Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
“Games Galore”

A feasibility study to investigate the effect of a physical activity and nutrition education programme for 10-14 year old New Zealand overweight and obese children

A thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Nutritional Science at Massey University, Albany, New Zealand

Christel Dunshea-Mooij
2003
Players of the Auckland Blockbuster Basketball team and some of the participants' of the "Games Galore" feasibility study in action.
Abstract

It is widely acknowledged that obesity has emerged as an epidemic in developed countries during the last quarter of the 20th century [1]. It is an issue of great concern, affecting adults and children of both wealthy and middle-income people in both middle-income countries as well as residents of countries previously considered to be poor [2]. The World Health Organisation has stated that the prevalence of obesity and overweight is increasing in both adult and childhood populations throughout the world, and has acknowledged management of obesity as a priority area of public health action [1].

This feasibility study “Games Galore” investigated the effect of a physical activity and nutrition education intervention for the development of ongoing self-motivated participation in physical activity and of healthy eating habits of both male and female 10-14 year old New Zealand overweight or obese children.

Twenty-two students of an intermediate and a full primary school enrolled in the “Games Galore” feasibility study. The participants were all residents of West Auckland, New Zealand and participated twice weekly in a games programme and once every fortnight in a nutrition education programme. Anthropometric data was collected at baseline, 4 months, 6 months (end of the intervention), 10 months (4 months post intervention), and 16 months (10 months post intervention). A qualitative dietary habit questionnaire, a diet and activity questionnaire, a food frequency questionnaire, a 3 day diet and physical activity diary, and a three 24-hour recalls were administered to assess nutrient intake and physical activity.

There was no significant change seen in any of the assessed anthropometric indicators from baseline to 16 months post intervention. Some positive change was seen for outdoor play during weekdays (p=0.02). However, there was no significant change in any of the other measurements for physical activity, indicating no increase in self-motivated participation in physical activity. There was also no change in dietary intake during and post intervention, indicating no change in eating habits.
During this 16 months “Games Galore” feasibility study (6 month intervention, 10 month follow-up) there was no significant change in the participants' participation of physical activity and the participants’ eating habits. This is most likely due to the implementation of too few predictors of childhood overweight and lack of parental support. The latter limits the results due to lack of stimulation and motivation for the participants to participate at the nutrition education sessions and incorporate a “healthy” lifestyle.
Acknowledgements

I would like to thank the following people for the valuable assistance they provided during the completion of this research project:

Dr Clare Wall
Senior Lecturer, Institute of Food, Nutrition and Human Health, Massey University

Ms Christine King
Lecturer, School of Sports, UNITEC Institute of Technology

Dr Barry McDonnald
Statistician, Institute of Information and Mathematical sciences, Massey University

Ms Judi Sheffer
Statistician, Institute of Information and Mathematical sciences, Massey University

Avondale Intermediate, Auckland
Children and parents who participated in the study and staff

Glenavon full primary, Auckland
Children and parents who participated in the study and staff

Unitec School of Sports
"Rolemodels", i.e. players of the Auckland Blockbuster Basketball Team, Winton Rufer, Sam Panapa, Gillian Bannan, and physical activity programme coordinator; Martin Burke

Sponsors
5+ a day, Xenical, Unitec School of Sports

I would also like to thank my parents (in law) and friends. Particularly Brenna Waghorn and Vicki McArthur for proof reading the document.

I love to acknowledge my two little boys, Tim and Max, for their love, hugs and other support. And finally, I would like to thank my husband, Steve, for his faith in me, his continuous support and encouragement.
Table of contents

1 Introduction 1
 1.1 Prevalence of paediatric obesity 1
 1.2 Causes and consequences 2
 1.3 Interventions to treat childhood obesity 2
 1.4 "Games Galore" 2

