Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Factors That Influence Grower Adoption and Implementation of the ENZA Integrated Fruit Production Programme

A thesis presented in partial fulfillment of the requirements for the degree on Masters of Applied Science in Agriculture - Horticulture Systems and Management at Massey University.

Heidi Stiefel

1999
ABSTRACT

To maintain market access to the key pipfruit export markets of Europe and the UK ENZAFRUIT New Zealand LTD has set a target of 100 percent grower adoption of the ENZA Integrated Fruit Production programme (ENZA-IFP) by the year 2001. In 1996 eighty eight growers had adopted the programme out of a total of 1650 growers nationally, hence the adoption rate required to met this target is very steep. However, little is known about New Zealand growers' attitudes towards the ENZA-IFP programme, or the factors that may influence the programme’s adoption.

Interviews of randomly selected IFP and non-IFP growers were held in Hawke’s Bay and Nelson during August 1997. The purpose of the interviews was to determine the factors that influence the adoption of the ENZA-IFP programme, identify differences between IFP and non IFP growers, and identify themes of technology transfer methods that may encourage grower adoption of the ENZA-IFP programme. The results of the IFP and non-IFP case study research were cross compared, then compared and contrasted with the factors identified in the reviewed literature.

The key reasons the IFP growers had adopted the ENZA-IFP programme were for philosophical and environmental factors. Market access was also a key motivating factor. Financial factors, perceived risk, and poor communication were the key factors hindering adoption for the non-IFP growers. The main financial factors were loss of the USA supply programme incentive and a lack of financial incentives to adopt IFP. Perceived risk was in the form of a perceived increase in pest and disease damage and resulting financial loss.

To reach ENZA’s target of 100 percent grower adoption by 2001, growers need both clear guidelines on how this is going to be met and financial incentives over the transition period to motivate adoption.

IFP technologies that bring direct financial benefits to growers, have a participatory technology transfer system, have a low level of complexity and perceived risk, and fit with a growers current production system and resources are likely to be adopted more readily.

Keywords: Integrated Fruit Production, Adoption, Implementation
Title: Factors that Influence Grower Adoption and Implementation of the ENZA Integrated Fruit Production Programme
Author: Heidi Stiefel
Degree: Masters of Applied Science
ACKNOWLEDGMENTS

This thesis was completed with much assistance and encouragement from the supervisors, Dr. Elizabeth Kemp from the Department of Computer Science, Ewen Cameron, and Stuart Morriss, both from the Department of Agriculture-Horticulture Systems and Management. Each brought different strengths and knowledge to this thesis, resulting in an excellent, well balanced team of supervisors. I wish to especially acknowledge Ewen's encouragement and commitment and Liz's enthusiasm and knowledge of the academic requirements necessary to complete a thesis. Many thanks to them all for their support, guidance, ideas, and time that they put into reading the draft chapters.

Many of the Department of Ag-Hort Systems and Management staff have helped this research project along the process, by providing books, articles, and practical advice, which I greatly appreciated. A special thanks to Denise Stewart for her assistance. I would also like to thank the Department for its financial contribution from the ENZA project towards this research project.

The assistance from ENZA with selecting growers was much appreciated. Thanks to all the growers that participated enthusiastically in the interviews. I greatly appreciated the valuable time growers gave, sharing their ideas, to be part of this study.

Thank you to Agriculture New Zealand, my employer, for allowing me the time to complete this research. Also thanks to my parents for their support during my many trips to Massey University over the past two years.

Finally, a very special thanks to my partner Steve Potbury for his support and encouragement along the way. Steve spent many weekends reading, offering advice, and making sure I was working.
TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF TABLES xiii
LIST OF FIGURES ix
LIST OF APPENDICES x

Chapter One: Introduction 1

1.1 ENZA Integrated Fruit Production 1

1.2 The New Zealand Pipfruit Industry 2
 1.2.1 The New Zealand Apple and Pear Marketing Board 3
 1.2.2 ENZAFRUIT New Zealand (International) 3

1.3 Evolution of New Zealand Pipfruit Pest and Disease
 Management from Calendar Spraying to Current 'Best Practices' 3
 1.3.1 Calendar-based spraying 4
 1.3.2 Evolution from calendar-based spraying 4
 1.3.3 Integrated Pest Management (IPM) 5
 1.3.4 IPM in New Zealand 6

1.4 Market Driven Production Technologies 7
 1.4.1 The USA supply programme 7
 1.4.2 The ENZA-IFP programme 9
 1.4.3 The IFP-USA programme 12

1.5 A General Overview of Technology Transfer Methods
 used by New Zealand Pipfruit Growers 12
 1.5.1 Technology transfer and communication of the
 ENZA-IFP programme 14

1.6 Problem Statement 15
1.7 Objectives of The Study

1.8 Study Outline

Chapter Two: A Review of Factors that Influence Adoption of Sustainable Technologies

2.1 Introduction

2.2 Diffusion of Innovations

- 2.2.1 Categories of adoption - the innovativeness of an individual
- 2.2.2 Characteristics of adopter categories
- 2.2.3 Extension model used - Transfer of Technology (ToT)
- 2.2.4 The limitations of the ‘Diffusion of Innovations’ model

