Characterization of *Arabidopsis thaliana* CPR5 via the Elucidation of Interacting Protein Partners

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Science in Biochemistry

At Massey University, Palmerston North, New Zealand

Fiona (Shane) Chiem 2015
Abstract

The *Arabidopsis thaliana* Constitutive expresser of pathogenesis related genes5 (*CPR5*) has previously been suggested to play a role in the regulation of disease resistance, plant and cell proliferation, development and death. Analysis of *cpr5* mutant alterations to hormone and hormone-like signalling mechanisms have provided evidence that abolishment of *CPR5* involvement within these hormone signalling pathways, results in many of the stunted growth, early senescence and constitutive expression of pathogen defense phenotypes observed. Despite the pleiotropic effect that *cpr5* mutants have on the plant system, it is unclear whether *CPR5*-dependent pathways are due to a direct interaction with *CPR5* or due to a more indirect association. *CPR5* has been proposed to be a regulator of a multitude of different pathways, including reactive oxygen species (ROS), cell wall biosynthesis, and transcription but evidence of these proposals are limited to the effects that *cpr5* mutants have on downstream targets.

In an attempt to address the involvement of *CPR5* in *Arabidopsis* plant processes, a series of studies were conducted to determine the protein interacting partners of *CPR5*. Proteins were identified via 2 independent yeast 2 hybrid (Y2H) screening of an *Arabidopsis* transcriptome library. Ten proteins of interest were identified via two independent screenings using two truncated forms of *CPR5*. Functional involvement of *CPR5* with the identified proteins was further explored using the Y2H pairwise interaction system. *CPR5* was found to interact with 3 full length proteins identified.

To explore the possibility that *CPR5* interacts with multiple protein partners in different locations within the cell, Bifluorescence molecular complementation assays were performed to determine the localization and interaction of *CPR5* with the ten identified genes as well as 3 previously identified genes. Several novel interactions were identified that occur within the nucleus and outside of the nucleus. Not only was *CPR5* confirmed to have an interaction with KRP2 within the nucleus, *CPR5* exhibited interaction with FSD1, CRK4, PATL3, PATL5, and PATL6, outside of the nucleus.

In the final set of experiments, several double mutant lines were produced that did not yield any observable phenotypes that differ from *cpr5*-2 single mutant plants. In order to determine the effects these double mutants have on various plant processes affected by *cpr5*-2 single mutant; qRT-PCR was performed to determine the expression pattern of pathogen related genes (*PR1* and *PDF1.2*) known to be significantly upregulated in *cpr5*-2 plants. qRT-PCR analysis revealed that *cpr5*-2 *fsd1* exhibits a down-regulation of *PDF1.2*.
PR1 regulation was found to be down-regulation in cpr5-2 bzip61 and up-regulated in cpr5-2 patl3 compared to cpr5-2.

Sugar and dark treatment of the cpr5-2 double mutant lines yielded several alterations to hypocotyl length, root length, and apical hook curvature by several of the double mutant lines, indicating a connection between CPR5 and the knocked out gene of interest. None of the double mutants were able to completely rescue the sugar-induced morphological phenotypes exhibited by cpr5-2, and some double mutant lines exhibited more pronounced effects indicating an additive effect by sugar treatment.

Together this data suggests that CPR5 interacts with various proteins involved in different plant processes in various locations throughout the cell. Further research of these proteins and a more direct analysis of the interaction that may occur between CPR5 and these proteins will be required to provide a foundation for more direct characterization the CPR5 molecular function; and ultimately to determine the role that CPR5 plays within the hormone and hormone like signalling pathway and their effects on major plant processes.
Acknowledgements

I would like to thank my supervisor Dr. Paul Dijkwel for giving me this opportunity and for helping me complete my Masters degree. Paul has been an exemplary supervisor providing me with the guidance I required when help was asked and for challenging me. I thank you for the patience you have shown me and for providing me with the independence I required to succeed. Thank you especially for your confidence in my abilities to successfully accomplish the goals we set forth and for allowing me to carry out these goals in my own unorthodox fashion.

I would like to thank Elizabeth Jennens for always believing in me and for giving me the love, space, and time to complete my degree. Without you I would not have started my Masters and I would not be where I am in my life without you.

