Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
NUTRITIONAL EVALUATION OF GRAIN LEGUMES FOR POULTRY

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in

Poultry Nutrition

At Massey University, Palmerston North, New Zealand

Catootjie Lusje Nalle

2009
The fear of the LORD is the beginning of knowledge: but fools despise wisdom and instruction (Proverbs 1:7)
ABSTRACT

The nutritional value of faba beans (*Vicia faba*), Australian sweet lupins (*Lupinus angustifolius*), white lupins (*Lupinus albus*) and peas (*Pisum sativum*) grown in New Zealand for broilers were evaluated in terms of their nutritional characteristics, protein quality (protein efficiency ratio), apparent metabolisable energy, apparent ileal digestibility coefficient of amino acids and the effects on bird performance. The effects of dehulling and extrusion cooking on the nutritive value of legumes were also investigated.

The first experiment discussed in Chapter 3 evaluated the effect of cultivars on the nutrient profile and protein quality of chickpeas (*Cicer arietinum*), Australian sweet lupins, peas and soybeans (*Glycine max*). With the exception of white lupins, cultivars had no effect on the proximate and fibre composition of grain legumes. Starch was the primary carbohydrate component of chickpeas and peas, whilst non-starch polysaccharides were the major carbohydrates in lupins. The legume proteins were deficient in lysine, methionine, cystine and threonine. No differences were found in protein quality between cultivars of the different grain legume species. The lowest weight gain and protein efficiency ratio, in addition to the highest relative pancreatic weight and mortality rate was found in raw soybeans, suggesting that soybeans contained high a concentration of anti-nutritional factors, such as protease inhibitors. Birds fed chickpeas, lupins and peas had a low mortality rate and relative pancreatic weight, confirming that the level of anti-nutrients in these legume seeds was low.

The apparent metabolisable energy and apparent ileal digestibility coefficient of amino acids of faba beans, Australian sweet lupins, white lupins and peas were determined in the second experiment (Chapter 4). Cultivar effect on the apparent metabolisable energy values was observed only for faba beans and white lupins. Faba beans, white lupins and peas had comparable apparent metabolisable energy values, but these values were higher than those of Australian sweet lupins, and lower than that of soybean meal. No cultivar differences were found in the apparent ileal digestibility coefficient of amino acids of grain legumes. The apparent ileal digestibility coefficient of amino acids of both lupin species was found to be comparable to that of soybean meal.

The effects of feeding diets containing 200 g/kg faba beans, lupins or peas on the performance, digestive tract development and litter quality of broilers were investigated in the third and fourth trials. In the cage trial (Chapter 5), the results showed that the weight gain of birds fed diets containing grain legumes was similar to that of control diet. Feed
intake and feed per gain of birds fed diets containing the majority of grain legume cultivars did not differ from those fed the maize-soy diet. Birds fed diets containing faba beans had more dry and friable excreta compared to other treatment diets. The performance of birds fed diets containing 200 g/kg grain legumes during the 35 d grow-out period, in the floor pen trial (Chapter 6), confirmed the results of the cage trial. In this trial, weight gain and feed per gain of birds fed diets without meat meal were superior to those with meat meal. In cage trials, the modification of some segments of digestive tract development was probably due to the dietary NSP. Whilst in floor pen trial, digestive tract development was not influenced by the inclusion of grain legumes.

The effect of methodology of determination (direct vs. difference method) on the apparent ileal digestibility coefficient of amino acids of wheat, maize, Australian sweet lupins, peas and soybean meal for broilers was evaluated in the fifth study (Chapter 7). The influence of methodology on apparent ileal digestibility coefficient of amino acids was found to vary amongst the feed ingredients. In general, the apparent ileal digestibility coefficient of amino acids of test ingredients determined by the difference method was higher than those determined by the direct method, suggesting that the use of the direct method may underestimate the apparent ileal digestibility coefficient of amino acids in low and medium protein ingredients.

