Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An Investigation into the Effects of Omega-3 Fatty Acids on Bone Resorption in the Female Ovariectomised Rat

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science
In
Nutritional Science

At Massey University, Turitea,
Palmerston North,
New Zealand

Raewyn Carol Poulsen
2004
Abstract

Estrogen deficiency results in disruption of the normal bone remodeling cycle leading to a loss of bone mineral and, in many cases, the development of osteoporosis. Various studies have demonstrated a beneficial effect of essential fatty acids (EFAs) in reducing the loss of bone density as a consequence of estrogen deficiency. The aim of the present study was to examine the specific effects of the n-3 EFA, eicosapentaenoic acid (EPA) on bone density and strength in ovariectomised female rats.

60 Sprague-Dawley rats were randomized into four groups and either ovariectomised (n=45) or sham operated (n=15). Ovariectomised animals were fed calcium adequate diets containing either corn oil (OVX control, n=15), corn oil + 0.1g/kg body weight EPA (low dose, n=15) or corn oil + 1.0g/kg body weight EPA (high dose, n=15) for a period of nine weeks. Sham rats were fed the corn oil diet as per the OVX control group. Urinary calcium and phosphate excretion, serum type 1 collagen c-telopeptide concentration, bone density, bone ash and bone breaking strength were measured. Plasma fatty acid composition and serum concentrations of 25 hydroxyvitamin D3 were also determined.

Femur bone density was significantly lower in the high dose group compared to sham, OVX control and low dose EPA groups (p<0.001, p=0.0096 and p=0.0047 respectively). Low dose EPA supplementation had no significant effect on bone density. No significant differences in urinary calcium or phosphate concentrations, serum concentrations of type-1 collagen c-telopeptide or bone breaking strength were evident with either dose of EPA compared to unsupplemented, ovariectomised controls. EPA supplementation resulted in significant decreases in the levels of n-6 EFAs and increases in the levels of n-3 EFAs except docosahexaenoic acid in plasma lipids. Both low and high dose EPA supplementation led to significant increases in serum concentration of 25(OH) vitamin D3.

In conclusion 1.0g EPA/kg body weight had a detrimental effect on bone density in ovariectomised rats. It is proposed that high intake of the highly unsaturated EPA resulted in significant lipid peroxidation. This in turn disrupted membrane structure and inhibited
intestinal calcium absorption thereby stimulating PTH-mediated bone resorption. A potential role for n-3 EFAs in the regulation of vitamin D activity is also outlined.
Acknowledgements

I wish to express my sincere appreciation to the following people who have not only made the development and presentation of this thesis possible but also enjoyable:

- My supervisor, Assoc. Prof. Marlena Kruger who so freely gave her time and energy and shared her expertise.

- The Human Nutrition Cluster staff who willingly shared their wealth of knowledge, sacrificed their time and provided friendship and support throughout the year. In particular:
 - Mrs Gabrielle (Gabby) Plimmer for her patient teaching
 - Mrs Kim Wylie who willingly tackled all the tedious jobs
 - Mrs Anne Broomfield who I'll be forever grateful to for helping with the DEXA scans
 - Mrs Chris Booth who could always be counted on for anything, anytime, anywhere.
 - Mr Jan Steenkamp whose surgical skills and willingness for early morning starts helped ensure we kept to schedule.

- Dr Phil Pearce and the team at the Massey Nutrition Lab who helped with the analytical work.

- Mr Michael Agnew of AgResearch Limited, Hamilton, New Zealand who conducted the plasma fatty acid analysis.

- Mr Karl Geiringer of Brainfats Biotechnology Limited, Auckland, New Zealand who kindly supplied the eicosapentaenoic acid free of charge.

Finally I would like to thank Massey University who provided financial support in the form of a Mastereate Scholarship and a MURF grant.
Table of Contents

- **ABSTRACT** ... i
- **ACKNOWLEDGEMENTS** iii
- **LIST OF FIGURES** x
- **LIST OF TABLES** xii
- **LIST OF ABBREVIATIONS** xv