I would like to thank Prof. Michael McManus and all of my C5.19 lab mates for their critiques and insights and for listening when I needed help with my research. In particular, I would like to thank my family away from home, Jay Jayaraman and Srishti Joshi, for their continual help academically and personally. I cannot imagine my time at Massey without your unwavering friendships, and willingness and dedication to helping me in all aspects of my life.

To my parents, family, and friends, I am forever grateful for your unending encouragement as I continued my studies around the world, and for your understanding as I concentrated on finishing my thesis. Knowing that you are all waiting for me to come home gave me the motivation I needed to return to you having successfully completed another chapter of my life.

I would most especially like to thank my mother, Sandy Chiem, for allowing me to be my independent self despite how much it hurt to let me travel in distance and on my own path of life. You have shown me such unrelenting selfless love and support regardless the decisions I make, and it is for you and because of you that I am inspired to be the best version of myself.
Abbreviations

minutes
seconds
Ade Adenine
aa amino acids
amp Ampicillin
BiFC BiFluorescence Molecular Complementation
BLAST Basic logical alignment search tool
bp Base-pair
cDNA DNA synthesized from an mRNA template
C-terminus (at the) carboxy-terminal end of a polypeptide chain
CPR5 CPR5 wild-type gene
CPR5 CPR5 wild-type protein
cpr5 CPR5 mutant gene
cpr5 CPR5 mutant protein
cpr5-2 cpr5 mutant line with mutation at aa420 (W->stop)
DAPI A DNA binding fluorescent stain ((4',6-diamidino-2-phenylindole)
DNA Deoxyribonucleic acid
DNase Deoxyribonuclease
dNTP 2'-deoxynucleotide 5' triphosphate
dH2O distilled water
ddH2O double distilled water
E. coli Escherichia coli
EDTA Ethylenediaminetetraacetic acid
FW Fresh weight
g Gram
gDNA Genomic DNA
Gen Gentamycin
h Hour
His Histidine
IPTG Isopropyl-β-D-thiogalactopyranoside
kan kanamycin
kb Kilo base-pair
kD(a) Kilo daltons
L Litre
LB Luria-Bertani (media or broth)
Leu Leucine
M Molarity (moles per litre)
MCS Multiple cloning site
mg Milligram
Milli-Q-water Water purified by Milli-Q-ion exchange chromatography
Definition of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml</td>
<td>Milliters</td>
</tr>
<tr>
<td>mol</td>
<td>Mole (Avagadro's number)</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige & Skoog Media</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>OD600</td>
<td>optical density at 600nm (measured in a spectrophotometer)</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>pH</td>
<td>-Log (H+)</td>
</tr>
<tr>
<td>psi</td>
<td>a unit of pressure (pounds per square inch)</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Reverse transcriptase-polymerase chain reaction</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction Enzyme</td>
</tr>
<tr>
<td>Rnase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SALK</td>
<td>Arabidopsis T-DNA insertion lines from the SALK Institute, a non-profit research organization</td>
</tr>
<tr>
<td>SD</td>
<td>Synthetic Defined (media)</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error mean</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris base, acetic acid, and EDTA buffer</td>
</tr>
<tr>
<td>TAIR</td>
<td>The Arabidopsis Information Resource</td>
</tr>
<tr>
<td>TE</td>
<td>Tris base, EDTA buffer</td>
</tr>
<tr>
<td>Tet</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature at which DNA strands separate prior to annealing</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tween-20</td>
<td>Polyoxyethylenesorbitan monolaurate</td>
</tr>
<tr>
<td>U</td>
<td>Unit (based on enzyme activity)</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight per weight</td>
</tr>
<tr>
<td>X-α-Gal</td>
<td>X-α-Gal is a chromogenic substrate used to detect α-galactosidase activity</td>
</tr>
<tr>
<td>Y2H</td>
<td>Yeast-2-hybrid</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow fluorescent protein</td>
</tr>
<tr>
<td>YPDA</td>
<td>yeast peptone dextrose adenine (media/agar)</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1: Predicted CPR5 Involvement in Plant Processes..4
Figure 1.2: Diagram of CPR5 putative protein structure and location of several identified cpr mutant alleles. .. 13
Figure 2.1: Cassette Set Up For Western Blotting Adapted From Mini Trans-Blot Electrophoretic Transfer Cell, Instruction Manual (Bio-Rad Laboratories, Hercules, CA, USA). ... 24
Figure 2.2: Bait Protein Plasmid Constructions. .. 25
Figure 2.3: Plasmid Construction for BiFC Assay. ... 33
Figure 3.1: The Theory of Y2H assay. ... 43
Figure 3.2: Western Blot Analysis of BD-CPR5TM0 and BD-CPR5TM1. 45
Figure 3.3: Representative Plate of Yeast Grown on SD/-His/-Trp/-Leu/-Ade/X-A-Gal and Subsequent Screening Plate. .. 48
Table 3.1: Genes Identified in CPR5TM0/CPR5TM1 Y2H Library Screenings. 49
Figure 3.4: Protein Pair Y2H Transformation Assays of Constructs Rescued from Y2H Screening .. 50
Figure 3.5: Protein Pair Y2H Transformation Assay on Medium Stringency Media. 52
Figure 3.6: Protein Pair Y2H Transformation Assay on High Stringency Media. 53
Figure 3.7: Heat Map Summary of Interactions Identified via Y2H and BiFC. 54
Figure 3.8: The Theory of BiFC assay. ... 57
Figure 3.9: EDS1-YFP Fluorescence in the cytoplasm and nucleus................................. 59
Figure 3.10: BiFC Signal form N. benthamiana Expressing N-terminal tagged, C-terminal-YFP-CPR5 and N-terminal tagged, N-terminal-YFP-GOI. 60
Figure 3.11: BiFC Assay was carried out in N. benthamiana Expressing C-terminal tagged, C-terminal-YFP-CPR5 and N-terminal tagged, N-terminal-YFP-GOI.............. 61
Figure 3.12: Representative Arabidopsis Plants Grown for 21 Days under Normal Short Day Conditions.. 64
Figure 3.13: Representative Arabidopsis Plants Grown for 21 Days under Normal Short Day Conditions.. 64
Figure 3.14: Arabidopsis crp5-2 and Col-0 Seedlings under Dark and Sugar Treatment.. 69
Figure 3.15: Representative Arabidopsis Seedlings from Dark and Sugar Treatment for 3 and 5 Days.. 70
Figure 3.16: Hypocotyl Length of 3 and 5 Day Old Dark and Sugar Treated Seedlings................. 77
Figure 3.17: Root Length of 3 and 5 Day Old Dark and Sugar Treated Seedlings...... 78
Figure 3.18: Apical Hook Curvature of 3 and 5 Day Old Dark and Sugar Treated Seedlings... 79
Figure 3.19: Heat Map Summary of Arabidopsis Seedlings Grown under Dark and Sugar Treatment for 3 and 5 Days.. 80
Figure 3.20: Expression of Housekeeping Genes, At2G31270, AtTUB5 and AtUBC9 Across All Lines Investigated.. 81
Figure 3.21: Transcriptional Changes of Defense-Related Genes PR1 and PDF1.2 in Arabidopsis Mutant Plant Lines.. 83
Figure 4.1: CPR5 predicted phosphorylation sites... 108
Figure 4.2: Proposed Model of CPR5 Dependent Regulation of Plant Processes via Putative Direct Interaction with Identified.. 111
List of Tables

