Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Dietary Intake and Nutrition Knowledge of Physically Active Adolescents

A project completed as partial fulfilment for the requirements of a Master of Science in Nutritional Science. Massey University, Auckland, New Zealand

Carolyn Cairncross

2006
ABSTRACT

Additional nutrient demands are encountered during adolescence, the major period of growth during the human life cycle. In order that these demands are met and healthy eating habits established to lead into adulthood, it is vital to be able to accurately assess current dietary intake and nutrition knowledge levels of this population. There are very few studies that have assessed the dietary intake and level of nutrition knowledge of active adolescents.

The aim of this study was to assess the nutrition knowledge level, and dietary intake, of the subjects. A new nutrition knowledge questionnaire was developed and validated for this purpose. Dietary intake data was collected and compared to current dietary recommendations. This data was then used to investigate any link between nutrition knowledge level and dietary behaviour in the active adolescent subjects.

One hundred and twenty-four adolescents of ages 14-18 years were recruited for the study from schools and competitive sporting teams in the Auckland region. Participants completed the nutrition knowledge questionnaire and were requested to complete a three-day food diary (two weekdays, one weekend day). Physical activity was recorded qualitatively by the subjects for the week in which dietary intake was measured. Body composition was assessed by calibrated digital scales and height measurement.

The nutrition knowledge of the active adolescents of this study was found to be poor, with a mean score of 55% achieved by the group. The interest of these subjects in sport was illustrated with a slightly higher nutrition knowledge score on the sport nutrition section of the questionnaire than the general nutrition section, 57% v 54%, p<0.05. The nutrition knowledge level of females was found to be significantly higher than males, 58% v 53%, p<0.05.

Forty-six of the subjects returned completed food diaries (respondant rate 37%). It was found that subjects underreported energy intake between 11-14%. The reported dietary intakes of macronutrients of the group met New Zealand and United States dietary recommendations. However, the reported
intakes of several micronutrients were found to be below these recommendations.

In the comparison of nutrition knowledge level and dietary intake of the subjects, no link was found between knowledge level and dietary behaviour.

The low level of nutrition knowledge of these subjects is consistent with previous studies of nutrition knowledge in adolescents. It highlights the need for further nutrition education during the adolescent period, especially for adolescents who are physically active. The underreported energy intake reflects previous study findings with the difference speculated to be primarily due to the inaccurate reporting of intake typified by this adolescent age group. The dietary intake of these adolescents met the majority of dietary intake recommendations, which may reflect the high socio-economic status and high interest in sport of the subjects. These may also be a factor in the lack of correlation between nutrition knowledge level and dietary behaviour found in this study.
Acknowledgments

I would like to thank the following people for the valuable assistance they have provided during this research project:

Dr Clare Wall  Senior Lecturer, Institute of Food, Nutrition and Human Health, Massey University
Megan Gibbons  Lecturer, Institute of Food, Nutrition and Human Health, Massey University
Ellen Dunne  North Harbour Water Polo Club
Craig Reid  Marist Water Polo Club
Sharon Davies  Takapuna Grammar School
Glynis Hayward  Glendowie College

My biggest thanks go to my family for their enormous support – to Caitlin and Emma for those understanding hugs, and to Pete for his encouragement and continuous belief in me.
Table of contents

1 Introduction 1

2 Literature Review 2
   2.1 Recommended adolescent dietary intakes 3
      2.1.1 Energy 4
      2.1.2 Carbohydrate 5
      2.1.3 Protein 5
      2.1.4 Fat 6
      2.1.5 Fluid 6
      2.1.6 Micronutrients 8
   2.2 Studies of adolescent dietary intakes 9
   2.3 Supplement use by adolescents 12
   2.4 Influences on adolescent eating behaviour 15
   2.5 Nutrition knowledge of adolescents 16
   2.6 Psychometric evaluation of nutrition knowledge questionnaires 20
      2.6.1 Reliability 20
      2.6.2 Validity 21
      2.6.3 Adolescent nutrition knowledge studies – psychometric evaluations 22
   2.7 Relationship between nutrition knowledge and dietary behaviour 24
   2.8 Assessment of dietary intake 25
   2.9 Physical activity and energy expenditure 29
   2.10 Summary 33