Data reported in Chapter 8 shows that dehulling increased the apparent metabolisable energy values of faba beans and Australian sweet lupins, but it had no beneficial effect on peas. The increase of apparent metabolisable energy values may be attributed to the decrease in non-starch polysaccharides of these legume seeds after dehulling. The removal of hulls increased the amino acid concentrations, but it had no effect on the apparent ileal digestibility coefficient of most amino acids. These results suggest that dehulling of grain legumes would be nutritionally beneficial and, likely to be economical in view of the improved amino acid concentrations and energy values.

The final experiment (Chapter 9) demonstrated that extrusion of peas markedly influenced the content of crude protein, non-starch polysaccharides, starch, and trypsin inhibitors. The soluble non-starch polysaccharides and trypsin inhibitor contents of the majority of extruded pea samples were higher than those of raw peas, but insoluble and total non-starch polysaccharides decreased with extrusion. Extrusion had no effect on the apparent ileal protein digestibility and the apparent metabolisable energy of peas, but it increased ileal starch digestibility.
Acknowledgements

Praise and glory be to Jesus Christ, my God and my Saviour, who has given me strength, ability and good health for the completion of my study.

I truthfully give thanks to my chief supervisor, Professor V. (Ravi) Ravindran, for his guidance and encouragement and for providing expert knowledge in poultry nutrition. The time and energy that he has spent on this work is very much appreciated. I would also to offer my sincere thanks to my co-supervisor, Dr. G. (Rana) Ravindran, for her valuable comments, support and encouragement.

Very special appreciation is expressed to Mr. Donald V. Thomas, M.Sc. for his technical support; to Dr. J. Monro for his advice with in vitro measurements and Dr. Shirani Gamlath for her advice with extrusion trial; in addition to all staff in the nutrition laboratory, food chemistry laboratory, food characterisation laboratory and Pilot Plant of the Institute of Food, Nutrition and Human Health.

My thanks are also extended to the New Zealand Government through NZAID, which has given me the financial support for my PhD study. I also offer thanks to several staff members and postgraduate students, in particular, Dr. Dave Thomas, Dr. Patrick Morel, Mr. Collin Naftel, Mr. Ricky Tehuki, Ms. Maggie Honey-field Ross and Mr. Kelwyn Pereka, Dr. Ahmed Amerah, Ms. Ishwani Singh, Ms. Charlene, Mohammad Abdollahi and Piyamas Tancharoenrat who have given their valuable time and technical assistance to help in the conduct of the experiments. My very special thanks go to Mrs. Sylvia Hooker, Mrs. Susan M. Flynn, Mrs. Olive Pimentel, and all the staff at the International Student Office at Massey University for their support.

Appreciation is expressed to SFF, which provided funding for this research project and the invaluable assistance of Jacqui Johnston of Foundation of Arable Research (FAR) and Alun Faulkner, from Tegel Foods Ltd is gratefully acknowledged.

Finally, I wish to convey my warmest appreciation and deepest gratitude to my son (Immanuel Williams Irsal), my parents, brother and sisters, Aunty Thelma, Steven Grant’s family, and Tony Holleman for their prayers, support and never-ending encouragement and love throughout the course of this study – also my thanks to all those people I forgot to mention.
Publications

Studies completed during candidature, some of which are reported in this thesis have been presented in the following conference presentation:

Table of contents

Abstract .. i
Acknowledgements .. iii
Publications .. iv
Table of contents .. v
List of tables ... ix
List of figures ... xiii
List of abbreviations .. xiv

Chapter 1. General Introduction .. 1

Chapter 2. Literature review .. 5
2.1. Introduction ... 5
2.2. Anti-nutritional factors.. 6
 2.2.1. Protease inhibitors .. 6
 2.2.2. Lectins .. 7
 2.2.3. Tannins ... 8
 2.2.4. Non-starch polysaccharides ... 9
2.3. Grain legume species .. 11
 2.3.1. Chickpeas ... 11
 2.3.2. Faba beans .. 15
 2.3.3. Lupins .. 19
 2.3.4. Peas .. 28
2.4. Improving the feeding values of legumes ... 32
 2.4.1. Physical processing ... 32
 2.4.2. Thermal processing ... 34
 2.4.3. Exogenous enzymes ... 38
 2.4.4. Plant breeding .. 39
2.5. Determination methods of amino acid digestibility .. 39
 2.5.1. The direct method .. 41
 2.5.2. The difference method ... 42
 2.5.3. The regression method .. 42