Table 2.1 Concentration of Antibiotics used for positive bacterial selection18
Table 2.2: List of Primers used for colony PCR and sequencing of genes cloned into Y2H AD- and BD- plasmid ...26
Table 2.3: Genes and sequences of primers used for amplifying full length gene coding regions for cloning into Y2H GAL4-AD vector pGADT7 ..30
Table 2.4: Summary of Arabidopsis Plant Lines and Parent Lines35
Table 2.5: Primer Sequences used for q-RT-PCR (A. thaliana)37
Table 2.6: Primer Sequences for Genotyping of Arabidopsis T-DNA SALK Lines39
Table 3.1: Genes Identified in CPRSTM0/CPRSTM1 Y2H Library Screenings49
Table of Contents

Abstract ... i
Acknowledgements .. iii
Abbreviations.. iv
List of Figures .. vi
List of Tables .. vii

Chapter 1: Introduction .. 1
 1.1 General Introduction to CPR5 .. 1
 1.2 Phytohormones Signalling ... 3
 1.3 Plant Germination and Development .. 5
 1.4 Plant Senescence .. 7
 1.5 Resistance and Hypersensitive Response-Mediated PCD ... 8
 1.6 Reactive Oxygen Species (ROS) .. 11
 1.7 CPR5 Molecular Function: Protein Localization and Structural Analysis 12
 1.7 CPR5 and Cell Cycle Involvement ... 14
 1.8 Concluding Remarks .. 15

