Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ECONOMIC CONSIDERATIONS FOR ZONING AS A PROCESS OF FLOOD PROTECTION IN BANGLADESH

KAMAL UDDIN AHMAD

A thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Agricultural Economics

Massey University
1991
ECONOMIC CONSIDERATIONS FOR ZONING AS A PROCESS OF FLOOD PROTECTION IN BANGLADESH

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>(i)</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>(vi)</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>(viii)</td>
</tr>
<tr>
<td>I</td>
<td>MOTIVATION FOR THE STUDY</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Organisation of the dissertation</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>FLOODS AND FLOOD CONTROL IN BANGLADESH</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Floods in Bangladesh</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Frequency of floods</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Causes of floods</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Types of flood</td>
<td>7</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Extent of flood damage</td>
<td>7</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Flood protection measures taken to date</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Agriculture</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Crops</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Fisheries</td>
<td>10</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Forestry</td>
<td>11</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Livestock</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Agricultural inputs</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Land</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Labour</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Credit</td>
<td>13</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Water</td>
<td>14</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Irrigation</td>
<td>15</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Flood control</td>
<td>16</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Fertilizer</td>
<td>16</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Seed</td>
<td>17</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Pesticide</td>
<td>17</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Draft power</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Socio-economic conditions</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Land tenure system</td>
<td>18</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Farm size</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Farm families</td>
<td>20</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Food habits</td>
<td>21</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Farm budget</td>
<td>22</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Agencies involved in agricultural development</td>
<td>23</td>
</tr>
</tbody>
</table>
2.5 Agroecological conditions

2.5.1 Geographical location
2.5.2 Soils
2.5.3 Rainfall
2.5.4 Temperature
2.5.5 Flood depth
2.5.6 Climate
2.5.7 Environmental pollution
2.5.8 Cropping seasons
2.5.9 Crops grown

2.6 Conclusion

III LITERATURE REVIEW

3.1 Introduction
3.2 Classification of flood mitigation measures
3.3 Types of decision frameworks
3.4 Distribution of flood losses
3.5 Non-structural measures
3.6 Flood plain land use planning
3.7 Operations research
3.8 Linear programming in Indo-Pak subcontinent

3.8.1 Linear programming used for optimal water use
3.8.2 Linear programming used for cropping pattern

3.9 Use of linear programming in Bangladesh
3.10 Scope of this study
3.11 Conclusion

IV METHOD

4.1 Introduction
4.2 Development of linear programming
4.3 Solving procedure of linear programming
4.4 Different approaches of linear programming

4.4.1 Parametric programming
4.4.2 Inter-temporal programming (Dynamic programming)
4.4.3 Integer programming
4.4.4 Recursive programming
4.4.5 Goal programming
4.4.6 Risk programming (MOTAD)

4.5 Demerits of linear programming
4.6 Estimating model coefficients
4.7 Conclusion
V FORMULATION OF THE MODEL 56

5.1 Introduction 56
5.2 Choice of the method 56
5.3 Steps taken in formulation 57
5.4 Considerations 58
5.5 Objective function 59

5.5.1 Components of the objective function 60
5.5.2 Merits of split in objective function 61
5.6 Overview of major constraints 62
5.7 Assumptions of the matrix 63
5.8 The matrix 65
5.9 Activities 67
5.10 Constraints 69
5.11 Solution of the problem 72
5.12 Conclusion 72

VI SURVEY DATA AND FINDINGS 73

6.1 Introduction 73
6.2 Survey area 74
6.3 Questionnaire 74
6.4 Sample size 75
6.5 Nature of the data and definition 75

6.5.1 Land 76
6.5.2 Draft power 76
6.5.3 Labour force 77
6.5.4 Irrigation facilities 77
6.5.5 Manure and fertilizer 78
6.5.6 Capital 78
6.5.7 Crop mix 79
6.5.8 Living costs and family consumption 79
6.5.9 Benefits of the project 80
6.5.10 Demerits of the project 80
6.5.11 Environmental impacts 81

6.6 Crop coefficients 81
6.7 Findings of the survey 84

VII RESULTS AND DISCUSSIONS 90

7.1 Introduction 90
7.2 Output from the computer 90

7.2.1 Shadow cost 93
7.2.2 Shadow price 93
7.2.3 Range analysis 93
Results of the model run

- **7.3.1** Recommended crop mix for Group A
- **7.3.2** Recommended crop mix for Group B
- **7.3.3** Recommended crop mix for Group C
- **7.3.4** Recommended crop mix for Group D
- **7.3.5** Recommended crop mix for Group R
- **7.3.6** Sensitivity of the recommended crop mixes

