Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Musculoskeletal Disorders in the New Zealand Sawmilling Industry – Prevalence, Risk factors and Intervention Strategies

A thesis in partial fulfillment of the requirements for the degree of Master of Ergonomics at Massey University

Marion Edwin, April 2005
ABSTRACT

Government injury data indicated that New Zealand's sawmilling industry had a high number of musculoskeletal disorder (MSD) claims of high cost. New Zealand's forestry and wood processing sector is also a growth industry, with 100 new mills likely to be developed by 2010. Required to address the high rate of MSDs is a systematic review of manual handling risk factors and the development of related intervention strategies.

Detailed information on the prevalence and nature of MSDs in New Zealand's sawmilling was sought. Available Accident Compensation Corporation injury records provided limited detail on the work tasks causing MSDs in sawmill workers. An industry survey of reported accidents for a 12 month period (September 2000-August 2001) was completed to determine MSD prevalence, and to identify sawmilling operations with high manual handling risks. 56% of MSD reports were from millhands and tablehands, who complete the majority of timber handling tasks. Back injuries accounted for 37% of MSD reports, and upper extremity complaints a further 35%. Tasks creating the largest proportion of MSDs in sawmills were pulling, sorting and stacking of timber from green or dry tables/chains (conveyors moving freshly sawn or kiln-dried timber, from which boards are taken and stacked), filleting tasks (stacking timber with spacer sticks before drying), and grading/sorting on the green table/chain.

In case studies of two South Island sawmills, timber handling tasks at green and dry tables were investigated to determine manual handling risk factors. Karsh et al (2001) suggest that multiple intervention applications are the most successful in reducing MSDs. A range of assessment methods was therefore used to identify a range of manual handling risk factors and potential interventions. Assessments included worker interviews, archival data review, environmental assessment, lifting strength testing, force measurement, anthropometry, dimensional assessment, discomfort reporting, exertion scales, Rapid Entire Body Assessment, and application of a manual handling risk assessment.

The manual handling risks identified were related to a wide range of aspects of the task (frequency, workplace design), worker (experience, training), load (timber size, chain/table design), environment (temperature, lighting) and management (task rotations, maintenance schedules). The intervention strategies developed to reduce the manual handling risks included workspace geometry (such as the relationship of timber on the table to the packet, and packet spacing), workflow management (such as task rotations, and managing peaks and troughs in production), task technique training (such as board throwing methods, induction training, and the use of protective aprons), table design (such as height, type of
chain or conveyor), and glove design. Mill-specific recommendations based on these strategies were presented to the mills.

Further work is indicated to evaluate the effectiveness of recommended intervention strategies.
GLOSSARY

Green timber
Recently sawn or fresh lumber that has not yet been through any drying process.

Dry timber
Timber that has been dried, usually in a kiln but may be air-dried in the yard.

Long chain or long table
A straight conveyor system moving sawn timber from the mill. Boards are pulled from the conveyor and stacked into packets. Conveyors may be a link chain, plain steel belts, rollers, shaped nylon lugs or cleat design.

Round table
A large, rotating, circular platform onto which green sawn timber from the mill falls, and boards are pulled and stacked into packets.

Packet
A stack of timber of set dimension and board numbers that is strapped and/or wrapped in plastic. Each workplace has unique packet dimension requirements usually related to size for export containers and other transporting and storage issues.

Filleting or stripping
The stacking of packets of timber with small spacing sticks (called ‘fillets’ or ‘strips’)) across the packet between each timber layer, to allow drying. Two or three layers of fillets/strips are also placed across all packets for stability in transportation.

Defilleting
The removal of fillets/strips from stacks of timber.

Sorting
Selecting same dimension and grade boards from the mixed boards and grades on the table/chain, and stacking into a packet.

Grading
Marking of boards on the table (usually with chalk) to denote their quality and thereby the packet to be stacked to. The timber grader has completed additional training for this revenue-related task. Automated grading (machine stress grading or MSG) may also occur.