Chapter 3. Nutrient characterisation of grain legumes grown in New Zealand 43
3.1. Abstract .. 43
3.2. Introduction ... 43
3.3. Materials and methods ... 44
 3.3.1. Samples .. 44
 3.3.2. Nutrient characterisation ... 45
 3.3.3. Chemical analysis .. 46
 3.3.4. Protein quality evaluation .. 47
 3.3.5. Data analysis .. 48
3.4. Results ... 48
3.5. Discussion ... 61
Conclusion ... 64
List of Tables

Chapter 2
Table 2.1. Soluble, insoluble and total NSP contents (g/kg DM) of some grain legumes and soybean meal ...11
Table 2.2. The nutritional composition (g/kg) of chickpeas ...12
Table 2.3. Amino acid content (g/kg) of chickpeas ..13
Table 2.4. Apparent ileal amino acid digestibility coefficients of chickpeas for broilers ..14
Table 2.5. The nutritional composition (g/kg) of faba beans ..16
Table 2.6. Amino acid content (g/kg) of faba beans ..17
Table 2.7. The apparent metabolisable energy (MJ/kg) of faba beans for broilers18
Table 2.8. Apparent ileal amino acid digestibility coefficient of faba beans for broilers18
Table 2.9. The nutritional composition (g/kg) of Australian sweet lupins20
Table 2.10.Amino acid content (g/kg) of Australian sweet lupins ...21
Table 2.11.The apparent metabolisable energy values (MJ/kg) of Australian sweet lupins22
Table 2.12.Carbohydrate composition (g/kg) of whole seed, kernel and hulls of Australian sweet lupins ...22
Table 2.13.Apparent ileal amino acid digestibility coefficient of Australian sweet lupins23
Table 2.14.The nutritional composition (g/kg) of white lupins ...25
Table 2.15.Carbohydrate composition (g/kg) of whole seed, kernel and hulls of white lupin cv Kiev mutant (van Barneveld, 1999) ...25
Table 2.16.Amino acid content (g/kg) of white lupins ..26
Table 2.17. Apparent ileal amino acid digestibility coefficient of white lupins for broilers27
Table 2.18.The nutritional composition (g/kg) of peas ..28
Table 2.19.Amino acid content (g/kg) of peas ..29
Table 2.20.The apparent metabolisable energy (MJ/kg) of peas ...30
Table 2.21. Apparent ileal amino acid digestibility coefficient of peas for broilers30
Table 2.22.Nutritional values (g/kg) of whole and dehulled faba beans, lupins and peas33

