Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Total Technology Practice: Preliminary study for application in New Zealand schools

A Thesis presented in partial fulfilment of the requirements for the Degree of

Master of Philosophy in Technology

At Massey University, Palmerston North, New Zealand

JOHN A GAWITH

1999
ABSTRACT

The purpose of this research was to identify the important generic elements of total technology practice and to develop a preliminary list of the important techniques, knowledge and actions used by technologists. The research was based on the hypothesis that in technology education in New Zealand schools, the important elements of technology practice could be represented in the form of a model that could be used to organise and communicate the elements and knowledge involved in total technology practice.

The research was undertaken with technologists working at Massey University and teachers involved in teaching technology. A product development research methodology was used to test ideas and develop a model of technology practice for use in New Zealand schools. The first phase of the research used the experience and knowledge of product development technologists to identify the important elements of technology practice and develop preliminary lists of techniques and knowledge involved in each element. A group of specialist technologists were used to verify these elements and identify detailed content.

This research showed that total technology practice can be structured using seven elements that together provide a simplified description of total technology practice. The elements of practice associated with the human context and goal of technology practice were identified as society, the work environment, and purposeful action. The elements technologists bring to the context were organisation, information, resource use, and an extensive knowledge of techniques and the skill, ingenuity and experience to apply and adapt techniques to specific contexts and problems.

Individual technologists were interviewed to identify the important practices and knowledge within their area of expertise. Technological knowledge was structured into a framework that reflected the way technologists broke complex systems into subsystems to solve problems and develop solutions.
The detailed model developed with the technologists was evaluated by groups of teachers using focus group techniques and a small survey. The study indicated teachers perceived the model as a useful tool for communicating knowledge and understanding of technology practice and for structuring teaching units in technology education.

This preliminary study indicated technology practice can be described in terms of seven elements and communicated in the form of a model. Technologists organise their knowledge into structures that facilitate application in practice. This structure and much of its knowledge can be made explicit and used to help students understand technological products and develop capability in their technology practice.

This study has identified a structure for technology practice and technological knowledge that is common to all seven technological areas and nine contexts identified in the New Zealand technology curriculum.
ACKNOWLEDGEMENTS

I would like to express my heartfelt thanks to the following people who contributed to the production of this thesis:

Emeritus Professor Mary Earle for supervising this project with patience, perseverance and a depth of knowledge and wisdom that I feel privileged to have experienced.

Emeritus Professor Richard Earle for his many enlightening comments, explanations and help with the research.

The teachers who participated willingly and provided invaluable feedback on the model.

The technologists at Massey University who gave their time and expertise to unravelling the practice of technology for application in schools.

My colleagues in the Consumer Technology Department for their willingness to discuss and tease out the elements of technology practice, particularly Aruna Shekar for her time and support and Rodney Adank for his help with graphical design.

My wife Barbara who gave me unqualified support and the careful criticism that helped immensely in getting my thoughts into words.

My son Thomas whose patience and support I have admired and appreciated.
TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iv
LIST OF APPENDICES viii
LIST OF FIGURES ix
LIST OF TABLES x

CHAPTER 1. INTRODUCTION
1.1 DEFINITIONS
1.2 TECHNOLOGICAL KNOWLEDGE
1.3 RESEARCH QUESTIONS
1.4 THIS STUDY

CHAPTER 2. MODELLING TOTAL TECHNOLOGY PRACTICE
2.1 TOTAL TECHNOLOGY PRACTICE
2.2 GENERIC ELEMENTS OF TOTAL TECHNOLOGY PRACTICE
2.2.1 Society
2.2.2 Work Environment
2.2.3 Purposeful Action
2.2.4 Organisation
2.2.5 Information
2.2.6 Resources
2.2.7 Techniques
2.3 TECHNOLOGICAL KNOWLEDGE STRUCTURES
2.4 TYPES OF TECHNOLOGICAL KNOWLEDGE
2.4.1 Components of Technological Knowledge
2.4.2 Creating Knowledge
2.5 KNOWLEDGE AND TECHNOLOGICAL CONCEPTS OF TOTAL TECHNOLOGY PRACTICE
2.5.1 Models of Technology Practice

CHAPTER 3. RESEARCH METHOD
3.1 INTRODUCTION
3.2 THE PRODUCT DEVELOPMENT RESEARCH METHOD
3.3 MODEL DEVELOPMENT
3.3.1 Model Idea Generation
3.3.2 Model Ideas Screening
3.3.3 Model Concept Development
3.4 MODEL VERIFICATION BY TECHNOLOGISTS
3.4.1 Case Study Deconstruction
3.4.2 Construction of a Packaging Teaching Unit
3.4.3 Expert Panel Group
3.5 MODEL EVALUATION BY TEACHERS
3.5.1 Teacher Sample
3.5.2 Techniques Used in Model Evaluation
3.6 FINAL MODEL DETAILED DESIGN
3.7 REPORTING THE RESULTS
CHAPTER 4. MODEL DEVELOPMENT BY PRODUCT DEVELOPMENT TECHNOLOGISTS

