Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Towards a Synthesis of Multimedia and Intelligent Tutoring Systems

A dissertation presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University Palmerston North, New Zealand.

Emma A. K. Vethanayagam

1998
Abstract

Multimedia is being used almost in every field. This study is about the use of multimedia in the area of intelligent tutoring systems. This project studies the advantages and disadvantages of interactive multimedia and intelligent tutoring systems, and analyses the ways of combining these technologies in search of an interesting, learnable, flexible, compelling and technology-enhanced educational tool.

Educational packages need to be evaluated for effectiveness. When it comes to computer-based instruction, technical concerns such as multimedia effects are taken seriously and there is not enough emphasis on its educational value. There is not much concern about the appropriateness of the instruction method to the computer medium. This research proposes a framework for evaluating educational packages which include a number of issues.

Several pieces of educational software were evaluated using this framework and Diagnosis for crop protection, a multimedia software package that aids in teaching the process of diagnosing crop problems, was selected for modification, as a practical application of the theoretical work.

We studied different multimedia system development models and methodologies. We also analyses the cognitive issues and intelligent features that enhance the learnability.

Finally, the appropriate intelligent features and other factors that could enhance Diagnosis for crop protection to be a more ‘active knowledge constructing’ environment have been identified. The current version of Diagnosis for crop protection was represented using an appropriate methodology and the proposed changes were described in detail.
Acknowledgments

First of all, I am eternally grateful to my uncle Stanny Emmanuel, for his moral and financial support in everything to initiate my masterate degree. I would like to acknowledge New Zealand government and the NZODA postgraduate scholarship office for sponsoring the second year of my program.

Next, I would like to express my sincere gratitude to Ray Kemp, my supervisor, for helping me find some suitable area for my research, excellent supervision, valuable ideas and very prompt reviews. I really enjoyed working with you.

I would like to thank Terry Stewart, for granting permission to use Diagnosis and for being helpful in a totally unfamiliar subject area of plant pathology. Thanks to Alex Doyle-Bolecivic, who kindly lent a few packages for studying.

Thanks also due to Computer Science department staff and postgrad students, who provided a nice environment for me to work. I would love to thank all my friends and flat mates for their friendship, encouragement, letters and emails. I absolutely enjoyed the funny things we did together.

A very big thank you for my parents and grand mother for their love and prayers. Thanks to my loving brothers and sister for all what they are. Finally, thanks to Raymond for his love and for constantly being there for me all the time. I am very proud of you all.

Without you all, this dissertation would not be the same.

Thank you very much.
Table of Contents

Abstract .. i

Acknowledgements ... ii

Table of Contents ... iii

Figures ... vii

1.0 Introduction

 1.1 Background .. 1
 1.2 Multimedia Tutoring Systems ... 2
 1.3 Scope of the project ... 4
 1.4 Aims and Objectives ... 5
 1.5 Organisation of research ... 6

2.0 Artificial Intelligence and Multimedia in Educational Software

 2.1 Introduction .. 7
 2.2 Effective Learning .. 8
 2.3 Why do we need computer-based tutoring systems? ... 9
 2.4 Intelligent Tutoring Systems (ITS) ... 11
 2.4.1 Merits of some ITSs .. 14
 2.4.2 Problems in ITS .. 16
 2.5 Interactivity ... 16
 2.6 Multimedia .. 18
 2.6.1 Interactive Multimedia ... 19
 2.6.2 Advantages of Interactive Multimedia ... 20
 2.6.3 Disadvantages of Interactive Multimedia ... 22
 2.7 Intelligent Multimedia Systems for teaching and learning 23
 2.8 Concluding Points ... 25
3.0 Evaluating Educational Software

3.1 Introduction ... 28
3.2 Why Evaluate? 30
3.3 Widely used evaluation techniques 32
3.4 Issues to be considered in evaluation of educational software ... 34
3.5 Intelligent features .. 35
3.6 Proposed appropriate evaluation technique36
3.7 Evaluation of some educational packages 43
3.7.1 Angle 3.3j .. 43
3.7.2 The Equation Solving Tutor 46
3.7.3 OzSoils .. 48
3.7.4 Diagnosis for crop protection50
3.7.5 Investigating Lake Illuka 53
3.7.6 Exploring the Nardoo ... 56
3.8 Reflection on evaluation 59

4.0 Designing Intelligent Multimedia Tutoring Systems

4.1 Introduction ... 61
4.2 Design Issues ... 62
4.2.1 Feasibility and Use of multimedia 62
4.2.2 Type of instruction .. 63
4.2.3 Motivational Issues .. 64
4.2.4 Feedback design .. 64
4.2.5 Screen Design ... 65
4.3 Problems in Multimedia system design 65
4.4 Design Models ... 70
4.4.1 Models and Fidelity of Models 70
4.4.2 Design Methodologies .. 72
4.5 Diagnosis Design ... 79
4.5.1 Problems in Diagnosis design 79
4.5.2 Representing Diagnosis ... 80
4.6 Discussion ... 81
5.0 Cognitive Issues, Intelligent features and Human Issues

