), but their bio-
logical role is not well understood.

Recently, we have observed a more complex repetitive
structure in the ribosomal DNA of Colocasia esculenta
(taro), consisting of multiple approximate copies of two
distinct motifs interspersed with one another. We call such
structures nested tandem repeats (NTRs), and the
problem of finding them in sequence data is the focus of
this article. Our motivation is their potential use for
studying populations: for example, a preliminary
analysis suggests that changes in the NTR in taro have
been occurring on a 1000 year time scale, so a greater
understanding of this NTR offers the potential to date
the early agriculture of this ancient staple food crop.

The problem of locating tandem repeats is well known,
as their implication for neurological disorders (3,4), and
their use to infer evolutionary histories has urged some
researchers to develop tools to find them. This has
resulted in a number of software tools, each of which
has its own strengths and limitations. However, the
existing tools were not designed to find NTRs, and con-
sequently do not generally find them. In this article, we

present a new software tool, NTRFinder, which is
designed to find these more complex repetitive structures.
We report here the algorithm on which NTRFinder is

based and report some of the NTRs it has identified,
including an even more complex structure where copies
of four distinct motifs are interspersed.

Sequences, edit operations and the edit distance

A DNA sequence is a sequence of symbols from the nu-
cleotide alphabet �={A,C,G,T}. We define a DNA
segment to be a string of contiguous DNA nucleotides
and define a site to be a component in a segment. For a
DNA segment

X ¼ x1x2 � � � xn;

xi2� is the nucleotide at the i-th site and jXj= n is the
length of X.
Copying errors happen in DNA replication due to dif-

ferent external and internal factors. These changes include
substitution, insertion, deletion, duplication and contrac-
tion. We refer to these as ‘edit operations’. By giving each
type of edit operation some specific weight, we can in
principle find a series of edit operations which transforms
segment x to segment y, whose sum of weights is minimal.
We will refer to this sum as the ‘edit distance’, and denote
it by d(x, y). For the purposes of this article, the edit op-
erations allowed in calculating the edit distance are re-
stricted to single nucleotide substitutions, and single
nucleotide insertions or deletions (indels).

Classification of tandem repeats

Many classifications of tandem repeat schemas have been
introduced in the computational biology literature. We list
some which are commonly used:

. (Exact) tandem repeats: an ‘exact tandem repeat’ (TR)
is a sequence comprising two or more contiguous
copies XX. . .X of identical segments X (referred to as
the motif).

. k–Approximate tandem repeats: a k–approximate
tandem repeat (k–TR) is a sequence comprising two
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An Algorithm to Solve the Motif Alignment Problem

for Approximate Nested Tandem Repeats

in Biological Sequences

ATHEER A. MATROUD,1,2 CHRISTOPHER P. TUFFLEY,2 and MICHAEL D. HENDY 3

ABSTRACT

An approximate nested tandem repeat (NTR) in a string T is a complex repetitive structure
consisting of many approximate copies of two substrings x and X (‘‘motifs’’) interspersed
with one another. NTRs fall into a class of repetitive structures broadly known as subrepeats.
NTRs have been found in real DNA sequences and are expected to be important in evolu-
tionary biology, both in understanding evolution of the ribosomal DNA (where NTRs can
occur), and as a potential marker in population genetic and phylogenetic studies. This article
describes an alignment algorithm for the verification phase of the software tool NTRFinder
developed for database searches for NTRs. When the search algorithm has located a sub-
sequence containing a possible NTR, with motifs X and x, a verification step aligns this
subsequence against an exact NTR built from the templates X and x, to determine whether
the subsequence contains an approximate NTR and its extent. This article describes an
algorithm to solve this alignment problem in O(jTj(jXj+ jxj)) space and time. The algorithm
is based on Fischetti et al.’s wrap-around dynamic programming.

Key words: algorithms, alignment, molecular evolution, satellites, simple sequence repeats.

1. INTRODUCTION

An approximate nested tandem repeat (NTR) in a string T is a complex repetitive structure con-

sisting of many approximate copies of two substrings x and X (‘‘motifs’’) interspersed with one another.

The name derives from the fact that an NTR may be thought of as two tandem repeats nested within

one another.

Approximate nested tandem repeats have been found in real DNA sequences, such as that of Colocasia

esculenta, the ancient staple food crop taro (Matroud et al., 2011). The intergenic spacer (IGS) region in the

taro ribosomal DNA contains an NTR consisting of eleven approximate copies of a 48-bp motif, inter-

spersed within a tandem repeat consisting of 96 approximate copies of an 11-bp motif. The NTR found in

taro, used as a genetic marker, offers the potential to elucidate the prehistory of the early agriculture of this
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A Comparison of Three Heuristic Methods

for Solving the Parsing Problem
for Tandem Repeats

A.A. Matroud1,3, C.P. Tuffley1, D. Bryant2,3, and M.D. Hendy2

1 Institute of Fundamental Sciences, Massey University, Private Bag 11222,
Palmerston North, New Zealand

2 Department of Mathematics and Statistics, University of Otago, Dunedin,
New Zealand

3 Allan Wilson Centre for Molecular Ecology and Evolution

Abstract. In many applications of tandem repeats the outcome de-
pends critically on the choice of boundaries (beginning and end) of the
repeated motif: for example, different choices of pattern boundaries can
lead to different duplication history trees. However, the best choice of
boundaries or parsing of the tandem repeat is often ambiguous, as the
flanking regions before and after the tandem repeat often contain partial
approximate copies of the motif, making it difficult to determine where
the tandem repeat (and hence the motif) begins and ends. We define the
parsing problem for tandem repeats to be the problem of discriminating
among the possible choices of parsing.

In this paper we propose and compare three heuristic methods for solv-
ing the parsing problem, under the assumption that the parsing is fixed
throughout the duplication history of the tandem repeat. The three meth-
ods are PAIR, which minimises the number of pairs of common adjacent
mutations which span a boundary; VAR, which minimises the total num-
ber of variants of the motif; and MST, which minimises the length of the
minimum spanning tree connecting the variants, where the weight of each
edge is the Hamming distance of the pair of variants. We test the meth-
ods on simulated data over a range of motif lengths and relative rates of
substitutions to duplications, and show that all three perform better than
choosing the parsing arbitrarily. Of the three MST typically performs the
best, followed by VAR then PAIR.

1 Introduction

Genomic DNA has long been known to contain tandem repeats: repetitive struc-
tures in which many approximate copies of a common segment (the motif ) ap-
pear consecutively. The copies of the motif are usually polymorphic, which makes
tandem repeats a useful tool for phylogenetics and for inter-population studies
(Rivals [15]); in addition, highly polymorphic tandem repeats can be used to
discriminate among individuals within a population, and have proved to be use-
ful for DNA fingerprint techniques (Jeffreys et al. [11]). Because of this, many

M.C.P. de Souto and M.G. Kann (Eds.): BSB 2012, LNBI 7409, pp. 37–48, 2012.
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