
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



Linking distal volcaniclastic sedimentation 

and stratigraphy with the growth and 

development of stratovolcanoes, Ruapehu 

volcano, New Zealand 
 

 

 

A thesis presented in partial fulfilment of the requirements 

for the degree of 
 

Doctor of Philosophy 
in 

Earth Sciences 
 

at Massey University, Palmerston North, New 

Zealand. 
 

 

 
 

 

Manuela Tost 
 

2015 





“Look deep into Nature, and then you will understand everything better” 

~ Albert Einstein





Abstract i

ABSTRACT

Large, long-lived stratovolcanoes are inherently unstable, and commonly experience large -scale 
flank collapse. The resulting debris avalanches permanently alter the edifice and the valleys they 
impact. New mapping reveals that at least six hitherto unknown debris avalanches occurred 
from Mt. Ruapehu, New Zealand. They collectively inundated >1,200 km2 and ranged between 
1.3 and >3 km3 in volume, the latter being the largest debris avalanche known from the volcano. 
Constriction of the sliding debris avalanches into deep river valleys enhanced basal erosion, 
incorporation of water-saturated substrate and formation of a basal lubrication zone. This led 
to runouts of up to 100 km, 2  - 3  times longer than expected for equivalent unconfined dry 
landslides. Two of the seven river catchments affected by debris avalanches were truncated 
from the volcano by proximal debris choking. The debris avalanches commonly coincided with 
warming from glacial into interglacial periods and rapid deglaciation of Mt. Ruapehu. A loss of 
ice-armouring of the slopes and increased water saturation likely weakened the edifice. At least 
two of the debris avalanches were triggered by intrusion of new magma into the mountain. The 
highly resistant debris-avalanche deposits form distinctive plateaus at the highest topographic 
elevations along present eroding river valleys, in places reflecting earlier drainage pathways. 
Deposit ages and those from lower climate-controlled (non-volcanic) fluvial aggradational 
terraces allowed calculation of regional uplift rates, which varied between 1.3 ± 0.5 mm yr-1 
to 5 ± 1.3 mm yr-1 over the last c. 125 ka. Each major flank failure led to decompression of 
the Mt. Ruapehu magmatic system, triggering pulses of numerous large -scale eruptions and 
syn-eruptive lahars. Ar- Ar dating of lava clasts within the debris avalanche deposits provided 
evidence of volcanic episodes that are not exposed on the present edifice. The oldest deposits 
from Mt. Ruapehu are now identified at ≥340,000  ka and show that a complex multi -stage 
storage magma system was operating, similar to that of the present day. Hornblende -bearing 
xenoliths from these lavas show that a magmatic crustal underplate at >40 km depth existed 
beneath the volcano by ~486.5 ± 37.6 ka. Combined, samples from the mass -flow deposits and 
the cone lavas show more complex variation over time than previously thought, but generally 
reflect a progressively increasing heat flux and a shift of the magma -storage system from the 
lower crust to mid- and upper -crustal levels. 
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rip-up clast within Facies 1 (Scale: 50 cm). (C) Facies 1 is emplaced on top of Taihape Mudstone. 
In areas of decreasing thickness clasts are generally well-rounded. (D) The dominant lithology 
of Facies 1 comprises angular to subrounded andesitic clasts within a firmly consolidated 
inter -block matrix of dominantly silt to fine sand (Scale: 70 cm).

Figure 13. 	 38 
Representative whole-rock composition of the Mataroa and Whangaehu Formations in relation 
to the lavas exposed on the Mt. Ruapehu cone (Price et al., 2012). Ages from Gamble et al. 
(2003) and Price et al. (2005). (A) The four major cone-building formations as mapped by Hackett 
and Houghton (1989). (B) Total -alkali compositions of the Mataroa and Lower Whangaehu 
Formations reflect basaltic andesites and andesites. Nomenclature after LeBas et al. (1986), 
IUGS – International Union of Geosciences. (C) In comparison to the Ruapehu lavas (Price et 
al., 2012), whole-rock compositions of the Mataroa and Whangaehu Formations are similar to 
those of the Wahianoa cone-building formation. Cone -building formation colours are the same 
as in (A).