3 Aims of the Study 34

4 Methodology 35
   4.1 Dietary assessment 35
   4.2 Body composition 36
   4.3 Physical activity level 36
   4.4 Nutrition knowledge questionnaire 36
   4.5 Development and validation of questionnaire 37
   4.6 Data analysis of questionnaire result 37

5 Results 39
   5.1 Dietary assessment 39
      5.1.1 Demographic data 39
      5.1.2 Anthropometric data 40
      5.1.3 Physical activity data 40
      5.1.4 Supplement usage 41
   5.2 Reported nutrient intakes 42
      5.2.1 Energy 42
      5.2.2 Contribution to energy intake 43
      5.2.3 Protein 44
      5.2.4 Carbohydrate 45
      5.2.5 Total sugars 46
      5.2.6 Fat 47
5.2.7 Fluid – water 49
5.2.8 Fluid – alcohol 50
5.2.9 Micronutrients 50
5.3 Nutrition knowledge 54
5.3.1 Demographic data 54
5.3.2 Questionnaire validation – validity 55
5.3.3 Questionnaire validation - reliability 56
5.4 Nutrition Knowledge questionnaire results 59
5.4.1 Knowledge scores 59
5.4.2 Specific questionnaire results 63

6 Discussion 66
6.1 Dietary assessment 66
6.1.1 Energy 67
6.1.2 Energy expenditure 68
6.1.3 Macronutrients 72
6.1.4 Fluid 73
6.1.5 Micronutrients 75
6.1.6 Supplements 77
6.1.7 Days of week variation 77
6.1.8 Physical activity 79
6.1.9 Eating patterns 80
6.2 Nutrition Knowledge 80
6.2.1 Questionnaire development 80
6.2.2 Nutrition knowledge results 83
6.3 Relationship of nutrition knowledge to behaviour 86
6.4 Limitations of the study 90
6.5 Recommendations 93

7 Conclusions 94

8 References 96

9 Appendices 107
1 Information sheet 107
2 Consent form 108
3 Ethics approval 109
4 Nutrition knowledge questionnaire 110
5 Food diary 111
6 Examples of substitution of food products during analysis of dietary intake using Foodworks computer software 112
7 Physical activity form 113
8 Individual subjects difference between mean daily energy intake (MDEI) and estimated daily energy expenditure (EDEE) 114
9 New Zealand recommended daily intake for adolescents 115
10 United States recommended daily allowances for adolescents 116
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Studies of adolescent nutrient intake</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Factors affecting adolescent food choice</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Studies of Nutrition Knowledge of Adolescents</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Results of psychometric tests on questionnaires developed to assess nutrition knowledge</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Potential errors in the collection and recording of food diary data</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of methods for determination of physical activity and energy expenditure</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Demographic data of the total group, subjects who supplied food intake data, and subjects who did not supply food intake data</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>Demographic data of subjects who supplied food intake data</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Anthropometric data of subjects who supplied food intake data</td>
<td>40</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean hours of organized sport undertaken by subjects in the week of recording food intake data</td>
<td>40</td>
</tr>
<tr>
<td>5.5</td>
<td>Mean reported energy intakes of males and females</td>
<td>42</td>
</tr>
<tr>
<td>5.6</td>
<td>Mean reported protein intakes of males and females</td>
<td>44</td>
</tr>
<tr>
<td>5.7</td>
<td>Mean reported carbohydrate intakes of males and females</td>
<td>45</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean daily reported total sugars intake of total group, males and females</td>
<td>47</td>
</tr>
<tr>
<td>5.9</td>
<td>Mean reported fat intakes of males and females</td>
<td>47</td>
</tr>
<tr>
<td>5.10</td>
<td>Mean reported water intakes of males and females</td>
<td>49</td>
</tr>
<tr>
<td>5.11</td>
<td>Details of alcohol use in subjects</td>
<td>50</td>
</tr>
<tr>
<td>5.12</td>
<td>Daily reported intake of micronutrients of total group</td>
<td>51</td>
</tr>
<tr>
<td>5.13</td>
<td>Demographics of the nutrition knowledge study group</td>
<td>54</td>
</tr>
<tr>
<td>5.14</td>
<td>Nutrition knowledge scores of validation groups</td>
<td>55</td>
</tr>
<tr>
<td>5.15</td>
<td>Nutrition knowledge scores of test-retest reliability group</td>
<td>56</td>
</tr>
</tbody>
</table>
5.16 Test-retest reliability using (i) Pearson's product-moment correlation and (ii) percentage of identical responses on both test occasions

