Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Conservation of the critically endangered frog

Telmatobufo bullocki in fragmented temperate forests of Chile

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Conservation Biology

at Massey University, Albany, New Zealand

Virginia Moreno-Puig

March 2015
Abstract

Amphibians are currently facing several threats and are suffering severe population declines and extinction worldwide. *Telmatoberofo bullocki* (Anura: Calyptocephalellidae) is one of the rarest and most endangered amphibian species in Chile’s temperate forests. It is the fifth most evolutionarily distinct and globally endangered (EDGE) amphibian in the world, and one of the world’s top 100 priority species for conservation (Zoological Society of London, 2011). This stream-breeding frog is micro-endemic to the coastal Nahuelbuta mountain range in central-south Chile (37°-38°50' S), a hot-spot for conservation. This area has suffered severe loss and fragmentation of native forest, which has been replaced by extensive commercial plantations of exotic pines and eucalyptus. Despite its potential detrimental effects, the impact of native forest loss on this species has not been studied before. Furthermore, few historical observations exist, and the ecology and behaviour of the species is poorly known. In addition, current status and location of extant populations are uncertain, which makes conservation and targeted habitat protection difficult.

Through the use of different approaches and modern conservation tools this thesis aims to make a significant contribution to the conservation of *T. bullocki* and its habitat. Historical and new locations were surveyed to identify extant populations. A distribution modeling approach (i.e. Maxent) was used to infer the species’ distribution within Nahuelbuta, generate a predictive habitat suitability map, identify important environmental associations, and assess the impact of main environmental threats (i.e. native forest loss, climate change). Field-based research (e.g. surveys, radio-tracking) was done to extend the
ecological and behavioural knowledge of the species (e.g. movement patterns and habitat use), and identify critical aquatic and terrestrial habitat for protection (i.e. core habitat). Mitochondrial and specifically developed microsatellite genetic markers were used to measure levels of intra-specific genetic variability, define genetic population structure and connectivity, infer evolutionary history (phylogeography), estimate effective population size and detect demographic changes (e.g. bottlenecks). Finally, a landscape genetics approach was used to relate landscape characteristics to contemporary patterns of gene flow, and identify important landscape features facilitating (i.e. corridors) or hindering (i.e. barriers) genetic connectivity between populations.

Telmatoctopus bullocki was found in nine basins within Nahuelbuta, including historic and new locations. Presence of _T. bullocki_ was positively related to the amount of native forests in the landscape. However, some populations persist in areas dominated by exotic plantations. Some frogs were found living under mature pine plantation adjacent to native forest, but no frogs were found in core plantation areas. _T. bullocki_ makes extensive use of terrestrial habitat adjacent to breeding streams during the post-breeding season, moving up to 500 m away from streams. A core terrestrial habitat of at least 220 m from streams is proposed for the protection of populations. Population genetics and phylogeography revealed significant population structure. The northernmost and disjunct population of Chivilingo is geographically and genetically isolated from all other sampled populations and was identified as a separate evolutionary significant unit (ESU). The population of Los Lleulles was also identified as a separate management unit, while the remaining populations were grouped into two clusters forming a larger and more connected metapopulation. Connectivity within groups was high, suggesting individuals are able to
disperse between neighbouring basins. Levels of genetic diversity were not homogeneous, and were lowest at Los Lleulles and highest at Caramávida. Results suggest disjunct populations are at highest risk and should be prioritised for restoration and habitat protection, while management of meta-populations should aim at maintaining and improving connectivity among basins. Landscape genetic results identified streams and riparian habitat as dispersal pathways, and least-cost-path analysis was used to identify a potential connectivity network.
Acknowledgements

I would like to thank my main supervisor Professor Dianne H. Brunton (Institute of Natural and Mathematical Sciences, Albany Campus, Massey University, Auckland, New Zealand) and co-supervisor Professor Phil Bishop (Department of Zoology, University of Otago, Dunedin, New Zealand) for their knowledgeable guidance and advice, continuous support, and encouragement throughout this thesis.

A very special thanks to the institutions that provided financial support for this research: The Mohamed bin Zayed Species Conservation Fund, European Association of Zoos and Aquaria Amphibian Conservation Fund (EAZA ACP), Rufford Small Grants for Conservation (The Rufford Foundation), Auckland Zoo Conservation Fund, and INMS (Massey University Auckland). I acknowledge CONICYT (BecasChile Doctoral Scholarship), Sir Neil Waters Scholarship (Massey University), and Massey University Doctoral Completion Bursary for financial support towards my studies at Massey University.

