Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Dynamic Modelling
of Meat Plant Energy Systems

A thesis presented in partial fulfilment of the requirements for the
Degree of Master of Technology at Massey University.

Rodger David Stephen Kallu,
Dip.Tech. (Distn) (Massey)

1993
ABSTRACT

The objective of this study was to develop dynamic mathematical models of the major energy use and recovery operations within the New Zealand meat industry. Ordinary differential equation based models were developed for the five most common rendering systems, for hot water use, generation and storage, and for the refrigeration system. These cover about 90% of process heat use and about two-thirds of electricity demand. Each model was constructed so that ultimately it could be linked to the others to develop an integrated energy supply and demand model. Strong linkages to product flow were developed for the rendering models, but those for hot water and refrigeration are less developed, although there is no technological impediment.

In developing the models for rendering it was assumed that cookers and dryers are perfectly mixed vessels and that time delays in materials transport are negligible. Model predictions could be improved by removing these assumptions, but taking into account the possible extent of data uncertainties, the present accuracy may be adequate for the overall meat plant energy model.

A major consequence of the development of a hot water demand model was that areas of low efficiency were identified. By attention to equipment designs for hand tool sterilisers and cleanup systems substantial heat savings are possible. Although not tested, both the model for heat recovery and the model for hot water storage and supply are expected to be accurate as few major assumptions were required in their development.

The main novel feature of the refrigeration model is that it treats the refrigeration applications in abstract terms rather than performing a room by room analysis. As a consequence data demands are lower than for refrigeration models which use a room-based approach, and the actual data needed are more easily obtainable. In spite of the lower data requirements good accuracy was demonstrated.

The models developed will have major benefits to the NZ meat industry, initially as stand-alone entities, but later as an integrated package to help in reducing energy use.
ACKNOWLEDGEMENTS

The author would like to thank the following persons for advice and assistance during the course of this project:

Associate Professor Andrew C Cleland, Department of Biotechnology, Massey University, Chief Supervisor.

Dr Simon J Lovatt, Chemical Engineer, Refrigeration and Energy Section, Meat Industry Research Institute of New Zealand, Hamilton.

The author would like to thank the following for financial support which made this project possible:

Queen Elizabeth II Technicians Award Scheme
Electricity Corporation of New Zealand (ECNZ)
Auckland Farmers Freezing Company Limited (AFFCO NZ)

The author would like to thank the following persons for assistance in gathering plant data which has been used for simulation testing:

Mr Stuart Reid, Chief Engineer, AFFCO Rangiuru.

Mr Ellis Harrison, Chief Engineer, AFFCO Wairoa.

Mr Jim Cooper, Chief Engineer, Richmond Oringi.

Mr Steven Bennett, Plant Engineer, Manawatu Beef Packers, Fielding.

The author would also like to thank his wife Judy for her support and secretarial assistance throughout the project.
Table of Contents

Abstract
Acknowledgements
Table of Contents
List of figures
List of tables

Section
1. INTRODUCTION 1

2. LITERATURE REVIEW 5
2.1 DAILY STOCK INPUT AND DISTRIBUTION WITHIN THE PLANT 6
2.1.1 Dynamic Models 6
2.1.2 Steady State Models 6
2.1.3 Useful Data 6
2.2 RENDERING SYSTEMS 7
2.2.1 Dynamic Models 7
2.2.2 Steady State Models 7
2.2.3 Useful Data 8
2.3 HOT WATER 8
2.3.1 Dynamic Models 8
2.3.2 Steady State Models 8
2.3.3 Useful Data 9
2.4 REFRIGERATION 10
2.4.1 Dynamic Models 10
2.4.2 Steady State Models 14
2.4.3 Useful Data 14
2.5 SUMMARY 15