- **INTRODUCTION** 1

CHAPTER 1 LITERATURE REVIEW 3

SECTION 1 Bone Metabolism 3

1.1 Bone Structure and Function 3

1.2 The Bone Remodeling Cycle 6

1.2.1 Osteoclast Differentiation 7

1.2.1.1 Regulation of Osteoclast Differentiation 8

1.2.2 Osteoclast Activity 8

1.2.3 Osteoblast Differentiation 10

1.2.3.1 Regulation of Osteoblast Differentiation 11

1.2.4 Osteoblast Activity 12

1.2.5 Other Bone Cells 13

1.2.5.1 The Osteocytic Membrane 13

1.3 Regulation of Bone Metabolism 14

1.3.1 Lifestyle Factors 14

1.3.2 Hormonal Regulation 14

1.3.2.1 Estrogen and Growth Hormone 15

1.3.2.2 Insulin ... 15

1.3.2.3 Parathyroid Hormone and Vitamin D₃ 15

1.3.3 Localised Regulation 17

SUMMARY ... 18
SECTION 2 Mis-Regulation of Bone Metabolism

1.4 Definition of Osteoporosis
1.5 Pathogenesis of Osteoporosis
 1.5.1 The Uncoupling Theory
 1.5.2 Decline in the level of growth factors in bone matrix
1.6 Estrogen Imbalance – Bone Modeling
1.7 Estrogen Imbalance – Bone Remodeling
 1.7.1 Effects of Estrogen on Osteoblastogenesis
 1.7.2 Effects of Estrogen on Osteoclastogenesis
 1.7.2.1 Oxidation
 1.7.2.2 Adiposity
 1.7.2.3 Modulation of Cytokine Activity
 1.7.3 Effects of Estrogen on Calcium Absorption and Excretion

SUMMARY

SECTION 3 Essential Fatty Acids

1.8 Metabolism of Essential Fatty Acids
 1.8.1 Cyclooxygenase
 1.8.2 Desaturases and Elongases
1.9 Roles of Essential Fatty Acids and their metabolites
1.10 Observed Relationship of Essential Fatty Acids and Bone
 1.10.1 Epidemiological Studies
 1.10.1.1 Essential Fatty Acid Deficiency
 1.10.1.2 Bone Density
 1.10.1.3 Infants with Congenital Heart Disease
 1.10.1.4 Observational Studies
 1.10.1.5 Kidney Stone Formation
 1.10.2 Clinical and Experimental Studies
 1.10.2.1 Calcium Absorption and Excretion
 1.10.2.2 Bone Density - Human Studies
 1.10.2.3 Bone Density - Animal Studies
1.10.2.3.1 Bone Modeling
1.10.2.3.2 Bone Remodeling

1.11 Mechanisms of Essential Fatty Acid Action in Bone

1.11.1 Membrane Structure
1.11.2 Activity of Membrane Transporters
1.11.3 The Role of Eicosanoids
1.11.3.1 Prostaglandins
1.11.3.2 Interactions between Essential Fatty Acids, Eicosanoids and Hormones
1.11.3.3 Interactions between Essential Fatty Acids, Eicosanoids and Localised Regulatory Factors
1.11.4 Regulation of Osteoclast/Osteoblast Differentiation
1.11.5 Collagen Synthesis

SUMMARY

SECTION 4 Motivation and Study Objectives

1.12 Motivation for the Study
1.13 Purpose of the Study
1.14 Objectives
1.15 Hypothesis

CHAPTER 2 MATERIALS AND METHODS

2.1 Procedures
2.1.1 Animals
2.1.2 Diets
2.1.3 Tail-Vein Sampling
2.1.4 Dual Energy X-Ray Absorptiometry (DEXA) Scans
2.1.5 Terminal Heart Puncture
2.1.6 Urine Collection
2.1.7 Biochemical Markers
2.1.8 Biomechanics
2.1.9 Bone Ash Content 54
2.1.10 Urinary Calcium, Phosphate and Creatinine Concentration 55
2.1.11 Plasma 25-Hydroxyvitamin D₃ Concentration 55
2.1.12 Plasma Lipid Analysis 55
2.1.13 Statistical Analyses 56

2.2 The Ovariectomised Rat as a Model for Postmenopausal Osteoporosis 56
2.3 Dual Energy X-Ray Absorptiometry 58
2.4 Biochemical Markers of Bone Metabolism 59
 2.4.1 Type-1 Collagen Cross-Links 59
2.5 Biomechanical Testing 60
 2.5.1 Definition of Parameters Measured 61

SUMMARY 62

CHAPTER 3 RESULTS 63
3.1 Diet Analysis 63
3.2 Uterus Weight 63
3.3 Rat Weight 64
3.4 Urinary Calcium and Phosphate Excretion 64
3.5 Serum C-Telopeptides of Type 1 Collagen (CTX) 65
3.6 Bone Density 66
 3.6.1 Lumbar Spine 66
 3.6.2 Femurs 68
3.7 Bone Ash Content 72
3.8 Bone Breaking Strength 74
3.9 Plasma Lipid Content 76
3.10 Vitamin D₃ Metabolites 78
3.11 Pearson Correlations 79
CHAPTER 4 DISCUSSION