Thanks to Prof. Paul Rainey (NZIAS Massey University), Dr. Heather Hendrickson (NZIAS Massey University), and NZIAS Massey University Auckland for providing laboratory space for the genetics components of the thesis, and to Yeserin Yildirim for technical guidance with laboratory techniques. Thanks to Dr. Shauna Baillie for advice on the population genetics components, and Dr. Claudio Correa (Universidad de Concepción, Chile) for input on mitochondrial DNA analysis and for providing tissue and DNA samples. Dr. Matthew Perrott from the Institute of Vet, Animal & Biomedical Sciences, Massey University
prepared histological slides for skeletochronology. Thanks to Helen Díaz-Páez for her input and support on the initial stages of the project.

Thanks to Felipe Rabanal for inviting me to a fieldtrip to Butamalal, where I first met *T. bullocki*, and which turned out to be the starting point of this work. A very special thanks to all the people who enthusiastically volunteered to assist during long nights of fieldwork: Claudio Aguayo, Bárbara Alvarez, Sergio Araya, Camila Castro, Patrich Cerpa, Andrés Charrier, Estefanía Cifuentes, Claudio Correa, Martín Daiber, Colomba Elton, Victor Hugo Ernst, Edgardo Flores, Macarena Moreno, Bernardo Segura. Thanks to Tomás Elgueta for his time, enthusiasm, ingenuity, and for his documentary work. To the Aguayo and Corvalán families for providing accommodation during fieldwork.

Thanks to Forestal Arauco for providing radio-transmitters and access permits. To Patricio Viluñir (Forestal Arauco) for looking after my safety in the field and coordinating gate openings, to Raúl Briones (Bioforest) for collaboration and data access. Thanks to CMPC for access permits. To Zoológico Nacional de Chile and Danté Fenolio for allowing to film and collect DNA samples from captive *T. bullocki* and *T. australis*, and Osvaldo Cabeza (zookeeper) for assisting. Fieldwork and DNA collection was conducted under SAG research permits nº 6977/2011, 5604/2012, 6514/2013 and CONAF authorisation 13-2011 IX.

Thanks to all the people who supported me during the past four years, my partner, my family and friends.
Table of Contents

Abstract .. iii

Acknowledgements ... vii

Table of Contents ... ix

List of Figures ... xv

List of Tables ... xxi

List of Acronyms and Abbreviations .. xxiii

Chapter 1: General Introduction .. 1

1.2 Conservation biology and thesis scope .. 1

1.3 Background .. 3

1.1.1 Global amphibian declines... 3

1.1.2 *Telmatobufo bullocki* ... 5

General description... 5

Evolutionary history ... 7

Historical distribution ... 7

Conservation status .. 9

Natural history .. 11

1.1.3 Nahuelbuta Range ... 12

Description ... 12

Human settlement and land use change .. 16

Forestry industry ... 16

The potential impact of plantations on biodiversity .. 19

1.4 Thesis aim, specific objectives, and chapter outline ... 23

Chapter 2: A distribution model for *Telmatobufo bullocki*, and the impact of native forest loss and climate change ... 27

2.1 Introduction .. 27

2.2 Methods .. 31

2.2.1 Study area .. 31

2.2.2 Amphibian surveys and data collection ... 33
2.2.3 Environmental variables .. 34
2.2.4 Maxent modeling .. 38
2.2.5 Model evaluation and selection .. 38
2.2.6 Model projection .. 39
2.3 Results .. 41
 2.3.1 Presence points .. 41
 2.3.2 Model evaluation and selection .. 44
 2.3.3 Relative influence of environmental variables 45
 2.3.4 Response curves ... 46
 2.3.5 Suitable habitat ... 48
 2.3.6 Model projections ... 49
2.4 Discussion .. 51
 2.4.1 Relative influence of environmental variables 52
 2.4.2 Projections ... 56
 2.4.3 Limitations ... 59
 2.4.4 Implications for conservation and management 60