3. PRELIMINARY CONSIDERATIONS 16
4. **DAILY STOCK INPUT AND DISTRIBUTION**

("GENERIC") MODEL

4.1 **MODEL PHILOSOPHY**

4.2 **PRODUCT MOVEMENT INTO AND THROUGH THE PLANT**

4.2.1 Departmental Event and Batch Times

4.2.2 Chain Speeds

4.3 **FLOWS OF MATERIAL TO RENDERING**

4.3.1 Mass Balances

4.3.2 Energy balances

4.4 **RELATIONSHIP OF GENERIC TO THE HOT WATER MODELS**

4.5 **FLOW OF MATERIALS TO REFRIGERATION**

4.5.1 Product Streams

4.5.2 Product Batches

4.6 **MODEL IMPLEMENTATION**

4.6.1 Rendering Section Model Testing

4.7 **DISCUSSIONS AND CONCLUSIONS**

5 **RENDERING**

5.1 **CONTINUOUS DRY RENDERING**

5.1.1 Mechanistic Process Description.

5.1.2 Basis of Model Development

5.1.3 Mass Balances

5.1.4 Energy Balances

5.1.5 Other Model Data

5.1.6 Model Implementation

5.1.7 Model Testing

5.1.7.1 Test data collection

5.1.7.2 Model customisation

5.1.7.3 Comparison of measured and predicted data
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.7.4</td>
<td>Sensitivity analysis</td>
<td>53</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Discussion and Conclusions</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>BATCH DRY RENDERING</td>
<td>62</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Mechanistic Process Description</td>
<td>62</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Basis of Model Development</td>
<td>64</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Mass Balances</td>
<td>65</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Energy Balances</td>
<td>67</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Other Model Data</td>
<td>67</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Model Implementation</td>
<td>71</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Model Testing</td>
<td>72</td>
</tr>
<tr>
<td>5.2.7.1</td>
<td>Test data collection</td>
<td>72</td>
</tr>
<tr>
<td>5.2.7.2</td>
<td>Model customisation</td>
<td>72</td>
</tr>
<tr>
<td>5.2.7.3</td>
<td>Comparison of measured and predicted data</td>
<td>73</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Discussion and Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>LOW TEMPERATURE RENDERING (LTR) MODEL</td>
<td>81</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Mechanistic Process Description</td>
<td>81</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Basis of Model Development</td>
<td>82</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Continuous conduction heating dryer</td>
<td>85</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Iwells batch dryer</td>
<td>86</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Rotary dryer</td>
<td>88</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Low Temperature Rendering Mass Balances</td>
<td>88</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Continuous conduction heating dryer</td>
<td>91</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Iwells batch dryer</td>
<td>93</td>
</tr>
<tr>
<td>5.3.3.3</td>
<td>Rotary dryer</td>
<td>94</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Energy Balances</td>
<td>95</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>Continuous conduction heating dryer</td>
<td>95</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Iwells batch dryer</td>
<td>96</td>
</tr>
<tr>
<td>5.3.4.3</td>
<td>Rotary dryer</td>
<td>96</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Other Model Data</td>
<td>98</td>
</tr>
<tr>
<td>5.3.5.1</td>
<td>Stord rotodisc dryer</td>
<td>100</td>
</tr>
<tr>
<td>5.3.5.2</td>
<td>Iwells batch dryer</td>
<td>102</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>5.3.5.3</td>
<td>Rotary dryer</td>
<td>103</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Model Implementation for the LTR</td>
<td>104</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Model Testing</td>
<td>104</td>
</tr>
<tr>
<td>5.3.7.1</td>
<td>Plant using continuous conduction heating dryer</td>
<td>104</td>
</tr>
<tr>
<td>5.3.7.2</td>
<td>Iwell batch dryer</td>
<td>109</td>
</tr>
<tr>
<td>5.3.7.3</td>
<td>Rotary dryer</td>
<td>109</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Discussion and Conclusion</td>
<td>110</td>
</tr>
</tbody>
</table>

6 HOT WATER SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>HOT WATER USAGE</td>
<td>111</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Mechanistic Description</td>
<td>111</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Design Philosophy</td>
<td>112</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Model Development</td>
<td>115</td>
</tr>
<tr>
<td>6.1.3.1</td>
<td>Sterilisers and hosing (Figure 6.1)</td>
<td>115</td>
</tr>
<tr>
<td>6.1.3.2</td>
<td>Mass balances for sterilisers and hosing</td>
<td>116</td>
</tr>
<tr>
<td>6.1.3.3</td>
<td>Hand, apron wash and showers (Figure 6.2)</td>
<td>120</td>
</tr>
<tr>
<td>6.1.3.4</td>
<td>Mass balances for hand, apron wash and showers</td>
<td>120</td>
</tr>
<tr>
<td>6.1.3.5</td>
<td>Carcass wash (Figure 6.3)</td>
<td>123</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Energy Balances</td>
<td>124</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Data Required to Use the Model</td>
<td>124</td>
</tr>
<tr>
<td>6.1.5.1</td>
<td>"Good Practice" flow rates for knife sterilisers</td>
<td>126</td>
</tr>
<tr>
<td>6.1.5.2</td>
<td>"Good Practice" flow rates for hand tool sterilisers</td>
<td>130</td>
</tr>
<tr>
<td>6.1.5.3</td>
<td>"Good Practice" production run hosing regimes</td>
<td>134</td>
</tr>
</tbody>
</table>
6.1.5.4 "Good Practice" cleanup hosing regimes 135
6.1.5.5 "Good practice" hand, apron wash and shower flow rates 137
6.1.5.6 "Good Practice" carcass wash flows 143