SECTION 1 Observations

1 Urinary Calcium and Phosphate Excretion
 4.1.1 Effect of Ovariectomy
 4.1.2 Effect of EPA Supplementation

2 Serum C-Telopeptides of Type 1 Collagen
 4.2.1 Effect of Ovariectomy
 4.2.2 Effect of EPA Supplementation

3 Bone Density
 4.3.1 Effect of Ovariectomy
 4.3.2 Effect of EPA Supplementation

4 Bone Ash Content
 4.4.1 Effect of Ovariectomy
 4.4.2 Effect of EPA Supplementation

5 Bone Breaking Strength
 4.5.1 Effect of Ovariectomy
 4.5.2 Effect of EPA Supplementation

6 Plasma Lipid Content

7 Vitamin D₃ Metabolites
 4.7.1 Effect of Ovariectomy
 4.7.2 Effect of EPA Supplementation

8 Statistical Correlations
 4.8.1 Relationship between Outcome Measures
 4.8.2 Organic Bone Matter and EFAs
 4.8.3 Bone Mineral Density and EFAs
 4.8.4 Vitamin D₃
 4.8.5 Possible Roles of other EFAs in the Regulation of Bone Metabolism
 4.8.5.1 Gamma-Linolenic Acid (GLA)
 4.8.5.2 Docosahexaenoic Acid (DHA)

9 Context
SECTION 2 Proposed Mechanisms

<table>
<thead>
<tr>
<th>4.10 High Dose EPA Supplement and Calcium Handling</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.1 High Dose EPA Supplementation Resulted in Calcium Deficiency</td>
<td>105</td>
</tr>
<tr>
<td>5.10.1.1 Effect of High Dose EPA on Intestinal Calcium Absorption</td>
<td>106</td>
</tr>
<tr>
<td>5.10.1.2 Ectopic Calcification</td>
<td>108</td>
</tr>
<tr>
<td>5.10.2 EPA inhibits Mitochondrial Mixed Function Oxidases</td>
<td>109</td>
</tr>
<tr>
<td>5.10.3 High Dose EPA Supplementation led to PTH-mediated Bone Resorption</td>
<td>111</td>
</tr>
<tr>
<td>5.11 The Essential Fatty Acid/Hormone Interaction Theory</td>
<td>111</td>
</tr>
</tbody>
</table>

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH

| 5.1 Conclusions | 115 |
| 5.2 Implications for Future Research | 115 |

REFERENCES

117
List of Figures

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cortical and Trabecular Bone</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Proportions of Cortical and Trabecular Bone in Various Parts of the Skeleton</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>The Bone Remodeling Cycle</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Control of Differentiation and Activation of Osteoclasts</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Electron Micrograph of an Osteoclast attached to Bone</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Factors influencing Osteoclast Activation</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Factors influencing Osteoblast Differentiation and Activation</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Effects of Estrogen Deficiency on Bone Metabolism</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Metabolism of Essential Fatty Acids</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Photograph showing positioning of a rat for DEXA scanning</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Load Deformation Curve</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>Lumbar Spine Bone Mineral Content - % change from baseline</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>Lumbar Spine Bone Mineral Density - % change from baseline</td>
<td>68</td>
</tr>
<tr>
<td>FIGURE</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>14</td>
<td>Designation of Femur Regions for analysis of ex vivo bone mineral content and density</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>Bone Mineral Content (Ashed Bone Weight) after correction for body weight</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>Ratio of Non-Mineral:Mineral Bone Matter.</td>
<td>74</td>
</tr>
<tr>
<td>17</td>
<td>Total Plasma Lipid and Fatty Acid Composition</td>
<td>77</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Localised Regulators of Bone Metabolism.</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Specification for EPA supplement.</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Percentage composition of fatty acids in the corn oil and EPA supplement used in study diets.</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Final uterus and total body weights following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>Urinary calcium and phosphate concentrations following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Serum type-I collagen c-telopeptide concentrations following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>Lumbar spine bone mineral content and density measures following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>Ex vivo femur bone mineral content and density measures following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>69</td>
</tr>
</tbody>
</table>
TABLE 9 Final ex vivo bone mineral content and density by femur area following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.