Re-sawing
The return of once-sawn lumber to the mill for sawing to a smaller size.
REPORTS WRITTEN FROM THIS WORK
(Copies in Appendix 11)

ACKNOWLEDGEMENTS

Thanks to the management and workers of the sawmills allowing these case studies. Their willingness to consider new ideas and their proactive approach to the prevention of musculoskeletal disorders within the industry must be applauded. It has aided in advancing the awareness of manual handling risk factors and interventions within the New Zealand sawmilling industry.

The support of David Tappin and other COHFE employees Tim Bentley (now Massey University), Richard Parker, Dave Moore and Liz Ashby is acknowledged in the completion of this work. Without their commitment to the education of New Zealand ergonomists the opportunity to work alongside them for this project would not have occurred. David’s unfailing steady encouragement was lashed with great dollops of highly infectious enthusiasm that propelled this project forward. I also thank David for not making me drink ‘site fuel’. Tim Bentley’s clear thinking saved my sanity on several occasions, hopefully not all in vain.

Stephen Legg’s (Massey University) patient encouragement and assistance also allowed this somewhat ‘long term’ project to lurch in a generally forwards direction towards completion, despite all sorts of events that created ‘student effort interruptus’.

The support of my Christchurch colleagues Sue Alexander and Nicola Green was essential for continued focus – all those coffee and lunch meetings were critical extra-mural student activities.

Most importantly the support of my loving and long-suffering husband, Warren, will never be forgotten. His fetching of countless cups of tea, completion of the housework, counseling through the tough times and his unwavering belief that I would finish has seen me through. And our young son Finn gets a big thankful squeeze for finally arriving so that I could come out of the ‘fug’ of pregnancy hormones, and for being a happy and settled baby so mummy could get on with this.

Thanks also to my parents for including an ‘unreasonably stubborn’ gene in what they gave me.
Table of Contents

Chapter 1 Introduction

1.1 Purpose ... 1
1.2 Project Background ... 1
1.3 Project Organisation ... 3

Chapter 2 Literature Review 5

2.1 Forest Industry in New Zealand 5
2.2 Accident Prevention and Occupational Health and Safety Agencies ... 6
2.3 New Zealand Wood Processing Injury Data 6
2.4 International Injury Trends 7
2.5 Musculoskeletal Disorders 9
2.6 Manual Handling and Risk Factors 10

Chapter 3 Sawmilling Accident Register Survey 13

3.1 Introduction .. 13
3.1.1 Aims and Objectives ... 13
3.1.2 Injury and Employment Data 13
3.1.3 Existing Data Limitations 14

3.2 Method ... 14
3.2.1 Accident Register Survey Development 14
3.2.2 Sawmill Identification 15
3.2.3 Survey .. 16
3.2.4 Sawmilling Job Definitions 17

3.3 Results ... 20
3.3.1 Accident Register Survey Results 20
3.3.2 ‘Best Guesses’ Results ... 25
3.4 Discussion .. 26
3.4.1 Survey Response .. 26
3.4.2 Task Definitions 26
3.4.3 Revised Injury and Employment Statistics 27
3.4.4 Injury and Job Data 27
3.4.5 Limitations ... 28

3.5 Conclusions .. 28

Chapter 4 Assessment Methodology 30

4.1 Assessment Design ... 30
4.1.1 Assessment Aims 30
4.1.2 Mill Selection ... 30
4.1.3 Familiarisation with Sawmills 31
4.1.4 Selection of Assessment Methods 32
4.1.5 Company and Worker Consent 34

4.2 Assessment Protocols .. 35
4.2.1 Archival Data Collection 35
4.2.2 Worker Semi-structured Interview 35
4.2.3 Anthropometry ... 36
4.2.4 Lifting Strength 37
4.2.5 Environmental Assessment 38
4.2.6 Personal Protective Equipment Review 38
4.2.7 Worker Schedules 39
4.2.8 Timber Handled Statistics 39
4.2.9 Green/Dry Chain/Table Assessment 39
4.2.10 Force Measure .. 40
4.2.11 Rapid Entire Body Assessment 43
4.2.12 Borg Rating of Perceived Exertion Scale 44
4.2.13 Discomfort Rating Scale 46
4.2.14 Nordic Musculoskeletal Questionnaire 47
4.2.15 Manual Handling Risk Score 48