Chapter 3: Movement patterns and habitat use .. 63
3.1 Introduction .. 63
 3.1.1 Amphibian migrations and movements 63
 3.1.2 Telmatobufo bullocki ... 64
3.2 Methods .. 65
 3.2.1 Movement patterns and terrestrial habitat use 65
 Study area ... 65
 Frog sampling ... 66
 Frog and environmental measurements 68
 Fluorescent powder tracking ... 69
 Radiotracking ... 70
 3.2.2 Aquatic habitat ... 72
 Sites ... 72
 Larval sampling ... 72
 Stream habitat characterisation .. 74
 3.2.3 Data analysis ... 75
3.3 Results .. 75
 3.3.1 Terrestrial captures .. 75
Chapter 4: Genetic diversity and spatial structure of populations

4.1 Introduction

4.1.1 Telmatobufo bullocki

4.2 Materials and methods

4.2.1 Sample collection and pooling

4.2.2 DNA extraction sequencing and genotyping

4.2.3 Genetic analysis

4.3 Results

4.3.1 Microsatellite loci

4.3.2 Terrestrial habitat use

4.3.3 Movement patterns

4.3.4 Aquatic habitat use

4.4 Discussion
Chapter 5: Landscape genetics and dispersal pathways 147

5.1 Introduction .. 147
 5.1.1 Habitat fragmentation and extinction .. 147
 5.1.2 Landscape genetics ... 148
 5.1.3 *Telmatobufo bullocki* and fragmentation 150

5.2 Methods .. 152
 5.2.1 Study area .. 152
 5.2.2 DNA sampling and genotyping ... 153
 5.2.3 Genetic analysis .. 154
 5.2.4 Landscape analysis .. 155
 Resistance surfaces .. 156

5.3 Results ... 162
 5.3.1 Genotyping .. 162
 5.3.2 Landscape genetic analysis ... 163
 Univariate analysis .. 163
 Multivariate analysis .. 166
 Dispersal network ... 166

5.4 Discussion .. 171
 5.4.1 Effect of landscape features on *T. bullocki* functional connectivity 171
Streams...171
Slope and elevation..172
Effect of exotic plantations on functional connectivity ...174
5.4.2 Dispersal network and implications for management.......................................176

Chapter 6: General Discussion ..179

6.1 Main findings...179
6.1.1 T. bullocki distribution and populations..179
6.1.2 Habitat use..182
6.1.3 Movements, behaviour, and detectability..183
6.1.4 Population genetic structure and genetic diversity...185
6.1.5 Main threats...185
6.2 Other threats...188
6.3 What can be done to protect T. bullocki populations and habitat?......................191
6.3.1 Management..191
6.3.2 Other recommendations..192
6.3.3 Future research..193
Ecological studies...194
Management...196
6.4 Conclusion...198

References ..201

Appendix A. Historical records for Telmatobufo bullocki from 1931 to 2006..............225
Appendix B. List of presence records..231
Appendix C. Stream surveys and tadpole relative abundance in 18 sites in Nahuelbuta. 233
Appendix D. Sexual size dimorphism in T. bullocki...235
Appendix E. Observations on T. bullocki growth and development...........................237
Appendix F. Development of microsatellite markers for the critically endangered frog
Telmatobufo bullocki and cross-species amplification in two related species.243
Appendix G. Additional tables and graphs for Chapter 4...247
G. 1 Bayesian MSVAR run parameters..247
G. 2 Hardy-Weinberg Equilibrium test...248
G. 3 Evanno method to detect number of genetic clusters (K) .. 249
G. 4 Genetic diversity and G-statistics for 14 microsatellite loci ... 252
G. 5 Pairwise Jost D_{st} distances between basins and groups ... 253
G. 6 Heterozygosity excess test results for the detection of genetic bottlenecks 254
G. 7 Molecular Phylogenetic analysis by Maximum Likelihood method 255
G. 8 Mismatch distribution: Test of spatial expansion .. 256
G. 9 Parameters of demographic expansion and neutrality tests calculated using the CR sequence .. 258

Appendix H. Additional figures for Chapter 5. .. 259

Appendix I. Management guidelines for *T. bullocki* populations. 261
List of Figures

Figure 1.1. The critically endangered amphibian *Telmatobufo bullocki*, the focus of this thesis. Juvenile in native forest in Butamalal, Nahuelbuta Range, Chile (photo: Andrés Charrier). ..2