6.1.6 Model Implementation 144
6.1.7 Model Testing 144
6.1.7.1 Model customisation 145
6.1.7.2 Model verification 147
6.1.7.3 Results 147

6.1.8 Discussion 149

6.2 HOT WATER GENERATION AND STORAGE SYSTEMS 151
6.2.1 Mechanistic Description 151
6.2.2 Design Philosophy 152
6.2.2.1 Tank 1 154
6.2.2.2 Tank 2 154
6.2.2.3 Spillover arrangements 154
6.2.2.4 Tank 3 and Tank 4 155
6.2.2.5 Mixing options associated with water supply at temperature T_{pu} 155
6.2.2.6 Mixing options associated with Tanks 3 & 4 156
6.2.2.7 Heat exchangers 156
6.2.2.8 Recovered heat flows 157
6.2.2.9 Model control 158
6.2.3 Model Development - Mass Balances 158
6.2.4 Model Development - Energy Balances 159
6.2.5 Proportional Mixing Controls 162
6.2.6 Model Implementation 163
6.2.7 Model Testing 164
6.2.8 Model Application 166
6.2.9 Results and Discussion 169
6.3 HEAT RECOVERY SYSTEMS 175
6.3.1 Mechanistic Process Description 175
6.3.2 Rendering Recovery 175
6.3.2.1 Direct fired dryer 177
6.3.2.2 Other rendering heat recovery units 179
6.3.2.3 Steam condensate heat recovery 180
6.3.2.4 Drain heat recovery 182
6.3.2.5 Refrigeration heat recovery 185
6.3.2.6 Thermodynamic variables 190
6.3.2.7 Mass and energy balances 193
6.3.3 Model Implementation and Testing 195
6.3.4 Results and Conclusions 195

7 REFRIGERATION 198
7.1 MECHANISTIC DESCRIPTION 198
7.2 DESIGN PHILOSOPHY 201
7.2.1 General Philosophy 201
7.2.2 Modelling Periods 204
7.3 MODEL DEVELOPMENT - PRODUCT HEAT LOAD 207
7.3.1 Algorithms for Cooling, Freezing and Subcooling of Product 207
7.3.2 Data Required by the Model for Each Batch 207
7.3.2.1 Batch control data 207
7.3.2.2 Product thermal and geometric properties 210
7.3.2.3 Product surface heat transfer coefficients 212
7.4 MODEL DEVELOPMENT - PRODUCT RELATED HEAT LOADS 214
7.4.1 Fan Power 214
7.4.1.1 Air velocity and pressure drop considerations 215
7.4.1.2 Area for air flow over the product 219
7.4.1.3 Other data 222
7.4.2 Insulation Heat Gains 222
7.4.2.1 Determination of floor area and A_{m} for carcass freezers and chillers 224
7.4.2.2 Determination of floor area and A_{m} for carton freezers and chillers 225
7.4.3 Door and Associated Heat Loads 225
7.4.4 Hot Water Hosing 231
7.4.5 Other Loads 232
7.4.6 Electrical Load 232
7.5 BASE LOADS 232
7.5.1 Cold and Cool Stores 233
7.5.1.1 Insulation heat load 234
7.5.1.2 Air interchange 235
7.5.1.3 Fan power 238
7.5.1.4 Lights 239
7.5.1.5 Other loads 239
7.5.1.6 Electrical loads 240
7.5.2 Air-Conditioning Baseload 240
7.5.2.1 Insulation 242
7.5.2.2 Air interchange 242
7.5.2.3 Personnel 243
7.5.2.4 Lights 243
7.5.2.5 Machinery 243
7.5.2.6 Hot water use during production 244
7.5.2.7 Hot water use during clean-up 245
7.5.2.8 Fan power 245
7.5.2.9 Room precooling 246
7.5.2.10 Other loads 246
7.5.2.11 Electrical loads 246
7.6 ENGINEROOM ENERGY USE 247
 7.6.1 Pots and Temperatures 247
 7.6.2 Compressor Electrical Energy Use 249
 7.6.3 Engineroom Ancillary Energy Use 251
 7.6.4 Link to Hot Water Recovery 251
7.7 TOTAL ELECTRICAL REFRIGERATION LOAD 251
7.8 MODEL IMPLEMENTATION 252
 7.8.1 Data Inputs 252
 7.8.2 Main Program Outputs 253
 7.8.3 Secondary PASCAL Program 254
7.9 MODEL TESTING 255
 7.9.1 Mathematical Verification 255
 7.9.2 Measurements Collected at the Host Plant 255
 7.9.2.1 Product data 255
 7.9.2.2 Engine room and other electrical loads 256
 7.9.2.3 Batch data preparation 257
 7.9.2.4 Engineroom data processing 257
 7.9.2.5 Other data 258
 7.9.3 Comparison of Measured and Prepared Data 258
7.10 DISCUSSION AND CONCLUSIONS 261
8 DISCUSSION 263
 8.1 INTRODUCTION 263
 8.2 RENDERING 263
 8.3 HOT WATER 264
 8.4 REFRIGERATION 264
9 CONCLUSIONS 265
 NOMENCLATURE 266
 REFERENCES 280
APPENDICES