Conclusion

VIII CONCLUSIONS AND RECOMMENDATIONS

- **8.1** Summary
- **8.2** Conclusions
- **8.3** Policy implications
- **8.4** Recommendations
- **8.5** Limitations
- **8.6** Scope for further research
 - **8.6.1** Sustainability considerations
 - **8.6.2** Environmental considerations
 - **8.6.3** Equity considerations

APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>The questionnaires used for data collection and survey</td>
</tr>
<tr>
<td>II</td>
<td>Summary of the findings of field survey</td>
</tr>
<tr>
<td>III</td>
<td>Results obtained through computer run of the model</td>
</tr>
</tbody>
</table>

REFERENCES

PAGE NO.

- 94
- 94
- 95
- 96
- 96
- 97
- 98
- 101
- 102
- 102
- 104
- 105
- 107
- 109
- 110
- 111
- 112
- 113
- 115
- 120
- 134
- 154
LIST OF TABLES
2.1 Farm size of Bangladesh 19
2.2 Farm budget for different crops in one hectare of land 22
2.3 Approximate farm budget for a season 23
2.4 Classification of land based on depth of flood 27
2.5 Acreage under different crops and their relative position 30
5.1 The model matrix showing interactions of the activities and constraints/input output coefficients 66
6.1 Distribution of farms according to the size of cultivation area 74
6.2 Comparison of variables in different classes of farmers (without project condition) 82
6.3 Comparison of variables in different classes of farmers (with project condition) 83
6.4 Average resource endowments possessed by different groups of farmers in the Project area 89
7.1 Summary of results obtained by model run 91
7.2 Optimal cropping pattern for different groups as received by model runs 92

LIST OF FIGURES
2.1 Food gain production trend in Bangladesh 6
2.2 Map of Bangladesh 25
3.1 Classification of flood mitigation measures 33
3.2 Types of decision frameworks for flood mitigation strategies 34

LIST OF TABLES - APPENDIX II AND III
II.1 Average resources endowments possessed by different groups of farmers in the project area 120
II.2 Distribution of farms according to the size of cultivation area 121
II.3 The input output coefficients of the crops grown before project implementation by Group A farmers 122
II.4 The input output coefficients of the crops grown before project implementation by Group B farmers 123
II.5 The input output coefficients of the crops grown before project implementation by Group C farmers 124
II.6 The input output coefficients of the crops grown before project implementation by Group D farmers 125
II.7 The input output coefficients of the crops grown before project implementation by an average farmer 126
II.8 The input output coefficients of the crops grown after project implementation by Group A farmers 127
II.9 The input output coefficients of the crops grown after project implementation by Group B farmers 128
II.10 The input output coefficients of the crops grown after project implementation by Group C farmers 129
II.11 The input output coefficients of the crops grown after project implementation by Group D farmers 130
II.12 The input output coefficients of the crops grown after project implementation by an average farmer 131
II.13 Comparison of variables in different classes of farmers (without project condition) 132
II.14 Comparison of variables in different classes of farmers (with project condition) 133

III Optimal solutions for with and without project for different groups of farmers obtained through model run 134-153
ACKNOWLEDGEMENTS

Professor Anton D. Meister, Department of Agricultural Economics and Business, Massey University through his vast knowledge of the technical and economic aspects of the agriculture sector of developing countries, has contributed substantially to the development of this model for analysing flood control and irrigation benefits in Bangladesh. I express my profound respect and gratitude to him for his guidance.

I am indebted to Dr. Jeffrey Weber for his constant encouragement and suggestions for completing the work. He had to take a life risk for travelling in Bangladesh in a political unrest and declared emergency situation to judge the conformity of the model to the environment for which it was developed. He spared his valuable time to go through the draft and improved the mode of expression. Words are inadequate to express my profound gratitude for the assistance rendered by him.

The sympathetic reception to the Department of Agricultural Economics and Business from Professor Allan N. Rae, whose guidance has been valuable throughout my study, encouraged me for working after hours in the study room in the department. I express him my sincere thanks. Dr. Doren D. Chadee was generous in encouragement at a time when it was most needed. I have benefited from Dr. Muhammad Ismail Ahmed, Department of Marketing, Dr. Phil Halverson of the Department of Agricultural and Horticultural Systems, and other staff members at Massey.