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>83</td>
</tr>
<tr>
<td>5.2 Learning theories</td>
<td>84</td>
</tr>
<tr>
<td>5.3 Cognitive Issues and Human Factors</td>
<td>89</td>
</tr>
<tr>
<td>5.3.1 Comprehension</td>
<td>90</td>
</tr>
<tr>
<td>5.3.2 Metacognition</td>
<td>91</td>
</tr>
<tr>
<td>5.3.3 Interactivity</td>
<td>92</td>
</tr>
<tr>
<td>5.3.4 Perception and attention</td>
<td>94</td>
</tr>
<tr>
<td>5.3.5 Memory</td>
<td>95</td>
</tr>
<tr>
<td>5.3.6 Active learning</td>
<td>95</td>
</tr>
<tr>
<td>5.3.7 Motivation</td>
<td>96</td>
</tr>
<tr>
<td>5.3.8 Locus of control</td>
<td>97</td>
</tr>
<tr>
<td>5.3.9 Visualisation</td>
<td>98</td>
</tr>
<tr>
<td>5.3.10 Cognitive Tools</td>
<td>99</td>
</tr>
<tr>
<td>5.4 Intelligent Features</td>
<td>101</td>
</tr>
<tr>
<td>5.4.1 Student Modelling</td>
<td>102</td>
</tr>
<tr>
<td>5.4.2 Feedback</td>
<td>106</td>
</tr>
<tr>
<td>5.4.2.1 Timing of feedback</td>
<td>108</td>
</tr>
<tr>
<td>5.4.3 Learner control</td>
<td>109</td>
</tr>
<tr>
<td>5.5 Appropriate elements for Diagnosis</td>
<td>111</td>
</tr>
<tr>
<td>5.6 Discussion</td>
<td>113</td>
</tr>
</tbody>
</table>

6.0 Diagnosis: From Game to ITS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>116</td>
</tr>
<tr>
<td>6.2 Shortcomings in Diagnosis</td>
<td>117</td>
</tr>
<tr>
<td>6.3 Proposed alterations to enhance Diagnosis</td>
<td>118</td>
</tr>
<tr>
<td>6.4 Detailed Design Suggestions</td>
<td>118</td>
</tr>
<tr>
<td>6.4.1 Error types</td>
<td>118</td>
</tr>
<tr>
<td>6.4.2 Feedback</td>
<td>120</td>
</tr>
<tr>
<td>6.4.3 Player Model</td>
<td>122</td>
</tr>
<tr>
<td>6.4.4 Previous session details</td>
<td>123</td>
</tr>
<tr>
<td>6.4.5 Classification of Problems</td>
<td>124</td>
</tr>
<tr>
<td>6.4.6 Style of Presentation</td>
<td>125</td>
</tr>
</tbody>
</table>
6.4.6.1 Presentation for poor player 126
6.4.6.2 Presentation for average player 126
6.4.6.3 Presentation for good player 126
6.4.7 Initial diagnosis and remedy 127
6.4.8 Reference Book 128
6.4.9 Guided Builder 128
6.5 Do the proposed changes make Diagnosis intelligent? 130
6.6 Discussion .. 134

7.0 Conclusion and Further Work

7.1 Introduction ... 136
7.2 About the research................................. 136
7.3 Further Work: What else could be done to Diagnosis? 138
 7.3.1 Situated Learning 139
 7.3.2 Why Situated learning? 141
 7.3.3 Combining Situated learning and Gaming 143
 7.3.4 Problems to be addressed 144

References .. 145

Appendix A: System description of the packages mentioned 156
Appendix B: Characteristics of good Educational Software 162
Appendix C: Essential use cases of Diagnosis 164
Appendix D: Screens from Diagnosis Version 2.1 200
Appendix E: Object Diagram for Diagnosis 210
Appendix F: Algorithmic description of proposed changes 226
Appendix G: Sample screens for proposed Diagnosis 249
Figures

Figure 2.1 ITS Architecture .. 13
Figure 3.1 Spiral diagram of curriculum design 29
Figure 3.2 A heuristic for viewing evaluation 37
Figure 3.3 Dimensions of Interactive Learning Systems 28
Figure 3.4 Checklist for Evaluation I .. 41
Figure 3.5 Checklist for Evaluation II ... 42
Figure 3.6 General structure of Angle .. 44
Figure 3.7 Checklist for ANGLE .. 45
Figure 3.8 General structure of Equation Solving Tutor 46
Figure 3.9 Checklist for The Equation Solving Tutor 47
Figure 3.10 General structure of OzSoils ... 48
Figure 3.11 Checklist for OzSoils .. 49
Figure 3.12 General structure of Diagnosis 51
Figure 3.13 Checklist for Diagnosis ... 52
Figure 3.14 General structure of Investigating Lake Illuka 54
Figure 3.15 Checklist for Investigating Lake Illuka 55
Figure 3.16 General structure of Exploring the Nardoo 57
Figure 3.17 Checklist for Exploring the Nardoo 58
Figure 4.1 Anatomy of an intelligent multimedia system 67
Figure 4.2 Responsibilities of the Designer 68
Figure 4.3 Hypothesized relationship of fidelity and learning 72
Figure 4.4 Tasks in model development .. 73
Figure 4.5 Model for Multimedia Design .. 74
Figure 4.6 Multimedia Development Lifecycle 74
Figure 4.7 Design envelope for Multimedia 75
Figure 4.8 Different models identified in the SMISLE project 78
Figure 5.1 Cognitive model/“real-world” dilemma 87
Figure 5.2 Epistemological paradigm shift 87
Figure 5.3 Interactive Learning .. 93
Figure 5.4 User Model Uses ... 104
Figure 6.1 Components of Builder module 129
Figure 6.2	Pattern of user Performance in each problem	132
Figure 6.3	Pattern of user Performance in each series of problems	132
Figure 7.1	Cognitive Apprenticeship Model	140
Figure 7.2	Five Educational Goals	142