A GENERIC
 A1 Generic Model Listing

B RENDERING
 B1 Continuous Dry Rendering Model Listing
 B1.1 Rangiuru Data
 B2 Batch Dry Rendering Model Listing
 B3 Low Temperature Rendering Model Listings
 B4 Low Temperature Rendering Rotary Listing

C HOT WATER SYSTEMS
 C1 Hot Water Usage Model Listing
 C2 Hot Water Generation and Storage Systems Model Listing

D REFRIGERATION
 D1 Product Load Model Listing (ESL)
 D2 Product Heat Load Model Listing
 D2.1 Product User Data File
 D2.2 Product Standard Data File
 D2.3 Product Output Data File #2
 D3 Engineroom Model Listing
 D3.1 Engineroom User Data File
 D3.2 Engineroom Output Data File #2
List of Figures

4.1: Schematic diagram of the generic model for rendering.
4.2: Product flows to the refrigeration model.
5.1: Sectioned Keith Cooker.
5.2: Schematic diagram of Keith cooker model.
5.3: Plot of A: Steam usage, Q_d (kg/s), B: Evaporated moisture, W (kg/s), and C: Meal temperature T_w ($^\circ$C). Keith cooker at AFFCO Rangiuru. Run 1.
5.4: Keith cooker at AFFCO Rangiuru. Run 2.
5.5: Keith cooker at AFFCO Rangiuru. Run 3.
5.6: Keith cooker at AFFCO Rangiuru. Run 4.
5.7: Keith cooker at AFFCO Rangiuru. Run 5.
5.8: Keith cooker at AFFCO Rangiuru. Run 6.
5.9: Sectioned Batch Cooker.
5.10: Schematic diagram of the batch cooker model.
5.11: Plot of overall heat transfer coefficients.
5.14: Plot of heat transfer coefficients.
5.12: Plot of A: Steam usage, Q_d (kg/s), B: Evaporated moisture, W (kg/s), and C: Meal temperature T_w ($^\circ$C). Batch cooker studied by Herbert and Norgate (1971). Run 20. Equation (5.27) & (5.28).
5.15: Plot of A: Steam usage, Q_d (kg/s), B: Evaporated moisture, W (kg/s), and C: Meal temperature T_w ($^\circ$C). Batch cooker studied by Herbert and Norgate (1971). Run 20. Equation (5.29).
5.17: Schematic diagram of general low temperature rendering model.
5.18: Sectioned view of the continuous conduction heating dryer.
5.19: Sectioned view of a direct fired rotary dryer.
5.20: Schematic diagram of continuous conduction heating.
5.21: Schematic diagram of direct fired rotary dryer.
5.22: Schematic diagram of the two compartment model for the continuous conduction heating dryer.
5.23: Plot of simulated results vs time for a LTR system using a continuous conduction heating dryer. A.B.C.
5.24: Plot of simulated results vs time for a LTR system using a continuous conduction heating dryer. D.E.
6.1: Schematic diagram of steriliser and hosing flow
6.2: Schematic diagram of hand, apron and shower flows.
6.3: Schematic diagram illustrating carcass wash flows.
6.4: Sectioned view of A: Hand wash steriliser and B: Apron wash steriliser.
6.5: A: Traditional hand wash basin. B: Apron wash
6.6: A: Plot of cumulative daily hot water usage.
 B: Plot of cumulative daily warm water usage.
6.7: Schematic diagram of hot water storage and generation
6.8: A: Plot of daily cold water makeup requirement.
 B: Plot of daily total heat requirement.
6.9: A: Plot of Tank 1 contents.
 B: Plot of Tank 2 contents.
6.10: Schematic diagram of a rendering heat recovery system.
6.11: Schematic diagram of a steam condensate heat recovery.
6.12: Schematic diagram of a drain heat recovery system
6.13: Schematic diagram of a refrigeration heat recovery system.
6.14: Mollier diagram for Ammonia (R717) showing various enthalpy points for refrigeration heat recovery.
6.15: Plot of A: Steam usage and predicted recovered hot water from the steam condensate heat recovery unit.
7.1: Schematic diagram of possible product flow pathways through a meat plant cold chain.
7.2: Schematic diagram of a two stage compression refrigeration system.
7.3: Schematic diagram of good practice refrigeration system model philosophy.
7.4: Typical beef batch product load over 96 hours.
7.5: Batch product load divided into four daily loads.
7.6: Batch product load summed to give Thursday’s load arising from periods (i) to (iv).
7.7: Details of air flow and stow in a typical carton chiller or freezer.
 A: (RoomType = C) B: (RoomType = S)
7.8: Two plan views of a prime carcass showing the cross sectional area, equivalent cross-sectional area and free space.
7.9(A) Engine room electrical load (kW) vs time (hours); 1 - predicted data, 2 - measured data (Wednesday).
7.10(B) Engine room electrical load (kW) vs time (hours); 1 - predicted data, 2 - measured data (Thursday).

