Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Characterizing the Removal of Antibiotics in Algal Wastewater Treatment Ponds: A Case Study on Tetracycline in HRAPs

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Environmental Engineering

at

Massey University,

Turitea Campus, Palmerston North, New Zealand

Zane Norvill

2016
Abstract

Antibiotics are ubiquitous pollutants in wastewater, owing to their usefulness in both animal and human treatment. Antibiotic pollution is a growing concern because of the risk of encouraging antibiotic resistance in wastewater treatment (WWT) systems and downstream of effluent discharge. The aim of this thesis was to investigate the fate of antibiotics in algal WWT ponds, which have unique ecological and environmental characteristics (e.g. presence of algae; diurnal variation in pH, dissolved oxygen, and temperature) compared with conventional biological WWT.

The research in this thesis focused on a case study of the fate of tetracycline (TET, an antibiotic) in high rate algal ponds (HRAP). Indoor lab scale HRAP studies were used to investigate the fate of TET under several operating conditions. Outdoor pilot scale studies (900 L and 180 L HRAPs) under Oceanic and Mediterranean climates were used to validate the lab scale findings. Results showed that high removal (85% to >98%) of TET was possible in the lab and pilot scale HRAPs with HRTs of 4 and 7 days. Sorption was consistently a low contributor (3-10% removal by sorption) during continuous HRAP studies, based on the amount of TET extracted from biomass. Batch experimentation was used to further distinguish mechanisms of TET removal. The majority of TET removal was caused by photodegradation. Indirect photodegradation of TET was dominant over direct photolysis, with 3-7 times higher photodegradation observed in wastewater effluent than for photodegradation in purified water during batch tests incubated in sunlight. Under dark conditions sorption was the dominant removal mechanism, and biodegradation was negligible in batch tests since aqueous TET removed was recovered (± 10%) by extraction of sorbed TET from the biomass.
Irreversible abiotic hydrolysis was not observed during TET removal batch tests in purified (MQ) water.

A kinetic model was developed and used to predict TET removal in the pilot HRAPs, based on parameters derived from batch experiments. The model predictions for aqueous TET concentrations were successfully validated against initial TET pulse tests in the 180 L pilot scale HRAP. However TET removal decreased in subsequent pulse tests in the pilot HRAP, resulting in over-prediction of TET removal by the kinetic model. This decrease in TET removal was associated with decrease in pH, dissolved oxygen concentrations, and biomass settleability, but causal relationships between TET removal and these variables could not be quantified. Until the predictive kinetic model is developed further, this model may serve as a preliminary estimate of TET fate in algal WWT ponds of different design and operation. Future research should also investigate the potential formation and toxicity (including antibiotic efficiency) of TET degradation products, but this was outside the scope of this thesis. Predictions from the model were sensitive to the daily light intensity, suggesting that TET removal would be reduced in the winter months.
Acknowledgements

This doctorate was supported by a Massey University Doctoral Scholarship. I thank Massey University for this provision of funding, and the scholarship administrators for their help.

It was a privilege to work under my supervisors, Prof. Benoit Guieysse (Massey), Prof. Andy Shilton (Massey), and Assoc. Prof. Raúl Muñoz (Valladolid). Their instruction, patience, and engagement with my project were instrumental to my work and their time invested in helping me develop as a researcher is greatly appreciated.

Working at both Massey University and University of Valladolid, there are many other postgraduate students with whom I worked. The friendly work environment in both cities was great to work in. Special thanks go to Cynthia Alcantara, who introduced me to working with HRAPs, Quentin Bechet, who helped with much advice and taught me actinometry techniques early in the PhD, Andrea Hom-Diaz, who worked alongside me for 6 months in NZ in a similar project on antibiotics in HRAPs, Dr. Alma Toledo in Valladolid who taught me the lab systems and helped supervise my projects in Spain, Paul Chambonniere who collected an extra month of tetracycline monitoring data in NZ while I was in Spain, Dimas Garcia who helped by maintaining my HRAP in Spain while I was attending conferences, and Lara Pelaz and Jaime Cortijo, who helped supply my experiments in Spain with primary settled wastewater with their pilot scale primary treatment. Special thanks also go to the postgrad environmental engineering research team: Roland Schaap, Maxence Plouviez, Matt Sells, Aidan Crimp, Ramsay Huang, and Paul Chambonniere; it was a pleasure working in a research team with you, comparing methods and discussing problems, as well as the social relaxation to take a break from studying.
I extend my gratitude to all the wastewater treatment staff at the Palmerston North City Council Totara Rd plant, especially Mike Monaghan, Peter Best, Mike Sahayam, and Elysia Butler for permission to install a pilot HRAP for research, their assistance in facilitating its installation and assisting all the students who worked on the site where they could. I also thank Prof. Fernando Polanco who allowed me to install my pilot HRAP on the roof of his research sheds at University of Valladolid.