2 Literature Review 4
 2.1 Purpose of the review 4
 2.2 Search strategy 4
 2.3 Definitions 4
 2.4 Causes of paediatric overweight and obesity 4
 2.4.1 Energy balance and the physiological regulation of body weight 5
 2.4.2 Environmental and behavioural factors influencing obesity 8
 2.4.2.1 Environmental factors 8
 2.4.2.2 Behavioural factors 9
 2.4.2.3 Dietary factors 10
 2.4.3 Physical activity patterns 12
 2.4.4 Genetic and non-genetic factors 15
 2.4.3.1 Genetic factors 15
 2.4.3.2 Non-genetic factors 16
 2.5 Consequences of paediatric overweight and obesity 19
 2.5.1 Psychosocial and medical effects of childhood obesity 20
 2.5.1.1 Psychosocial effects 20
 2.5.1.2 Cardiovascular risk factors 21
 2.5.1.3 Hepatic and gastric complications 22
 2.5.1.4 Orthopaedic complications 22
 2.5.1.5 Other complications of childhood obesity 23
 2.5.2 Economic burden of childhood obesity 24
 2.6 Defining and classifying paediatric overweight and obesity 24
 2.6.1 Why classify overweight and obesity? 24
 2.6.2 Use of BMI to classify obesity 24
 2.6.3 Waist circumference and waist to hip ratio (WHR) 25
 2.6.4 Additional tools for the assessment of obesity 26
 2.6.5 Use of growth charts 27
 2.7 Assessment of food intake 29
 2.7.1 Food diaries 30
 2.7.2 Food frequency questionnaires 31
2.7.3 24-hour recall method
2.8 Assessment of physical activity and energy expenditure
2.9 Obesity programmes for children
 2.9.1 Treatment of paediatric overweight and obese children
 2.9.1.1 Behaviour change
 2.9.1.2 Reducing energy intake and improving dietary quality
 2.9.1.3 Increasing physical activity
 2.9.1.4 Reducing time spend in sedentary behavior
 2.9.1.5 Behaviour modification
 2.9.2 Previous interventions
 2.9.3 Different obesity-management programmes
 2.9.3.1 School-based programs
 2.9.4 Family-based programmes
 2.9.5 Primary-care-based programs
 2.9.6 Drugs and surgery
 2.9.6.1 Epstein et al.
 2.9.6.2 Other studies
 2.10 Summary

3 Aims of the study

4 Methodology
 4.1 Participants
 4.2 Recruitment strategies
 4.3 Methods
 4.3.1 Activity programme
 4.3.2 Nutrition education programme
 4.3.3 Gifts
 4.3.4 Ad hoc changes of the methodology
 4.3.5 Ethical Consent
 4.4 Assessment methods
 4.5 Anthropometric measurements
 4.6 Qualitative dietary habit questionnaire
 4.7 Dietary and physical activity questionnaire
 4.7.1 Food Frequency Questionnaire
 4.7.2 Three-day diet and physical activity diary
 4.7.3 24-hour recalls
 4.8 Statistical analysis

vii
5 Results

5.1 Ethnic and gender characteristics of the participants
5.2 Medications
5.3 Withdrawal and compliance of participants
5.4 Lost to follow up
5.5 Anthropometric indicators
5.6 Sedentary behaviour patterns
5.7 Activity patterns
5.8 Nutritional status participants
5.8.1 Qualitative dietary habits questionnaire
5.8.2 Diet and activity questionnaire
5.8.3 FFQ
5.8.4 Three-day diet and physical activity diary
5.8.5 24 Hour recalls

6 Discussion

6.1 Physical characteristics and demographic data
6.2 Medical and family history
6.3 Withdrawal and compliance
6.4 Lost to follow up
6.5 Anthropometric indicators
6.6 Sedentary behaviour patterns
6.7 Activity patterns
6.8 Nutritional status participants
6.9 Validation of nutritional intake
6.9.1 Qualitative dietary habit questionnaire and diet and activity questionnaire
6.9.2 Qualitative FFQ
6.9.3 3-Day diet and physical activity diary and 24-hour recall
6.10 Limitations of the study
6.11 Recommendations