4.1 INTRODUCTION
4.2 MODEL IDEA GENERATION
4.2.1 Observing Technology Practice
4.2.2 Initial Model Ideas
4.3 MODEL IDEA SCREENING
4.4 MODEL CONCEPT DEVELOPMENT
4.4.1 Society
4.4.2 Work Environment
4.4.3 Purposeful Action
4.4.4 Organisation
4.4.5 Information
4.4.6 Resources
4.4.7 Techniques
4.4.8 Knowledge Development
4.5 CONCLUSION

CHAPTER 5. MODEL VERIFICATION BY TECHNOLOGISTS

5.1 INTRODUCTION
5.2 CASE STUDY: NEW ZEALAND PHARMACEUTICALS LTD.
5.3 EXPERT PANEL: VALIDATION OF MODEL AND TECHNIQUES
5.3.1 Society
5.3.2 Work Environment
5.3.3 Purposeful Action
5.3.4 Organisation
5.3.5 Knowledge
5.3.6 Resources
5.3.7 Techniques
5.4 PACKAGING TECHNOLOGY TEACHING UNIT
5.5 EXPANDED MODEL OF TOTAL TECHNOLOGY PRACTICE
5.6 CONCLUSION

CHAPTER 6. MODEL EVALUATION BY TEACHERS

6.1 INTRODUCTION
6.2 MODEL PRESENTATION
6.3 FOCUS GROUPS
6.3.1 Model Use In Schools
6.3.2 Relationship With the Technology Curriculum
6.3.3 Progression In School Curriculum
6.3.4 Visual Attributes
6.3.5 Model Application
6.3.6 Other Similar Resources
6.4 USER SURVEY
6.4.1 Understanding The Model
6.4.2 Communicating Technological Concepts
6.4.3 Application To The Curriculum
6.4.4 Use Of The Model By Teachers And Students
6.4.5 Use Of The Model For Curriculum Planning
6.4.6 Defects In The Model And Improvements
CHAPTER 7. FINAL MODEL DETAILED DESIGN