I thank the many technical staff also helped me at different stages of my PhD, especially Ann-Marie Jackson, John Edwards, John Sykes, Clive Barber, Anthony Wade, Monica Gay Martin, Araceli Crespo, Julia Good, and Morio Fukuoka. I also thank the administrative staff, especially Glenda Rosomann, Gayle Leader, Dilantha Punchihewa, Trish O’Grady, Michelle Wagner, and Linda Lowe. I acknowledge and appreciate the cleaning staff, who often worked invisibly keeping areas in good order.

I thank my family – my parents John and Robin Norvill and my sisters Elsa and Hannah, for their moral support and encouragement. I also thank my many friends at church, especially Mr. & Mrs. Peez, for their love, care, and spiritual support during my time of doctoral study.

Finally, I acknowledge my Lord and Saviour, Jesus Christ, Who indwells me, for His guidance, protection, and the insight He has granted me into this aspect of His created order. Much of my motivation for this doctoral project comes from a desire to understand His world, being a wise steward of the environment He created, and in order to help people through understanding and minimising hazards from emerging pollutants in wastewater.
Table of Contents

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 3

TABLE OF FIGURES .. 9

TABLE OF TABLES .. 12

TABLE OF ACRONYMS .. 14

1. INTRODUCTION .. 16

1.1 Background ... 16

1.2 The problem and aim .. 16

1.3 Research hypothesis and objectives .. 17

2. LITERATURE REVIEW .. 19

2.1 Introduction ... 21

2.2 Algal-based wastewater treatment ... 25

2.3 Sorption .. 31

2.3.1 Current knowledge of antibiotic sorption in conventional systems ... 31

2.3.2 Potential of antibiotic sorption in algal WWT ponds ... 34

2.4 Biodegradation .. 36

2.4.1 Current knowledge of antibiotic biodegradation in conventional systems 36

2.4.2 Potential for antibiotic biodegradation in algal WWT ponds .. 38

2.5 Photodegradation ... 43

2.5.1 Current knowledge of antibiotic photodegradation in conventional systems and surface

waters ... 43
2.5.2 Potential for antibiotic photodegradation in algal WWT ponds

2.6 Other mechanisms regarding antibiotic removal

2.6.1 Antibiotic hydrolysis in conventional systems

2.6.2 Potential for antibiotic hydrolysis in algal WWT ponds

2.6.3 Antibiotic conjugation

2.7 Risk considerations

2.7.1 Degradation products

2.7.2 Antibiotic-resistance

2.7.3 Wastewater reuse

2.8 Conclusions and research objectives

3. METHODOLOGY

3.1 Research strategy

3.2 Constraints

3.2.1 Selection of tetracycline as an example antibiotic

3.2.2 Selection of HRAPs as an algal WWT system for experiments

3.3 Design and operation of HRAP systems

3.3.1 Lab-scale HRAP: 7 L

3.3.2 Pilot-scale HRAP: 900 L

3.3.3 Pilot-scale HRAP: 180 L

3.4 Batch experiments with tetracycline

3.4.1 100 mL Batch tests

3.4.2 2.5 L Batch tests

3.5 Batch experiments with antibiotic mixtures

3.5.1 Background information about sulfanilamide, sulfamethoxazole, ciprofloxacin, and chloramphenicol
3.5.2 Experiments with the antibiotic mixtures ... 81

3.6 Analytical methods for antibiotics.. 82

3.7 Other analytical methods ... 86

4. RESULTS AND DISCUSSION .. 91

4.1 Indoor Lab HRAP .. 92

4.1.1 HRAP performance .. 93

4.1.2 TET removal under continuous HRAP operation .. 95

4.1.3 Disruption to tetracycline removal during treatment to remove algal grazers 99

4.2 Batch Experiments - 100 mL .. 101

4.3 Batch Experiments – 2.5 L ... 110

4.3.1 Full day outdoor batch experiments .. 111

4.3.2 Sorption batch experiments .. 119

4.3.3 pH batch experiments .. 125

4.4 Outdoor Pilot HRAPs ... 128

4.4.1 900 L Pilot HRAP – NZ ... 129

4.4.2 180 L Pilot HRAP (Spain) ... 132

4.4.3 Pulse tests in Pilot HRAPs .. 138

4.5 Prediction of TET removal compared with experimental data 154

4.5.1 TET removal by sorption during the night ... 155

4.5.2 Kinetic modelling of sorption and photodegradation ... 159

4.6 Comparison between TET removal across all batch tests and pulse tests in the pilot HRAPs .. 170

4.7 Batch experiments with antibiotic mixtures ... 175

4.7.1 Ciprofloxacin removal tests (work led by Andrea Hom-Diaz in NZ) 175
4.7.2 Antibiotic removal with 3-antibiotic mixtures ... 176