7 Conclusion

8 References
9 Appendices

9.1 Appendix 1: Letter sent to schools 120
9.2 Appendix 2: Information sheet 122
9.3 Appendix 3: Contract 125
9.4 Appendix 4: Invitation letters 127
9.5 Appendix 5: Nutrition education sessions 131
9.6 Appendix 6: Selection of provided information materials 128
9.7 Appendix 7: Ethics approval 129
9.8 Appendix 8: Consent form 130
9.9 Appendix 9: Qualitative dietary habit questionnaire 132
9.10 Appendix 10: Diet and activity questionnaire I 134
9.11 Appendix 11: Diet and activity questionnaire II 142
9.12 Appendix 12: Food Frequency Questionnaire 145
9.13 Appendix 13: 3-Day diet and physical activity diary 146
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energy content of macronutrients</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Storage capacity of macronutrients within the body</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Selected list of candidate genes for human obesity, identified on the basis of animal models, physiology, and prior human research</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Critical periods for the development of obesity before adulthood</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Suggested cut-off points for identifying high trunk fat mass and waist circumference</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Summary of Body Composition Techniques in Children</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>International cut-off points by BMI defined by Cole et al.</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Cut-off points by BMI defined by Taylor et al.</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Summary of methods for assessment of food intake in children</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Summary of methods for assessment of physical activity in children</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>Stages of change</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>Variety of obesity-management programs offered for obese children and adolescents</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>Characteristics and results of exercise programs</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Assessment methods</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>Ethnicity and socio-economic indicators of the participating schools</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>Baseline characteristics participants</td>
<td>65</td>
</tr>
<tr>
<td>17</td>
<td>Weight, height, BMI, hip and waist circumference of the participants at baseline, 4 and 6 months during the intervention and 4 and 10 months post intervention (mean, ±SD)</td>
<td>66</td>
</tr>
<tr>
<td>18</td>
<td>Percentage of participants reporting their dietary habits, compared with the National Food and Nutrition guidelines of the Ministry of Health</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>Energy and macronutrient intakes of the participants (mean, ±SD)</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>Standard RDI’s, RDA’s, and DRV’s</td>
<td>76</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1 Influences on energy balance and weight gain (energy regulation) 6
Figure 2 The effect of environmental and behavioural factors on energy balance 10
Figure 3 Trends in dietary intake of fat 11
Figure 4 Health consequences of early onset obesity 19
Figure 5 Methodology 58
Figure 6 Progress of participants through the trial 60
Figure 7 Change in BMI from baseline for all participating students 67
Figure 8 Television watching habits of the participants on weekdays and weekends 68
Figure 9 Television watching habits of the participants on weekdays 68
Figure 10 Television watching habits of the participants on weekends 69
Figure 11 Percentage of participants that reported consumption of food groups per day in accordance with the servings advised by the nutrition guidelines for adolescents 72
Figure 12 Origin of the food eaten at school 73
Figure 13 Energy intakes of the participants at the end of the intervention, 4 and 10 months post intervention 77
Figure 14 Carbohydrate intakes of the participants at the end of the intervention, 4 and 10 months post intervention 78
Figure 15 Protein intakes of the participants at the end of the intervention, 4 and 10 months post intervention 79
Figure 16 Total fat intakes of the participants at the end of the intervention, 4 and 10 months post intervention 80
Figure 17 The mean energy expenditure (E exp) compared with the mean energy intake (E int) 92
List of Abbreviations Used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full word(s)</th>
<th>Abbreviation</th>
<th>Full word(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSIS</td>
<td>biological abstracts</td>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate</td>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CINAHL</td>
<td>cumulative index to nursing and allied health literature</td>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHO</td>
<td>carbohydrate</td>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DEXA</td>
<td>dual energy x-ray absorptiometry</td>
<td>DLW</td>
<td>double-labelled water</td>
</tr>
<tr>
<td>DRV</td>
<td>dietary reference values</td>
<td>E exp</td>
<td>energy expenditure</td>
</tr>
<tr>
<td>E int</td>
<td>energy intake</td>
<td>EMBASE</td>
<td>biomedical and pharmacological abstracts</td>
</tr>
<tr>
<td>FFQ</td>
<td>food frequency questionnaire</td>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate</td>
<td>IOTF</td>
<td>international obesity taskforce</td>
</tr>
<tr>
<td>Kcal</td>
<td>kilo calories</td>
<td>kg</td>
<td>kilograms</td>
</tr>
<tr>
<td>kg/m²</td>
<td>kilograms per square meter</td>
<td>kJ</td>
<td>kilojoules</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
<td>MANOVA</td>
<td>multiple analysis of variance</td>
</tr>
<tr>
<td>MEDLINE</td>
<td>medical literature, analysis, and retrieval system online</td>
<td>MJ</td>
<td>megajoules</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
<td>n</td>
<td>number</td>
</tr>
<tr>
<td>NIDDM</td>
<td>non insulin dependent diabetes mellitus</td>
<td>NHANES</td>
<td>national health and nutrition examination survey</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>p</td>
<td>power</td>
</tr>
<tr>
<td>RDA</td>
<td>recommended dietary allowance</td>
<td>RDI</td>
<td>recommended dietary intake</td>
</tr>
<tr>
<td>RMR</td>
<td>resting metabolic rate</td>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>TEF</td>
<td>thermic effect of food</td>
<td>TV</td>
<td>television</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
<td>VO2max</td>
<td>maximum value of oxygen</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
<td>WHR</td>
<td>waist to hip ratio</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
<td>$</td>
<td>dollar</td>
</tr>
</tbody>
</table>