Facilitating Evolution in Relational Database Design:

A procedure to evaluate and refine novice database designers' schemata

A thesis presented in partial fulfilment of the requirements for the degree of Master of Business Studies in Information Systems at Massey University

Michael Robert Ryder

1996
Acknowledgments

I feel the desire to thank several people for the support they have shown me throughout the duration of this research.

Many thanks go to Clare Atkins for continually sparking my enthusiasm for issues surrounding database and data modelling, for acting as a second researcher and for her unyielding support and proofreading of this thesis. Also to Wen van Kersbergen from the Amsterdam School of Business for his expert knowledge and assistance.

Thanks also go to Jon Patrick for his advice, guidance and support throughout the process of conducting this research. To the survey respondents and Angus, I also extend my gratitude.

To the staff of the Information Systems Department, thank you for your interest in the thesis’s progress and your patience whilst sitting through the seminars it has given rise to.

Lastly, to my friends and family, your perseverance and patience and encouragement is greatly appreciated.

“A little learning is a dang’rous thing;
Drink deep, or taste not the Pierian spring:
There shallow draughts intoxicate the brain,
And drinking largely sobers us again.”

(Alexander Pope)

Ars longa, vita brevis
Relational database management systems (RDBMS) have become widely used by many industries in recent years. Latterly these systems have begun to expand their market by becoming readily available at minimal cost to most users of modern computing technology. The quality of applications developed from RDBMSs however is largely dependent upon the quality of the underlying schema.

This research looks at the area of schema design and in particular schemata designed by people who have a minimal understanding of relational concepts. It uses a survey and case studies to help define some of the issues involved in the area. A procedure to modify existing schemata is described, and the schema from one of the case studies used to apply the schema re-design procedure to a real database design. The results are compared to the original schema as well as a schema designed using a conventional application of the NIAM analysis and design methodology.

The research supports the hypothesis that database applications based on schemata designed by lay-persons are currently being used to support business data management requirements. The utility, reliability and longevity of these applications depend to some extent on the quality of the underlying schema and its ability to store the required data and maintain that data’s integrity. The application of the schema re-design procedure presented in this thesis reveals refinements on the original schema and provides a method for lay-persons to evaluate and improve existing database designs.

A number of issues and questions related to the focus of this research are raised and, although outside the scope of the research, are noted as suggestions for further work.
Table of Contents

ACKNOWLEDGMENTS ... III
ABSTRACT .. V

SECTION ONE ... 1

1 INTRODUCTION .. 3
 1.1 DBMS Utilisation Environments .. 5
2 THE RESEARCH PROGRAMME .. 11
3 SCOPE OF THE STUDY .. 15
 3.1 Reverse Engineering of Database Schemata .. 18
 3.2 Data Modelling ... 18

SECTION TWO .. 21

4 CONTEXT ... 23
 4.1 The Position of the Relational Model ... 23
 4.1.1 Hierarchical Model .. 24
 4.1.2 Network Model ... 25
 4.1.3 Relational Model .. 26
 4.1.4 Relations .. 28
 4.1.5 Normalisation .. 30
 4.1.6 Sub-language .. 31
 4.1.7 Operations on relations .. 33
 4.1.8 RM/T ... 33
 4.2 Other Data Models .. 34
 4.2.1 The entity relationship model (ERD) ... 36
 4.2.2 Extended entity relationship models (EER) .. 36
 4.2.3 Relational Model replacements ... 37
 4.3 Relevance to novice designers ... 39
 4.3.1 Reverse engineering .. 40
 4.4 Data Modelling ... 41
 4.4.1 Conceptual modelling .. 41
 4.4.2 Logical modelling .. 43
 4.4.3 Physical modelling ... 43
 4.5 The NIAM Methodology .. 43
 4.5.1 CSDP Step 1: From examples to elementary facts and quality checks 44
 4.5.2 CSDP Step 2: First draft of conceptual schema diagram and population check ... 46
 4.5.3 CSDP Step 3: Eliminate unnecessary schema and find derived fact types ... 48
 4.5.4 CSDP Step 4: Add uniqueness constraints .. 49
 4.5.5 CSDP Step 5: Arity and logical derivation checks 51
 4.5.6 CSDP Step 6: Add additional constraints .. 51
 4.5.7 CSDP Step 7: Entity identification ... 54
 4.5.8 CSDP Step 8: Add additional constraints .. 55

Utilisation Environments ... 21
Methodology .. 40

Table of Contents