Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
LAND USE CHANGES ON THE HAUTERE PLAINS:
A STUDY USING DIGITAL IMAGE ANALYSIS AND
GEOGRAPHIC INFORMATION SYSTEMS

A thesis presented in partial
fulfilment of the requirements for the degree
of Master of Agricultural Science (M.Agr.Sc)
in Soil Science at Massey University

SUMBANGAN BAJA
1995
ABSTRACT

An empirical study was conducted using digital image analysis and geographic information systems to undertake land use/land cover classification and change detection analysis of the Hautere Plains, near Otaki, North Island. The study area, comprising approximately 2000 ha, was mainly flat land where pastoral farming had been the predominant land use. The area, however, has recently undergone significant diversification into horticulture.

Land use changes between 1968 and 1993 were analysed. Aerial photographs taken at the two dates were scanned, registered and classified before the change detection process was carried out. Satellite imagery- a 1990 SPOT XS image- was also evaluated.

Accurate registration of all the images was essential for any analysis of changes to be performed with confidence. All the images were first rescaled to produce a uniform pixel size of 10 metres. Registration to the NZMS metric grid resulted in total RMS errors of 0.46, 0.41, and 0.42 pixels for the 1968 scanned aerial photograph (SAP), the 1993 SAP and the 1990 SPOT XS image, respectively.

In the image classification, eight relatively static land use/land cover categories were defined: pasture, orchards, market gardens, trees, residential sites,
commercial sites, river gravels, and roads. Due to the spectral confusion among particular categories, the results obtained from applying spectral-based classification were refined by incorporating information derived from visual interpretation which made use of photo-interpretation criteria. Merging of data sets was carried out using a binary mask created from the rectified-digital cadastral data and implementing GIS-based overlay functions facilitated in IDRISI. An assessment of the classification accuracy revealed that such procedures resulted in a significant improvement of all levels of classification accuracy (i.e., overall accuracy, user's accuracy and producer's accuracy).

A post-classification comparison technique of digital change detection was applied using the GIS-based operations to develop a quantitative land use/land cover change assessment and to identify the spatial location of changes on a category-by-category basis. The latter was undertaken by means of binary change masking. A similar procedure was also applied to the rasterised cadastral data sets to identify spatial locations of land parcels which had undergone subdivisions. The analysis confirmed that, in the study region, the most common change in land use was from pastoral land to orchards. Most of larger land parcels had been subdivided into smaller holdings ranging from 4 to 10 ha- i.e., the most favoured size for lifestyle blocks as well as properties where orchards and market gardens are found.
The results obtained suggested that the use of scanned aerial photographs at an appropriate scale, complemented by a wealth of site information, is sufficient for computer-assisted classification of land use/land cover types in the study area, and subsequent change detection analysis. If aerial photographs are unavailable for a desired date, it is possible to use satellite imagery as one of the multi-image pair. The processes of image registration, resampling, and data integration ensure that the spatial analysis of change detection can be performed accurately. The quantitative data generated may also give further insights to the land use changes.
ACKNOWLEDGEMENTS

"In the name of Allah, most gracious, most merciful."

I am particularly indebted to my chief supervisor Mr. M. P. Tuohy and co-supervisor Dr. Alan S. Palmer for their supervision, guidance, valuable discussion, and unstinting support throughout the course of my study at Massey University.

My deep gratitude is also extended to the Head of the Department of Soil Science, Massey University Associate Professor Paul Gregg for his continuous encouragements.

Sincere thanks are also due to the Dean of Faculty of Agriculture, Hasanuddin University, Ujung Pandang Dr. Ir. Muslimin Mustafa, M.Sc. for his valuable advice.

Financial assistance provided by the Ministry of Foreign Affairs and Trade (MFAT), New Zealand is gratefully acknowledged; without this the study would not have been possible.

Very special thanks are extended to Ita Thamrin for her generous companionship and unending moral support during the course of my study.
Lastly, to my parents (Papa and Mama) and all my brothers and sisters, I would like to express many thanks for their prayer and patience during my absence at Massey University. I believe their prayer has made my study possible.