Figure 1.2. *T. bullocki* A) tadpole (size 75 mm total length, photo: Bernardo Segura), B) juvenile (size 39 mm SVL, photo: Andrés Charrier), C) adult female (size 82 mm SVL, photo: Tomás Elgueta). ...6

Figure 1.3. Remaining *T. bullocki* native breeding habitat in upper Butamalal River (left). Exotic plantations have replaced native forest, and aggregate extraction has degraded *T. bullocki* habitat in the lower parts of the Butamalal Valley (right) ...10

Figure 1.4. Location of Nahuelbuta mountain range in central-south Chile, showing historical *T. bullocki* distribution: 1) Lota 2) Ramadillas, 3) Caramávida, 4) Rucapehuén, 5) La Cueva, 6) Cabrerías, Butamalal, 7) San Ernesto, Elicura, 8) Vanerías, Nahuelbuta National Park 9) Cabrerias, Nahuelbuta National Park, 10) Vegas Blancas, 11) Vegas de Rucapillán, 12) Los Lleulles (locations obtained from the maps in: Formas et al 2001, Cei 1962, Péfair 1971).13

Figure 1.5. Climograph for Contulmo weather station (38° 00' S, 73° 13' W), data downloaded from the national hydrometric and climatic database, *Dirección General de Aguas, Ministerio de Obras Púlicas* (http://snia.dga.cl/BNAConsultas/reportes). ...15

Figure 1.6. Historical climatic records for Contulmo between 1987 and 2012, showing a positive trend in monthly temperature (left) and a negative trend in precipitation (right). Data for Contulmo station downloaded from the national hydrometric and climatic database, *Dirección General de Aguas, Ministerio de Obras Púlicas* (http://snia.dga.cl/BNAConsultas/reportes). ...15

Figure 1.7. Land cover of Nahuelbuta (data reclassified from CONAF (2008))..18

Figure 1.8. Edge between pine plantation (left) and native forest (right) in Caramávida, one of the historical *T. bullocki* locations (photo: Bernardo Segura) ..20

Figure 1.9. Unsustainable forestry practices in Nahuelbuta, Chile. The large size of clear-cuts is exemplified with the satellite image of a clear-cut area of approximate 3,000 ha (left), while the poor riparian protection is exemplified in the right (Google Earth 2015 Digital Globe). ..21

Figure 2.1. Location of the study area: Nahuelbuta Range (grey area) in central south Chile, between Regions VIII (Región del Biobío) and IX (Región de la Araucanía) ..32
Figure 2.2. Diagram showing three different landscape scales considered in the study (L = large, M = medium, S = small). Dark grey represents native forest, light grey represents exotic plantation, and white represents non-forested areas. The percentage of native forest and exotic plantation was calculated for each scale using a moving window analysis.

Figure 2.3. Map of Nahuelbuta showing the 25 T. bullocki presence points used for modeling (black triangles), historical records (yellow dots) and areas where T. bullocki was not detected during this study (red crosses). Main basins with T. bullocki presence are labeled: 1) Chiviling, 2) Ramadillas, 3) Caramavida, 4) Cayucupil, 5) Butamalal, 6) Huilquehue, 7) Provoque, 8) Calebu, 9) Los Lleulles.

Figure 2.4. Marginal response curves of the predicted probability of T. bullocki presence for the four predictor variables that most contributed to the best model. The curves show the mean response of the 10 replicate Maxent runs (red) and the mean ± one standard deviation (blue).

Figure 2.5. Marginal response curves for the percentage of native forest in A) small landscape, and B) medium landscape. The curves show the mean response of the 10 replicate Maxent runs (red) and the mean ± one standard deviation (blue).

Figure 2.6. Logistic output for the predicted Telmatobufo bullocki distribution in the Nahuelbuta Range for past (under native forest hypothesis), present and future conditions (year 2050 under RCP4.5 scenario). Black dots are the presence points used for Maxent modeling.

Figure 2.7. Map showing the predicted distribution of T. bullocki suitable habitat in the Nahuelbuta Range in present and future conditions under climate change scenario (RCP4.5, 2050). Only suitable areas (MTP probability of occurrence ≥ 0.46) are shown. Nahuelbuta National Park is shown in pink, and training presence points in black.

Figure 3.1. El Natri (front) includes areas of native forest, pine plantations, and open grass riparian areas.

Figure 3.2. Adult T. bullocki with radio-transmitter belt attached.