5. DISCUSSION OF THE OVERALL IMPLICATIONS FOR ALGAL WWT PONDS 181

6. CONCLUSIONS ... 187

7. RECORD OF PUBLICATIONS AND PRESENTATIONS ... 193

8. REFERENCES .. 195
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure of tetracycline</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>The lab-scale high rate algal ponds (HRAP) used in continuous studies</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>The 900 L Pilot scale HRAP operated at PNCC-WWTP</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>The 180 L pilot-scale HRAP operated at University of Valladolid, Spain</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Outdoor full-day batch test in 2.5 L batch reactors</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>Structure of antibiotics; A: sulfanilamide, B: sulfamethoxazole, C: ciprofloxacin, and D: chloramphenicol</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Boxplot of tetracycline removal during lab-HRAP operation</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>Correlation observed between an increase in inorganic carbon (IC) for HRAP B after rotifer treatment, and the corresponding reduction in TET removal</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Batch degradation of tetracycline solutions under light or dark conditions</td>
<td>103</td>
</tr>
<tr>
<td>10</td>
<td>Tetracycline solutions degraded in light with varied biomass concentrations</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>Batch tetracycline removal over a 24 hour period outdoors, beginning at night, 1<sup>st</sup> June August 2015</td>
<td>113</td>
</tr>
<tr>
<td>12</td>
<td>Tetracycline removal by sorption to active or autoclaved biomass at different biomass concentrations</td>
<td>120</td>
</tr>
<tr>
<td>13</td>
<td>Batch removal of tetracycline at different initial concentrations to investigate sorption kinetics</td>
<td>123</td>
</tr>
<tr>
<td>14</td>
<td>Sorption isotherm plot based on TET extracted from the biomass at 4 h or 14 h during the sorption batch experiment conducted Aug 31<sup>st</sup> 2015</td>
<td>124</td>
</tr>
<tr>
<td>15</td>
<td>Comparison of the fitted sorption isotherm models to the experimental aqueous and sorbed TET concentrations at 14 h during the sorption batch experiment (Aug 31<sup>st</sup> 2015)</td>
<td>124</td>
</tr>
</tbody>
</table>
Figure 16: Tetracycline removal in a batch test conducted in the dark, 4th August 2015.

Figure 17: Removal of tetracycline in a 900 L HRAP with 9 day HRT supplied with 200 mg TET per day (∼ 2 mg/Linfluent).

Figure 18: Tetracycline concentrations in the 180L HRAP at morning and evening sampling times with continuous 100 µg L⁻¹ TET in WW influent.

Figure 19: TET Pulse tests in 900 L HRAP, March 2015.

Figure 20: Pulse tests of TET in the 180 L HRAP, August 2015.

Figure 21: Pulse tests of TET in the 180 L HRAP, August 2015.

Figure 22: The quartile ranges of the pH, DO concentration, PAR, and temperature plotted against the pseudo-first-order TET removal rates (k₁) in each range.

Figure 23: Effects plots for the average daily first-order TET removal rates (k₁) during the day vs. the date, total light received, pH, DO concentration, temperature, TSS concentration, nitrate, and nitrite concentrations in order to visualise the trends. Each graph includes the Pearson’s correlation coefficient (r) and the p-value (p).

Figure 24: Predicted vs. observed aqueous TET concentrations in the morning of ‘Day 2’ for the pulse tests, based on a mid-range estimate of K_d = 2.8 L g⁻¹.

Figure 25: Predicted TET concentrations with high/low error bounds compared to experimental TET concentrations for the pulse test performed 13th Aug 2015.

Figure 26: Average residuals for the ‘mid-range’ predicted aqueous TET concentrations vs. observed aqueous TET concentrations, for each pulse test in the 180 L HRAP.

Figure 27: Modelled aqueous and sorbed TET concentrations for the pulse test starting 20th Aug 2015.