"Dedicated to my parents"
LIST OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iv
LIST OF CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xiii
LIST OF APPENDICES xv

CHAPTER I INTRODUCTION 1
1.1 General introduction 1
1.2 Objectives of the study 4

CHAPTER II AN OVERVIEW OF REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS 6
2.1 Remote Sensing 6
 2.1.1 Definition and scope 6
 2.1.2 Electromagnetic energy 7
 2.1.3 Spectral signature 8
 2.1.4 Data acquisition and analysis 11
2.2 Digital Image Analysis 14
 2.2.1 General 14
 2.2.2 Image preprocessing 15
 2.2.3 Image enhancement 16
 2.2.4 Image classification 17
2.3 Geographic information systems 21
 2.3.1 Definition 21
 2.3.2 Basic elements of a GIS 22
 2.3.3 Types of spatial data in a GIS 23
 2.3.4 Basic characteristics of spatial data 26
CHAPTER III STUDY AREA AND DATA COLLECTION

3.1 Study area
 - 3.1.1 General description 28
 - 3.1.2 Physiography 30
 - 3.1.3 Soil types 31
 - 3.1.4 Land use and vegetation 32

3.2 Data collection
 - 3.2.1 Data sources and their characteristics 35
 - 3.2.2 Software used in this study 37
 - 3.2.3 Preliminary data processing 38

CHAPTER IV IMAGE REGISTRATION AND DATA INTEGRATION

4.1 Image registration
 - 4.1.1 Introduction 40
 - 4.1.2 Basic principles 41
 - 4.1.3 Registration procedure 44
 - 4.1.3.1 GCPs identification 45
 - 4.1.3.2 Improving the fit 48
 - 4.1.3.3 Resampling procedure 51

4.2 Data integration
 - 4.2.1 Introduction 54
 - 4.2.2 Examples of data integration 54
 - 4.2.3 The importance of data integration 57

CHAPTER V THEMATIC INFORMATION EXTRACTION

5.1 Introduction 59

5.2 Basic consideration in the classification process 60

5.3 Category selection and definition 62
5.4 Approaches and techniques adopted in the classification process

5.4.1 Classification of scanned aerial photographs (SAPs) 66
5.4.2 Classification of SPOT XS imagery 72
5.4.2.1 Unsupervised classification 72
5.4.2.2 Supervised classification 76
5.4.2.2.1 Selection of training areas 76
5.4.2.2.2 Signature generation and data evaluation 77
5.4.2.2.3 Sub-scene classification 81
5.4.3 Binary masking 82
5.4.3.1 Mask of residential and commercial sites 84
5.4.3.2 Mask of roads and gravel pits 85

5.5 Accuracy assessment 86
5.5.1 Spatial sampling and sample size 87
5.5.2 "Ground truth" generation 89
5.5.3 Error matrix 91

5.6 Post-classification refinement 99
5.6.1 Visual interpretation 100
5.6.2 Distinguishing between orchards and market gardens 103
5.6.3 Classification refinement of trees and pasture 105

CHAPTER VI CHANGE DETECTION ANALYSIS 110

6.1 Introduction 110
6.2 Basic principles and algorithms for digital change detection 111
6.3 Analysis of land use/land cover changes 113
6.3.1 Detecting general changes 113
6.3.2 Identification of "losses" and "gains" 116
6.3.3 Cross-comparative assessment of individual category changes 122
6.4 Analysis of property boundary changes
6.4.1 Distribution of subdivisions according to size
6.4.2 Identification of subdivision change
6.5 Discussion

CHAPTER VII GENERAL DISCUSSION AND CONCLUSION
7.1 General discussion
7.2 Conclusion

REFERENCES
APPENDICES
Figure 2.1	Electromagnetic remote sensing of earth resources	7
Figure 2.2	Significant spectral response characteristics of soil, vegetation, and water	10
Figure 3.1	Map of the study area	29
Figure 4.1	Distribution of the GCPs used in the study area	48
Figure 4.2	Vector-cadastral boundaries overlaid on the 1968 (A) and 1993 (B) scanned aerial photographs, and on the 1990 SPOT XS imagery (band 1) (C), showing the accuracy of registration	53
Figure 5.1	Scanned aerial photographs of the study area taken in 1968 (A) and 1993 (B)	67
Figure 5.2	Land use/land cover maps of the study area for 1968 (A) and 1993 (B) derived from SAPs by applying an unsupervised classifier	69
Figure 5.3	Land use/land cover maps of the study area for 1968 (A) and 1993 (B) derived from SAPs, applying an unsupervised classifier and binary masking	71
Figure 5.4	Colour composite for bands 1, 2, and 3 of SPOT XS imagery showing the study area and environs	74
Figure 5.5	Land use/land cover maps of the study area derived from SPOT XS imagery by applying an unsupervised classifier (A), and with the addition of binary masking (B)	75
Figure 5.6	Three-dimensional spectral plots of the representative samples used as training signatures for image classification	80
Figure 5.7	Land use/land cover maps of the study area produced from 1990 SPOT XS imagery, by applying a supervised classifier (A), and with the addition of binary masking (B)	83
Figure 5.8 Distribution of sample points, in the study area, used for map accuracy assessment 90