Chapter 5 Case Study - Mill 12 49

5.1 Introduction .. 49

5.2 Assessment Results, Discussion and Conclusions 50
5.2.1 Archival Data ... 50
5.2.1.1 Results ... 50
5.2.1.2 Discussion and Conclusions 52
5.2.2 Worker Semi-structured Interviews 55
5.2.2.1 Results ... 55
Chapter 6 Case Study – Mill 17

6.1 Introduction

6.2 Assessment Results, Discussion and Conclusions

6.2.1 Archival Data

6.2.2.1 Results

6.2.1.2 Discussion and Conclusions

6.2.2 Worker Semi-structured Interviews

6.2.2.1 Results

6.2.2.2 Discussion and Conclusions

6.2.3 Anthropometric Data

6.2.3.1 Results

6.2.3.2 Discussion and Conclusions

6.2.4 Lifting Strength

6.2.4.1 Results

6.2.4.2 Discussion and Conclusions

6.2.5 Environmental

6.2.5.1 Results

6.2.5.2 Discussion and Conclusions

6.2.6 PPE

6.2.6.1 Results

6.2.6.2 Discussion and Conclusions

6.2.7 Worker Scheduling

6.2.7.1 Results

6.2.7.2 Discussion and Conclusions

6.2.8 Timber Handled Statistics

6.2.8.1 Results

6.2.8.2 Discussion and Conclusions

6.2.9 Dry Chain/Table Assessment

6.2.9.1 Results

6.2.9.2 Discussion and Conclusions

6.2.10 Force Measure

6.2.10.1 Results

6.2.10.2 Discussion and Conclusions

6.2.11 REBA

6.2.11.1 Results

6.2.11.2 Discussion and Conclusions

6.2.12 Borg RPE Scale

6.2.12.1 Results

6.2.12.2 Discussion and Conclusions

6.2.13 Discomfort Rating Scale

6.2.13.1 Results

6.2.13.2 Discussion and Conclusions

6.2.14 NMQ

x
TABLE OF APPENDICES

Appendix 1 COHFE letter to sawmills October 2001

Appendix 2 Accident Register Records survey form
 'Best Guesses' survey form

Appendix 3 'Best Guesses' full results
 'Best Guesses' rating summary

Appendix 4 Initial mill communication letter
 Mill management consent letter
 Mill employee information sheet
 Consent forms for employee and company

Appendix 5 Worker interview worksheet
 Dynamometer calibration report
 Discomfort Rating Scale
 Manual Handling Hazard Control Record

Appendix 6 Mill 12 interview data
 Mill 12 timber statistics
 Mill 12 pack size charts
 Mill 12 force measure data
 Mill 12 REBA data
 Mill 12 Manual Handling Risk Score

Appendix 7 Mill 12 Summary of Assessment Findings
 Mill 12 Recommendations for Reduction of Manual Handling Risks

Appendix 8 Mill 17 interview data
 Mill 17 timber statistics
 Mill 17 pack specification tables
 Mill 17 force measure data
 Mill 17 REBA data
 Mill 17 Manual Handling Risk Score

Appendix 9 Mill 17 Summary of Assessment Findings
 Mill 17 Recommendations for Reduction of Manual Handling Risks

Appendix 10 Notes regarding intervention application Mill 12
 Notes regarding intervention application Mill 17