5.17 Pearson correlation coefficient obtained for each question on test and retest occasion

5.18 Nutrition knowledge scores for total group, males and females.

5.19 Nutrition knowledge scores by age groups

6.1 Mean estimated daily energy intakes (EDEE) of the total group, males and females, using prediction equations by Harris-Benedict and Mifflin.

6.2 Percentage differences between expected daily energy expenditure (EDEE) and mean daily energy intake (MDEI), for the total group, males and females

6.3 Range of differences between mean daily energy intake (MDEI) and estimated daily energy expenditure (EDEE) of the total group.

6.4 Source of questions in the nutrition knowledge questionnaire

6.5 Nutrition knowledge scores of subjects who did, and did not, supply food intake data.

6.6 Demographic data and mean reported daily dietary intakes of high, and low, knowledge groups.

6.7 Knowledge scores for questions on calcium and iron, and corresponding reported daily intake, for low & high knowledge groups and total group.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Supplement usage: results from the New Zealand National Nutrition Survey 1997</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Supplement usage reported by subjects</td>
<td>41</td>
</tr>
<tr>
<td>5.2</td>
<td>Mean daily reported energy intake of total group</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>Contribution of macronutrients to daily energy intake of the total group</td>
<td>44</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean daily reported protein intake of total group</td>
<td>45</td>
</tr>
<tr>
<td>5.5</td>
<td>Mean daily reported carbohydrate intake of total group</td>
<td>46</td>
</tr>
<tr>
<td>5.6</td>
<td>Mean daily reported fat intake of total group</td>
<td>48</td>
</tr>
<tr>
<td>5.7</td>
<td>Ratio of saturated:polyunsaturated:monounsaturated fatty acids from mean daily fat intake of total group</td>
<td>48</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean daily reported water intake of total group</td>
<td>49</td>
</tr>
<tr>
<td>5.9</td>
<td>Percentage of RDI (New Zealand) of those micronutrients where median reported daily intake of micronutrients was below the RDI.</td>
<td>53</td>
</tr>
<tr>
<td>5.10</td>
<td>Percentage of DRI (United States) of those micronutrients where median reported daily intake of micronutrients was below the DRI.</td>
<td>54</td>
</tr>
<tr>
<td>5.11</td>
<td>Response to Questions 6 and 7: Glycaemic Index, mean knowledge scores obtained by total group.</td>
<td>64</td>
</tr>
<tr>
<td>5.12</td>
<td>Responses to question 9 – Healthy Eating - dessert options.</td>
<td>64</td>
</tr>
<tr>
<td>5.13</td>
<td>Number of responses for each nutrient in question 13: what is the most important nutrient to replace after training and exercise?</td>
<td>65</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Nutrition plays a particularly important role during the period of adolescence. There are high nutrient requirements created by the combined demands of growth, development, tissue maintenance, and physical activity. The World Health Organization defines adolescence as the interval from 10 to 19 years of age. (WHO 1995)

As well as affecting current health status, nutritional intake during adolescence is a determinant of long-term health. Lifelong eating behaviours can be developed during this period, as we could expect that most adolescents will have acquired sufficient knowledge for dietary decision-making by the end of their secondary schooling. For young people involved in competitive sports, the benefits of a nutritionally adequate diet supporting performance and health are widely recognized. This is particularly important now because participation in competitions is occurring at progressively younger ages.

A higher level of nutrition knowledge has been linked with healthier diets in some previous studies of adolescents. If physically active adolescents possess low levels of nutrition knowledge it could become a barrier to maintaining a dietary intake that is sufficient to support both growth and optimal exercise performance. (Cupisti 2002) There have been no previous studies in New Zealand which have assessed the nutrition knowledge level of active adolescents, and determined if there is any link between this knowledge level and dietary intake behaviour.