Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE ECONOMIC EVALUATION OF IRRIGATION WITH PARTICULAR
REFERENCE TO WATER HARVESTING SYSTEMS

A thesis presented in partial fulfilment of the requirements
for the degree of Master of Agricultural Science in
Agricultural Economics and Farm Management at
Massey University

William Jack Sorrenson
1977
ACKNOWLEDGEMENTS

The author wishes to sincerely thank Dr A. Wright for his time, help and advice given throughout the course of this study.

Thanks are also due to Mr D.G. Bowler for his supervision of the technical aspects of water harvesting and to Professor R.J. Townsley for his time and assistance on many occasions.

The author benefited from discussions with Dr A.N. Rae, Mr A. Chu, Mr K.I. Lowe and Mr R.E. Halford all of Massey University, Dr P. Gander of the D.S.I.R., Palmerston North, and from helpful written communication from Mr T.O. Hei ler of Lincoln College.

The author also wishes to acknowledge the assistance and patience of his wife, Lynley, during the course of this study.

Thanks are due to staff of the Computer Centre, Massey University and to Mrs Henrickson who typed this thesis.

Also, the author wishes to gratefully acknowledge the financial assistance provided by the Economics Division, Ministry of Agriculture and Fisheries.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>WATER HARVESTING FOR IRRIGATION</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ECONOMIC EVALUATION OF IRRIGATION SYSTEMS</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>PLANT WATER RELATIONS</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>THE SIMULATION MODEL</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>THE GRAZING SYSTEM MODEL</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>ECONOMIC EVALUATIONS OF THE CASE STUDY IRRIGATION SYSTEM</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX 1</th>
<th>A CATEGORISED LIST OF M.A.F. IRRIGATION ECONOMIC REPORTS</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PASTURE GROWTH RELATIONSHIPS AND PASTURE CONSERVATION ACTIVITIES</td>
<td>144</td>
</tr>
</tbody>
</table>
3 DETAILS OF THE LP MATRIX 152.
4 GROSS MARGIN DETAILS 155.
5 IRRIGATION AND FERTILISER COSTS 160.
6 CASH FLOWS 162.

BIBLIOGRAPHY 164.
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>69</td>
</tr>
<tr>
<td>5.5</td>
<td>74</td>
</tr>
<tr>
<td>5.6</td>
<td>75</td>
</tr>
<tr>
<td>5.7</td>
<td>75</td>
</tr>
</tbody>
</table>

2.1 Depth, surface area and storage capacity of the 'No.1 Dam'
4.1 Crop factors used for pasture and maize
4.2 Effective crop root depth and water holding capacity of a Tokomaru silt loam
5.1 Weighted yield reduction factors for maize grain in the Manawatu
5.2 Monthly catchment yield data (m.m.), 15 years simulation, non-irrigated
5.3 Dam volume estimates obtained from the simulation model for the 'average' year
5.4 Dam volume estimates obtained from the simulation model for the 'dry' year
5.5 Irrigation interval, days
5.6 Strategy (i) - Mean (1959/60 to 1973/74) monthly pasture production (kg DM/ha), varying deficit, net water applied in parentheses (mm)
5.7 Strategy (iv) - Mean (1959/60 to 1973/74) monthly pasture production (kg DM/ha), fixed water application per irrigation, varying cycle length
5.8 Strategy (iv) - Mean (1959/60 to 1973/74) monthly pasture production (kg DM/ha), fixed irrigation cycle, varying water application per irrigation

