Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Risk-based surveillance in animal health

A thesis presented in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
at Massey University, Palmerston North,
New Zealand

by

Deborah Jayne Prattley

January 2009
Supervisors:
Associate Professor M.A. Stevenson
Professor R.S. Morris

Institute of Veterinary, Animal and Biomedical Sciences
Massey University
Palmerston North, New Zealand
Abstract

Animal health surveillance is an important part of animal health care, particularly in countries dependent on livestock for food production and international trade. There are two major issues related to the provision of effective surveillance activities. Firstly, for good information to become available, the design and conduct of data collection activities should be carried out following sound statistical principles. In reality, constraints such as imperfect tests and unavoidably-biased sampling strategies hinder straightforward analysis and interpretation of survey results. Risk-based surveillance is used to target high-risk sub-populations to increase efficiency of disease detection; however, biased datasets are generated.

This thesis develops methodologies to design risk-based surveillance systems and allow statistically valid analysis of the inherently biased data they generate. The first example describes the development of a method to analyse surveillance data gathered for bovine spongiform encephalopathy (BSE). The data are collected from four different surveillance streams of animals tested for BSE, with each stream containing unavoidable biases and limitations. In the BSurvE model, these data are combined with demographic information for each birth cohort to estimate the proportion of each birth cohort infected with BSE. The prevalence of BSE in a national herd can then be estimated using the method of moments, whereby the observed number of infected animals is equated with the expected number. The upper 95% confidence limit for the prevalence is estimated both for infected countries and for those where no BSE has previously been detected.

A similar approach to that used in BSurvE is then applied to surveillance data for trichinellosis, for which risk-based post-mortem testing is also performed. Negative results from multiple species using different, imperfect tests are combined to give an estimate of the upper 95% confidence limit of the national prevalence of trichinellosis in a reference population. This method is used to provide support for freedom from trichinellosis in Great Britain.

A different approach to risk-based surveillance is explored as the surveillance strategy for detection of exotic causes of abortion in sheep and goats in New Zealand is examined. Using a geographic information system (GIS) maps of disease risk factors were overlain to produce a risk landscape for the lower North Island. This was used to demonstrate
how areas of high- and low-risk of disease occurrence can be identified and used to guide the design of a risk-based surveillance programme.

Secondly, within one surveillance objective there may be many ways in which the available funds or human resources could be distributed. This thesis develops a method to assess BSE surveillance programmes, and provides tools to facilitate BSE detection on the basis of infection risk and to increase the efficiency of surveillance strategies.

A novel approach to allocation of resources is developed, where portfolio theory concepts from finance are applied to animal health surveillance. The example of surveillance for exotic causes of sheep and goat abortion is expanded upon. Risk of disease occurrence is assessed for a population over different time periods and geographical areas within a country, and portfolio theory used to allocate the number of tests to be carried out within each of these boundaries. This method is shown to be more likely to detect disease in a population when compared to proportional allocation of the available resources.

The studies presented here show new approaches that allow better utilisation of imperfect data and more efficient use of available resources. They allow development of surveillance programmes containing an appropriate balance of scanning and targeted surveillance activities. Application of these methods will enhance the implementation and value of surveillance in animal health.
Publications

Peer-reviewed papers

Reports

Selected conference papers and presentations

When you are describing a shape or sound or tint
Don’t state the matter plainly
But put it in a hint
And learn to look at all things
With a sort of mental squint

Lewis Carroll
Contents

Abstract ... ii
Publications .. iii
Contents .. xi
List of Tables ... xiii
List of Figures .. xvi

1 Introduction ... 1

2 Literature review 3
 2.1 Introduction to animal health surveillance 3
 2.2 Classification of surveillance activities 5
 2.3 Data analysis in risk-based surveillance 10
 2.4 Combining data sources 11
 2.5 Evaluation of alternative surveillance strategies 16
 2.6 Allocation of resources 21
 2.7 References ... 24

3 BSE prevalence estimation 33
 3.1 Abstract .. 33
 3.2 Introduction .. 33
 3.3 Methods ... 35
5.4 Results

- **5.4.1 Sampling effort** ... 69
- **5.4.2 Upper confidence limit (95%) for the estimate of prevalence** . . 71

5.5 Discussion ... 72

5.6 Conclusions ... 77

5.7 References ... 77

5.8 Appendix 1: Additional figures 79

5.9 Appendix 2: Sample weightings 96

5.9.1 References ... 105

6 Risk-based surveillance for exotic ovine abortion 109

- **6.1 Abstract** ... 109
- **6.2 Introduction** .. 109
- **6.3 Methods** ... 110
 - **6.3.1 Surveillance zones** ... 110
 - **6.3.2 Incursion zones** ... 110
 - **6.3.3 Sheep and goat population data** 111
 - **6.3.4 Abortion data** ... 111
 - **6.3.5 Estimation of abortion and case submission rates** 111
 - **6.3.6 Number of cases to test to detect disease** 113
 - **6.3.7 Surveillance system design** 113
- **6.4 Results** ... 114
 - **6.4.1 Surveillance zones and population data** 114
 - **6.4.2 Incursion zones** ... 115
 - **6.4.3 Abortion data** ... 117
6.4.4 Estimation of abortion and case submission rates 124
6.4.5 Number of cases to test to detect disease 127
6.4.6 Surveillance system design .. 128
6.4.7 Incursion zone surveillance .. 130
6.5 Discussion ... 133
6.6 Conclusions .. 137
6.7 References .. 138