Figure 3.3. Diagram showing the VES surveying technique (left) and the stream measurements (right). The VES technique consisted of two observers moving upstream in parallel, visually scanning the streambed for tadpoles (using a viewing window and diving torch). Stream measurements included several wetted width measurements spaced through the sampling area (T1 - T4) and several depth measurements at each transect (crosses over T1 - T4) spaced approximately 1 m apart.
Figure 3.4. Map of the study area showing land cover type, surveyed areas, \textit{T. bullocki} points and Provoque stream.

Figure 3.5. Frequency histograms of distance to stream according to sex (left) and age (right) for the full sample ($N = 60$).

Figure 3.6. Frequency histogram for distance to stream by month of capture for the full sample ($N = 60$).

Figure 3.7. Pine needle microhabitat: diurnal refuge (left, arrow points to hiding frog), and active frog in plantation area during the night (right).

Figure 3.8. Active adult frogs in the night.

Figure 3.9. Inactive \textit{T. bullocki} inside burrows (left) and active frog at the entrance of burrow (right).

Figure 3.10. Frequency histogram of distance moved per night of activity. Includes all movements recorded from males, females and juveniles (total movements $N = 32$), using both radiotracking and fluorescent powders.

Figure 3.11. (A) Direction of movements ($N = 31$). The arrow is the mean weighted vector (mean direction weighted by distance moved). (B) Direction to the stream at the beginning of each movement, black line is the average with 95% CI.

Figure 3.12. Egg cluster of approximately 200 eggs (A), and detail of eggs (B), bar size 1 cm.

Figure 3.13. Histograms showing tadpole size (snout to vent length, mm) each month (October $N = 39$; November $N = 21$; December $N = 33$).

Figure 3.14. Two tadpoles at different stages found simultaneously (December 2013).

Figure 3.15. Aquatic microhabitat used by adult \textit{T. bullocki}: frogs were found submerged hiding under big rocks and boulders.

Figure 4.1. Map of genetic sampling locations (black triangles) of \textit{T. bullocki} in the Nahuelbuta Range. Samples collected in the same sub-basin were pooled together for population analysis and assigned the following codes CH = Chivilingo, CA = Caramávida, CY = Cayucupil, BU = Butamalal, HU = Huilquehue, PR = Provoque, CL = Calebu. Main towns and cities are shown as reference.

Figure 4.2. Hierarchical clustering of individuals and populations given in STRUCTURE when $K = 2$ and $K = 4$. Each vertical bar represents an individual’s probability of population origin, with each colour representing a different population. The original sampling population is shown with the two-letter code assigned.
Figure 4.3. M-ratio simulations for the four populations or groups of populations (A = CH; B = CA, CY, BU; C = HU, PR, CL; D = LL). In each case, the calculated M-ratio is shown (dashed line) and the simulated critical values (M_c) for each model (i.e. SMM, TPM 95%, TPM 90%) are shown as a function of pre-bottleneck theta. Evidence for bottleneck is significant for models that are above the dashed line. .. 122

Figure 4.4. Marginal probability distributions for log(N_0) and log(N_1) in the left, and log(T) in the right for all runs including all groups. Posterior distributions were generated in MSVAR and kernel densities calculated in TRACER. .. 123

Figure 4.5. Gene tree constructed from 10,000 posterior trees output by BEAST (left). Branch labels correspond to posterior probabilities (only probabilities > 0.5 are shown), and scale is substitutions per site. The colours correspond to the geographic group of origin as shown in the map (right). .. 128

Figure 4.6. TCS network of concatenated mtDNA haplotypes. Population of origin is represented by colour. The size of each circle is relative to the number of individuals sharing the same haplotype. Black dots represent inferred missing haplotypes (nodes). Hatch marks represent the number of substitutions occurring on that branch. Shading represents clustering of individuals according to STRUCTURE results. .. 129

Figure 4.7. Observed mismatch distribution is shown (solid black line), along with expectations under the demographic expansion model (black dashed), and its confidence intervals (colour dashed). .. 131

Figure 4.8 Bayesian Skyline Plots (BSP) show the median of the population size (solid black), expressed as effective population size per generation time (log transformed), with 95% HPD (blue lines). X-axis is time expressed in units of substitutions/site. .. 132