Figure 28: Dot-plot of the partition coefficient (K_d) and ‘photodegradation yield’ (k₁L) values calculated for the two batch methods and the pulse tests in the two HRAPs.
Figure 29: Removal of tetracycline in 2.5 L batch outdoors177
Figure 30: Removal of sulfanilamide in 2.5 L batch outdoors178
Figure 31: Removal of ciprofloxacin in 2.5 L batch outdoors179
Figure 32: Removal of chloramphenicol in 2.5 L outdoor batches180
Table of Tables

Table 1: Comparison of typical WWT processes ... 28
Table 2: Potential effects of key process conditions upon antibiotic removal during algal and conventional activated sludge WWT. .. 30
Table 3: Examples of measured sorption partition coefficients [K_d] varying with environmental conditions, antibiotic structure, and solid type 33
Table 4: Comparison of biodegradation rate variability of selected antibiotics 38
Table 5: Photodegradation studies on antibiotics ... 45
Table 6: Operational stages of the lab-scale HRAPs .. 64
Table 7: Wastewater characteristics for the lab-scale HRAPs 65
Table 8: Wastewater characteristics for sampled wastewater during 900 L HRAP operation Feb-April 2015 .. 67
Table 9: Monthly weather conditions during experimentation in Palmerston North. 68
Table 10: Wastewater characteristics during 180 L HRAP operation April-Aug 2015 . 70
Table 11: Average weather conditions during the 180 L HRAP operation 71
Table 12: Design of experiment for standard batch trial .. 74
Table 13: Experimental conditions for the outdoor batch experiments 77
Table 14: Physical and chemical properties of antibiotics used in this study 82
Table 15: Quality control parameters of analytical methods 86
Table 16: Summary of the environmental conditions and effluent composition under the 5 different operating stages of the lab-scale HRAP ... 94
Table 17: Trends observed between light-hours, productivity, and first-order kinetic rates (k_1) for the continuous degradation of TET in the two 7 L HRAPs (A and B) during the 5 operating stages. ... 98
Table 18: Pseudo-first-order TET removal constants (k₁) for batch tests with k₁ [d⁻¹] ± st.error (R²) .. 102

Table 19: Summary of pseudo-first order kinetics during outdoor batch experiments, with R² values given in parentheses ... 116

Table 20: 180 L HRAP performance and monitored environmental conditions during stable operation .. 133

Table 21: Environmental parameters and productivity recorded for the HRAP during operation .. 134

Table 22: Summary of pseudo-first order TET kinetic constants for pulse experiments. .. 148

Table 23: Variables used in the TET removal kinetic model (Equations 15 & 16) .. 163

Table 24: Constants used to predict TET concentrations in the 180 L pilot HRAP .. 164

Table 25: Predicted aqueous and sorbed TET concentrations during continuous TET supply and 4 day HRT operation in the 180 L pilot HRAP ... 169

Table 26: Summary of the best fit values obtained during manual fitting of first-order kinetic rates to the experimental pulse data .. 172

Table 27: Summary of pseudo-first order kinetic removal rates (11 am- 3pm) observed during the full-day outdoor batch test for the SCC mix of antibiotics .. 180

Table 28: Predicted TET removal in three algal WWT ponds, based on the kinetic model developed in this thesis .. 184
Table of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>CMP</td>
<td>Chloramphenicol (antibiotic)</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CPX</td>
<td>Ciprofloxacin (antibiotic)</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HRAP</td>
<td>High Rate Algal Pond</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>IC</td>
<td>Inorganic Carbon</td>
</tr>
<tr>
<td>MQ (water)</td>
<td>Milli-Q grade purified water</td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically Active Radiation (400-700 nm)</td>
</tr>
<tr>
<td>PNCC-WWTP</td>
<td>Palmerston North City Council Totara Rd Wastewater Treatment Plant</td>
</tr>
<tr>
<td>RO (water)</td>
<td>Reverse Osmosis grade purified water</td>
</tr>
<tr>
<td>SCC mix</td>
<td>Mixture of antibiotics: Sulfanilamide, Ciprofloxacin, and Chloramphenicol</td>
</tr>
<tr>
<td>SFL</td>
<td>Sulfanilamide (antibiotic)</td>
</tr>
<tr>
<td>SMX</td>
<td>Sulfamethoxazole (antibiotic)</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Phase Extraction</td>
</tr>
<tr>
<td>SRT</td>
<td>Solids Retention Time (a.k.a. Sludge Retention Time)</td>
</tr>
<tr>
<td>STS mix</td>
<td>Mixture of antibiotics: Sulfanilamide, Tetracycline, and Sulfamethoxazole</td>
</tr>
<tr>
<td>TET</td>
<td>Tetracycline (antibiotic)</td>
</tr>
<tr>
<td>TN</td>
<td>Total Nitrogen</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVA</td>
<td>Ultraviolet light (320-400 nm)</td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviolet light (290-320 nm)</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile Suspended Solids</td>
</tr>
<tr>
<td>WSP</td>
<td>Waste Stabilisation Pond</td>
</tr>
<tr>
<td>WW</td>
<td>Wastewater</td>
</tr>
<tr>
<td>WWT</td>
<td>Wastewater treatment</td>
</tr>
</tbody>
</table>