It is not practicable to list all who aided by giving of their time and information. My special debt of gratitude must be to Dr. A.S.M. Hamidur Rahman, Chief, Research and Treatment, International Centre for Diaheadrial Disease Research, Bangladesh, Dr. Frank Swarts, Consultant to Agricultural Sector Review Committee, Dr. Abdus Sabur, Assistant Professor, Bangladesh Agricultural Research Institute, Mr. Dilip Kumar Sinha, Project Director, Meghna Dhonagoda
Irrigation Project, Mr. Fazlur Rahim, Assistant Chief, Planning Commission for their generous cooperation during data collection. I also wish to take the opportunity to express the deepest thanks to those who have contributed by suggestions to improve the methodology in data collection.

It is impossible to overestimate the assistance and encouragement I have received from my wife for continuation of the study by taxing her time and comfort of staying in touch of parents. Mention must be made of MERT, for without their cooperation and travel grant a study of this type would not have been possible. Finally grateful acknowledgement is made to Mr. Mike Randall, Student Support Coordinator, Ministry of External Relations and Trade, for his widespread helping hand through out the study, especially for arranging the trip for data collection.

Kamal Uddin Ahmad
ABSTRACT

Bangladesh, a predominately agricultural country in the Third World, with 110 million people and only 9 million hectares of cultivable land, is known worldwide for its frequency of severe floods and other natural hazards like cyclones, tornadoes and epidemics. Increased pressure on the scarce land resources for food and habitation of the growing population is the main consideration for any agricultural project formulation. Successive development plans of Bangladesh have tried to address different socioeconomic problems by spreading limited available resources thinly over different sectors, although self-sufficiency in food grain production has been targeted by politicians as well as researchers. Recently, the agricultural sector has planned for growth through the development of water resources management, in particular flood protection, as this is the primary source of all development activities in the country.

The decision making processes of farmers are taken as the main focus of this dissertation. Farming in Bangladesh, mostly for subsistence, may be a profitable or a losing concern, depending on the selection of the crop mix. In other words, farming depends on the decision making process of the farmers. The farm environment in a flood protected project area is described along with its agro-socio-ecological linkages. Flood mitigation literatures describing optimising crop mix technologies are reviewed. Theoretical details of different quantitative methods were brought together for the purpose of selection of an appropriate analytical model to capture the diversified nature of farming. The selection process utilised concepts, data and theories from relevant academic disciplines to find a model that could address a set of problems related to decision making at the grassroots level.

The empirical work of this dissertation is mainly based upon a survey of production relations in agriculture. The survey comprises randomly but purposively chosen farmer respondents within groups in order to capture a general picture of some agrarian relations for a specific flood control project - the Meghna Dhonagoda Irrigation Project.
A linear programming model was formulated. The coefficients of the model were estimated from the survey data. Given average resource endowments possessed by different groups of farmers, optimal cropping patterns for various situation were found. The model was run for five groups of farmers, under both with and without project conditions.

The results obtained from the model runs show that rice production in all farms increases by 140 to 383 percent. At the same time production of other crops diminishes significantly. The net year ending savings of group A (small) farmers decreases by 7 percent although their living standard is improved (indicated by increased family rice consumption and expenses). Group B (middle) farmers are in a slightly improved position, with a 1.5 percent increase in net year ending savings whereas the net year ending savings of groups C and D (large farmers) is doubled. The achievements of groups C and D compared to those of groups A and B shows the anomaly in welfare distribution of the public investments.

The impact on net return due to changes in resource endowments or crop coefficients is obtained from sensitivity and range analysis. It indicates the profitability or shadow cost for individual constraints.

Before implementation of the project, farmers often mixed different crops in the same field to reduce the risk if a particular crop failed. They grew a variety of staple crops and vegetables to meet family food needs and they rarely purchased artificial chemical fertilisers or pesticides. In other words, they were diversified and less susceptible to the natural disasters. After the project, farmers were much less diversified and used more artificial inputs.

Three significant features of the public investment in flood protection and irrigation arose:

a) Rapid economic growth, though with significant evidence of diminishing returns
b) Increased rice production at the expense of other crops
c) Unequal welfare distribution between rich and poor.
The results obtained through model runs conform to general trends. All available evidence indicates that past improvements to flood control and irrigation contributed significantly to the growth in agricultural production in Bangladesh. The complementarity between proven yield-increasing technologies and water application points out the importance of water resources development. Thus there should be no question about the desirability of flood control projects. But equitable distribution of facilities, or at least betterment of the majority of population, may not be achieved at the desired rate.