5.9 Days of maize growth

6.1 Restrictions imposed on the spelling lengths following grazing of pasture in each period

6.2 Assumed percentage of 'available feed' utilised by stock at three stocking rates

6.3 Pasture quality estimates assumed

6.4 Dry cow energy requirements

6.5 Dry cow feed demands (kg DM, non-irrigated pasture equivalents/cow/day)

6.6 Lactating cow energy requirements

6.7 Lactating cow feed demands (kg DM, non-irrigated pasture equivalents/cow/day)

6.8 Replacement stock energy requirements

6.9 Replacement stock feed demands (kg DM, non-irrigated pasture equivalents/lactating cow/day)

6.10 Animal activities - per hectare feed demands

6.11 Summary of the gross margins

6.12 Summary of the LP results
7.1 A listing of the normative analyses 119
7.2 Normative evaluation results 120
7.3 A listing of the positive analyses 123
7.4 Positive evaluation results 123
7.5 Sensitivity results - Normative evaluations 124
7.6 Sensitivity results - Positive evaluations 124
A2.1 'Average' year, non-irrigated simulated pasture growth 144
A2.2 'Average' year, irrigated 145
A2.3 'Average' year, non-irrigated pasture growth/spell relationships 146
A2.4 'Average' year, irrigated relationships 147
A2.5 'Dry' year, non-irrigated relationships 148
A2.6 'Dry' year, irrigated relationships 148
A2.7 Pasture conservation activities 149
A6.1 Normative evaluation cash flows 162
A6.2 Positive evaluation cash flows 163
LIST OF FIGURES

FIGURE

2.1 Storage behavioural graph for the 'No.1 Dam' 15
2.2 Plan sketch of the Massey No.4 Dairy Unit water harvesting dam system 16
2.3 Longitudinal sketch of the Massey No.4 Dairy Unit water harvesting system 16
3.1 A schematic representation of the components of economic evaluation considered and their inter-relationships 21
4.1 Various relationships between relative evapo-transpiration rate and soil moisture tension 43
4.2 Relationships between ASM, Eo, soil moisture factor (P) 45
5.1 Diagrammatic illustration of the simulation model 52
5.2 Pasture growth rates 1972/73 57
5.3 Pasture growth rates 1973/74 58
5.4 Pasture growth rates; Average 1967/68 to 1972/73 59
5.5 Pasture growth rates; Average 1971/72 to 1972/73 60
5.6 Monthly rainfall means and standard deviations 63
5.7 Probability distributions of simulated annual pasture growth 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Monthly rainfall and estimated evapotranspiration</td>
<td>71</td>
</tr>
<tr>
<td>5.9</td>
<td>Probabilities of moisture stress</td>
<td>72</td>
</tr>
<tr>
<td>5.10</td>
<td>Probabilities of water use</td>
<td>72</td>
</tr>
<tr>
<td>5.11</td>
<td>Probabilities of irrigations</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>Calving and dry period distributions</td>
<td>93</td>
</tr>
<tr>
<td>6.2</td>
<td>Calving distribution and lactation period</td>
<td>95</td>
</tr>
<tr>
<td>6.3</td>
<td>Feed distribution of replacement stock</td>
<td>97</td>
</tr>
<tr>
<td>6.4</td>
<td>Relationships between TGM, stocking rate and irrigation water</td>
<td>105</td>
</tr>
<tr>
<td>6.5</td>
<td>Relationships between economic response to irrigation and stocking rate</td>
<td>106</td>
</tr>
<tr>
<td>6.6</td>
<td>Relationships between irrigation water and time of application</td>
<td>108</td>
</tr>
<tr>
<td>6.7</td>
<td>Relationships between irrigation water and time of application</td>
<td>109</td>
</tr>
<tr>
<td>6.8</td>
<td>Relationships between irrigation water and time of application</td>
<td>110</td>
</tr>
<tr>
<td>7.1</td>
<td>Present worth versus discount rate - Analyses N3B and N68</td>
<td>121</td>
</tr>
<tr>
<td>A2.1</td>
<td>An illustration of the pasture activities, non-irrigated (P001,...,P078)</td>
<td>150</td>
</tr>
<tr>
<td>A2.2</td>
<td>An illustration of the irrigated pasture activities (I001,...,I148)</td>
<td>151</td>
</tr>
<tr>
<td>A3.1</td>
<td>Summary of the LP matrix</td>
<td>154</td>
</tr>
</tbody>
</table>