Chapter 2: Materials and Methods .. 17
 Chemicals used .. 17
 2.1 General Use Protocols: ... 17
 2.1.1 Bacterial Propagation .. 17
 2.1.2 Preparation of Plasmid DNA (Alkaline Lysis Miniprep) .. 18
 2.1.3 Agarose Gel Electrophoresis ... 18
 2.1.4 Preparation of Chemically Competent Bacterial Strains .. 19
 2.2 Cloning ... 19
 2.2.1 PCR Amplification of cDNA ... 19
 2.2.2 Restriction Digestion and DNA Ligation .. 20
 2.2.3 Bacterial Chemical Transformation .. 20
 2.2.4 Bacterial Colony PCR ... 21
 2.2.5 DNA Sequencing .. 21
 2.3 SDS PAGE and Western Blot Analysis ... 22
 2.3.1 Protein Extraction and Sodium Dodecyl Sulfate (SDS) Polyacrylamide Gel Electrophoresis (PAGE) .. 22
 2.3.2 Transfer of Protein onto PVDF Membrane ... 24
 2.4 Yeast-Two-Hybrid (Y2H) .. 24
 2.4.1 Generating Bait Plasmids for Y2H “Mate and Plate” Library Screening 25
Appendices

Discussion

4.1 Interaction Studies Identified and Confirmed Protein Interactions

4.1.1 Y2H Identification of CPR5 Potential Protein Partners and Interacting Domains

4.1.2 BiFC Identified 6 different Protein-Protein Interactions in planta

4.2 Effect of mutation of potential interacting proteins on cpr5-2 hypersensivity to sucrose

4.2.1 Effects of Dark Treatment on cpr5-2 Double Mutant Seedlings

4.2.2 CPR5 and BZIP61 Regulation of Root Elongation in Response to Exogenous Application of Sugar

4.2.3 CPR5 Regulation of AKIN10 Sugar Starvation-dependent Activation

4.2.4 Uncoupling CPR5 Hypersensitivity to Sugar –Future Outlooks

4.3 Identification of Plant Processes Relating to CPR5 Interaction with the Identified Proteins of Interest

4.3.1 CPR5 may Confer Drought Tolerance through Interaction with Heatshock Protein DNAJ

4.3.2 CPR5 as a Putative Mediator of ROS via Interaction with a Superdismutase

4.3.3 CPR5 may Modify PI Signalling through Interaction with SAC9 and Patellins

4.3.4 CPR5 Involvement in Transcriptional Regulation

4.4 CPR5-The Grand Scheme of Things

4.4.1 CPR5 Upstream Regulation of Downstream Targets

4.4.2 CPR5 Functionality in and Outside of the Nucleus

4.4.3 CPR5 Post-Translational Modification

4.5 Summary of Discussion

Appendices

Appendix 1. CPR5 Coding Sequences

CPR5:112

CPR5TM0: 112

CPR5TM1: 113

Appendix 2. Plasmid Vector maps for Y2H Cloning

A) pGBKT7

x
B) pGADT7-RecAB ... 114
C) pGADT7 ... 115
Appendix 3. Restriction Sites used for Y2H... 116
Appendix 4. YFP Coding Sequences... 117
 nYFP 117
 cYFP 117
Appendix 5 pGreenII 0029 62 SK plasmid vector map for BiFC cloning and pSOUP helper plasmid... 118
Appendix 6 Primers and Cloning Restriction Sites for BiFC Cloning................................. 119
 6A: Primers for BiFC Cloning of p(HA::cYFP), p(cYFP::HA) and p(nYFP::HA)........... 119
 6B: Primers for BiFC Cloning of plasmids p(cYFP::HA::GOI-X), p(GOI-X::HA::cYFP),
 and (p(nYFP::HA::GOI-Y)... ... 120
 6C: Restriction enzymes for BiFC Cloning of p(HA::cYFP), p(cYFP::HA) and
 p(nYFP::HA) .. 121
 6D: Restriction enzymes for BiFC Cloning of p(cYFP::HA::GOI-X), p(GOI-X::HA::cYFP),
 and (p(nYFP::HA::GOI-Y)... 122
Appendix 7 TAIR Ascension and obtained SALK lines... 123
References.. 124