Figure 5.9 Overall accuracy of classification for the eight land use/land cover types according to the technique applied 93

Figure 5.10 User’s accuracies of major categories of land use/land cover maps for each technique applied 94

Figure 5.11 Producer’s accuracies of major categories of land use/land cover maps for each technique applied 95

Figure 5.12 The 1968-SAP sub-scene with a small box showing the mixed spectral reflectance phenomenon between trees and pasture 106

Figure 5.13 Land use/land cover maps of the study area derived from the 1968 SAP, by applying an unsupervised technique and binary masking. The small box shows the mixed spectral reflectance phenomenon resulting from the classification 107

Figure 5.14 Final land use/land cover maps of the study area for 1968 (A) and 1993 (B) 109

Figure 6.1 Diagram showing the procedure of creating a binary change mask 115

Figure 6.2 Map depicting the spatial location of areas of "change" and "no change" in the study region 117

Figure 6.3 Diagram showing the procedure of generating masked classification images for 1968 (A) and 1993 (B) 118

Figure 6.4 Maps showing land use/land cover types that have been lost (A), and those that have been gained (B) between 1968 and 1993 119

Figure 6.5 Diagram showing the proportion of the study area occupied by each of the land use/land cover categories which have undergone "losses" (A) and "gains" (B) between 1968 and 1993 121
Figure 6.6	Percentage of overlapping and non-overlapping area of each land use/land cover class between 1968 and 1993 relative to the total area of corresponding class in 1993	126
Figure 6.7	The number of subdivisions in each size range in 1968 and 1993	129
Figure 6.8	Distribution of 1968 (A) and 1993 (B) land parcels in the study area according to size	131
Figure 6.9	Map of orchards and market gardens (1993) with vector-cadastral boundaries (parcels sized 4-10 ha) overlaid onto it	132
Figure 6.10	Binary change mask of cadastral data showing the spatial location of land parcels that have undergone subdivision (change) and those that remained unchanged	134
LIST OF TABLES

Table 2.1 Image enhancement techniques in digital image analysis 18
Table 2.2 A comparison of the general characteristics and suitable functions of raster and vector models for GIS 26
Table 3.1 Full descriptions of the Hautere Plain photographs 37
Table 3.2 SPOT sensor system characteristics 38
Table 4.1 GCPs coordinates used for image registration (based on the NZMS reference system) 46
Table 4.2 Accuracy of image registration by reference to the NZMS using first order polynomial mapping 50
Table 5.1 Histogram statistics of the scanned aerial photograph images used for land use/land cover classification 68
Table 5.2 Histogram statistics of the 1990-SPOT XS data used for land use/land cover classification 73
Table 5.3 Univariate and multivariate training statistics for the eight targets selected in the study area using SPOT XS data 78
Table 5.4 Description of the techniques employed in the classification 92
Table 6.1 Land use/land cover types in the Hautere Plains, 1968 and 1993 114
Table 6.2 Land use/land cover changes (losses and gains) in the Hautere Plains, from 1968 to 1993 120
Table 6.3 Cross-tabulation of the total area for each land use/land cover category showing a 'trend' of changes between land use/land cover types 123
Table 6.4 Percentage of land use/land cover changes, from one to another, relative to "losses" 124
Table 6.5 Percentage of land use/land cover changes, from one to another, relative to "gains" 124
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Corresponding coordinates used for image registration</td>
<td>155</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>The procedure of format conversion (from IDRISI to WORD PERFECT GRAPHIC) to create Figure 5.8</td>
<td>157</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Error matrices for the land use/land cover maps generated from two image sources (SAP and SPOT XS), classified using unsupervised and supervised decision rules</td>
<td>159</td>
</tr>
</tbody>
</table>