Figure 14. 	 41 
Depositional model of the Mataroa Formation. (A) Prior to emplacement of the Mataroa and 
Lower Whangaehu Formations (>150 ka), the proto-Hautapu River very likely arose either 
from the flanks of the Mt. Ruapehu edifice, or the proximal ring plain. A braided river system 
developed between Turangarere and Taihape. The origin of the proto-Hautapu River on the 
volcanic edifice implies the source of a proto-Whangaehu River to be located further southwest 
than at present. Exposures of volcaniclastic deposits along the Whangaehu River, as well as 
regional strike-slip faulting indicate that the majority of its course has been consistent over time. 
(B) Substrate-weakening and hydrothermal alteration on the cone resulted in partial collapse 
of the southeastern Wahianoa flank 125 - 150  ka ago, which produced a debris-avalanche 
deposit that spilled into the Hautapu (and Whangaehu) River catchment. Sub-plinian to plinian 
eruptions produced vast amounts of pyroclastic material, which was reworked into lahars that 
descended the volcanic flanks and were emplaced on top of the debris-avalanche deposit. 
(C) The Whangaehu River emerged at the eastern flank of the volcanic edifice <125 ka ago. Its 
course is dictated by regional strike-slip faulting, especially the Rangipo and Karioi Fault, which 
results in it running southwards and incising into the mass-flow deposits of the Mataroa and 
Lower Whangaehu Formations. At the same time, the proto-Hautapu River was cut off from the 
proximal Ruapehu ring plain and presently arises from wetlands south of Waiouru.

Figure 15. 	 49
(A) Outline of New Zealand’s North Island with Mt. Ruapehu located near its centre. 
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(B) Digital elevation model of the proximal and distal Ruapehu ring plain. Note the difference 
in geomorphology where an aggradation-dominated landscape changes into an erosive one 
(dashed line). Six debris-avalanche deposits crop out along five major river catchments that 
drain the stratovolcano. Basal outcrops of debris-avalanche deposits are limited to the landscape 
adjacent to the drainage systems and distances >30 km. Scattered andesitic boulders >1.5 m in 
diameter scattered around the countryside indicate the extent of flow inundation.

Figure 16. 	 51 
The Ruapehu debris avalanches form a distinctive high terrace in valleys of each river catchment 
due to uplift and river incision. Glacial and interglacial periods have resulted in the formation 
of river terraces on which reworked andesitic boulders related to the collapse events were 
emplaced. Modified after Tost et al. (2015).

Figure 17. 	 55
Six individual debris-avalanche deposits were identified on the distal Ruapehu ring plain and 
show strikingly similar sedimentological characteristics. (A) The Piriaka-B debris avalanche 
is inversely graded and unconformably overlies Quaternary river gravel. (B) The basal facies 
of the Oreore Formation is made up of a debris avalanche deposit unconformably overlying 
late-Pliocene mudstone. (C) The basal facies of the Mataroa Formation (Scale: 2 m), (D) the 
Lower Whangaehu Formation (Scale: 2 m), (E) the debris-avalanche deposit exposed within the 
Pukekaha Formation, and (F) the Piriaka-A debris-avalanche deposit.

Figure 18. 	 56 
Textural features of the Ruapehu debris avalanches. The deposits are hetero -lithologic and 
comprise various amounts of incorporated path material, such as (A) Tertiary marine sediments; 
(B), (D) river gravel; and (B), (C), (D) hyperconcentrated-flow deposits. Fractures, probably 
due to increased shear stresses, are common within the exposures, especially at interfaces of 
differing lithofacies. Highlighted clasts within the sketches serve as orientation-points.

Figure 19. 	 57 
Lithological features of the Ruapehu debris-avalanche deposits. (A) The flows overran and 
incorporated various amounts of path material including river gravel and late-Pliocene 
mudstones and muddy sandstones. (B) Fractured clasts are generally not common but present 
within all grain sizes. (C) Larger boulders within the Ruapehu debris-avalanche deposits are 
generally subrounded. (D), (E) The intra-block matrix is consolidated and generally consists 
of the fine- sand to silt. (F) Dish-like structures (arrows) exposed within the basal facies of the 
Oreore Formation. 

Figure 20. 	 61 
Parameters of the Ruapehu debris avalanches in relation to non-volcanic landslides, subaerial 
volcanic landslides (confined and unconfined), submarine landslides, block- and-ash flows, and 
pumice flows (see Appendix I for data).
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Figure 21. 	 63 
Transport and emplacement-model for the Ruapehu debris avalanches. (A) Gravitational 
collapse of a volcanic flank and movement of the mass downslope. Erosion is dominant at 
the base and the front of the flow especially in areas of strongly decreasing slope. (B) The 
bulk of the mass laterally spreads on the low-topography terrain of the proximal ring plain, 
whereas minor parts are likely confined to steep river channels. Basal and frontal erosion is 
dominant, and loose volcaniclastics are easily eroded and loaded into the flow. Interstitial fluids 
increase the basal pore pressure towards the base of the debris avalanche. The overlying 
mass facilitates downwards-directed progressive granular stress. (C) The initial topography of 
the distal ring plain channelizes the flow into major river catchments. Granular stress is overall 
reduced though erosion continues with path material entrained at the base, the front, and the 
margins. Stream water as well as saturated river sediments augment the volume of interstitial 
fluids, and strongly increase shearing and pore pressures towards the base of the flow.