2.3 Knowledge and Information Systems – The ‘Participatory Action Research’ (PAR) Model.

- 2.3.1 Extension science - facilitating learning
- 2.3.2 Extension models used
- 2.3.3 Selective adoption

2.4 Diffusion of Innovations, Participatory Action Research, and Selective Adoption

2.5 The Key Factors that Influence Grower Adoption of Sustainable Technologies - A Discussion of International Research.

- 2.5.1 Financial factors
- 2.5.2 Social factors
- 2.5.3 Grower characteristics
- 2.5.4 Marketing factors
- 2.5.5 Technology transfer
- 2.5.6 Education factors
- 2.5.7 Technical factors
- 2.5.8 Organisational factors
- 2.5.9 Environmental factors
- 2.5.10 Summary

2.6 Conceptual Framework Developed from the Reviewed Literature of the Key Factors that Influence the Adoption of Sustainable Technologies
2.7 The Role of Technology Transfer and Education in the Adoption of Sustainable Technologies

2.7.1 Co-ordination of technology transfer
2.7.2 Technology transfer methods and tools suitable for sustainable technologies.

2.8 Integrated fruit production (IFP) - A Review of International and New Zealand Programmes

2.9 Conclusion

Chapter Three: Methodology

3.1 Introduction
3.2 Determining Appropriate Research Methods
3.3 Case Study Selection - Selection of Participants
3.4 Determining Qualitative Data Collection Methods
 3.4.1 Development of data collection protocol
 3.4.2 Framework for the semi-structured interview questions
 3.4.3 Pre-testing interviews
 3.4.4 Conducting interviews
3.5 Analysis
 3.5.1 Initial analysis of the case study data
 3.5.2 Further analysis of the data
3.6 Summary

Chapter Four: Case Study Results and Discussion

4.1 Introduction
4.2 Factors that Influenced Adoption and Implementation of the ENZA-IFP Programme: IFP Growers
 4.2.1 Philosophical
 4.2.2 Environmental
 4.2.3 Marketing
 4.2.4 Financial
4.2.5 Perceived Risk
4.2.6 Organisational - Information from ENZA
4.2.7 Technology transfer
4.2.8 Compatibility
4.2.9 Confidence in the programme
4.2.10 Complexity
4.2.11 Technical
4.2.12 Selective adoption
4.2.13 IFP conceptual framework developed from the case study research

4.3 Factors that may Influence Adoption and Implementation of the ENZA-IFP Programme: Non-IFP Growers

4.3.1 Financial
4.3.2 Perceived risk
4.3.3 Marketing
4.3.4 Organisational factors - Information from ENZA
4.3.5 Technology transfer
4.3.6 Confidence
4.3.7 Compatibility
4.3.8 Complexity
4.3.9 Technical
4.3.10 Environmental factors
4.3.11 Selective adoption
4.3.12 Non-IFP conceptual framework developed from the case study research

4.4 Cross Case Comparison Between IFP and Non-IFP Growers

4.4.1 IFP and non-IFP grower characteristics
4.4.2 Similarities between case study results from the IFP and non-IFP growers
4.4.3 Differences between IFP and non-IFP growers and the factors that influence adoption of ENZA-IFP
4.4.4 Comparison of the conceptual frameworks

4.5 Comparison with the Literature

4.5.1 Grower characteristics from the case studies compared to the literature
4.5.2 Comparison between factors identified in the literature with those identified in the case study research
4.5.3 Factors identified in addition to the reviewed literature
Chapter Five: Conclusions and Recommendations

5.1 Key Findings

5.1.1 Differences between IFP and Non-IFP growers
5.1.2 Factors that influenced the adoption and implementation of ENZA-IFP
5.1.3 Technology transfer processes used to enhance the adoption of sustainable technologies, such as IFP.
5.1.4 Methods of technology transfer that may encourage grower adoption of ENZA-IFP

5.2 Recommendations: strategies to enhance the adoption of the ENZA-IFP programme

5.3 Reflection on the Process

5.4 Opportunities For Further Research

Chapter Six: References
LIST OF TABLES

Table 1.1 Number of growers involved in ENZA supply programmes 9

Table 3.1 Relevant Situations for Different Research Strategies (Yin, 1989). 57

Table 4.1 Age of Respondents 98

Table 4.2 Use of Integrated Mite Control (IMC) for European Red Mite control by IFP and non-IFP growers 101
LIST OF FIGURES

Figure 2.1 Transfer of Technology Extension Paradigm 24

Figure 2.2: Conceptual Framework of the Factors that Influence the Adoption and Implementation of Sustainable Technologies. 45

Figure 4.1 Factors that Influenced Adoption of the ENZA-IFP Programme for IFP Growers 86

Figure 4.2 Factors that may Influence Adoption of the ENZA-IFP Programme for Non-IFP Growers 96

Figure 4.3 Factors that Influence Grower Adoption and Implementation of the ENZA-IFP Programme 104

Figure 4.4 Conceptual Framework Developed from the Reviewed Literature and the Case Study Research of the Factors that Influence the Adoption and Implementation of Sustainable Technologies and ENZA-IFP. 119
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix 1</th>
<th>Semi-structured interview question sheets for the IFP growers</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2</td>
<td>Semi-structured interview question sheets for the non-IFP growers</td>
<td>142</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Grower data collection sheet</td>
<td>144</td>
</tr>
</tbody>
</table>