Figure 5.1. Study area in the Nahuelbuta Range, Chile (red shaded area in the left). Yellow dots in the left represent all recent T. bullocki sightings. Yellow dots in the right represent sampling locations included in this study. .. 153

Figure 5.2. Resistance surfaces for each variable used for modeling. A) Streams: Proximity to streams as a power function with exponent 0.2. B) Slope: percentage rise in slope transformed with a power function with exponent 0.2. C) Elevation: categorical with low resistance between 50 and 1050 m a.s.l and high resistance for all other elevations. D) Land cover: categorical with native forest with low resistance and all other types with high resistance. Black dots represent the 21 sampling locations. .. 164
Figure 5.3. Map showing the least cost paths (LCP) connecting *T. bullocki* sampling locations and the land-use classification based on CONAF (2008). LCP shown represent potential historical dispersal routes under the best-supported model of landscape resistance. The paths follow stream and riparian habitat.

Figure 5.4. Map showing the dispersal network (least-cost corridors). Corridors include routes that are up to 10% more costly than the LCP. The colour represents the relative amount of paths that go through that corridor (path density). Warmer colours represent higher gene flow and connectivity.
List of Tables

Table 2.1. Summary of environmental variables selected for species distribution modeling........ 37
Table 2.2. Descriptive statistics for environmental variables, based on 70 presence points in the
 Nahuelbuta Range...43
Table 2.3. Mean area under the receiver operator curve (AUC) for training and test data for the
 four competing models (10 replicate runs). ..45
Table 2.4. Percent contribution and permutation importance of all the variables included in the
 best Maxent model ..46
Table 3.1. Descriptive statistics for occurrence distances (m) to Provoque stream for each age and
 sex class..77
Table 3.2. Physical measurements and physicochemical parameters of water for streams with
 confirmed T. bullocki presence (N = 15). ..85
Table 4.1. Population name, code, geographical coordinates (UTM, zone 18S, WGS84), and sample
 sizes for the different markers used in this study (msat = microsatellites, COI = Cytochrome
 oxidase subunit I, CR = control region, COI+CR = concatenated sequence).105
Table 4.2. Genetic diversity indices for each basin and group. Left: Molecular diversity for the 1265
 bp concatenated (COI+CR) mtDNA sequence: number of samples N, number of segregating
 sites S, number of haplotypes Hs, haplotype diversity Hs, nucleotide diversity π, average
 number of nucleotide differences k, and haplotype richness after rarefaction to the
 smallest sample size Hr. Right: Genetic diversity at 14 microsatellite loci: Number of
 individuals N, average number of alleles Na, number of private alleles Npa, allelic richness Ar
 and private allelic richness PAr, average observed Ho and expected He heterozygosity,
 average inbreeding coefficient Fis. Red = low, yellow = medium, and green = high relative
 diversity. ns = non significant..119
Table 4.3. Pairwise Fst between populations above diagonal (Weir and Cockerham 1984), Rst
 (Slatkin 1995) below diagonal. Shading is used to highlight populations grouped together
 according to STRUCTURE results. ...120
Table 4.4. Pairwise Fst between groups above diagonal Rst below diagonal............................121
Table 4.5. Estimated parameters given by the combination of all runs in MSVAR for each group. for current effective population size N_0, ancient effective population size N_1, and time since population change T on a log scale.

Table 4.6. Estimated effective population size (N_e) and 95% confidence intervals using the linkage disequilibrium (LD) method excluding rare alleles (Waples and Do 2010), and approximate Bayesian computation (ABC) of Tallmon et al. (2008). The cut-off value (P_{crit}) to exclude rare alleles was calculated for each sample size (S).

Table 4.7. Diversity indices for the two mtDNA markers used. Sample size N, segregating sites S, number of haplotype H_0, haplotype diversity H_D, nucleotide diversity π, average number of nucleotide differences k.

Table 5.1. Land cover classes and resistance values assigned in each resistance hypothesis. A small value of 1 represents lower landscape resistance to movement (i.e. corridor), while the highest value 10 represents high landscape resistance to movement (i.e. barrier).

Table 5.2. Mantel r and P-values (10000 restricted permutations) for the correlation between pairwise genetic distance and LCP distance for 113 individuals across each resistance surface for the four variables considered. Models are ranked with the highest correlation on top (grey shaded rows). The top model for each variable was used in subsequent causal modeling approaches.