Figure 22. 	 70 
Digital elevation model of the proximal and distal Ruapehu ring plain including tectonic faults 
(red lines) after Villamor and Berryman (2006a; 2006b). Exposures of the mass-flow deposits 
studied are limited to the proximal ring plain (red field and rectangles). Reconstruction of the 
approximate inundation area (yellow fields) of the flows is based on reworked andesitic boulders 
(≥1 m in diameter) associated with the initial event and scattered around the landscape adjacent 
to the river valleys.

Figure 23. 	 72 
Field observations. (A) The Turakina debris-flow deposit is massive to cross bedded and 
dominantly contains well-rounded pebble-sized clasts. (B) A sequence of hyperconcentrated- flow 
deposits overlies the Lower Whangaehu Formation along the Whangaehu River valley. (C) 
The conglomerate exposed within the Oreore Formation (Scale: 1 m). (D) The lowermost 
consolidated pumiceous hyperconcentrated-flow deposit of the Oreore Formation (Scale: 2 m). 
(E) The uppermost sequence of the Oreore Formation is made up of numerous fine -grained 
pumiceous hyperconcentrated -flow deposits (Scale: 1 m). (F) The basal debris -avalanche 
deposit of the Piriaka Formation is unconformably overlain by two hyperconcentrated-flow 
deposits (Scale: 1 m). (G) The c. 10 m thick sequence of hyperconcentrated-flow deposits of the 
Piriaka Formation exposed in a road cut along State Highway 4 at Raurimu. (H) The debris-flow 
deposit overlying the previous sequence of hyperconcentrated-flow deposits along the Main 
Trunk Railway Line at Raurimu. (I) Heat-fractured boulder within a strongly weathered diamicton 
deposit exposed in a road cut along the Manganuioteao River valley. (J) Hyperconcentrated -flow 
deposits and overlying coverbeds of the Pukekaha Formation exposed in a quarry along the river 
valley. (K) Basal hyperconcentrated-flow deposit and overlying coverbed sequence exposed 
in a road cut along State Highway  4 c. 4 km south of Raetihi. (L) Pumiceous sequence of 
seven hyperconcentrated-flow deposits exposed in a road cut along State Highway 1 at Hihitahi 
(Scale: 2 m).

Figure 24. 	 74
Stratigraphy of the Mataroa Formation modified after Tost et al. (2015). The base of the sequence 
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holds a debris-avalanche deposit with its undulating topography being subsequently infilled and 
smoothed by at least 15 lahar deposits (hyperconcentrated flows and debris flows).

Figure 25. 	 75
Stratigraphy of the Oreore Formation. The type locality for the syn-eruptive mass -flow sequence 
is exposed on farmland c. 2 km northeast of Oreore. The basal debris -avalanche deposit forms 
an undulating topography in the area which is infilled and smoothed by the overlying lahar 
deposits, forming a distinctive plateau between Ohorea and Oreore (see Fig. 22 for localities).

Figure 26. 	 76
Stratigraphy of the Piriaka Formation. The c. 40 m thick sequence forms a distinctive plateau 
between Piriaka and Te Whakarae. The lithology of the individual units reflects several 
large- scale sub-plinian to plinian eruptions of Mt. Ruapehu, which were followed by periods of 
subdued volcanic activity.

Figure 27. 	 78 
Stratigraphy of the Pukekaha Formation. Several exposures of volcaniclastics along the 
Manganuioteao River valley reveal that syn- as well as post-eruptive mass-flow deposits have 
been spilled into the river catchment between 160 ka ago and the present.

Figure 28. 	 81 
Digital elevation model of the Ruapehu ring plain outlining the mass-flow inundation areas during 
individual eruptive episodes. (A) Mass flows spilled into the Turakina and Hautapu River valleys 
during the Turakina eruptive interval 280 - 340 ka ago. (B) Mass -wasting events during the Te 
Herenga cone-building formation (250 - 180 ka; Gamble et al., 2003) were confined to the Hautapu, 
Whangaehu, Mangawhero, Whakapapa and Whanganui River valleys. (C) During the Oreore 
eruptive interval (180 - 160 ka) diamictons were emplaced in the Mangawhero, Whakapapa and 
Whanganui River catchments. (D) Mass -wasting deposits related to the Wahianoa cone-building 
formation are exposed along the Hautapu, Manganuioteao, Whakapapa and Whanganui River 
valleys. (E) Rapid ring-plain aggradation occurred in the southwestern to northeastern sector of 
the Ruapehu ring plain during the Waimarino eruptive interval (100 - 55 ka ago). (F) Post-50 ka 
mass-wasting events are generally limited to the proximal Ruapehu ring plain.

