Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A NEW TECHNOLOGY FOR MILKFAT

Thesis submitted for the
degree of
Master in Food Technology
at
Massey University
New Zealand
by
Cheng Tet Teo

1993
ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my supervisor, Mr. Selwyn Jebson for his guidance, advice and encouragement throughout the course of this project. I also wish to thank him for giving me the opportunity to work on this very interesting project.

This work was supported by a joint research grant from the New Zealand Dairy Board (NZDB) and the Wisconsin Milk Marketing Board. Particularly thanks must go to Ms. Lyn Barton of NZDB and Associate Professor Rich Hartel of the University of Wisconsin for their help and valuable advice throughout this project.

I would also like to thank all the staff of the Department of Food Technology at Massey University, especially the following:

Mr Byron McKillop, Mr Hank Van Til, Mr Garry Radford, Mr Alistair Young, Ms June Latham, Mrs Margaret Bewley, Mrs Lesley James and Ms Rebecca Baxter for their encouragement and help during the course of this work.

Finally, I am very grateful to my wife, Choy Leng, for her undaunted confidence in me throughout these years, and my daughter, Vicki, for her help in some small ways.
TABLE OF CONTENTS

Chapter 1

1.1 INTRODUCTION 1

1.2 OBJECTIVES 3

1.2.1 Homogenisation 4

1.2.2 Different Aspects of Producing Fat Spherulites 4

1.2.3 Different Methods of Buttermaking 5

1.2.4 Testing the Properties of the Butters 5

Chapter 2

2.1 LITERATURE SEARCH 6

Chapter 3

3.1 OVERVIEW 8

Chapter 4

4.1 EXPERIMENTAL

Section 1 EFFECT OF HOMOGENISATION AND EMULSIFIERS ON MILKFAT

1.1 Introduction 10

1.1.1 Homogenisation 10

1.1.2 Relative Emulsifying Activity of Protein Based Emulsifiers 13
1.2 Experimental

1.2.1 Equipment

1.2.1.1 Homogeniser

1.2.1.2 Malvern Particle Analyzer M6.10[^1]

1.2.1.3 Spectrophotometer

1.2.2 Material

1.2.2.1 Milkfat

1.2.2.2 Emulsifiers

1.3 Methods

1.3.1 Effect of Homogenisation on Milkfat in Serum

1.3.2 Determination of the Effectiveness of Emulsifiers

1.3.3 Rose-Gottlieb Method of Fat Determination

1.3.4 Experimental Procedures

1.4 Results and Discussion

1.4.1 Effects of Homogeniser Pressure on Fat Spherulites Size Distribution

1.4.2 Determination of the Effectiveness of Emulsifiers

1.4.3 Effect of Sodium Caseinate on Fat Spherulites Size Distribution in Relation to Homogenisation Pressure at 1.00% Milkfat Content

1.4.4 Effect of Sodium Caseinate on Fat Spherulites Size Distribution in Relation to Homogenisation Pressure at 3.75% Milkfat Content

1.4.5 Effect of Sodium Caseinate on Fat Spherulites Size Distribution in Relation to Homogenisation Pressure at 9.00% Milkfat Content

1.4.6 Effects of Sodium Caseinate on Fat Spherulites Size Distribution in Relation to a Series of Homogenisation Pressures

1.4.7 Summary of Fat Spherulites Size for Different Homogenisation Pressures
1.4.8 Study to determine the Hard Fraction Milkfat Spherulitic Sizes at Low Homogenisation Pressures

1.4.9 Using an updated Malvern MasterSizer E Ver.1.1(b) Particle Analyzer to analyze the fat spherulites of size and concentration in the range of 0.1µm

1.4.9.1 Effects of Fat Spherulites Size Distribution in Relation to Fat Content, Homogenisation Pressure and Emulsifier

1.5 Conclusion
Section 2 SPRAY DRYING OF CREAMED MILKFAT INTO MILKFAT SPHERULITES

2.1 Introduction 38

2.2 Objectives 39

2.3 Literature Search 39

2.4 Experimental
 2.4.1 Spray Dryer 40
 2.4.2 Homogeniser 41
 2.4.3 Bohlin Vor Rheometer 41
 2.4.4 Malvern Particle Analyzer M6.10 41

2.5 Materials
 2.5.1 Milkfat 41
 2.5.2 Milk Powder 42

2.6 Methods
 2.6.1 Determination of the Regimes which Homogenised Cream could be fed into the Spray Dryer 42
 2.6.1.1 Results and Discussion 44
 2.6.2 Production of Fat Spherulites from Spray Drying 48
 2.6.2.1 Results and Discussion 48