7 Application of portfolio theory to risk-based surveillance 140
 7.1 Abstract .. 140
 7.2 Introduction ... 141
 7.3 Methods ... 142
 7.3.1 Characteristics of a portfolio ... 142
 7.3.2 Portfolio allocation ... 143
 7.3.3 The surveillance portfolio .. 144
 7.3.4 Evaluation of resource allocation methods 147
 7.4 Results ... 147
 7.4.1 Safety first: multiple exotic diseases 147
 7.4.2 Safety first: regional and temporal allocation 147
 7.4.3 SIM: allocation of laboratory tests 150
 7.4.4 Evaluation of resource allocation methods 151
 7.5 Discussion ... 151
 7.6 Conclusions .. 154
 7.7 References .. 155

8 General discussion ... 157
 8.1 A review of the studies in this thesis 157
 8.2 Future research ... 163
 8.3 Conclusions .. 165
8.4 References

Bibliography
List of Tables

3.1 The BSurvE age data entry table for country A 41
3.2 Observed number of animals tested and testing positive 44
4.1 The observed number of animals tested and testing positive ... 52
4.2 Calculated number of points required 56
4.3 Summary of the number of points gained 57
4.4 Calculated time to achieve point target 57
5.1 Categorisation of high- and low-risk accommodation for pigs ... 65
5.2 Weighting values assigned to surveillance tests 69
5.3 Estimated number of pigs present by sub-population 70
5.4 Estimated number of pigs slaughtered per year 71
5.5 Estimated number of pigs tested in 2005 71
5.6 95% upper confidence limit for the prevalence estimate 74
5.7 Results of studies investigating prevalence in the red fox ... 97
5.8 Results of testing of horsemeat in various countries 99
5.9 Results of studies investigating infection in domestic pigs ... 102
6.1 Composition of surveillance zones 110
6.2 Characteristics of surveillance zones 115
6.3 Stock numbers by surveillance zone 115
6.4 Seaports: stock numbers by incursion zone 116
6.5 International airports: stock numbers by incursion zone ... 117
6.6 Seaports 2003: vessel arrivals and international cargo weights 117
6.7 Airports 2003: international aircraft arrivals 118
6.8 Descriptive statistics for actual and simulated flock sizes 125
6.9 Within-flock incidence risk of abortion 126
6.10 Number of flocks with high estimated abortion incidence risk 127
6.11 Number of flocks to be tested to detect disease 127
6.12 Maximum number of infected flocks . 128
6.13 Number of flocks required to be tested to detect disease 136
6.14 Seaports: total number of animals to test to detect disease 139
6.15 Airports: total number of stock to test to detect disease 139

7.1 The number of surveillance tests required to detect one positive flock . . . 148
7.2 The simulated mean risk score for each surveillance area 149
List of Figures

3.1 The distribution of exiting uninfected animals ... 41
3.2 The distribution of exiting BSE-infected animals ... 42
3.3 Infection status of BSE-infected cattle ... 42
3.4 Predicted true BSE prevalences for each birth cohort 43

4.1 Proportion of each age group tested in the casualty slaughter stream 54
4.2 Points associated with the value of testing an animal 55
4.3 Calculated number of points required .. 55

5.1 95% UCL for the prevalence of Trichinella in low-risk grower pigs 73
5.2 Sampling effort for foxes tested ... 79
5.3 Sampling effort for horses ... 80
5.4 Sampling effort for low-risk grower pigs ... 81
5.5 Sampling effort for high-risk grower pigs .. 82
5.6 Sampling effort for low-risk breeder pigs .. 83
5.7 Sampling effort for high-risk breeder pigs ... 84
5.8 Upper 95% confidence limit for foxes (unweighted) 85
5.9 Upper 95% confidence limit for horses (unweighted) 86
5.10 Upper 95% confidence limit for low-risk grower pigs (unweighted) 87
5.11 Upper 95% confidence limit for high-risk grower pigs (unweighted) 88
5.12 Upper 95% confidence limit for low-risk breeder pigs (unweighted) 89
5.13 Upper 95% confidence limit for high-risk breeder pigs (unweighted) 90
5.14 Upper 95% confidence limit for foxes .. 91
5.15 Upper 95% confidence limit for horses 92
5.16 Upper 95% confidence limit for high-risk grower pigs 93
5.17 Upper 95% confidence limit for low-risk breeder pigs 94
5.18 Upper 95% confidence limit for high-risk breeder pigs 95
6.1 Simulation of abortion incidence risk ... 112
6.2 Surveillance zones in New Zealand and breeding ewe density 114
6.3 The main incursion zones within New Zealand 116
6.4 Ewe population size compared to abortion submissions 118
6.5 Total number of abortion submissions to each laboratory 119
6.6 Number of surveillance cases .. 120
6.7 Total number of abortion case submissions 120
6.8 Diagnosis of laboratory submissions ... 121
6.9 Diagnoses by surveillance zone in 2003 122
6.10 Submissions suitable for use as surveillance cases 122
6.11 Diagnosis of surveillance cases .. 123
6.12 Proportion of cases undiagnosed at each laboratory 123
6.13 Simulated within-flock abortion incidence risk 124
6.14 Histogram of simulated flock sizes for Southland 125
6.15 Simulated incidence risk of abortions in Southland flocks 126
6.16 Areas where disease conditions were met in January 129
6.17 Areas where disease conditions were met in April 130
6.18 Areas where disease conditions were met in July 131
6.19 Areas where disease conditions were met in October 132
6.20 Number of cases submitted from each surveillance zone in 2003 136
7.1 Median risk score and interquartile range of risk scores for each disease 148
7.2 Number of surveillance tests to be carried out in each SA by month 150
7.3 The number of tests allocated to each SA .. 151
7.4 The maximum prevalence of diseased ewe flocks to be missed 152