Appendix 11 Reports written from this work
LIST OF FIGURES

Figure 3.1	Musculoskeletal injury incidence from Accident Register Survey	24
Figure 4.1	Conducting initial exploratory discussions (November 2001) with a worker at Mill 12	31
Figure 4.2	Force measure system in use	41
Figure 4.3	The 15-point Borg RPE Scale	45
Figure 5.1	‘Pusher’ at left, and two workers handling re-sawn timber	68
Figure 5.2	Workers on the green chain	69
Figure 5.3	Stackers working together on one packet	69
Figure 5.4	Stackers working together to insert fillet sticks	69
Figure 5.5	Filleting workstation	70
Figure 5.6	Filleters working together	70
Figure 5.7	Older section of table in foreground	75
Figure 5.8	Link-chain table	76
Figure 5.9	Meeting point of the faster (right) and slower (left) tables	76
Figure 5.10	Stacking operations	77
Figure 5.11	Tall trolley	80
Figure 5.12	Short trolley	80
Figure 5.13	Crooked and poorly functioning trolley wheel	81
Figure 5.14	Damaged concrete floor	81
Figure 5.15	Pulling a board from too far away	92
Figure 5.16	NMQ Results Mill 12	97
Figure 6.1	Unloading task	121
Figure 6.2	Grading workstation viewed front on	122
Figure 6.3	Grading workstation viewed from side	122
Figure 6.4	Two workers stacking onto same packet	122
Figure 6.5	Worker positioning timber on packet	122
Figure 6.6	Worker pulling timber from table	123
Figure 6.7	Dry table	123
Figure 6.8	Pit stacker workstation showing height adjustable packet holder positioned at the end of the dry chain	124
Figure 6.9	Pit stacker using one-handed technique	124
Figure 6.10	Pit-stacker using two-handed technique	124
Figure 6.11	Packet preparation by the wrapper	125
Figure 6.12	Chain in the nylon gutter	129
Figure 6.13	Two cleat types	129
Figure 6.14	Triangular cleat	129
Figure 6.15	Rail at side of table with curved cleat visible under	130
Figure 6.16	Unloader with grill visible (upper left). Height differential between the unloading platform and the rest of the table is visible	131
Figure 6.17 Unloader's workstation (during a break) showing controls and rollers that move the boards towards the operator.

Figure 6.18 Unloader in action, with spinal twisting.

Figure 6.19 Varied packet distance from table.

Figure 6.20 New trolleys, shortest (at front) preferred.

Figure 6.21 Old wooden trolley.

Figure 6.22 Nylon trolley wheels with tendency to wedge on rails.

Figure 6.23 Fillet stick holders (metal hooks) along the table.

Figure 6.24 Below 50th percentile elbow height female throwing timber onto packet.

Figure 6.25 NMQ Results Mill 17.
LIST OF TABLES

Table 3.1	Number and percentage of injuries reported per job title from 37 mills for the 12 month period 01.09.2000 – 31.08.2001	22
Table 3.2	Injury data from Accident Register Survey	24
Table 3.3	Data summary of sawmilling industry 'Best Guesses' for task areas most likely to lead to MSD's	25
Table 4.1	Assessment schedule	34
Table 5.1	Anthropometric data from Mill 12 workers	58
Table 5.2	Dynamometer data from Mill 12 workers	59
Table 5.3	Illuminance at Mill 12 green chain	60
Table 5.4	Estimate of boards handled per worker at Mill 12	73
Table 5.5	Key anthropometric data for table height calculations (all mills)	83
Table 5.6	Force measure comparison (all mills)	89
Table 5.7	REBA scoring system	91
Table 5.8	Borg RPE record first session of day 28.02.02	94
Table 5.9	Borg RPE record last session of day 28.02.02	94
Table 5.10	Discomfort Rating Scale first session of day 28.02.02.	95
Table 5.11	Discomfort Rating Scale last session of day 28.02.02.	96
Table 5.12	NMQ discomfort reports Mill 12 last 12 months – results as a total and percentage for each body area	98
Table 6.1	Anthropometric data from Mill 17 workers	112
Table 6.2	Dynamometer data from Mill 17 workers	113
Table 6.3	Illuminance at Mill 17 dry table	114
Table 6.4	Mean and range for boards handled at Mill 17	127
Table 6.5	Borg RPE record first session of day 14.03.02	149
Table 6.6	Borg RPE record last session of day 14.03.02	150
Table 6.7	Discomfort Rating Scale first session of day 14.03.02.	151
Table 6.8	Discomfort Rating Scale last session of day 14.03.02.	151
Table 6.9	NMQ discomfort reports last 12 months Mill 17- results as a total and percentage for each body area	154