10 Dry femur weight and composition following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.

11 Results of biomechanical tests on right femurs following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.

12 Plasma lipid content and fatty acid composition following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.

13 Serum 25(OH) Vitamin D₃ concentration following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.

14 Pearson Correlations between measurements of bone composition, bone strength, markers of bone metabolism and calcium and phosphate balance following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.
<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Pearson Correlations between EFAs in rat plasma following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>Pearson Correlations between plasma EFA composition and measurements of bone composition, bone strength, markers of bone metabolism and calcium and phosphate balance following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>82</td>
</tr>
<tr>
<td>17</td>
<td>Correlation between known functions of 1,25(OH)₂ Vitamin D₃ and Plasma EFA levels obtained following ovariectomy or sham operation and 9 weeks of feeding a corn oil or EPA supplemented diet.</td>
<td>101</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25(OH)$_2$D$_3$</td>
<td>1,25 dihydroxyvitamin D$_3$</td>
</tr>
<tr>
<td>25(OH)vitD$_3$</td>
<td>25 hydroxyvitamin D$_3$</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic Acid (20:4n-6)</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha-Linolenic Acid (18:3n-3)</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosine Triphosphatase</td>
</tr>
<tr>
<td>BGP</td>
<td>Bone Gla Protein (osteocalcin)</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone Morphogenic Protein</td>
</tr>
<tr>
<td>BRU</td>
<td>Bone Remodelling Unit</td>
</tr>
<tr>
<td>Ca or Ca$^{2-}$</td>
<td>calcium</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic Adenosine Monophosphate</td>
</tr>
<tr>
<td>Cbfa-1</td>
<td>Core Binding Factor 1</td>
</tr>
<tr>
<td>CI</td>
<td>Chloride</td>
</tr>
<tr>
<td>CLA</td>
<td>Conjugated Linoleic Acid</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CTX</td>
<td>C-terminal telopeptide of type-1 collagen</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic Acid (22:6n-3)</td>
</tr>
<tr>
<td>DLX-5</td>
<td>Distal-less 5 transcription factor</td>
</tr>
<tr>
<td>DPA</td>
<td>Docosapentaenoic Acid (22:5n-3)</td>
</tr>
<tr>
<td>Dpyd</td>
<td>Deoxypyridinoline</td>
</tr>
<tr>
<td>EFA</td>
<td>Essential Fatty Acid</td>
</tr>
<tr>
<td>EGF</td>
<td>Erythrocyte Growth Factor</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunoassay</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic Acid (20:5n-3)</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast Growth Factor</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GLA</td>
<td>Gamma Linolenic Acid (18:3n-6)</td>
</tr>
</tbody>
</table>
gp130 Glycoprotein 130
GTPase Guanisine Triphosphatase
H+ Hydrogen
hGH Human Growth Hormone
HMG-CoA Hydroxymethylglutaryl Coenzyme A
IFN Interferon
IGF Insulin-like Growth Factor
IGFBP Insulin-like Growth Factor Binding Protein
IL Interleukin
IV intravenous
K or K+ Potassium
kg kilogram
LA Linoleic Acid (18:2n-6)
LT Leukotriene
LTB4 Leukotriene B4
LTB5 Leukotriene B5
M-CSF Monocyte-Macrophage Colony Stimulating Factor
mg milligram
Mg or Mg2+ Magnesium
mL milliliter
mm millimeter
mMol millimoles
MMPs Matrix Metalloproteinases
N Newton
n-3 omega 3
n-6 omega 6
n-9 omega 9
Na or Na+ Sodium
NF-kB Nuclear Factor-kB
ng nanogram
N/mm² Newtons per square millimeter
OPG Osteoprotegerin
OVX ovariectomised
PDGF Platelet-derived Growth factor
PGE₂ Prostaglandin E₂
PGE₃ Prostaglandin E₃
PKC Protein Kinase C
PO₄ Phosphate
POV Peroxide Value
PPAR Peroxisome Proliferator Activated Receptor
PPRE Peroxisome Proliferator Response Element
PTH Parathyroid Hormone
PTHrp Parathyroid Hormone-related protein
PUFA Polyunsaturated Fatty Acid
RANK-L RANK ligand
RXR Retinoid X Receptor
SD Standard Deviation
SE Standard Error
T₃ Triiodothyronine 3
T₄ Thyroxine
TGF Transforming Growth Factor
TNF Tumour Necrosis Factor
TRAFs Tumour Necrosis Factor Receptor-Associated Factors
TxB₂ Thromboxane B₂
VDR Vitamin D Receptor
WHO World Health Organisation
Yrs Years