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Typical average product masses derived from Oldfield (1987).</td>
</tr>
<tr>
<td>5.1</td>
<td>Keith cooker data.</td>
</tr>
<tr>
<td>5.2</td>
<td>Keith batch cooker data.</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of fat content on meal exit temperature (°C) at three moisture content endpoints.</td>
</tr>
<tr>
<td>5.4</td>
<td>Data for the performance of Stord dryers.</td>
</tr>
<tr>
<td>5.5</td>
<td>Data for the performance of a Flo Dry dryer.</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of predicted results with measured data.</td>
</tr>
<tr>
<td>6.1</td>
<td>Knife steriliser flows (D_{inlet}) measured at three plants by Peacham (1993).</td>
</tr>
<tr>
<td>6.2</td>
<td>Knife steriliser flows measured by the author in the beef kill area of the test plant.</td>
</tr>
<tr>
<td>6.3</td>
<td>Beef boning room steriliser flows measured by the author.</td>
</tr>
<tr>
<td>6.4</td>
<td>Data measured by the author for beef kill area hand tool sterilisers and hoses.</td>
</tr>
<tr>
<td>6.5</td>
<td>Hand wash flow rates as measured on three plants by Peacham (1993).</td>
</tr>
<tr>
<td>6.6</td>
<td>Beef kill area data for apron, hand wash and showers measured by the author.</td>
</tr>
<tr>
<td>6.7</td>
<td>Beef boning area data for apron washes and showers measured by the author.</td>
</tr>
<tr>
<td>6.8</td>
<td>Apron wash flows as measured on three plants by Peacham (1993).</td>
</tr>
<tr>
<td>6.9</td>
<td>Carcass wash data as measured by Peacham (1993).</td>
</tr>
<tr>
<td>6.10</td>
<td>Postulated possible beef kill area hand tool steriliser and hose flows.</td>
</tr>
</tbody>
</table>
6.11: Predicted and measured cumulative water flows per shift. 147
6.12: Flow rates to various heat exchangers and temperature of flows out. 167
6.13: Daily requirements for cold water and heat. 169
6.14: Tank levels and sizing. 170
7.1: Typical batch data for five step changes. 207
7.2: Product thermal and geometric properties. 211
7.3: Postulated air pressure differentials for various room types and duties. 218
7.4 Main program user-friendly output file 20 hours into a simulation. 253
7.5 Engineroom user-friendly output file 20 hours into a simulation. 255