2.7 Conclusion 56
Section 3 SPRAY COOLING OF MILKFAT INTO MILKFAT SPHERULITES

3.1 Introduction 58
3.2 Objectives 59
3.3 Literature Search 60
3.4 Experimental 60
 3.4.1 Spray Dryer 60
 3.4.2 Blast Freezer 61
3.5 Materials 61
 3.5.1 Milkfat 61
 3.5.2 Milk Powder 62
3.6 Methods 62
 3.6.1 Method One - Using Venturi Nozzle Distributor 62
 3.6.2 Method Two - Using a Mixer to Maintain a Suspension of the Fat Spherulites and liquid Fat prior to Spray Coating 64
 3.6.3 Determination of the Regimes at which the Milkfat can be Spray Cooled to produce Fat Spherulites 65
 3.6.3.1 Results and Discussion 66
 3.6.4 Production of Fat Spherulites at Different Spray Cooling Temperatures 68
 3.6.4.1 Results and Discussion 68
 3.6.5 Temperature Conditioning of Milkfat Powder 71
 3.6.5.1 Results and Discussion 71
3.7 Production of "Coated" Fat Spherulites from Spray Cooling 72
 3.7.1 Introduction 72
 3.7.2 Method One - Using Venturi Nozzle Distributor 72
 3.7.2.1 Using skim milk powder a substitute to solid fat particles, determine whether coating with liquid fat fraction in the spray dryer is possible 72
 3.7.2.2 Determination of the Degree of Coating 73
3.7.2.3 Determination of Particle Size of Spray Cooled Coated Fat Spherulites

3.7.2.4 Results and Discussion

3.7.3 Method Two - Using a Mixer to Maintain a Suspension of the Fat Spherulites and Liquid Fat prior to Spray Coating

3.7.3.1 Production of "coated" Fat Spherulites by Mixing of Milkfat Powder with Liquid Fat in Suspension

3.7.3.2 Introduction

3.7.3.3 Objectives

3.7.3.4 Mixing of Fat Powder with Liquid Fat in Suspension

3.7.3.5 Spray Coating of high melting milkfat fat fraction powder with low melting milkfat liquid fat fraction

3.7.3.6 Spray Cooling at -3°C

3.7.3.7 Spray Cooling at 3-4°C

3.7.3.8 Spray Cooling at 5-6°C

3.7.3.9 Spray Cooling at 8°C

3.7.3.10 Results and Discussion

3.7.3.11 Spray Coating of low melting milkfat fat fraction powder with high melting milkfat liquid fat fraction

3.7.3.12 Results and Discussion

3.8 Conclusion
Section 4 BUTTERMAKING

4.1 Introduction

4.2 Objectives

4.3 Equipment and Material

4.3.1 Equipment

4.3.2 Material

4.4 Experimental

4.4.1 Sectility Hardness Measurement

4.4.2 Stand-Up and Oil-Off Test

4.4.3 Moisture Content

4.4.4 Fat Content

4.4.5 Acetone Fractionation

4.4.5.1 Acetone fractionation Hard and soft Fractions

(21°C) from BMP

4.5 Methods of Buttermaking

4.5.1 Butter with Hard and Soft Fraction - Standard Method

4.5.1.1 Results and Discussion

4.5.2 Butter from Filtered Hard Fraction Spherulites and Creamed Soft Fraction

4.5.2.1 Results and Discussion

4.5.3 Butter with Freeze Dried Hard Fraction Cream and Crystallised Soft Fraction

4.5.3.1 Results and Discussion

4.5.4 Buttermaking with Polymer Microspheres

4.5.4.1 Results and Discussion

4.5.5 Buttermaking with Hard Fraction Crystallised Cream and Crystallised Soft Fraction

4.5.5.1 Results and Discussion

4.5.6 Buttermaking with High Fat Creamed Hard Fraction and Soft Fraction with No Serum Removal

4.5.6.1 Results and Discussion
4.5.7 Buttermaking with Spray Dried High Fat Hard Fraction and Soft Fraction in Serum

4.5.7.1 Results and Discussion

4.5.8 Buttermaking with High Fat Creamed Hard Fraction and Soft Fraction

4.5.8.1 Results and Discussion

4.5.9 Buttermaking with Creamed Hard/Intermediate Fractions and Soft/Intermediate Fractions

4.5.9.1 Results and Discussion

4.6 Statistical Analysis to determine the Fat Fraction Compositions in Relation to Butter Hardness

4.7 Effects of Crystallising Temperature and High shear Mixing on Buttermaking

4.7.1 Results and Discussion

4.8 Effects of Hardness on Reworked Butter

4.8.1 Results and Discussion

4.9 Effect of Butter Hardness from Crystallised Fat Fractions With and Without Mixing Arrangement

4.9.1 Results and Discussion

4.10 Effect of Butter Sectility Hardness of Varying the Proportion of Fat Fractions and Temperature to which the Fat Fractions were Cooled

4.10.1 Results and Discussion

4.11 Effects of Crystallised Mixed Fat Fractions of Varying Proportions and Crystallising Temperatures

4.11.1 Results and Discussion

4.12 Effects of Cycling Temperature on Butter

4.12.1 Results and Discussion

4.13 Preliminary Work on a Larger Scale of Buttermaking using the Creamed High Fat Hard Fraction Method

4.13.1 Results and Discussion

4.14 Conclusion
Chapter 5

5.1 REFERENCES