Figure 29. 	 89 
Photomicrographs of clasts from the Ruapehu mass flows. (A) Samples with two different 
groundmasses are exposed within the Turakina eruptive episode, the Oreore Formation, and 
the Pukekaha Formation. Pyroclasts contain up to 40% subrounded, and in part elongated 
vesicles. (B) Typically, phenocrysts are subhedral and the groundmass microcrystalline. (C) A 
hyaline groundmass is limited to samples taken from initial pyroclasts. (D) Clasts from lava 
flow sequences are generally porphyritic and comprise sieve-textured plagioclase and pyroxene 
phenocrysts. (E) Glomerocrysts are made up of plagioclase + orthopyroxene + clinopyroxene 
+ olivine. (F) Fine -grained meta -sedimentary xenolith. (G) Meta-igneous hornblende-bearing 
xenolith. (H) Ruptured phenocrysts within initial pyroclasts testify to explosive eruptions.
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Figure 30. 	 93
Total alkali vs. silica classification for the Ruapehu mass flows. Nomenclature after LeBas et al. 
(1986).

Figure 31. 	 95 
Selected representative major and trace element variation diagrams for the Ruapehu mass 
flows. Fields drawn for lava flow formations correspond to those shown in Fig. 4 and are 
colour -matched to Fig. 3. Potassium fields after LeMaitre (1989).

Figure 32. 	 96 
N-MORB normalized (Sun & McDonough, 1989) multi-element plots for the Ruapehu mass -flow 
deposits in relation to the lavas of the Te Herenga and Wahianoa cone -building formations 
exposed on the edifice.

Figure 33. 	 97 
N-MORB normalized (Sun & McDonough, 1989) REE plots for the Ruapehu mass -flow deposits 
in relation to the lavas of the Te Herenga and Wahianoa cone-building formations exposed on 
the edifice.

Figure 34. 	 98 
Trace element composition of the Turakina eruptive episode in comparison to the lavas exposed 
on the volcanic edifices of Mt. Ruapehu (Price et al., 2012), Tongariro (Hobden, 1997) and 
Hauhungatahi (Cameron et al., 2010).

Figure 35. 	 104 
Model of the dominant magma modification processes affecting the Mt. Ruapehu melt. 
FC -AFC -FCA and mixing modeler after Ersoy and Helvaci (2010). The relative ratio of 
assimilated material to crystallized material (r) and the “increments”-value reflect the Ruapehu 
melts to be derived from primitive mantle-derived melts subjected to 30% crystal fractionation 
and 6% crustal assimilation (Graham & Hackett, 1987). 

Figure 36. 	 109
Digital elevation model of the Ruapehu ring plain outlining the river systems studied, as well 
as the areas of volcanic and non-volcanic aggradational fluvial terrace identification (red 
rectangles). On the proximal and medial Ruapehu ring plain numerous strike-slip faults were 
mapped and identified by Villamor and Berryman (2006a; 2006b).

Figure 37. 	 111
The coverbed sequences identified to overly the individual mass-flow formations within each 
river valley. P=Paleosol; Loess stratigraphy corresponds to the nomenclature from Milne, 1973a. 

Figure 38. 	 114
Digital elevation model of the aggradational fluvial terraces identified along four major river 
systems of the Ruapehu ring plain. Along all river valleys, sequences of mass-flow deposits, 
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sourced from the stratovolcano, form a distinct aggradational terrace at the highest elevation 
of the valley margins. The extremely high sediment flux generally resulted in blockage of the 
original river path. Subsequently, up to four non-volcanic fluvial aggradational terraces are 
exposed on lower altitudes.

Figure 39.	 119 
Rhyolitic caldera formation in the TVZ. (A) The TVZ (yellow field) is a c. northeast -trending 
magmatic system divided into three individual magmatic zones, based on the chemical 
composition of the volcaniclastics. Rhyolitic volcanism is limited to the central part of the TVZ 
(red rectangle). (B) Localities of the major rhyolitic calderas in the central TVZ that erupted large 
amounts of volcaniclastic material over the last 340 ± 10 ka (Table), which was likely associated 
with enhanced regional tectonic activity.

Figure 40. 	 121
Development of New Zealand’s climate over the last 400 ka, modified after Beau and Edwards 
(1983). The red-shaded areas represent the approximate timing of flank failures at Mt Ruapehu. 
Syn-eruptive events are marked (*). Most of the post-eruptive large-scale (>1  km3) flank 
failures of Mt. Ruapehu (Tost et al., 2014) occurred during transitions between cold stages and 
interstadial climates.