7.1 INTRODUCTION

7.2 INITIAL DETAILED DESIGN BY PRODUCT DEVELOPMENT TECHNOLOGISTS

7.2.1 Tool Kits/Techniques

7.2.2 Organisation

7.2.3 Resources

7.2.4 Information

7.3 INDIVIDUAL INTERVIEWS WITH TECHNOLOGISTS

7.4 COMMON TECHNOLOGICAL CONCEPTS AND IMPLICATIONS FOR TEACHING

7.4.1 Systematic Process

7.4.2 Understanding The Context And Total System Involved

7.4.3 Problem Identification

7.4.4 Breaking A Problem Down

7.4.5 Organisation Of Knowledge Base

7.4.6 Information Acquisition

7.4.7 Idea Generation

7.4.8 Modelling / Simulating / Prototyping

7.4.9 Selection And Decision Making Involving Conflicting Constraints

7.4.10 Real World Variation And Unknown Variables

7.5 CONCLUSION

CHAPTER 8. DISCUSSION AND CONCLUSION

8.1 INTRODUCTION

8.2 MODELS OF TECHNOLOGY PRACTICE

8.3 GENERIC ELEMENTS OF TOTAL TECHNOLOGY PRACTICE

8.4 THE TECHNIQUES, KNOWLEDGE AND ACTIONS INVOLVED IN THE ELEMENTS

8.4.1 Social / Cultural Context

8.4.2 The Model’s Relationship To The New Zealand Curriculum

8.5 TECHNOLOGICAL KNOWLEDGE

8.5.1 Knowledge Of Subsystems

8.5.2 Knowledge Development

8.6 THE MODEL’S APPLICATION TO TECHNOLOGY TEACHING IN NEW ZEALAND SCHOOLS

8.7 LIMITATIONS OF THIS STUDY

8.8 CONCLUSION

Bibliography

Appendices
LIST OF APPENDICES

APPENDIX 1 EXPERT PANEL DATA – INFORMATION GATHERING TECHNIQUES 147
APPENDIX 2 INFORMATION AND COMMUNICATION INTERVIEW ANALYSIS 149
APPENDIX 3 MATERIALS TECHNOLOGY INTERVIEW ANALYSIS .. 151
APPENDIX 4 ELECTRONICS AND CONTROL INTERVIEW ANALYSIS 153
APPENDIX 5 PRODUCTION AND PROCESS TECHNOLOGY INTERVIEW ANALYSIS 154
APPENDIX 6 PRODUCTION OPERATIONS INTERVIEW ANALYSIS .. 156
APPENDIX 7 BIOTECHNOLOGY INTERVIEW ANALYSIS ... 158
APPENDIX 8 TEACHER EVALUATION QUESTIONNAIRE .. 160
APPENDIX 9 TEACHER EVALUATION QUESTIONNAIRE: STATISTICAL ANALYSIS 165
APPENDIX 10 TEACHER QUESTIONNAIRE: WRITTEN RESPONSES 173
APPENDIX 11 WRAPPING UP PACKAGING TECHNOLOGY .. 183
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Definition of Technology Practice</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Interaction of Technological Knowledge</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Components of Technological Knowledge</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>The Interaction of Mind and Hand</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Spiral Evolution of Knowledge Conversion and Self-transcending Process</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Technological Learning Model</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagrammatic Outline of Research Method</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Bachelor of Technology Knowledge and Skill Areas</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Praxis of Technological Techniques</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Product Development Within a Company Context</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Model of Technology Practice: 1st Iteration</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Model of Technology Practice 2nd Iteration</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>The Influence of Pacey's Three Aspects on the Work Environment</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>The Atmosphere That Pervades Technology Practice</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>Organisation in Technology Practice</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>Information in Technology Practice</td>
<td>62</td>
</tr>
<tr>
<td>4.10</td>
<td>Resources in Technology Practice</td>
<td>63</td>
</tr>
<tr>
<td>4.11</td>
<td>Tools and Techniques in Technology Practice</td>
<td>64</td>
</tr>
<tr>
<td>4.12</td>
<td>Development of Technological Knowledge</td>
<td>67</td>
</tr>
<tr>
<td>4.13</td>
<td>Model of Total Technology Practice</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Model of Total Technology Practice</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Total Technology Practice Planning Sheet</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Product Development Process Example</td>
<td>84</td>
</tr>
<tr>
<td>6.1</td>
<td>Teacher Assessment of the Model's Usefulness in Communicating Technological Concepts</td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>Teacher Assessment of How Often the Model Would Be Used</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>When Teachers Would Use the Model</td>
<td>98</td>
</tr>
<tr>
<td>6.4</td>
<td>How Teachers Would Use the Model</td>
<td>99</td>
</tr>
<tr>
<td>6.5</td>
<td>Teacher Assessment of the Model's Application</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>KNOWLEDGE MATRIX</td>
<td>25</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>EXAMPLES OF SOCIETAL INFLUENCES ON TECHNOLOGY PRACTICE</td>
<td>56</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>THE MODEL OF TOTAL TECHNOLOGY PRACTICE REORGANISED AS A VERTICAL TABLE</td>
<td>71</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>CASE STUDY: NEW ZEALAND PHARMACEUTICALS</td>
<td>72</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>COMPOSITION OF EXPERT PANEL</td>
<td>74</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>EXPERT PANEL DISCUSSION PLANNER</td>
<td>74</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>INFORMATION GATHERING TOOLS/TECHNIQUES IDENTIFIED BY THE EXPERT PANEL</td>
<td>78</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>PACKAGING TECHNOLOGY PLANNING SHEET</td>
<td>85</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>TEACHERS UNDERSTANDING THE MODEL ELEMENTS</td>
<td>94</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>TEACHER UNDERSTANDING OF MODEL ELEMENTS BY SCHOOL LEVEL</td>
<td>94</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>TEACHER ASSESSMENT OF HOW WELL THE MODEL INCORPORATES THE CURRICULUM</td>
<td>96</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>TEACHER ASSESSMENT OF MODEL'S USEFULNESS FOR TEACHING</td>
<td>100</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>TEACHER ASSESSMENT OF MODEL'S USEFULNESS TO STUDENTS</td>
<td>101</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>TOOL KIT CATEGORIES</td>
<td>107</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>DETAILED TOOL KITS FOR PRODUCT DEVELOPMENT</td>
<td>108</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>KNOWLEDGE AREAS IMPORTANT IN TECHNOLOGY</td>
<td>111</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>KNOWLEDGE INVOLVED IN PROCESSING TECHNOLOGY PRACTICE</td>
<td>112</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>INTERVIEW QUESTIONS</td>
<td>112</td>
</tr>
<tr>
<td>Table 7.6</td>
<td>DESCRIPTIVE STATEMENTS, CONCEPTS AND TECHNIQUES FROM INTERVIEWS WITH</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>TECHNOLOGISTS</td>
<td></td>
</tr>
<tr>
<td>Table 7.7</td>
<td>ORGANISATION, INFORMATION & RESOURCES ELEMENTS</td>
<td>123</td>
</tr>
<tr>
<td>Table 7.8</td>
<td>TECHNIQUE CATEGORIES</td>
<td>124</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>THE MODEL AND THE TECHNOLOGY CURRICULUM</td>
<td>132</td>
</tr>
</tbody>
</table>