Chapter 3.
Table 3.1. Details of cultivars evaluated within each legume ..45
Table 3.2. Composition of the assay diets ...47
Table 3.3. Proximate and fibre composition (g/kg DM basis, mean ± SD) of the five pea cultivars ..48
Table 3.4. Starch and non-starch polysaccharide contents (g/kg DM basis) of the five pea cultivars ..49
Table 3.5. Mineral composition (DM basis) of the five pea cultivars ..49
Table 3.6. Amino acid concentrations (g/kg DM) of pea cultivars ..49
Table 3.7. Proximate and fibre composition (g/kg DM basis, mean ± SD) of the four chickpea cultivars ..50
Table 3.8. Starch and non-starch polysaccharide contents (g/kg DM basis) of the four chickpea cultivars ..50
Table 3.9. Mineral composition (DM basis) of the four chickpea cultivars ..51
Table 3.10. Amino acid concentrations (g/kg DM) of chickpea cultivars ..51
Table 3.11. Proximate and fibre composition (g/kg DM basis, mean ± SD) of the two sweet lupin cultivars ..52
Table 3.12. Starch and non-starch polysaccharide contents (g/kg DM basis) of the two sweet lupin cultivars ..52
Table 3.13. Mineral composition (DM basis) of the two sweet lupin cultivars ..52
Table 3.14. Amino acid concentrations (g/kg DM) of sweet lupin cultivars ..53
Table 3.15. Proximate and fibre composition (g/kg DM basis, mean ± SD) of the two white lupin cultivars ..53
Table 3.16. Starch and non-starch polysaccharide contents (g/kg DM basis) of the two white lupin cultivars ..54
Table 3.17. Mineral composition (DM basis) of the two white lupin cultivars ..54
Table 3.18. Amino acid concentrations (g/kg DM) of white lupin cultivars ..54
Table 3.19. Proximate and fibre composition (g/kg DM basis, mean ± SD) of the two soybean cultivars ..55
Table 3.20. Starch and non-starch polysaccharide contents (g/kg DM basis) of the two soybean cultivars ..55
Table 3.21. Mineral composition (DM basis) of the two soybean cultivars ..56
Table 3.22. Amino acid concentrations (g/kg DM) of soybean cultivars ..56
Table 3.23. Composition of average proximate and fibre composition (g/kg DM basis) of the five legumes ..57
Table 3.24. Composition of average carbohydrate composition (g/kg DM basis) of the five legumes ..57
Table 3.25. Summary- comparison of average mineral composition (g/kg DM) of the five legumes and a commercial sample of soybean ..58
Table 3.26. Comparison of average amino acid concentration (g/kg DM) of the five legumes and a commercial sample of soybean ..58
Table 3.27. Comparison of amino acid profile (g/16 g N) of the five legumes and a commercial sample of soybean ..59
Table 3.28. Protein quality of legumes, relative to soybean meal, on the basis of protein efficiency ratio (PER), 1-12 days post-hatching ..60

Chapter 4.

Table 4.1. Composition (g/kg air dry basis) of the basal diet ..68
Table 4.2. Chemical composition (g/kg DM) of faba beans, Australian sweet lupin, white lupin, and peas ..72
Table 4.3. Amino acid concentration (g/kg DM) for the faba bean cultivars and soybean meal ..73
Table 4.4. Amino acid concentration (g/kg DM) for the Australian sweet lupin and white lupin cultivars and soybean meal ..74
Table 4.5. Amino acid concentration (g/kg DM) for the pea cultivars and soybean meal ..75
Table 4.6. Apparent metabolisable energy (AME), nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility coefficient in four cultivars of faba beans for broilers.................................76

Table 4.7. Apparent metabolisable energy (AME), nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility coefficient in three cultivars of Australian sweet lupins for broilers..........................77

Table 4.8. Apparent metabolisable energy (AME), nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility coefficient in three cultivars of white lupins for broilers..78

Table 4.9. Apparent metabolisable energy (AME), nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility coefficient in four cultivars of peas for broilers..79

Table 4.10. Apparent metabolisable energy (AME), nitrogen-corrected apparent metabolisable energy (AMEn) and apparent ileal digestibility coefficient in four legumes and soybean meal for broilers.................................81

Chapter 5.

Table 5.1. Ingredient and calculated analysis (g/kg as is) of experimental diets...................91
Table 5.2. The effects of dietary legumes on the performances and digestive tract development of broilers ...94
Table 5.3. Comparison of the performance and digestive tract development of birds fed grain legume diets and maize-soybean meal diet...96

Chapter 6.

Table 6.1. Composition (g/kg as is) of treatment diets for starter (day 1 to 7)102
Table 6.2. Composition (g/kg as is) of treatment diets for grower (day 8 to 21)103
Table 6.3. Composition (g/kg as is) of treatment diets for finisher (day 22 to 35)104
Table 6.4. Performance of broilers as influenced by legumes and meat meal, 1-7 days post-hatching...106
Table 6.5. Performance of broilers as influenced by legumes and meat meal, 1-21 days post-hatching...107
Table 6.6. Performance of broilers as influenced by legumes and meat meal, 35 d post-hatching...108
Table 6.7. Influence of dietary treatments on the digestive tract development of broilers..110

Chapter 7.