Table 5.3. Results of Mantel and partial Mantel tests for the null model (Euclidean) and the 16 landscape resistance models tested, ranked according to their Mantel r value. Variables included in the models are proximity to streams (St), slope (Sl), elevation (E), and land cover (LC). Mantel tests were performed between the pairwise genetic distance matrix (a_i) between 113 individuals and the Euclidean and least cost path distance (LCP) matrices. Models that meet the causal modeling statistical expectations are highlighted.

Table 5.4. Results of the second step of causal modeling. The top model identified in Table 5.3 (St) is tested against the other models also supported.
List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>Bd</td>
<td>Batrachochytrium dendrobatidis</td>
</tr>
<tr>
<td>BI</td>
<td>Bayesian Inference</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian Information Criterion</td>
</tr>
<tr>
<td>BSP</td>
<td>Bayesian Skyline Plot</td>
</tr>
<tr>
<td>BU</td>
<td>Butamalal</td>
</tr>
<tr>
<td>CA</td>
<td>Caramávida</td>
</tr>
<tr>
<td>CH</td>
<td>Chivilingo</td>
</tr>
<tr>
<td>CL</td>
<td>Calebu</td>
</tr>
<tr>
<td>COI</td>
<td>Cytochrome c oxidase subunit 1</td>
</tr>
<tr>
<td>CONAF</td>
<td>Corporacion Nacional Forestal de Chile</td>
</tr>
<tr>
<td>CR</td>
<td>Critically endangered (IUCN threat category)</td>
</tr>
<tr>
<td>CY</td>
<td>Cayucupil</td>
</tr>
<tr>
<td>CWD</td>
<td>Coarse woody debris</td>
</tr>
<tr>
<td>DD</td>
<td>Data Deficient (IUCN threat category)</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>E</td>
<td>Elevation</td>
</tr>
<tr>
<td>EDGE</td>
<td>Evolutionarily distinct and globally endangered</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation maximization algorithm</td>
</tr>
<tr>
<td>ESS</td>
<td>Effective sample size</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>ESU</td>
<td>Evolutionarily significant unit</td>
</tr>
<tr>
<td>FSC</td>
<td>Forest Stewardship Council</td>
</tr>
<tr>
<td>HCVA</td>
<td>High Conservation Value Area</td>
</tr>
<tr>
<td>HKY+I</td>
<td>Hasegawa, Kishino and Yano model of DNA substitution with invariable sites</td>
</tr>
<tr>
<td>HPD</td>
<td>Highest posterior density</td>
</tr>
<tr>
<td>HSI</td>
<td>Habitat suitability index</td>
</tr>
<tr>
<td>HU</td>
<td>Huilquehue</td>
</tr>
<tr>
<td>HWE</td>
<td>Hardy-Weinberg equilibrium</td>
</tr>
<tr>
<td>IAM</td>
<td>Infinite Allele Model</td>
</tr>
<tr>
<td>IBD</td>
<td>Isolation by distance</td>
</tr>
<tr>
<td>IBR</td>
<td>Isolation by resistance</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LC</td>
<td>Land cover</td>
</tr>
<tr>
<td>LCP</td>
<td>Least-cost path</td>
</tr>
<tr>
<td>LL</td>
<td>Los Lleulles</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood</td>
</tr>
<tr>
<td>MW</td>
<td>Mega Watt</td>
</tr>
<tr>
<td>mya</td>
<td>Million years ago</td>
</tr>
<tr>
<td>Ne</td>
<td>Effective population size</td>
</tr>
<tr>
<td>NR</td>
<td>Nahuelbuta Range</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PR</td>
<td>Provoque</td>
</tr>
<tr>
<td>SC</td>
<td>Specific conductance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SI</td>
<td>Slope</td>
</tr>
<tr>
<td>SSD</td>
<td>Sum of square deviations</td>
</tr>
<tr>
<td>St</td>
<td>Proximity to stream</td>
</tr>
<tr>
<td>SVL</td>
<td>Snout-to-vent length</td>
</tr>
<tr>
<td>TMRCA</td>
<td>Time to most recent common ancestor</td>
</tr>
<tr>
<td>VES</td>
<td>Visual encounter surveying</td>
</tr>
<tr>
<td>VIE</td>
<td>Visible implant elastomer</td>
</tr>
</tbody>
</table>