Table 7.1. Composition (g/kg as is basis) of assay diets-Direct method...............................115
Table 7.2. Amino acid concentration (g/kg DM basis) of feed ingredients assayed.............116
Table 7.3. Comparison of the apparent ileal digestibility coefficients in maize determined with the direct and difference methods...117
Table 7.4. Comparison of the apparent ileal digestibility coefficients in wheat determined with the direct and difference methods...118
Table 7.5. Comparison of the apparent ileal digestibility coefficients in Australian
Table 7.6. Comparison of the apparent ileal digestibility coefficients in peas determined with the direct and difference methods ...120
Table 7.7. Comparison of the apparent ileal digestibility coefficients in soybean meal determined with the direct and difference methods ..121
Table 7.8. Influence of dietary treatments on the apparent ileal digestibility coefficients of amino acids ..123

Chapter 8.

Table 8.1. The proportion (g/kg seed) of kernel and hull of grain legumes129
Table 8.2. Amino acid concentration (g/kg DM) for the faba beans, lupins, and peas influenced by dehulling ...130
Table 8.3. Effects of dehulling on soluble, insoluble and total non-starch Polysaccharides and starch content (g/kg DM) of grain legumes131
Table 8.4. Influence of dehulling AMEn, apparent AME and apparent ileal digestibility coefficient of starch and amino acids in faba bean for broilers ..132
Table 8.5. Influence of dehulling on AMEn, AME and apparent ileal digestibility coefficient of amino acid in Australian sweet lupins for broilers133
Table 8.6. Influence of dehulling on AMEn, AME and apparent ileal digestibility coefficient of starch and amino acids in peas for broilers134

Chapter 9.

Table 9.1. The effect of extrusion treatments on the chemical composition (g/kg DM) and in vitro nutrient digestibility (%) of peas ..145
Table 9.2. The effects of extrusion on the apparent metabolisable energy (AME), nitrogen-corrected apparent metabolisable energy (AMEn), and apparent ileal digestibility coefficients of protein and starch in peas for broilers147
List of Figures

Chapter 4
Figure 4.1. Faba beans ...67
Figure 4.2. Australian sweet ..67
Figure 4.3. White lupins...67
Figure 4.4. Peas..67
Figure 4.5. Linear regression between soluble NSP content and AME value of grain legumes ..82

Chapter 9
Figure 9.1. Extruder Clextral BC 21 ..140
Figure 9.2. Pea extrudates ..140
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Amino acid</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fibre</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AME</td>
<td>Apparent metabolisable energy</td>
</tr>
<tr>
<td>AMEn</td>
<td>Nitrogen-corrected apparent metabolisable energy</td>
</tr>
<tr>
<td>ANF</td>
<td>Anti-nutritional factor</td>
</tr>
<tr>
<td>AIDC</td>
<td>Apparent ileal digestibility coefficient</td>
</tr>
<tr>
<td>BBI</td>
<td>Bowman-Birk Inhibitor</td>
</tr>
<tr>
<td>BSE</td>
<td>Bovine spongiform encephalopathy</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Cys</td>
<td>Cystein</td>
</tr>
<tr>
<td>DCP</td>
<td>Dicalcium phosphate</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>FCR</td>
<td>Feed conversion ratio</td>
</tr>
<tr>
<td>GE</td>
<td>Gross energy</td>
</tr>
<tr>
<td>HU</td>
<td>Haemaglutinin Unit</td>
</tr>
<tr>
<td>IVPD</td>
<td>In vitro protein digestibility</td>
</tr>
<tr>
<td>IVSD</td>
<td>In vitro starch digestibility</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>MBM</td>
<td>Meat and bone meal</td>
</tr>
<tr>
<td>MM</td>
<td>Meat meal</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral detergent fibre</td>
</tr>
<tr>
<td>NSP</td>
<td>Non starch polysaccharide</td>
</tr>
<tr>
<td>PER</td>
<td>Protein efficiency ratio</td>
</tr>
<tr>
<td>SCFA</td>
<td>Short- chain fatty acids</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SBM</td>
<td>Soybean meal</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>TIA</td>
<td>Trypsin inhibitor activity</td>
</tr>
<tr>
<td>TIU</td>
<td>Trypsin inhibitor unit</td>
</tr>
</tbody>
</table>